WO2018174022A1 - Separation material - Google Patents

Separation material Download PDF

Info

Publication number
WO2018174022A1
WO2018174022A1 PCT/JP2018/010880 JP2018010880W WO2018174022A1 WO 2018174022 A1 WO2018174022 A1 WO 2018174022A1 JP 2018010880 W JP2018010880 W JP 2018010880W WO 2018174022 A1 WO2018174022 A1 WO 2018174022A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation material
porous polymer
group
hydroxyl group
polymer particles
Prior art date
Application number
PCT/JP2018/010880
Other languages
French (fr)
Japanese (ja)
Inventor
優 渡邊
史彦 河内
健 安江
後藤 泰史
道男 佛願
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019507669A priority Critical patent/JPWO2018174022A1/en
Publication of WO2018174022A1 publication Critical patent/WO2018174022A1/en

Links

Definitions

  • the present invention relates to a separating material.
  • ion exchangers based on porous synthetic polymers and ion exchanges based on cross-linked gels of hydrophilic natural polymers are generally used.
  • the body is used.
  • an ion exchanger based on a porous synthetic polymer the volume change due to the salt concentration is small. Therefore, when packed in a column and used for chromatography, the pressure resistance during liquid passage tends to be excellent.
  • this ion exchanger is used for separation of proteins, etc., nonspecific adsorption such as irreversible adsorption based on hydrophobic interaction occurs, resulting in peak asymmetry or ion exchange due to the hydrophobic interaction. There is a problem that the protein adsorbed on the body cannot be recovered while adsorbed.
  • an ion exchanger based on a cross-linked gel of a hydrophilic natural polymer typified by polysaccharides such as dextran and agarose has an advantage that there is almost no non-specific adsorption of protein.
  • this ion exchanger swells remarkably in an aqueous solution, and has the disadvantage that the volume change due to the ionic strength of the solution, the volume change between the free acid form and the loaded form is large, and the mechanical strength is not sufficient.
  • a cross-linked gel is used in chromatography, there is a disadvantage that the pressure loss during liquid passage is large and the gel is consolidated by liquid passage.
  • an object of the present invention is to provide a separation material that has a small amount of nonspecific adsorption of protein, is excellent in protein adsorption, and has excellent liquid permeability when used as a column.
  • the present invention provides the separating material described in [1] to [10] below.
  • a porous polymer particle containing a polymer containing a styrene monomer as a monomer unit, and a coating layer containing a polymer having a hydroxyl group and covering at least a part of the surface of the porous polymer particle A separation material having a change ratio of a specific surface area before and after that of 0.50 to 0.85.
  • the separation material according to [1] wherein the specific surface area is 30 m 2 / g or more.
  • the separation material according to [1] or [2], wherein the coefficient of variation of the particle size of the porous polymer particles is 5 to 15%.
  • the present invention it is possible to provide a separation material with less non-specific protein adsorption, excellent protein adsorption, and excellent liquid permeability when used as a column.
  • the separating material of the present embodiment includes a porous polymer particle containing a polymer containing a styrene monomer as a monomer unit, and a coating layer containing a polymer having a hydroxyl group that covers at least a part of the surface of the porous polymer particle.
  • the change ratio of the specific surface area before and after coating is 0.50 to 0.85.
  • Such a separation material has less non-specific protein adsorption, and is excellent in protein adsorption and liquid permeability when used as a column. The reason why the non-specific adsorption is small in the separation material of the present embodiment is considered to be that the hydrophobic interaction is small.
  • the separating material of the present embodiment is also excellent in alkali resistance, pressure resistance and durability.
  • the separation material of the present embodiment is excellent in dynamic adsorptivity when the liquid is passed at a high flow rate.
  • the separation material of the present embodiment is excellent in strength and can have a shape close to a true sphere.
  • Spherical separators are considered hydrodynamically advantageous when used in chromatography. Therefore, it is considered that such a separation material is easy to suppress pressure loss and perform a chromatography operation, for example.
  • the surface of the porous polymer particle includes not only the surface of the porous polymer particle but also the surface of the pores inside the porous polymer particle.
  • the porous polymer particle according to the present embodiment includes a polymer containing a styrene monomer as a monomer unit. Such porous polymer particles are considered to be excellent in durability and alkali resistance.
  • the porous polymer particles according to this embodiment are, for example, particles obtained by polymerizing a monomer containing a styrenic monomer in the presence of a porosifying agent.
  • the porous polymer particles can be synthesized by, for example, conventional suspension polymerization.
  • the styrene monomer means a monomer having a styrene skeleton. Examples of the styrenic monomer include the following polyfunctional monomers and monofunctional monomers.
  • the styrenic polyfunctional monomer examples include divinyl compounds having a styrene skeleton such as divinylbenzene, divinylbiphenyl, divinylnaphthalene, and divinylphenanthrene. These polyfunctional monomers can be used alone or in combination of two or more. Among these, divinylbenzene is preferably used from the viewpoint of further improving durability, acid resistance and alkali resistance. That is, the porous polymer particles may contain a polymer containing divinylbenzene as a monomer unit.
  • styrene monofunctional monomers examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, 2 , 4-dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, p- Examples thereof include styrene such as n-dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorosty
  • Styrene derivatives having a functional group such as a carboxy group, an amino group, a hydroxyl group, and an aldehyde group can also be used. These monofunctional monomers can be used alone or in combination of two or more. Among these, styrene is preferably used from the viewpoint of further improving acid resistance and alkali resistance.
  • the porosifying agent examples include aliphatic or aromatic hydrocarbons, esters, ketones, ethers, alcohols, and the like, which are organic solvents that promote phase separation at the time of polymerization and promote pore formation of particles. It is done. Specific examples include toluene, xylene, diethylbenzene, cyclohexane, octane, butyl acetate, dibutyl phthalate, methyl ethyl ketone, dibutyl ether, 1-hexanol, 2-octanol, decanol, lauryl alcohol, cyclohexanol and the like. These porosifying agents can be used singly or in combination of two or more.
  • the above porous agent can be used, for example, in an amount of 0 to 200% by mass with respect to the total mass of the monomer.
  • the porosity of the porous polymer particles can be controlled by the amount of the porous agent. Further, the size and shape of the pores of the porous polymer particles can be controlled by the kind of the porous agent.
  • Water used as a solvent can be used as a porous agent.
  • the particles can be made porous by, for example, dissolving an oil-soluble surfactant in the monomer and absorbing water.
  • oil-soluble surfactant used for the porosification examples include sorbitan monoesters of branched C16 to C24 fatty acids, chain unsaturated C16 to C22 fatty acids or chain saturated C12 to C14 fatty acids, such as sorbitan monolaurate, sorbitan Sorbitan monoesters derived from monooleate, sorbitan monomyristate or coconut fatty acid; diglycerol monoesters of branched C16-C24 fatty acids, chain unsaturated C16-C22 fatty acids or chain saturated C12-C14 fatty acids, for example di- Glycerol monooleate (for example, diglycerol monoester of C18: 1 (18 carbon atoms, 1 double bond) fatty acid), diglycerol monomyristate, diglycerol monoisostearate or diglycerol monoester of coconut fatty acid Ester; Branch C16 ⁇ 24 alcohol (e.g., Guerbet alcohols), linear unsaturated C16 ⁇ C24
  • sorbitan monolaurate eg, SPAN 20
  • Sorbitan monooleate e.g., SPAN 80
  • Diglycerol monooleate eg, diglycerol monooleate having a purity of preferably greater than about 40%, more preferably greater than about 50%, even more preferably greater than about 70%
  • diglycerol monoisostearate Form example, the purity is preferably greater than about 40%, more preferably about 50%.
  • diglycerol monoisostearate diglycerol monomyristate (eg, preferably greater than about 40%, more preferably greater than about 50%, even more preferably about 70% purity).
  • % Of sorbitan monomyristate a cocoyl (eg, lauryl and myristoyl group) ether of diglycerol; or a mixture thereof.
  • oil-soluble surfactants are preferably used in the range of 5 to 80% by mass relative to the total mass of the monomer.
  • content of the oil-soluble surfactant is 5% by mass or more, the stability of the water droplets is easily improved, so that a large single hole is easily formed.
  • content of the oil-soluble surfactant is 80% by mass or less, the porous polymer particles are more easily retained in shape after polymerization.
  • aqueous medium used for the polymerization reaction examples include water, a mixed medium of water and a water-soluble solvent (for example, lower alcohol), and the like.
  • the aqueous medium may contain a surfactant.
  • the surfactant any of anionic, cationic, nonionic and zwitterionic surfactants can be used.
  • anionic surfactant examples include fatty acid oils such as sodium oleate and castor oil potassium, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfone.
  • Acid salts alkane sulfonates, dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate, alkenyl succinates (dipotassium salts), alkyl phosphate esters, naphthalene sulfonate formalin condensates, polyoxyethylene alkylphenyl ether sulfates Salts, polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene lauryl ether sulfate, and polyoxyethylene alkyl sulfate salts
  • cationic surfactant examples include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
  • Nonionic surfactants include, for example, hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkyl aryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines, or amides. Agents, polyether-modified silicon nonionic surfactants such as silicon polyethylene oxide adducts and polypropylene oxide adducts, and fluorine nonionic surfactants such as perfluoroalkyl glycols.
  • hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkyl aryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines, or amides.
  • Agents polyether-modified silicon nonionic surfactants such as silicon polyethylene oxide adducts and polypropylene oxide adducts, and
  • zwitterionic surfactants include hydrocarbon surfactants such as lauryl dimethylamine oxide, phosphate ester surfactants, and phosphite ester surfactants.
  • Surfactant may be used alone or in combination of two or more.
  • anionic surfactants are preferable from the viewpoint of dispersion stability during monomer polymerization.
  • polymerization initiator examples include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, tert-butyl peroxide.
  • Organic peroxides such as oxy-2-ethylhexanoate and di-tert-butyl peroxide; and 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2 And azo compounds such as' -azobis (2,4-dimethylvaleronitrile).
  • the polymerization initiator can be used, for example, in the range of 0.1 to 7.0 parts by mass with respect to 100 parts by mass of the monomer.
  • the polymerization temperature can be appropriately selected according to the type of monomer and polymerization initiator.
  • the polymerization temperature may be, for example, 25 to 110 ° C. or 50 to 100 ° C.
  • a polymer dispersion stabilizer may be added in order to improve the dispersion stability of the particles.
  • polymer dispersion stabilizer examples include polyvinyl alcohol, polycarboxylic acid, celluloses (hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, etc.), and polyvinyl pyrrolidone, and inorganic water-soluble polymer compounds such as sodium tripolyphosphate are also included. Can be used together. Of these, polyvinyl alcohol or polyvinyl pyrrolidone is preferred.
  • the amount of the polymer dispersion stabilizer added may be, for example, 1 to 10 parts by mass with respect to 100 parts by mass of the monomer.
  • a water-soluble polymerization inhibitor such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, polyphenols and the like may be used.
  • the average particle diameter of the porous polymer particles may be, for example, 500 ⁇ m or less, 300 ⁇ m or less, or 200 ⁇ m or less.
  • the average particle diameter of the porous polymer particles may be, for example, 10 ⁇ m or more, 30 ⁇ m or more, or 50 ⁇ m or more from the viewpoint of easily suppressing an increase in column pressure after column filling. Good.
  • the coefficient of variation (CV) of the particle size of the porous polymer particles may be, for example, 5 to 15% or 5 to 13% from the viewpoint of improving liquid permeability. It may be up to 10%.
  • CV coefficient of variation
  • C. V. As a method for reducing the above, monodispersion by an emulsification apparatus such as a microprocess server (Hitachi Ltd.) can be mentioned.
  • C. of average particle size and particle size of porous polymer particles or separator V. can be determined by the following measurement method. 1) Disperse particles (porous polymer particles or separation material) in water (including a dispersant such as a surfactant) using an ultrasonic dispersion device to prepare a dispersion containing 1% by mass of particles. . 2) Using a particle size distribution meter (Sysmex Flow, manufactured by Sysmex Corporation), an average particle size and particle size of C.I. V. (Coefficient of variation) is measured.
  • the porosity (pore volume) of the porous polymer particles may be, for example, 30% to 70% by volume, and 40% to 70% by volume based on the total volume of the porous polymer particles. May be.
  • the porous polymer particles preferably have macropores (macropores).
  • the mode diameter in the pore size distribution of the porous polymer particles is preferably from 0.05 to 0.50 ⁇ m, more preferably from 0.10 to 0.50 ⁇ m, and from 0.10 ⁇ m to less than 0.50 ⁇ m. More preferably.
  • the mode diameter in the pore size distribution is 0.05 ⁇ m or more, substances tend to easily enter the pores, and when the mode diameter in the pore diameter distribution is 0.50 ⁇ m or less, the specific surface area is sufficient. It tends to be.
  • the porosity and pore diameter of the porous polymer particles can be adjusted by, for example, the above-described porosifying agent.
  • the specific surface area of the porous polymer particles is preferably 30 m 2 / g or more. From the viewpoint of higher practicality, the specific surface area is more preferably 35 m 2 / g or more, and further preferably 40 m 2 / g or more. When the specific surface area is 30 m 2 / g or more, the adsorption amount of the substance to be separated tends to increase.
  • the specific surface area of the porous polymer particles may be, for example, 500 m 2 / g or less, 200 m 2 / g or less, or 100 m 2 / g or less.
  • the mode diameter (mode value of pore diameter distribution, maximum frequency pore diameter), specific surface area and porosity in the pore diameter distribution of porous polymer particles or separation materials are measured with a mercury intrusion measuring device (Autopore: manufactured by Shimadzu Corporation). Measured in the following manner. About 0.05 g of a sample is added to a standard 5 mL powder cell (stem volume 0.4 mL), and measurement is performed under an initial pressure of 21 kPa (about 3 psia, corresponding to a pore diameter of about 60 ⁇ m). Mercury parameters are set to a device default mercury contact angle of 130 ° and a mercury surface tension of 485 dynes / cm. Each value is calculated by limiting the pore diameter to a range of 0 to 3 ⁇ m.
  • the coating layer according to the present embodiment includes a polymer having a hydroxyl group.
  • the coating layer contains a polymer having a hydroxyl group, it is easy to suppress nonspecific adsorption of protein and to easily improve the protein adsorption amount.
  • the polymer having a hydroxyl group may be cross-linked, for example, from the viewpoint of further suppressing the increase in the column pressure and from the viewpoint that the porous polymer particles and the coating layer are difficult to peel off.
  • the polymer having a hydroxyl group preferably has two or more hydroxyl groups in one molecule, and more preferably a hydrophilic polymer.
  • examples of the polymer having a hydroxyl group include polysaccharides and polyvinyl alcohol.
  • examples of the polysaccharide include agarose, dextran, cellulose, pullulan, and chitosan.
  • the weight average molecular weight of the polymer having a hydroxyl group may be, for example, 10,000 or more, 50000 or more, or 100,000 or more.
  • the weight average molecular weight of the polymer having a hydroxyl group may be, for example, 5000000 or less, 4500000 or less, or 4000000 or less.
  • the weight average molecular weight of the polymer having a hydroxyl group may be, for example, 10,000 to 5000000, 50000 to 450,000, or 100000 to 4000000.
  • the polymer having a hydroxyl group may be used singly or in combination of two or more.
  • the weight average molecular weight (Mw) refers to a value measured by the following method.
  • a solution obtained by dissolving 0.5% by mass of a sample in ultrapure water is measured using a gel permeation chromatography apparatus with 0.2M NaCl as an eluent.
  • a calibration curve is prepared by measuring pullulan and ethylene glycol as standard samples.
  • the polymer having a hydroxyl group may be a modified body (hydrophobic group-modified body) modified with a hydrophobic group from the viewpoint of improving the interfacial adsorption ability with the particles.
  • the hydrophobic group include an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, and a propyl group.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group.
  • the polymer having a hydroxyl group may be, for example, a polysaccharide or a modified product thereof from the viewpoint of alkali resistance.
  • modified polysaccharides include hydrophobic group-modified products.
  • the polymer having a hydroxyl group may be at least one selected from the group consisting of dextran, agarose, pullulan, and modified products thereof.
  • the coating layer according to the present embodiment can be formed by, for example, the following method.
  • a polymer solution having a hydroxyl group is adsorbed on the surface of the porous polymer particles.
  • the solvent of the solution is not particularly limited as long as it can dissolve a polymer having a hydroxyl group, but water is the most common.
  • the concentration of the polymer dissolved in the solvent is preferably 5 to 20 (mg / mL).
  • the polymer solution is impregnated with the above solution.
  • porous polymer particles are added to a polymer solution having a hydroxyl group and left for a predetermined time. At this time, for example, for the purpose of dispersing the particles in the solution, stirring may be performed.
  • the impregnation time varies depending on the surface state of the porous polymer particles. However, when the impregnation is performed for 6 to 50 hours, the polymer concentration is in equilibrium with the external concentration inside the porous polymer particles. Then, it wash
  • Crosslinking treatment Next, a crosslinking agent is added to cause the polymer having a hydroxyl group adsorbed on the surface of the porous polymer particles to undergo a crosslinking reaction to form a crosslinked body.
  • an epihalohydrin such as epichlorohydrin
  • a dialdehyde compound such as glutaraldehyde
  • a diisocyanate compound such as methylene diisocyanate
  • a glycidyl compound such as ethylene glycol diglycidyl ether
  • two or more functional groups active on a hydroxyl group for example, an epihalohydrin such as epichlorohydrin, a dialdehyde compound such as glutaraldehyde, a diisocyanate compound such as methylene diisocyanate, a glycidyl compound such as ethylene glycol diglycidyl ether, and two or more functional groups active on a hydroxyl group.
  • a dihalide compound such as dichlorooctane can also be used as a crosslinking agent.
  • a catalyst is usually used for this crosslinking reaction.
  • the catalyst varies depending on the type of crosslinking agent. For example, when the crosslinking agent is epichlorohydrin or the like, an alkali such as sodium hydroxide is effective, and when the crosslinking agent is a dialdehyde compound, a mineral acid such as hydrochloric acid is effective. It is.
  • the crosslinking reaction with a crosslinking agent is usually performed by adding a crosslinking agent to a system in which porous polymer particles adsorbing a polymer having a hydroxyl group are dispersed and suspended in an appropriate medium.
  • the amount of the crosslinking agent added is within a range of 0.1 to 100 mol times with respect to 1 mol of one unit of the monosaccharide. It can be selected according to the performance of the target separation material.
  • the addition amount of the crosslinking agent is 0.1 mol times or more, the coating layer tends to hardly peel from the porous polymer particles.
  • the addition amount of the crosslinking agent is 100 mol times or less, even when the reaction rate with the polymer having a hydroxyl group is high, the characteristics of the polymer having a hydroxyl group tend to be easily maintained.
  • the amount of the catalyst used in the crosslinking reaction depends on the type of crosslinking agent, but when a polysaccharide is used as the polymer having a hydroxyl group, usually 1 mol of one unit of monosaccharide forming the polysaccharide is used. Then, it is preferably used in the range of 0.01 to 10 mole times, more preferably 0.1 to 5 mole times.
  • the cross-linking reaction condition is a temperature condition
  • the temperature of the reaction system is raised, and the cross-linking reaction occurs when the temperature reaches the reaction temperature.
  • the polymer, the cross-linking agent, etc. are not extracted from the adsorbed polymer solution and are not effective in the crosslinking reaction. It needs to be active. Specific examples thereof include water and alcohol.
  • the crosslinking reaction can be usually performed at a temperature in the range of 5 to 90 ° C. for 1 to 30 hours.
  • the crosslinking reaction may be performed, for example, at a temperature in the range of 5 to 90 ° C. for 1 to 10 hours.
  • the temperature of the crosslinking reaction is preferably 25 to 90 ° C.
  • the particles are filtered off and then washed with a hydrophilic organic solvent such as methanol or ethanol or water to remove unreacted polymer, suspending medium and the like.
  • a hydrophilic organic solvent such as methanol or ethanol or water to remove unreacted polymer, suspending medium and the like.
  • a separating material is obtained in which at least a part of the surface of the porous polymer particles is covered with a coating layer containing a polymer having a hydroxyl group, and the polymer having a hydroxyl group is crosslinked. If necessary, the above crosslinking treatment may be omitted.
  • the separating material of the present embodiment may include, for example, a coating layer of 30 mg or more per 1 g of porous polymer particles, may include a coating layer of 50 mg or more, or may include a coating layer of 100 mg or more. Good.
  • the separating material of the present embodiment may include, for example, a coating layer of 450 mg or less per 1 g of porous polymer particles, may include a coating layer of 400 mg or less, or may include a coating layer of 400 mg or less. Good.
  • the ratio of the coating layer is 450 mg or less with respect to 1 g of the porous polymer particles, the coating layer tends to be a thin film, and the column pressure tends to be suppressed when used as a column.
  • the separating material of the present embodiment preferably has a coating layer of 30 to 450 mg per 1 g of porous polymer particles, preferably has a coating layer of 50 to 400 mg, and preferably has a coating layer of 100 to 400 mg.
  • the amount of the coating layer can be measured by reducing the weight of pyrolysis.
  • the separation material of the present embodiment includes a coating layer of 30 to 450 mg per 1 g of the porous polymer particles from the viewpoint of further suppressing the increase in the column pressure and from the viewpoint of difficult separation of the porous polymer particles and the coating layer.
  • the polymer having a hydroxyl group is preferably crosslinked.
  • the separation material provided with the coating layer may have an ion exchange group, a ligand (protein A), and the like.
  • the separation material can be used for ion exchange purification, affinity purification, and the like by introducing these via a hydroxyl group on the surface.
  • Examples of the method for introducing an ion exchange group include a method using a halogenated alkyl compound.
  • halogenated alkyl compound examples include monohalogenocarboxylic acids such as monohalogenoacetic acid and monohalogenopropionic acid and sodium salts thereof, primary, secondary or tertiary amines having at least one halogenated alkyl group such as diethylaminoethyl chloride, halogen And quaternary ammonium hydrochloride having an alkyl group.
  • halogenated alkyl compounds are preferably bromides or chlorides.
  • the amount of the halogenated alkyl compound used is preferably, for example, 0.2% by mass or more with respect to the total mass of the separating material imparting ion exchange groups.
  • organic solvent examples include alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol, isobutanol, 1-pentanol, and isopentanol.
  • the ion exchange group is introduced into the hydroxyl group on the surface of the separation material, the wet particles are drained by filtration or the like, immersed in an alkaline aqueous solution of a predetermined concentration, left for a certain time, and then water-organic.
  • the halogenated alkyl compound is added and reacted in a solvent mixture system. This reaction is preferably performed at a temperature of 40 to 90 ° C. under reflux for 0.5 to 12 hours.
  • the ion exchange group to be provided is determined depending on the kind of the halogenated alkyl compound used in the above reaction.
  • alkaline aqueous solution sodium hydroxide aqueous solution is mentioned, for example.
  • the separation material of this embodiment may have a cation exchange group or an anion exchange group as an ion exchange group.
  • a separating material can be used for ion exchange. That is, the separation material of the present embodiment may have a cation exchange group or an anion exchange group and be used for ion exchange.
  • the cation exchange group include a carboxy group and a sulfonic acid group.
  • the anion exchange group include an amino group and a quaternary ammonium group.
  • a mono- having at least one alkyl group in which a part of hydrogen atoms is substituted with a chlorine atom Di- or tri-alkylamine, mono-, di- or tri-alkanolamine, monoalkyl-monoalkanolamine, dialkyl-monoalkanolamine, monoalkyl-dialkanolamine and the like.
  • the amount of the alkyl halide compound used is preferably 0.2% by mass or more based on the total mass of the separating material into which the ion exchange group is introduced.
  • the reaction conditions are preferably 40 to 90 ° C. and 0.5 to 12 hours.
  • a strongly basic quaternary ammonium group as an ion exchange group first, a tertiary amino group is introduced, and then the tertiary amino group is reacted with a halogenated alkyl compound such as epichlorohydrin. The method of converting into an ammonium group is mentioned. Further, quaternary ammonium hydrochloride or the like may be reacted with the separation material.
  • Examples of the method for introducing a carboxy group that is a weakly acidic group as an ion exchange group include a method in which a monohalogenocarboxylic acid such as monohalogenoacetic acid or monohalogenopropionic acid or a sodium salt thereof is reacted as the halogenated alkyl compound. .
  • the amount of these halogenated alkyl compounds used is preferably 0.2% by mass or more based on the total mass of the separating material into which ion exchange groups are introduced.
  • a glycidyl compound such as ebichlorohydrin is reacted with a separating material, and a sulfite or bisulfite such as sodium sulfite or sodium bisulfite.
  • a method of adding a separating material to the saturated aqueous solution are preferably 30 to 90 ° C. and 1 to 10 hours.
  • 1,3-propane sultone is reacted with a separating material in an alkaline cloud atmosphere.
  • 1,3-propane sultone is preferably used in an amount of 0.4% by mass or more based on the total mass of the separating material into which the ion exchange group is introduced.
  • the reaction conditions are preferably 0 to 90 ° C. and 0.5 to 12 hours.
  • the change ratio of the specific surface area before and after coating refers to a value calculated from the following formula using the specific surface area before and after coating the porous polymer particles with a polymer having a hydroxyl group.
  • the change ratio of the specific surface area is the ratio of the specific surface area of the separation material to the specific surface area of the porous polymer particles, and is expressed by (specific surface area of the separation material) / (specific surface area of the porous polymer particles). expressed.
  • the change ratio of the specific surface area before and after coating is 0.50 to 0.85.
  • the change ratio may be 0.55 or more, for example.
  • the change ratio may be, for example, 0.80 or less, 0.75 or less, or 0.70 or less.
  • the change ratio of the specific surface area before and after coating may be, for example, 0.50 to 0.80, 0.55 to 0.80, .55 to 0.75 or 0.55 to 0.70.
  • the change ratio of the specific surface area before and after coating is determined by appropriately selecting the type and weight average molecular weight of the polymer having a hydroxyl group, the raw material of the porous polymer particles, the mode diameter in the porosity and pore size distribution, the amount of the coating layer, and the like. Can be adjusted.
  • the liquid flow rate is preferably 800 cm / h or more when the column pressure is 0.3 MPa.
  • the flow rate of protein solution or the like is generally in the range of 400 cm / h or less.
  • the separation rate for normal protein separation is as follows. Even when used at a liquid flow rate of 800 cm / h or higher, which is faster than that of the ion exchanger, it is considered that a high adsorption amount can be maintained.
  • the liquid passing speed may be, for example, 4000 cm / h or less.
  • the liquid passing speed represents a liquid passing speed when the separation material of the present embodiment is filled in a glass column of ⁇ 5.0 ⁇ 200 mm and the liquid is passed.
  • the average particle diameter of the separation material of the present embodiment may be, for example, 500 ⁇ m or less, 300 ⁇ m or less, or 200 ⁇ m or less. Further, the average particle diameter of the separation material may be, for example, 10 ⁇ m or more, 30 ⁇ m or more, or 50 ⁇ m or more from the viewpoint of easily suppressing an increase in the column pressure after column filling. . From the above viewpoint, the average particle diameter of the separating material may be, for example, 10 to 500 ⁇ m, 10 to 300 ⁇ m, 30 to 300 ⁇ m, or 50 to 200 ⁇ m. When used in preparative or industrial chromatography, the average particle size of the separating material is preferably, for example, 50 to 200 ⁇ m from the viewpoint of easily avoiding an extreme increase in the internal pressure of the column.
  • the mode diameter in the pore size distribution of the separating material may be, for example, 0.05 ⁇ m or more, 0.075 ⁇ m or more, or 0.10 ⁇ m or more.
  • the mode diameter may be, for example, 0.50 ⁇ m or less, or less than 0.50 ⁇ m.
  • the mode diameter in the pore size distribution of the separating material is preferably 0.05 to 0.50 ⁇ m, more preferably 0.075 to 0.50, and further preferably 0.10 to 0.50 ⁇ m. It is particularly preferably 0.10 ⁇ m or more and less than 0.50 ⁇ m.
  • the mode diameter in the pore size distribution is 0.05 ⁇ m or more, substances tend to easily enter the pores, and when the mode diameter in the pore diameter distribution is 0.50 ⁇ m or less, the specific surface area is sufficient. It tends to be.
  • the mode diameter may be, for example, 0.50 to 0.75.
  • the specific surface area of the separating material is preferably 30 m 2 / g or more from the viewpoint of easy adsorption of the substance to be separated and higher practicality.
  • the specific surface area of the separating material may be, for example, 500 m 2 / g or less, 200 m 2 / g or less, or 100 m 2 / g or less.
  • the separation material of this embodiment has the respective advantages of particles made of natural polymers or particles made of synthetic polymers in the separation of biopolymers such as proteins. Moreover, the separation material of the present embodiment tends to reduce non-specific adsorption and easily cause protein adsorption / desorption. Furthermore, the separation material according to the present embodiment tends to have a large adsorption amount (dynamic adsorption amount) of protein or the like under the same flow rate.
  • the separation material of this embodiment When the separation material of this embodiment is used as a column packing material in column chromatography, it has excellent operability because there is almost no volume change in the column regardless of the properties of the eluate used.
  • the separation material of the present embodiment may be used for liquid chromatography, for example. That is, the separation material of this embodiment may be, for example, a liquid chromatography column packing material.
  • the separation material of this embodiment is suitable for use in separation of proteins by electrostatic interaction and affinity purification.
  • a separation material having an ion exchange group hereinafter also referred to as “ion exchanger”
  • ion exchanger a separation material having an ion exchange group
  • the ion exchanger is filtered from the solution and added to an aqueous solution having a high salt concentration, the protein adsorbed on the ion exchanger can be easily desorbed and recovered.
  • the ion exchanger can also be used in column chromatography.
  • a water-soluble substance is preferable.
  • proteins such as serum albumin and blood proteins such as immunoglobulins, enzymes present in the living body, protein bioactive substances produced by biotechnology, DNA, and peptides having bioactivity.
  • the molecular weight of these substances may be, for example, 2 million or less, or 500,000 or less.
  • the nature and conditions of the ion exchanger may be selected according to the isoelectric point, ionization state, etc. of the protein. Examples of known methods include the method described in JP-A-60-169427.
  • Example 1 Synthesis of porous polymer particles
  • 12 g of 96% pure divinylbenzene manufactured by NS was added to obtain a dispersed phase.
  • 0.5 mass% polyvinyl alcohol aqueous solution was used as a continuous phase.
  • the obtained emulsion was transferred to a flask and stirred for about 8 hours using a stirrer while heating in a water bath at 80 ° C.
  • the obtained particles were filtered off and then washed with acetone to obtain porous polymer particles.
  • the particle size of the porous polymer particles was measured with a flow-type particle size measuring device, and the average particle size and particle size C.I. V. The value (coefficient of variation) was calculated. The results are shown in Table 1.
  • the obtained modified dextran was reprecipitated three times with isopropyl alcohol and washed.
  • porous polymer particles 10 g were put into 700 mL of a 20 mg / mL modified dextran aqueous solution and stirred at 55 ° C. for 24 hours to adsorb the modified dextran to the porous polymer particles.
  • the particles adsorbed with the modified dextran were separated by filtration and further washed with hot water.
  • the coating amount (adsorption amount) of the modified dextran per 1 g of the porous polymer particles was calculated from the concentration of the modified dextran in the filtrate. The results are shown in Table 1.
  • the modified dextran was crosslinked as follows. 10 g of particles adsorbed with modified dextran were dispersed in a 0.4 M aqueous sodium hydroxide solution, 39 g of ethylene glycol diglycidyl ether was added, and the mixture was stirred at room temperature for 24 hours. Then, after washing with 2% by mass of hot sodium dodecyl sulfate aqueous solution, it was washed with pure water. The obtained particles were stored as a dispersion in water.
  • the dynamic adsorption amount (dynamic binding capacity) was measured as follows. 10 column volumes of 40 mmol / L Tris-HCl buffer (pH 8.0) were passed through the column. Thereafter, a 40 mmol / L Tris-HCl buffer solution having a BSA concentration of 0.5 mg / mL was passed at 800 cm / h, and the BSA concentration at the column outlet was measured by UV measurement. The solution was passed through until the BSA concentration at the column inlet and outlet coincided, and diluted with 1 M NaCl Tris-HCl buffer solution for 5 column volumes. The dynamic binding capacity at 10% breakthrough was calculated using the following equation. The results are shown in Table 2.
  • the dynamic adsorption amount (dynamic adsorption amount / static adsorption amount) relative to the static adsorption amount was calculated. The results are shown in Table 2. The larger the dynamic adsorption amount relative to the static adsorption amount, the better.
  • Example 2 In the synthesis of the porous polymer particles, a separating material was produced and evaluated in the same manner as in Example 1 except that the amount of the porosifying agent was changed to 8 g of diethylbenzene and 16 g of hexanol.
  • Example 3 In the synthesis of the porous polymer particles, a separation material was prepared and evaluated in the same manner as in Example 1 except that the amount of the porosifying agent was changed to 4 g of diethylbenzene and 20 g of hexanol.
  • Example 4 A separation material was prepared and evaluated in the same manner as in Example 1 except that the Mw of dextran used was changed to 1 million.
  • Example 5 A separation material was produced and evaluated in the same manner as in Example 1 except that Mw of dextran used was changed to 500,000.
  • Example 1 A separation material was prepared and evaluated in the same manner as in Example 1 except that Mw of dextran used was changed to 40,000.
  • Example 2 The porous polymer particles synthesized in Example 1 were used as they were as a separating material and evaluated in the same manner as in Example 1.
  • the separation materials of the examples have less protein non-specific adsorption, excellent protein adsorption, and excellent liquid permeability when used as a column.

