WO2016117567A1 - Separation material - Google Patents

Separation material Download PDF

Info

Publication number
WO2016117567A1
WO2016117567A1 PCT/JP2016/051460 JP2016051460W WO2016117567A1 WO 2016117567 A1 WO2016117567 A1 WO 2016117567A1 JP 2016051460 W JP2016051460 W JP 2016051460W WO 2016117567 A1 WO2016117567 A1 WO 2016117567A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation material
polymer particles
porous polymer
amount
hydroxyl group
Prior art date
Application number
PCT/JP2016/051460
Other languages
French (fr)
Japanese (ja)
Inventor
優 渡邊
後藤 泰史
道男 佛願
中西 良一
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US15/544,434 priority Critical patent/US10898877B2/en
Priority to JP2016570660A priority patent/JP6778381B2/en
Priority to EP16740174.4A priority patent/EP3248677B1/en
Publication of WO2016117567A1 publication Critical patent/WO2016117567A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28095Shape or type of pores, voids, channels, ducts
    • B01J20/28097Shape or type of pores, voids, channels, ducts being coated, filled or plugged with specific compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • B01J20/3274Proteins, nucleic acids, polysaccharides, antibodies or antigens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/328Polymers on the carrier being further modified
    • B01J20/3282Crosslinked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/20Anion exchangers for chromatographic processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography

