WO2018181814A1 - Urethane curable organic binding agent for mold, casting sand composition obtained using same, and mold - Google Patents

Urethane curable organic binding agent for mold, casting sand composition obtained using same, and mold Download PDF

Info

Publication number
WO2018181814A1
WO2018181814A1 PCT/JP2018/013456 JP2018013456W WO2018181814A1 WO 2018181814 A1 WO2018181814 A1 WO 2018181814A1 JP 2018013456 W JP2018013456 W JP 2018013456W WO 2018181814 A1 WO2018181814 A1 WO 2018181814A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
mold
organic binder
urethane
mass
Prior art date
Application number
PCT/JP2018/013456
Other languages
French (fr)
Japanese (ja)
Inventor
芳也 千田
Original Assignee
旭有機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017068334A external-priority patent/JP6887286B2/en
Priority claimed from JP2017068335A external-priority patent/JP6887287B2/en
Application filed by 旭有機材株式会社 filed Critical 旭有機材株式会社
Priority to MX2019011418A priority Critical patent/MX2019011418A/en
Priority to CN201880022699.8A priority patent/CN110461498B/en
Publication of WO2018181814A1 publication Critical patent/WO2018181814A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/54Polycondensates of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers

Definitions

  • the present invention relates to a mold organic binder used for molding a urethane-based gas-curing mold or self-hardening mold used in sand mold casting, a casting sand composition obtained by using the same, and such casting sand.
  • the present invention relates to a mold obtained by molding a composition.
  • a polyol compound such as a phenol resin and a polyisocyanate compound such as diphenylmethane diisocyanate are used as a binder, and their polyaddition reaction (urethanization).
  • urethane molds made by utilizing the reaction), for example, phenolic urethane molds.
  • urethane-type molds such as phenol-urethane-type molds, there is no need for heating during molding, mass-produced gas-cured molds produced by the amine cold box method using amine gas as a catalyst, Non-mass production type self-hardening molds manufactured by the method are widely known.
  • the gas-curing mold by the amine cold box method is usually a granular refractory foundry sand, a mixer, and an organic viscosity for a mold comprising a phenol resin solution using an organic solvent as a solvent and a polyisocyanate compound solution.
  • the foundry sand composition After producing a foundry sand composition obtained by coating the surface of such foundry sand with an organic binder by kneading with a binder, the foundry sand composition is blown into a predetermined mold to form a mold. And is cured by passing an amine-based catalyst gas through it.
  • a self-hardening mold by the room temperature self-hardening method is used when a granular refractory casting sand is kneaded with an organic binder for a mold comprising a phenol resin solution and a polyisocyanate compound solution using an organic solvent as a solvent. And the resulting mixture is immediately formed into a desired shape.
  • urethane-based mold such as a phenol-urethane-based mold obtained by utilizing such a polyaddition reaction (urethanization reaction) between a phenol resin and a polyisocyanate compound
  • the chemical bonding characteristics cause air
  • moisture absorption deterioration such as hardening inhibition and strength deterioration due to moisture in the inside.
  • JP-A-1-501630 Patent Document 1
  • silane compounds such as epoxy silane, amino silane, and ureido silane are added as a countermeasure for preventing moisture absorption deterioration of the mold produced by the cold box method.
  • silane compound even with such a silane compound, sufficient characteristics have not yet been secured, and further establishment of measures for preventing moisture absorption deterioration has been desired.
  • Patent Document 2 a urethane for a mold is obtained by further combining a polyol compound and a polyisocyanate compound with a silane compound having an isocyanate group or an acrylic compound having an isocyanate group. It has been clarified that by configuring a curable organic binder, it is possible to prevent moisture absorption deterioration of the mold and maintain excellent mold strength, but there is prepared a special isocyanate group-containing compound. There was a need to do.
  • Patent Document 3 discloses a binder composition for producing a gaseous tertiary amine curable mold comprising a phenol resin and an isocyanate compound combined with boric acid. Further, it has been clarified that a silane compound can be contained in order to improve the adhesion between the binder component and the aggregate. And by using the binder composition containing such boric acid, the pot life is longer than that of the conventional mold manufacturing composition, and therefore, the binder and the granular refractory aggregate It is said that the strength as a mold can be maintained even if it is kneaded and left for several hours, but the evaluation of the mold strength there is performed under dry conditions where the humidity is not high. However, under high humidity conditions, the mold strength was significantly lowered due to moisture absorption deterioration, and it was difficult to maintain sufficient strength.
  • the present invention has been made in the background of such circumstances, and the problem to be solved is a urethane-curable organic material that can advantageously provide a mold having improved moisture absorption resistance characteristics. It is also intended to provide a binder, and also to provide a urethane-curable organic binder for molds that can effectively improve the mold strength by leaving after molding, and such An object of the present invention is to provide a foundry sand composition capable of imparting excellent mold characteristics using a urethane curable organic binder, and a mold having excellent characteristics formed using the foundry sand composition.
  • the present invention can be suitably implemented in various aspects as listed below.
  • each aspect described below can be employed in any combination, and aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification. It should be understood that the invention can be recognized based on the grasped inventive idea.
  • a urethane-curing organic binder used for molding urethane-based molds comprising a reaction product of a basic silane compound and an acid or a halide thereof together with a polyol compound and a polyisocyanate compound.
  • a urethane curable organic binder for molds further comprising: (2) It is composed of two liquids, liquid A containing the polyol compound and liquid B containing the polyisocyanate compound, and the liquid A reacts with the basic silane compound and an acid or a halide thereof.
  • the reaction product is Used in a proportion of 0.1 to 2.0 parts by mass, 1) The urethane-cured organic binder for molds according to any one of the embodiments (6). (8) The urethane curable organic viscosity for a mold according to any one of the above aspects (1) to (7), wherein the basic silane compound is an alkoxysilane containing an amino group. Binder.
  • the above-mentioned alkoxysilane containing an amino group is 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- 2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3- Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (Vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane and 3-ureidopropyltrialkoxysilane selected from the group consisting of urethane for molds according to the aspect (8), curable organic Binder.
  • the acid or halide thereof is hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, boric acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, formic acid, acetic acid.
  • a foundry sand composition comprising the urethane curable organic binder for molds according to any one of the aforementioned aspects (1) to (11) and foundry sand.
  • a basic silane compound and an acid or a halide thereof are further added.
  • a basic silane compound and an acid or a halide thereof are further added.
  • the foundry sand composition obtained by kneading the organic binder for molds according to the present invention into foundry sand it is possible to provide a mold having the above-mentioned excellent characteristics, and such a cast product.
  • the mold molded using the sand composition it has excellent mold strength and can be advantageously used in the casting process of the target metal as a mold having improved strength and moisture absorption resistance. It becomes.
  • a higher fatty acid ester together with the reaction product of the basic silane compound and the acid or the halide thereof as described above.
  • Strength and its hygroscopic deterioration characteristics can be further improved, and more effective extension of the pot life of the foundry sand composition obtained by kneading with foundry sand is maintained while maintaining such characteristics. The characteristic of obtaining can be demonstrated.
  • the polyol compound used as one of the main components is not particularly limited.
  • Various known polyol compounds used for molding are appropriately selected and used. Specifically, phenol resin, polyether polyol, polypropylene polyol, polybutadiene polyol, polymer polyol, polypropylene glycol, polyethylene glycol, polytetramethylene ether glycol, polyoxybutylene glycol, a copolymer of ethylene oxide and propylene oxide, tetrahydrofuran and Examples thereof include a copolymer of ethylene oxide, a copolymer of tetrahydrofuran and propylene oxide, and a copolymer of tetrahydrofuran and 3-methyltetrahydrofuran.
  • the polyol compound used when molding a urethane mold various known phenol resins used when molding a phenol urethane mold can be suitably used. Specifically, in the presence of a reaction catalyst, phenols and aldehydes are added so that the aldehydes are generally in a ratio of 0.5 to 3.0 moles per mole of the phenols. Examples of the benzyl ether type phenol resin, resol type phenol resin, novolak type phenol resin, and their modified phenol resins, which are soluble in organic solvents, obtained by condensation reaction, and mixtures thereof can be exemplified. One or two or more of them are appropriately selected and used.
  • ortho-cresol-modified phenol resins modified with ortho-cresol more preferably benzyl ether-type ortho-cresol-modified phenol resins and mixtures thereof include solubility in organic solvents and polyisocyanate compounds.
  • the strength (initial strength) of the obtained mold can be effectively improved, and therefore it is preferably used in the present invention.
  • the catalyst used in the addition / condensation reaction between the phenols and aldehydes is not particularly limited, and may be a known acidic catalyst or basic acid depending on the type of phenol resin desired.
  • various catalysts conventionally used for producing phenolic resins are appropriately used.
  • catalysts include metal salts having metal elements such as tin, lead, zinc, cobalt, manganese, and nickel. More specifically, lead naphthenate, zinc naphthenate, In addition to lead acetate, zinc chloride, zinc acetate, zinc borate, lead oxide, a combination of an acid and a base capable of forming such a metal salt can be exemplified.
  • the amount used is not particularly limited, but is generally about 0.01 to 5 parts by mass with respect to 100 parts by mass of phenols. Will be used at a rate of
  • phenols that give phenol resins include alkylphenols such as phenol, cresol, xylenol, p-tert-butylphenol, and nonylphenol, polyhydric phenols such as resorcinol, bisphenol F, and bisphenol A, and mixtures thereof.
  • aldehydes include formaldehyde, formalin, paraformaldehyde, polyoxymethylene, glyoxal, furfural, and mixtures thereof.
  • orthocresol-modified phenol resin that is one of the phenol resins advantageously employed in the present invention includes, for example, orthocresol and phenol in the presence of a reaction catalyst such as a metal salt.
  • a reaction catalyst such as a metal salt.
  • Ortho-cresol-modified phenol resin of co-condensation of ortho-cresol and phenol (2) Mixed ortho-cresol-modified phenol resin of ortho-cresol resin and phenol resin
  • Modified orthocresol-modified phenolic resins obtained by modifying the resins of (1) and (2) with a modifying agent (modifier), and (1), (2) and (3) ) And a mixture of two or more of them can be exemplified.
  • the ortho-cresol-modified phenol resins (1), (2) and (3) are well known, and such known ones are used as they are in the present invention. .
  • the ratio of phenol / orthocresol is 1/9 to 9/1, preferably 3/7 to 7/3, more preferably 4/6 to 6/4, based on mass. It will be.
  • a polyol compound such as a phenol resin used as one of the main components of the organic binder for a mold according to the present invention as described above has a low viscosity, compatibility with a polyisocyanate compound solution described later, and casting sand.
  • a solution in which the concentration is about 30 to 80% by mass, which is dissolved in an organic solvent formed by combining a polar organic solvent and a nonpolar organic solvent
  • it is used in the state of “polyol compound solution”.
  • the polyisocyanate compound used as the other main component is subjected to a polyaddition reaction with active hydrogen of a polyol compound such as a phenol resin as described above. It is a compound having in the molecule two or more isocyanate groups capable of chemically bonding foundry sands with urethane bonds such as phenol urethane.
  • polyisocyanate compounds include aromatic, aliphatic or alicyclic polyisocyanates such as diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanate (hereinafter referred to as “polymeric MDI”), hexamethylene diisocyanate,
  • polymeric MDI polymethylene polyphenylene polyisocyanate
  • hexamethylene diisocyanate hexamethylene diisocyanate
  • various conventionally known polyisocyanates such as prepolymers having two or more isocyanate groups obtained by reacting these compounds with polyols can be mentioned. You may use, or may use it in combination of 2 or more types.
  • a nonpolar organic solvent or a mixed solvent of a nonpolar organic solvent and a polar solvent is used as a solvent. It is used as a solution dissolved in this organic solvent so that the concentration is about 40 to 90% by mass.
  • a polyisocyanate compound stock solution and a solution obtained by dissolving a polyisocyanate compound in an organic solvent are referred to as a polyisocyanate compound solution.
  • the organic solvent for dissolving the above-described polyol compound and polyisocyanate compound is non-reactive with the polyisocyanate compound and is a solute (polyol compound or polyisocyanate compound) to be dissolved.
  • a solute polyol compound or polyisocyanate compound
  • it is not particularly limited as long as it is a good solvent in general, i) an amount that does not cause separation of i) a polar solvent for dissolving a polyol compound such as a phenol resin, and ii) a polyol compound such as a phenol resin.
  • a non-polar solvent for dissolving the polyisocyanate compound In combination with a non-polar solvent for dissolving the polyisocyanate compound.
  • examples of the polar solvent of i) described above include, for example, aliphatic carboxylic acid esters, in particular, dicarboxylic acid methyl ester mixture (manufactured by DuPont, USA; trade name: DBE; dimethyl glutarate and adipine)
  • dicarboxylic acid alkyl esters such as dimethyl acid and dimethyl succinate
  • vegetable oils such as rapeseed oil methyl ester
  • ketones such as isophorone
  • ethers such as isopropyl ether
  • furfuryl alcohol furfuryl alcohol
  • non-polar solvent of the above ii) for example, petroleum hydrocarbons such as paraffins, naphthenes, and alkylbenzenes
  • specific examples include Ipsol 150 (manufactured by Idemitsu Kosan Co., Ltd .; petroleum solvent), Hysol 100 (manufactured by JX Energy Co., Ltd .; petroleum solvent), HAWS (manufactured by Shell Chemicals Japan Co., Ltd .; petroleum solvent) and the like can be exemplified.
  • the basic silane compound that gives such a specific reaction product is an organosilicon compound having a structure in which an organic group having a basic group such as an amino group is bonded to silicon (Si).
  • Si silicon
  • basic alkoxysilanes are preferably used, and among them, alkoxysilanes having an amino group are more preferable, and N-2- (aminoethyl) -3-aminopropylmethyldimethoxy is more preferable.
  • Silane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-ureidopropyltrialkoxysilane will be advantageously used.
  • the reason why the alkoxysilane having an amino group is the best is that the alkoxy group is hydrolyzed by the water in the polyol compound, acid or halide thereof in addition to being easily available, and changes to a hydroxyl group. This is because adhesion to foundry sand (such as aggregate) becomes stronger and high mold strength can be exhibited.
  • Examples of the acid or halide thereof that can be reacted with such a basic silane compound include inorganic acids, organic acids, and halides thereof such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid.
  • Inorganic acids such as hydrofluoric acid and boric acid, organic sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid and trifluoromethanesulfonic acid; organic carboxylic acids such as formic acid, acetic acid and benzoic acid; organic phosphonic acids and the like Among them, hydrochloric acid, hydrobromic acid, phosphoric acid, hydrofluoric acid, benzenesulfonic acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid and the like are advantageously used, and particularly hydrofluoric acid. Recommended to use.
  • halide examples include halides of organic acids such as the above organic sulfonic acids, organic carboxylic acids, and organic phosphonic acids.
  • organic acids such as the above organic sulfonic acids, organic carboxylic acids, and organic phosphonic acids.
  • phenylphosphonic acid dichloride isophthalic acid chloride, benzoyl chloride, caprylic acid chloride, lauric acid.
  • phenylphosphonic acid dichloride isophthalic acid chloride, benzoyl chloride, caprylic acid chloride, lauric acid.
  • any combination can be adopted as long as it can form a reaction product thereof.
  • -2- (Aminoethyl) -3-aminopropylmethyldimethoxysilane and hydrochloric acid N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane and hydrofluoric acid, N-2- (aminoethyl) -3 -Combinations of aminopropylmethyldimethoxysilane and phenylphosphonic acid dichloride can be mentioned.
  • the ratio of basic silane compound / acid or halide thereof used to obtain the desired reaction product is 2/8 to 8/2, preferably 3/7 to 7/3 on a mass basis. More preferably, a ratio of 4/6 to 6/4 is adopted.
  • the use amount of the reaction product of the basic silane compound and the acid or its halide is 0.1 to 100 parts by mass of 100 parts by mass of the polyol compound which is one of the components of the organic binder.
  • a ratio of about 2.0 parts by mass, preferably about 0.2 to 1.0 parts by mass is suitably employed.
  • the amount of such reaction product used is less than 0.1 parts by mass, the effect of the use of such a reaction product is not sufficiently exhibited, and more than 2.0 parts by mass. As a result, problems such as difficulty in contributing to sufficient improvement in the strength of the obtained mold arise.
  • a predetermined basic silane compound and a predetermined acid or a halide thereof are mixed and reacted in a plastic container.
  • the target reaction product can be easily obtained.
  • one of them is cooled or stirred while the other is continuously or intermittently. It is desirable to prevent the rapid progress of the reaction by adding them.
  • the basic silane compound is added to the acid or the halide thereof.
  • the temperature during the reaction between the basic silane compound and the acid or its halide is preferably 80 ° C. or less, more preferably 70 ° C. or less, and even more preferably 60 ° C. or less. It is done.
  • adding a basic silane compound or an acid or a halide thereof little by little continuously or intermittently means that a constant amount is added at a constant speed in the continuous addition method.
  • a method of adding to the reaction system at a constant rate of addition is advantageously employed, and in the intermittent addition method, it is possible to add at regular intervals and at regular intervals. desirable.
  • a predetermined amount of time is added or a reaction is made. It is also possible to adopt a method of gradually dropping into the system.
  • the form of such a reaction product is used.
  • it is used together with a polyol compound or a polyisocyanate compound to advantageously constitute a target organic binder.
  • a reaction product of a basic silane compound and an acid or a halide thereof is formed in advance, so that a step of adding an acidic substance such as an acid is not required, and therefore a strong acid is used.
  • the safety in producing the foundry sand composition can be advantageously ensured.
  • the method of adding such a specific reaction product is not limited to those exemplified, and such a reaction product exists as a component in the organic binder.
  • these basic silane compounds, acids or halides thereof can be blended with polyol compounds or polyisocyanate compounds in an appropriate form.
  • a higher fatty acid ester is advantageously contained as one of the constituent components. It will be. Due to the presence of this higher fatty acid ester, the strength and moisture absorption deterioration characteristics of a mold molded using such an organic binder can be further improved, and in particular, excellent mold strength and moisture absorption deterioration characteristics are maintained. As it is, it is possible to effectively improve the pot life of the foundry sand composition obtained by kneading with the foundry sand.
  • the higher fatty acid of the higher fatty acid ester refers to a fatty acid having a large number of carbon atoms in the molecule and generally having 12 or more carbon atoms, Usually, fatty acids having 12 to 30 carbon atoms, preferably 14 to 25, more preferably 16 to 20 carbon atoms are suitably used.
  • the higher fatty acid ester is generally in a proportion of generally 0.1 to 40 parts by weight, preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight with respect to 100 parts by weight of the polyol compound.
  • fatty acid esters examples include saturated fatty acid esters such as lauric acid esters, palmitic acid esters, stearic acid esters, isostearic acid esters, hydroxystearic acid esters, and myristic acid esters, oleic acid esters, and linoleic acid.
  • saturated fatty acid esters such as lauric acid esters, palmitic acid esters, stearic acid esters, isostearic acid esters, hydroxystearic acid esters, and myristic acid esters, oleic acid esters, and linoleic acid.
  • unsaturated fatty acid esters such as esters, linolenic acid esters, and ricinoleic acid esters.
  • an unsaturated fatty acid ester more preferably a ricinoleic acid ester, more preferably a polycondensate of ricinoleic acid and ethylene glycol or glycerin, and a self-condensate of ricinoleic acid. More preferably it is.
  • the urethane curable organic binder for molds comprises a basic silane compound and an acid or a halide thereof as described above in addition to a polyol compound and a polyisocyanate compound that form a urethane bond such as phenol urethane.
  • the reaction product is included as a constituent component, and more preferably a higher fatty acid ester is included.
  • Such an organic binder may also contain the above-described compounding as necessary.
  • Various known additives conventionally used in organic binders for molds such as pot life extenders (curing retarders) different from the ingredients, mold release agents, strength deterioration inhibitors, and drying inhibitors Can be appropriately selected and blended.
  • the pot life extender (curing retarder) is used to suppress the urethanization reaction and extend the pot life of the casting sand composition.
  • the mold agent reduces resistance when the molded mold is removed from the mold, and part of the foundry sand composition blown and filled in the mold adheres to the mold when the mold is removed. This is used to prevent the occurrence of spotting and to obtain a mold with a uniform molding surface and high accuracy.
  • the urethane curable organic binder for molds according to the present invention thus obtained is kneaded into foundry sand (refractory aggregate) in the same manner as in the prior art to form a urethane-based gas curable mold. Therefore, the foundry sand composition is to be formed.
  • the above-described organic binder for mold according to the present invention is kneaded with foundry sand (fireproof aggregate).
  • a casting sand composition (kneaded sand) is produced by coating the casting sand surface with an organic binder for molds. That is, for the foundry sand, as an organic binder, a polyol compound, a polyisocyanate compound, a reaction product of a basic silane compound and an acid or a halide thereof, and further various desired additives are sufficiently provided.
  • the molding sand composition is produced by coating the molding sand surface with the organic binder for casting.
  • the reaction product of the basic silane compound and the acid or its halide and other various additives are separately prepared so that the compound can be uniformly mixed with the foundry sand composition. It is added to or mixed with one or both of the solution and the polyisocyanate compound solution, or dissolved or dispersed in an appropriate organic solvent, and this is mixed with a polyol compound solution or It can be mixed with the polyisocyanate compound solution into the foundry sand, or it can be added directly to the formed polyol compound and mixed, such as after completion of the condensation during the production of the polyol compound such as phenol resin. Is possible.
  • the organic binder for a mold according to the present invention is composed of two liquids, a liquid A containing a polyol compound (polyol compound solution) and a liquid B containing a polyisocyanate compound (polyisocyanate compound solution).
  • the solution A is made to contain the specific reaction product.
  • reaction product when such a specific reaction product is contained (added) in the B liquid mainly composed of a polyisocyanate compound, the reaction product reacts with the polyisocyanate compound, and the various effects described above are obtained. There is a risk that you will not be able to enjoy it.
  • liquid of this specific reaction product is liquid A
  • a solution containing a polyol compound as a main component a basic silane compound, an acid, or a halide thereof may be added to the liquid A in an appropriate form as long as it can be present as a constituent component. Is possible.
  • the specific reaction product formed in advance is added to the liquid A, the water content is 0.2 to 99.5% by mass, preferably 0.5 to 50% by mass, more preferably 1 to 25% by mass. % Of the reaction product is appropriately prepared and added to the liquid A (solution containing a polyol compound as a main component).
  • the water content in the liquid A is 0.1 to 15% by mass. It is important to adjust.
  • the water content in the liquid A constituting the organic binder is 0.1 to 15% by mass, preferably 0.15 to 10% by mass, and more preferably 0.2 to 6% by mass.
  • the polyol compound solution and the polyisocyanate compound solution constituting the organic binder are gradually polyaddition reaction (urethanization reaction) from the stage of mixing them. Therefore, it is prepared separately and prepared in advance, and usually mixed at the time of kneading with foundry sand.
  • the kneading / mixing operation is preferably performed at a temperature in the range of ⁇ 10 ° C. to 50 ° C. using a continuous or batch mixer similar to the conventional one.
  • the foundry sand (fire-resistant aggregate) kneaded with the organic binder for molds according to the present invention is natural sand as long as it is a fire-resistant one conventionally used for molds.
  • artificial sand is not particularly limited.
  • natural silica sand (including reclaimed sand) having a high silica content is more suitably employed.
  • the casting sand composition obtained as described above is shaped in a mold such as a mold having a molding cavity that gives a desired shape, and then a catalyst gas for curing is formed. By aeration, the curing of the foundry sand composition is promoted and a gas curing mold is produced.
  • the catalyst gas include conventionally known tertiary amine gases such as triethylamine, dimethylethylamine, dimethylisopropylamine, and cyclic nitrogen compounds such as pyridine and N-ethylmorpholine. At least one of these is appropriately selected and used in a normal quantitative range.
  • a casting sand composition in which the surface of the casting sand is coated with an organic binder is further mixed with a curing catalyst together with the organic binder according to the present invention at the time of kneading.
  • the curing catalyst include bases, amines, metal ions and the like that are usually used in the known Ashland method.
  • the blending amounts of the polyol compound solution and the polyisocyanate compound solution are the blending amounts of the polyol compound and the polyisocyanate compound, which are active ingredients, respectively.
  • a ratio of about 0.5 to 5.0 parts by mass, preferably about 1.0 to 3.0 parts by mass, with respect to 100 parts by mass of the foundry sand is suitably employed.
  • a solution or a polyisocyanate compound solution is used in combination.
  • the strength can be effectively improved, and further, the moisture absorption deterioration resistance characteristic of the strength can be enhanced. Therefore, it can be advantageously used for casting casting products made of various metals such as magnesium alloy and iron.
  • the obtained test piece was left standing for 24 hours under the conditions of i) immediately after the molding and ii) normal temperature and humidity of air temperature: 25 ° C. and relative humidity: 50%.
  • the bending strength (kgf / cm 2 ) of each is measured by Takachiho Seiki Co., Ltd.).
  • test piece (mold) is : 10 ° C, relative humidity: 90% in a sealed container for 120 minutes or 24 hours, and then bending strength (kgf / cm 2 ) using a digital foundry sand strength tester (manufactured by Takachiho Seiki Co., Ltd.) ).
  • phenol resin solution having a phenol resin content of about 51% by mass was prepared.
  • a polar organic solvent DBE: manufactured by DuPont, USA
  • a nonpolar organic solvent Ipsol 150: manufactured by Idemitsu Kosan Co., Ltd.
  • polyisocyanate compound solution (1) While dissolving 146 mass parts of polymeric MDI which is a polyisocyanate compound using 38.24 mass parts of a nonpolar organic solvent (Ipsol 150: made by Idemitsu Kosan Co., Ltd.), 0.93 of polymeric MDI amount was added there.
  • a polyisocyanate compound solution containing about 79% by mass of a polyisocyanate compound was prepared by adding mass% of isophthalic acid chloride.
  • a reaction retarder isophthalic acid chloride
  • Examples 1 to 20 First, the reaction product prepared by previously reacting 197 parts by mass of the phenol resin solution prepared in the preparation (1) of the phenol resin solution with a predetermined basic silane compound and an acid or a halide thereof. Products A to T were added in the proportions shown in Tables 3 and 4 below, and stirred to mix uniformly. Next, the Enshu reclaimed sand is put into Dalton Co., Ltd.
  • Example 21 foundry sand was obtained in the same manner as in Example 18 except that the solution of the ortho-cresol-modified phenol resin prepared in the preparation (2) of the phenol resin solution was used as the polyol compound. A composition was prepared, and a test piece (mold) formed from the obtained foundry sand composition was subjected to the above-described measurement method, and the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding. The mold strength (kgf / cm 2 ) after moisture absorption deterioration for 120 minutes after molding was measured, and the obtained results are shown in Table 4 below.
  • a reaction product of a basic silane compound and an acid or a halide thereof is further added as a constituent component together with a predetermined phenol resin and polyisocyanate.
  • a conventional molding sand composition is used in the mold (test piece) obtained by preparing a molding sand composition using the organic binder obtained in Examples 1 to 21 to be contained, and then molding the composition. It is recognized that the mold has excellent properties not only in the mold strength under the humidity environment but also in the mold strength after the moisture absorption deterioration under the high humidity.
  • Example 21 since ortho-cresol-modified phenol resin is used as the phenol resin, the mold strength is further improved, and the moisture absorption resistance is further improved. It has become.
  • the organic binder in Comparative Example 9 to which such a reaction product is not added the organic binders in Comparative Examples 1 to 8 which are added in the basic silane compound alone or in the acid or its halide alone.
  • the mold (test piece) obtained using a binder does not have sufficient mold strength in a normal humidity environment. Furthermore, the mold strength after moisture absorption deterioration is significantly reduced, and moisture absorption resistance is deteriorated. It is recognized that the mold is inferior in properties, and the mold obtained using such an organic binder is not practical.
  • Example 22 After preparing the foundry sand composition in the same manner as in Example 18, the waiting time after kneading of the obtained foundry sand composition: 0 minutes and 120 minutes for the test piece (mold) molded from the test piece (mold) according to the measurement method and evaluation method, mold strength immediately and molding 24 hours after molding (kgf / cm 2), as well as mold strength after moisture absorption degradation of 24 hours after molding the (kgf / cm 2), were measured, respectively, The obtained results are shown in Table 6 below.
  • Example 22 As the higher fatty acid ester, except that a polycondensate of ricinoleic acid and glycerin or a self-condensate of ricinoleic acid was further added to the organic binder in the ratio shown in Table 6 below, After preparing the foundry sand composition in the same manner as in Example 22, and waiting time after kneading of the obtained foundry sand composition: test pieces (molds) molded from those having 0 minutes and 120 minutes for, according to the measurement method and evaluation method described above, after molding, and mold strength after molding 24 hours (kgf / cm 2) and mold strength after moisture absorption degradation of 24 hours after molding the (kgf / cm 2), respectively measured The results obtained are shown in Table 6 below.
  • Examples 31 to 35 Reaction obtained by reacting a basic silane compound (KBM602) and hydrofluoric acid as described above with respect to 100 parts by mass of the phenol resin solution prepared in the preparation (3) of the above phenol resin solution Product A was added in the proportions shown in Table 7 below, and stirred and mixed uniformly to prepare solution A according to each of Examples 31 to 35. Subsequently, while putting flattery sand into Dalton Co., Ltd.
  • Examples 36 to 41, Comparative Example 12 When preparing the liquid A, the reaction product R of the basic silane compound (KBM602) and hydrofluoric acid was used together with the water content in the proportions shown in Tables 7 and 8 (the amount of water added in Tables 7 and 8 below).
  • a casting sand composition was prepared in accordance with the same conditions and procedures as in Example 32 except that was added. And each test piece (mold) was produced using the obtained various foundry sand compositions, and the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding according to the above measurement method. The mold strength (kgf / cm 2 ) after moisture absorption deterioration for 24 hours after molding was measured, and the obtained results are shown in Table 7 and Table 8 below.
  • Example 42 In place of the phenol resin solution prepared in the preparation (3) of the phenol resin solution described above, except that the ortho-cresol-modified phenol resin solution prepared in the preparation (4) of the phenol resin solution was used, A foundry sand composition was prepared in the same manner as in Example 32. Then, using the obtained foundry sand composition, a test piece (mold) was prepared, and according to the above measurement method, the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding, and after molding The mold strength (kgf / cm 2 ) after moisture absorption deterioration for 24 hours was measured, and the results are shown in Table 8 below.
  • the solution is a solution containing a phenol resin and a reaction product R of a basic silane compound and hydrofluoric acid, and has a predetermined moisture content.
  • a molding sand composition was prepared using an organic binder (Examples 31 to 42) composed of a solution (solution A) and a solution of a polyisocyanate compound (solution B), Furthermore, the mold (test piece) obtained by molding has excellent characteristics not only in mold strength under normal humidity environment but also in mold strength after moisture absorption deterioration under high humidity. It is recognized that Among these examples, in Example 42, since ortho-cresol-modified phenol resin is used as the phenol resin, the mold strength is further improved, and the moisture absorption resistance is further improved. It has become.
  • Example 43 to 50 The ratio of the nonpolar organic solvent (Ipsol 150) used in the preparation of the polyisocyanate compound solution is set to the ratio shown in Table 9 below.
  • the mold strength (kgf / cm 2 ) after moisture absorption deterioration for 24 hours after molding was measured, and the results are shown in Table 9 below. Further, using the foundry sand composition after waiting for 120 minutes from the kneading, the mold strength immediately after molding and after molding for 24 hours (kgf / cm 2 ), and the mold strength after deterioration of moisture absorption for 24 hours after molding (kgf / Cm 2 ) were measured, and the pot life was evaluated. The obtained results are shown in Table 9 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mold Materials And Core Materials (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The purpose of the present invention is to provide a urethane curable organic binding agent with which a mold having improved resistance to deterioration in strength due to moisture can be advantageously obtained, and also to provide a urethane curable organic binding agent for mold with which the mold strength due to being left after shaping can be effectively improved. The urethane curable organic binding agent is used for shaping a urethane-based mold and is configured to include, as constituent components, a polyol compound, a polyisocyanate compound, and additionally a reaction product of a basic silane compound and an acid or a halide thereof.