Abstract

The present invention relates to a separation material which is provided with: porous polymer particles that contain a polymer which contains a styrene monomer as a monomer unit; and a coating layer that covers at least a part of the surface of each porous polymer particle, while containing a polymer that has a hydroxyl group. The change ratio of the specific surface area of the separation material before and after coating is from 0.50 to 0.85.

Description

分離材Separation material
 本発明は、分離材に関する。 The present invention relates to a separating material.
 従来、タンパク質に代表される生体高分子を分離精製する場合、一般的には、多孔質型の合成高分子を母体とするイオン交換体、親水性天然高分子の架橋ゲルを母体とするイオン交換体等が用いられている。多孔質型の合成高分子を母体とするイオン交換体の場合、塩濃度による体積変化が小さいため、カラムに充填してクロマトグラフィーで用いると、通液時の耐圧性に優れる傾向にある。しかし、このイオン交換体を、タンパク質等の分離に用いると、疎水的相互作用に基づく不可逆吸着等の非特異吸着が起きるため、ピークの非対称化が発生する、又は該疎水的相互作用でイオン交換体に吸着されたタンパク質が吸着されたまま回収できないという問題点がある。 Conventionally, when separating and purifying biopolymers typified by proteins, generally, ion exchangers based on porous synthetic polymers and ion exchanges based on cross-linked gels of hydrophilic natural polymers are generally used. The body is used. In the case of an ion exchanger based on a porous synthetic polymer, the volume change due to the salt concentration is small. Therefore, when packed in a column and used for chromatography, the pressure resistance during liquid passage tends to be excellent. However, when this ion exchanger is used for separation of proteins, etc., nonspecific adsorption such as irreversible adsorption based on hydrophobic interaction occurs, resulting in peak asymmetry or ion exchange due to the hydrophobic interaction. There is a problem that the protein adsorbed on the body cannot be recovered while adsorbed.
 一方、デキストラン、アガロース等の多糖に代表される親水性天然高分子の架橋ゲルを母体とするイオン交換体の場合、タンパク質の非特異吸着がほとんどないという利点がある。ところが、このイオン交換体は、水溶液中で著しく膨潤し、溶液のイオン強度による体積変化、及び、遊離酸形と負荷形との体積変化が大きく、機械的強度も充分ではないという欠点を有する。特に、架橋ゲルをクロマトグラフィーで使用する場合、通液時の圧力損失が大きく、通液によりゲルが圧密化するといった欠点がある。 On the other hand, an ion exchanger based on a cross-linked gel of a hydrophilic natural polymer typified by polysaccharides such as dextran and agarose has an advantage that there is almost no non-specific adsorption of protein. However, this ion exchanger swells remarkably in an aqueous solution, and has the disadvantage that the volume change due to the ionic strength of the solution, the volume change between the free acid form and the loaded form is large, and the mechanical strength is not sufficient. In particular, when a cross-linked gel is used in chromatography, there is a disadvantage that the pressure loss during liquid passage is large and the gel is consolidated by liquid passage.
 親水性天然高分子の架橋ゲルが持つ欠点を克服するため、親水性天然高分子を「骨格」となる剛直な物質と組み合わせる試みがこれまでになされている(例えば、特許文献1~7を参照)。 In order to overcome the disadvantages of the crosslinked gel of the hydrophilic natural polymer, attempts have been made so far to combine the hydrophilic natural polymer with a rigid substance as a “skeleton” (see, for example, Patent Documents 1 to 7). ).
米国特許第4965289号明細書US Pat. No. 4,965,289 米国特許第4335017号明細書US Pat. No. 4,335,017 米国特許第4336161号明細書US Pat. No. 4,336,161 米国特許第3966489号明細書US Pat. No. 3,966,489 特開平1-254247号公報JP-A-1-254247 米国特許第5114577号明細書US Pat. No. 5,114,577 特開2009-244067号公報JP 2009-244067 A
 しかしながら、従来の分離材は、タンパク質の非特異吸着が少ないこと、タンパク質吸着量に優れること、及び、カラムとして用いたときの通液性に優れることを充分なレベルで満足するものではない。 However, conventional separation materials do not satisfy a sufficient level of low non-specific adsorption of protein, excellent protein adsorption, and excellent liquid permeability when used as a column.
 そこで、本発明は、タンパク質の非特異吸着が少なく、タンパク質吸着量に優れ、かつ、カラムとして用いたときの通液性に優れる分離材を提供することを目的とする。 Therefore, an object of the present invention is to provide a separation material that has a small amount of nonspecific adsorption of protein, is excellent in protein adsorption, and has excellent liquid permeability when used as a column.
 本発明は、下記[1]~[10]に記載の分離材を提供する。
[1]スチレン系モノマをモノマ単位として含有するポリマを含む多孔質ポリマ粒子と、多孔質ポリマ粒子の表面の少なくとも一部を被覆する、水酸基を有する高分子を含む被覆層と、を備え、被覆前後の比表面積の変化比が0.50~0.85である、分離材。
[2]比表面積が30m/g以上である、[1]に記載の分離材。
[3]前記多孔質ポリマ粒子の粒径の変動係数が5~15%である、[1]又は[2]に記載の分離材。
[4]前記水酸基を有する高分子が、多糖類又はその変性体である、[1]~[3]のいずれかに記載の分離材。
[5]前記水酸基を有する高分子が、デキストラン、アガロース、プルラン及びこれらの変性体からなる群より選ばれる少なくとも一種である、[1]~[4]のいずれかに記載の分離材。
[6]前記多孔質ポリマ粒子1g当たり30~450mgの前記被覆層を備え、前記水酸基を有する高分子が架橋されている、[1]~[5]のいずれかに記載の分離材。
[7]前記多孔質ポリマ粒子の細孔径分布におけるモード径が、0.05~0.50μmである、[1]~[6]のいずれかに記載の分離材。
[8]カラムに充填した場合、カラム圧0.3MPaのときに通液速度が800cm/h以上である、[1]~[7]のいずれかに記載の分離材。
[9]前記水酸基を有する高分子の重量平均分子量が、10000~5000000である、[1]~[8]のいずれかに記載の分離材。
[10]陽イオン交換基又は陰イオン交換基を有し、イオン交換用に用いられる、[1]~[9]のいずれかに記載の分離材。
The present invention provides the separating material described in [1] to [10] below.
[1] A porous polymer particle containing a polymer containing a styrene monomer as a monomer unit, and a coating layer containing a polymer having a hydroxyl group and covering at least a part of the surface of the porous polymer particle A separation material having a change ratio of a specific surface area before and after that of 0.50 to 0.85.
[2] The separation material according to [1], wherein the specific surface area is 30 m 2 / g or more.
[3] The separation material according to [1] or [2], wherein the coefficient of variation of the particle size of the porous polymer particles is 5 to 15%.
[4] The separation material according to any one of [1] to [3], wherein the polymer having a hydroxyl group is a polysaccharide or a modified product thereof.
[5] The separating material according to any one of [1] to [4], wherein the polymer having a hydroxyl group is at least one selected from the group consisting of dextran, agarose, pullulan, and modified products thereof.
[6] The separating material according to any one of [1] to [5], comprising 30 to 450 mg of the coating layer per gram of the porous polymer particles, wherein the polymer having a hydroxyl group is crosslinked.
[7] The separation material according to any one of [1] to [6], wherein the mode diameter in the pore size distribution of the porous polymer particles is 0.05 to 0.50 μm.
[8] The separation material according to any one of [1] to [7], wherein when the column is packed, the liquid flow rate is 800 cm / h or more when the column pressure is 0.3 MPa.
[9] The separating material according to any one of [1] to [8], wherein the polymer having a hydroxyl group has a weight average molecular weight of 10,000 to 5,000,000.
[10] The separation material according to any one of [1] to [9], which has a cation exchange group or an anion exchange group and is used for ion exchange.
 本発明によれば、タンパク質の非特異吸着が少なく、タンパク質吸着量に優れ、かつ、カラムとして用いたときの通液性に優れる分離材を提供できる。 According to the present invention, it is possible to provide a separation material with less non-specific protein adsorption, excellent protein adsorption, and excellent liquid permeability when used as a column.
 以下、本発明の好適な実施形態について説明をするが、本発明はこれらの実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
<分離材>
 本実施形態の分離材は、スチレン系モノマをモノマ単位として含有するポリマを含む多孔質ポリマ粒子と、多孔質ポリマ粒子の表面の少なくとも一部を被覆する、水酸基を有する高分子を含む被覆層と、を備え、被覆前後の比表面積の変化比が0.50~0.85であるものである。このような分離材は、タンパク質の非特異吸着が少なく、タンパク質吸着量及びカラムとして用いたときの通液性に優れる。本実施形態の分離材において非特異吸着が少ない理由は、疎水的相互作用が少ないことにあると考えられる。本実施形態の分離材はまた、耐アルカリ性、耐圧性及び耐久性にも優れる。本実施形態の分離材は、例えば、高い通液速度で通液した場合の動的吸着性にも優れる。本実施形態の分離材は、強度にも優れると共に、真球に近い形状とすることもできる。真球状の分離材は、クロマトグラフィーで使用した場合、流体力学的に有利であると考えられる。したがって、このような分離材は、例えば、圧力損失を抑制し易く、クロマトグラフィーの操作がし易いと考えられる。
<Separation material>
The separating material of the present embodiment includes a porous polymer particle containing a polymer containing a styrene monomer as a monomer unit, and a coating layer containing a polymer having a hydroxyl group that covers at least a part of the surface of the porous polymer particle. The change ratio of the specific surface area before and after coating is 0.50 to 0.85. Such a separation material has less non-specific protein adsorption, and is excellent in protein adsorption and liquid permeability when used as a column. The reason why the non-specific adsorption is small in the separation material of the present embodiment is considered to be that the hydrophobic interaction is small. The separating material of the present embodiment is also excellent in alkali resistance, pressure resistance and durability. For example, the separation material of the present embodiment is excellent in dynamic adsorptivity when the liquid is passed at a high flow rate. The separation material of the present embodiment is excellent in strength and can have a shape close to a true sphere. Spherical separators are considered hydrodynamically advantageous when used in chromatography. Therefore, it is considered that such a separation material is easy to suppress pressure loss and perform a chromatography operation, for example.
 本明細書中、「多孔質ポリマ粒子の表面」とは、多孔質ポリマ粒子の外側の表面のみでなく、多孔質ポリマ粒子の内部における細孔の表面を含むものとする。 In this specification, “the surface of the porous polymer particle” includes not only the surface of the porous polymer particle but also the surface of the pores inside the porous polymer particle.
[多孔質ポリマ粒子]
 本実施形態に係る多孔質ポリマ粒子は、スチレン系モノマをモノマ単位として含有するポリマを含むものである。このような多孔質ポリマ粒子は、耐久性及び耐アルカリ性に優れると考えられる。本実施形態に係る多孔質ポリマ粒子は、例えば、多孔質化剤の存在下で、スチレン系モノマを含むモノマを重合させて得られる粒子である。多孔質ポリマ粒子は、例えば、従来の懸濁重合等により合成できる。ここで、スチレン系モノマとは、スチレン骨格を有するモノマをいう。スチレン系モノマとしては、例えば、以下のような多官能性モノマ及び単官能性モノマが挙げられる。
[Porous polymer particles]
The porous polymer particle according to the present embodiment includes a polymer containing a styrene monomer as a monomer unit. Such porous polymer particles are considered to be excellent in durability and alkali resistance. The porous polymer particles according to this embodiment are, for example, particles obtained by polymerizing a monomer containing a styrenic monomer in the presence of a porosifying agent. The porous polymer particles can be synthesized by, for example, conventional suspension polymerization. Here, the styrene monomer means a monomer having a styrene skeleton. Examples of the styrenic monomer include the following polyfunctional monomers and monofunctional monomers.
 スチレン系の多官能性モノマとしては、例えば、ジビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン、ジビニルフェナントレン等のスチレン骨格を有するジビニル化合物が挙げられる。これらの多官能性モノマは、1種を単独で又は2種以上を組み合わせて用いることができる。上記の中でも、耐久性、耐酸性及び耐アルカリ性が更に向上する観点から、ジビニルベンゼンを使用することが好ましい。すなわち、多孔質ポリマ粒子は、ジビニルベンゼンをモノマ単位として含有するポリマを含んでいてもよい。 Examples of the styrenic polyfunctional monomer include divinyl compounds having a styrene skeleton such as divinylbenzene, divinylbiphenyl, divinylnaphthalene, and divinylphenanthrene. These polyfunctional monomers can be used alone or in combination of two or more. Among these, divinylbenzene is preferably used from the viewpoint of further improving durability, acid resistance and alkali resistance. That is, the porous polymer particles may contain a polymer containing divinylbenzene as a monomer unit.
 スチレン系の単官能性モノマとしては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-t-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレン等のスチレン及びその誘導体が挙げられる。カルボキシ基、アミノ基、水酸基、アルデヒド基等の官能基を有するスチレン誘導体も使用することができる。これらの単官能性モノマは、1種を単独で又は2種以上を組み合わせて用いることができる。上記の中でも、耐酸性及び耐アルカリ性が更に向上する観点から、スチレンを使用することが好ましい。 Examples of styrene monofunctional monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, 2 , 4-dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, p- Examples thereof include styrene such as n-dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene, and derivatives thereof. Styrene derivatives having a functional group such as a carboxy group, an amino group, a hydroxyl group, and an aldehyde group can also be used. These monofunctional monomers can be used alone or in combination of two or more. Among these, styrene is preferably used from the viewpoint of further improving acid resistance and alkali resistance.
 多孔質化剤としては、重合時に相分離を促し、粒子の多孔質化を促進する有機溶媒である脂肪族又は芳香族の炭化水素類、エステル類、ケトン類、エーテル類、アルコール類等が挙げられる。具体的には、トルエン、キシレン、ジエチルベンゼン、シクロヘキサン、オクタン、酢酸ブチル、フタル酸ジブチル、メチルエチルケトン、ジブチルエーテル、1-ヘキサノール、2-オクタノール、デカノール、ラウリルアルコール、シクロヘキサノール等が挙げられる。これらの多孔質化剤は、1種を単独で又は2種以上を組み合わせて用いることができる。 Examples of the porosifying agent include aliphatic or aromatic hydrocarbons, esters, ketones, ethers, alcohols, and the like, which are organic solvents that promote phase separation at the time of polymerization and promote pore formation of particles. It is done. Specific examples include toluene, xylene, diethylbenzene, cyclohexane, octane, butyl acetate, dibutyl phthalate, methyl ethyl ketone, dibutyl ether, 1-hexanol, 2-octanol, decanol, lauryl alcohol, cyclohexanol and the like. These porosifying agents can be used singly or in combination of two or more.
 上記多孔質化剤は、モノマ全質量に対して、例えば、0~200質量%使用できる。多孔質化剤の量によって、多孔質ポリマ粒子の空隙率をコントロールできる。さらに多孔質化剤の種類によって、多孔質ポリマ粒子の細孔の大きさ及び形状をコントロールすることができる。 The above porous agent can be used, for example, in an amount of 0 to 200% by mass with respect to the total mass of the monomer. The porosity of the porous polymer particles can be controlled by the amount of the porous agent. Further, the size and shape of the pores of the porous polymer particles can be controlled by the kind of the porous agent.
 溶媒として使用する水を多孔質化剤とすることもできる。水を多孔質化剤とする場合は、例えば、モノマに油溶性界面活性剤を溶解させ、水を吸収することによって、粒子を多孔質化し得る。 Water used as a solvent can be used as a porous agent. When water is used as the porosifying agent, the particles can be made porous by, for example, dissolving an oil-soluble surfactant in the monomer and absorbing water.