Definitions

  • the present invention relates to a separating material.
  • ion exchangers based on porous synthetic polymers, particles based on cross-linked gels of hydrophilic natural polymers, etc. It is used.
  • the ion exchanger based on the above porous synthetic polymer has an advantage that the pressure resistance during liquid passage is good.
  • nonspecific adsorption such as irreversible adsorption based on hydrophobic interaction occurs, resulting in peak asymmetry, or ion exchange by hydrophobic interaction.
  • the protein adsorbed on the body may not be recovered while adsorbed.
  • Patent Document 1 describes that by using such a complex, the load factor of the reactive substance is increased, and high yield synthesis is possible.
  • Patent Document 2 An ion exchanger of a hybrid copolymer in which pores of a so-called macro network structure copolymer are filled with a crosslinked copolymer gel synthesized from a monomer is known (see Patent Document 2).
  • Crosslinked copolymer gels have problems such as pressure loss and volume change when the degree of crosslinking is low.
  • Patent Document 2 describes that the leakage behavior is improved.
  • Patent Document 5 A technique for synthesizing porous particles composed of glycidyl methacrylate and an acrylic crosslinked monomer is known (see Patent Document 5).
  • an object of the present invention is to provide a separation material that ensures liquid permeability and can reduce non-specific adsorption of proteins, increase the amount of adsorption, and suppress denaturation.
  • the present invention provides the separating material described in [1] to [6] below.
  • the polymer unit has at least one of styrene and divinylbenzene at 90% by mass or more based on the total amount of the monomer, and has a hydroxyl group that covers at least a part of the surface of the porous polymer particle.
  • a coating layer containing a polymer wherein the coating amount by the coating layer is 1 to 15 mg / m 2 per unit specific surface area of the porous polymer particles.
  • the separation material according to [1] wherein the oxygen element ratio on the surface of the separation material is 10 to 50%.
  • the present invention it is possible to provide a separation material that ensures liquid permeability and can reduce non-specific adsorption of proteins, increase the amount of adsorption, and suppress denaturation.
  • the separating material of the present embodiment includes porous polymer particles and a coating layer that covers at least part of the surface of the porous polymer particles.
  • the “surface of the porous polymer particle” includes not only the outer surface of the porous polymer particle but also the surface of the pores inside the porous polymer particle.
  • the porous polymer particles of the present embodiment are particles obtained by curing a monomer containing a porosifying agent, and can be synthesized by, for example, conventional suspension polymerization or emulsion polymerization.
  • the monomer unit at least one of styrene and divinylbenzene contains 90% by mass or more based on the total monomer amount, and preferably 90% by mass or more of divinylbenzene based on the total monomer amount. By containing a predetermined amount of styrene or divinylbenzene, the pressure resistance tends to be excellent.
  • the monomer may further contain the following polyfunctional monomers other than styrene and divinylbenzene, monofunctional monomers, and the like.
  • polyfunctional monomers other than divinylbenzene examples include divinyl compounds such as divinylbiphenyl, divinylnaphthalene, and divinylphenanthrene. These polyfunctional monomers can be used alone or in combination of two or more.
  • Monofunctional monomers other than styrene include, for example, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, 2,4 -Dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, pn- Examples thereof include styrene derivatives such as dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene,
  • styrene derivative which has functional groups, such as a carboxy group, an amino group, a hydroxyl group, and an aldehyde group, can also be used.
  • the porosifying agent examples include aliphatic or aromatic hydrocarbons, esters, ketones, ethers, alcohols, and the like, which are organic solvents that promote phase separation at the time of polymerization and promote pore formation of particles. It is done. Specific examples include toluene, xylene, diethylbenzene, cyclohexane, octane, butyl acetate, dibutyl phthalate, methyl ethyl ketone, dibutyl ether, 1-hexanol, 2-octanol, decanol, lauryl alcohol, cyclohexanol and the like. These porous agents can be used singly or in combination of two or more.
  • the above porosifying agent can be used in an amount of 0 to 200% by mass based on the total mass of the monomer.
  • the porosity of the porous polymer particles can be controlled by the amount of the porous agent.
  • the size and shape of the pores of the porous polymer particles can be controlled by the kind of the porous agent.
  • Water used as a solvent can be used as a porous agent.
  • water is used as a porosifying agent, it is possible to make it porous by dissolving an oil-soluble surfactant in the monomer and absorbing water.
  • oil-soluble surfactant used for the porosification examples include sorbitan monoesters of branched C16 to C24 fatty acids, chain unsaturated C16 to C22 fatty acids or chain saturated C12 to C14 fatty acids, such as sorbitan monolaurate, sorbitan Sorbitan monoesters derived from monooleate, sorbitan monomyristate or coconut fatty acid; diglycerol monoesters of branched C16-C24 fatty acids, chain unsaturated C16-C22 fatty acids or chain saturated C12-C14 fatty acids, for example di- Glycerol monooleate (for example, diglycerol monoester of C18: 1 (18 carbon atoms, 1 double bond) fatty acid), diglycerol monomyristate, diglycerol monoisostearate or diglycerol monoester of coconut fatty acid Ester; Branch C16 ⁇ 24 alcohol (e.g., Guerbet alcohols), linear unsaturated C16 ⁇ C24
  • sorbitan monolaurate e.g., SPAN 20
  • Sorbitan monooleate e.g, SPAN 80, preferably about 40% purity, more preferably about 50% purity, most preferably greater than about 70% purity sorbitan monooleate
  • Glycerol monooleate eg, greater than about 40% purity, more preferably greater than about 50% purity, most preferably greater than about 70% purity
  • diglycerol monoisostearate eg, preferably Is greater than about 40% purity, more preferably greater than about 50% purity
  • diglycerol monomyristate preferably greater than about 40% purity, more preferably greater than about 50% purity, most preferably about 70% purity.
  • cocoyl eg, lauryl, myristoyl, etc.
  • oil-soluble surfactants are preferably used in the range of 5 to 80% by mass relative to the total mass of the monomer. If the content of the oil-soluble surfactant is 5% by mass or more, the stability of the water droplet is sufficient, and it is difficult to form a large single hole. Further, when the content of the oil-soluble surfactant is 80% by mass or less, it becomes easier for the porous polymer particles to retain the shape after polymerization.
  • aqueous medium used for the polymerization reaction examples include water, a mixed medium of water and a water-soluble solvent (for example, lower alcohol), and the like.
  • the aqueous medium may contain a surfactant.
  • the surfactant any of anionic, cationic, nonionic and zwitterionic surfactants can be used.
  • anionic surfactant examples include fatty acid oils such as sodium oleate and castor oil potassium, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfone.
  • Acid salts alkane sulfonates, dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate, alkenyl succinates (dipotassium salts), alkyl phosphate esters, naphthalene sulfonate formalin condensates, polyoxyethylene alkylphenyl ether sulfates Salts, polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene lauryl ether sulfate, polyoxyethylene alkyl sulfates, etc.
  • cationic surfactant examples include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
  • Nonionic surfactants include, for example, hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkyl aryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines, or amides.
  • hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkyl aryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines, or amides.
  • Agents polyether-modified silicon-based nonionic surfactants such as polyethylene oxide adducts of silicon and polypropylene oxide adducts, and fluorine-based nonionic surfactants such as perfluoroalkyl glycols.
  • zwitterionic surfactants include hydrocarbon surfactants such as lauryl dimethylamine oxide, phosphate ester surfactants, and phosphite ester surfactants.
  • Surfactant may be used alone or in combination of two or more.
  • anionic surfactants are preferable from the viewpoint of dispersion stability during monomer polymerization.
  • polymerization initiator examples include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, tert-butyl peroxide.
  • Organic peroxides such as oxy-2-ethylhexanoate and di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2 ′ -Azo compounds such as azobis (2,4-dimethylvaleronitrile).
  • the polymerization initiator can be used in the range of 0.1 to 7.0 parts by mass with respect to 100 parts by mass of the monomer.
  • the polymerization temperature can be appropriately selected according to the type of monomer and polymerization initiator.
  • the polymerization temperature is preferably 25 to 110 ° C, more preferably 50 to 100 ° C.
  • a polymer dispersion stabilizer may be used in order to improve the dispersion stability of the particles.
  • polymer dispersion stabilizer examples include inorganic water-soluble high polymers such as polyvinyl alcohol, polycarboxylic acid, celluloses (hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, etc.), polyvinyl pyrrolidone, tricalcium phosphate (TCP), sodium tripolyphosphate, and the like. Examples include molecular compounds. These can be used individually or in combination of multiple types. Of these, tricalcium phosphate (TCP), polyvinyl alcohol, or polyvinylpyrrolidone is preferred.
  • the addition amount of the polymer dispersion stabilizer is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the monomer.
  • a water-soluble polymerization inhibitor such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, polyphenols and the like may be used.
  • the average particle diameter of the porous polymer particles is preferably 300 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 100 ⁇ m or less. Further, the average particle diameter of the porous polymer particles is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, and further preferably 50 ⁇ m or more, from the viewpoint of improving liquid permeability.
  • the coefficient of variation (CV) of the particle size of the porous polymer particles is preferably 3 to 15%, more preferably 5 to 15%, from the viewpoint of improving liquid permeability. More preferably, it is 10%.
  • CV coefficient of variation
  • C. of average particle size and particle size of porous polymer particles or separator V. can be determined by the following measurement method. 1) Disperse the particles in water (including a dispersant such as a surfactant) using an ultrasonic dispersion device to prepare a dispersion liquid containing 1% by mass of porous polymer particles. 2) Using a particle size distribution meter (Sysmex Flow, manufactured by Sysmex Corporation), an average particle size and particle size of C.I. V. (Coefficient of variation) is measured.
  • the pore volume (porosity) of the porous polymer particles is preferably 30% by volume or more and 70% by volume or less, and 40% by volume or more and 70% by volume based on the total volume (including the pore volume) of the porous polymer particles. % Or less is more preferable.
  • the porous polymer particles preferably have pores having a mode diameter (mode value of pore diameter distribution, maximum frequency pore diameter, average pore diameter) of 0.05 to 1 ⁇ m in the pore diameter distribution.
  • the mode diameter in the pore size distribution of the porous polymer particles is more preferably 0.2 ⁇ m or more and less than 0.5 ⁇ m. When the mode diameter in the pore size distribution is 0.05 ⁇ m or more, a substance tends to easily enter the pores. When the mode diameter in the pore diameter distribution is 1 ⁇ m or less, the specific surface area is sufficient. These can be adjusted by the above-mentioned porous agent.
  • the specific surface area of the porous polymer particles is preferably 10 m 2 / g or more, and more preferably 30 m 2 / g or more. From the viewpoint of higher practicality, the specific surface area is more preferably 35 m 2 / g or more, and further preferably 40 m 2 / g or more. When the specific surface area is 10 m 2 / g or more, the adsorption amount of the substance to be separated tends to increase.
  • the upper limit of the specific surface area of the porous polymer particles is not particularly limited, but can be, for example, 200 m 2 / g or less, 100 m 2 / g or less.
  • the coating layer of this embodiment contains a polymer having a predetermined amount (coating amount) of hydroxyl groups.
  • a polymer having a predetermined amount of hydroxyl groups By covering the porous polymer particles with a polymer having a predetermined amount of hydroxyl groups, the increase in column pressure can be suppressed, and nonspecific adsorption of proteins can be suppressed, and the protein adsorption of the separation material The amount tends to be good. Furthermore, when the polymer having a hydroxyl group is crosslinked, it is possible to further suppress an increase in column pressure.
  • the coating amount by the coating layer is 1 to 15 mg / m 2 per unit specific surface area of the porous polymer particles, preferably 5 to 15 mg / m 2 , and preferably 8 to 15 mg / m 2. 2 is more preferable.
  • the coating amount by the coating layer can be measured by the method described in the examples.
  • the oxygen element ratio on the surface is preferably 10 to 50%, more preferably 15 to 50%, further preferably 20 to 50%, and more preferably 30 to 50%. And particularly preferred.
  • the oxygen element ratio on the surface of the separating material can be measured by the method described in the examples.
  • the oxygen element ratio on the surface of the separating material is measured by X-ray photoelectron spectroscopy in which the coating layer is irradiated with X-rays from the outside of the separating material.
  • the polymer having a hydroxyl group preferably has two or more hydroxyl groups in one molecule, and more preferably a hydrophilic polymer.
  • examples of the polymer having a hydroxyl group include polysaccharides and polyvinyl alcohol.
  • Preferred examples of the polysaccharide include agarose, dextran, cellulose, chitosan, and alginic acid.
  • a polymer having a weight average molecular weight of about 10,000 to 200,000 can be used.
  • the polymer having a hydroxyl group is preferably a modified product modified with a hydrophobic group from the viewpoint of improving the interfacial adsorption ability.
  • the hydrophobic group include an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, and a propyl group.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group.
  • a hydrophobic group is introduced by reacting a functional group that reacts with a hydroxyl group (for example, an epoxy group) and a compound having a hydrophobic group (for example, glycidyl phenyl ether) with a polymer having a hydroxyl group by a conventionally known method. Can do.
  • a functional group that reacts with a hydroxyl group for example, an epoxy group
  • a compound having a hydrophobic group for example, glycidyl phenyl ether
  • the coating layer containing a polymer having a hydroxyl group can be formed by, for example, the following method.
  • a polymer solution having a hydroxyl group is adsorbed on the surface of the porous polymer particles.
  • the solvent for the polymer solution having a hydroxyl group is not particularly limited as long as it can dissolve the polymer having a hydroxyl group, but water is the most common.
  • the concentration of the polymer dissolved in the solvent is preferably 5 to 20 (mg / mL).
  • This solution is impregnated into porous polymer particles.
  • porous polymer particles are added to a polymer solution having a hydroxyl group and left for a predetermined time.
  • the impregnation time varies depending on the surface state of the porous body
  • the polymer concentration is in an equilibrium state with the external concentration inside the porous body if it is usually impregnated day and night. Then, it wash
  • Crosslinking treatment Next, a crosslinking agent is added to cause the polymer having a hydroxyl group adsorbed on the surface of the porous polymer particles to undergo a crosslinking reaction to form a crosslinked body. That is, the polymer having a hydroxyl group of the separating material may be cross-linked. At this time, the crosslinked body has a three-dimensional crosslinked network structure having a hydroxyl group.
  • an epihalohydrin such as epichlorohydrin
  • a dialdehyde compound such as glutaraldehyde
  • a diisocyanate compound such as methylene diisocyanate
  • a glycidyl compound such as ethylene glycol diglycidyl ether
  • two or more functional groups active on a hydroxyl group The compound which has is mentioned.
  • a dihalide such as dichlorooctane can also be used as a crosslinking agent.
  • a catalyst is usually used for this crosslinking reaction.
  • a conventionally known catalyst can be appropriately used according to the type of the crosslinking agent.
  • the crosslinking agent is epichlorohydrin or the like
  • an alkali such as sodium hydroxide
  • mineral acids such as hydrochloric acid are effective.
  • the crosslinking reaction with the crosslinking agent is usually performed by adding the crosslinking agent to a system in which the separating material is dispersed and suspended in an appropriate medium.
  • the addition amount of the crosslinking agent is, for example, within a range of 0.1 to 100 moles per unit of one unit of monosaccharide. It can be selected according to performance.
  • the addition amount of the crosslinking agent is reduced, the coating layer tends to be easily peeled off from the porous polymer particles.
  • the addition amount of a crosslinking agent is excessive and the reaction rate with the polymer which has a hydroxyl group is high, the characteristic of the polymer which has a hydroxyl group of a raw material tends to be impaired.
  • the amount of the catalyst used varies depending on the type of the crosslinking agent. Usually, when a polysaccharide is used as the polymer having a hydroxyl group, if one unit of the monosaccharide forming the polysaccharide is 1 mole, It is preferably used in the range of 0.01 to 10 mole times, more preferably 0.1 to 5 mole times.
  • the cross-linking reaction condition is a temperature condition
  • the temperature of the reaction system is raised, and the cross-linking reaction occurs when the temperature reaches the reaction temperature.
  • the polymer or crosslinking agent is not extracted from the impregnated polymer solution, and a crosslinking reaction is performed.
  • the crosslinking reaction is usually performed at a temperature in the range of 5 to 90 ° C. for 1 to 10 hours.
  • the temperature is preferably in the range of 30 to 90 ° C.
  • the produced particles are filtered, washed with a hydrophilic organic solvent such as water, methanol, ethanol, etc. to remove unreacted polymer, suspending medium, etc.
  • a hydrophilic organic solvent such as water, methanol, ethanol, etc.
  • the separation material having a coating layer can be used for ion exchange purification, affinity purification, etc. by introducing ion exchange groups, ligands (protein A), etc. via hydroxyl groups on the surface.
  • Examples of the method for introducing an ion exchange group include a method using an alkyl halide compound.
  • halogenated alkyl compound examples include monohalogenocarboxylic acids such as monohalogenoacetic acid and monohalogenopropionic acid and sodium salts thereof, primary, secondary or tertiary amines having at least one halogenated alkyl group such as diethylaminoethyl chloride, halogen And quaternary ammonium hydrochloride having an alkyl group.
  • halogenated alkyl compounds are preferably bromides or chlorides.
  • the amount of the halogenated alkyl compound used is preferably 0.2% by mass or more based on the total mass of the separating material imparting ion exchange groups.
  • organic solvent examples include alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol, isobutanol, 1-pentanol, and isopentanol.
  • the ion exchange group is introduced into the hydroxyl group on the surface of the separation material, the wet particles are drained by filtration or the like, immersed in an alkaline aqueous solution of a predetermined concentration, left for a certain time, and then water-organic.
  • the halogenated alkyl compound is added and reacted in a solvent mixture system. This reaction is preferably carried out at a temperature of 40 to 90 ° C. for 0.5 to 12 hours.
  • the ion exchange group to be provided is determined depending on the kind of the halogenated alkyl compound used in the above reaction.
  • a mono- having at least one alkyl group in which a part of hydrogen atoms is substituted with a chlorine atom Di- or tri-alkylamine, mono-, di- or tri-alkanolamine, mono-alkyl-mono-alkanolamine, di-alkyl-mono-alkanolamine, mono-alkyl-di-alkanolamine, etc. A method is mentioned.
  • the amount of these halogenated alkyl compounds used is preferably 0.2% by mass or more based on the total mass of the separating material.
  • the reaction conditions are preferably 40 to 90 ° C. and 0.5 to 12 hours.
  • a strongly basic quaternary ammonium group as an ion exchange group first, a tertiary amino group is introduced, and then the tertiary amino group is reacted with a halogenated alkyl compound such as epichlorohydrin. The method of converting into an ammonium group is mentioned. Further, quaternary ammonium hydrochloride or the like may be reacted with the separation material.
  • Examples of the method for introducing a carboxy group that is a weakly acidic group as an ion exchange group include a method in which a monohalogenocarboxylic acid such as monohalogenoacetic acid or monohalogenopropionic acid or a sodium salt thereof is reacted as the halogenated alkyl compound. .
  • the amount of the halogenated alkyl compound used is preferably 0.2% by mass or more based on the total mass of the separating material into which the ion exchange group is introduced.
  • a glycidyl compound such as epichlorohydrin is reacted with a separating material, and a sulfite or a bisulfite such as sodium sulfite or sodium bisulfite.
  • a method of adding a separating material to the saturated aqueous solution are preferably 30 to 90 ° C. and 1 to 10 hours.
  • examples of the method for introducing ion exchange groups include a method in which 1,3-propane sultone is reacted with a separation material in an alkaline atmosphere. 1,3-propane sultone is preferably used in an amount of 0.4% by mass or more based on the total mass of the separating material.
  • the reaction conditions are preferably 0 to 90 ° C. and 0.5 to 12 hours.
  • the moisture absorption of the separation material of the present embodiment is preferably 1 to 30% by mass, more preferably 1 to 20% by mass, and further preferably 1 to 10% by mass.
  • the moisture absorption of the separating material is 30% by mass or less, it is possible to suppress a decrease in liquid permeability of the separating material due to the thickness of the coating layer.
  • the average pore diameter, mode diameter, specific surface area and porosity in the pore diameter distribution of the separating material or porous polymer particles of the present embodiment are values measured with a mercury intrusion measuring apparatus (Autopore: manufactured by Shimadzu Corporation). Measured as follows. 0.05 g of a sample is added to a standard 5 mL powder cell (stem volume: 0.4 mL) and measured under conditions of an initial pressure of 21 kPa (approximately 3 psia, corresponding to a pore diameter of approximately 60 ⁇ m). Mercury parameters are set to a device default mercury contact angle of 130 degrees and a mercury surface tension of 485 dynes / cm. Each value is calculated by limiting the pore diameter to a range of 0.1 to 3 ⁇ m.
  • the separation material of this embodiment is suitable for use in separation of proteins by electrostatic interaction and affinity purification. For example, after adding the separation material of the present embodiment to a mixed solution containing protein, adsorbing only the protein to the separation material by electrostatic interaction, the separation material is filtered from the solution, and the salt concentration If added to a high aqueous solution, the protein adsorbed on the separation material can be easily desorbed and recovered. Moreover, the separation material of this embodiment can also be used in column chromatography.
  • FIG. 1 shows an embodiment of a separation column.
  • the separation column 10 includes a column 1 and a separation material 2 packed in the column 1.
  • a water-soluble substance is preferable.
  • proteins such as blood proteins such as serum albumin and immunoglobulin, enzymes present in the living body, protein bioactive substances produced by biotechnology, DNA, biopolymers such as bioactive peptides, etc. Yes, preferably the weight average molecular weight is 2 million or less, more preferably 500,000 or less.
  • the separation material of the present embodiment after the coating layer on the porous polymer particles is cross-linked, an ion exchange group, protein A, etc. are introduced into the surface of the separation material, thereby separating natural macromolecules such as proteins.
  • Each has the advantage of particles made of a polymer or particles made of a synthetic polymer.
  • the porous polymer particles in the separation material of the present embodiment are obtained by the above-described method, they have durability and alkali resistance.
  • the separation material of the present embodiment tends to reduce non-specific adsorption of proteins and easily cause protein adsorption / desorption.
  • the separation material of the present embodiment tends to have a large adsorption amount (dynamic adsorption amount) of protein or the like under the same flow rate.
  • the liquid flow rate represents the liquid flow rate when the separation material of this embodiment is filled in a stainless steel column of ⁇ 7.8 ⁇ 300 mm and the liquid is passed.
  • the liquid passing speed is 800 cm / h or more when the column pressure is 0.3 MPa.
  • the flow rate of protein solution or the like is generally in the range of 400 cm / h or less.
  • the separation rate for normal protein separation is as follows. It can be used at a liquid passing speed of 800 cm / h or more faster than the separating material.
  • the average particle size of the separation material of this embodiment is preferably 10 to 300 ⁇ m.
  • it is preferably 10 to 100 ⁇ m in order to avoid an extreme increase in column internal pressure.
  • the separation material of this embodiment When the separation material of this embodiment is used as a column packing material in column chromatography, it has excellent operability because there is almost no volume change in the column regardless of the properties of the eluate used.
  • the 5% compressive deformation elastic modulus of the separating material of the present embodiment can be calculated as follows. Using a micro compression tester (Fisher), the load when particles are compressed to 50 mN with a smooth end face (50 ⁇ m ⁇ 50 ⁇ m) of a quadrangular prism at room temperature (25 ° C.) at a load rate of 1 mN / sec. And measure the compression displacement. From the measured values obtained, the compression modulus (5% K value) when the particles are compressively deformed by 5% can be obtained by the following formula. Further, the load at the point at which the displacement during the measurement changes most greatly is defined as the breaking strength (mN).
  • the compression elastic modulus (5% K value) when the separating material is 5% compressively deformed is preferably 100 to 1000 MPa, more preferably 200 to 1000 MPa, and further preferably 250 to 1000 MPa.
  • the pore volume (porosity) of the separation material is preferably 30% by volume or more and 70% by volume or less, based on the total volume (including the pore volume) of the separation material, and is 40% by volume or more and 70% by volume or less. It is more preferable.
  • the separating material preferably has pores having an average pore diameter of 0.05 to 1 ⁇ m.
  • the average pore diameter is preferably 0.2 to 0.5 ⁇ m. If the pore diameter is 0.05 ⁇ m or more, a substance tends to easily enter the pores. If the pore diameter is 1 ⁇ m or less, the specific surface area is sufficient.
  • the specific surface area of the separating material is preferably 10 m 2 / g or more, and more preferably 30 m 2 / g or more. From the viewpoint of higher practicality, the specific surface area is more preferably 35 m 2 / g or more, and further preferably 40 m 2 / g or more. When the specific surface area is 10 m 2 / g or more, the adsorption amount of the substance to be separated tends to increase.
  • the 5% deformation modulus, mode diameter in the pore size distribution, specific surface area, etc. of the separating material can be adjusted by appropriately selecting the raw material of the porous polymer particles, the porosifying agent, the polymer having a hydroxyl group, and the like. it can.
  • this embodiment demonstrated the separation material of the form which introduce
  • a separation material can be used for, for example, gel filtration chromatography. That is, the separation column of this embodiment includes a column and the separation material of this embodiment packed in the column.
  • Example 1 Synthesis of porous polymer particles> To a 500 mL three-necked flask, add 16 g of 96% pure divinylbenzene (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: DVB960), 19.5 g of isoamyl alcohol, 4.5 g of diethylbenzene, and 0.64 g of benzoyl peroxide. An aqueous solution of tricalcium phosphate (TCP) (0.5% by mass) was prepared.
  • TCP tricalcium phosphate
  • This aqueous solution was emulsified using a microprocess server, and the resulting emulsion was transferred to a flask and stirred for about 8 hours using a stirrer while heating in a water bath at 80 ° C.
  • the obtained particles were filtered and washed with acetone.
  • TCP was dissolved with an acidic aqueous solution to obtain porous polymer particles 1.
  • the specific surface area of the obtained particles and the mode diameter in the pore size distribution were measured by a mercury intrusion method, and the average particle size was measured by a flow type particle size measuring device. The results are shown in Table 1.
  • ⁇ Formation and cross-linking of coating layer 4 g of sodium hydroxide and 0.14 g of glycidyl phenyl ether were added to 100 mL of an agarose aqueous solution (2% by mass) and reacted at 70 ° C. for 12 hours to introduce a phenyl group into agarose.
  • the obtained modified agarose was reprecipitated with isopropyl alcohol and washed.
  • Porous polymer particles 1 are added to a 200 mg / mL modified agarose aqueous solution, and 1 g of porous polymer particles 1 are added to 70 mL of the aqueous solution, and the mixture is stirred at 50 ° C. for 24 hours. Adsorbed.
  • the modified agarose was crosslinked as follows. 1 g of porous polymer particles 1 on which modified agarose is adsorbed with respect to 35 mL of the aqueous solution are added to an aqueous solution having ethylene glycol diglycidyl ether and sodium hydroxide concentrations of 0.64 M and 0.4 M, respectively, for 24 hours. Stir at room temperature. Then, after washing
  • the amount of agarose adsorbed on the porous polymer particles was measured by weight reduction due to thermal decomposition. 10 mg each of porous polymer particles, modified agarose, and particles (separation material) obtained by the formation and crosslinking of the coating layer were heated from 30 ° C to 900 ° C. Since it was found that the porous polymer particles were thermally decomposed at 500 ° C. and the modified agarose was thermally decomposed at 300 ° C., the modified agarose coating amount of the modified agarose-coated porous polymer particles was estimated from these two data.
  • BSA bovine serum albumin
  • ⁇ Introduction of ion exchange groups The particles (separation material) obtained by the formation and crosslinking of the coating layer were subjected to centrifugation to remove water, and then poured into a mixture of 5 M sodium hydroxide aqueous solution 20 mL and 5 M diethylaminoethyl hydrochloride aqueous solution 20 mL, The mixture was stirred at 70 ° C. for 12 hours. After completion of the reaction, the mixture was filtered and washed with water to obtain a DEAE-modified separation material having a diethylaminoethyl (DEAE) group as an ion exchange group.
  • DEAE diethylaminoethyl
  • Example 2 ⁇ Coating layer formation and crosslinking> Synthesis and evaluation were performed in the same manner as in Example 1 except that epichlorohydrin was used instead of ethylene glycol diglycidyl ether.
  • Example 3 Synthesis and evaluation were performed in the same manner as in Example 2 except that the amounts of isoamyl alcohol and diethylbenzene were changed to 16 g and 8 g, respectively.
  • Example 1 The same evaluation as in Example 1 was performed using the porous polymer particles 1 as they were.
  • Comparative Example 3 Commercially available agarose particles (Capto DEAE: GE Healthcare) were used as Comparative Example 3, and the same evaluation as in Example 1 was performed.
  • Example 1 the coating amount with the polymer having a hydroxyl group is set within the predetermined range of the present invention. As a result, non-specific adsorption and protein denaturation can be suppressed, and the protein binding capacity and the protein recovery rate were improved as compared with those using agarose particles. Further, Example 2 is different from Example 1 in that the crosslinking agent is changed. In Example 2, nonspecific adsorption and protein denaturation were suppressed as in Example 1, and the ion exchange capacity was further increased and the protein binding capacity was improved. And Example 3 increases the coating amount per unit specific surface area of particle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

The present invention provides a separation material that is provided with: porous polymer particles that include styrene and/or divinylbenzene as a monomer unit to the amount of 90 mass% or more in terms of the total monomer quantity; and a coating layer that coats at least a portion of the surface of the porous polymer particles and includes a polymer having a hydroxyl group. Therein, the coating amount of the coating layer is 1-15 mg/m2 per unit specific surface area of the porous polymer particles.

