WO2018181609A1 - Degradation estimating device, degradation estimating method, and computer program - Google Patents
Degradation estimating device, degradation estimating method, and computer program Download PDFInfo
- Publication number
- WO2018181609A1 WO2018181609A1 PCT/JP2018/013035 JP2018013035W WO2018181609A1 WO 2018181609 A1 WO2018181609 A1 WO 2018181609A1 JP 2018013035 W JP2018013035 W JP 2018013035W WO 2018181609 A1 WO2018181609 A1 WO 2018181609A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- deterioration
- soc
- storage element
- estimation
- energization
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a deterioration estimation device, a deterioration estimation method, and a computer program for estimating deterioration of a storage element.
- Electrical storage elements that store electrical energy and can supply energy as a power source when necessary are used.
- the power storage element is applied to portable equipment, power supply devices, transportation equipment including automobiles and railways, industrial equipment including aviation, space, and construction. It is important to always know the storage capacity of the storage element so that the energy stored as much as necessary can be used when necessary. It is known that a power storage element is chemically degraded mainly depending on time and use frequency. Therefore, the energy which can be utilized decreases according to time and use frequency. In order to use as much energy as necessary when necessary, it is important to grasp the deterioration state of the power storage element. So far, a technique for estimating deterioration of a power storage element has been developed.
- Japanese Patent Laid-Open No. 2011-220900 discloses a battery deterioration estimation method.
- a battery deterioration estimation method for estimating the level of capacity deterioration of a secondary battery is a method of estimating the amount of current flowing through the secondary battery or the elapsed time corresponding to each of a plurality of usage conditions affecting the capacity deterioration of the secondary battery. Is accumulated over a predetermined period.
- the deterioration coefficient indicating the ratio of the deterioration rate of the secondary battery in the plurality of use conditions to the deterioration rate of the secondary battery in a single use condition is calculated according to the corresponding plurality of use conditions.
- a second procedure is calculated for each.
- the deterioration coefficient calculated for each of a plurality of use conditions corresponding to the second procedure is calculated by using the current integrated value or elapsed time integrated for each of the plurality of use conditions in the first procedure. And a third procedure for converting into the current integrated value or the elapsed time in the single use condition.
- the battery deterioration estimation method is a fourth method for estimating the level of capacity deterioration of the secondary battery based on the integrated current value or elapsed time converted in the third procedure and the deterioration rate under the single use condition.
- the procedure is as follows.
- the estimation accuracy of deterioration of the power storage element is not sufficient.
- various usage conditions charge / discharge pattern, charge / discharge rate, environmental temperature, etc.
- Data on deterioration is stored in advance in a data table. After starting the use of the storage element, measure the actual use condition in real time, read the data associated with the predicted use condition close to the actual use condition from the data table, and estimate the deterioration of the storage element Yes.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a deterioration estimation device, a deterioration estimation method, and a computer program capable of accurately estimating deterioration of a power storage element. .
- a deterioration estimation apparatus includes an acquisition unit that acquires time-series data of a state of charge (SOC) in a storage element, and the SOC of the SOC in the time-series data acquired by the acquisition unit.
- An estimation unit configured to estimate deterioration of the power storage element based on the magnitude (difference) of fluctuation.
- the magnitude of variation in SOC in time series data is the difference in SOC when ⁇ t time has elapsed from the SOC at a certain time t.
- the present inventor has devised a new capacity deterioration model in consideration of “dynamic” deterioration (deterioration due to energization) due to insertion / extraction of electric energy to / from the power storage element.
- the present inventor has found an algorithm related to deterioration estimation derived from the model. Specifically, the present inventor has found that the degree of deterioration due to energization of the power storage element varies depending on the magnitude (difference) of SOC variation in the time series data.
- the present inventor has found that the deterioration of the power storage element depends on the magnitude (difference) of the SOC fluctuation in the time series data.