 多孔質化に使用される油溶性界面活性剤としては、分岐C16~C24脂肪酸、鎖状不飽和C16~C22脂肪酸又は鎖状飽和C12~C14脂肪酸のソルビタンモノエステル、例えば、ソルビタンモノラウレート、ソルビタンモノオレエート、ソルビタンモノミリステート又はヤシ脂肪酸から誘導されるソルビタンモノエステル;分岐C16~C24脂肪酸、鎖状不飽和C16~C22脂肪酸又は鎖状飽和C12~C14脂肪酸のジグリセロールモノエステル、例えば、ジグリセロールモノオレエート(例えば、C18:1(炭素数18個、二重結合数1個)脂肪酸のジグリセロールモノエステル)、ジグリセロールモノミリステート、ジグリセロールモノイソステアレート又はヤシ脂肪酸のジグリセロールモノエステル;分岐C16~C24アルコール(例えば、ゲルベアルコール)、鎖状不飽和C16~C22アルコール又は鎖状飽和C12~C14アルコール(例えば、ヤシ脂肪アルコール)のジグリセロールモノ脂肪族エーテル;及びこれらの混合物が挙げられる。 Examples of the oil-soluble surfactant used for the porosification include sorbitan monoesters of branched C16 to C24 fatty acids, chain unsaturated C16 to C22 fatty acids or chain saturated C12 to C14 fatty acids, such as sorbitan monolaurate, sorbitan Sorbitan monoesters derived from monooleate, sorbitan monomyristate or coconut fatty acid; diglycerol monoesters of branched C16-C24 fatty acids, chain unsaturated C16-C22 fatty acids or chain saturated C12-C14 fatty acids, for example di- Glycerol monooleate (for example, diglycerol monoester of C18: 1 (18 carbon atoms, 1 double bond) fatty acid), diglycerol monomyristate, diglycerol monoisostearate or diglycerol monoester of coconut fatty acid Ester; Branch C16 ~ 24 alcohol (e.g., Guerbet alcohols), linear unsaturated C16 ~ C22 alcohols or linear saturated C12 ~ C14 alcohols (e.g., coconut fatty alcohols) diglycerol mono-fatty ethers; and mixtures thereof.
 これらのうち、ソルビタンモノラウレート(例えば、SPAN(スパン、登録商標)20、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるソルビタンモノラウレート);ソルビタンモノオレエート(例えば、SPAN(スパン、登録商標)80、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるソルビタンモノオレエート);ジグリセロールモノオレエート(例えば、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるジグリセロールモノオレエート);ジグリセロールモノイソステアレート(例えば、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるジグリセロールモノイソステアレート);ジグリセロールモノミリステート(例えば、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるソルビタンモノミリステート);ジグリセロールのココイル(例えば、ラウリル基及びミリストイル基)エーテル;又はこれらの混合物が好ましい。 Of these, sorbitan monolaurate (eg, SPAN 20), preferably having a purity of greater than about 40%, more preferably greater than about 50%, and even more preferably greater than about 70%. Sorbitan monooleate (e.g., SPAN 80), preferably greater than about 40%, more preferably greater than about 50%, and even more preferably greater than about 70% sorbitan monooleate ); Diglycerol monooleate (eg, diglycerol monooleate having a purity of preferably greater than about 40%, more preferably greater than about 50%, even more preferably greater than about 70%); diglycerol monoisostearate (For example, the purity is preferably greater than about 40%, more preferably about 50%. Greater than, more preferably greater than about 70% diglycerol monoisostearate); diglycerol monomyristate (eg, preferably greater than about 40%, more preferably greater than about 50%, even more preferably about 70% purity). % Of sorbitan monomyristate); a cocoyl (eg, lauryl and myristoyl group) ether of diglycerol; or a mixture thereof.
 これらの油溶性界面活性剤は、モノマ全質量に対して、5~80質量%の範囲で用いることが好ましい。油溶性界面活性剤の含有量が5質量%以上であると、水滴の安定性が向上し易いことから、大きな単一孔を形成し易い。油溶性界面活性剤の含有量が80質量%以下であると、重合後に多孔質ポリマ粒子が形状をより保持し易くなる。 These oil-soluble surfactants are preferably used in the range of 5 to 80% by mass relative to the total mass of the monomer. When the content of the oil-soluble surfactant is 5% by mass or more, the stability of the water droplets is easily improved, so that a large single hole is easily formed. When the content of the oil-soluble surfactant is 80% by mass or less, the porous polymer particles are more easily retained in shape after polymerization.
 重合反応に用いられる水性媒体としては、水、水と水溶性溶媒(例えば、低級アルコール)との混合媒体等が挙げられる。水性媒体には、界面活性剤が含まれていてもよい。界面活性剤としては、アニオン系、カチオン系、ノニオン系及び両性イオン系の界面活性剤のうち、いずれも用いることができる。 Examples of the aqueous medium used for the polymerization reaction include water, a mixed medium of water and a water-soluble solvent (for example, lower alcohol), and the like. The aqueous medium may contain a surfactant. As the surfactant, any of anionic, cationic, nonionic and zwitterionic surfactants can be used.
 アニオン系界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジオクチルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩、アルケルニルコハク酸塩(ジカリウム塩)、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩、及びポリオキシエチレンアルキル硫酸エステル塩が挙げられる。 Examples of the anionic surfactant include fatty acid oils such as sodium oleate and castor oil potassium, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfone. Acid salts, alkane sulfonates, dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate, alkenyl succinates (dipotassium salts), alkyl phosphate esters, naphthalene sulfonate formalin condensates, polyoxyethylene alkylphenyl ether sulfates Salts, polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene lauryl ether sulfate, and polyoxyethylene alkyl sulfate salts
 カチオン系界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、及びラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩が挙げられる。 Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
 ノニオン系界面活性剤としては、例えば、ポリエチレングリコールアルキルエーテル類、ポリエチレングリコールアルキルアリールエーテル類、ポリエチレングリコールエステル類、ポリエチレングリコールソルビタンエステル類、ポリアルキレングリコールアルキルアミン又はアミド類等の炭化水素系ノニオン界面活性剤、シリコンのポリエチレンオキサイド付加物類、ポリプロピレンオキサイド付加物類等のポリエーテル変性シリコン系ノニオン界面活性剤、及びパーフルオロアルキルグリコール類等のフッ素系ノニオン界面活性剤が挙げられる。 Nonionic surfactants include, for example, hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkyl aryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines, or amides. Agents, polyether-modified silicon nonionic surfactants such as silicon polyethylene oxide adducts and polypropylene oxide adducts, and fluorine nonionic surfactants such as perfluoroalkyl glycols.
 両性イオン系界面活性剤としては、例えば、ラウリルジメチルアミンオキサイド等の炭化水素界面活性剤、リン酸エステル系界面活性剤及び亜リン酸エステル系界面活性剤が挙げられる。 Examples of zwitterionic surfactants include hydrocarbon surfactants such as lauryl dimethylamine oxide, phosphate ester surfactants, and phosphite ester surfactants.
 界面活性剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。上記界面活性剤の中でも、モノマ重合時の分散安定性の観点から、アニオン系界面活性剤が好ましい。 Surfactant may be used alone or in combination of two or more. Among the surfactants, anionic surfactants are preferable from the viewpoint of dispersion stability during monomer polymerization.
 必要に応じて添加される重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド等の有機過酸化物;及び2,2’-アゾビスイソブチロニトリル、1,1’-アゾビスシクロヘキサンカルボニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物が挙げられる。重合開始剤は、モノマ100質量部に対して、例えば、0.1~7.0質量部の範囲で使用することができる。 Examples of the polymerization initiator added as necessary include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, tert-butyl peroxide. Organic peroxides such as oxy-2-ethylhexanoate and di-tert-butyl peroxide; and 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2 And azo compounds such as' -azobis (2,4-dimethylvaleronitrile). The polymerization initiator can be used, for example, in the range of 0.1 to 7.0 parts by mass with respect to 100 parts by mass of the monomer.
 重合温度は、モノマ及び重合開始剤の種類に応じて、適宜選択することができる。重合温度は、例えば、25~110℃であってもよく、50~100℃であってもよい。 The polymerization temperature can be appropriately selected according to the type of monomer and polymerization initiator. The polymerization temperature may be, for example, 25 to 110 ° C. or 50 to 100 ° C.
 上記重合工程において、粒子の分散安定性を向上させるために、高分子分散安定剤を添加してもよい。 In the above polymerization step, a polymer dispersion stabilizer may be added in order to improve the dispersion stability of the particles.
 高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース等)、及びポリビニルピロリドンが挙げられ、トリポリリン酸ナトリウム等の無機系水溶性高分子化合物も併用することができる。これらのうち、ポリビニルアルコール又はポリビニルピロリドンが好ましい。高分子分散安定剤の添加量は、モノマ100質量部に対して、例えば、1~10質量部であってもよい。 Examples of the polymer dispersion stabilizer include polyvinyl alcohol, polycarboxylic acid, celluloses (hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, etc.), and polyvinyl pyrrolidone, and inorganic water-soluble polymer compounds such as sodium tripolyphosphate are also included. Can be used together. Of these, polyvinyl alcohol or polyvinyl pyrrolidone is preferred. The amount of the polymer dispersion stabilizer added may be, for example, 1 to 10 parts by mass with respect to 100 parts by mass of the monomer.
 モノマが単独で重合することを抑えるために、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を用いてもよい。 In order to suppress the polymerization of the monomer alone, a water-soluble polymerization inhibitor such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, polyphenols and the like may be used.
 多孔質ポリマ粒子の平均粒径は、例えば、500μm以下であってもよく、300μm以下であってもよく、200μm以下であってもよい。また、多孔質ポリマ粒子の平均粒径は、カラム充填後のカラム圧増加を抑制し易い観点から、例えば、10μm以上であってもよく、30μm以上であってもよく、50μm以上であってもよい。 The average particle diameter of the porous polymer particles may be, for example, 500 μm or less, 300 μm or less, or 200 μm or less. In addition, the average particle diameter of the porous polymer particles may be, for example, 10 μm or more, 30 μm or more, or 50 μm or more from the viewpoint of easily suppressing an increase in column pressure after column filling. Good.
 多孔質ポリマ粒子の粒径の変動係数(C.V.)は、通液性の向上の観点から、例えば、5~15%であってもよく、5~13%であってもよく、5~10%であってもよい。C.V.を低減する方法としては、マイクロプロセスサーバー(株式会社日立製作所)等の乳化装置により単分散化することが挙げられる。 The coefficient of variation (CV) of the particle size of the porous polymer particles may be, for example, 5 to 15% or 5 to 13% from the viewpoint of improving liquid permeability. It may be up to 10%. C. V. As a method for reducing the above, monodispersion by an emulsification apparatus such as a microprocess server (Hitachi Ltd.) can be mentioned.
 多孔質ポリマ粒子又は分離材の平均粒径及び粒径のC.V.(変動係数)は、以下の測定法により求めることができる。
1)粒子(多孔質ポリマ粒子又は分離材)を、超音波分散装置を使用して水(界面活性剤等の分散剤を含む)に分散させ、1質量%の粒子を含む分散液を調製する。
2)粒度分布計(シスメックスフロー、シスメックス株式会社製)を用いて、上記分散液中の粒子約1万個の画像により平均粒径及び粒径のC.V.(変動係数)を測定する。
C. of average particle size and particle size of porous polymer particles or separator V. (Coefficient of variation) can be determined by the following measurement method.
1) Disperse particles (porous polymer particles or separation material) in water (including a dispersant such as a surfactant) using an ultrasonic dispersion device to prepare a dispersion containing 1% by mass of particles. .
2) Using a particle size distribution meter (Sysmex Flow, manufactured by Sysmex Corporation), an average particle size and particle size of C.I. V. (Coefficient of variation) is measured.
 多孔質ポリマ粒子の空隙率(細孔容積)は、多孔質ポリマ粒子の全体積基準で、例えば、30体積%以上70体積%以下であってもよく、40%体積以上70体積%以下であってもよい。多孔質ポリマ粒子はマクロポアー(マクロ孔)を有することが好ましい。 The porosity (pore volume) of the porous polymer particles may be, for example, 30% to 70% by volume, and 40% to 70% by volume based on the total volume of the porous polymer particles. May be. The porous polymer particles preferably have macropores (macropores).
 多孔質ポリマ粒子の細孔径分布におけるモード径は、0.05~0.50μmであることが好ましく、0.10~0.50μmであることがより好ましく、0.10μm以上0.50μm未満であることが更に好ましい。細孔径分布におけるモード径が0.05μm以上であると、細孔内に物質が入り易くなる傾向にあり、細孔径分布におけるモード径が0.50μm以下であると、比表面積が充分なものになり易い傾向にある。 The mode diameter in the pore size distribution of the porous polymer particles is preferably from 0.05 to 0.50 μm, more preferably from 0.10 to 0.50 μm, and from 0.10 μm to less than 0.50 μm. More preferably. When the mode diameter in the pore size distribution is 0.05 μm or more, substances tend to easily enter the pores, and when the mode diameter in the pore diameter distribution is 0.50 μm or less, the specific surface area is sufficient. It tends to be.
 多孔質ポリマ粒子の空隙率及び細孔径は、例えば、上述の多孔質化剤により調整可能である。 The porosity and pore diameter of the porous polymer particles can be adjusted by, for example, the above-described porosifying agent.
 多孔質ポリマ粒子の比表面積は、30m/g以上であることが好ましい。より高い実用性の観点から、比表面積は35m/g以上であることがより好ましく、40m/g以上であることが更に好ましい。比表面積が30m/g以上であると、分離する物質の吸着量が多くなる傾向にある。多孔質ポリマ粒子の比表面積は、例えば、500m/g以下であってもよく、200m/g以下であってもよく、100m/g以下であってもよい。 The specific surface area of the porous polymer particles is preferably 30 m 2 / g or more. From the viewpoint of higher practicality, the specific surface area is more preferably 35 m 2 / g or more, and further preferably 40 m 2 / g or more. When the specific surface area is 30 m 2 / g or more, the adsorption amount of the substance to be separated tends to increase. The specific surface area of the porous polymer particles may be, for example, 500 m 2 / g or less, 200 m 2 / g or less, or 100 m 2 / g or less.
 多孔質ポリマ粒子又は分離材の細孔径分布におけるモード径(細孔径分布の最頻値、最大頻度細孔径)、比表面積及び空隙率は、水銀圧入測定装置(オートポア:株式会社島津製作所製)にて測定した値であり、以下のようにして測定する。試料約0.05gを、標準5mL粉体用セル(ステム容積0.4mL)に加え、初期圧21kPa(約3psia、細孔直径約60μm相当)の条件で測定する。水銀パラメータは、装置デフォルトの水銀接触角130°、水銀表面張力485dynes/cm、に設定する。また、細孔径0~3μmの範囲に限定してそれぞれの値を算出する。 The mode diameter (mode value of pore diameter distribution, maximum frequency pore diameter), specific surface area and porosity in the pore diameter distribution of porous polymer particles or separation materials are measured with a mercury intrusion measuring device (Autopore: manufactured by Shimadzu Corporation). Measured in the following manner. About 0.05 g of a sample is added to a standard 5 mL powder cell (stem volume 0.4 mL), and measurement is performed under an initial pressure of 21 kPa (about 3 psia, corresponding to a pore diameter of about 60 μm). Mercury parameters are set to a device default mercury contact angle of 130 ° and a mercury surface tension of 485 dynes / cm. Each value is calculated by limiting the pore diameter to a range of 0 to 3 μm.
[被覆層]
 本実施形態に係る被覆層は、水酸基を有する高分子を含む。被覆層が水酸基を有する高分子を含むことにより、タンパク質の非特異吸着を抑制し易く、かつ、タンパク質吸着量を向上し易い。水酸基を有する高分子は、カラム圧の上昇を更に抑制し易い観点及び多孔質ポリマ粒子と被覆層とが剥離し難い観点から、例えば、架橋されていてもよい。