Description

分離材Separation material
 本発明は、分離材に関する。 The present invention relates to a separating material.
 従来、タンパク質に代表される生体高分子を分離精製する場合、一般的には多孔質型の合成高分子を母体とするイオン交換体、親水性天然高分子の架橋ゲルを母体とする粒子等が用いられている。上記の多孔質型の合成高分子を母体とするイオン交換体は、通液時の耐圧性が良いといった利点を持っている。しかし、このイオン交換体は、タンパク質等の分離に用いた場合、疎水性相互作用に基づく不可逆吸着等の非特異吸着が起き、ピークの非対称化が発生する、あるいは、疎水性相互作用でイオン交換体に吸着されたタンパク質が吸着されたまま回収できないことがあるといった問題点があった。 Conventionally, when separating and purifying biopolymers typified by proteins, there are generally ion exchangers based on porous synthetic polymers, particles based on cross-linked gels of hydrophilic natural polymers, etc. It is used. The ion exchanger based on the above porous synthetic polymer has an advantage that the pressure resistance during liquid passage is good. However, when this ion exchanger is used for protein separation, nonspecific adsorption such as irreversible adsorption based on hydrophobic interaction occurs, resulting in peak asymmetry, or ion exchange by hydrophobic interaction. There is a problem that the protein adsorbed on the body may not be recovered while adsorbed.
 一方、デキストラン、アガロース等の多糖に代表される上記親水性天然高分子の架橋ゲルを母体とするイオン交換体の場合、タンパク質の非特異吸着がほとんどないという利点がある。ところが、このイオン交換体は、水溶液中で著しく膨潤し、また、溶液のイオン強度による体積変化及び、遊離酸形と負荷形との体積変化が大きく、機械的強度も充分ではないという欠点を有する。特に、架橋ゲルをクロマトグラフィーで使用する場合、通液時の圧力損失が大きく、通液によりゲルが圧密化するといった欠点がある。 On the other hand, in the case of an ion exchanger based on a crosslinked gel of the above-mentioned hydrophilic natural polymer represented by polysaccharides such as dextran and agarose, there is an advantage that there is almost no nonspecific adsorption of protein. However, this ion exchanger swells remarkably in an aqueous solution, and has the disadvantage that the volume change due to the ionic strength of the solution, the volume change between the free acid form and the loaded form is large, and the mechanical strength is not sufficient. . In particular, when a cross-linked gel is used in chromatography, there is a disadvantage that the pressure loss during liquid passage is large and the gel is consolidated by liquid passage.
 親水性天然高分子の架橋ゲルを持つ欠点を克服するため、いわば骨格となる剛直な物質を組み合わせる試みがこれまでなされている。
 例えば、多孔質高分子の細孔内に天然高分子ゲル等のゲルを保持した複合体が、ペプチド合成の分野で知られている(特許文献1参照)。特許文献1には、このような複合体を用いることにより、反応性物質の負荷係数を高め、高収率の合成が可能となることが記載されている。
In order to overcome the drawbacks of having a hydrophilic natural polymer cross-linked gel, attempts have been made so far to combine rigid substances that become skeletons.
For example, a complex in which a gel such as a natural polymer gel is held in the pores of a porous polymer is known in the field of peptide synthesis (see Patent Document 1). Patent Document 1 describes that by using such a complex, the load factor of the reactive substance is increased, and high yield synthesis is possible.
 いわゆるマクロネットワーク構造のコポリマの細孔を、モノマから合成した架橋共重合体ゲルで埋めたハイブリットコポリマのイオン交換体が知られている(特許文献2参照)。架橋共重合体ゲルは、架橋度が低い場合、圧力損失、体積変化等の問題があるが、ハイブリッドコポリマにすることで通液特性が改善され、圧力損失が少なくなること、また、イオン交換容量が向上し、リーク挙動が改善されていることが特許文献2に記載されている。 An ion exchanger of a hybrid copolymer in which pores of a so-called macro network structure copolymer are filled with a crosslinked copolymer gel synthesized from a monomer is known (see Patent Document 2). Crosslinked copolymer gels have problems such as pressure loss and volume change when the degree of crosslinking is low. However, by using a hybrid copolymer, liquid flow characteristics are improved, pressure loss is reduced, and ion exchange capacity. Patent Document 2 describes that the leakage behavior is improved.
 有機合成ポリマ基体の細孔内に巨大綱目を有する親水性天然高分子の架橋ゲルを充填した複合化充填材が提案されている(特許文献3及び4参照)。 There has been proposed a composite filler in which a hydrophilic natural polymer cross-linked gel having giant meshes is filled in the pores of an organic synthetic polymer substrate (see Patent Documents 3 and 4).
 メタクリル酸グリシジルとアクリル架橋モノマにより構成される多孔質粒子を合成する技術が知られている(特許文献5参照)。 A technique for synthesizing porous particles composed of glycidyl methacrylate and an acrylic crosslinked monomer is known (see Patent Document 5).
米国特許第4965289号公報U.S. Pat. No. 4,965,289 米国特許第3966489号公報U.S. Pat. No. 3,966,489 特開平1-254247号公報JP-A-1-254247 米国特許第5114577号公報US Pat. No. 5,114,577 特開2009-244067号公報JP 2009-244067 A
 従来のカラム充填材では、天然高分子の課題である通液性、ポリマ粒子の課題である酵素等のタンパク質の非特異吸着の低減、吸着量の向上、変性の抑制を一挙に解決することが困難である。 With conventional column packing materials, it is possible to solve all of the problems of natural polymer, such as liquid permeability, polymer particles, such as nonspecific adsorption of proteins such as enzymes, improvement of adsorption amount, and suppression of denaturation. Have difficulty.
 そこで本発明は、通液性を確保し、且つタンパク質の非特異吸着の低減、吸着量の向上及び変性の抑制が可能な分離材を提供することを目的とする。 Therefore, an object of the present invention is to provide a separation material that ensures liquid permeability and can reduce non-specific adsorption of proteins, increase the amount of adsorption, and suppress denaturation.
 本発明は、下記[1]~[6]に記載の分離材を提供する。
[1] モノマ単位として、スチレン及びジビニルベンゼンの少なくとも一方を、モノマ全量基準で90質量%以上含む、多孔質ポリマ粒子と、該多孔質ポリマ粒子の表面の少なくとも一部を被覆する、水酸基を有する高分子を含む被覆層と、を備え、被覆層による被覆量が多孔質ポリマ粒子の単位比表面積当たり1~15mg/mである分離材。
[2] 上記分離材の表面における酸素元素比率が10~50%である、[1]に記載の分離材。
[3] 上記水酸基を有する高分子が多糖類又はその変性体である、[1]又は[2]に記載の分離材。
[4] 上記多糖類がアガロース、キトサン、アルギン酸及びデキストランから選ばれる少なくとも一種である、[3]に記載の分離材。
[5] 水酸基を有する高分子が架橋されている、[1]~[4]のいずれかに記載の分離材。
[6] 上記多孔質ポリマ粒子における比表面積が10m/g以上である、[1]~[5]のいずれかに記載の分離材。
[7] 上記多孔質ポリマ粒子の細孔径分布におけるモード径が0.05~1μmである、[1]~[6]のいずれかに記載の分離材。
[8] カラムと、該カラムに充填された上記[1]~[7]のいずれかに記載の分離材とを備える、分離用カラム。
The present invention provides the separating material described in [1] to [6] below.
[1] The polymer unit has at least one of styrene and divinylbenzene at 90% by mass or more based on the total amount of the monomer, and has a hydroxyl group that covers at least a part of the surface of the porous polymer particle. And a coating layer containing a polymer, wherein the coating amount by the coating layer is 1 to 15 mg / m 2 per unit specific surface area of the porous polymer particles.
[2] The separation material according to [1], wherein the oxygen element ratio on the surface of the separation material is 10 to 50%.
[3] The separation material according to [1] or [2], wherein the polymer having a hydroxyl group is a polysaccharide or a modified product thereof.
[4] The separation material according to [3], wherein the polysaccharide is at least one selected from agarose, chitosan, alginic acid, and dextran.
[5] The separating material according to any one of [1] to [4], wherein a polymer having a hydroxyl group is crosslinked.
[6] The separation material according to any one of [1] to [5], wherein the specific surface area of the porous polymer particles is 10 m 2 / g or more.
[7] The separation material according to any one of [1] to [6], wherein the mode diameter in the pore size distribution of the porous polymer particles is 0.05 to 1 μm.
[8] A separation column comprising a column and the separation material according to any one of [1] to [7] packed in the column.
 本発明によれば、通液性が確保され、且つタンパク質の非特異吸着の低減、吸着量の向上及び変性の抑制が可能な分離材を提供することができる。 According to the present invention, it is possible to provide a separation material that ensures liquid permeability and can reduce non-specific adsorption of proteins, increase the amount of adsorption, and suppress denaturation.
分離用カラムの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the column for separation.
 以下、本発明の好適な実施形態について説明をするが、本発明はこれらの実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
<分離材>
 本実施形態の分離材は、多孔質ポリマ粒子と、該多孔質ポリマ粒子の表面の少なくとも一部を被覆する被覆層と、を備える。なお、本明細書中、「多孔質ポリマ粒子の表面」とは、多孔質ポリマ粒子の外側の表面のみでなく、多孔質ポリマ粒子の内部における細孔の表面を含むものとする。
<Separation material>
The separating material of the present embodiment includes porous polymer particles and a coating layer that covers at least part of the surface of the porous polymer particles. In the present specification, the “surface of the porous polymer particle” includes not only the outer surface of the porous polymer particle but also the surface of the pores inside the porous polymer particle.
(多孔質ポリマ粒子)
 本実施形態の多孔質ポリマ粒子は、多孔質化剤を含むモノマを硬化させた粒子であり、例えば、従来の懸濁重合、乳化重合等によって合成することができる。モノマ単位としては、スチレン及びジビニルベンゼンの少なくとも一方を、モノマ全量基準で90質量%以上含み、好ましくはジビニルベンゼンをモノマ全量基準で90質量%以上含む。所定量のスチレン又はジビニルベンゼンを含むことにより、耐圧性に優れる傾向にある。
 モノマはさらに、以下のようなスチレン及びジビニルベンゼン以外の多官能性モノマ、単官能性モノマ等を含んでいてもよい。
(Porous polymer particles)
The porous polymer particles of the present embodiment are particles obtained by curing a monomer containing a porosifying agent, and can be synthesized by, for example, conventional suspension polymerization or emulsion polymerization. As the monomer unit, at least one of styrene and divinylbenzene contains 90% by mass or more based on the total monomer amount, and preferably 90% by mass or more of divinylbenzene based on the total monomer amount. By containing a predetermined amount of styrene or divinylbenzene, the pressure resistance tends to be excellent.
The monomer may further contain the following polyfunctional monomers other than styrene and divinylbenzene, monofunctional monomers, and the like.
 ジビニルベンゼン以外の多官能性モノマとしては、例えば、ジビニルビフェニル、ジビニルナフタレン、ジビニルフェナントレン等のジビニル化合物が挙げられる。これらの多官能性モノマは、1種単独で又は2種類以上を組み合わせて用いることができる。 Examples of polyfunctional monomers other than divinylbenzene include divinyl compounds such as divinylbiphenyl, divinylnaphthalene, and divinylphenanthrene. These polyfunctional monomers can be used alone or in combination of two or more.
 スチレン以外の単官能性モノマとしては、例えば、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-t-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレン等のスチレン誘導体が挙げられる。これらの単官能性モノマは、1種単独で又は2種類以上を組み合わせて用いることができる。また、カルボキシ基、アミノ基、水酸基、アルデヒド基等の官能基を有するスチレン誘導体も使用することができる。 Monofunctional monomers other than styrene include, for example, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, 2,4 -Dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, pn- Examples thereof include styrene derivatives such as dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, and 3,4-dichlorostyrene. These monofunctional monomers can be used singly or in combination of two or more. Moreover, the styrene derivative which has functional groups, such as a carboxy group, an amino group, a hydroxyl group, and an aldehyde group, can also be used.
 多孔質化剤としては、重合時に相分離を促し、粒子の多孔質化を促進する有機溶媒である脂肪族又は芳香族の炭化水素類、エステル類、ケトン類、エーテル類、アルコール類等が挙げられる。具体的には、トルエン、キシレン、ジエチルベンゼン、シクロヘキサン、オクタン、酢酸ブチル、フタル酸ジブチル、メチルエチルケトン、ジブチルエーテル、1-ヘキサノール、2-オクタノール、デカノール、ラウリルアルコール、シクロヘキサノール等が挙げられる。これら多孔質化剤は、1種単独で又は2種類以上を組み合わせて用いることができる。 Examples of the porosifying agent include aliphatic or aromatic hydrocarbons, esters, ketones, ethers, alcohols, and the like, which are organic solvents that promote phase separation at the time of polymerization and promote pore formation of particles. It is done. Specific examples include toluene, xylene, diethylbenzene, cyclohexane, octane, butyl acetate, dibutyl phthalate, methyl ethyl ketone, dibutyl ether, 1-hexanol, 2-octanol, decanol, lauryl alcohol, cyclohexanol and the like. These porous agents can be used singly or in combination of two or more.
 上記多孔質化剤は、モノマ全質量に対して0~200質量%使用できる。多孔質化剤の量によって、多孔質ポリマ粒子の空隙率をコントロールできる。さらに、多孔質化剤の種類によって、多孔質ポリマ粒子の細孔の大きさ及び形状をコントロールすることができる。 The above porosifying agent can be used in an amount of 0 to 200% by mass based on the total mass of the monomer. The porosity of the porous polymer particles can be controlled by the amount of the porous agent. Furthermore, the size and shape of the pores of the porous polymer particles can be controlled by the kind of the porous agent.
 溶媒として使用する水を多孔質化剤とすることもできる。水を多孔質化剤とする場合は、モノマに油溶性界面活性剤を溶解させ、水を吸収することによって、多孔質化することが可能となる。 Water used as a solvent can be used as a porous agent. When water is used as a porosifying agent, it is possible to make it porous by dissolving an oil-soluble surfactant in the monomer and absorbing water.
 多孔質化に使用される油溶性界面活性剤としては、分岐C16~C24脂肪酸、鎖状不飽和C16~C22脂肪酸又は鎖状飽和C12~C14脂肪酸のソルビタンモノエステル、例えば、ソルビタンモノラウレート、ソルビタンモノオレエート、ソルビタンモノミリステート又はヤシ脂肪酸から誘導されるソルビタンモノエステル;分岐C16~C24脂肪酸、鎖状不飽和C16~C22脂肪酸又は鎖状飽和C12~C14脂肪酸のジグリセロールモノエステル、例えば、ジグリセロールモノオレエート(例えば、C18:1(炭素数18個、二重結合数1個)脂肪酸のジグリセロールモノエステル)、ジグリセロールモノミリステート、ジグリセロールモノイソステアレート又はヤシ脂肪酸のジグリセロールモノエステル;分岐C16~C24アルコール(例えば、ゲルベアルコール)、鎖状不飽和C16~C22アルコール又は鎖状飽和C12~C14アルコール(例えば、ヤシ脂肪アルコール)のジグリセロールモノ脂肪族エーテル;及びこれらの混合物が挙げられる。 Examples of the oil-soluble surfactant used for the porosification include sorbitan monoesters of branched C16 to C24 fatty acids, chain unsaturated C16 to C22 fatty acids or chain saturated C12 to C14 fatty acids, such as sorbitan monolaurate, sorbitan Sorbitan monoesters derived from monooleate, sorbitan monomyristate or coconut fatty acid; diglycerol monoesters of branched C16-C24 fatty acids, chain unsaturated C16-C22 fatty acids or chain saturated C12-C14 fatty acids, for example di- Glycerol monooleate (for example, diglycerol monoester of C18: 1 (18 carbon atoms, 1 double bond) fatty acid), diglycerol monomyristate, diglycerol monoisostearate or diglycerol monoester of coconut fatty acid Ester; Branch C16 ~ 24 alcohol (e.g., Guerbet alcohols), linear unsaturated C16 ~ C22 alcohols or linear saturated C12 ~ C14 alcohols (e.g., coconut fatty alcohols) diglycerol mono-fatty ethers; and mixtures thereof.
 これらのうち、ソルビタンモノラウレート(例えば、SPAN(スパン、登録商標)20好ましくは純度約40%を超える、より好ましくは純度約50%を超える、最も好ましくは純度約70%を超えるソルビタンモノラウレート);ソルビタンモノオレエート(例えば、SPAN(スパン、登録商標)80、好ましくは純度約40%、より好ましくは純度約50%、最も好ましくは純度約70%を超えるソルビタンモノオレエート);ジグリセロールモノオレエート(例えば、純度約40%を超える、より好ましくは純度約50%を超える、最も好ましくは純度約70%を超えるジグリセロールモノオレエート);ジグリセロールモノイソステアレート(例えば、好ましくは純度約40%を超える、より好ましくは純度約50%を超える、最も好ましくは純度約70%を超えるジグリセロールモノイソステアレート);ジグリセロールモノミリステート(好ましくは純度約40%を超える、より好ましくは純度約50%を超える、最も好ましくは純度約70%を超えるソルビタンモノミリステート);ジグリセロールのココイル(例えば、ラウリル基、ミリストイル基等)エーテル;及びこれらの混合物が好ましい。 Of these, sorbitan monolaurate (e.g., SPAN 20), preferably greater than about 40% purity, more preferably greater than about 50% purity, and most preferably greater than about 70% purity. Sorbitan monooleate (eg, SPAN 80, preferably about 40% purity, more preferably about 50% purity, most preferably greater than about 70% purity sorbitan monooleate); Glycerol monooleate (eg, greater than about 40% purity, more preferably greater than about 50% purity, most preferably greater than about 70% purity); diglycerol monoisostearate (eg, preferably Is greater than about 40% purity, more preferably greater than about 50% purity Most preferably a diglycerol monoisostearate of greater than about 70% purity; diglycerol monomyristate (preferably greater than about 40% purity, more preferably greater than about 50% purity, most preferably about 70% purity). More preferred sorbitan monomyristate); cocoyl (eg, lauryl, myristoyl, etc.) ethers of diglycerol; and mixtures thereof.
 これらの油溶性界面活性剤は、モノマ全質量に対して、5~80質量%の範囲で用いることが好ましい。油溶性界面活性剤の含有量が5質量%以上であると、水滴の安定性が充分となることから、大きな単一孔を形成しにくくなる。また、油溶性界面活性剤の含有量が80質量%以下であると、重合後に多孔質ポリマ粒子が形状をより保持しやすくなる。 These oil-soluble surfactants are preferably used in the range of 5 to 80% by mass relative to the total mass of the monomer. If the content of the oil-soluble surfactant is 5% by mass or more, the stability of the water droplet is sufficient, and it is difficult to form a large single hole. Further, when the content of the oil-soluble surfactant is 80% by mass or less, it becomes easier for the porous polymer particles to retain the shape after polymerization.
 重合反応に用いられる水性媒体としては、水、水と水溶性溶媒(例えば、低級アルコール)との混合媒体等が挙げられる。水性媒体には、界面活性剤が含まれていてもよい。界面活性剤としては、アニオン系、カチオン系、ノニオン系及び両性イオン系の界面活性剤のうち、いずれも用いることができる。 Examples of the aqueous medium used for the polymerization reaction include water, a mixed medium of water and a water-soluble solvent (for example, lower alcohol), and the like. The aqueous medium may contain a surfactant. As the surfactant, any of anionic, cationic, nonionic and zwitterionic surfactants can be used.
 アニオン系界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジオクチルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩、アルケルニルコハク酸塩(ジカリウム塩)、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキル硫酸エステル塩などが挙げられる。 Examples of the anionic surfactant include fatty acid oils such as sodium oleate and castor oil potassium, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfone. Acid salts, alkane sulfonates, dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate, alkenyl succinates (dipotassium salts), alkyl phosphate esters, naphthalene sulfonate formalin condensates, polyoxyethylene alkylphenyl ether sulfates Salts, polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene lauryl ether sulfate, polyoxyethylene alkyl sulfates, etc.
 カチオン系界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩が挙げられる。 Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
 ノニオン系界面活性剤としては、例えば、ポリエチレングリコールアルキルエーテル類、ポリエチレングリコールアルキルアリールエーテル類、ポリエチレングリコールエステル類、ポリエチレングリコールソルビタンエステル類、ポリアルキレングリコールアルキルアミン又はアミド類等の炭化水素系ノニオン界面活性剤、シリコンのポリエチレンオキサイド付加物類、ポリプロピレンオキサイド付加物類等のポリエーテル変性シリコン系ノニオン界面活性剤、パーフルオロアルキルグリコール類等のフッ素系ノニオン界面活性剤が挙げられる。 Nonionic surfactants include, for example, hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkyl aryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines, or amides. Agents, polyether-modified silicon-based nonionic surfactants such as polyethylene oxide adducts of silicon and polypropylene oxide adducts, and fluorine-based nonionic surfactants such as perfluoroalkyl glycols.