- the conventional estimation method that does not consider the magnitude of the SOC variation in the time series data, for example, the degradation estimated value when the SOC varies in the range of ⁇ 10% centering on the SOC 50%, and ⁇ 30 centering on the SOC 50%. %
- the deterioration estimated value when the SOC fluctuates is the same (see FIGS. 21A and 21B).
- a person who takes in and out electric energy enters and exits through a film on the electrode surface (SEI film when the storage element is a lithium ion battery).
- SEI film when the storage element is a lithium ion battery.
- the total amount of lithium ions present in the coating was considered.
- the validity of the algorithm considering the ion distribution and / or behavior is supported by experimental data. The consideration will be described later.
- the estimation unit may estimate the deterioration of the storage element based on the magnitude of the SOC fluctuation and the center of the SOC fluctuation in the time series data.
- the present inventor has found that in addition to the magnitude of the fluctuation of the SOC, the center of fluctuation of the SOC (central SOC) is also related to the deterioration due to energization of the power storage element. Even if the SOC fluctuation range when the SOC is fluctuated between the charge side (positive side) and the discharge side (minus side) with respect to a certain SOC is different, if the center SOC is different, the amount of deterioration due to energization of the storage element is also reduced. It is different (see FIG. 21C).
- the deterioration phenomenon is a chemical change, and the chemical change depends on the surrounding environment of the main chemical species.
- the main cause of the capacity deterioration of the storage element is considered to be a difference in capacity balance between the positive electrode and the negative electrode (difference in capacity where charge ions can reversibly enter and exit the electrode between the positive electrode and the negative electrode of the storage element).
- the deviation in capacity balance is said to be caused by the growth of a film on the negative electrode active material (an SEI film when the power storage element is a lithium ion battery). It is assumed that the center SOC is different, that is, the potential of the negative electrode active material is different, which affects the growth of the SEI film.
- the deterioration of the power storage element is estimated based on the magnitude of the SOC fluctuation and the center of the SOC fluctuation, the deterioration of the power storage element can be accurately estimated regardless of the difference in the center of the SOC fluctuation.
- the estimation unit calculates an energization deterioration value indicating deterioration due to energization of the power storage element based on a magnitude of fluctuation of the SOC, and indicates the calculated energization deterioration value and deterioration not caused by energization of the power storage element. You may estimate degradation of the said electrical storage element based on the sum with a non-energization degradation value.
- the inventor of the present invention has focused on the fact that the deterioration further proceeds when a power storage element that deteriorates with time even when left as it is is energized.
- a configuration in which an energization deterioration value indicating deterioration further progressed by energization is calculated based on the magnitude of variation in SOC and the deterioration of the storage element is estimated based on the sum of the calculation result and the non-energization deterioration value. Degradation can be estimated more accurately.
- the present inventor not only “deteriorated” static electricity storage elements with deterioration with time (not due to energization, deterioration due to neglect) but also “dynamic” deterioration due to electric energy input / output (due to energization).
- a new capacity deterioration model was devised in consideration of (deterioration due to energization). We found an algorithm for degradation estimation derived from the model.
- the estimation unit may estimate the deterioration of the power storage element based on a change in a state of a SEI (Solid Electrolyte Interface) film on a negative electrode of the power storage element based on a magnitude of fluctuation of the SOC.
- SEI Solid Electrolyte Interface
- the present inventor incorporated a change in the state of the SEI film on the negative electrode in accordance with the magnitude of the SOC variation in the estimation of the deterioration amount of the storage element. By performing the estimation in consideration of the physical phenomenon in the negative electrode, it is possible to further improve the estimation accuracy of the deterioration of the storage element.
- the estimation unit may estimate the deterioration of the power storage element based on a mathematical model that takes into account the destruction and regeneration of the SEI film on the negative electrode of the power storage element.
- the present inventor has devised a mathematical model that takes into account the destruction and regeneration of the SEI film on the negative electrode of the electricity storage element in order to estimate the deterioration of the electricity storage element due to energization.
- This mathematical model is considered to represent the physical phenomenon in the electrode more correctly than the conventional mathematical model.