Description

鋳型用ウレタン硬化型有機粘結剤並びにこれを用いて得られる鋳物砂組成物及び鋳型Urethane curable organic binder for mold, foundry sand composition and mold obtained using the same
 本発明は、砂型鋳造において使用されるウレタン系のガス硬化鋳型又は自硬性鋳型の造型に用いられる鋳型用有機粘結剤、及びこれを用いて得られる鋳物砂組成物、並びにそのような鋳物砂組成物を造型して得られる鋳型に関するものである。 The present invention relates to a mold organic binder used for molding a urethane-based gas-curing mold or self-hardening mold used in sand mold casting, a casting sand composition obtained by using the same, and such casting sand. The present invention relates to a mold obtained by molding a composition.
 従来より、砂型鋳造において用いられる代表的な有機系鋳型の一つとして、フェノール樹脂の如きポリオール化合物と、ジフェニルメタンジイソシアネートの如きポリイソシアネート化合物とを粘結剤として用い、それらの重付加反応(ウレタン化反応)を利用して造型されるウレタン系鋳型、例えばフェノールウレタン系鋳型等と称するものが知られている。そして、そのようなフェノールウレタン系鋳型の如きウレタン系鋳型としては、造型時に加熱を必要としない、触媒としてアミンガスを用いたアミンコールドボックス法により製造される量産型のガス硬化鋳型や、常温自硬性法により製造される非量産型の自硬性鋳型が、広く知られている。 Conventionally, as one of the typical organic molds used in sand casting, a polyol compound such as a phenol resin and a polyisocyanate compound such as diphenylmethane diisocyanate are used as a binder, and their polyaddition reaction (urethanization). There are known urethane molds made by utilizing the reaction), for example, phenolic urethane molds. And as such urethane-type molds such as phenol-urethane-type molds, there is no need for heating during molding, mass-produced gas-cured molds produced by the amine cold box method using amine gas as a catalyst, Non-mass production type self-hardening molds manufactured by the method are widely known.
 具体的には、アミンコールドボックス法によるガス硬化鋳型は、通常、粒状耐火性鋳物砂を、ミキサーを用いて、有機溶剤を溶媒とするフェノール樹脂溶液とポリイソシアネート化合物溶液とからなる鋳型用有機粘結剤と混練することにより、そのような鋳物砂の表面を有機粘結剤で被覆してなる鋳物砂組成物を製造した後、かかる鋳物砂組成物を、所定の成形型内に吹き込んで鋳型を成形し、これに、アミン系触媒ガスを通気せしめて硬化を行うことにより、製造されている。また、常温自硬性法による自硬性鋳型は、粒状耐火性鋳物砂を、有機溶剤を溶媒とするフェノール樹脂溶液とポリイソシアネート化合物溶液とからなる鋳型用有機粘結剤と混練する際に、硬化触媒も混合し、その得られた混合物を、直ちに、所望の形状に成形することにより、製造されている。 Specifically, the gas-curing mold by the amine cold box method is usually a granular refractory foundry sand, a mixer, and an organic viscosity for a mold comprising a phenol resin solution using an organic solvent as a solvent and a polyisocyanate compound solution. After producing a foundry sand composition obtained by coating the surface of such foundry sand with an organic binder by kneading with a binder, the foundry sand composition is blown into a predetermined mold to form a mold. And is cured by passing an amine-based catalyst gas through it. In addition, a self-hardening mold by the room temperature self-hardening method is used when a granular refractory casting sand is kneaded with an organic binder for a mold comprising a phenol resin solution and a polyisocyanate compound solution using an organic solvent as a solvent. And the resulting mixture is immediately formed into a desired shape.
 しかして、このようなフェノール樹脂とポリイソシアネート化合物との重付加反応(ウレタン化反応)を利用して得られるフェノールウレタン系鋳型の如きウレタン系鋳型にあっては、その化学的結合特性から、空気中の水分による硬化阻害や強度劣化等、所謂吸湿劣化の問題を内在するものであった。 Therefore, in a urethane-based mold such as a phenol-urethane-based mold obtained by utilizing such a polyaddition reaction (urethanization reaction) between a phenol resin and a polyisocyanate compound, the chemical bonding characteristics cause air There are inherent problems of so-called moisture absorption deterioration such as hardening inhibition and strength deterioration due to moisture in the inside.
 そこで、特表平1-501630号公報(特許文献1)においては、コールドボックス法で作製された鋳型の吸湿劣化防止対策として、エポキシシランやアミノシラン、ウレイドシラン等のシラン化合物を添加することが明らかにされているのであるが、そのようなシラン化合物をもってしても、未だ、十分な特性の確保には至らず、更なる吸湿劣化防止対策の確立が望まれていた。 Therefore, in JP-A-1-501630 (Patent Document 1), it is clear that silane compounds such as epoxy silane, amino silane, and ureido silane are added as a countermeasure for preventing moisture absorption deterioration of the mold produced by the cold box method. However, even with such a silane compound, sufficient characteristics have not yet been secured, and further establishment of measures for preventing moisture absorption deterioration has been desired.
 このため、特開2012-196700号公報(特許文献2)においては、ポリオール化合物及びポリイソシアネート化合物に対して、更に、イソシアネート基を有するシラン化合物やイソシアネート基を有するアクリル化合物を組み合わせて、鋳型用ウレタン硬化型有機粘結剤を構成することにより、鋳型の吸湿劣化防止を図り、以て優れた鋳型強度を維持し得ることが明らかにされているが、そこでは、特別のイソシアネート基含有化合物を準備する必要があった。 Therefore, in Japanese Patent Application Laid-Open No. 2012-196700 (Patent Document 2), a urethane for a mold is obtained by further combining a polyol compound and a polyisocyanate compound with a silane compound having an isocyanate group or an acrylic compound having an isocyanate group. It has been clarified that by configuring a curable organic binder, it is possible to prevent moisture absorption deterioration of the mold and maintain excellent mold strength, but there is prepared a special isocyanate group-containing compound. There was a need to do.
 また、特開2001-205386号公報(特許文献3)においては、フェノール樹脂とイソシアネート化合物にホウ酸を組み合わせてなる気体状第三級アミン硬化性鋳型製造用粘結剤組成物が、明らかにされており、更にそこでは、粘結剤成分と骨材との接着性の向上を図るために、シラン化合物を含有せしめることが出来ることが、明らかにされている。そして、そのようなホウ酸を含有せしめてなる粘結剤組成物を用いることによって、従来の鋳型製造用組成物よりも可使時間が長く、そのために、粘結剤と粒状耐火性骨材とを混練して、数時間放置しても、鋳型としての強度を保持することが出来るとされているのであるが、そこにおける鋳型強度の評価は、湿度の高くない乾いた状況下において行われているに過ぎず、高湿度条件下においては、吸湿劣化によって鋳型強度が著しく低下して、充分な強度保持が困難となるものであった。 Japanese Patent Laid-Open No. 2001-205386 (Patent Document 3) discloses a binder composition for producing a gaseous tertiary amine curable mold comprising a phenol resin and an isocyanate compound combined with boric acid. Further, it has been clarified that a silane compound can be contained in order to improve the adhesion between the binder component and the aggregate. And by using the binder composition containing such boric acid, the pot life is longer than that of the conventional mold manufacturing composition, and therefore, the binder and the granular refractory aggregate It is said that the strength as a mold can be maintained even if it is kneaded and left for several hours, but the evaluation of the mold strength there is performed under dry conditions where the humidity is not high. However, under high humidity conditions, the mold strength was significantly lowered due to moisture absorption deterioration, and it was difficult to maintain sufficient strength.
特表平1-501630号公報JP-T-1-501630 特開2012-196700号公報JP 2012-196700 A 特開2001-205386号公報JP 2001-205386 A
 ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、強度の耐吸湿劣化特性の向上せしめられた鋳型を有利に与え得るウレタン硬化型有機粘結剤を提供することにあり、また、造型後の放置による鋳型強度の向上を効果的に図ることの出来る鋳型用ウレタン硬化型有機粘結剤を提供することにもあり、更にそのようなウレタン硬化型有機粘結剤を用いた、優れた鋳型特性を付与し得る鋳物砂組成物、並びにその鋳物砂組成物を用いて造型された、優れた特性を有する鋳型を提供することにある。 Here, the present invention has been made in the background of such circumstances, and the problem to be solved is a urethane-curable organic material that can advantageously provide a mold having improved moisture absorption resistance characteristics. It is also intended to provide a binder, and also to provide a urethane-curable organic binder for molds that can effectively improve the mold strength by leaving after molding, and such An object of the present invention is to provide a foundry sand composition capable of imparting excellent mold characteristics using a urethane curable organic binder, and a mold having excellent characteristics formed using the foundry sand composition.
 そして、本発明は、かくの如き課題を解決するために、以下に列挙せる如き各種の態様において、好適に実施され得るものである。なお、以下に記載の各態様は、任意の組み合わせにおいて採用可能であり、また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体の記載から把握される発明思想に基づいて認識され得るものであることが理解されるべきである。 And in order to solve such problems, the present invention can be suitably implemented in various aspects as listed below. In addition, each aspect described below can be employed in any combination, and aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification. It should be understood that the invention can be recognized based on the grasped inventive idea.
(1)ウレタン系鋳型の造型に用いられるウレタン硬化型有機粘結剤であっ
  て、ポリオール化合物及びポリイソシアネート化合物と共に、塩基性シ
  ラン化合物と酸若しくはそのハロゲン化物との反応生成物を、構成成分
  として更に含むことを特徴とする鋳型用ウレタン硬化型有機粘結剤。
(2)前記ポリオール化合物を含むA液と、前記ポリイソシアネート化合物
  を含むB液との二液から構成されると共に、該A液が、前記塩基性シラ
  ン化合物と酸若しくはそのハロゲン化物との反応生成物を構成成分とし
  て含有し、且つ、該A液の水分含有量が0.1~15質量%であること
  を特徴とする前記態様(1)に記載の鋳型用ウレタン硬化型有機粘結剤
  。
(3)前記酸若しくはそのハロゲン化物が、フッ化水素酸である前記態様(
  1)又は前記態様(2)に記載の鋳型用ウレタン硬化型有機粘結剤。
(4)前記塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成
  物が予め形成されて、かかる反応生成物の形態において用いられる前記
  態様(1)乃至前記態様(3)の何れか1つに記載の鋳型用ウレタン硬
  化型有機粘結剤。
(5)前記ポリオール化合物が、フェノール樹脂である前記態様(1)乃至
  前記態様(4)の何れか1つに記載の鋳型用ウレタン硬化型有機粘結剤
  。
(6)前記フェノール樹脂が、オルソクレゾール変性フェノール樹脂である
  前記態様(5)に記載の鋳型用ウレタン硬化型有機粘結剤。
(7)前記ポリオール化合物の100質量部に対して、前記反応生成物が、
  0.1~2.0質量部の割合で用いられることを特徴とする前記態様(
  1)乃至前記態様(6)の何れか1つに記載の鋳型用ウレタン硬化型有
  機粘結剤。
(8)前記塩基性シラン化合物が、アミノ基を含有するアルコキシシランで
  あることを特徴とする前記態様(1)乃至前記態様(7)の何れか1つ
  に記載の鋳型用ウレタン硬化型有機粘結剤。
(9)前記アミノ基を含有するアルコキシシランが、3-アミノプロピルト
  リメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-
  (アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-
  2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-
  トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピル
  アミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-
  (ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメト
  キシシラン及び3-ウレイドプロピルトリアルコキシシランからなる群
  より選ばれることを特徴とする前記態様(8)に記載の鋳型用ウレタン
  硬化型有機粘結剤。
(10)前記酸若しくはそのハロゲン化物が、塩酸、臭化水素酸、硫酸、硝
  酸、リン酸、フッ化水素酸、ホウ酸、ベンゼンスルホン酸、パラトルエ
  ンスルホン酸、トリフルオロメタンスルホン酸、ギ酸、酢酸、安息香酸
  、フェニルホスホン酸ジクロライド、イソフタル酸クロライド、塩化ベ
  ンゾイル、カプリル酸クロライド、ラウリン酸クロライド、ミリスチン
  酸クロライド、パルミチン酸クロライド、イソパルミチン酸クロライド
  、ステアリン酸クロライド、イソステアリン酸クロライド、オレイン酸
  クロライド及びセバシン酸ジクロライドからなる群より選ばれることを
  特徴とする前記態様(1)乃至前記態様(9)の何れか1つに記載の鋳
  型用ウレタン硬化型有機粘結剤。
(11)高級脂肪酸エステルを、更に構成成分として含むことを特徴とする
  前記態様(1)乃至前記態様(10)の何れか1つに記載の鋳型用ウレ
  タン硬化型有機粘結剤。
(12)前記態様(1)乃至前記態様(11)の何れか1つに記載の鋳型用
  ウレタン硬化型有機粘結剤と、鋳物砂とからなる鋳物砂組成物。
(13)前記態様(12)に記載の鋳物砂組成物を成形し、硬化せしめてな
  る鋳型。
(1) A urethane-curing organic binder used for molding urethane-based molds, comprising a reaction product of a basic silane compound and an acid or a halide thereof together with a polyol compound and a polyisocyanate compound. A urethane curable organic binder for molds, further comprising:
(2) It is composed of two liquids, liquid A containing the polyol compound and liquid B containing the polyisocyanate compound, and the liquid A reacts with the basic silane compound and an acid or a halide thereof. The urethane-cured organic caking for mold according to the above aspect (1), wherein the product contains the product as a constituent component, and the water content of the liquid A is 0.1 to 15% by mass. Agent.
(3) The above embodiment wherein the acid or halide thereof is hydrofluoric acid (
The urethane-curing organic binder for molds according to 1) or aspect (2).
(4) Any one of the above aspects (1) to (3), wherein a reaction product of the basic silane compound and an acid or a halide thereof is formed in advance and used in the form of the reaction product. The urethane-curing organic binder for molds described in 1.
(5) The urethane curable organic binder for molds according to any one of the aspects (1) to (4), wherein the polyol compound is a phenol resin.
(6) The urethane curable organic binder for mold according to the aspect (5), wherein the phenol resin is an ortho-cresol-modified phenol resin.
(7) For 100 parts by mass of the polyol compound, the reaction product is
Used in a proportion of 0.1 to 2.0 parts by mass,
1) The urethane-cured organic binder for molds according to any one of the embodiments (6).
(8) The urethane curable organic viscosity for a mold according to any one of the above aspects (1) to (7), wherein the basic silane compound is an alkoxysilane containing an amino group. Binder.
(9) The above-mentioned alkoxysilane containing an amino group is 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2-
(Aminoethyl) -3-aminopropylmethyldimethoxysilane, N-
2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-
Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N-
(Vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane and 3-ureidopropyltrialkoxysilane selected from the group consisting of urethane for molds according to the aspect (8), curable organic Binder.
(10) The acid or halide thereof is hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, boric acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, formic acid, acetic acid. , Benzoic acid, phenylphosphonic acid dichloride, isophthalic acid chloride, benzoyl chloride, caprylic acid chloride, lauric acid chloride, myristic acid chloride, palmitic acid chloride, isopalmitic acid chloride, stearic acid chloride, isostearic acid chloride, oleic acid chloride and It is selected from the group consisting of sebacic acid dichloride, The urethane curable organic binder for casting molds according to any one of the above aspects (1) to (9).
(11) The urethane-curable organic binder for molds according to any one of the above aspects (1) to (10), further comprising a higher fatty acid ester as a constituent component.
(12) A foundry sand composition comprising the urethane curable organic binder for molds according to any one of the aforementioned aspects (1) to (11) and foundry sand.
(13) A mold obtained by molding and curing the foundry sand composition according to the aspect (12).
 このように、本発明に従う鋳型用ウレタン硬化型有機粘結剤にあっては、その必須の構成成分であるポリオール化合物及びポリイソシアネート化合物に加えて、更に、塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物を、構成成分として含むように構成されていることによって、そのような有機粘結剤を用いて造型される鋳型の強度の向上を有利に実現せしめ、特に、造型後における鋳型の放置強度を効果的に高め得ることとなったことに加えて、そのような鋳型の強度の耐吸湿劣化特性をも有利に向上せしめることが出来るのである。 As described above, in the urethane curable organic binder for mold according to the present invention, in addition to the polyol compound and polyisocyanate compound which are essential constituent components, a basic silane compound and an acid or a halide thereof are further added. In this way, it is possible to advantageously improve the strength of a mold molded using such an organic binder, and in particular, a mold after molding. In addition to being able to effectively increase the standing strength of the mold, it is also possible to advantageously improve the hygroscopic deterioration characteristic of the strength of such a mold.
 従って、本発明に従う鋳型用有機粘結剤を鋳物砂に混練せしめて得られる鋳物砂組成物にあっては、上述の如き優れた特性を有する鋳型を与え得るものとなり、また、そのような鋳物砂組成物を用いて造型された鋳型にあっては、優れた鋳型強度を有すると共に、強度の耐吸湿劣化特性の向上した鋳型として、目的とする金属の鋳造工程に有利に用いられ得ることとなるのである。 Therefore, in the foundry sand composition obtained by kneading the organic binder for molds according to the present invention into foundry sand, it is possible to provide a mold having the above-mentioned excellent characteristics, and such a cast product. In the mold molded using the sand composition, it has excellent mold strength and can be advantageously used in the casting process of the target metal as a mold having improved strength and moisture absorption resistance. It becomes.
 なお、本発明にあっては、上述のような塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物と共に、高級脂肪酸エステルを併用することが、好適に推奨され、これによって、上記した鋳型強度やその吸湿劣化特性がより一層向上せしめられ得ることとなると共に、そのような特徴を維持したまま、鋳物砂との混練によって得られる鋳物砂組成物の可使時間のより有効な延長を図り得るという特徴を発揮せしめることが出来る。 In the present invention, it is preferably recommended to use a higher fatty acid ester together with the reaction product of the basic silane compound and the acid or the halide thereof as described above. Strength and its hygroscopic deterioration characteristics can be further improved, and more effective extension of the pot life of the foundry sand composition obtained by kneading with foundry sand is maintained while maintaining such characteristics. The characteristic of obtaining can be demonstrated.
 ところで、このような本発明に従う鋳型用ウレタン硬化型有機粘結剤において、その主たる成分の一つとして使用されるポリオール化合物としては、特に限定されるものではなく、従来からウレタン系の硬化鋳型を造型する際に用いられている公知の各種のポリオール化合物が、適宜に選択されて、用いられることとなる。具体的には、フェノール樹脂、ポリエーテルポリオール、ポリプロピレンポリオール、ポリブタジエンポリオール、ポリマーポリオール、ポリプロピレングリコール、ポリエチレングリコール、ポリテトラメチレンエーテルグリコール、ポリオキシブチレングリコール、エチレンオキシドとプロピレンオキシドとの共重合体、テトラヒドロフランとエチレンオキシドとの共重合体、テトラヒドロフランとプロピレンオキシドとの共重合体、テトラヒドロフランと3-メチルテトラヒドロフランとの共重合体等を挙げることが出来る。 By the way, in such a urethane curable organic binder for molds according to the present invention, the polyol compound used as one of the main components is not particularly limited. Various known polyol compounds used for molding are appropriately selected and used. Specifically, phenol resin, polyether polyol, polypropylene polyol, polybutadiene polyol, polymer polyol, polypropylene glycol, polyethylene glycol, polytetramethylene ether glycol, polyoxybutylene glycol, a copolymer of ethylene oxide and propylene oxide, tetrahydrofuran and Examples thereof include a copolymer of ethylene oxide, a copolymer of tetrahydrofuran and propylene oxide, and a copolymer of tetrahydrofuran and 3-methyltetrahydrofuran.
 その中でも、ウレタン系の鋳型を造型する際に用いられるポリオール化合物として、フェノールウレタン系の鋳型を造型する際に用いられている、公知の各種のフェノール樹脂が、好適に用いられ得るのである。具体的には、反応触媒の存在下、フェノール類とアルデヒド類とを、フェノール類の1モルに対して、アルデヒド類が、一般に0.5~3.0モルの割合になるようにして、付加・縮合反応せしめて得られる、有機溶媒に可溶なベンジルエーテル型フェノール樹脂、レゾール型フェノール樹脂、ノボラック型フェノール樹脂、及びそれらの変性フェノール樹脂、並びにこれらの混合物を例示することが出来、これらのうちの1種又は2種以上が、適宜に選択されて用いられることとなる。また、これらの中でも、特に、オルソクレゾールで変性したオルソクレゾール変性フェノール樹脂、更に好ましくはベンジルエーテル型のオルソクレゾール変性フェノール樹脂及びその混合物にあっては、有機溶剤への溶解性やポリイソシアネート化合物との相溶性に優れているのみならず、得られる鋳型の強度(初期強度)等を効果的に向上せしめ得るところから、本発明においては、好適に用いられることとなる。 Among them, as the polyol compound used when molding a urethane mold, various known phenol resins used when molding a phenol urethane mold can be suitably used. Specifically, in the presence of a reaction catalyst, phenols and aldehydes are added so that the aldehydes are generally in a ratio of 0.5 to 3.0 moles per mole of the phenols. Examples of the benzyl ether type phenol resin, resol type phenol resin, novolak type phenol resin, and their modified phenol resins, which are soluble in organic solvents, obtained by condensation reaction, and mixtures thereof can be exemplified. One or two or more of them are appropriately selected and used. Of these, in particular, ortho-cresol-modified phenol resins modified with ortho-cresol, more preferably benzyl ether-type ortho-cresol-modified phenol resins and mixtures thereof include solubility in organic solvents and polyisocyanate compounds. In addition to being excellent in compatibility, the strength (initial strength) of the obtained mold can be effectively improved, and therefore it is preferably used in the present invention.