 両性イオン系界面活性剤としては、例えば、ラウリルジメチルアミンオキサイド等の炭化水素界面活性剤、リン酸エステル系界面活性剤、亜リン酸エステル系界面活性剤が挙げられる。 Examples of zwitterionic surfactants include hydrocarbon surfactants such as lauryl dimethylamine oxide, phosphate ester surfactants, and phosphite ester surfactants.
 界面活性剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。上記界面活性剤の中でも、モノマ重合時の分散安定性の観点から、アニオン系界面活性剤が好ましい。 Surfactant may be used alone or in combination of two or more. Among the surfactants, anionic surfactants are preferable from the viewpoint of dispersion stability during monomer polymerization.
 必要に応じて添加される重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、1,1’-アゾビスシクロヘキサンカルボニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物が挙げられる。重合開始剤は、モノマ100質量部に対して、0.1~7.0質量部の範囲で使用することができる。 Examples of the polymerization initiator added as necessary include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, tert-butyl peroxide. Organic peroxides such as oxy-2-ethylhexanoate and di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2 ′ -Azo compounds such as azobis (2,4-dimethylvaleronitrile). The polymerization initiator can be used in the range of 0.1 to 7.0 parts by mass with respect to 100 parts by mass of the monomer.
 重合温度は、モノマ及び重合開始剤の種類に応じて、適宜選択することができる。重合温度は、25~110℃が好ましく、50~100℃がより好ましい。 The polymerization temperature can be appropriately selected according to the type of monomer and polymerization initiator. The polymerization temperature is preferably 25 to 110 ° C, more preferably 50 to 100 ° C.
 多孔質ポリマ粒子の合成において、粒子の分散安定性を向上させるために、高分子分散安定剤を用いてもよい。 In the synthesis of porous polymer particles, a polymer dispersion stabilizer may be used in order to improve the dispersion stability of the particles.
 高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース等)、ポリビニルピロリドン、第三リン酸カルシウム(TCP)、トリポリリン酸ナトリウム等の無機系水溶性高分子化合物などが挙げられる。これらは、単独又は複数種を組み合わせて使用することができる。これらのうち、第三リン酸カルシウム(TCP)、ポリビニルアルコール又はポリビニルピロリドンが好ましい。高分子分散安定剤の添加量は、モノマ100質量部に対して1~10質量部が好ましい。 Examples of the polymer dispersion stabilizer include inorganic water-soluble high polymers such as polyvinyl alcohol, polycarboxylic acid, celluloses (hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, etc.), polyvinyl pyrrolidone, tricalcium phosphate (TCP), sodium tripolyphosphate, and the like. Examples include molecular compounds. These can be used individually or in combination of multiple types. Of these, tricalcium phosphate (TCP), polyvinyl alcohol, or polyvinylpyrrolidone is preferred. The addition amount of the polymer dispersion stabilizer is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the monomer.
 モノマが単独で重合することを抑えるために、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を用いてもよい。 In order to suppress the polymerization of the monomer alone, a water-soluble polymerization inhibitor such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, polyphenols and the like may be used.
 多孔質ポリマ粒子の平均粒径は、好ましくは300μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下である。また、多孔質ポリマ粒子の平均粒径は、通液性の向上の観点から、好ましくは10μm以上、より好ましくは30μm以上、さらに好ましくは50μm以上である。 The average particle diameter of the porous polymer particles is preferably 300 μm or less, more preferably 150 μm or less, and even more preferably 100 μm or less. Further, the average particle diameter of the porous polymer particles is preferably 10 μm or more, more preferably 30 μm or more, and further preferably 50 μm or more, from the viewpoint of improving liquid permeability.
 多孔質ポリマ粒子の粒径の変動係数(C.V.)は、通液性の向上の観点から、3~15%であることが好ましく、5~15%であることがより好ましく、5~10%であることがさらに好ましい。C.V.を低減する方法としては、マイクロプロセスサーバー(株式会社日立製作所)等の乳化装置により単分散化することが挙げられる。 The coefficient of variation (CV) of the particle size of the porous polymer particles is preferably 3 to 15%, more preferably 5 to 15%, from the viewpoint of improving liquid permeability. More preferably, it is 10%. C. V. As a method for reducing the above, monodispersion by an emulsification apparatus such as a microprocess server (Hitachi Ltd.) can be mentioned.
 多孔質ポリマ粒子又は分離材の平均粒径及び粒径のC.V.(変動係数)は、以下の測定法により求めることができる。
1)粒子を、超音波分散装置を使用して水(界面活性剤等の分散剤を含む)に分散させ、1質量%の多孔質ポリマ粒子を含む分散液を調製する。
2)粒度分布計(シスメックスフロー、シスメックス株式会社製)を用いて、上記分散液中の粒子約1万個の画像により平均粒径及び粒径のC.V.(変動係数)を測定する。
C. of average particle size and particle size of porous polymer particles or separator V. (Coefficient of variation) can be determined by the following measurement method.
1) Disperse the particles in water (including a dispersant such as a surfactant) using an ultrasonic dispersion device to prepare a dispersion liquid containing 1% by mass of porous polymer particles.
2) Using a particle size distribution meter (Sysmex Flow, manufactured by Sysmex Corporation), an average particle size and particle size of C.I. V. (Coefficient of variation) is measured.
 多孔質ポリマ粒子の細孔容積(空隙率)は、多孔質ポリマ粒子の全体積(細孔容積を含む)基準で30体積%以上70体積%以下であることが好ましく、40体積%以上70体積%以下であることがより好ましい。多孔質ポリマ粒子は、細孔径分布におけるモード径(細孔径分布の最頻値、最大頻度細孔径、平均細孔径)が0.05~1μmである細孔を有することが好ましい。多孔質ポリマ粒子の細孔径分布におけるモード径として、より好ましくは、0.2μm以上0.5μm未満である。細孔径分布におけるモード径が0.05μm以上であると、細孔内に物質が入りやすくなる傾向にあり、細孔径分布におけるモード径が1μm以下であると、比表面積が充分なものになる。これらは上述の多孔質化剤により調整可能である。 The pore volume (porosity) of the porous polymer particles is preferably 30% by volume or more and 70% by volume or less, and 40% by volume or more and 70% by volume based on the total volume (including the pore volume) of the porous polymer particles. % Or less is more preferable. The porous polymer particles preferably have pores having a mode diameter (mode value of pore diameter distribution, maximum frequency pore diameter, average pore diameter) of 0.05 to 1 μm in the pore diameter distribution. The mode diameter in the pore size distribution of the porous polymer particles is more preferably 0.2 μm or more and less than 0.5 μm. When the mode diameter in the pore size distribution is 0.05 μm or more, a substance tends to easily enter the pores. When the mode diameter in the pore diameter distribution is 1 μm or less, the specific surface area is sufficient. These can be adjusted by the above-mentioned porous agent.
 多孔質ポリマ粒子の比表面積は、10m/g以上であることが好ましく、30m/g以上であることがより好ましい。より高い実用性の観点から、比表面積は35m/g以上であることがより好ましく、40m/g以上であることがさらに好ましい。比表面積が10m/g以上であると、分離する物質の吸着量が大きくなる傾向にある。多孔質ポリマ粒子の比表面積の上限は特に限定されないが、例えば200m/g以下、100m/g以下とすることができる。 The specific surface area of the porous polymer particles is preferably 10 m 2 / g or more, and more preferably 30 m 2 / g or more. From the viewpoint of higher practicality, the specific surface area is more preferably 35 m 2 / g or more, and further preferably 40 m 2 / g or more. When the specific surface area is 10 m 2 / g or more, the adsorption amount of the substance to be separated tends to increase. The upper limit of the specific surface area of the porous polymer particles is not particularly limited, but can be, for example, 200 m 2 / g or less, 100 m 2 / g or less.
(被覆層)
 本実施形態の被覆層は、所定量(被覆量)の水酸基を有する高分子を含む。所定量の水酸基を有する高分子で多孔質ポリマ粒子を被覆することによりカラム圧の上昇を抑制することができるとともに、タンパク質の非特異吸着を抑制することが可能となる上、分離材のタンパク質吸着量が良好となる傾向にある。さらに、水酸基を有する高分子が架橋されていると、カラム圧の上昇をより抑制することが可能となる。
(Coating layer)
The coating layer of this embodiment contains a polymer having a predetermined amount (coating amount) of hydroxyl groups. By covering the porous polymer particles with a polymer having a predetermined amount of hydroxyl groups, the increase in column pressure can be suppressed, and nonspecific adsorption of proteins can be suppressed, and the protein adsorption of the separation material The amount tends to be good. Furthermore, when the polymer having a hydroxyl group is crosslinked, it is possible to further suppress an increase in column pressure.
 本実施形態の分離材は、被覆層による被覆量が、前記多孔質ポリマ粒子の単位比表面積当たり1~15mg/mであり、5~15mg/mであると好ましく、8~15mg/mであるとより好ましい。被覆層による被覆量を所定の範囲とすることにより、タンパク質の分離材として用いた場合の非特異吸着とタンパク質変性の抑制及び吸着量の向上が可能となる。被覆層による被覆量は、実施例に記載の方法等により測定することができる。 In the separation material of this embodiment, the coating amount by the coating layer is 1 to 15 mg / m 2 per unit specific surface area of the porous polymer particles, preferably 5 to 15 mg / m 2 , and preferably 8 to 15 mg / m 2. 2 is more preferable. By setting the coating amount by the coating layer within a predetermined range, it is possible to suppress non-specific adsorption and protein denaturation and improve the adsorption amount when used as a protein separation material. The coating amount by the coating layer can be measured by the method described in the examples.
 本実施形態の分離材は、その表面における酸素元素比率が10~50%であると好ましく、15~50%であるとより好ましく、20~50%であるとさらに好ましく、30~50%であると特に好ましい。分離材の表面における酸素元素比率を所定の範囲とすることにより、タンパク質の分離材として用いた場合の非特異吸着とタンパク質変性の抑制効果及び吸着量の向上効果がさらに向上する。分離材の表面における酸素元素比率は、実施例に記載の方法等により測定することができる。分離材の表面における酸素元素比率は、分離材の外側から被覆層に対してX線を照射するX線光電子分光によって測定される。 In the separation material of the present embodiment, the oxygen element ratio on the surface is preferably 10 to 50%, more preferably 15 to 50%, further preferably 20 to 50%, and more preferably 30 to 50%. And particularly preferred. By setting the oxygen element ratio on the surface of the separation material within a predetermined range, the effect of suppressing nonspecific adsorption and protein denaturation and the amount of adsorption when used as a protein separation material are further improved. The oxygen element ratio on the surface of the separating material can be measured by the method described in the examples. The oxygen element ratio on the surface of the separating material is measured by X-ray photoelectron spectroscopy in which the coating layer is irradiated with X-rays from the outside of the separating material.
(水酸基を有する高分子)
 水酸基を有する高分子は、1分子中に2個以上の水酸基を有することが好ましく、親水性高分子であることがより好ましい。水酸基を有する高分子としては、例えば、多糖類、ポリビニルアルコール等が挙げられる。多糖類としては、好ましくはアガロース、デキストラン、セルロース、キトサン、アルギン酸等が挙げられる。水酸基を有する高分子としては、例えば重量平均分子量1万~20万程度のものが使用できる。
(Polymer having a hydroxyl group)
The polymer having a hydroxyl group preferably has two or more hydroxyl groups in one molecule, and more preferably a hydrophilic polymer. Examples of the polymer having a hydroxyl group include polysaccharides and polyvinyl alcohol. Preferred examples of the polysaccharide include agarose, dextran, cellulose, chitosan, and alginic acid. As the polymer having a hydroxyl group, for example, a polymer having a weight average molecular weight of about 10,000 to 200,000 can be used.
 水酸基を有する高分子は、界面吸着能を向上させる観点から、疎水基により変性された変性体であることが好ましい。疎水基としては、例えば、炭素数1~6のアルキル基、炭素数6~10のアリール基等が挙げられる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられる。炭素数6~10のアリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。疎水基は、水酸基と反応する官能基(例えば、エポキシ基)及び疎水基を有する化合物(例えば、グリシジルフェニルエーテル)を、水酸基を有する高分子と従来公知の方法で反応させることにより、導入することができる。 The polymer having a hydroxyl group is preferably a modified product modified with a hydrophobic group from the viewpoint of improving the interfacial adsorption ability. Examples of the hydrophobic group include an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, and a propyl group. Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group. A hydrophobic group is introduced by reacting a functional group that reacts with a hydroxyl group (for example, an epoxy group) and a compound having a hydrophobic group (for example, glycidyl phenyl ether) with a polymer having a hydroxyl group by a conventionally known method. Can do.
(被覆層の形成方法)
 水酸基を有する高分子を含む被覆層は、例えば、以下に示す方法により形成することができる。
 まず、水酸基を有する高分子の溶液を多孔質ポリマ粒子表面に吸着させる。水酸基を有する高分子の溶液の溶媒としては、水酸基を有する高分子を溶解することのできるものであれば、特に限定されないが、水が最も一般的である。溶媒に溶解させる高分子の濃度は、5~20(mg/mL)が好ましい。
 この溶液を、多孔質ポリマ粒子に含浸させる。含浸方法は、水酸基を有する高分子の溶液に多孔質ポリマ粒子を加えて一定時間放置する。含浸時間は多孔質体の表面状態によっても変わるが、通常一昼夜含浸すれば高分子濃度が多孔質体の内部で外部濃度と平衡状態となる。その後、水、アルコール等の溶媒で洗浄し、未吸着分の水酸基を有する高分子を除去する。
(Formation method of coating layer)
The coating layer containing a polymer having a hydroxyl group can be formed by, for example, the following method.
First, a polymer solution having a hydroxyl group is adsorbed on the surface of the porous polymer particles. The solvent for the polymer solution having a hydroxyl group is not particularly limited as long as it can dissolve the polymer having a hydroxyl group, but water is the most common. The concentration of the polymer dissolved in the solvent is preferably 5 to 20 (mg / mL).
This solution is impregnated into porous polymer particles. In the impregnation method, porous polymer particles are added to a polymer solution having a hydroxyl group and left for a predetermined time. Although the impregnation time varies depending on the surface state of the porous body, the polymer concentration is in an equilibrium state with the external concentration inside the porous body if it is usually impregnated day and night. Then, it wash | cleans with solvents, such as water and alcohol, and the polymer | macromolecule which has the hydroxyl group which is not adsorbed is removed.
(架橋処理)
 次いで、架橋剤を加えて多孔質ポリマ粒子表面に吸着された水酸基を有する高分子を架橋反応させて、架橋体を形成する。すなわち、分離材の水酸基を有する高分子は架橋されていてもよい。このとき、架橋体は、水酸基を有する3次元架橋網目構造を有する。
(Crosslinking treatment)
Next, a crosslinking agent is added to cause the polymer having a hydroxyl group adsorbed on the surface of the porous polymer particles to undergo a crosslinking reaction to form a crosslinked body. That is, the polymer having a hydroxyl group of the separating material may be cross-linked. At this time, the crosslinked body has a three-dimensional crosslinked network structure having a hydroxyl group.
 架橋剤としては、例えばエピクロルヒドリン等のエピハロヒドリン、グルタルアルデヒド等のジアルデヒド化合物、メチレンジイソシアネート等のジイソシアネート化合物、エチレングリコールジグリシジルエーテル等のグリシジル化合物などのような、水酸基に活性な官能基を2個以上有する化合物が挙げられる。また、水酸基を有する高分子としてキトサンのようなアミノ基を有する化合物を使用する場合には、ジクロロオクタンのようなジハライドも架橋剤として使用できる。 As a crosslinking agent, for example, an epihalohydrin such as epichlorohydrin, a dialdehyde compound such as glutaraldehyde, a diisocyanate compound such as methylene diisocyanate, a glycidyl compound such as ethylene glycol diglycidyl ether, and two or more functional groups active on a hydroxyl group. The compound which has is mentioned. When a compound having an amino group such as chitosan is used as the polymer having a hydroxyl group, a dihalide such as dichlorooctane can also be used as a crosslinking agent.
 この架橋反応には通常、触媒が用いられる。該触媒は架橋剤の種類に合わせて適宜従来公知のものを用いることができるが、例えば、架橋剤がエピクロルヒドリン等の場合には水酸化ナトリウム等のアルカリが有効であり、ジアルデヒド化合物の場合には塩酸等の鉱酸が有効である。 A catalyst is usually used for this crosslinking reaction. As the catalyst, a conventionally known catalyst can be appropriately used according to the type of the crosslinking agent. For example, when the crosslinking agent is epichlorohydrin or the like, an alkali such as sodium hydroxide is effective, and in the case of a dialdehyde compound. Mineral acids such as hydrochloric acid are effective.
 架橋剤による架橋反応は、通常、分離材を適当な媒体中に分散、懸濁させた系に架橋剤を添加することによって行われる。架橋剤の添加量は、水酸基を有する高分子として多糖類を使用した場合、単糖類の1単位を1モルとすると、それに対して例えば0.1~100モル倍の範囲内で、分離材の性能に応じて選定することができる。一般に、架橋剤の添加量を少なくすると、被覆層が多孔質ポリマ粒子から剥離しやすくなる傾向にある。また、架橋剤の添加量が過剰で、かつ、水酸基を有する高分子との反応率が高い場合、原料の水酸基を有する高分子の特性が損なわれる傾向にある。 The crosslinking reaction with the crosslinking agent is usually performed by adding the crosslinking agent to a system in which the separating material is dispersed and suspended in an appropriate medium. When the polysaccharide is used as the polymer having a hydroxyl group, the addition amount of the crosslinking agent is, for example, within a range of 0.1 to 100 moles per unit of one unit of monosaccharide. It can be selected according to performance. Generally, when the addition amount of the crosslinking agent is reduced, the coating layer tends to be easily peeled off from the porous polymer particles. Moreover, when the addition amount of a crosslinking agent is excessive and the reaction rate with the polymer which has a hydroxyl group is high, the characteristic of the polymer which has a hydroxyl group of a raw material tends to be impaired.
 触媒の使用量としては、架橋剤の種類により異なるが、通常、水酸基を有する高分子として多糖類を使用する場合に、多糖類を形成する単糖類の1単位を1モルとすると、これに対して好ましくは0.01~10モル倍の範囲、さらに好ましくは0.1~5モル倍で使用される。 The amount of the catalyst used varies depending on the type of the crosslinking agent. Usually, when a polysaccharide is used as the polymer having a hydroxyl group, if one unit of the monosaccharide forming the polysaccharide is 1 mole, It is preferably used in the range of 0.01 to 10 mole times, more preferably 0.1 to 5 mole times.
 例えば、該架橋反応条件を温度条件とした場合、反応系の温度を上げ、その温度が反応温度に達すれば架橋反応が生起する。 For example, when the cross-linking reaction condition is a temperature condition, the temperature of the reaction system is raised, and the cross-linking reaction occurs when the temperature reaches the reaction temperature.