- the mathematical model also takes into account the deterioration of the storage element due to the SEI film peeled from the negative electrode of the storage element.
- the present inventor incorporated deterioration due to the SEI coating peeled from the negative electrode into the mathematical model.
- This mathematical model is considered to represent the physical phenomenon in the electrode more correctly than the conventional mathematical model.
- the main cause of the capacity deterioration of the power storage element is a shift in capacity balance.
- the capacity of a power storage element deteriorates with time.
- the present inventor has found that the deviation in capacity balance increases due to energization. Based on this new knowledge, the deterioration of the storage element is estimated by estimating the deviation in the capacity balance between the positive electrode and the negative electrode as described below.
- a deterioration estimation device includes an estimation unit that estimates the deterioration of the capacity of a power storage element, which is the amount of electricity that can be reversibly extracted from the power storage element, based on the number of charge / discharge cycles.
- estimate based on the number of charge / discharge cycles means the number of charge / discharge cycles themselves, a numerical value (for example, energization time) correlated with the number of charge / discharge cycles, or an alternative expression of the number of charge / discharge cycles. This includes a case where capacity deterioration of the power storage element is estimated based on (for example, percentage, square root).
- the estimation of the capacity deterioration of the power storage element based on the number of charge / discharge cycles may be performed using a mathematical model.
- the estimation of the capacity deterioration of the power storage element based on the number of charge / discharge cycles described above is performed by performing tests or calculations under various predicted use conditions of the power storage element, thereby obtaining data on the capacity deterioration of the power storage element.
- the capacity deterioration of the storage element based on the number of charge / discharge cycles may be estimated.
- the estimation unit indicates a deterioration in the capacity of the power storage element at a predetermined number of charge / discharge cycles, an energization deterioration value indicating deterioration due to energization of the power storage element at that time, and a non-reduction indicating non-energization of the power storage element. You may estimate by the sum with an electricity supply degradation value.
- the present inventor has found that the deviation in capacity balance increases due to energization. Conventionally, it has been considered that the same amount of deviation in the capacity balance occurs over time regardless of whether the power storage element is energized or not. Based on new knowledge, if the deterioration of the capacity of the power storage element at a predetermined number of charge / discharge cycles is estimated by the sum of the current-carrying deterioration value and the non-energization deterioration value at that time, the deterioration of the power storage element is more accurate than before. Can be estimated.
- the difference between the energization deterioration value and the non-energization deterioration value may be configured to increase as the number of charge / discharge cycles increases.
- the estimation unit may estimate the energization deterioration value by a sum of a film deterioration value caused by the SEI film grown on the negative electrode of the power storage element and a peel deterioration value caused by the SEI film peeled from the negative electrode. Good.
- the present inventor has devised a mathematical model that takes into account the destruction and regeneration of the SEI film on the negative electrode of the electricity storage element in order to estimate the deterioration of the electricity storage element due to energization.
- This mathematical model is considered to represent the physical phenomenon in the electrode more correctly than the conventional mathematical model.
- the estimation unit estimates the energization deterioration value by a sum of a film deterioration value caused by the SEI film grown on the negative electrode of the power storage element and a peel deterioration value caused by the SEI film peeled from the negative electrode. Therefore, it is possible to estimate the deterioration of the power storage element with higher accuracy than in the past.
- the deterioration estimation device may further include an acquisition unit that acquires time-series data of SOC in the power storage element, and the estimation unit may estimate the energization deterioration value based on the time-series data of the SOC.
- the estimation unit can estimate the deterioration of the electricity storage device more accurately than the conventional one by estimating the energization deterioration value based on the time-series data of the SOC.
- a method for estimating deterioration of a power storage element wherein time series data of SOC in the power storage element is acquired, and based on the magnitude of fluctuation of the SOC in the acquired time series data, Estimate degradation.
- the deterioration estimation method estimates the deterioration of the capacity of the electricity storage element, which is the amount of electricity that can be reversibly extracted from the electricity storage element, based on the number of charge / discharge cycles.