 なお、上記したフェノール類とアルデヒド類との付加・縮合反応の際に用いられる触媒としては、特に限定されるものではなく、所望とするフェノール樹脂のタイプに応じて、公知の酸性触媒や塩基性触媒の他、従来からフェノール樹脂の製造に用いられている各種の触媒が、適宜に用いられる。そして、そのような触媒としては、スズ、鉛、亜鉛、コバルト、マンガン、ニッケル等の金属元素を有する金属塩等を例示することが出来、より具体的には、ナフテン酸鉛、ナフテン酸亜鉛、酢酸鉛、塩化亜鉛、酢酸亜鉛、ホウ酸亜鉛、酸化鉛の他、このような金属塩を形成し得る酸と塩基の組み合わせ等を挙げることが出来る。また、かかる金属塩を反応触媒として採用する場合に、その使用量としては、特に限定されるものではないものの、一般に、フェノール類の100質量部に対して、0.01~5質量部程度となる割合で、使用されることとなる。 The catalyst used in the addition / condensation reaction between the phenols and aldehydes is not particularly limited, and may be a known acidic catalyst or basic acid depending on the type of phenol resin desired. In addition to the catalyst, various catalysts conventionally used for producing phenolic resins are appropriately used. Examples of such catalysts include metal salts having metal elements such as tin, lead, zinc, cobalt, manganese, and nickel. More specifically, lead naphthenate, zinc naphthenate, In addition to lead acetate, zinc chloride, zinc acetate, zinc borate, lead oxide, a combination of an acid and a base capable of forming such a metal salt can be exemplified. Further, when such a metal salt is employed as a reaction catalyst, the amount used is not particularly limited, but is generally about 0.01 to 5 parts by mass with respect to 100 parts by mass of phenols. Will be used at a rate of
 また、フェノール樹脂を与えるフェノール類としては、例えば、フェノール、クレゾール、キシレノール、p-tert-ブチルフェノール、ノニルフェノール等のアルキルフェノール、レゾルシノール、ビスフェノールF、ビスフェノールA等の多価フェノール及びこれらの混合物等が挙げられる一方、アルデヒド類としては、例えば、ホルムアルデヒド、ホルマリン、パラホルムアルデヒド、ポリオキシメチレン、グリオキザール、フルフラール及びこれらの混合物等が挙げられる。 Examples of phenols that give phenol resins include alkylphenols such as phenol, cresol, xylenol, p-tert-butylphenol, and nonylphenol, polyhydric phenols such as resorcinol, bisphenol F, and bisphenol A, and mixtures thereof. On the other hand, examples of aldehydes include formaldehyde, formalin, paraformaldehyde, polyoxymethylene, glyoxal, furfural, and mixtures thereof.
 さらに、上述せるように、本発明において有利に採用されるフェノール樹脂の一つであるオルソクレゾール変性フェノール樹脂としては、例えば、金属塩等の反応触媒の存在下において、オルソクレゾール及びフェノールを、アルデヒド類と反応せしめて得られる、(1)オルソクレゾールとフェノールとの共縮合型のオルソクレゾール変性フェノール樹脂、(2)オルソクレゾール樹脂とフェノール樹脂との混合型のオルソクレゾール変性フェノール樹脂の他、これら(1)及び(2)の樹脂を変性剤(改質剤)で改質してなる、(3)改質型のオルソクレゾール変性フェノール樹脂、及び、それら(1)、(2)及び(3)のうちの2種以上を組み合わせた混合物等を、例示することが出来る。なお、それら(1)、(2)及び(3)のオルソクレゾール変性フェノール樹脂は、何れも、よく知られており、本発明においては、そのような公知のものが、そのまま用いられることとなる。また、フェノール/オルソクレゾールの比率としては、質量基準にて、1/9~9/1、好ましくは3/7~7/3、より好ましくは4/6~6/4の比率が採用されることとなる。 Furthermore, as described above, orthocresol-modified phenol resin that is one of the phenol resins advantageously employed in the present invention includes, for example, orthocresol and phenol in the presence of a reaction catalyst such as a metal salt. (1) Ortho-cresol-modified phenol resin of co-condensation of ortho-cresol and phenol, (2) Mixed ortho-cresol-modified phenol resin of ortho-cresol resin and phenol resin (3) Modified orthocresol-modified phenolic resins obtained by modifying the resins of (1) and (2) with a modifying agent (modifier), and (1), (2) and (3) ) And a mixture of two or more of them can be exemplified. The ortho-cresol-modified phenol resins (1), (2) and (3) are well known, and such known ones are used as they are in the present invention. . The ratio of phenol / orthocresol is 1/9 to 9/1, preferably 3/7 to 7/3, more preferably 4/6 to 6/4, based on mass. It will be.
 そして、かくの如き本発明に従う鋳型用有機粘結剤の主たる成分の一つとして使用されるフェノール樹脂等のポリオール化合物は、その低粘度化、後述するポリイソシアネート化合物溶液との相溶性、鋳物砂へのコーティング性、鋳型物性等の観点から、一般に、極性有機溶剤と非極性有機溶剤とを組み合わせてなる有機溶媒に溶解せしめられ、その濃度が、約30~80質量%程度とされた溶液(以下、「ポリオール化合物溶液」という)の状態で、用いられることとなる。 A polyol compound such as a phenol resin used as one of the main components of the organic binder for a mold according to the present invention as described above has a low viscosity, compatibility with a polyisocyanate compound solution described later, and casting sand. In general, from the viewpoint of coating properties, mold physical properties, etc., a solution (in which the concentration is about 30 to 80% by mass, which is dissolved in an organic solvent formed by combining a polar organic solvent and a nonpolar organic solvent) Hereinafter, it is used in the state of “polyol compound solution”.
 一方、本発明に従う鋳型用有機粘結剤において、その主たる成分の他の一つとして使用されるポリイソシアネート化合物は、上述せる如きフェノール樹脂等のポリオール化合物の活性水素と重付加反応することにより、鋳物砂同士をフェノールウレタンの如きウレタン結合で化学的に結合せしめ得るイソシアネート基を、分子内に2以上有する化合物である。そのようなポリイソシアネート化合物の具体例としては、芳香族、脂肪族、或いは脂環式のポリイソシアネート、例えば、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート(以下、「ポリメリックMDI」という)、ヘキサメチレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネートの他、これらの化合物をポリオールと反応させて得られるイソシアネート基を2以上有するプレポリマー等、従来より公知の各種ポリイソシアネートを挙げることが出来、これらは、単独で用いても、或いは2種以上を組み合わせて用いても良い。 On the other hand, in the organic binder for molds according to the present invention, the polyisocyanate compound used as the other main component is subjected to a polyaddition reaction with active hydrogen of a polyol compound such as a phenol resin as described above. It is a compound having in the molecule two or more isocyanate groups capable of chemically bonding foundry sands with urethane bonds such as phenol urethane. Specific examples of such polyisocyanate compounds include aromatic, aliphatic or alicyclic polyisocyanates such as diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanate (hereinafter referred to as “polymeric MDI”), hexamethylene diisocyanate, In addition to 4,4′-dicyclohexylmethane diisocyanate, various conventionally known polyisocyanates such as prepolymers having two or more isocyanate groups obtained by reacting these compounds with polyols can be mentioned. You may use, or may use it in combination of 2 or more types.
 さらに、かかるポリイソシアネート化合物にあっても、上述せる如きフェノール樹脂等のポリオール化合物と同様の理由から、一般に、非極性有機溶剤、又は非極性有機溶剤と極性溶剤との混合溶剤を溶媒として用い、この有機溶媒に、濃度が約40~90質量%程度となるように溶解された溶液として用いられることとなる。なお、使用するポリイソシアネート化合物の種類等によっては、必ずしも、有機溶媒に溶解せしめる必要はなく、その原液のまま、使用することも可能である。以下においては、ポリイソシアネート化合物の原液、及びポリイソシアネート化合物を有機溶媒に溶解せしめてなる溶液を含めて、ポリイソシアネート化合物溶液と呼称する。 Further, even in such a polyisocyanate compound, for the same reason as the polyol compound such as the phenol resin as described above, generally, a nonpolar organic solvent or a mixed solvent of a nonpolar organic solvent and a polar solvent is used as a solvent. It is used as a solution dissolved in this organic solvent so that the concentration is about 40 to 90% by mass. Depending on the type of polyisocyanate compound to be used, it is not always necessary to dissolve it in an organic solvent, and it can be used as it is. Hereinafter, a polyisocyanate compound stock solution and a solution obtained by dissolving a polyisocyanate compound in an organic solvent are referred to as a polyisocyanate compound solution.
 なお、ここにおいて、上述したポリオール化合物やポリイソシアネート化合物を溶解せしめるための有機溶剤としては、ポリイソシアネート化合物には非反応性で、且つ溶解対象である溶質(ポリオール化合物又はポリイソシアネート化合物)に対して良溶媒であれば、特に制限されるものではないものの、一般に、 i)フェノール樹脂等のポリオール化合物を溶解するための極性溶剤と、ii)フェノール樹脂等のポリオール化合物の分離が生じない程度の量のポリイソシアネート化合物を溶解するための非極性溶剤とが組み合わされて、用いられることとなる。 Here, as the organic solvent for dissolving the above-described polyol compound and polyisocyanate compound, the organic solvent is non-reactive with the polyisocyanate compound and is a solute (polyol compound or polyisocyanate compound) to be dissolved. Although it is not particularly limited as long as it is a good solvent, in general, i) an amount that does not cause separation of i) a polar solvent for dissolving a polyol compound such as a phenol resin, and ii) a polyol compound such as a phenol resin. In combination with a non-polar solvent for dissolving the polyisocyanate compound.
 より具体的には、上記した i)の極性溶剤としては、例えば、脂肪族カルボン酸エステル、その中でも、特に、ジカルボン酸メチルエステル混合物(米国デュポン社製;商品名:DBE;グルタル酸ジメチルとアジピン酸ジメチルとコハク酸ジメチルとの混合物)等のジカルボン酸アルキルエステル、菜種油メチルエステル等の植物油のメチルエステルの他、例えば、イソホロン等のケトン類、イソプロピルエーテル等のエーテル類、フルフリルアルコール等を挙げることが出来る。また、上記のii)の非極性溶剤としては、例えば、パラフィン類、ナフテン類、アルキルベンゼン類等の石油系炭化水素類、具体例としては、イプゾール150(出光興産株式会社製;石油系溶剤)、ハイゾール100(JXエネルギー株式会社製;石油系溶剤)、HAWS(シェル・ケミカルズ・ジャパン株式会社製;石油系溶剤)等を例示することが出来る。 More specifically, examples of the polar solvent of i) described above include, for example, aliphatic carboxylic acid esters, in particular, dicarboxylic acid methyl ester mixture (manufactured by DuPont, USA; trade name: DBE; dimethyl glutarate and adipine) In addition to dicarboxylic acid alkyl esters such as dimethyl acid and dimethyl succinate), vegetable oils such as rapeseed oil methyl ester, ketones such as isophorone, ethers such as isopropyl ether, and furfuryl alcohol. I can do it. In addition, as the non-polar solvent of the above ii), for example, petroleum hydrocarbons such as paraffins, naphthenes, and alkylbenzenes, specific examples include Ipsol 150 (manufactured by Idemitsu Kosan Co., Ltd .; petroleum solvent), Hysol 100 (manufactured by JX Energy Co., Ltd .; petroleum solvent), HAWS (manufactured by Shell Chemicals Japan Co., Ltd .; petroleum solvent) and the like can be exemplified.
 そして、本発明にあっては、目的とする鋳型用の有機粘結剤の構成成分として、上記したポリオール化合物とポリイソシアネート化合物に加えて、更に、塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物を、用いることとしたのである。このような特定の反応生成物の存在によって、有機粘結剤を用いて造型される鋳型の強度の向上、特に造型後における鋳型の放置強度の向上を有利に実現せしめ得ると共に、かかる鋳型を保管・放置した場合における外的環境の悪影響、特に高湿度雰囲気下における鋳型強度の低下を効果的に抑制乃至は防止することが出来るのである。即ち、保管・放置中に、鋳型が空気中の湿気を吸収することによって惹起される強度低下を、効率よく改善乃至は防止して、鋳型の耐吸湿劣化特性の向上を図ることが出来る。なお、このような塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物を用いることによって、また、有機粘結剤と鋳物砂とを混練して得られる鋳物砂組成物の可使時間の改善をも有利に図られ得ることとなる。 And in this invention, in addition to the above-mentioned polyol compound and polyisocyanate compound, in addition to the above-described polyol compound and polyisocyanate compound, as a constituent component of the target organic binder for the template, a basic silane compound and an acid or a halide thereof The reaction product was used. The presence of such a specific reaction product can advantageously improve the strength of a mold formed using an organic binder, particularly improve the standing strength of the mold after molding, and store such a mold. -It is possible to effectively suppress or prevent the adverse effect of the external environment when left untreated, especially the decrease in mold strength in a high humidity atmosphere. That is, it is possible to efficiently improve or prevent the strength reduction caused by the mold absorbing moisture in the air during storage and standing, and to improve the moisture absorption resistance deterioration characteristics of the mold. In addition, by using such a reaction product of a basic silane compound and an acid or a halide thereof, the working time of a foundry sand composition obtained by kneading an organic binder and foundry sand can be reduced. Improvements can also be advantageously achieved.
 なお、かかる特定の反応生成物を与える塩基性シラン化合物としては、ケイ素(Si)に対して、アミノ基等の塩基性基を有する有機基が結合してなる構造を有する有機ケイ素化合物であって、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン等のアミノ基を有するアルコキシシランや、更には3-ウレイドプロピルトリアルコキシシラン等のウレイド基を有するシラン化合物等を挙げることが出来る。なお、塩基性シラン化合物の中でも、塩基性アルコキシシランを用いることが好ましく、中でも、アミノ基を有するアルコキシシランがより好ましく、更に好ましくは、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリアルコキシシランが、有利に用いられることとなる。このアミノ基を有するアルコキシシランが最もよい理由としては、その入手が容易であることに加えて、ポリオール化合物や酸若しくはそのハロゲン化物中の水分により、アルコキシ基が加水分解して、水酸基に変化することにより、鋳物砂(骨材等)との接着がより強固になり、高い鋳型強度を発現し得ることとなるからである。 The basic silane compound that gives such a specific reaction product is an organosilicon compound having a structure in which an organic group having a basic group such as an amino group is bonded to silicon (Si). For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltri Methoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-amino Alkoxysilanes having amino groups such as propyltrimethoxysilane, and further 3-ureidopropylto Alkoxysilane compounds having a ureido group such as a silane and the like. Of the basic silane compounds, basic alkoxysilanes are preferably used, and among them, alkoxysilanes having an amino group are more preferable, and N-2- (aminoethyl) -3-aminopropylmethyldimethoxy is more preferable. Silane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-ureidopropyltrialkoxysilane will be advantageously used. The reason why the alkoxysilane having an amino group is the best is that the alkoxy group is hydrolyzed by the water in the polyol compound, acid or halide thereof in addition to being easily available, and changes to a hydroxyl group. This is because adhesion to foundry sand (such as aggregate) becomes stronger and high mold strength can be exhibited.
 また、かくの如き塩基性シラン化合物に反応せしめられる酸若しくはそのハロゲン化物としては、無機酸、有機酸及びそれらのハロゲン化物であって、例えば、塩酸、臭化水素酸、硫酸、硝酸、リン酸、フッ化水素酸、ホウ酸等の無機酸や、ベンゼンスルホン酸、パラトルエンスルホン酸、トリフルオロメタンスルホン酸等の有機スルホン酸類;ギ酸、酢酸、安息香酸等の有機カルボン酸類;有機ホスホン酸類等を挙げることが出来、それらの中でも、塩酸、臭化水素酸、リン酸、フッ化水素酸、ベンゼンスルホン酸、パラトルエンスルホン酸、トリフルオロメタンスルホン酸等が有利に用いられ、特にフッ化水素酸の使用が推奨される。また、ハロゲン化物としては、上記した有機スルホン酸類、有機カルボン酸類、有機ホスホン酸類等の有機酸のハロゲン化物があり、例えば、フェニルホスホン酸ジクロライド、イソフタル酸クロライド、塩化ベンゾイル、カプリル酸クロライド、ラウリン酸クロライド、ミリスチン酸クロライド、パルミチン酸クロライド、イソパルミチン酸クロライド、ステアリン酸クロライド、イソステアリン酸クロライド、オレイン酸クロライド、セバシン酸ジクロライド等を挙げることが出来、その中でも、フェニルホスホン酸ジクロライド、ラウリン酸クロライド等が好適に用いられる。 Examples of the acid or halide thereof that can be reacted with such a basic silane compound include inorganic acids, organic acids, and halides thereof such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid. Inorganic acids such as hydrofluoric acid and boric acid, organic sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid and trifluoromethanesulfonic acid; organic carboxylic acids such as formic acid, acetic acid and benzoic acid; organic phosphonic acids and the like Among them, hydrochloric acid, hydrobromic acid, phosphoric acid, hydrofluoric acid, benzenesulfonic acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid and the like are advantageously used, and particularly hydrofluoric acid. Recommended to use. Examples of the halide include halides of organic acids such as the above organic sulfonic acids, organic carboxylic acids, and organic phosphonic acids. For example, phenylphosphonic acid dichloride, isophthalic acid chloride, benzoyl chloride, caprylic acid chloride, lauric acid. Chloride, myristic acid chloride, palmitic acid chloride, isopalmitic acid chloride, stearic acid chloride, isostearic acid chloride, oleic acid chloride, sebacic acid dichloride, etc., among them, phenylphosphonic acid dichloride, lauric acid chloride, etc. Preferably used.
 さらに、上記した塩基性シラン化合物と酸若しくはそのハロゲン化物との組み合わせとしては、それらの反応生成物を形成し得るものであれば、如何なる組み合わせも、採用可能であるが、好ましい組み合わせとしては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランと塩酸、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランとフッ化水素酸、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランとフェニルホスホン酸ジクロライド等の組み合わせを、挙げることが出来る。また、目的とする反応生成物を得るための塩基性シラン化合物/酸若しくはそのハロゲン化物の使用比率としては、質量基準にて、2/8~8/2、好ましくは3/7~7/3、より好ましくは4/6~6/4の比率が採用されることとなる。 Furthermore, as a combination of the above basic silane compound and an acid or a halide thereof, any combination can be adopted as long as it can form a reaction product thereof. -2- (Aminoethyl) -3-aminopropylmethyldimethoxysilane and hydrochloric acid, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane and hydrofluoric acid, N-2- (aminoethyl) -3 -Combinations of aminopropylmethyldimethoxysilane and phenylphosphonic acid dichloride can be mentioned. The ratio of basic silane compound / acid or halide thereof used to obtain the desired reaction product is 2/8 to 8/2, preferably 3/7 to 7/3 on a mass basis. More preferably, a ratio of 4/6 to 6/4 is adopted.
 そして、かかる塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物の使用量としては、有機粘結剤の構成成分の一つであるポリオール化合物の100質量部に対して、0.1~2.0質量部程度、好ましくは0.2~1.0質量部程度となる割合が、好適に採用されることとなる。なお、そのような反応生成物の使用量が0.1質量部よりも少なくなると、かかる反応生成物の使用による効果が充分に発揮され難くなるようになり、また2.0質量部よりも多くなると、得られる鋳型の充分な強度向上に寄与し難くなる等の問題を生じるようになる。 The use amount of the reaction product of the basic silane compound and the acid or its halide is 0.1 to 100 parts by mass of 100 parts by mass of the polyol compound which is one of the components of the organic binder. A ratio of about 2.0 parts by mass, preferably about 0.2 to 1.0 parts by mass is suitably employed. When the amount of such reaction product used is less than 0.1 parts by mass, the effect of the use of such a reaction product is not sufficiently exhibited, and more than 2.0 parts by mass. As a result, problems such as difficulty in contributing to sufficient improvement in the strength of the obtained mold arise.
 ところで、かくの如き本発明において用いられる特定の反応生成物を製造するに際しては、例えば、プラスチック製の容器中において、所定の塩基性シラン化合物と所定の酸若しくはそのハロゲン化物とを混合して反応せしめることにより、目的とする反応生成物を容易に得ることが出来る。このとき、塩基性シラン化合物と酸若しくはそのハロゲン化物との反応熱を抑えるために、それらのうちの一方に対して冷却、撹拌を行いながら、他方のものを、連続的に、又は断続的に、添加するようにすることにより、急激な反応の進行を阻止するようにすることが望ましい。また、それらの反応に際しては、塩基性シラン化合物に、酸若しくはそのハロゲン化物を添加することにより、反応を進行せしめる場合の他、それとは逆に、酸若しくはそのハロゲン化物に、塩基性シラン化合物を添加するようにすることも可能である。そして、それら塩基性シラン化合物と酸若しくはそのハロゲン化物との反応時の温度としては、80℃以下に抑えることが好ましく、より好ましくは70℃以下、更に好ましくは60℃以下において、反応が進行せしめられる。 By the way, when producing a specific reaction product used in the present invention as described above, for example, a predetermined basic silane compound and a predetermined acid or a halide thereof are mixed and reacted in a plastic container. By causing the reaction, the target reaction product can be easily obtained. At this time, in order to suppress the heat of reaction between the basic silane compound and the acid or its halide, one of them is cooled or stirred while the other is continuously or intermittently. It is desirable to prevent the rapid progress of the reaction by adding them. In addition, in those reactions, in addition to the case where the reaction proceeds by adding an acid or a halide thereof to the basic silane compound, on the contrary, the basic silane compound is added to the acid or the halide thereof. It is also possible to add them. The temperature during the reaction between the basic silane compound and the acid or its halide is preferably 80 ° C. or less, more preferably 70 ° C. or less, and even more preferably 60 ° C. or less. It is done.