 水酸基を有する高分子の溶液等を含浸させた多孔質ポリマ粒子を分散、懸濁させる媒体としては含浸させた高分子溶液から高分子、架橋剤等を抽出してしまうことなく、かつ、架橋反応に不活性なものである必要がある。その具体例としては、水、アルコール、トルエン、ジクロルベンゼン、ニトロメタン等が挙げられる。 As a medium for dispersing and suspending porous polymer particles impregnated with a polymer solution having a hydroxyl group, the polymer or crosslinking agent is not extracted from the impregnated polymer solution, and a crosslinking reaction is performed. Must be inert. Specific examples thereof include water, alcohol, toluene, dichlorobenzene, nitromethane and the like.
 架橋反応は、通常、5~90℃の範囲の温度で、1~10時間かけて行う。好ましくは、30~90℃の範囲の温度である。 The crosslinking reaction is usually performed at a temperature in the range of 5 to 90 ° C. for 1 to 10 hours. The temperature is preferably in the range of 30 to 90 ° C.
 架橋反応終了後、生成した粒子を濾別し、次いで水、メタノール、エタノール等の親水性有機溶媒で洗浄し、未反応の高分子、懸濁用媒体等を除去すれば、多孔質ポリマ粒子の表面の少なくとも一部が、水酸基を有する高分子を含む被覆層により被覆された分離材が得られる。 After completion of the crosslinking reaction, the produced particles are filtered, washed with a hydrophilic organic solvent such as water, methanol, ethanol, etc. to remove unreacted polymer, suspending medium, etc. A separation material in which at least a part of the surface is coated with a coating layer containing a polymer having a hydroxyl group is obtained.
(イオン交換基の導入)
 被覆層を備える分離材は、イオン交換基、リガンド(プロテインA)等を表面上の水酸基等を介して導入することによりイオン交換精製、アフィニティ精製等に使用することができる。イオン交換基の導入方法として、例えば、ハロゲン化アルキル化合物を用いる方法が挙げられる。
(Introduction of ion exchange groups)
The separation material having a coating layer can be used for ion exchange purification, affinity purification, etc. by introducing ion exchange groups, ligands (protein A), etc. via hydroxyl groups on the surface. Examples of the method for introducing an ion exchange group include a method using an alkyl halide compound.
 ハロゲン化アルキル化合物としては、モノハロゲノ酢酸、モノハロゲノプロピオン酸等のモノハロゲノカルボン酸及びそのナトリウム塩、ジエチルアミノエチルクロライド等のハロゲン化アルキル基を少なくとも1つ有する1級、2級又は3級アミン、ハロゲン化アルキル基を有する4級アンモニウムの塩酸塩などが挙げられる。これらのハロゲン化アルキル化合物は、臭化物又は塩化物であることが好ましい。ハロゲン化アルキル化合物の使用量としては、イオン交換基を付与する分離材の全質量に対して0.2質量%以上であることが好ましい。 Examples of the halogenated alkyl compound include monohalogenocarboxylic acids such as monohalogenoacetic acid and monohalogenopropionic acid and sodium salts thereof, primary, secondary or tertiary amines having at least one halogenated alkyl group such as diethylaminoethyl chloride, halogen And quaternary ammonium hydrochloride having an alkyl group. These halogenated alkyl compounds are preferably bromides or chlorides. The amount of the halogenated alkyl compound used is preferably 0.2% by mass or more based on the total mass of the separating material imparting ion exchange groups.
 イオン交換基の導入には、反応を促進させるために、有機溶媒を用いることが有効である。有機溶媒としては、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、イソブタノール、1-ペンタノール、イソペンタノール等のアルコール類が挙げられる。 For the introduction of ion exchange groups, it is effective to use an organic solvent in order to promote the reaction. Examples of the organic solvent include alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol, isobutanol, 1-pentanol, and isopentanol.
 通常、イオン交換基の導入は、分離材表面の水酸基に行われるので、湿潤状態の粒子を、ろ過等により水切りした後、所定濃度のアルカリ性水溶液に浸漬し、一定時間放置した後、水-有機溶媒混合系で、上記ハロゲン化アルキル化合物を添加して反応させる。この反応は温度40~90℃で、0.5~12時間行うことが好ましい。上記の反応で使用されるハロゲン化アルキル化合物の種類により、付与されるイオン交換基が決定される。 In general, since the ion exchange group is introduced into the hydroxyl group on the surface of the separation material, the wet particles are drained by filtration or the like, immersed in an alkaline aqueous solution of a predetermined concentration, left for a certain time, and then water-organic. The halogenated alkyl compound is added and reacted in a solvent mixture system. This reaction is preferably carried out at a temperature of 40 to 90 ° C. for 0.5 to 12 hours. The ion exchange group to be provided is determined depending on the kind of the halogenated alkyl compound used in the above reaction.
 イオン交換基として、弱塩基性基であるアミノ基を導入する方法としては、上記ハロゲン化アルキル化合物のうち、水素原子の一部が塩素原子に置換されたアルキル基を少なくとも1つ有する、モノ-、ジ-又はトリ-アルキルアミン、モノ-、ジ-又はトリ-アルカノールアミン、モノ-アルキル-モノ-アルカノールアミン、ジ-アルキル-モノ-アルカノールアミン、モノ-アルキル-ジ-アルカノールアミン等を反応させる方法が挙げられる。これらのハロゲン化アルキル化合物の使用量としては、分離材の全質量に対して0.2質量%以上であることが好ましい。反応条件は、40~90℃で、0.5~12時間であることが好ましい。 As a method for introducing an amino group which is a weakly basic group as an ion exchange group, among the above halogenated alkyl compounds, a mono- having at least one alkyl group in which a part of hydrogen atoms is substituted with a chlorine atom. , Di- or tri-alkylamine, mono-, di- or tri-alkanolamine, mono-alkyl-mono-alkanolamine, di-alkyl-mono-alkanolamine, mono-alkyl-di-alkanolamine, etc. A method is mentioned. The amount of these halogenated alkyl compounds used is preferably 0.2% by mass or more based on the total mass of the separating material. The reaction conditions are preferably 40 to 90 ° C. and 0.5 to 12 hours.
 イオン交換基として、強塩基性基の4級アンモニウム基を導入する方法としては、まず、3級アミノ基を導入し、該3級アミノ基にエピクロルヒドリン等のハロゲン化アルキル化合物を反応させ、4級アンモニウム基に変換させる方法が挙げられる。また、4級アンモニウムの塩酸塩等を分離材に反応させてもよい。 As a method for introducing a strongly basic quaternary ammonium group as an ion exchange group, first, a tertiary amino group is introduced, and then the tertiary amino group is reacted with a halogenated alkyl compound such as epichlorohydrin. The method of converting into an ammonium group is mentioned. Further, quaternary ammonium hydrochloride or the like may be reacted with the separation material.
 イオン交換基として、弱酸性基であるカルボキシ基を導入する方法としては、上記ハロゲン化アルキル化合物として、モノハロゲノ酢酸、モノハロゲノプロピオン酸等のモノハロゲノカルボン酸又はそのナトリウム塩を反応させる方法が挙げられる。これらハロゲン化アルキル化合物の使用量は、イオン交換基を導入する分離材の全質量に対して0.2質量%以上であることが好ましい。 Examples of the method for introducing a carboxy group that is a weakly acidic group as an ion exchange group include a method in which a monohalogenocarboxylic acid such as monohalogenoacetic acid or monohalogenopropionic acid or a sodium salt thereof is reacted as the halogenated alkyl compound. . The amount of the halogenated alkyl compound used is preferably 0.2% by mass or more based on the total mass of the separating material into which the ion exchange group is introduced.
 イオン交換基として、強酸性基であるスルホン酸基の導入方法としては、分離材に対してエピクロロヒドリン等のグリシジル化合物を反応させ、亜硫酸ナトリウム、重亜硫酸ナトリウム等の亜硫酸塩又は重亜硫酸塩の飽和水溶液に分離材を添加する方法が挙げられる。反応条件は、30~90℃で1~10時間であることが好ましい。 As a method for introducing a sulfonic acid group which is a strongly acidic group as an ion exchange group, a glycidyl compound such as epichlorohydrin is reacted with a separating material, and a sulfite or a bisulfite such as sodium sulfite or sodium bisulfite. And a method of adding a separating material to the saturated aqueous solution. The reaction conditions are preferably 30 to 90 ° C. and 1 to 10 hours.
 一方、イオン交換基の導入方法として、アルカリ性雰囲気下で、分離材に1,3-プロパンスルトンを反応させる方法も挙げられる。1,3-プロパンスルトンは、分離材の全質量に対して0.4質量%以上使用することが好ましい。反応条件は、0~90℃で0.5~12時間であることが好ましい。 On the other hand, examples of the method for introducing ion exchange groups include a method in which 1,3-propane sultone is reacted with a separation material in an alkaline atmosphere. 1,3-propane sultone is preferably used in an amount of 0.4% by mass or more based on the total mass of the separating material. The reaction conditions are preferably 0 to 90 ° C. and 0.5 to 12 hours.
 本実施形態の分離材の吸湿度は、次の方法で測定する。乾燥分離材1gを恒温恒湿度試験槽(温度60℃、湿度90%)に18時間放置した後、再度分離材の質量を測定することにより吸湿度を以下の式より算出する。
 (吸湿後分離材質量-1)g/1g×100=吸湿度(%)
The moisture absorption of the separation material of this embodiment is measured by the following method. After 1 g of the dried separation material is left in a constant temperature and humidity test tank (temperature 60 ° C., humidity 90%) for 18 hours, the mass of the separation material is measured again to calculate the moisture absorption from the following equation.
(Separation material mass after moisture absorption -1) g / 1g x 100 = moisture absorption (%)
 本実施形態の分離材の吸湿度は1~30質量%であることが好ましく、1~20質量%であることがより好ましく、1~10質量%であることがさらに好ましい。分離材の吸湿度が30質量%以下であると、被覆層の厚みによる分離材の通液性の低下を抑制することができる。 The moisture absorption of the separation material of the present embodiment is preferably 1 to 30% by mass, more preferably 1 to 20% by mass, and further preferably 1 to 10% by mass. When the moisture absorption of the separating material is 30% by mass or less, it is possible to suppress a decrease in liquid permeability of the separating material due to the thickness of the coating layer.
 本実施形態の分離材又は多孔質ポリマ粒子の平均細孔径、細孔径分布におけるモード径、比表面積及び空隙率は、水銀圧入測定装置(オートポア:株式会社島津製作所製)にて測定した値であり、以下のようにして測定する。試料0.05gを、標準5mL粉体用セル(ステム容積0.4mL)に加え、初期圧21kPa(約3psia、細孔直径約60μm相当)の条件で測定する。水銀パラメータは、装置デフォルトの水銀接触角130 degrees、水銀表面張力485dynes/cmに設定する。また、細孔径0.1~3μmの範囲に限定してそれぞれの値を算出する。 The average pore diameter, mode diameter, specific surface area and porosity in the pore diameter distribution of the separating material or porous polymer particles of the present embodiment are values measured with a mercury intrusion measuring apparatus (Autopore: manufactured by Shimadzu Corporation). Measured as follows. 0.05 g of a sample is added to a standard 5 mL powder cell (stem volume: 0.4 mL) and measured under conditions of an initial pressure of 21 kPa (approximately 3 psia, corresponding to a pore diameter of approximately 60 μm). Mercury parameters are set to a device default mercury contact angle of 130 degrees and a mercury surface tension of 485 dynes / cm. Each value is calculated by limiting the pore diameter to a range of 0.1 to 3 μm.
 本実施形態の分離材は、タンパク質を静電的相互作用による分離、アフィニティ精製に用いるのに好適である。例えば、タンパク質を含む混合溶液の中に本実施形態の分離材を添加し、静電的相互作用によりタンパク質だけを分離材に吸着させた後、該分離材を溶液からろ別し、塩濃度の高い水溶液中に添加すれば、分離材に吸着しているタンパク質を容易に脱離、回収できる。また、本実施形態の分離材は、カラムクロマトグラフィーにおいて、使用することも可能である。図1に分離用カラムの一実施形態を示す。分離用カラム10は、カラム1と、カラム1に充填された分離材2とを備える。 The separation material of this embodiment is suitable for use in separation of proteins by electrostatic interaction and affinity purification. For example, after adding the separation material of the present embodiment to a mixed solution containing protein, adsorbing only the protein to the separation material by electrostatic interaction, the separation material is filtered from the solution, and the salt concentration If added to a high aqueous solution, the protein adsorbed on the separation material can be easily desorbed and recovered. Moreover, the separation material of this embodiment can also be used in column chromatography. FIG. 1 shows an embodiment of a separation column. The separation column 10 includes a column 1 and a separation material 2 packed in the column 1.
 本実施形態の分離材を用いて分離できる生体高分子としては、水溶性物質が好ましい。具体的には、血清アルブミン、免疫グロブリン等の血液タンパク質などのタンパク質、生体中に存在する酵素、バイオテクノロジーにより生産されるタンパク質生理活性物質、DNA、生理活性をするペプチド等の生体高分子などであり、好ましくは重量平均分子量が200万以下、より好ましくは50万以下である。また、公知の方法に従い、タンパク質の等電点、イオン化状態等によって、分離材の性質、条件等を選ぶ必要がある。公知の方法としては、例えば、特開昭60-169427号公報等に記載の方法が挙げられる。 As the biopolymer that can be separated using the separation material of the present embodiment, a water-soluble substance is preferable. Specific examples include proteins such as blood proteins such as serum albumin and immunoglobulin, enzymes present in the living body, protein bioactive substances produced by biotechnology, DNA, biopolymers such as bioactive peptides, etc. Yes, preferably the weight average molecular weight is 2 million or less, more preferably 500,000 or less. In addition, according to a known method, it is necessary to select properties, conditions, etc. of the separation material depending on the isoelectric point, ionization state, etc. of the protein. Examples of known methods include the methods described in JP-A-60-169427.
 本実施形態の分離材は、多孔質ポリマ粒子上の被覆層を架橋処理後、分離材の表面にイオン交換基、プロテインA等を導入することにより、タンパク質等の生体高分子の分離において、天然高分子からなる粒子又は合成ポリマからなる粒子のそれぞれの利点を有する。特に本実施形態の分離材における多孔質ポリマ粒子は、上述の方法で得られるものであるため、耐久性及び耐アルカリ性を有する。また、本実施形態の分離材は、タンパク質の非特異吸着を低減し、タンパク質の吸脱着が起こりやすい傾向にある。さらに、本実施形態の分離材は、同一流速下でのタンパク質等の吸着量(動的吸着量)が大きい傾向にある。 In the separation material of the present embodiment, after the coating layer on the porous polymer particles is cross-linked, an ion exchange group, protein A, etc. are introduced into the surface of the separation material, thereby separating natural macromolecules such as proteins. Each has the advantage of particles made of a polymer or particles made of a synthetic polymer. In particular, since the porous polymer particles in the separation material of the present embodiment are obtained by the above-described method, they have durability and alkali resistance. In addition, the separation material of the present embodiment tends to reduce non-specific adsorption of proteins and easily cause protein adsorption / desorption. Furthermore, the separation material of the present embodiment tends to have a large adsorption amount (dynamic adsorption amount) of protein or the like under the same flow rate.
 本明細書における通液速度とは、φ7.8×300mmのステンレスカラムに本実施形態の分離材を充填し、液を通した際の通液速度を表す。本実施形態の分離材は、カラムに充填した場合、カラム圧0.3MPaのときに通液速度が800cm/h以上であることが好ましい。カラムクロマトグラフィーでタンパク質の分離を行う場合、タンパク質溶液等の通液速度としては、一般に400cm/h以下の範囲であるが、本実施形態の分離材を使用した場合は、通常のタンパク質分離用の分離材よりも速い通液速度800cm/h以上で使用することができる。 In the present specification, the liquid flow rate represents the liquid flow rate when the separation material of this embodiment is filled in a stainless steel column of φ7.8 × 300 mm and the liquid is passed. When the separation material of this embodiment is packed in a column, it is preferable that the liquid passing speed is 800 cm / h or more when the column pressure is 0.3 MPa. When separating proteins by column chromatography, the flow rate of protein solution or the like is generally in the range of 400 cm / h or less. However, when the separation material of the present embodiment is used, the separation rate for normal protein separation is as follows. It can be used at a liquid passing speed of 800 cm / h or more faster than the separating material.
 本実施形態の分離材の平均粒径は、10~300μmであることが好ましい。分取用又は工業用のクロマトグラフィーでの使用には、カラム内圧の極端な増加を避けるために、10~100μmであることが好ましい。 The average particle size of the separation material of this embodiment is preferably 10 to 300 μm. For use in preparative or industrial chromatography, it is preferably 10 to 100 μm in order to avoid an extreme increase in column internal pressure.
 本実施形態の分離材は、カラムクロマトグラフィーでカラム充填材として使用した場合、使用する溶出液の性質に依らず、カラム内での体積変化がほとんどないため、操作性に優れる。 When the separation material of this embodiment is used as a column packing material in column chromatography, it has excellent operability because there is almost no volume change in the column regardless of the properties of the eluate used.
 本実施形態の分離材の5%圧縮変形弾性率は、以下のようにして算出することができる。
 微小圧縮試験機(Fisher社製)を用いて、室温(25℃)条件にて荷重負荷速度1mN/秒で、四角柱の平滑な端面(50μm×50μm)により粒子を50mNまで圧縮したときの荷重及び圧縮変位を測定する。得られた測定値から、粒子が5%圧縮変形したときの圧縮弾性率(5%K値)を下記式により求めることができる。また、上記測定中の変位量が最も大きく変化する点の荷重を破壊強度(mN)とする。
5%K値(MPa)=(3/21/2)・F・S-3/2・R-1/2
F:架橋ポリマ粒子が40%圧縮変形したときの荷重(mN)
S:架橋ポリマ粒子が40%圧縮変形したときの圧縮変位(mm)
R:架橋ポリマ粒子の半径(mm)
The 5% compressive deformation elastic modulus of the separating material of the present embodiment can be calculated as follows.
Using a micro compression tester (Fisher), the load when particles are compressed to 50 mN with a smooth end face (50 μm × 50 μm) of a quadrangular prism at room temperature (25 ° C.) at a load rate of 1 mN / sec. And measure the compression displacement. From the measured values obtained, the compression modulus (5% K value) when the particles are compressively deformed by 5% can be obtained by the following formula. Further, the load at the point at which the displacement during the measurement changes most greatly is defined as the breaking strength (mN).
5% K value (MPa) = (3/2 1/2 ) · F · S −3 / 2 · R −1/2
F: Load (mN) when the crosslinked polymer particles are 40% compressively deformed
S: Compression displacement (mm) when the crosslinked polymer particles are 40% compressed and deformed
R: radius of cross-linked polymer particles (mm)
 分離材を5%圧縮変形したときの圧縮弾性率(5%K値)は、100~1000MPaであると好ましく、200~1000MPaであるとより好ましく、250~1000MPaであるとさらに好ましい。 The compression elastic modulus (5% K value) when the separating material is 5% compressively deformed is preferably 100 to 1000 MPa, more preferably 200 to 1000 MPa, and further preferably 250 to 1000 MPa.
 分離材の細孔容積(空隙率)は、分離材の全体積(細孔容積を含む)基準で30体積%以上70体積%以下であることが好ましく、40体積%以上70体積%以下であることがより好ましい。分離材は、平均細孔径が0.05~1μmである細孔を有することが好ましい。平均細孔径は、好ましくは、0.2~0.5μmである。細孔径が0.05μm以上であると、細孔内に物質が入りやすくなる傾向にあり、細孔径が1μm以下であると、比表面積が充分なものになる。 The pore volume (porosity) of the separation material is preferably 30% by volume or more and 70% by volume or less, based on the total volume (including the pore volume) of the separation material, and is 40% by volume or more and 70% by volume or less. It is more preferable. The separating material preferably has pores having an average pore diameter of 0.05 to 1 μm. The average pore diameter is preferably 0.2 to 0.5 μm. If the pore diameter is 0.05 μm or more, a substance tends to easily enter the pores. If the pore diameter is 1 μm or less, the specific surface area is sufficient.
 分離材の比表面積は、10m/g以上であることが好ましく、30m/g以上であることがより好ましい。より高い実用性の観点から、比表面積は35m/g以上であることがより好ましく、40m/g以上であることがさらに好ましい。比表面積が10m/g以上であると、分離する物質の吸着量が大きくなる傾向にある。 The specific surface area of the separating material is preferably 10 m 2 / g or more, and more preferably 30 m 2 / g or more. From the viewpoint of higher practicality, the specific surface area is more preferably 35 m 2 / g or more, and further preferably 40 m 2 / g or more. When the specific surface area is 10 m 2 / g or more, the adsorption amount of the substance to be separated tends to increase.