- a computer program acquires, in a computer, time series data of SOC in a power storage element, and the deterioration of the power storage element based on the magnitude of fluctuation of the SOC in the acquired time series data. The process which estimates is performed.
- a computer program causes a computer to execute a process of estimating deterioration of the capacity of a power storage element, which is an amount of electricity that can be reversibly extracted from the power storage element, based on the number of charge / discharge cycles.
- the deterioration estimation device may be mounted on a battery management unit (BMU) or a cell monitoring unit (CMU) that is a monitoring device.
- BMU battery management unit
- CMU cell monitoring unit
- the deterioration estimation device may be a part of a power storage device in which such a monitoring device is incorporated.
- the degradation estimation device may be configured separately from the electrical storage element and the electrical storage device, and may be connected to the electrical storage device including the electrical storage element targeted for degradation estimation at the time of degradation estimation.
- the deterioration estimation device may remotely monitor the power storage element and the power storage device.
- the deterioration estimation method according to another aspect of the present invention can be realized in various modes such as a recording medium on which a computer program for realizing this method is recorded.
- FIG. 1 is a diagram illustrating a configuration of a monitoring device.
- the monitoring device 151 includes a current sensor 51, a voltage sensor 52, a temperature sensor 53, a history creation unit 54, a counter 55, a storage unit 56, a communication unit 57, and a deterioration estimation device 101.
- the constituent elements included in the monitoring device 151 may be arranged apart from other constituent elements.
- the deterioration estimation device 101 may be disposed in a remote place and communicate with the communication unit 57.
- a server that is arranged in a remote place and connected to the network may function as the degradation estimation apparatus 101.
- the monitoring device 151 monitors the deterioration of the storage element to be monitored (in this embodiment, a lithium ion secondary battery).
- the monitoring device 151 may monitor one battery cell, or may monitor a plurality of battery cells (assembled batteries) connected in series or in parallel.
- Monitoring device 151 may constitute a power storage device (battery pack) together with the assembled battery.
- the storage element to be monitored is not limited to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and may be another electrochemical cell to which a hypothesis, an algorithm, and a mathematical model described later are applicable.
- the storage element to be monitored is also simply referred to as a battery.
- the counter 55 in the monitoring device 151 counts clock pulses generated by an oscillation circuit using a crystal resonator, and holds the counted value. This count value may indicate the current time.
- the current sensor 51 measures the current charged in the battery and the current discharged from the battery, and outputs an analog signal Ai indicating the measurement result to the history creating unit 54.
- the voltage sensor 52 measures the voltage between the positive electrode and the negative electrode in the battery, and outputs an analog signal Av indicating the measurement result to the history creating unit 54.
- the temperature sensor 53 measures the temperature T at a predetermined part of the battery and outputs an analog signal At indicating the measurement result to the history creating unit 54.
- the history creation unit 54 converts, for example, analog signals Ai, Av, and At received from the current sensor 51, the voltage sensor 52, and the temperature sensor 53, respectively, into digital signals Di, Dv, and Dt at every predetermined sampling time.
- the history creation unit 54 stores the count value of the counter 55 at the sampling time and the digital signals Di, Dv, and Dt in the storage unit 56.
- the storage unit 56 accumulates the sampling time, current value, voltage value, and temperature T for each sampling time.
- the communication unit 57 may communicate with other devices such as a main control device (main ECU (Electronic Control Unit)) in a vehicle, a personal computer, a server, a smartphone, and a battery maintenance terminal, for example.
- main ECU Electronic Control Unit
- the communication unit 57 when the communication unit 57 receives an instruction for estimating the deterioration state of the battery from another device, the communication unit 57 outputs the received estimation command to the deterioration estimation device 101.
- the monitoring device 151 may not include each sensor.
- FIG. 2 is a diagram illustrating a configuration of the deterioration estimation apparatus.
- degradation estimation apparatus 101 includes control unit 20, storage unit 23, and interface unit 24.
- the interface unit 24 includes, for example, a LAN interface and a USB interface, and communicates with other devices such as the monitoring device 151 by wire or wireless.