[Coating layer]
The coating layer according to the present embodiment includes a polymer having a hydroxyl group. When the coating layer contains a polymer having a hydroxyl group, it is easy to suppress nonspecific adsorption of protein and to easily improve the protein adsorption amount. The polymer having a hydroxyl group may be cross-linked, for example, from the viewpoint of further suppressing the increase in the column pressure and from the viewpoint that the porous polymer particles and the coating layer are difficult to peel off.
(水酸基を有する高分子)
 水酸基を有する高分子は、1分子中に2個以上の水酸基を有することが好ましく、親水性高分子であることがより好ましい。水酸基を有する高分子としては、例えば、多糖類及びポリビニルアルコールが挙げられる。多糖類としては、例えば、アガロース、デキストラン、セルロース、プルラン及びキトサンが挙げられる。水酸基を有する高分子の重量平均分子量は、例えば、10000以上であってもよく、50000以上であってもよく、100000以上であってもよい。水酸基を有する高分子の重量平均分子量は、例えば、5000000以下であってもよく、4500000以下であってもよく、4000000以下であってもよい。すなわち、水酸基を有する高分子の重量平均分子量は、例えば、10000~5000000であってもよく、50000~4500000であってもよく、100000~4000000であってもよい。水酸基を有する高分子は、1種を単独で又は2種以上を組み合わせて用いてもよい。
(Polymer having a hydroxyl group)
The polymer having a hydroxyl group preferably has two or more hydroxyl groups in one molecule, and more preferably a hydrophilic polymer. Examples of the polymer having a hydroxyl group include polysaccharides and polyvinyl alcohol. Examples of the polysaccharide include agarose, dextran, cellulose, pullulan, and chitosan. The weight average molecular weight of the polymer having a hydroxyl group may be, for example, 10,000 or more, 50000 or more, or 100,000 or more. The weight average molecular weight of the polymer having a hydroxyl group may be, for example, 5000000 or less, 4500000 or less, or 4000000 or less. That is, the weight average molecular weight of the polymer having a hydroxyl group may be, for example, 10,000 to 5000000, 50000 to 450,000, or 100000 to 4000000. The polymer having a hydroxyl group may be used singly or in combination of two or more.
 本明細書において、重量平均分子量(Mw)は、以下の方法により測定される値をいう。超純水に試料を0.5質量%溶解させたものを、0.2M NaClを溶離液としてゲルパーミエーションクロマトグラフィー装置を用いて測定する。検量線はプルラン及びエチレングリコールを標準試料として測定して作成する。 In this specification, the weight average molecular weight (Mw) refers to a value measured by the following method. A solution obtained by dissolving 0.5% by mass of a sample in ultrapure water is measured using a gel permeation chromatography apparatus with 0.2M NaCl as an eluent. A calibration curve is prepared by measuring pullulan and ethylene glycol as standard samples.
 水酸基を有する高分子は、粒子との界面吸着能を向上させる観点から、疎水基により変性された変性体(疎水基変性体)であってもよい。疎水基としては、例えば、炭素数1~6のアルキル基、及び炭素数6~10のアリール基が挙げられる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基及びプロピル基が挙げられる。炭素数6~10のアリール基としては、例えば、フェニル基及びナフチル基が挙げられる。 The polymer having a hydroxyl group may be a modified body (hydrophobic group-modified body) modified with a hydrophobic group from the viewpoint of improving the interfacial adsorption ability with the particles. Examples of the hydrophobic group include an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, and a propyl group. Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group.
 水酸基を有する高分子は、耐アルカリ性の観点から、例えば、多糖類又はその変性体であってもよい。多糖類の変性体としては、例えば、疎水基変性体が挙げられる。水酸基を有する高分子は、分子運動性の観点から、例えば、デキストラン、アガロース、プルラン及びこれらの変性体からなる群より選ばれる少なくとも一種であってもよい。 The polymer having a hydroxyl group may be, for example, a polysaccharide or a modified product thereof from the viewpoint of alkali resistance. Examples of modified polysaccharides include hydrophobic group-modified products. From the viewpoint of molecular mobility, the polymer having a hydroxyl group may be at least one selected from the group consisting of dextran, agarose, pullulan, and modified products thereof.
(水酸基を有する高分子を含む被覆層の形成方法)
 本実施形態に係る被覆層は、例えば、以下に示す方法により形成することができる。
(Method for forming a coating layer containing a polymer having a hydroxyl group)
The coating layer according to the present embodiment can be formed by, for example, the following method.
 まず、水酸基を有する高分子の溶液を多孔質ポリマ粒子表面に吸着させる。上記溶液の溶媒としては、水酸基を有する高分子を溶解することのできるものであれば、特に限定されないが、水が最も一般的である。溶媒に溶解させる高分子の濃度は、5~20(mg/mL)が好ましい。 First, a polymer solution having a hydroxyl group is adsorbed on the surface of the porous polymer particles. The solvent of the solution is not particularly limited as long as it can dissolve a polymer having a hydroxyl group, but water is the most common. The concentration of the polymer dissolved in the solvent is preferably 5 to 20 (mg / mL).
 具体的には、例えば、上記溶液を、多孔質ポリマ粒子に含浸させる。含浸方法は、水酸基を有する高分子の溶液に多孔質ポリマ粒子を加えて一定時間放置する。このとき、溶液中の粒子を分散させる目的等により、例えば、攪拌してもよい。含浸時間は多孔質ポリマ粒子の表面状態によっても変わるが、通常、6~50時間含浸すれば高分子濃度が多孔質ポリマ粒子の内部で外部濃度と平衡状態となる。その後、水、アルコール等の溶媒で洗浄し、未吸着分の水酸基を有する高分子を除去する。 Specifically, for example, the polymer solution is impregnated with the above solution. In the impregnation method, porous polymer particles are added to a polymer solution having a hydroxyl group and left for a predetermined time. At this time, for example, for the purpose of dispersing the particles in the solution, stirring may be performed. The impregnation time varies depending on the surface state of the porous polymer particles. However, when the impregnation is performed for 6 to 50 hours, the polymer concentration is in equilibrium with the external concentration inside the porous polymer particles. Then, it wash | cleans with solvents, such as water and alcohol, and remove | eliminates the polymer which has a hydroxyl group which is not adsorb | sucked.
(架橋処理)
 次いで、架橋剤を加えて多孔質ポリマ粒子表面に吸着された水酸基を有する高分子を架橋反応させて、架橋体を形成する。
(Crosslinking treatment)
Next, a crosslinking agent is added to cause the polymer having a hydroxyl group adsorbed on the surface of the porous polymer particles to undergo a crosslinking reaction to form a crosslinked body.
 架橋剤としては、例えば、エピクロルヒドリン等のエピハロヒドリン、グルタルアルデヒド等のジアルデヒド化合物、メチレンジイソシアネート等のジイソシアネート化合物、エチレングリコールジグリシジルエーテル等のグリシジル化合物などのような水酸基に活性な官能基を2個以上有する化合物が挙げられる。また、水酸基を有する高分子としてキトサンのようなアミノ基を有する化合物を使用する場合には、ジクロロオクタンのようなジハライド化合物も架橋剤として使用できる。 As the crosslinking agent, for example, an epihalohydrin such as epichlorohydrin, a dialdehyde compound such as glutaraldehyde, a diisocyanate compound such as methylene diisocyanate, a glycidyl compound such as ethylene glycol diglycidyl ether, and two or more functional groups active on a hydroxyl group. The compound which has is mentioned. Further, when a compound having an amino group such as chitosan is used as the polymer having a hydroxyl group, a dihalide compound such as dichlorooctane can also be used as a crosslinking agent.
 この架橋反応には通常触媒が用いられる。該触媒は架橋剤の種類により異なるが、例えば、架橋剤がエピクロルヒドリン等の場合には水酸化ナトリウム等のアルカリが有効であり、架橋剤がジアルデヒド化合物の場合には塩酸等の鉱酸が有効である。 A catalyst is usually used for this crosslinking reaction. The catalyst varies depending on the type of crosslinking agent. For example, when the crosslinking agent is epichlorohydrin or the like, an alkali such as sodium hydroxide is effective, and when the crosslinking agent is a dialdehyde compound, a mineral acid such as hydrochloric acid is effective. It is.
 架橋剤による架橋反応は、通常、水酸基を有する高分子を吸着させた多孔質ポリマ粒子を、適当な媒体中に分散、懸濁させた系に架橋剤を添加することによって行われる。架橋剤の添加量は、水酸基を有する高分子として多糖類又はその変性体を使用した場合、単糖類の1単位を1モルとすると、それに対して0.1~100モル倍の範囲内で、目的とする分離材の性能に応じて選定することができる。架橋剤の添加量が0.1モル倍以上であると、被覆層が多孔質ポリマ粒子から剥離し難い傾向にある。架橋剤の添加量が100モル倍以下であると、水酸基を有する高分子との反応率が高い場合であっても、水酸基を有する高分子の特性を維持し易い傾向にある。 The crosslinking reaction with a crosslinking agent is usually performed by adding a crosslinking agent to a system in which porous polymer particles adsorbing a polymer having a hydroxyl group are dispersed and suspended in an appropriate medium. When the polysaccharide or a modified product thereof is used as the polymer having a hydroxyl group, the amount of the crosslinking agent added is within a range of 0.1 to 100 mol times with respect to 1 mol of one unit of the monosaccharide. It can be selected according to the performance of the target separation material. When the addition amount of the crosslinking agent is 0.1 mol times or more, the coating layer tends to hardly peel from the porous polymer particles. When the addition amount of the crosslinking agent is 100 mol times or less, even when the reaction rate with the polymer having a hydroxyl group is high, the characteristics of the polymer having a hydroxyl group tend to be easily maintained.
 また、架橋反応時の触媒の使用量としては、架橋剤の種類にもよるが、水酸基を有する高分子として多糖類を使用する場合、通常、多糖類を形成する単糖類の1単位を1モルとすると、これに対して好ましくは0.01~10モル倍の範囲、より好ましくは0.1~5モル倍で使用される。 The amount of the catalyst used in the crosslinking reaction depends on the type of crosslinking agent, but when a polysaccharide is used as the polymer having a hydroxyl group, usually 1 mol of one unit of monosaccharide forming the polysaccharide is used. Then, it is preferably used in the range of 0.01 to 10 mole times, more preferably 0.1 to 5 mole times.
 例えば、該架橋反応条件を温度条件とした場合、反応系の温度を上げ、その温度が反応温度に達すれば架橋反応が生起する。 For example, when the cross-linking reaction condition is a temperature condition, the temperature of the reaction system is raised, and the cross-linking reaction occurs when the temperature reaches the reaction temperature.
 水酸基を有する高分子を吸着させた多孔質ポリマ粒子を分散、懸濁させる媒体としては、吸着させた高分子溶液から高分子、架橋剤等を抽出してしまうことなく、かつ、架橋反応に不活性なものである必要がある。その具体例としては、水、アルコール等が挙げられる。 As a medium for dispersing and suspending the porous polymer particles on which the polymer having a hydroxyl group is adsorbed, the polymer, the cross-linking agent, etc. are not extracted from the adsorbed polymer solution and are not effective in the crosslinking reaction. It needs to be active. Specific examples thereof include water and alcohol.
 架橋反応は、通常、5~90℃の範囲の温度で、1~30時間かけて行うことができる。架橋反応は、例えば、5~90℃の範囲の温度で、1~10時間かけて行ってもよい。架橋反応の温度は、好ましくは、25~90℃である。 The crosslinking reaction can be usually performed at a temperature in the range of 5 to 90 ° C. for 1 to 30 hours. The crosslinking reaction may be performed, for example, at a temperature in the range of 5 to 90 ° C. for 1 to 10 hours. The temperature of the crosslinking reaction is preferably 25 to 90 ° C.
 架橋反応終了後、粒子をろ別し、次いで、メタノール、エタノール等の親水性有機溶媒又は水で洗浄し、未反応の高分子、懸濁用媒体等を除去する。これにより、多孔質ポリマ粒子の表面の少なくとも一部が、水酸基を有する高分子を含む被覆層により被覆され、かつ、水酸基を有する高分子が架橋されている分離材が得られる。必要に応じ、上記架橋処理を省略してもよい。 After completion of the crosslinking reaction, the particles are filtered off and then washed with a hydrophilic organic solvent such as methanol or ethanol or water to remove unreacted polymer, suspending medium and the like. As a result, a separating material is obtained in which at least a part of the surface of the porous polymer particles is covered with a coating layer containing a polymer having a hydroxyl group, and the polymer having a hydroxyl group is crosslinked. If necessary, the above crosslinking treatment may be omitted.
 本実施形態の分離材は、例えば、多孔質ポリマ粒子1g当たり30mg以上の被覆層を備えていてもよく、50mg以上の被覆層を備えていてもよく、100mg以上の被覆層を備えていてもよい。本実施形態の分離材は、例えば、多孔質ポリマ粒子1g当たり450mg以下の被覆層を備えていてもよく、400mg以下の被覆層を備えていてもよく、400mg以下の被覆層を備えていてもよい。被覆層の割合が多孔質ポリマ粒子1gに対して450mg以下であると、被覆層を薄膜とし易く、カラムとして用いたときのカラム圧を抑制し易い傾向にある。本実施形態の分離材は、多孔質ポリマ粒子1g当たり30~450mgの被覆層を備えることが好ましく、50~400mgの被覆層を備えることが好ましく、100~400mgの被覆層を備えることが好ましい。被覆層の量は熱分解の重量減少等で測定することができる。 The separating material of the present embodiment may include, for example, a coating layer of 30 mg or more per 1 g of porous polymer particles, may include a coating layer of 50 mg or more, or may include a coating layer of 100 mg or more. Good. The separating material of the present embodiment may include, for example, a coating layer of 450 mg or less per 1 g of porous polymer particles, may include a coating layer of 400 mg or less, or may include a coating layer of 400 mg or less. Good. When the ratio of the coating layer is 450 mg or less with respect to 1 g of the porous polymer particles, the coating layer tends to be a thin film, and the column pressure tends to be suppressed when used as a column. The separating material of the present embodiment preferably has a coating layer of 30 to 450 mg per 1 g of porous polymer particles, preferably has a coating layer of 50 to 400 mg, and preferably has a coating layer of 100 to 400 mg. The amount of the coating layer can be measured by reducing the weight of pyrolysis.
 本実施形態の分離材は、カラム圧の上昇を更に抑制し易い観点及び多孔質ポリマ粒子と被覆層とが剥離し難い観点から、多孔質ポリマ粒子1g当たり30~450mgの被覆層を備え、かつ、水酸基を有する高分子が架橋されている形態であることが好ましい。 The separation material of the present embodiment includes a coating layer of 30 to 450 mg per 1 g of the porous polymer particles from the viewpoint of further suppressing the increase in the column pressure and from the viewpoint of difficult separation of the porous polymer particles and the coating layer. The polymer having a hydroxyl group is preferably crosslinked.
(イオン交換基の導入)
 被覆層を備える分離材は、イオン交換基、リガンド(プロテインA)等を有していてもよい。分離材は、これらを表面の水酸基等を介して導入することにより、イオン交換精製、アフィニティ精製等に使用することができる。
(Introduction of ion exchange groups)
The separation material provided with the coating layer may have an ion exchange group, a ligand (protein A), and the like. The separation material can be used for ion exchange purification, affinity purification, and the like by introducing these via a hydroxyl group on the surface.
 イオン交換基の導入方法として、例えば、ハロゲン化アルキル化合物を用いる方法が挙げられる。 Examples of the method for introducing an ion exchange group include a method using a halogenated alkyl compound.