 なお、ここで、塩基性シラン化合物又は酸若しくはそのハロゲン化物を、連続的に、又は断続的に、少しずつ添加するとは、その連続的な添加方式においては、一定量を一定のスピードにおいて添加する、一定割合の添加速度にて、反応系に添加する方式が有利に採用され、また断続的な添加方式においては、一定の間隔を空けて、一定量毎において、添加されるようにすることが望ましい。また、かかる間隔を空けた断続的な添加方式においては、例えば、1秒毎に、10秒毎に、或いは1分毎に等のように、時間を決めて一定量投入したり、それを反応系に漸次滴下する方式等も採用可能である。このような方法で、少しずつ添加することにより、反応熱の上昇を有利に防止せしめ、得られる反応生成物の物性の劣化を、効果的に阻止することが可能である。中でも、滴下による方式を採用すれば、反応熱による温度の上昇を、より効果的に抑制することが可能である。 Here, adding a basic silane compound or an acid or a halide thereof little by little continuously or intermittently means that a constant amount is added at a constant speed in the continuous addition method. In addition, a method of adding to the reaction system at a constant rate of addition is advantageously employed, and in the intermittent addition method, it is possible to add at regular intervals and at regular intervals. desirable. In addition, in the intermittent addition method with such an interval, for example, every 1 second, every 10 seconds, every 1 minute, etc., a predetermined amount of time is added or a reaction is made. It is also possible to adopt a method of gradually dropping into the system. By adding little by little by such a method, it is possible to advantageously prevent an increase in the heat of reaction and to effectively prevent deterioration of physical properties of the reaction product obtained. Especially, if the method by dripping is employ | adopted, it is possible to suppress the temperature rise by reaction heat more effectively.
 そして、本発明にあっては、望ましくは、かくの如き塩基性シラン化合物と酸若しくはそのハロゲン化物との反応によって得られる反応生成物が、予め形成された後、そのような反応生成物の形態において、ポリオール化合物やポリイソシアネート化合物と共に用いられて、目的とする有機粘結剤が有利に構成されるのである。このように、塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物を予め形成させておくことにより、酸の如き酸性物質を単独で添加する工程が不要となるために、特に強酸を用いる場合において、鋳物砂組成物を製造する際の安全性が、有利に確保され得ることとなるのである。なお、かかる特定の反応生成物の添加方式が、例示のものに限定されるものでないことは言うまでもないところであり、そのような反応生成物が、有機粘結剤中において、その構成成分として存在し得る形態となるものであれば、それら塩基性シラン化合物や酸若しくはそのハロゲン化物を適宜の形態において、ポリオール化合物やポリイソシアネート化合物に配合せしめることが可能である。 In the present invention, preferably, after a reaction product obtained by the reaction of such a basic silane compound and an acid or a halide thereof is formed in advance, the form of such a reaction product is used. In this case, it is used together with a polyol compound or a polyisocyanate compound to advantageously constitute a target organic binder. In this way, a reaction product of a basic silane compound and an acid or a halide thereof is formed in advance, so that a step of adding an acidic substance such as an acid is not required, and therefore a strong acid is used. In some cases, the safety in producing the foundry sand composition can be advantageously ensured. Needless to say, the method of adding such a specific reaction product is not limited to those exemplified, and such a reaction product exists as a component in the organic binder. As long as it is a form to be obtained, these basic silane compounds, acids or halides thereof can be blended with polyol compounds or polyisocyanate compounds in an appropriate form.
 また、本発明に従う鋳型用有機粘結剤においては、上記したポリオール化合物、ポリイソシアネート化合物及び特定の反応生成物に加えて、更に、高級脂肪酸エステルが、構成成分の一つとして有利に含有せしめられることとなる。この高級脂肪酸エステルの存在により、そのような有機粘結剤を用いて造型された鋳型の強度や吸湿劣化特性が、より向上せしめられ得ると共に、特に、優れた鋳型強度と吸湿劣化特性を維持したまま、鋳物砂との混練によって得られる鋳物砂組成物の可使時間を、効果的に向上させることが可能である。なお、ここで、高級脂肪酸エステルの高級脂肪酸とは、よく知られているように、分子中の炭素原子数が多い脂肪酸であって、一般的に炭素数が12以上の脂肪酸のことを指し、通常、12~30の炭素数を有する脂肪酸、好ましくは14~25、より好ましくは16~20の炭素数を有する脂肪酸が、好適に用いられることとなる。そして、この高級脂肪酸エステルは、一般に、ポリオール化合物の100質量部に対して、一般に、0.1~40質量部、好ましくは0.5~30質量部、更に好ましくは1~20質量部の割合において、用いられるのが望ましく、また、上記したポリイソシアネート化合物溶液に添加されて、用いられるのが、望ましい。この高級脂肪酸エステルの使用量が少なくなると、高級脂肪酸エステルの使用による効果を充分に発揮し難くなるからであり、また、その多過ぎる使用は、鋳物砂組成物の特性や鋳型の特性に悪影響をもたらすようになるからである。 Moreover, in the organic binder for molds according to the present invention, in addition to the above-described polyol compound, polyisocyanate compound and specific reaction product, a higher fatty acid ester is advantageously contained as one of the constituent components. It will be. Due to the presence of this higher fatty acid ester, the strength and moisture absorption deterioration characteristics of a mold molded using such an organic binder can be further improved, and in particular, excellent mold strength and moisture absorption deterioration characteristics are maintained. As it is, it is possible to effectively improve the pot life of the foundry sand composition obtained by kneading with the foundry sand. Here, the higher fatty acid of the higher fatty acid ester, as is well known, refers to a fatty acid having a large number of carbon atoms in the molecule and generally having 12 or more carbon atoms, Usually, fatty acids having 12 to 30 carbon atoms, preferably 14 to 25, more preferably 16 to 20 carbon atoms are suitably used. The higher fatty acid ester is generally in a proportion of generally 0.1 to 40 parts by weight, preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight with respect to 100 parts by weight of the polyol compound. In addition, it is desirable to be used in addition to the polyisocyanate compound solution described above. This is because if the amount of the higher fatty acid ester used is reduced, it is difficult to sufficiently exert the effect of the use of the higher fatty acid ester, and excessive use of the higher fatty acid ester adversely affects the characteristics of the molding sand composition and the mold. Because it comes to bring.
 そして、そのような高級脂肪酸エステルとしては、例えば、ラウリン酸エステル、パルミチン酸エステル、ステアリン酸エステル、イソステアリン酸エステル、ヒドロキシステアリン酸エステル、ミリスチン酸エステル等の飽和脂肪酸エステルや、オレイン酸エステル、リノール酸エステル、リノレン酸エステル、リシノレイン酸エステル等の不飽和脂肪酸エステル等を挙げることが出来る。これらのうちでも、特に、不飽和脂肪酸エステルを用いるのが望ましく、更にはリシノレイン酸エステルが好ましく、中でも、リシノレイン酸とエチレングリコール又はグリセリンとの重縮合物がより好ましく、リシノレイン酸の自己縮合物であることが、更に好ましい。 Examples of such higher fatty acid esters include saturated fatty acid esters such as lauric acid esters, palmitic acid esters, stearic acid esters, isostearic acid esters, hydroxystearic acid esters, and myristic acid esters, oleic acid esters, and linoleic acid. Examples thereof include unsaturated fatty acid esters such as esters, linolenic acid esters, and ricinoleic acid esters. Among these, it is particularly desirable to use an unsaturated fatty acid ester, more preferably a ricinoleic acid ester, more preferably a polycondensate of ricinoleic acid and ethylene glycol or glycerin, and a self-condensate of ricinoleic acid. More preferably it is.
 かくして、本発明に従う鋳型用ウレタン硬化型有機粘結剤は、フェノールウレタンの如きウレタン結合を形成するポリオール化合物とポリイソシアネート化合物に加えて、上述せる如き塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物を、構成成分として含み、更に好ましくは、高級脂肪酸エステルを含んで構成されることとなるのであるが、このような有機粘結剤には、また、必要に応じて、上記した配合成分とは異なる可使時間延長剤(硬化遅延剤)や、離型剤、強度劣化防止剤、乾燥防止剤等の、従来より鋳型用有機粘結剤に使用されている公知の各種の添加剤を、適宜に選択して、配合することも可能である。勿論、それらの各種添加剤は、本発明によって享受され得る効果を阻害しない量的範囲において、使用されるものであることは、言うまでもないところである。なお、それら各種の添加剤のうち、可使時間延長剤(硬化遅延剤)は、ウレタン化反応を抑制し、鋳物砂組成物の可使時間を延長するために用いられるものであり、また離型剤は、造型された鋳型を成形型から抜型する際の抵抗を小さくすると共に、成形型内に吹き込まれて充填された鋳物砂組成物の一部が、鋳型の抜型時に成形型に付着することによって発生するシミツキを防止し、成形面が均一で且つ精度の高い鋳型を得るために用いられるものである。 Thus, the urethane curable organic binder for molds according to the present invention comprises a basic silane compound and an acid or a halide thereof as described above in addition to a polyol compound and a polyisocyanate compound that form a urethane bond such as phenol urethane. The reaction product is included as a constituent component, and more preferably a higher fatty acid ester is included. Such an organic binder may also contain the above-described compounding as necessary. Various known additives conventionally used in organic binders for molds, such as pot life extenders (curing retarders) different from the ingredients, mold release agents, strength deterioration inhibitors, and drying inhibitors Can be appropriately selected and blended. Of course, it goes without saying that these various additives are used within a quantitative range that does not impair the effects that can be enjoyed by the present invention. Among these various additives, the pot life extender (curing retarder) is used to suppress the urethanization reaction and extend the pot life of the casting sand composition. The mold agent reduces resistance when the molded mold is removed from the mold, and part of the foundry sand composition blown and filled in the mold adheres to the mold when the mold is removed. This is used to prevent the occurrence of spotting and to obtain a mold with a uniform molding surface and high accuracy.
 かくの如くして得られる本発明に従う鋳型用ウレタン硬化型有機粘結剤は、従来と同様にして、鋳物砂(耐火性骨材)に混練せしめられて、ウレタン系のガス硬化鋳型を造型するための鋳物砂組成物が、形成されることとなるのである。 The urethane curable organic binder for molds according to the present invention thus obtained is kneaded into foundry sand (refractory aggregate) in the same manner as in the prior art to form a urethane-based gas curable mold. Therefore, the foundry sand composition is to be formed.
 具体的には、例えば、コールドボックス法によるガス硬化鋳型の造型に際して、先ず、鋳物砂(耐火性骨材)に対して、上記した本発明に従う鋳型用有機粘結剤を混練せしめることにより、かかる鋳物砂表面を、鋳型用有機粘結剤で被覆してなる鋳物砂組成物(混練砂)が、製造されるのである。即ち、鋳物砂に対して、有機粘結剤として、ポリオール化合物と、ポリイソシアネート化合物と、塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物と、更に所望の各種添加剤とを、十分に混練、混合することによって、鋳物砂表面に鋳型用有機粘結剤をコーティングして、鋳物砂組成物が製造されることとなる。なお、その際、塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物やその他の各種添加剤は、鋳物砂組成物に対して均一に混合され得るように、別個に調製されたポリオール化合物溶液やポリイソシアネート化合物溶液の何れか一方に、若しくは、その両方に添加されて、混合されるか、或いは、適当な有機溶剤に溶解乃至は分散せしめて、これを、混練時に、ポリオール化合物溶液やポリイソシアネート化合物溶液と共に、鋳物砂に対して混合せしめるか、或いは、フェノール樹脂の如きポリオール化合物の製造時の縮合完了後の如く、形成されたポリオール化合物に、直接に添加して、混合せしめることも可能である。 Specifically, for example, when molding a gas-hardening mold by a cold box method, first, the above-described organic binder for mold according to the present invention is kneaded with foundry sand (fireproof aggregate). A casting sand composition (kneaded sand) is produced by coating the casting sand surface with an organic binder for molds. That is, for the foundry sand, as an organic binder, a polyol compound, a polyisocyanate compound, a reaction product of a basic silane compound and an acid or a halide thereof, and further various desired additives are sufficiently provided. By kneading and mixing, the molding sand composition is produced by coating the molding sand surface with the organic binder for casting. At this time, the reaction product of the basic silane compound and the acid or its halide and other various additives are separately prepared so that the compound can be uniformly mixed with the foundry sand composition. It is added to or mixed with one or both of the solution and the polyisocyanate compound solution, or dissolved or dispersed in an appropriate organic solvent, and this is mixed with a polyol compound solution or It can be mixed with the polyisocyanate compound solution into the foundry sand, or it can be added directly to the formed polyol compound and mixed, such as after completion of the condensation during the production of the polyol compound such as phenol resin. Is possible.
 特に、本発明にあっては、塩基性シラン化合物と酸若しくはそのハロゲン化物とを反応せしめて得られる特定の反応生成物は、別個に調製されたポリオール化合物の溶液に添加せしめられるようにすることが、望ましい。具体的には、本発明に従う鋳型用有機粘結剤を、ポリオール化合物を含むA液(ポリオール化合物溶液)とポリイソシアネート化合物を含むB液(ポリイソシアネート化合物溶液)との二液にて構成すると共に、かかるA液に、該特定の反応生成物が含有せしめられるようにするのである。このような特定の反応生成物をA液中に含有せしめることによって、本発明の有機粘結剤を用いて造型される鋳型の強度の向上、特に造型後における鋳型の放置強度の向上を有利に実現せしめ得ると共に、かかる鋳型を、保管・放置した場合における外的環境の悪影響、特に高湿度雰囲気下における鋳型強度の低下を効果的に抑制乃至は防止することが出来るのである。即ち、保管・放置中に、鋳型が空気中の湿気を吸収することによって惹起される強度低下を、効率よく改善乃至は防止して、鋳型の耐吸湿劣化特性の向上を図ることが出来る。また、そのような特定の反応生成物を用いることによって、有機粘結剤と鋳物砂とを混練して得られる鋳物砂組成物の可使時間の改善をも有利に図られ得ることとなる。なお、そのような特定の反応生成物を、ポリイソシアネート化合物を主成分とするB液に含有せしめる(添加する)と、かかる反応生成物とポリイソシアネート化合物とが反応し、上記した種々の効果を有利に享受することが出来なくなる恐れがある。 In particular, in the present invention, a specific reaction product obtained by reacting a basic silane compound with an acid or a halide thereof is added to a separately prepared solution of a polyol compound. Is desirable. Specifically, the organic binder for a mold according to the present invention is composed of two liquids, a liquid A containing a polyol compound (polyol compound solution) and a liquid B containing a polyisocyanate compound (polyisocyanate compound solution). The solution A is made to contain the specific reaction product. By incorporating such a specific reaction product in the liquid A, it is advantageous to improve the strength of the mold molded using the organic binder of the present invention, particularly to improve the standing strength of the mold after molding. In addition to being able to achieve this, it is possible to effectively suppress or prevent adverse effects of the external environment when such a mold is stored and left, particularly a decrease in mold strength in a high humidity atmosphere. That is, it is possible to efficiently improve or prevent the strength reduction caused by the mold absorbing moisture in the air during storage and standing, and to improve the moisture absorption resistance deterioration characteristics of the mold. Further, by using such a specific reaction product, it is possible to advantageously improve the pot life of the foundry sand composition obtained by kneading the organic binder and the foundry sand. In addition, when such a specific reaction product is contained (added) in the B liquid mainly composed of a polyisocyanate compound, the reaction product reacts with the polyisocyanate compound, and the various effects described above are obtained. There is a risk that you will not be able to enjoy it.
 なお、本発明にあっては、かかる特定の反応生成物のA液に対する添加方式が、例示のものに限定されるものでないことは言うまでもないところであり、そのような反応生成物が、A液(ポリオール化合物を主成分とする溶液)中において、その構成成分として存在し得る形態となるものであれば、塩基性シラン化合物や酸若しくはそのハロゲン化物を適宜の形態において、A液中に配合せしめることが可能である。また、予め形成された特定の反応生成物をA液に添加するに際しては、水分量が0.2~99.5質量%、好ましくは0.5~50質量%、更に好ましくは1~25質量%である反応生成物が、適宜に調製されて、A液(ポリオール化合物を主成分とする溶液)に添加されることとなる。 In addition, in this invention, it cannot be overemphasized that the addition system with respect to A liquid of this specific reaction product is not what is limited to the thing of an illustration, and such reaction product is liquid A ( In a solution containing a polyol compound as a main component, a basic silane compound, an acid, or a halide thereof may be added to the liquid A in an appropriate form as long as it can be present as a constituent component. Is possible. In addition, when the specific reaction product formed in advance is added to the liquid A, the water content is 0.2 to 99.5% by mass, preferably 0.5 to 50% by mass, more preferably 1 to 25% by mass. % Of the reaction product is appropriately prepared and added to the liquid A (solution containing a polyol compound as a main component).
 そして、本発明において、ポリオール化合物を主成分とするA液に、上述の如き特定の反応生成物を含有せしめる場合において、A液中の水分含有量が0.1~15質量%となるように調整することが大切である。有機粘結剤を構成するA液中の水分含有量を所定の割合とすることによって、上述した本発明の効果(鋳型の放置強度の向上、鋳型の耐吸湿特性の向上、鋳物砂組成物における可使時間の改善)をより有利に享受することが可能となる。本発明におけるA液中の水分含有量は、0.1~15質量%、好ましくは0.15~10質量%、更に好ましくは0.2~6質量%とされる。 In the present invention, when the specific reaction product as described above is contained in the liquid A mainly composed of a polyol compound, the water content in the liquid A is 0.1 to 15% by mass. It is important to adjust. By setting the water content in the liquid A constituting the organic binder to a predetermined ratio, the effects of the present invention described above (improvement of the standing strength of the mold, improvement of the moisture absorption resistance of the mold, and the molding sand composition) (Improvement of pot life) can be enjoyed more advantageously. In the present invention, the water content in the liquid A is 0.1 to 15% by mass, preferably 0.15 to 10% by mass, and more preferably 0.2 to 6% by mass.
 ところで、上述せる如き鋳物砂組成物を製造する際に、有機粘結剤を構成するポリオール化合物溶液とポリイソシアネート化合物溶液とは、それらを混合した段階から、徐々に重付加反応(ウレタン化反応)が進行するようになるところから、予め、別々に調製されて準備され、通常、鋳物砂との混練時に混合されることとなる。なお、その混練・混合操作は、従来と同様な連続式乃至はバッチ式ミキサーを用いて、好適には、-10℃~50℃の範囲の温度下において行われることとなる。 By the way, when manufacturing the foundry sand composition as described above, the polyol compound solution and the polyisocyanate compound solution constituting the organic binder are gradually polyaddition reaction (urethanization reaction) from the stage of mixing them. Therefore, it is prepared separately and prepared in advance, and usually mixed at the time of kneading with foundry sand. The kneading / mixing operation is preferably performed at a temperature in the range of −10 ° C. to 50 ° C. using a continuous or batch mixer similar to the conventional one.
 また、このような本発明に従う鋳型用有機粘結剤と混練せしめられる鋳物砂(耐火性骨材)としては、従来より鋳型用として用いられている耐火性のものであれば、天然砂であっても、人工砂であっても、何等差し支えなく、特に制限されるものではない。例えば、ケイ砂、オリビンサンド、ジルコンサンド、クロマイトサンド、アルミナサンド、フェロクロム系スラグ、フェロニッケル系スラグ、転炉スラグ、ムライト系人工粒子(例えば、伊藤忠セラテック株式会社から入手することの出来る商品名「セラビーズ」)やアルミナ系人工粒子、その他各種の人工粒子、及びこれらの再生砂や回収砂が挙げられ、これらのうちの1種、或いは2種以上が組み合わされて用いられ得るものである。なお、これらの中でも、シリカ分の高い天然ケイ砂(再生砂を含む)が、より一層好適に採用されることとなる。 The foundry sand (fire-resistant aggregate) kneaded with the organic binder for molds according to the present invention is natural sand as long as it is a fire-resistant one conventionally used for molds. Even artificial sand is not particularly limited. For example, silica sand, olivine sand, zircon sand, chromite sand, alumina sand, ferrochrome slag, ferronickel slag, converter slag, mullite artificial particles (for example, trade names “available from ITOCHU CERATECH CORPORATION” Cerabeads ”), alumina-based artificial particles, other various artificial particles, and regenerated sand and recovered sand thereof, and one or a combination of two or more of these can be used. Of these, natural silica sand (including reclaimed sand) having a high silica content is more suitably employed.
 そして、上述の如くして得られた鋳物砂組成物を、所望とする形状を与える成形キャビティを有する金型の如き成形型内で賦形した後、これに対して、硬化のための触媒ガスを通気することにより、鋳物砂組成物の硬化が促進せしめられて、ガス硬化鋳型が製造されることとなるのである。なお、触媒ガスとしては、トリエチルアミン、ジメチルエチルアミン、ジメチルイソプロピルアミン等の、従来から公知の第三級アミンガスの他、ピリジン、N-エチルモルホリン等の環状窒素化合物を例示することが出来、それらのうちの少なくとも1種が適宜に選択されて、通常の量的範囲において用いられることとなる。 The casting sand composition obtained as described above is shaped in a mold such as a mold having a molding cavity that gives a desired shape, and then a catalyst gas for curing is formed. By aeration, the curing of the foundry sand composition is promoted and a gas curing mold is produced. Examples of the catalyst gas include conventionally known tertiary amine gases such as triethylamine, dimethylethylamine, dimethylisopropylamine, and cyclic nitrogen compounds such as pyridine and N-ethylmorpholine. At least one of these is appropriately selected and used in a normal quantitative range.