- a signal line or a terminal heading from the degradation estimation apparatus 101 to the communication unit 57 may function as an output unit that outputs an estimation result or the like.
- the communication unit 57 may function as an output unit.
- different input data is input to the degradation estimation apparatus 101, different outputs are obtained from the output unit.
- the output unit may output different outputs (for example, voltage value, duty ratio).
- a display unit (or a notification unit) for displaying the output result may be connected to the output unit. The output from the output unit may be displayed on the display unit (or notification unit) via the communication unit 57.
- the storage unit 23 stores a deterioration estimation program 231 for executing a deterioration estimation process described later.
- the deterioration estimation program 231 is provided in a state stored in a computer-readable recording medium 60 such as a CD-ROM, DVD-ROM, or USB memory, for example, and is stored in the storage unit 23 by being installed in the deterioration estimation apparatus 101. Is done. Further, the deterioration estimation program 231 may be acquired from an external computer (not shown) connected to the communication network and stored in the storage unit 23.
- the storage unit 23 also stores data and the like necessary for the deterioration estimation process.
- the control unit 20 includes, for example, a CPU, a ROM, a RAM, and the like, and controls the operation of the deterioration estimation apparatus 101 by executing a computer program such as the deterioration estimation program 231 read from the storage unit 23.
- the control unit 20 functions as a processing unit that executes the deterioration estimation process by reading and executing the deterioration estimation program 231.
- the control unit 20 includes an acquisition unit 21 and an estimation unit 22.
- the acquisition unit 21 in the deterioration estimation apparatus 101 acquires time-series data of SOC (State Of Charge) in the battery.
- the acquisition unit 21 when receiving the estimation command from the communication unit 57, stores each sampling time, and the current value, voltage value, and temperature T at each sampling time in the monitoring device 151 according to the received estimation command. Obtained from the unit 56 via the interface unit 24. In this way, the acquisition unit 21 acquires data measured after the start of battery use from the storage unit 56. The acquisition unit 21 may alternatively acquire data from the data file.
- the acquisition unit 21 secures a storage area for storing data on sampling time, SOC, and temperature.
- the acquiring unit 21 secures an array Ats having elements of ts [1] to ts [Snum] for storing data on Snum sampling times.
- the acquisition unit 21 secures an array Asoc having elements of sc [1] to sc [Snum] for storing data about the SOC at the sampling times ts [1] to ts [Snum].
- the acquisition unit 21 secures an array Atmp having elements of tmp [1] to tmp [Snum] for storing data about the temperature T at the sampling times ts [1] to ts [Snum].
- the acquisition unit 21 calculates, for example, the amount of electricity supplied to the battery by counting current values at each sampling time, and converts the calculated amount of electricity into a change amount of the SOC.
- the acquisition unit 21 calculates the SOC at each sampling time based on the conversion result.
- the acquisition unit 21 may correct the SOC using, for example, a measured value of the open circuit voltage.
- the acquisition unit 21 stores the sampling time corresponding to each element of the array Ats so that the index N of the array Ats (N is an integer from 1 to Snum) is in time series order.
- the acquisition unit 21 stores the SOC at the sampling times ts [1] to ts [Snum] in sc [1] to sc [Snum], respectively. Similarly, the acquisition unit 21 stores the temperatures T at the sampling times ts [1] to ts [Snum] in tmp [1] to tmp [Snum], respectively. The acquisition unit 21 outputs the arrays Ats, Asoc, and Atmp to the estimation unit 22.
- FIG. 3 is a diagram for explaining battery deterioration estimated by the deterioration estimating apparatus.
- the vertical axis shows the battery capacity as a percentage when the battery capacity is new
- the horizontal axis shows the number of cycles when the total number of cycles, which is the total number of charge and discharge, is used as a reference. Shown as a percentage.
- the horizontal axis can also be regarded as the elapsed time from the new state.
- capacity change Cvu3 is a change with respect to the number of cycles of capacity when a battery is charged / discharged (true cycle deterioration fading), and is a result obtained by an energization test. is there.