 ハロゲン化アルキル化合物としては、モノハロゲノ酢酸、モノハロゲノプロピオン酸等のモノハロゲノカルボン酸及びそのナトリウム塩、ジエチルアミノエチルクロライド等のハロゲン化アルキル基を少なくとも1つ有する1級、2級又は3級アミン、ハロゲン化アルキル基を有する4級アンモニウムの塩酸塩などが挙げられる。これらのハロゲン化アルキル化合物は、臭化物又は塩化物であることが好ましい。ハロゲン化アルキル化合物の使用量としては、イオン交換基を付与する分離材の全質量に対して、例えば、0.2質量%以上であることが好ましい。 Examples of the halogenated alkyl compound include monohalogenocarboxylic acids such as monohalogenoacetic acid and monohalogenopropionic acid and sodium salts thereof, primary, secondary or tertiary amines having at least one halogenated alkyl group such as diethylaminoethyl chloride, halogen And quaternary ammonium hydrochloride having an alkyl group. These halogenated alkyl compounds are preferably bromides or chlorides. The amount of the halogenated alkyl compound used is preferably, for example, 0.2% by mass or more with respect to the total mass of the separating material imparting ion exchange groups.
 イオン交換基の導入には、反応を促進させるために、有機溶媒を用いることが有効である。有機溶媒としては、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、イソブタノール、1-ペンタノール、イソペンタノール等のアルコール類が挙げられる。 For the introduction of ion exchange groups, it is effective to use an organic solvent in order to promote the reaction. Examples of the organic solvent include alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol, isobutanol, 1-pentanol, and isopentanol.
 通常、イオン交換基の導入は、分離材表面の水酸基に行われるので、湿潤状態の粒子を、ろ過等により水切りした後、所定濃度のアルカリ性水溶液に浸漬し、一定時間放置した後、水-有機溶媒混合系で、上記ハロゲン化アルキル化合物を添加して反応させる。この反応は温度40~90℃で還流下、0.5~12時間行うことが好ましい。上記の反応で使用されるハロゲン化アルキル化合物の種類により、付与されるイオン交換基が決定される。アルカリ性水溶液としては、例えば、水酸化ナトリウム水溶液が挙げられる。 In general, since the ion exchange group is introduced into the hydroxyl group on the surface of the separation material, the wet particles are drained by filtration or the like, immersed in an alkaline aqueous solution of a predetermined concentration, left for a certain time, and then water-organic. The halogenated alkyl compound is added and reacted in a solvent mixture system. This reaction is preferably performed at a temperature of 40 to 90 ° C. under reflux for 0.5 to 12 hours. The ion exchange group to be provided is determined depending on the kind of the halogenated alkyl compound used in the above reaction. As alkaline aqueous solution, sodium hydroxide aqueous solution is mentioned, for example.
 本実施形態の分離材は、イオン交換基として、陽イオン交換基又は陰イオン交換基を有していてもよい。このような分離材はイオン交換用に用いることができる。すなわち、本実施形態の分離材は、陽イオン交換基又は陰イオン交換基を有し、イオン交換用に用いられるものであってもよい。陽イオン交換基としては、例えば、カルボキシ基及びスルホン酸基が挙げられる。陰イオン交換基としては、例えば、アミノ基及び4級アンモニウム基が挙げられる。 The separation material of this embodiment may have a cation exchange group or an anion exchange group as an ion exchange group. Such a separating material can be used for ion exchange. That is, the separation material of the present embodiment may have a cation exchange group or an anion exchange group and be used for ion exchange. Examples of the cation exchange group include a carboxy group and a sulfonic acid group. Examples of the anion exchange group include an amino group and a quaternary ammonium group.
 イオン交換基として、弱塩基性基であるアミノ基を導入する方法としては、上記ハロゲン化アルキル化合物のうち、水素原子の一部が塩素原子に置換されたアルキル基を少なくとも1つ有する、モノ-、ジ-又はトリ-アルキルアミン、モノ-、ジ-又はトリ-アルカノールアミン、モノアルキル-モノアルカノールアミン、ジアルキル-モノアルカノールアミン、モノアルキル-ジアルカノールアミン等を反応させる方法が挙げられる。これらのハロゲン化アルキル化合物の使用量としては、イオン交換基を導入する分離材の全質量に対して0.2質量%以上であることが好ましい。反応条件は、40~90℃で、0.5~12時間であることが好ましい。 As a method for introducing an amino group which is a weakly basic group as an ion exchange group, among the above halogenated alkyl compounds, a mono- having at least one alkyl group in which a part of hydrogen atoms is substituted with a chlorine atom. , Di- or tri-alkylamine, mono-, di- or tri-alkanolamine, monoalkyl-monoalkanolamine, dialkyl-monoalkanolamine, monoalkyl-dialkanolamine and the like. The amount of the alkyl halide compound used is preferably 0.2% by mass or more based on the total mass of the separating material into which the ion exchange group is introduced. The reaction conditions are preferably 40 to 90 ° C. and 0.5 to 12 hours.
 イオン交換基として、強塩基性基の4級アンモニウム基を導入する方法としては、まず、3級アミノ基を導入し、該3級アミノ基にエピクロルヒドリン等のハロゲン化アルキル化合物を反応させ、4級アンモニウム基に変換させる方法が挙げられる。また、4級アンモニウムの塩酸塩等を分離材に反応させてもよい。 As a method for introducing a strongly basic quaternary ammonium group as an ion exchange group, first, a tertiary amino group is introduced, and then the tertiary amino group is reacted with a halogenated alkyl compound such as epichlorohydrin. The method of converting into an ammonium group is mentioned. Further, quaternary ammonium hydrochloride or the like may be reacted with the separation material.
 イオン交換基として、弱酸性基であるカルボキシ基を導入する方法としては、上記ハロゲン化アルキル化合物として、モノハロゲノ酢酸、モノハロゲノプロピオン酸等のモノハロゲノカルボン酸又はそのナトリウム塩を反応させる方法が挙げられる。これらのハロゲン化アルキル化合物の使用量は、イオン交換基を導入する分離材の全質量に対して0.2質量%以上であることが好ましい。 Examples of the method for introducing a carboxy group that is a weakly acidic group as an ion exchange group include a method in which a monohalogenocarboxylic acid such as monohalogenoacetic acid or monohalogenopropionic acid or a sodium salt thereof is reacted as the halogenated alkyl compound. . The amount of these halogenated alkyl compounds used is preferably 0.2% by mass or more based on the total mass of the separating material into which ion exchange groups are introduced.
 イオン交換基として、強酸性基であるスルホン酸基の導入方法としては、分離材に対してエビクロロヒドリン等のグリシジル化合物を反応させ、亜硫酸ナトリウム、重亜硫酸ナトリウム等の亜硫酸塩又は重亜硫酸塩の飽和水溶液に分離材を添加する方法が挙げられる。反応条件は、30~90℃で1~10時間であることが好ましい。 As a method for introducing a sulfonic acid group which is a strongly acidic group as an ion exchange group, a glycidyl compound such as ebichlorohydrin is reacted with a separating material, and a sulfite or bisulfite such as sodium sulfite or sodium bisulfite. And a method of adding a separating material to the saturated aqueous solution. The reaction conditions are preferably 30 to 90 ° C. and 1 to 10 hours.
 一方、スルホン酸基の導入方法として、アルカリ性雲囲気下で、分離材に1,3-プロパンスルトンを反応させる方法も挙げられる。1,3-プロパンスルトンは、イオン交換基を導入する分離材の全質量に対して0.4%質量以上使用することが好ましい。反応条件は、0~90℃で0.5~12時間であることが好ましい。 On the other hand, as a method for introducing a sulfonic acid group, there may be mentioned a method in which 1,3-propane sultone is reacted with a separating material in an alkaline cloud atmosphere. 1,3-propane sultone is preferably used in an amount of 0.4% by mass or more based on the total mass of the separating material into which the ion exchange group is introduced. The reaction conditions are preferably 0 to 90 ° C. and 0.5 to 12 hours.
 本明細書において、被覆前後の比表面積の変化比とは、水酸基を有する高分子で多孔質ポリマ粒子を被覆する前後の比表面積を用いて、以下の式より算出される値をいう。なお、被覆前後の比表面積は、上述の水銀圧入法により測定する。
(比表面積の変化比)=(被覆後の比表面積)/(被覆前の比表面積)
In the present specification, the change ratio of the specific surface area before and after coating refers to a value calculated from the following formula using the specific surface area before and after coating the porous polymer particles with a polymer having a hydroxyl group. The specific surface area before and after coating is measured by the mercury intrusion method described above.
(Change ratio of specific surface area) = (specific surface area after coating) / (specific surface area before coating)
 すなわち、本実施形態において、比表面積の変化比は、多孔質ポリマ粒子の比表面積に対する分離材の比表面積の比であり、(分離材の比表面積)/(多孔質ポリマ粒子の比表面積)で表される。 That is, in this embodiment, the change ratio of the specific surface area is the ratio of the specific surface area of the separation material to the specific surface area of the porous polymer particles, and is expressed by (specific surface area of the separation material) / (specific surface area of the porous polymer particles). expressed.
 本実施形態の分離材において、被覆前後の比表面積の変化比は、0.50~0.85である。上記変化比は、例えば、0.55以上であってもよい。上記変化比は、例えば、0.80以下であってもよく、0.75以下であってもよく、0.70以下であってもよい。動的吸着量を更に向上する観点から、被覆前後の比表面積の変化比は、例えば、0.50~0.80であってもよく、0.55~0.80であってもよく、0.55~0.75であってもよく、0.55~0.70であってもよい。 In the separation material of the present embodiment, the change ratio of the specific surface area before and after coating is 0.50 to 0.85. The change ratio may be 0.55 or more, for example. The change ratio may be, for example, 0.80 or less, 0.75 or less, or 0.70 or less. From the viewpoint of further improving the dynamic adsorption amount, the change ratio of the specific surface area before and after coating may be, for example, 0.50 to 0.80, 0.55 to 0.80, .55 to 0.75 or 0.55 to 0.70.
 被覆前後の比表面積の変化比は、水酸基を有する高分子の種類及び重量平均分子量、多孔質ポリマ粒子の原料、空隙率及び細孔径分布におけるモード径、被覆層の量等を適宜選択することによって、調整できる。 The change ratio of the specific surface area before and after coating is determined by appropriately selecting the type and weight average molecular weight of the polymer having a hydroxyl group, the raw material of the porous polymer particles, the mode diameter in the porosity and pore size distribution, the amount of the coating layer, and the like. Can be adjusted.
 本実施形態の分離材は、カラムに充填した場合、カラム圧0.3MPaのときに通液流速が800cm/h以上であることが好ましい。 When the separation material of this embodiment is packed in a column, the liquid flow rate is preferably 800 cm / h or more when the column pressure is 0.3 MPa.
 カラムクロマトグラフィーでタンパク質の分離を行う場合、タンパク質溶液等の通液速度としては、一般に400cm/h以下の範囲であるが、本実施形態の分離材を使用した場合は、通常のタンパク質分離用のイオン交換体よりも速い通液速度800cm/h以上で使用した場合であっても、高い吸着量を維持できると考えられる。上記通液速度は、例えば、4000cm/h以下であってもよい。 When separating proteins by column chromatography, the flow rate of protein solution or the like is generally in the range of 400 cm / h or less. However, when the separation material of the present embodiment is used, the separation rate for normal protein separation is as follows. Even when used at a liquid flow rate of 800 cm / h or higher, which is faster than that of the ion exchanger, it is considered that a high adsorption amount can be maintained. The liquid passing speed may be, for example, 4000 cm / h or less.
 本明細書における通液速度とは、φ5.0×200mmのガラス製カラムに本実施形態の分離材を充填し、液を通した際の通液速度を表す。 In the present specification, the liquid passing speed represents a liquid passing speed when the separation material of the present embodiment is filled in a glass column of φ5.0 × 200 mm and the liquid is passed.
 本実施形態の分離材の平均粒径は、例えば、500μm以下であってもよく、300μm以下であってもよく、200μm以下であってもよい。また、分離材の平均粒径は、カラム充填後のカラム圧が増加を抑制し易い観点から、例えば、10μm以上であってもよく、30μm以上であってもよく、50μm以上であってもよい。上記観点から、分離材の平均粒径は、例えば、10~500μmであってもよく、10~300μmであってもよく、30~300μmであってもよく、50~200μmであってもよい。分取用又は工業用のクロマトグラフィーで使用する場合、分離材の平均粒径は、カラム内圧の極端な増加を避け易い観点から、例えば、50~200μmであることが好ましい。 The average particle diameter of the separation material of the present embodiment may be, for example, 500 μm or less, 300 μm or less, or 200 μm or less. Further, the average particle diameter of the separation material may be, for example, 10 μm or more, 30 μm or more, or 50 μm or more from the viewpoint of easily suppressing an increase in the column pressure after column filling. . From the above viewpoint, the average particle diameter of the separating material may be, for example, 10 to 500 μm, 10 to 300 μm, 30 to 300 μm, or 50 to 200 μm. When used in preparative or industrial chromatography, the average particle size of the separating material is preferably, for example, 50 to 200 μm from the viewpoint of easily avoiding an extreme increase in the internal pressure of the column.
 分離材の細孔径分布におけるモード径は、例えば、0.05μm以上であってもよく、0.075μm以上であってもよく、0.10μm以上であってもよい。上記モード径は、例えば、0.50μm以下であってもよく、0.50μm未満であってもよい。分離材の細孔径分布におけるモード径は、0.05~0.50μmであることが好ましく、0.075~0.50であることがより好ましく、0.10~0.50μmであることが更に好ましく、0.10μm以上0.50μm未満であることが特に好ましい。細孔径分布におけるモード径が0.05μm以上であると、細孔内に物質が入り易くなる傾向にあり、細孔径分布におけるモード径が0.50μm以下であると、比表面積が充分なものになり易い傾向にある。上記モード径は、例えば、0.50~0.75であってもよい。 The mode diameter in the pore size distribution of the separating material may be, for example, 0.05 μm or more, 0.075 μm or more, or 0.10 μm or more. The mode diameter may be, for example, 0.50 μm or less, or less than 0.50 μm. The mode diameter in the pore size distribution of the separating material is preferably 0.05 to 0.50 μm, more preferably 0.075 to 0.50, and further preferably 0.10 to 0.50 μm. It is particularly preferably 0.10 μm or more and less than 0.50 μm. When the mode diameter in the pore size distribution is 0.05 μm or more, substances tend to easily enter the pores, and when the mode diameter in the pore diameter distribution is 0.50 μm or less, the specific surface area is sufficient. It tends to be. The mode diameter may be, for example, 0.50 to 0.75.
 分離材の比表面積は、分離する物質の吸着量が大きくなり易い観点及びより高い実用性の観点から、30m/g以上であることが好ましい。分離材の比表面積は、例えば、500m/g以下であってもよく、200m/g以下であってもよく、100m/g以下であってもよい。 The specific surface area of the separating material is preferably 30 m 2 / g or more from the viewpoint of easy adsorption of the substance to be separated and higher practicality. The specific surface area of the separating material may be, for example, 500 m 2 / g or less, 200 m 2 / g or less, or 100 m 2 / g or less.
 本実施形態の分離材は、タンパク質等の生体高分子の分離において、天然高分子からなる粒子又は合成ポリマからなる粒子のそれぞれの利点を有する。また、本実施形態の分離材は、非特異吸着を低減し、タンパク質の吸脱着が起こり易い傾向にある。さらに、本実施形態に係る分離材は、同一流速下でのタンパク質等の吸着量(動的吸着量)が大きい傾向にある。 The separation material of this embodiment has the respective advantages of particles made of natural polymers or particles made of synthetic polymers in the separation of biopolymers such as proteins. Moreover, the separation material of the present embodiment tends to reduce non-specific adsorption and easily cause protein adsorption / desorption. Furthermore, the separation material according to the present embodiment tends to have a large adsorption amount (dynamic adsorption amount) of protein or the like under the same flow rate.