 分離材の5%変形弾性率、細孔径分布におけるモード径、比表面積等は、多孔質ポリマ粒子の原料、多孔質化剤、水酸基を有する高分子等を適宜選択することによって、調整することができる。 The 5% deformation modulus, mode diameter in the pore size distribution, specific surface area, etc. of the separating material can be adjusted by appropriately selecting the raw material of the porous polymer particles, the porosifying agent, the polymer having a hydroxyl group, and the like. it can.
 なお、本実施形態では、イオン交換基を導入する形態の分離材について説明したが、イオン交換基を導入しなくても分離材として用いることができる。このような分離材は、例えば、ゲルろ過クロマトグラフィーに利用することができる。すなわち、本実施形態の分離用カラムは、カラムと該カラムに充填された本実施形態の分離材とを備えるものである。 In addition, although this embodiment demonstrated the separation material of the form which introduce | transduces an ion exchange group, even if it does not introduce | transduce an ion exchange group, it can use as a separation material. Such a separating material can be used for, for example, gel filtration chromatography. That is, the separation column of this embodiment includes a column and the separation material of this embodiment packed in the column.
 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
(実施例1)
<多孔質ポリマ粒子の合成>
 500mLの三口フラスコに、純度96%のジビニルベンゼン(新日鉄住金化学株式会社製、商品名:DVB960)を16g、イソアミルアルコールを19.5g、ジエチルベンゼンを4.5g、及び過酸化ベンゾイルを0.64g加え、第三リン酸カルシウム(TCP)(0.5質量%)水溶液を調製した。この水溶液をマイクロプロセスサーバーを使用して乳化後、得られた乳化液をフラスコに移し、80℃のウォーターバスで加熱しながら、攪拌機を用いて約8時間攪拌した。得られた粒子をろ過後、アセトンで洗浄を行った。最後に酸性水溶液でTCPを溶解させ、多孔質ポリマ粒子1を得た。得られた粒子の比表面積、及び細孔径分布におけるモード径を水銀圧入法で、平均粒径をフロー型粒径測定装置で測定した。その結果を表1に示す。
(Example 1)
<Synthesis of porous polymer particles>
To a 500 mL three-necked flask, add 16 g of 96% pure divinylbenzene (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: DVB960), 19.5 g of isoamyl alcohol, 4.5 g of diethylbenzene, and 0.64 g of benzoyl peroxide. An aqueous solution of tricalcium phosphate (TCP) (0.5% by mass) was prepared. This aqueous solution was emulsified using a microprocess server, and the resulting emulsion was transferred to a flask and stirred for about 8 hours using a stirrer while heating in a water bath at 80 ° C. The obtained particles were filtered and washed with acetone. Finally, TCP was dissolved with an acidic aqueous solution to obtain porous polymer particles 1. The specific surface area of the obtained particles and the mode diameter in the pore size distribution were measured by a mercury intrusion method, and the average particle size was measured by a flow type particle size measuring device. The results are shown in Table 1.
<被覆層の形成及び架橋>
 アガロース水溶液(2質量%)100mLに水酸化ナトリウム4g、グリシジルフェニルエーテル0.14gを投入し、70℃で12時間反応させ、アガロースにフェニル基を導入した。得られた変性アガロースをイソプロピルアルコールで再沈殿させ、洗浄した。
 200mg/mLの変性アガロース水溶液に多孔質ポリマ粒子1を、水溶液70mLに対して多孔質ポリマ粒子1を1gの割合で投入し、50℃で24時間攪拌させ、多孔質ポリマ粒子1に変性アガロースを吸着させた。吸着後、ろ過を行い、熱水で8時間洗浄した。
その結果を表1に示す。
 変性アガロースは次のように架橋した。エチレングリコールジグリシジルエーテル及び水酸化ナトリウムの濃度がそれぞれ0.64M、0.4Mである水溶液に、水溶液35mLに対して変性アガロースが吸着した多孔質ポリマ粒子1を1gの割合で投入し、24時間室温にて攪拌した。その後、熱した2質量%のドデシル硫酸ナトリウム水溶液で洗浄後、純水で洗浄し、乾燥させることで分離材を得た。
<Formation and cross-linking of coating layer>
4 g of sodium hydroxide and 0.14 g of glycidyl phenyl ether were added to 100 mL of an agarose aqueous solution (2% by mass) and reacted at 70 ° C. for 12 hours to introduce a phenyl group into agarose. The obtained modified agarose was reprecipitated with isopropyl alcohol and washed.
Porous polymer particles 1 are added to a 200 mg / mL modified agarose aqueous solution, and 1 g of porous polymer particles 1 are added to 70 mL of the aqueous solution, and the mixture is stirred at 50 ° C. for 24 hours. Adsorbed. After adsorption, it was filtered and washed with hot water for 8 hours.
The results are shown in Table 1.
The modified agarose was crosslinked as follows. 1 g of porous polymer particles 1 on which modified agarose is adsorbed with respect to 35 mL of the aqueous solution are added to an aqueous solution having ethylene glycol diglycidyl ether and sodium hydroxide concentrations of 0.64 M and 0.4 M, respectively, for 24 hours. Stir at room temperature. Then, after washing | cleaning with the heated 2 mass% sodium dodecyl sulfate aqueous solution, it wash | cleaned with the pure water and dried, and the separating material was obtained.
(変性アガロースによる多孔質ポリマ粒子への被覆量測定)
 多孔質ポリマ粒子へのアガロースの吸着量の測定について、熱分解による重量減少による分析を行った。多孔質ポリマ粒子、変性アガロース、及び上記被覆層の形成及び架橋で得られた粒子(分離材)それぞれ10mgを30℃から900℃まで加温した。多孔質ポリマ粒子は500℃、変性アガロースは300℃で熱分解することが分かったので、この2つのデータから変性アガロース被覆多孔質ポリマ粒子の変性アガロース被覆量を概算した。
 具体的には、熱重量分析により、変性アガロース及び多孔質ポリマ粒子の重量減少を測定し、多孔質ポリマ粒子1g当たりの変性アガロース量を算出した。ここで算出した多孔質ポリマ粒子1g当たりの変性アガロース量を比表面積で割ることによって、単位比表面積当たりの被覆量を算出した(下記式(1)参照)。その結果を表1に示す。
単位比表面積あたりの被覆量[mg/m]=(水酸基を有する高分子の重量減少量[%])/(多孔質ポリマ粒子の重量減少量[%])/(比表面積[m/g])×1000 …式(1)
(Measurement of coating amount on porous polymer particles with modified agarose)
The amount of agarose adsorbed on the porous polymer particles was measured by weight reduction due to thermal decomposition. 10 mg each of porous polymer particles, modified agarose, and particles (separation material) obtained by the formation and crosslinking of the coating layer were heated from 30 ° C to 900 ° C. Since it was found that the porous polymer particles were thermally decomposed at 500 ° C. and the modified agarose was thermally decomposed at 300 ° C., the modified agarose coating amount of the modified agarose-coated porous polymer particles was estimated from these two data.
Specifically, the weight loss of the modified agarose and the porous polymer particles was measured by thermogravimetric analysis, and the amount of the modified agarose per 1 g of the porous polymer particles was calculated. The coating amount per unit specific surface area was calculated by dividing the amount of modified agarose per 1 g of the porous polymer particles calculated here by the specific surface area (see the following formula (1)). The results are shown in Table 1.
Coating amount per unit specific surface area [mg / m 2 ] = (weight reduction amount of polymer having hydroxyl group [%]) / (weight reduction amount of porous polymer particle [%]) / (specific surface area [m 2 / g]) × 1000 (1)
(タンパク質の非特異吸着能評価)
 まず、既知濃度のBSA(牛血清アルブミン)水溶液で検量線を作成した(0~0.4%)。上記被覆層の形成及び架橋で得られた粒子(分離材)200mgを20℃の水に12時間浸して膨潤した。その膨潤粒子と水10mLをバイヤル瓶に秤量した。100mLメスフラスコに、BSAを秤量し、リン酸食塩緩衝液(pH=7.1)で溶解し、12mg/mL及び24mg/mLのBSA水溶液を調製した。これらのBSA溶液10mLを上記の粒子溶液に添加し、25℃にて24時間ミックスロータで攪拌した。この溶液の上澄み10mLを10倍に希釈し、吸光度(280nm)を測定し、分離材へのBSA吸着量を非特異吸着量として算出した。その結果を表2に示す。
(Evaluation of nonspecific adsorption ability of protein)
First, a calibration curve was prepared with a known concentration of BSA (bovine serum albumin) aqueous solution (0 to 0.4%). 200 mg of particles (separation material) obtained by the formation and crosslinking of the coating layer were immersed in water at 20 ° C. for 12 hours to swell. The swollen particles and 10 mL of water were weighed into a vial. BSA was weighed into a 100 mL volumetric flask and dissolved in a phosphate buffer solution (pH = 7.1) to prepare 12 mg / mL and 24 mg / mL BSA aqueous solutions. 10 mL of these BSA solutions were added to the particle solution and stirred with a mix rotor at 25 ° C. for 24 hours. 10 mL of the supernatant of this solution was diluted 10 times, the absorbance (280 nm) was measured, and the amount of BSA adsorbed on the separation material was calculated as the amount of non-specific adsorption. The results are shown in Table 2.
(酸素元素比率の測定)
 上記被覆層の形成及び架橋で得られた粒子(分離材)を、乾燥機で70℃、12時間乾燥させた後、粒子表面の酸素元素比率を下記XPS(X線光電子分光)装置で測定した。その結果を表1に示す。
 また、同様の方法で粒子を乾燥させた後、乳鉢で粒子を磨り潰して、粒子内部の酸素元素比率を下記XPS装置で測定した。その結果を表1に示す。
 なお、酸素元素比率は、酸素元素に由来するピーク強度を、水素元素以外の元素のピーク強度で割り算することにより、算出した。
XPS装置:アルバック・ファイ社製 PHI 5000 VersaProbeII
X線:単色化AIkα線 (1486.6eV))
分析面積:200μm
分析深度:50Å
(Measurement of oxygen element ratio)
The particles (separation material) obtained by the formation and crosslinking of the coating layer were dried with a dryer at 70 ° C. for 12 hours, and then the oxygen element ratio on the particle surface was measured with the following XPS (X-ray photoelectron spectroscopy) apparatus. . The results are shown in Table 1.
Moreover, after drying particle | grains by the same method, particle | grains were ground with the mortar and the oxygen element ratio inside particle | grains was measured with the following XPS apparatus. The results are shown in Table 1.
The oxygen element ratio was calculated by dividing the peak intensity derived from the oxygen element by the peak intensity of an element other than the hydrogen element.
XPS device: PHI 5000 VersaProbeII manufactured by ULVAC-PHI
X-ray: Monochromatic AIkα ray (1486.6 eV))
Analysis area: 200 μm 2
Analysis depth: 50 mm
<イオン交換基の導入>
 上記被覆層の形成及び架橋で得られた粒子(分離材)を、遠心分離により水を除去した後、5M水酸化ナトリウム水溶液20mLと5Mジエチルアミノエチル塩酸塩水溶液20mLとを混合した液に投入し、70℃で12時間攪拌した。反応終了後、ろ過、水洗し、ジエチルアミノエチル(DEAE)基をイオン交換基として有するDEAE変性分離材を得た。
<Introduction of ion exchange groups>
The particles (separation material) obtained by the formation and crosslinking of the coating layer were subjected to centrifugation to remove water, and then poured into a mixture of 5 M sodium hydroxide aqueous solution 20 mL and 5 M diethylaminoethyl hydrochloride aqueous solution 20 mL, The mixture was stirred at 70 ° C. for 12 hours. After completion of the reaction, the mixture was filtered and washed with water to obtain a DEAE-modified separation material having a diethylaminoethyl (DEAE) group as an ion exchange group.
(タンパク質結合容量と回収率評価)
 得られたDEAE変性分離材200mgを20℃の水に12時間浸して膨潤した。その膨潤分離材と水10mLをバイヤル瓶に秤量した。100mLメスフラスコに、牛血清アルブミン(BSA)を秤量し、リン酸食塩緩衝液(pH=7.1)で溶解し、1.2mg/mL及び12mg/mLのBSA水溶液を調製した。このBSA溶液10mLを、上記膨潤分離材を秤量したバイヤル瓶に添加し、25℃にて24時間ミックスロータで攪拌した。この溶液の上澄み10mLを10倍に希釈し、吸光度(280nm)を測定し、DEAE変性分離材へのBSA吸着量(結合容量)を計算した。その結果を表2に示す。
(Evaluation of protein binding capacity and recovery rate)
200 mg of the obtained DEAE-modified separating material was immersed in water at 20 ° C. for 12 hours to swell. The swelling separator and 10 mL of water were weighed into a vial. Bovine serum albumin (BSA) was weighed into a 100 mL volumetric flask and dissolved in a phosphate buffer solution (pH = 7.1) to prepare 1.2 mg / mL and 12 mg / mL BSA aqueous solutions. 10 mL of this BSA solution was added to the vial that weighed the swelling separator and stirred with a mix rotor at 25 ° C. for 24 hours. 10 mL of the supernatant of this solution was diluted 10-fold, the absorbance (280 nm) was measured, and the BSA adsorption amount (binding capacity) to the DEAE-modified separation material was calculated. The results are shown in Table 2.
 NaCl0.9gをこのバイヤル瓶に添加し、25℃にて12時間ミックスロータで攪拌した。この溶液の上澄み5mLを10倍に希釈し、吸光度(280nm)を測定し、式(2)のように分離材によるBSA回収率を計算した。その結果を表2に示す。
タンパク質回収率=(タンパク質脱着後吸光度―タンパク質脱着前吸光度)/(タンパク質吸着後吸光度―タンパク質吸着前吸光度) …式(2)
NaCl 0.9g was added to this vial and stirred at 25 ° C for 12 hours with a mix rotor. The supernatant (5 mL) of this solution was diluted 10-fold, the absorbance (280 nm) was measured, and the BSA recovery rate by the separating material was calculated as shown in Equation (2). The results are shown in Table 2.
Protein recovery rate = (absorbance after protein desorption−absorbance before protein desorption) / (absorbance after protein adsorption−absorbance before protein adsorption) (2)
(イオン交換基の定量方法)
 12時間以上水で膨潤させたDEAE変性分離材0.2~0.3gを定量し、ビーカに移し、0.1Nの水酸化ナトリウム溶液20mLを入れ、攪拌した。その後、吸引ろ過を行い、フィルタ上の粒子を、洗浄液が中性になるまで洗浄した。その後、ビーカに移し、0.1N塩酸水溶液20mLを添加し、室温で1時間攪拌した。その後、吸引ろ過を行い、フィルタ上の粒子を、洗浄液が中性になるまで洗浄した。この洗浄液を、0.1N水酸化ナトリウム水溶液で、自動電位差滴定装置を使用して、滴定を行い、イオン交換容量を測定した。その結果を表2に示す。
(Quantification method of ion exchange groups)
DEAE-modified separation material 0.2 to 0.3 g swollen with water for 12 hours or more was quantified, transferred to a beaker, and 20 mL of 0.1 N sodium hydroxide solution was added and stirred. Thereafter, suction filtration was performed, and the particles on the filter were washed until the washing solution became neutral. Then, it moved to the beaker, 20 mL of 0.1N hydrochloric acid aqueous solution was added, and it stirred at room temperature for 1 hour. Thereafter, suction filtration was performed, and the particles on the filter were washed until the washing solution became neutral. This washing solution was titrated with a 0.1N aqueous sodium hydroxide solution using an automatic potentiometric titrator, and the ion exchange capacity was measured. The results are shown in Table 2.
(カラム特性評価)
 得られたDEAE変性分離材をφ7.8×300mmのステンレスカラムに濃度30質量%のスラリー(溶媒:メタノール)として15分かけて充填した。その後、カラムに流速を変えながら水を流し、線流速とカラム圧の関係を測定し、0.3MPa時の線流速(通液速度)を測定した。その結果を表1に示す。
(Column characteristic evaluation)
The obtained DEAE-modified separation material was packed in a stainless steel column of φ7.8 × 300 mm as a slurry (solvent: methanol) having a concentration of 30% by mass over 15 minutes. Thereafter, water was allowed to flow through the column while changing the flow rate, the relationship between the linear flow rate and the column pressure was measured, and the linear flow rate (liquid flow rate) at 0.3 MPa was measured. The results are shown in Table 1.
(実施例2)
 <被覆層の形成及び架橋>において、エチレングリコールジグリシジルエーテルに代えて、エピクロロヒドリンを使用した以外は実施例1と同様にして、合成及び評価を行った。
(Example 2)
<Coating layer formation and crosslinking> Synthesis and evaluation were performed in the same manner as in Example 1 except that epichlorohydrin was used instead of ethylene glycol diglycidyl ether.
(実施例3)
 <多孔質ポリマ粒子の合成>において、イソアミルアルコール及びジエチルベンゼンの使用量を、それぞれ16g、8gに変更した以外は実施例2と同様にして、合成及び評価を行った。
(Example 3)
<Synthesis of porous polymer particles> Synthesis and evaluation were performed in the same manner as in Example 2 except that the amounts of isoamyl alcohol and diethylbenzene were changed to 16 g and 8 g, respectively.
(比較例1)
 多孔質ポリマ粒子1をそのまま用いて、実施例1と同様の評価を行った。
(Comparative Example 1)
The same evaluation as in Example 1 was performed using the porous polymer particles 1 as they were.
(比較例2)
 <被覆層の形成及び架橋>において、変性アガロース水溶液の濃度を20mg/mLに変更した以外は実施例1と同様にして、合成及び評価を行った。
(Comparative Example 2)
<Coating layer formation and cross-linking> Synthesis and evaluation were performed in the same manner as in Example 1 except that the concentration of the modified agarose aqueous solution was changed to 20 mg / mL.
(比較例3)
 市販のアガロース粒子(Capto DEAE:GEヘルスケア)を比較例3として使用し、実施例1と同様の評価を行った。
(Comparative Example 3)
Commercially available agarose particles (Capto DEAE: GE Healthcare) were used as Comparative Example 3, and the same evaluation as in Example 1 was performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から明らかであるとおり、実施例1、2及び3並びに比較例1及び2の合成ポリマ粒子を用いた場合と、比較例3のアガロース粒子を用いた場合との線流速を比較すると、合成ポリマ粒子の方が大きく、通液性が良かった。しかし、水酸基を有する高分子による被覆を行わないと、比較例1のように、大量の非特異吸着が発生し、タンパク質が変性してしまった。比較例2は、水酸基を有する高分子による被覆量を減らしたものである。この場合も比較例1と同様に、大量の非特異吸着が発生し、タンパク質が変性してしまった。実施例1は、水酸基を有する高分子による被覆量を本発明所定の範囲としたものである。これにより、非特異吸着とタンパク質変性を抑制することが可能となり、アガロース粒子を用いたものよりもタンパク質結合容量とタンパク質回収率が向上していた。さらに、実施例2は、実施例1とは架橋剤を変えたものである。実施例2では、実施例1と同様に非特異吸着とタンパク質変性が抑制され、さらにイオン交換容量が増加し、タンパク質結合容量が向上していた。そして、実施例3は、実施例2よりも粒子の単位比表面積当たりの被覆量を増加させたものである。実施例3では、実施例2と同様に非特異吸着とタンパク質変性を抑制し、さらにイオン交換容量が増加し、タンパク質結合容量とタンパク質回収率が大幅に向上していた。 As is apparent from Table 1, when the linear flow rates were compared between the case where the synthetic polymer particles of Examples 1, 2 and 3 and Comparative Examples 1 and 2 were used, and the case where the agarose particles of Comparative Example 3 were used, the synthesis The polymer particles were larger and the liquid permeability was better. However, unless coating with a polymer having a hydroxyl group was performed, a large amount of non-specific adsorption occurred as in Comparative Example 1, and the protein was denatured. The comparative example 2 reduces the coating amount by the polymer which has a hydroxyl group. In this case as well, as in Comparative Example 1, a large amount of non-specific adsorption occurred and the protein was denatured. In Example 1, the coating amount with the polymer having a hydroxyl group is set within the predetermined range of the present invention. As a result, non-specific adsorption and protein denaturation can be suppressed, and the protein binding capacity and the protein recovery rate were improved as compared with those using agarose particles. Further, Example 2 is different from Example 1 in that the crosslinking agent is changed. In Example 2, nonspecific adsorption and protein denaturation were suppressed as in Example 1, and the ion exchange capacity was further increased and the protein binding capacity was improved. And Example 3 increases the coating amount per unit specific surface area of particle | grains rather than Example 2. FIG. In Example 3, as in Example 2, non-specific adsorption and protein denaturation were suppressed, the ion exchange capacity was further increased, and the protein binding capacity and the protein recovery rate were greatly improved.
 1…カラム、2…分離材、10…分離用カラム。 1 ... column, 2 ... separation material, 10 ... column for separation.