- the capacity change Cvn3 is a capacity change with time when the battery is not energized (calendar capacity fading), and is a result obtained based on a neglect test performed in advance.
- the degree of deterioration is greater than when the battery is left unattended.
- the difference between the capacity indicated by the capacity change Cvu3 and the capacity indicated by the capacity change Cvn3 can be regarded as deterioration due to energization of the battery.
- the deterioration of the battery is a deterioration not caused by the energization of the battery plus the deterioration caused by the energization of the battery.
- FIG. 4 is a diagram for explaining an SOC-P curve (SOC-V curve) in a new battery.
- the vertical axis indicates the potential
- the horizontal axis indicates the SOC.
- FIG. 4 shows a change Cvp4 of the potential of the single positive electrode with respect to the SOC and a change Cvn4 of the potential of the single negative electrode with respect to the SOC in a new battery.
- the difference between the potential of the single positive electrode and the potential of the single negative electrode is the voltage between the electrodes in the battery (battery voltage).
- the change Cvc4 is a change of the voltage between the electrodes with respect to the SOC.
- FIG. 5 is a diagram schematically showing carrier movement in a lithium ion secondary battery.
- the positive electrode Pp formed of lithium metal oxide and the negative electrode Np formed of carbon are immersed in the electrolytic solution EL.
- the positive electrode Pp has a plurality of sites Sp that can accommodate lithium ions.
- the negative electrode Np has a plurality of sites Sn that can accommodate lithium ions.
- a SEI (Solid Electrolyte Interface) coating Ls is formed on the surface of the negative electrode.
- the SEI film Ls has a property of capturing lithium ions.
- a site Sp that does not contain lithium ions is generated in a discharged state. Further, in the charged state, the number of lithium ions accommodated at the site Sn is reduced as compared with a new battery.
- FIG. 6 is a diagram for explaining a shift in capacity balance in the battery. 6 is the same as FIG. FIG. 6 shows a change Cvp6 of the potential of the single positive electrode with respect to the SOC, a change Cvn6 of the potential of the single negative electrode with respect to the SOC, and a change Cvc6 of the voltage between the electrodes with respect to the SOC in the deteriorated battery.
- FIG. 7 is a diagram for explaining a shift in capacity balance in the battery.
- the vertical axis represents the deterioration amount
- the horizontal axis represents the square root of the cycle number.
- the horizontal axis can also be regarded as the square root of the elapsed time from the new state.
- Cvu7 is a change with respect to the square root of the cycle number of the measured value of the capacity balance deviation when the battery is charged / discharged.
- Cvn7 is a change in the estimated value of the deviation in capacity balance when the battery is not charged or discharged. That is, the former is a transition of capacity balance deviation when energized, and the latter is a transition of capacity balance deviation that occurs over time when non-energized.
- the latter can be obtained as follows. First, by performing a standing test on a plurality of batteries having different temperatures from the SOC, the amount of deterioration with time (non-energization deterioration value Qcnd described later) at each SOC and temperature is obtained.
- the coefficient at each SOC and temperature is obtained by using the following formula (2) or formula (3).
- the amount of deterioration over time in the minute time during the cycle test is obtained at predetermined time intervals from each SOC in the cycle test, the square root of the time spent in that SOC (for example, minute time), and the corresponding coefficient obtained in advance. .
- the amount of deterioration with time in the cycle test is calculated by accumulating the amount of deterioration with time.
- FIG. 8 is a diagram illustrating an example of a change in the deterioration amount due to the energization of the battery with respect to the SOC fluctuation range.
- the vertical axis indicates the difference between the deterioration amount when a predetermined amount of electricity is energized and the deterioration amount in the 3% SOC fluctuation range, and the horizontal axis indicates the SOC fluctuation range.
- the amount of deterioration due to energization after charging / discharging a predetermined number of times so that the center SOC becomes 60% is plotted against the fluctuation range of the SOC.