 また、常温自硬性法によって、目的とする自硬性鋳型を造型するに際しても、上記したガス硬化鋳型の場合と同様に、先ず、鋳物砂表面を有機粘結剤で被覆してなる鋳物砂組成物が、製造されることとなるのであるが、その際、常温自硬性法に用いられる鋳物砂組成物には、混練時に、本発明に従う有機粘結剤と共に、更に硬化触媒が混入せしめられることとなる。なお、この硬化触媒としては、公知のアシュランド法において通常使用される塩基、アミン、金属イオン等を挙げることが出来る。 In addition, when molding a target self-hardening mold by a room temperature self-hardening method, as in the case of the above-described gas-curing mold, first, a casting sand composition in which the surface of the casting sand is coated with an organic binder. However, at that time, the molding sand composition used in the room temperature self-hardening method is further mixed with a curing catalyst together with the organic binder according to the present invention at the time of kneading. Become. Examples of the curing catalyst include bases, amines, metal ions and the like that are usually used in the known Ashland method.
 さらに、上記したガス硬化鋳型や自硬性鋳型を与える鋳物砂組成物の調製に際して、ポリオール化合物溶液やポリイソシアネート化合物溶液の配合量としては、それぞれ、有効成分であるポリオール化合物及びポリイソシアネート化合物の配合量が、鋳物砂の100質量部に対して、それぞれ、0.5~5.0質量部程度、好ましくは1.0~3.0質量部程度となる割合が、好適に採用されることとなる。また、ポリオール化合物とポリイソシアネート化合物の配合比率としては、特に限定されるものではないものの、一般に、質量基準で、ポリオール化合物:ポリイソシアネート化合物=4:6~6:4となるように、ポリオール化合物溶液やポリイソシアネート化合物溶液が組み合わされて、用いられることとなる。 Furthermore, in the preparation of the foundry sand composition that gives the gas-curing mold and the self-hardening mold, the blending amounts of the polyol compound solution and the polyisocyanate compound solution are the blending amounts of the polyol compound and the polyisocyanate compound, which are active ingredients, respectively. However, a ratio of about 0.5 to 5.0 parts by mass, preferably about 1.0 to 3.0 parts by mass, with respect to 100 parts by mass of the foundry sand is suitably employed. . Further, the mixing ratio of the polyol compound and the polyisocyanate compound is not particularly limited, but in general, the polyol compound: polyisocyanate compound = 4: 6 to 6: 4 on a mass basis. A solution or a polyisocyanate compound solution is used in combination.
 かくして、上述せる如くして造型されたガス硬化鋳型や自硬性鋳型にあっては、その強度が効果的に向上せしめられ、更に、その強度の耐吸湿劣化特性が高められ得た結果、アルミニウム合金やマグネシウム合金、鉄等の各種金属からなる鋳物製品の鋳造に、有利に用いられ得ることとなったのである。 Thus, in the case of a gas-curing mold and a self-hardening mold formed as described above, the strength can be effectively improved, and further, the moisture absorption deterioration resistance characteristic of the strength can be enhanced. Therefore, it can be advantageously used for casting casting products made of various metals such as magnesium alloy and iron.
 以下に、本発明の代表的な実施例を幾つか示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等が加えられ得るものであることが、理解されるべきである。 In the following, some typical embodiments of the present invention will be shown to clarify the present invention more specifically. However, the present invention is not restricted by the description of such embodiments. It goes without saying that it is not a thing. In addition to the following examples, the present invention includes various changes and modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention, in addition to the specific description described above. It should be understood that improvements and the like can be added.
 また、以下の実施例や比較例において調製された有機粘結剤を用いて得られた鋳物砂組成物から造型された鋳型の強度の測定、また鋳型の吸湿劣化後の強度の測定、更にそのような鋳物砂組成物の可使時間の評価、そして有機粘結剤を構成するA液中の水分含有量の測定は、それぞれ、以下のようにして行った。 Further, the measurement of the strength of the mold formed from the molding sand composition obtained using the organic binder prepared in the following Examples and Comparative Examples, the measurement of the strength after the moisture absorption deterioration of the mold, and further Evaluation of the pot life of such a casting sand composition and measurement of the water content in the liquid A constituting the organic binder were carried out as follows.
(1)鋳型強度の測定
 コールドボックス造型機のサンドマガジン内に、混練後の鋳物砂組成物を投入した後、この鋳物砂組成物を、曲げ強度試験片作製用金型内に、ゲージ圧:0.3MPaで充填する。次いで、かかる金型内に、ガスジェネレータにより、ゲージ圧:0.2MPaで1秒間、トリエチルアミンガスを通気した後、ゲージ圧:0.2MPaで14秒間、エアーパージし、更にその後、抜型して、幅:30mm×長さ:85mm×厚み:10mmの曲げ試験片(鋳型)を作製する。そして、その得られた試験片を、 i)その造型直後に、及びii)気温:25℃、相対湿度:50%の常温常湿下において、24時間放置した後に、デジタル鋳物砂強度試験機(高千穂精機株式会社製)により、それぞれ、その曲げ強度(kgf/cm2 )を測定する。
(1) Measurement of mold strength After the kneaded foundry sand composition was put into a sand magazine of a cold box molding machine, the foundry sand composition was put into a bending strength test piece preparation mold with a gauge pressure: Fill with 0.3 MPa. Next, after a triethylamine gas was aerated with a gas generator at a gauge pressure of 0.2 MPa for 1 second in the mold, air purge was performed at a gauge pressure of 0.2 MPa for 14 seconds, and then the mold was removed, A bending test piece (mold) of width: 30 mm × length: 85 mm × thickness: 10 mm is prepared. The obtained test piece was left standing for 24 hours under the conditions of i) immediately after the molding and ii) normal temperature and humidity of air temperature: 25 ° C. and relative humidity: 50%. The bending strength (kgf / cm 2 ) of each is measured by Takachiho Seiki Co., Ltd.).
(2)吸湿劣化後の鋳型強度の測定
 上記の鋳型強度の測定の場合と同様にして、それぞれの鋳物砂組成物から試験片を作製した後、その得られた試験片(鋳型)を、気温:10℃、相対湿度:90%の密閉容器内に、120分間或いは24時間放置し、更にその後、デジタル鋳物砂強度試験機(高千穂精機株式会社製)を用いて、曲げ強度(kgf/cm2 )を測定する。
(2) Measurement of mold strength after moisture absorption deterioration In the same manner as the measurement of mold strength described above, after preparing a test piece from each casting sand composition, the obtained test piece (mold) is : 10 ° C, relative humidity: 90% in a sealed container for 120 minutes or 24 hours, and then bending strength (kgf / cm 2 ) using a digital foundry sand strength tester (manufactured by Takachiho Seiki Co., Ltd.) ).
(3)鋳物砂組成物の可使時間の評価
 上記の鋳型強度の測定の場合と同様にして、それぞれの鋳物砂組成物から試験片を作製するに際して、鋳物砂としての遠州再生砂又はフラタリー砂と、有機粘結剤(フェノール樹脂溶液+反応生成物+ポリイソシアネート化合物溶液)との混練により、調製される鋳物砂組成物について、その混練後、直ちに造型を行い(混練後待機時間:0分)、その得られた試験片と、混練後120分経過後に造型を行い(混練後待機時間:120分)、その得られた試験片について、それぞれの強度を、鋳型強度として測定し、それら二つの鋳型強度の値を比較することにより、可使時間の評価を行う。
(3) Evaluation of pot life of foundry sand composition When producing test pieces from the respective foundry sand compositions in the same manner as in the measurement of mold strength, Enshu reclaimed sand or flattery sand as foundry sand And a molding sand composition prepared by kneading with an organic binder (phenol resin solution + reaction product + polyisocyanate compound solution), immediately after the kneading, molding is performed (wait time after kneading: 0 minutes) ), Molding was performed after 120 minutes after kneading (standby time after kneading: 120 minutes), and the strength of each of the obtained test pieces was measured as mold strength. The pot life is evaluated by comparing two mold strength values.
(4)A液中の水分含有量の測定
 JIS-K-0113:2005に規定されるカール・フィッシャー滴定に従い、平沼産業株式会社製の水分測定装置(商品名:AQV-7 )を用いて、有機粘結剤を構成するA液中の水分含有量を測定した。
(4) Measurement of water content in liquid A In accordance with Karl Fischer titration specified in JIS-K-0113: 2005, using a moisture measuring device (trade name: AQV-7) manufactured by Hiranuma Sangyo Co., Ltd. The water content in the liquid A constituting the organic binder was measured.
-フェノール樹脂溶液の調製(1)-
 還流器、温度計及び撹拌機を備えた三つ口反応フラスコ内に、フェノールの100質量部、92質量%パラホルムアルデヒドの55.5質量部及び二価金属塩としてナフテン酸亜鉛の0.2質量部を仕込み、還流温度で90分間反応を行った後、加熱濃縮して、水分含有率が1%以下のベンジルエーテル型のフェノール樹脂を得た。次いで、その得られたフェノール樹脂の100質量部を、極性有機溶剤(DBE:米国デュポン社製)の36質量部及び非極性有機溶剤(ハイゾール100:JXエネルギー株式会社製)の61質量部を用いて溶解せしめて、フェノール樹脂分が約51質量%のフェノール樹脂溶液を調製した。
-Preparation of phenol resin solution (1)-
In a three-necked reaction flask equipped with a reflux, a thermometer and a stirrer, 100 parts by mass of phenol, 55.5 parts by mass of paraformaldehyde of 92% by mass, and 0.2 mass of zinc naphthenate as a divalent metal salt Then, the mixture was reacted at the reflux temperature for 90 minutes and then concentrated by heating to obtain a benzyl ether type phenol resin having a water content of 1% or less. Next, 100 parts by mass of the obtained phenol resin was used with 36 parts by mass of a polar organic solvent (DBE: manufactured by DuPont, USA) and 61 parts by mass of a nonpolar organic solvent (Hysol 100: manufactured by JX Energy Co., Ltd.). Then, a phenol resin solution having a phenol resin content of about 51% by mass was prepared.
-フェノール樹脂溶液の調製(2)-
 還流器、温度計及び撹拌機を備えた三つ口反応フラスコ内に、フェノールの50質量部及びオルソクレゾールの50質量部(フェノール/オルソクレゾール=50/50)と、92質量%パラホルムアルデヒドの51.9質量部及び二価金属塩としてナフテン酸亜鉛の0.15質量部を仕込み、還流温度で90分間反応を行った後、加熱濃縮して、水分含有量が1%以下のオルソクレゾール変性ベンジルエーテル型のフェノール樹脂を得た。次いで、その得られたオルソクレゾール変性フェノール樹脂の100質量部を、極性有機溶剤(DBE:米国デュポン社製)の36質量部及び非極性有機溶剤(ハイゾール100:JXエネルギー株式会社製)の61質量部を用いて溶解せしめて、フェノール樹脂分が約51質量%のフェノール樹脂溶液を調製した。
-Preparation of phenol resin solution (2)-
In a three-necked reaction flask equipped with a reflux, a thermometer and a stirrer, 50 parts by mass of phenol and 50 parts by mass of orthocresol (phenol / orthocresol = 50/50) and 51% by mass of paraformaldehyde of 92% by mass .9 parts by mass and 0.15 parts by mass of zinc naphthenate as a divalent metal salt were reacted at the reflux temperature for 90 minutes, and then concentrated by heating to give orthocresol-modified benzyl having a water content of 1% or less. An ether type phenolic resin was obtained. Next, 100 parts by mass of the obtained ortho-cresol-modified phenol resin was replaced with 36 parts by mass of a polar organic solvent (DBE: manufactured by DuPont, USA) and 61 parts by mass of a nonpolar organic solvent (Hysol 100: manufactured by JX Energy Co., Ltd.). A phenol resin solution having a phenol resin content of about 51% by mass was prepared by dissolving using a part.
-フェノール樹脂溶液の調製(3)-
 還流器、温度計及び撹拌機を備えた三つ口反応フラスコ内に、フェノールの100質量部、92質量%パラホルムアルデヒドの55.5質量部及び二価金属塩としてナフテン酸亜鉛の0.2質量部を仕込み、還流温度で90分間反応を行った後、加熱濃縮して、水分含有率が1%以下のベンジルエーテル型のフェノール樹脂を得た。次いで、その得られたフェノール樹脂の52.0質量部を、極性有機溶剤(DBE:米国デュポン社製)の10.0質量部及び非極性有機溶剤(イプゾール150:出光興産株式会社製)の38.0質量部を用いて溶解せしめて、フェノール樹脂分が52.0質量%のフェノール樹脂溶液を調製した。
-Preparation of phenol resin solution (3)-
In a three-necked reaction flask equipped with a reflux, a thermometer and a stirrer, 100 parts by mass of phenol, 55.5 parts by mass of paraformaldehyde of 92% by mass, and 0.2 mass of zinc naphthenate as a divalent metal salt Then, the mixture was reacted at the reflux temperature for 90 minutes and then concentrated by heating to obtain a benzyl ether type phenol resin having a water content of 1% or less. Next, 52.0 parts by mass of the obtained phenolic resin was mixed with 10.0 parts by mass of a polar organic solvent (DBE: manufactured by DuPont, USA) and 38 of a nonpolar organic solvent (Ipsol 150: manufactured by Idemitsu Kosan Co., Ltd.). 0.0 part by mass was dissolved to prepare a phenol resin solution having a phenol resin content of 52.0% by mass.
-フェノール樹脂溶液の調製(4)-
 還流器、温度計及び撹拌機を備えた三つ口反応フラスコ内に、フェノールの50質量部及びオルソクレゾールの50質量部(フェノール/オルソクレゾール=50/50)と、92質量%パラホルムアルデヒドの51.9質量部及び二価金属塩としてナフテン酸亜鉛の0.15質量部を仕込み、還流温度で90分間反応を行った後、加熱濃縮して、水分含有量が1%以下のオルソクレゾール変性ベンジルエーテル型のフェノール樹脂を得た。次いで、その得られたオルソクレゾール変性フェノール樹脂の52.0質量部を、極性有機溶剤(DBE:米国デュポン社製)の10.0質量部及び非極性有機溶剤(イプゾール150:出光興産株式会社製)の38.0質量部を用いて溶解せしめて、フェノール樹脂分が52.0質量%のフェノール樹脂溶液を調製した。
-Preparation of phenol resin solution (4)-
In a three-necked reaction flask equipped with a reflux, a thermometer and a stirrer, 50 parts by mass of phenol and 50 parts by mass of orthocresol (phenol / orthocresol = 50/50) and 51% by mass of paraformaldehyde of 92% by mass .9 parts by mass and 0.15 parts by mass of zinc naphthenate as a divalent metal salt were reacted at the reflux temperature for 90 minutes, and then concentrated by heating to give orthocresol-modified benzyl having a water content of 1% or less. An ether type phenolic resin was obtained. Next, 52.0 parts by mass of the obtained ortho-cresol-modified phenol resin was mixed with 10.0 parts by mass of a polar organic solvent (DBE: manufactured by DuPont, USA) and a nonpolar organic solvent (Ipsol 150: manufactured by Idemitsu Kosan Co., Ltd.). ) 38.0 parts by mass to prepare a phenol resin solution having a phenol resin content of 52.0% by mass.
-ポリイソシアネート化合物溶液の調製(1)-
 ポリイソシアネート化合物であるポリメリックMDIの146質量部を、非極性有機溶剤(イプゾール150:出光興産株式会社製)の38.24質量部を用いて溶解すると共に、そこに、ポリメリックMDI量の0.93質量%のイソフタル酸クロライドを加えて、ポリイソシアネート化合物が約79質量%のポリイソシアネート化合物溶液を調製した。
-Preparation of polyisocyanate compound solution (1)-
While dissolving 146 mass parts of polymeric MDI which is a polyisocyanate compound using 38.24 mass parts of a nonpolar organic solvent (Ipsol 150: made by Idemitsu Kosan Co., Ltd.), 0.93 of polymeric MDI amount was added there. A polyisocyanate compound solution containing about 79% by mass of a polyisocyanate compound was prepared by adding mass% of isophthalic acid chloride.
-ポリイソシアネート化合物溶液の調製(2)-
 ポリイソシアネート化合物であるポリメリックMDIの78.0質量部を、非極性有機溶剤(イプゾール150)の22.0質量部を用いて溶解すると共に、そこに、反応遅延剤(イソフタル酸クロライド)の0.3質量部を加えて、ポリイソシアネート化合物が78.0質量%のポリイソシアネート化合物溶液を調製した。
-Preparation of polyisocyanate compound solution (2)-
78.0 parts by mass of polymeric MDI, which is a polyisocyanate compound, was dissolved using 22.0 parts by mass of a nonpolar organic solvent (Ipsol 150), and 0. 2 of a reaction retarder (isophthalic acid chloride) was added thereto. 3 mass parts was added and the polyisocyanate compound solution whose polyisocyanate compound is 78.0 mass% was prepared.
-塩基性シラン化合物と酸/ハロゲン化物との反応生成物の形成-
 塩基性シラン化合物として、3-アミノプロピルトリエトキシシラン(KBE903)又はN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(KBM602)を用い、また酸若しくはそのハロゲン化物としては、下記表1及び表2に示される所定の化合物をそれぞれ用いて、下記表1及び表2に示される割合において、60℃以下の温度下で、撹拌しながら、塩基性シラン化合物中に、上記所定の酸若しくはそのハロゲン化物を少しずつ滴下して反応させることにより、下表1,2に示される反応生成物A~Tを、それぞれ、製造した。
-Formation of reaction products between basic silane compounds and acids / halides-
As the basic silane compound, 3-aminopropyltriethoxysilane (KBE903) or N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (KBM602) is used, and the acid or its halide is shown in the following table. Using the predetermined compounds shown in Tables 1 and 2 respectively, in the ratios shown in Tables 1 and 2 below, the basic acid silane compound was stirred in the basic silane compound at a temperature of 60 ° C. or lower. Alternatively, the reaction products A to T shown in Tables 1 and 2 below were prepared by reacting the halides dropwise thereto.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例1~20)
 先ず、上記のフェノール樹脂溶液の調製(1)で調製されたフェノール樹脂溶液の197質量部に対して、所定の塩基性シラン化合物と酸若しくはそのハロゲン化物とを予め反応させて準備された反応生成物A~Tを、それぞれ、下記表3及び表4に示される割合において添加して、撹拌することにより、均一に混合せしめた。次いで、ダルトン株式会社製品川式卓上ミキサー内に、遠州再生砂を投入すると共に、その1000質量部に対して、上記のフェノール樹脂溶液と反応生成物A~Tのそれぞれの混合物と、上記のポリイソシアネート化合物溶液の調製(1)で調製されたポリイソシアネート化合物溶液とを、それぞれ、10質量部投入し、60秒間撹拌して、混練することにより、鋳物砂組成物を調製した。そして、その得られた各種の鋳物砂組成物を用いて、それぞれの試験片(鋳型)を作製して、上記の測定法に従って、造型直後、及び造型24時間後の鋳型強度(kgf/cm2 )及び造型後120分間の吸湿劣化後の鋳型強度(kgf/cm2 )を、それぞれ測定して、その得られた結果を、下記表3及び表4に示した。
(Examples 1 to 20)
First, the reaction product prepared by previously reacting 197 parts by mass of the phenol resin solution prepared in the preparation (1) of the phenol resin solution with a predetermined basic silane compound and an acid or a halide thereof. Products A to T were added in the proportions shown in Tables 3 and 4 below, and stirred to mix uniformly. Next, the Enshu reclaimed sand is put into Dalton Co., Ltd. product type river table mixer, and the mixture of the above phenol resin solution and reaction products A to T with respect to 1000 parts by mass thereof, and the above poly Casting sand composition was prepared by adding 10 parts by mass of the polyisocyanate compound solution prepared in Preparation (1) of isocyanate compound solution, stirring for 60 seconds, and kneading. And each test piece (mold) was produced using the obtained various foundry sand compositions, and according to the above measurement method, the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding. ) And mold strength (kgf / cm 2 ) after moisture absorption deterioration for 120 minutes after molding were measured, and the obtained results are shown in Tables 3 and 4 below.
(実施例21)
 実施例18において、ポリオール化合物として、上記のフェノール樹脂溶液の調製(2)で調製されたオルソクレゾール変性フェノール樹脂の溶液を用いることとしたこと以外は、かかる実施例18と同様にして、鋳物砂組成物を調製し、そして、その得られた鋳物砂組成物から造型された試験片(鋳型)について、上記した測定法に従って、造型直後、及び造型24時間後の鋳型強度(kgf/cm2 )及び造型後120分間の吸湿劣化後の鋳型強度(kgf/cm2 )を、それぞれ測定して、その得られた結果を、下記表4に示した。
(Example 21)
In Example 18, foundry sand was obtained in the same manner as in Example 18 except that the solution of the ortho-cresol-modified phenol resin prepared in the preparation (2) of the phenol resin solution was used as the polyol compound. A composition was prepared, and a test piece (mold) formed from the obtained foundry sand composition was subjected to the above-described measurement method, and the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding. The mold strength (kgf / cm 2 ) after moisture absorption deterioration for 120 minutes after molding was measured, and the obtained results are shown in Table 4 below.
(比較例1~2)
 実施例1~20における反応生成物に代えて、塩基性シラン化合物(KBM602又はKBE903)のみを、0.6質量部用いることとしたこと以外は、それら実施例と同様にして、鋳物砂組成物を調製し、そして、その得られた鋳物砂組成物から造型された試験片(鋳型)について、上記した測定法に従って、造型直後、及び造型24時間後の鋳型強度(kgf/cm2 )及び造型後120分間の吸湿劣化後の鋳型強度(kgf/cm2 )を測定し、その得られた結果を、下記表5に示した。
(Comparative Examples 1 and 2)
Foundry sand composition in the same manner as in these examples except that only 0.6 parts by mass of the basic silane compound (KBM602 or KBE903) was used instead of the reaction product in Examples 1-20. In accordance with the measurement method described above, the mold strength (kgf / cm 2 ) and the mold strength immediately after molding and after 24 hours of molding were prepared for the test piece (mold) molded from the obtained foundry sand composition. Thereafter, the mold strength (kgf / cm 2 ) after moisture absorption deterioration for 120 minutes was measured, and the obtained results are shown in Table 5 below.