 本実施形態の分離材は、カラムクロマトグラフィーでカラム充填材として使用した場合、使用する溶出液の性質によらず、カラム内での体積変化がほとんどないため、操作性に優れる。本実施形態の分離材は、例えば、液体クロマトグラフィー用に用いられてもよい。すなわち、本実施形態の分離材は、例えば、液体クロマトグラフィー用カラム充填材であってもよい。 When the separation material of this embodiment is used as a column packing material in column chromatography, it has excellent operability because there is almost no volume change in the column regardless of the properties of the eluate used. The separation material of the present embodiment may be used for liquid chromatography, for example. That is, the separation material of this embodiment may be, for example, a liquid chromatography column packing material.
 本実施形態の分離材は、タンパク質を静電的相互作用による分離、アフィニティ精製に用いるのに好適である。例えば、イオン交換基を有する分離材(以下、「イオン交換体」ともいう)を、タンパク質を含む混合溶液の中に添加し、静電的相互作用によりタンパク質だけをイオン交換体に吸着させた後、該イオン交換体を溶液からろ別し、塩濃度の高い水溶液中に添加すれば、イオン交換体に吸着しているタンパク質を容易に脱離、回収できる。また、上記イオン交換体は、カラムクロマトグラフィーにおいて、使用することも可能である。 The separation material of this embodiment is suitable for use in separation of proteins by electrostatic interaction and affinity purification. For example, after a separation material having an ion exchange group (hereinafter also referred to as “ion exchanger”) is added to a mixed solution containing protein and only the protein is adsorbed to the ion exchanger by electrostatic interaction. If the ion exchanger is filtered from the solution and added to an aqueous solution having a high salt concentration, the protein adsorbed on the ion exchanger can be easily desorbed and recovered. The ion exchanger can also be used in column chromatography.
 本実施形態に係るイオン交換体を用いて分離できる生体高分子としては、水溶性物質が好ましい。具体的には、例えば、血清アルブミン、免疫グロブリン等の血液タンパク質などのタンパク質、生体中に存在する酵素、バイオテクノロジーにより生産されるタンパク質生理活性物質、DNA及び生理活性をするペプチドが挙げられる。これらの物質の分子量は、例えば、200万以下であってもよく、50万以下であってもよい。また、公知の方法に従い、タンパク質の等電点、イオン化状態等によって、イオン交換体の性質、条件等を選んでもよい。公知の方法としては、例えば、特開昭60-169427号公報に記載の方法が挙げられる。 As a biopolymer that can be separated using the ion exchanger according to the present embodiment, a water-soluble substance is preferable. Specific examples include proteins such as serum albumin and blood proteins such as immunoglobulins, enzymes present in the living body, protein bioactive substances produced by biotechnology, DNA, and peptides having bioactivity. The molecular weight of these substances may be, for example, 2 million or less, or 500,000 or less. Further, according to a known method, the nature and conditions of the ion exchanger may be selected according to the isoelectric point, ionization state, etc. of the protein. Examples of known methods include the method described in JP-A-60-169427.
 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
[実施例1]
(多孔質ポリマ粒子の合成)
 500mLの三口フラスコに、モノマとして純度96%のジビニルベンゼン(新日鉄住金化学株式会社製、商品名:DVB960)を12g、多孔質化剤としてジエチルベンゼンを12g、及びヘキサノールを12g、開始剤として過酸化ベンゾイルを0.64g加え、分散相とした。また、0.5質量%のポリビニルアルコール水溶液を連続相として使用した。この連続相と分散相とをマイクロプロセスサーバーを使用して乳化した後、得られた乳化液をフラスコに移し、80℃のウォーターバスで加熱しながら、攪拌機を用いて約8時間撹拌した。得られた粒子をろ別した後、アセトンで洗浄し、多孔質ポリマ粒子を得た。多孔質ポリマ粒子の粒径をフロー型粒径測定装置で測定し、平均粒径及び粒径のC.V.値(変動係数)を算出した。結果を表1に示す。
[Example 1]
(Synthesis of porous polymer particles)
In a 500 mL three-necked flask, 12 g of 96% pure divinylbenzene (manufactured by NS Was added to obtain a dispersed phase. Moreover, 0.5 mass% polyvinyl alcohol aqueous solution was used as a continuous phase. After emulsifying the continuous phase and the dispersed phase using a microprocess server, the obtained emulsion was transferred to a flask and stirred for about 8 hours using a stirrer while heating in a water bath at 80 ° C. The obtained particles were filtered off and then washed with acetone to obtain porous polymer particles. The particle size of the porous polymer particles was measured with a flow-type particle size measuring device, and the average particle size and particle size C.I. V. The value (coefficient of variation) was calculated. The results are shown in Table 1.
(被覆層の形成)
 デキストラン(重量平均分子量(Mw):300万)水溶液(2質量%)100mLに、水酸化ナトリウム4g及びグリシジルフェニルエーテル0.4gを加え、70℃で12時間反応させ、デキストランにフェニル基を導入した。
(Formation of coating layer)
To 100 mL of dextran (weight average molecular weight (Mw): 3 million) aqueous solution (2% by mass), 4 g of sodium hydroxide and 0.4 g of glycidyl phenyl ether were added and reacted at 70 ° C. for 12 hours to introduce a phenyl group into dextran. .
 得られた変性デキストランをイソプロピルアルコールで3回再沈殿させ、洗浄した。 The obtained modified dextran was reprecipitated three times with isopropyl alcohol and washed.
 20mg/mLの変性デキストラン水溶液700mLに、10gの多孔質ポリマ粒子を投入し、55℃で24時間攪拌して、多孔質ポリマ粒子に変性デキストランを吸着させた。変性デキストランが吸着した粒子をろ別して、更に熱水で洗浄した。多孔質ポリマ粒子1g当たりの変性デキストランの被覆量(吸着量)は、ろ液中の変性デキストランの濃度から算出した。結果を表1に示す。 10 g of porous polymer particles were put into 700 mL of a 20 mg / mL modified dextran aqueous solution and stirred at 55 ° C. for 24 hours to adsorb the modified dextran to the porous polymer particles. The particles adsorbed with the modified dextran were separated by filtration and further washed with hot water. The coating amount (adsorption amount) of the modified dextran per 1 g of the porous polymer particles was calculated from the concentration of the modified dextran in the filtrate. The results are shown in Table 1.
 変性デキストランは次のようにして架橋した。変性デキストランが吸着した粒子10gを、0.4M水酸化ナトリウム水溶液に分散させ、エチレングリコールジグリシジルエーテルを39g添加し、24時間室温にて攪拌した。その後、2質量%の熱ドデシル硫酸ナトリウム水溶液で洗浄後、純水で洗浄した。得られた粒子は、水中で分散液として保管した。 The modified dextran was crosslinked as follows. 10 g of particles adsorbed with modified dextran were dispersed in a 0.4 M aqueous sodium hydroxide solution, 39 g of ethylene glycol diglycidyl ether was added, and the mixture was stirred at room temperature for 24 hours. Then, after washing with 2% by mass of hot sodium dodecyl sulfate aqueous solution, it was washed with pure water. The obtained particles were stored as a dispersion in water.
(タンパク質の非特異吸着量評価)
 上記分散液からろ別した粒子0.5gをBSA(Bovine Serum Albumin)濃度12mg/mLのTris-塩酸緩衝液(pH8.0)50mLに投入し、24時間室温で攪拌した。その後、遠心分離を行って上澄み液をとった。分光光度計で上澄み液の280nmの吸光度を測定することによって求めた上澄み液中のBSA濃度から、粒子に吸着したBSA量を算出した。粒子1mL当たりのBSA吸着量を、非特異吸着量として評価した。結果を表2に示す。
(Evaluation of non-specific adsorption amount of protein)
0.5 g of the particles filtered off from the dispersion was put into 50 mL of Tris-hydrochloric acid buffer (pH 8.0) having a BSA (Bovine Serum Albumin) concentration of 12 mg / mL and stirred at room temperature for 24 hours. Then, it centrifuged and took the supernatant liquid. The amount of BSA adsorbed on the particles was calculated from the BSA concentration in the supernatant obtained by measuring the absorbance at 280 nm of the supernatant with a spectrophotometer. The amount of BSA adsorbed per mL of particles was evaluated as the amount of nonspecific adsorption. The results are shown in Table 2.
(イオン交換基の導入)
 上記分散液からろ別した粒子20gを、ジエチルアミノエチルクロライド塩酸塩が所定量溶解した水溶液100mLに分散させ、70℃で10分攪拌した。その後、5MのNaOH水溶液100mLを70℃に加温して添加し、1時間反応させた。反応終了後、粒子をろ別し、水/エタノール(体積比8/2)で2回洗浄した。これにより、ジエチルアミノエチル(DEAE)基をイオン交換基として有する分離材(イオン交換体)を得た。
(Introduction of ion exchange groups)
20 g of the particles filtered off from the dispersion were dispersed in 100 mL of an aqueous solution in which a predetermined amount of diethylaminoethyl chloride hydrochloride was dissolved, and stirred at 70 ° C. for 10 minutes. Thereafter, 100 mL of 5 M NaOH aqueous solution was added by heating to 70 ° C., and the mixture was reacted for 1 hour. After completion of the reaction, the particles were filtered off and washed twice with water / ethanol (volume ratio 8/2). Thereby, a separation material (ion exchanger) having a diethylaminoethyl (DEAE) group as an ion exchange group was obtained.
(被覆前後の比表面積の変化比及び細孔径の評価)
 多孔質ポリマ粒子及び分離材の比表面積を水銀圧入法にて測定し、上述の方法により被覆前後の比表面積の変化比を算出した。また、水銀圧入法にて多孔質ポリマ粒子の細孔径(細孔径分布におけるモード径)を測定した。結果を表1に示す。
(Evaluation of change ratio of specific surface area before and after coating and pore diameter)
The specific surface areas of the porous polymer particles and the separating material were measured by the mercury intrusion method, and the change ratio of the specific surface area before and after coating was calculated by the method described above. Further, the pore diameter (mode diameter in the pore diameter distribution) of the porous polymer particles was measured by mercury porosimetry. The results are shown in Table 1.
(タンパク質の静的吸着能評価)
 得られた分離材0.5gをBSA(Bovine Serum Albumin)濃度12mg/mLのTris-塩酸緩衝液(pH8.0)50mLに投入し、24時間室温で攪拌した。その後、遠心分離を行って上澄み液をとった。分光光度計で上澄み液の280nmの吸光度を測定することによって求めた上澄み液中のBSA濃度から、粒子に吸着したBSA量を算出した。分離材1mL当たりのBSA吸着量を、静的吸着量として評価した。結果を表2に示す。
(Evaluation of static adsorption capacity of protein)
0.5 g of the obtained separating material was put into 50 mL of Tris-hydrochloric acid buffer (pH 8.0) having a BSA (Bovine Serum Albumin) concentration of 12 mg / mL and stirred at room temperature for 24 hours. Then, it centrifuged and took the supernatant liquid. The amount of BSA adsorbed on the particles was calculated from the BSA concentration in the supernatant obtained by measuring the absorbance at 280 nm of the supernatant with a spectrophotometer. The amount of BSA adsorbed per 1 mL of the separation material was evaluated as the amount of static adsorption. The results are shown in Table 2.
(カラム特性評価)
 得られた分離材を濃度30質量%のスラリー(溶媒:1MのNaCl)として、15分かけて、φ5.0×200mmのガラス製カラムに充填した後、カラム中の溶媒を水に置換した。
(Column characteristic evaluation)
The obtained separation material was charged as a slurry (solvent: 1 M NaCl) with a concentration of 30% by mass over a glass column of φ5.0 × 200 mm over 15 minutes, and then the solvent in the column was replaced with water.
 その後、カラムに流速を変えて水を通し、流速とカラム圧の関係を測定し、0.3MPa時の通液速度(線流速)を測定した。結果を表2に示す。 Thereafter, water was passed through the column at different flow rates, the relationship between the flow rate and the column pressure was measured, and the liquid flow rate (linear flow rate) at 0.3 MPa was measured. The results are shown in Table 2.
 動的吸着量(動的結合容量)は以下のようにして測定した。40mmol/LのTris-塩酸緩衝液(pH8.0)をカラムに10カラム容量通した。その後、BSA濃度0.5mg/mLの40mmol/LのTris-塩酸緩衝液を800cm/hで通し、UV測定によってカラム出口でのBSA濃度を測定した。カラム入口と出口とのBSA濃度が一致するまで液を通し、5カラム容量分の1M NaCl Tris-塩酸緩衝液で希釈した。10%breakthroughにおける動的結合容量は以下の式を用いて算出した。結果を表2に示す。
 q10=cF(t10-t)/V
 q10:10%breakthroughにおける動的結合容量(mg/mL wet resin)
 cf:注入しているBSA濃度
 F:流速(mL/min)
 V:ベッド体積(mL)
 t10:10%breakthroughにおける時間
 t:BSA注入開始時間
The dynamic adsorption amount (dynamic binding capacity) was measured as follows. 10 column volumes of 40 mmol / L Tris-HCl buffer (pH 8.0) were passed through the column. Thereafter, a 40 mmol / L Tris-HCl buffer solution having a BSA concentration of 0.5 mg / mL was passed at 800 cm / h, and the BSA concentration at the column outlet was measured by UV measurement. The solution was passed through until the BSA concentration at the column inlet and outlet coincided, and diluted with 1 M NaCl Tris-HCl buffer solution for 5 column volumes. The dynamic binding capacity at 10% breakthrough was calculated using the following equation. The results are shown in Table 2.
q 10 = c f F (t 10 −t 0 ) / V B
q 10 : dynamic binding capacity at 10% breakthrough (mg / mL wet resin)
cf: Injected BSA concentration F: Flow rate (mL / min)
V B : Bed volume (mL)
t 10 : Time at 10% breakthrough t 0 : BSA injection start time
(静的吸着量に対する動的吸着量)
 静的吸着量に対する動的吸着量(動的吸着量/静的吸着量)を算出した。結果を表2に示す。静的吸着量に対する動的吸着量は大きいほど好ましい。
(Dynamic adsorption amount relative to static adsorption amount)
The dynamic adsorption amount (dynamic adsorption amount / static adsorption amount) relative to the static adsorption amount was calculated. The results are shown in Table 2. The larger the dynamic adsorption amount relative to the static adsorption amount, the better.
[実施例2]
 多孔質ポリマ粒子の合成において、多孔質化剤の使用量をジエチルベンゼン8g及びヘキサノール16gに変更したこと以外は、実施例1と同様にして、分離材を作製し、評価した。
[Example 2]
In the synthesis of the porous polymer particles, a separating material was produced and evaluated in the same manner as in Example 1 except that the amount of the porosifying agent was changed to 8 g of diethylbenzene and 16 g of hexanol.
[実施例3]
 多孔質ポリマ粒子の合成において、多孔質化剤の使用量をジエチルベンゼン4g及びヘキサノール20gに変更したこと以外は、実施例1と同様にして、分離材を作製し、評価した。
[Example 3]
In the synthesis of the porous polymer particles, a separation material was prepared and evaluated in the same manner as in Example 1 except that the amount of the porosifying agent was changed to 4 g of diethylbenzene and 20 g of hexanol.
[実施例4]
 使用するデキストランのMwを100万に変更したこと以外は実施例1と同様にして、分離材を作製し、評価した。
[Example 4]
A separation material was prepared and evaluated in the same manner as in Example 1 except that the Mw of dextran used was changed to 1 million.
[実施例5]
 使用するデキストランのMwを50万に変更したこと以外は実施例1と同様にして、分離材を作製し、評価した。
[Example 5]
A separation material was produced and evaluated in the same manner as in Example 1 except that Mw of dextran used was changed to 500,000.
[比較例1]
 使用するデキストランのMwを4万に変更したこと以外は実施例1と同様にして、分離材を作製し、評価した。
[Comparative Example 1]
A separation material was prepared and evaluated in the same manner as in Example 1 except that Mw of dextran used was changed to 40,000.
[比較例2]
 実施例1において合成した多孔質ポリマ粒子をそのまま分離材として用い、実施例1と同様にして評価した。
[Comparative Example 2]
The porous polymer particles synthesized in Example 1 were used as they were as a separating material and evaluated in the same manner as in Example 1.
[比較例3]
 市販のアガロース粒子(Capto DEAE:GEヘルスケア)をそのまま分離材として用い、実施例1と同様にして評価した。
[Comparative Example 3]
Commercially available agarose particles (Capto DEAE: GE Healthcare) were used as they were as a separating material and evaluated in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、実施例の分離材は、タンパク質の非特異吸着が少なく、タンパク質吸着量に優れ、かつ、カラムとして用いたときの通液性に優れることがわかる。 As shown in Table 2, it can be seen that the separation materials of the examples have less protein non-specific adsorption, excellent protein adsorption, and excellent liquid permeability when used as a column.