- the present inventor has found that even when the center SOC is the same, the amount of deterioration due to energization changes when the variation range of the SOC is different. It has been found that deterioration due to energization increases in accordance with the magnitude of SOC variation. The mechanism of this phenomenon is not yet fully understood.
- the present inventor partially destroyed the SEI film formed on the surface of the negative electrode due to significant expansion (charge) and contraction (discharge) of the negative electrode as the variation of the SOC was larger, As a result, it is considered that the amount of deterioration due to energization of the battery increases.
- FIG. 9 is a diagram illustrating an example of a change in the deterioration amount due to the energization of the battery with respect to the center SOC.
- the vertical axis indicates the difference between the deterioration amount when a predetermined amount of electricity is energized and the deterioration amount at the central SOC of 10%
- the horizontal axis indicates the central SOC that is the center of the SOC fluctuation.
- the center SOC is an example of the center of the SOC fluctuation in the time-series data of the SOC.
- FIG. 9 the amount of deterioration due to energization after charging and discharging is repeated a predetermined number of times so that the fluctuation range of the SOC becomes 20% is plotted with respect to the center SOC.
- an example is given and demonstrated about charging / discharging operation
- the present inventor has found that even when the SOC fluctuation range is the same, the deterioration amount due to energization changes when the central SOC is different. It has been found that the progress of deterioration due to energization varies depending on the central SOC.
- the center SOC is low (for example, when the center SOC is 10%)
- the amount of deterioration is small although the SOC fluctuation range is the same as when the center SOC is around 50%.
- the center SOC is high (for example, when the center SOC is 70%)
- the amount of deterioration is small compared to when the center SOC is around 50%, although the SOC fluctuation range is the same.
- the coefficient has SOC dependency (the coefficient value varies according to the central SOC and / or the SOC fluctuation range).
- D In the mathematical model, deterioration due to energization of the power storage element due to the SEI film that is broken and peeled off from the negative electrode of the power storage element is also considered.
- This mathematical model is based on the assumption that ions, which are responsible for taking in and out electrical energy, enter and exit through the electrode surface coating (SEI coating). More specifically, it is a deterioration estimation model that takes into account ions present in the film, and also takes into account ions contained in the film peeled off from the electrode surface during charge and discharge.
- estimation unit 22 estimates the deterioration of the battery based on the magnitude of the SOC variation in the SOC time-series data acquired by acquisition unit 21.
- the estimation unit 22 estimates the deterioration of the battery based on, for example, the sum of the energization deterioration value Qcur and the non-energization deterioration value Qcnd. Specifically, as shown in the following formula (1), the estimation unit 22 calculates the sum of the energization deterioration value Qcur and the non-energization deterioration value Qcnd as a deterioration value Qdeg indicating battery deterioration.
- the estimation unit 22 may transmit estimation result information indicating the calculated degradation value Qdeg to another device via the communication unit 57 as a response to the estimation command.
- the estimation unit 22 is configured to estimate the degradation value Qdeg, which is the sum of the energization degradation value Qcur and the non-energization degradation value Qcnd, as battery degradation, but is not limited thereto.
- the estimation unit 22 may be configured to estimate a value based on the sum, a percentage value of the deterioration value Qdeg with respect to a predetermined reference, a deterioration level according to the deterioration value Qdeg, or the like as battery deterioration.
- Qcur is composed of at least Qrgn and Qdst.
- the film deterioration value Qrgn caused by the SEI film grown on the negative electrode and a peeling deterioration value Qdst caused by the SEI film peeled from the negative electrode.
- Qrgn is a deterioration value due to the film newly formed on the electrode by peeling off the SEI film due to SOC fluctuation
- Qdst is a deterioration value due to the film peeled off due to SOC fluctuation.
- the non-energized deterioration value Qcnd increases with time.
- the increment dQcnd per minute time dt of the non-energized deterioration value Qcnd is calculated by the following equation (2).
- Equation (3) the coefficient kc is a function of the SOC and the temperature T.