(比較例3~8)
 実施例1~20における反応生成物に代えて、酸若しくはそのハロゲン化物を単独にて0.4質量部用いたこと以外は、それら実施例と同様にして、鋳物砂組成物を調製し、更にその鋳物砂組成物から得られた試験片(鋳型)について、上記した測定法に従って、造型直後、及び造型24時間後の鋳型強度(kgf/cm2 )及び造型後120分間の吸湿劣化後の鋳型強度(kgf/cm2 )を測定して、その結果を、下記表5に示した。
(Comparative Examples 3 to 8)
A casting sand composition was prepared in the same manner as in these examples except that 0.4 parts by mass of an acid or a halide thereof was used alone instead of the reaction product in Examples 1 to 20, and About the test piece (mold) obtained from the foundry sand composition, according to the measurement method described above, the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding and the mold after moisture absorption deterioration for 120 minutes after molding. The strength (kgf / cm 2 ) was measured, and the results are shown in Table 5 below.
(比較例9)
 実施例1~20において、塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物A~Tを添加しないこと以外は、それら実施例と同様にして、鋳物砂組成物を調製した後、その鋳物砂組成物から造型された試験片(鋳型)について、上記した測定法に従って、造型直後、及び造型24時間後の鋳型強度(kgf/cm2 )及び造型後120分間の吸湿劣化後の鋳型強度(kgf/cm2 )を、それぞれ測定し、その結果を、下記表5に示した。
(Comparative Example 9)
In Examples 1 to 20, a casting sand composition was prepared in the same manner as in Examples except that reaction products A to T of a basic silane compound and an acid or a halide thereof were not added. For a test piece (mold) molded from a foundry sand composition, according to the measurement method described above, mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding, and mold strength after moisture absorption deterioration for 120 minutes after molding. (Kgf / cm 2 ) was measured, and the results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 かかる表3乃至表5における結果の対比から明らかなように、所定のフェノール樹脂及びポリイソシアネートと共に、本発明に従って、塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物を、構成成分として更に含有せしめてなる実施例1~21において得られた有機粘結剤を用いて、鋳物砂組成物を調製し、更に、それから造型して得られた鋳型(試験片)にあっては、通常の湿度環境下における鋳型強度は勿論、高湿度下での吸湿劣化後における鋳型強度においても、優れた特性を有していることが、認められるのである。また、それら実施例の中でも、実施例21においては、フェノール樹脂としてオルソクレゾール変性フェノール樹脂が用いられているところから、鋳型強度が更に向上せしめられており、耐吸湿劣化特性もより一層優れたものとなっている。 As apparent from the comparison of the results in Tables 3 to 5, according to the present invention, a reaction product of a basic silane compound and an acid or a halide thereof is further added as a constituent component together with a predetermined phenol resin and polyisocyanate. In the mold (test piece) obtained by preparing a molding sand composition using the organic binder obtained in Examples 1 to 21 to be contained, and then molding the composition, a conventional molding sand composition is used. It is recognized that the mold has excellent properties not only in the mold strength under the humidity environment but also in the mold strength after the moisture absorption deterioration under the high humidity. Among these examples, in Example 21, since ortho-cresol-modified phenol resin is used as the phenol resin, the mold strength is further improved, and the moisture absorption resistance is further improved. It has become.
 これに対して、そのような反応生成物が添加されていない比較例9における有機粘結剤や、塩基性シラン化合物単独又は酸若しくはそのハロゲン化物単独において添加されてなる比較例1~8における有機粘結剤を用いて得られる鋳型(試験片)においては、通常の湿度環境下における鋳型強度は充分なものではなく、更に吸湿劣化後における鋳型強度においては、その強度低下が著しく、耐吸湿劣化特性に劣るものであって、そのような有機粘結剤を用いて得られる鋳型は実用性に欠けるものであることが認められる。 On the other hand, the organic binder in Comparative Example 9 to which such a reaction product is not added, the organic binders in Comparative Examples 1 to 8 which are added in the basic silane compound alone or in the acid or its halide alone. The mold (test piece) obtained using a binder does not have sufficient mold strength in a normal humidity environment. Furthermore, the mold strength after moisture absorption deterioration is significantly reduced, and moisture absorption resistance is deteriorated. It is recognized that the mold is inferior in properties, and the mold obtained using such an organic binder is not practical.
(実施例22)
 実施例18と同様にして、鋳物砂組成物を調製した後、その得られた鋳物砂組成物の混練後待機時間:0分及び120分のものから造型された試験片(鋳型)について、上記した測定法及び評価法に従って、造型直後及び造型24時間後の鋳型強度(kgf/cm2 )、並びに造型後24時間の吸湿劣化後の鋳型強度(kgf/cm2 )を、それぞれ測定して、その得られた結果を、下記表6に示した。
(Example 22)
After preparing the foundry sand composition in the same manner as in Example 18, the waiting time after kneading of the obtained foundry sand composition: 0 minutes and 120 minutes for the test piece (mold) molded from the test piece (mold) according to the measurement method and evaluation method, mold strength immediately and molding 24 hours after molding (kgf / cm 2), as well as mold strength after moisture absorption degradation of 24 hours after molding the (kgf / cm 2), were measured, respectively, The obtained results are shown in Table 6 below.
(実施例23~30)
 実施例22において、高級脂肪酸エステルとして、リシノレイン酸とグリセリンの重縮合物又はリシノレイン酸の自己縮合物を、下記表6に示される割合において、有機粘結剤に更に添加含有せしめたこと以外は、かかる実施例22と同様にして、鋳物砂組成物を調製した後、そして、その得られた鋳物砂組成物の混練後待機時間:0分及び120分のものから造型された試験片(鋳型)について、上記した測定法及び評価法に従って、造型直後、及び造型24時間後の鋳型強度(kgf/cm2 )及び造型後24時間の吸湿劣化後の鋳型強度(kgf/cm2 )を、それぞれ測定して、その得られた結果を、下記表6に示した。
(Examples 23 to 30)
In Example 22, as the higher fatty acid ester, except that a polycondensate of ricinoleic acid and glycerin or a self-condensate of ricinoleic acid was further added to the organic binder in the ratio shown in Table 6 below, After preparing the foundry sand composition in the same manner as in Example 22, and waiting time after kneading of the obtained foundry sand composition: test pieces (molds) molded from those having 0 minutes and 120 minutes for, according to the measurement method and evaluation method described above, after molding, and mold strength after molding 24 hours (kgf / cm 2) and mold strength after moisture absorption degradation of 24 hours after molding the (kgf / cm 2), respectively measured The results obtained are shown in Table 6 below.
(比較例10)
 比較例9において得られた、反応生成物や高級脂肪酸エステルを含有しない鋳物砂組成物の混練後待機時間:0分及び120分のものを用い、かかる比較例9と同様にして、造型された試験片(鋳型)について、それぞれ、上記の測定法及び評価法に従って、造型直後及び造型24時間後の鋳型強度(kgf/cm2 )、並びに造型後24時間の吸湿劣化後の鋳型強度(kgf/cm2 )を測定して、その得られた結果を、下記表6に示した。
(Comparative Example 10)
Molding was performed in the same manner as in Comparative Example 9, using the standby time after kneading of the foundry sand composition containing no reaction product or higher fatty acid ester obtained in Comparative Example 9: 0 minutes and 120 minutes. For the test piece (mold), according to the measurement method and the evaluation method described above, the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding, and the mold strength (kgf / cm2) after deterioration of moisture absorption for 24 hours after molding, respectively. cm 2 ) were measured, and the obtained results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 かかる表6に示される結果の対比から明らかな如く、本発明に従って、高級脂肪酸エステルを更に含有せしめてなる有機粘結剤を用いた実施例23~30においては、混練後の待機時間が120分となっても、優れた鋳型強度を有していることが認められ、これによって、可使時間の向上が有利に図られ得ることが確認される。 As is clear from the comparison of the results shown in Table 6, in Examples 23 to 30 using the organic binder further containing a higher fatty acid ester according to the present invention, the waiting time after kneading was 120 minutes. Even in this case, it is recognized that the mold has an excellent mold strength, which confirms that the pot life can be advantageously improved.
(実施例31~35)
 上記のフェノール樹脂溶液の調製(3)で調製されたフェノール樹脂溶液の100質量部に対して、上述の如く、塩基性シラン化合物(KBM602)とフッ化水素酸とを反応させて得られた反応生成物Rを、下記表7に示される割合において添加し、撹拌して均一に混合せしめることにより、実施例31~35の各々に係るA液を調製した。次いで、ダルトン株式会社製品川式卓上ミキサー内に、フラタリー砂を投入すると共に、その1000質量部に対して、上述の如くして調製されたA液と、上記ポリイソシアネート化合物溶液の調製(2)で調製されたB液としてのポリイソシアネート化合物溶液とを、それぞれ、10質量部投入し、60秒間撹拌して、混練することにより、鋳物砂組成物を調製した。そして、その得られた各種の鋳物砂組成物を用いて、それぞれの試験片(鋳型)を作製して、上記の測定法に従って、造型直後及び造型24時間後の鋳型強度(kgf/cm2 )、並びに造型後24時間の吸湿劣化後の鋳型強度(kgf/cm2 )を、それぞれ測定して、その得られた結果を、下記表7に示した。
(Examples 31 to 35)
Reaction obtained by reacting a basic silane compound (KBM602) and hydrofluoric acid as described above with respect to 100 parts by mass of the phenol resin solution prepared in the preparation (3) of the above phenol resin solution Product A was added in the proportions shown in Table 7 below, and stirred and mixed uniformly to prepare solution A according to each of Examples 31 to 35. Subsequently, while putting flattery sand into Dalton Co., Ltd. product river type tabletop mixer, with respect to 1000 parts by mass, preparation of the liquid A prepared as described above and the polyisocyanate compound solution (2) 10 parts by mass of each of the polyisocyanate compound solution as the liquid B prepared in the above was added, stirred for 60 seconds, and kneaded to prepare a foundry sand composition. And each test piece (mold) was produced using the obtained various foundry sand compositions, and the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding according to the above measurement method. The mold strength (kgf / cm 2 ) after moisture absorption deterioration for 24 hours after molding was measured, and the obtained results are shown in Table 7 below.
(実施例36~41、比較例12)
 A液の調製に際して、塩基性シラン化合物(KBM602)とフッ化水素酸との反応生成物Rと共に、表7及び表8に示される割合(下記表7及び表8における水分内添量)において水分を添加したこと以外は、上記の実施例32と同様の条件及び手法に従って、鋳物砂組成物をそれぞれ調製した。そして、その得られた各種の鋳物砂組成物を用いて、それぞれの試験片(鋳型)を作製して、上記の測定法に従って、造型直後及び造型24時間後の鋳型強度(kgf/cm2 )、並びに造型後24時間の吸湿劣化後の鋳型強度(kgf/cm2 )を、それぞれ測定して、その得られた結果を、下記表7及び表8に示した。
(Examples 36 to 41, Comparative Example 12)
When preparing the liquid A, the reaction product R of the basic silane compound (KBM602) and hydrofluoric acid was used together with the water content in the proportions shown in Tables 7 and 8 (the amount of water added in Tables 7 and 8 below). A casting sand composition was prepared in accordance with the same conditions and procedures as in Example 32 except that was added. And each test piece (mold) was produced using the obtained various foundry sand compositions, and the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding according to the above measurement method. The mold strength (kgf / cm 2 ) after moisture absorption deterioration for 24 hours after molding was measured, and the obtained results are shown in Table 7 and Table 8 below.
(実施例42)
 上述せるフェノール樹脂溶液の調製(3)で調製されたフェノール樹脂溶液に代えて、上記のフェノール樹脂溶液の調製(4)において調製されたオルソクレゾール変性フェノール樹脂溶液を用いたことを除いては、実施例32と同様の手法に従い、鋳物砂組成物を調製した。そして、その得られた鋳物砂組成物を用いて、試験片(鋳型)を作製して、上記の測定法に従って、造型直後及び造型24時間後の鋳型強度(kgf/cm2 )、並びに造型後24時間の吸湿劣化後の鋳型強度(kgf/cm2 )をそれぞれ測定して、その結果を、下記表8に示した。
(Example 42)
In place of the phenol resin solution prepared in the preparation (3) of the phenol resin solution described above, except that the ortho-cresol-modified phenol resin solution prepared in the preparation (4) of the phenol resin solution was used, A foundry sand composition was prepared in the same manner as in Example 32. Then, using the obtained foundry sand composition, a test piece (mold) was prepared, and according to the above measurement method, the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding, and after molding The mold strength (kgf / cm 2 ) after moisture absorption deterioration for 24 hours was measured, and the results are shown in Table 8 below.
(比較例11)
 ダルトン株式会社製品川式卓上ミキサー内に、フラタリー砂を投入すると共に、その1000質量部に対して、上記のフェノール樹脂溶液の調製(3)で調製されたフェノール樹脂溶液に対して表8に示される割合において水分を添加したものと、上記のポリイソシアネート化合物溶液の調製(2)で調製されたB液としてのポリイソシアネート化合物溶液とを、それぞれ、10質量部投入し、60秒間撹拌して、鋳物砂組成物を調製した。そして、その得られた鋳物砂組成物を用いて、試験片(鋳型)を作製して、上記の測定法に従って、造型直後及び造型24時間後の鋳型強度(kgf/cm2 )、並びに造型後24時間の吸湿劣化後の鋳型強度(kgf/cm2 )をそれぞれ測定して、その結果を、下記表8に示した。
(Comparative Example 11)
In addition to the addition of flattery sand into Dalton Co., Ltd. product river type tabletop mixer, it is shown in Table 8 for the phenol resin solution prepared in the preparation (3) of the above phenol resin solution with respect to 1000 parts by mass. 10 parts by weight of each of the polyisocyanate compound solution as the B liquid prepared in the preparation (2) of the above polyisocyanate compound solution, and stirred for 60 seconds, A foundry sand composition was prepared. Then, using the obtained foundry sand composition, a test piece (mold) was prepared, and according to the above measurement method, the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding, and after molding The mold strength (kgf / cm 2 ) after moisture absorption deterioration for 24 hours was measured, and the results are shown in Table 8 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 かかる表7及び表8における結果の対比から明らかなように、フェノール樹脂と共に、塩基性シラン化合物とフッ化水素酸との反応生成物Rを含有せしめてなる溶液であって、水分含有量が所定の範囲内とされたもの(A液)と、ポリイソシアネート化合物の溶液(B液)とから構成される有機粘結剤(実施例31~42)を用いて、鋳物砂組成物を調製し、更に、それから造型して得られた鋳型(試験片)にあっては、通常の湿度環境下における鋳型強度は勿論、高湿度下での吸湿劣化後における鋳型強度においても、優れた特性を有していることが、認められるのである。また、それら実施例の中でも、実施例42においては、フェノール樹脂としてオルソクレゾール変性フェノール樹脂が用いられているところから、鋳型強度が更に向上せしめられており、耐吸湿劣化特性もより一層優れたものとなっている。 As apparent from the comparison of the results in Tables 7 and 8, the solution is a solution containing a phenol resin and a reaction product R of a basic silane compound and hydrofluoric acid, and has a predetermined moisture content. A molding sand composition was prepared using an organic binder (Examples 31 to 42) composed of a solution (solution A) and a solution of a polyisocyanate compound (solution B), Furthermore, the mold (test piece) obtained by molding has excellent characteristics not only in mold strength under normal humidity environment but also in mold strength after moisture absorption deterioration under high humidity. It is recognized that Among these examples, in Example 42, since ortho-cresol-modified phenol resin is used as the phenol resin, the mold strength is further improved, and the moisture absorption resistance is further improved. It has become.
 次いで、B液に高級脂肪酸エステルを含有せしめた場合の効果を確認すべく、以下の実験を行った。 Next, the following experiment was conducted in order to confirm the effect when the higher fatty acid ester was contained in the liquid B.
(実施例43~50)
 ポリイソシアネート化合物溶液の調製の際の非極性有機溶剤(イプゾール150)の使用割合を下記表9に示される割合とし、また、非極性有機溶剤の使用割合が異なるポリイソシアネート化合物溶液に対して、高級脂肪酸エステルとしてのリシノレイン酸とグリセリンとの重縮合物又はリシノレイン酸の自己縮合物を、下記表9に示す割合において添加したこと以外は、実施例40と同様の条件及び手法に従って、鋳物砂組成物をそれぞれ調製した。そして、その得られた各種の鋳物砂組成物を用いて、それぞれの試験片(鋳型)を作製して、上記の測定法に従って、造型直後及び造型24時間後の鋳型強度(kgf/cm2 )、並びに造型後24時間の吸湿劣化後の鋳型強度(kgf/cm2 )を、それぞれ測定して、その結果を、下記表9に示した。また、混練から120分待機させた後の鋳物砂組成物を用いて、造型直後及び造型24時間後の鋳型強度(kgf/cm2 )、並びに造型後24時間の吸湿劣化後の鋳型強度(kgf/cm2 )を、それぞれ測定して、可使時間の評価を行った。そして、その得られた結果を、下記表9に示した。
(Examples 43 to 50)
The ratio of the nonpolar organic solvent (Ipsol 150) used in the preparation of the polyisocyanate compound solution is set to the ratio shown in Table 9 below. Foundry sand composition according to the same conditions and procedures as in Example 40 except that a polycondensate of ricinoleic acid and glycerin as a fatty acid ester or a self-condensate of ricinoleic acid was added in the ratio shown in Table 9 below. Were prepared respectively. And each test piece (mold) was produced using the obtained various foundry sand compositions, and the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding according to the above measurement method. The mold strength (kgf / cm 2 ) after moisture absorption deterioration for 24 hours after molding was measured, and the results are shown in Table 9 below. Further, using the foundry sand composition after waiting for 120 minutes from the kneading, the mold strength immediately after molding and after molding for 24 hours (kgf / cm 2 ), and the mold strength after deterioration of moisture absorption for 24 hours after molding (kgf / Cm 2 ) were measured, and the pot life was evaluated. The obtained results are shown in Table 9 below.
(比較例13)
 ダルトン株式会社製品川式卓上ミキサー内に、フラタリー砂を投入すると共に、その1000質量部に対して、上記のフェノール樹脂溶液の調製(3)で調製されたフェノール樹脂溶液と、上記のポリイソシアネート化合物溶液の調製(2)で調製されたポリイソシアネート化合物溶液とを、それぞれ10質量部投入し、60秒間撹拌して、鋳物砂組成物を調製した。そして、その得られた鋳物砂組成物を用いて、試験片(鋳型)を作製して、上記の測定法に従って、造型直後及び造型24時間後の鋳型強度(kgf/cm2 )、並びに造型後24時間の吸湿劣化後の鋳型強度(kgf/cm2 )をそれぞれ測定して、その結果を、下記表9に示した。また、混練から120分待機させた後の鋳物砂組成物を用いて、造型直後及び造型24時間後の鋳型強度(kgf/cm2 )、並びに造型後24時間の吸湿劣化後の鋳型強度(kgf/cm2 )をそれぞれ測定して、可使時間の評価を行った。そして、その得られた結果を、下記表9に示した。
(Comparative Example 13)
Dalton Co., Ltd. product river type table mixer, while adding the flattery sand, with respect to 1000 parts by mass of the phenol resin solution prepared in the preparation of the phenol resin solution (3), and the polyisocyanate compound 10 parts by mass of each of the polyisocyanate compound solutions prepared in Preparation (2) of the solution was added and stirred for 60 seconds to prepare a foundry sand composition. Then, using the obtained foundry sand composition, a test piece (mold) was prepared, and according to the above measurement method, the mold strength (kgf / cm 2 ) immediately after molding and 24 hours after molding, and after molding The mold strength (kgf / cm 2 ) after moisture absorption deterioration for 24 hours was measured, and the results are shown in Table 9 below. Further, using the foundry sand composition after waiting for 120 minutes from the kneading, the mold strength immediately after molding and after molding for 24 hours (kgf / cm 2 ), and the mold strength after deterioration of moisture absorption for 24 hours after molding (kgf / Cm 2 ) was measured, and the pot life was evaluated. The obtained results are shown in Table 9 below.
 なお、比較として、実施例32及び実施例40に係る各鋳物砂組成物についても、同様に可使時間の評価を行った。そして、その得られた結果を、下記表9に示した。 For comparison, the pot life of each casting sand composition according to Example 32 and Example 40 was similarly evaluated. The obtained results are shown in Table 9 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 かかる表9に示される結果の対比から明らかな如く、本発明に従う有機粘結剤を構成するB液に、所定の高級脂肪酸エステルを含有せしめてなる実施例43~50においては、混練後の待機時間が120分となっても、優れた鋳型強度を有していることが認められ、これによって、可使時間の向上が有利に図られ得ることが確認される。 As is apparent from the comparison of the results shown in Table 9, in Examples 43 to 50 in which the predetermined higher fatty acid ester is contained in the liquid B constituting the organic binder according to the present invention, the standby after kneading is performed. Even when the time is 120 minutes, it is recognized that the mold has excellent mold strength, which confirms that the pot life can be advantageously improved.