Claims (10)

  1.  スチレン系モノマをモノマ単位として含有するポリマを含む多孔質ポリマ粒子と、
     前記多孔質ポリマ粒子の表面の少なくとも一部を被覆する、水酸基を有する高分子を含む被覆層と、を備え、
     被覆前後の比表面積の変化比が0.50~0.85である、分離材。
    Porous polymer particles containing a polymer containing a styrenic monomer as a monomer unit;
    A coating layer containing a polymer having a hydroxyl group, covering at least a part of the surface of the porous polymer particles;
    A separating material having a change ratio of a specific surface area before and after coating of 0.50 to 0.85.
  2.  比表面積が30m/g以上である、請求項1に記載の分離材。 The separation material according to claim 1, wherein the specific surface area is 30 m 2 / g or more.
  3.  前記多孔質ポリマ粒子の粒径の変動係数が5~15%である、請求項1又は2に記載の分離材。 The separation material according to claim 1 or 2, wherein the porous polymer particles have a coefficient of variation in particle diameter of 5 to 15%.
  4.  前記水酸基を有する高分子が、多糖類又はその変性体である、請求項1~3のいずれか一項に記載の分離材。 The separation material according to any one of claims 1 to 3, wherein the polymer having a hydroxyl group is a polysaccharide or a modified product thereof.
  5.  前記水酸基を有する高分子が、デキストラン、アガロース、プルラン及びこれらの変性体からなる群より選ばれる少なくとも一種である、請求項1~4のいずれか一項に記載の分離材。 The separation material according to any one of claims 1 to 4, wherein the polymer having a hydroxyl group is at least one selected from the group consisting of dextran, agarose, pullulan, and modified products thereof.
  6.  前記多孔質ポリマ粒子1g当たり30~450mgの前記被覆層を備え、前記水酸基を有する高分子が架橋されている、請求項1~5のいずれか一項に記載の分離材。 The separation material according to any one of claims 1 to 5, comprising 30 to 450 mg of the coating layer per gram of the porous polymer particles, wherein the polymer having a hydroxyl group is crosslinked.
  7.  前記多孔質ポリマ粒子の細孔径分布におけるモード径が、0.05~0.50μmである、請求項1~6のいずれか一項に記載の分離材。 The separation material according to any one of claims 1 to 6, wherein a mode diameter in a pore size distribution of the porous polymer particles is 0.05 to 0.50 µm.
  8.  カラムに充填した場合、カラム圧0.3MPaのときに通液速度が800cm/h以上である、請求項1~7のいずれか一項に記載の分離材。 The separation material according to any one of claims 1 to 7, wherein when the column is packed, the liquid flow rate is 800 cm / h or more when the column pressure is 0.3 MPa.
  9.  前記水酸基を有する高分子の重量平均分子量が、10000~5000000である、請求項1~8のいずれか一項に記載の分離材。 The separation material according to any one of claims 1 to 8, wherein the polymer having a hydroxyl group has a weight average molecular weight of 10,000 to 5,000,000.
  10.  陽イオン交換基又は陰イオン交換基を有し、イオン交換用に用いられる、請求項1~9のいずれか一項に記載の分離材。 The separation material according to any one of claims 1 to 9, which has a cation exchange group or an anion exchange group and is used for ion exchange.
PCT/JP2018/010880 2017-03-21 2018-03-19 Separation material WO2018174022A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019507669A JPWO2018174022A1 (en) 2017-03-21 2018-03-19 Separation material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017054720 2017-03-21
JP2017-054720 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018174022A1 true WO2018174022A1 (en) 2018-09-27