Claims (8)

  1.  モノマ単位として、スチレン及びジビニルベンゼンの少なくとも一方を、モノマ全量基準で90質量%以上含む、多孔質ポリマ粒子と、
     該多孔質ポリマ粒子の表面の少なくとも一部を被覆する、水酸基を有する高分子を含む被覆層と、を備え、
     前記被覆層による被覆量が、前記多孔質ポリマ粒子の単位比表面積当たり1~15mg/mである分離材。
    Porous polymer particles containing at least one of styrene and divinylbenzene as a monomer unit in an amount of 90% by mass or more based on the total amount of monomers;
    A coating layer containing a polymer having a hydroxyl group, covering at least a part of the surface of the porous polymer particles,
    A separation material in which the coating amount by the coating layer is 1 to 15 mg / m 2 per unit specific surface area of the porous polymer particles.
  2.  前記分離材の表面における酸素元素比率が10~50%である、請求項1に記載の分離材。 The separation material according to claim 1, wherein the oxygen element ratio on the surface of the separation material is 10 to 50%.
  3.  前記水酸基を有する高分子が多糖類又はその変性体である、請求項1又は2に記載の分離材。 The separation material according to claim 1 or 2, wherein the polymer having a hydroxyl group is a polysaccharide or a modified product thereof.
  4.  前記多糖類がアガロース、キトサン、アルギン酸及びデキストランから選ばれる少なくとも一種である、請求項3に記載の分離材。 The separation material according to claim 3, wherein the polysaccharide is at least one selected from agarose, chitosan, alginic acid, and dextran.
  5.  前記水酸基を有する高分子が架橋されている、請求項1~4のいずれか一項に記載の分離材。 The separation material according to any one of claims 1 to 4, wherein the polymer having a hydroxyl group is crosslinked.
  6.  前記多孔質ポリマ粒子における比表面積が10m/g以上である、請求項1~5のいずれか一項に記載の分離材。 The separation material according to any one of claims 1 to 5, wherein a specific surface area of the porous polymer particles is 10 m 2 / g or more.
  7.  前記多孔質ポリマ粒子の細孔径分布におけるモード径が0.05~1μmである、請求項1~6のいずれか一項に記載の分離材。 The separation material according to any one of claims 1 to 6, wherein a mode diameter in a pore size distribution of the porous polymer particles is 0.05 to 1 µm.
  8.  カラムと、該カラムに充填された請求項1~7のいずれか一項に記載の分離材とを備える、分離用カラム。
     