Claims (13)

  1.  ウレタン系鋳型の造型に用いられるウレタン硬化型有機粘結剤であって、ポリオール化合物及びポリイソシアネート化合物と共に、塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物を、構成成分として更に含むことを特徴とする鋳型用ウレタン硬化型有機粘結剤。 A urethane curable organic binder used for molding a urethane-based mold, which further includes a reaction product of a basic silane compound and an acid or a halide thereof together with a polyol compound and a polyisocyanate compound. A urethane curable organic binder for molds characterized by
  2.  前記ポリオール化合物を含むA液と、前記ポリイソシアネート化合物を含むB液との二液から構成されると共に、該A液が、前記塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物を構成成分として含有し、且つ、該A液の水分含有量が0.1~15質量%であることを特徴とする請求項1に記載の鋳型用ウレタン硬化型有機粘結剤。 The liquid A is composed of two liquids, the liquid A containing the polyol compound and the liquid B containing the polyisocyanate compound, and the liquid A constitutes a reaction product of the basic silane compound and an acid or a halide thereof. 2. The urethane curable organic binder for molds according to claim 1, which is contained as a component, and the water content of the liquid A is 0.1 to 15% by mass.
  3.  前記酸若しくはそのハロゲン化物が、フッ化水素酸である請求項1又は請求項2に記載の鋳型用ウレタン硬化型有機粘結剤。 3. The urethane curable organic binder for molds according to claim 1 or 2, wherein the acid or its halide is hydrofluoric acid.
  4.  前記塩基性シラン化合物と酸若しくはそのハロゲン化物との反応生成物が予め形成されて、かかる反応生成物の形態において用いられる請求項1乃至請求項3の何れか1項に記載の鋳型用ウレタン硬化型有機粘結剤。 The urethane curing for a mold according to any one of claims 1 to 3, wherein a reaction product of the basic silane compound and an acid or a halide thereof is formed in advance and used in the form of the reaction product. Type organic binder.
  5.  前記ポリオール化合物が、フェノール樹脂である請求項1乃至請求項4の何れか1項に記載の鋳型用ウレタン硬化型有機粘結剤。 The said urethane compound is a phenol resin, The urethane hardening type organic binder for casting_mold | templates in any one of Claim 1 thru | or 4.
  6.  前記フェノール樹脂が、オルソクレゾール変性フェノール樹脂である請求項5に記載の鋳型用ウレタン硬化型有機粘結剤。 The urethane curable organic binder for mold according to claim 5, wherein the phenol resin is an ortho-cresol-modified phenol resin.
  7.  前記ポリオール化合物の100質量部に対して、前記反応生成物が、0.1~2.0質量部の割合で用いられることを特徴とする請求項1乃至請求項6の何れか1項に記載の鋳型用ウレタン硬化型有機粘結剤。 The reaction product according to any one of claims 1 to 6, wherein the reaction product is used in a proportion of 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the polyol compound. Urethane curing organic binder for molds.
  8.  前記塩基性シラン化合物が、アミノ基を含有するアルコキシシランであることを特徴とする請求項1乃至請求項7の何れか1項に記載の鋳型用ウレタン硬化型有機粘結剤。 The urethane curable organic binder for mold according to any one of claims 1 to 7, wherein the basic silane compound is an alkoxysilane containing an amino group.
  9.  前記アミノ基を含有するアルコキシシランが、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン及び3-ウレイドプロピルトリアルコキシシランからなる群より選ばれることを特徴とする請求項8に記載の鋳型用ウレタン硬化型有機粘結剤。 The amino group-containing alkoxysilane is 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl). ) -3-Aminopropyltrimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2 9. The urethane curable organic binder for molds according to claim 8, which is selected from the group consisting of -aminoethyl-3-aminopropyltrimethoxysilane and 3-ureidopropyltrialkoxysilane.
  10.  前記酸若しくはそのハロゲン化物が、塩酸、臭化水素酸、硫酸、硝酸、リン酸、フッ化水素酸、ホウ酸、ベンゼンスルホン酸、パラトルエンスルホン酸、トリフルオロメタンスルホン酸、ギ酸、酢酸、安息香酸、フェニルホスホン酸ジクロライド、イソフタル酸クロライド、塩化ベンゾイル、カプリル酸クロライド、ラウリン酸クロライド、ミリスチン酸クロライド、パルミチン酸クロライド、イソパルミチン酸クロライド、ステアリン酸クロライド、イソステアリン酸クロライド、オレイン酸クロライド及びセバシン酸ジクロライドからなる群より選ばれることを特徴とする請求項1乃至請求項9の何れか1項に記載の鋳型用ウレタン硬化型有機粘結剤。 The acid or its halide is hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, boric acid, benzenesulfonic acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid, formic acid, acetic acid, benzoic acid , Phenylphosphonic acid dichloride, isophthalic acid chloride, benzoyl chloride, caprylic acid chloride, lauric acid chloride, myristic acid chloride, palmitic acid chloride, isopalmitic acid chloride, stearic acid chloride, isostearic acid chloride, oleic acid chloride and sebacic acid dichloride 10. The urethane curable organic binder for molds according to any one of claims 1 to 9, wherein the urethane curable organic binder for molds is selected from the group consisting of:
  11.  高級脂肪酸エステルを、更に構成成分として含むことを特徴とする請求項1乃至請求項10の何れか1項に記載の鋳型用ウレタン硬化型有機粘結剤。 The urethane curable organic binder for mold according to any one of claims 1 to 10, further comprising a higher fatty acid ester as a constituent component.
  12.  請求項1乃至請求項11の何れか1項に記載の鋳型用ウレタン硬化型有機粘結剤と、鋳物砂とからなる鋳物砂組成物。 A foundry sand composition comprising the urethane curable organic binder for molds according to any one of claims 1 to 11 and a foundry sand.
  13.  請求項12に記載の鋳物砂組成物を成形し、硬化せしめてなる鋳型。 A mold formed by molding and curing the foundry sand composition according to claim 12.
PCT/JP2018/013456 2017-03-30 2018-03-29 Urethane curable organic binding agent for mold, casting sand composition obtained using same, and mold WO2018181814A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MX2019011418A MX2019011418A (en) 2017-03-30 2018-03-29 Urethane curable organic binding agent for mold, casting sand composition obtained using same, and mold.
CN201880022699.8A CN110461498B (en) 2017-03-30 2018-03-29 Polyurethane-curable organic binder for casting molds, and molding sand composition and casting mold obtained using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-068334 2017-03-30
JP2017-068335 2017-03-30
JP2017068334A JP6887286B2 (en) 2017-03-30 2017-03-30 Urethane-curable organic binder for molds and casting sand compositions and molds obtained using the same
JP2017068335A JP6887287B2 (en) 2017-03-30 2017-03-30 Urethane-curable organic binder for molds and casting sand compositions and molds obtained using the same