Family

ID=63586551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010880 WO2018174022A1 (en) 2017-03-21 2018-03-19 Separation material

Country Status (2)

Country Link
JP (1) JPWO2018174022A1 (en)
WO (1) WO2018174022A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223437A (en) * 1985-07-24 1987-01-31 Japan Synthetic Rubber Co Ltd Particulate carrier
JP2003093801A (en) * 2001-06-08 2003-04-02 Mitsubishi Chemicals Corp Porous polymer particle, separation agent and separation method using the same
WO2016117574A1 (en) * 2015-01-19 2016-07-28 日立化成株式会社 Separation material
JP2017125799A (en) * 2016-01-15 2017-07-20 日立化成株式会社 Separation material and column

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223437A (en) * 1985-07-24 1987-01-31 Japan Synthetic Rubber Co Ltd Particulate carrier
JP2003093801A (en) * 2001-06-08 2003-04-02 Mitsubishi Chemicals Corp Porous polymer particle, separation agent and separation method using the same
WO2016117574A1 (en) * 2015-01-19 2016-07-28 日立化成株式会社 Separation material
JP2017125799A (en) * 2016-01-15 2017-07-20 日立化成株式会社 Separation material and column

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QU JIAN-BO ET AL.: "A novel stationary phase derivatized from hydrophilic gigaporous polystyrene-based microspheres for high-speed protein chromatography", JOURNAL OF CHROMATOGRAPHY A, vol. 1216, no. 37, 2009, pages 6511 - 6516, XP026497139, ISSN: 0021-9673, DOI: doi:10.1016/j.chroma.2009.07.059 *
QU JIAN-BO ET AL.: "An Effective Way To Hydrophilize Gigaporous Polystyrene Microspheres as Rapid Chromatographic Separation Media for Proteins", LANGMUIR, vol. 24, no. 23, 2008, pages 13646 - 13652, XP055465735, ISSN: 0743-7463, DOI: doi:10.1021/la801486t *

Also Published As

Publication number Publication date
JPWO2018174022A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6790834B2 (en) Separator
JP6848203B2 (en) Separator and column
WO2016117574A1 (en) Separation material
JP2017122643A (en) Separation material and column
JP6476887B2 (en) Separation material
JP2021007915A (en) Production method for coated particle and column production method
WO2016117567A1 (en) Separation material
JP2017125815A (en) Separation material and column
JP2018163003A (en) Separation material, column, and method for manufacturing separation material
JP6746919B2 (en) Separation material and column
JP6676975B2 (en) Separation materials and columns
WO2018174022A1 (en) Separation material
JP6759679B2 (en) Separator and column
JP6874276B2 (en) Separator and column
JP6778378B2 (en) Separator and column
JP6676976B2 (en) Separation materials and columns
JP6852259B2 (en) Separator and column
JP6939021B2 (en) Separator and column
JP6977437B2 (en) Separation material manufacturing method
JP6834132B2 (en) Separator and column
JP6926573B2 (en) Separator and column
JP6834130B2 (en) Separator and column
JP6610266B2 (en) Separation material and column
JP2020015809A (en) Porous polymer particle, separation material, column and method for producing porous polymer particle
JP2017125797A (en) Separation material and column

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770844

Country of ref document: EP

Kind code of ref document: A1