    A separation column comprising a column and the separation material according to any one of claims 1 to 7 packed in the column.
PCT/JP2016/051460 2015-01-19 2016-01-19 Separation material WO2016117567A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/544,434 US10898877B2 (en) 2015-01-19 2016-01-19 Separation material
JP2016570660A JP6778381B2 (en) 2015-01-19 2016-01-19 Separator
EP16740174.4A EP3248677B1 (en) 2015-01-19 2016-01-19 Separation material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-007776 2015-01-19
JP2015007776 2015-01-19

Publications (1)

Publication Number Publication Date
WO2016117567A1 true WO2016117567A1 (en) 2016-07-28

Family

ID=56417108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051460 WO2016117567A1 (en) 2015-01-19 2016-01-19 Separation material

Country Status (4)

Country Link
US (1) US10898877B2 (en)
EP (1) EP3248677B1 (en)
JP (1) JP6778381B2 (en)
WO (1) WO2016117567A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181738A1 (en) * 2017-03-30 2018-10-04 日立化成株式会社 Separation material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112957770B (en) * 2021-03-11 2023-02-21 江苏扬农化工集团有限公司 Continuous extraction device and continuous extraction method for epichlorohydrin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236539A (en) * 1987-03-26 1988-10-03 Sumitomo Bakelite Co Ltd Immunoglobulin selective adsorbent
JP2006095516A (en) * 2004-08-31 2006-04-13 Showa Denko Kk Surface-modified filler for liquid chromatography and manufacturing method for the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966489A (en) 1970-04-06 1976-06-29 Rohm And Haas Company Method of decolorizing sugar solutions with hybrid ion exchange resins
JPS60169427A (en) 1984-02-15 1985-09-02 Mitsubishi Chem Ind Ltd Method of separation of protein
CA1315968C (en) 1987-04-24 1993-04-13 David Colin Sherrington Substrate and process for making a substrate
CA1329800C (en) 1987-12-29 1994-05-24 Hiroaki Takayanagi Composite separating agent
JP2896571B2 (en) 1988-04-01 1999-05-31 三菱化学株式会社 Composite separating agent and method for producing the same
JPH10254247A (en) 1997-03-12 1998-09-25 Hitachi Ltd Liquid developing method
JP2005510609A (en) * 2001-11-26 2005-04-21 アメルシャム・バイオサイエンシーズ・アクチボラグ Post-modification of porous support
WO2006025556A1 (en) 2004-08-31 2006-03-09 Showa Denko K.K. Surface-modified packing material for liquid chromatography and production method thereof
JP2009244067A (en) 2008-03-31 2009-10-22 Jsr Corp Porous particle for chromatography column, method of manufacturing the same, and protein a-combined particle
EP2545989A1 (en) 2011-07-13 2013-01-16 InstrAction GmbH Composite material for chromatographic applications
KR20140103893A (en) * 2011-07-13 2014-08-27 인스트랙션 게엠베하 Composite material for chromatographic applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236539A (en) * 1987-03-26 1988-10-03 Sumitomo Bakelite Co Ltd Immunoglobulin selective adsorbent
JP2006095516A (en) * 2004-08-31 2006-04-13 Showa Denko Kk Surface-modified filler for liquid chromatography and manufacturing method for the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QU JIAN-BO ET AL.: "A novel stationary phase derivatized from hydrophilic gigaporous polystyrene-based microspheres for high-speed protein chromatography", JOURNAL OF CHROMATOGRAPHY A, vol. 1216, no. 37, 2009, pages 6511 - 6516, XP026497139, ISSN: 0021-9673 *
QU JIAN-BO ET AL.: "An Effective Way To Hydrophilize Gigaporous Polystyrene Microspheres as Rapid Chromatographic Separation Media for Proteins", LANGMUIR, vol. 24, no. 23, 2008, pages 13646 - 13652, XP055465735, ISSN: 0743-7463 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181738A1 (en) * 2017-03-30 2018-10-04 日立化成株式会社 Separation material
JPWO2018181738A1 (en) * 2017-03-30 2020-02-13 日立化成株式会社 Separation material

Also Published As

Publication number Publication date
EP3248677B1 (en) 2020-11-11
US10898877B2 (en) 2021-01-26
JP6778381B2 (en) 2020-11-04
US20180264435A1 (en) 2018-09-20
EP3248677A4 (en) 2018-11-07
EP3248677A1 (en) 2017-11-29
JPWO2016117567A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2016117574A1 (en) Separation material
JP6790834B2 (en) Separator
JP6848203B2 (en) Separator and column
WO2016117567A1 (en) Separation material
JP6476887B2 (en) Separation material
JP6759679B2 (en) Separator and column
JP2017125815A (en) Separation material and column
JP6746919B2 (en) Separation material and column
JP6676975B2 (en) Separation materials and columns
JP6874276B2 (en) Separator and column
JP6939021B2 (en) Separator and column
JP6834130B2 (en) Separator and column
JP6676976B2 (en) Separation materials and columns
JP6926573B2 (en) Separator and column
JP6852259B2 (en) Separator and column
JP6778378B2 (en) Separator and column
WO2018174022A1 (en) Separation material
JP6746915B2 (en) Separation material and column
JP6834132B2 (en) Separator and column
JP6848177B2 (en) Separator and column
JP2020018989A (en) Separation material
JP2017125797A (en) Separation material and column
JP2020015809A (en) Porous polymer particle, separation material, column and method for producing porous polymer particle
JP2017194427A (en) Separation material and column
JP2017122653A (en) Separation material and column

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570660

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15544434

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016740174

Country of ref document: EP