Publications (1)

Publication Number Publication Date
WO2018181814A1 true WO2018181814A1 (en) 2018-10-04

Family

ID=63676502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013456 WO2018181814A1 (en) 2017-03-30 2018-03-29 Urethane curable organic binding agent for mold, casting sand composition obtained using same, and mold

Country Status (3)

Country Link
CN (1) CN110461498B (en)
MX (1) MX2019011418A (en)
WO (1) WO2018181814A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059226A1 (en) * 2017-09-19 2019-03-28 旭有機材株式会社 Urethane hardening type organic binder for mold, and casting sand composition and mold obtained using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196700A (en) * 2011-03-23 2012-10-18 Asahi Organic Chemicals Industry Co Ltd Urethane-curable organic binder for mold and casting sand composition, and mold manufactured using the same binder
JP2015508023A (en) * 2012-02-09 2015-03-16 ヒユツテネス−アルベルトス ヘーミッシエ ヴエルケ ゲーエムベーハー Cold-box binder systems and mixtures used as additives for such binder systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683252A (en) * 1986-02-25 1987-07-28 Ashland Oil, Inc. Phenolic resin-polyisocyanate binder systems containing an organohalophosphate and use thereof
US6365646B1 (en) * 1999-12-08 2002-04-02 Borden Chemical, Inc. Method to improve humidity resistance of phenolic urethane foundry binders
JP2001205386A (en) * 2000-01-28 2001-07-31 Hodogaya Ashland Kk Binder composition for casting of casting mold, composition for casting of casting mold and method for manufacturing casting mold for casting
CN106424536B (en) * 2016-10-12 2018-07-27 山东科技大学 Novel triethylamine cold box process casting binder without dissociate aldehyde, free phenol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196700A (en) * 2011-03-23 2012-10-18 Asahi Organic Chemicals Industry Co Ltd Urethane-curable organic binder for mold and casting sand composition, and mold manufactured using the same binder
JP2015508023A (en) * 2012-02-09 2015-03-16 ヒユツテネス−アルベルトス ヘーミッシエ ヴエルケ ゲーエムベーハー Cold-box binder systems and mixtures used as additives for such binder systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059226A1 (en) * 2017-09-19 2019-03-28 旭有機材株式会社 Urethane hardening type organic binder for mold, and casting sand composition and mold obtained using same

Also Published As

Publication number Publication date
CN110461498A (en) 2019-11-15
CN110461498B (en) 2021-10-08
MX2019011418A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
TWI588208B (en) Cold-box binding agent systems and mixtures for use as additives for such binding agent systems
KR830002434B1 (en) Method for curing binder compositions
JP6035324B2 (en) Urethane curable organic binder for mold, foundry sand composition and mold obtained using the same
CN1149007A (en) Urethane foundry binders resistant to water-based coatings
JP5694024B2 (en) Urethane curable organic binder for mold, foundry sand composition and mold obtained using the same
US4852629A (en) Cold-box process for forming foundry shapes which utilizes certain carboxylic acids as bench life extenders
EP0323962A1 (en) Polyurethane-forming binder compositions containing certain carboxylic acids as bench life extenders
WO2018181814A1 (en) Urethane curable organic binding agent for mold, casting sand composition obtained using same, and mold
JP6887286B2 (en) Urethane-curable organic binder for molds and casting sand compositions and molds obtained using the same
JP7101692B2 (en) Urethane-curable organic binder for molds, and cast sand compositions and molds obtained using the same.
JP6887287B2 (en) Urethane-curable organic binder for molds and casting sand compositions and molds obtained using the same
JP4421484B2 (en) Organic binder for mold, foundry sand composition obtained using the same, and mold
WO2023195406A1 (en) Mold organic binder, and molding sand composition and mold obtained using same
JP4980034B2 (en) Organic binder for mold, foundry sand composition obtained using the same, and mold
JP5036362B2 (en) Urethane curable organic binder for mold, foundry sand composition and mold obtained using the same
JP4323223B2 (en) Organic binder for mold, foundry sand composition obtained using the same, and mold
JP4615346B2 (en) Organic binder for mold, foundry sand composition obtained using the same, and mold
JP4481839B2 (en) Organic binder for mold, foundry sand composition obtained using the same, and mold
JP5048715B2 (en) Synthetic mullite sand and mold
JP2000326049A (en) Binder composition for mold
JPS6037242A (en) Modified polyurethane binder composition
JP2015047603A (en) Urethane-curable organic binder for casting mold, and casting sand composition and casting mold obtained by using the binder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775366

Country of ref document: EP

Kind code of ref document: A1