- the non-energized deterioration value Qcnd increases according to the root rule. Increasing according to the route rule means that the increment per unit time of the non-energized deterioration value Qcnd gradually decreases with the passage of time.
- the estimation unit 22 calculates the non-energization deterioration value Qcnd using at least one of the equations (2) and (3).
- the estimation unit 22 estimates the deterioration due to the energization of the battery based on, for example, the change in the state of the film in the battery electrode based on the magnitude of the SOC variation. In the present embodiment, the estimation unit 22 estimates the deterioration due to the energization of the battery in consideration of the peeling deterioration value caused by the coating peeled from the battery electrode. More specifically, the estimation unit 22 calculates the sum of the film deterioration value due to the electrode film in the battery and the peeling deterioration value as the energization deterioration value Qcur.
- the estimation unit 22 calculates the sum of the film deterioration value Qrgn caused by the SEI film grown on the negative electrode in the lithium ion secondary battery and the peel deterioration value Qdst caused by the SEI film peeled from the negative electrode. Is calculated as an energization deterioration value Qcur.
- the storage unit 23 holds a correspondence relationship between the SOC and a coefficient kr (see formula (4) described later), which is a deterioration coefficient indicating the degree of progress of deterioration due to energization of the battery.
- the storage unit 23 may hold a correspondence table Tblr indicating a correspondence relationship between the SOC, the temperature T, and the coefficient kr.
- the temporal change of the deterioration amount due to energization for each temperature T and for each SOC is measured by a prior test.
- the coefficient kr is calculated based on the measurement result of the test. Specifically, it is desirable that the coefficient kr is obtained by optimization calculation in comparison with the measurement result together with the elements of the array for calculating the division deterioration value described later.
- the storage unit 23 holds a correspondence relationship between the SOC and the deterioration coefficient (the above-described coefficient kc) indicating the degree of progress of deterioration not due to the energization of the battery.
- the storage unit 23 may hold a correspondence table Tblc indicating a correspondence relationship between the SOC, the temperature T, and the coefficient kc.
- the correspondence relationship between the SOC and temperature T and the coefficient kc is derived, for example, by performing a test similar to the calculation of the coefficient kr.
- the estimation unit 22 increases the film degradation value Qrgn with the passage of time, for example. For example, the estimating unit 22 determines that the film deterioration value Qrgn increases according to the coefficient kr corresponding to the SOC so that the increase in the film deterioration value Qrgn decreases according to the magnitude of the film deterioration value Qrgn. Qrgn is calculated.
- the increment dQrgn per minute time dt of the film deterioration value Qrgn is calculated by the following equation (4).
- the film deterioration value Qrgn increases according to the root rule.
- Increasing according to the root rule means that the increment per unit time of the film deterioration value Qrgn gradually decreases with the passage of time.
- the estimation unit 22 calculates the film deterioration value Qrgn using at least one of the equations (4) and (5).
- FIG. 10 is a diagram illustrating an example of an array used by the estimation unit in the degradation estimation apparatus.
- the vertical axis is a virtual axis that indicates both the center SOC and the SOC fluctuation range.
- the left side of FIG. 10 represents a state before the peeling of the SEI film occurs, and the right side of FIG. 10 represents a state after the peeling of the SEI film occurs.
- FIG. 10 shows a situation in which a variation in SOC of more than 12% and less than 14% occurs with a certain SOC (an SOC value between qd [j + 2] and qd [j + 3]) as described later.
- the estimation unit 22 calculates the film deterioration value Qrgn by the sum of a plurality of division deterioration values.
- the estimation unit 22 secures a storage area for storing each division deterioration value.
- the estimation unit 22 reserves an array Aqd having elements qd [1] to qd [Dnum] for storing Dnum division degradation values.
- the number of elements Dnum of the array Aqd is, for example, a value obtained by dividing 100% by the interval INT.
- the interval INT is a value that can be arbitrarily set. In this example, the interval INT is 2. Therefore, in this example, Dnum is 50.
- the estimation unit 22 increases, for example, each of the plurality of division deterioration values with the passage of time. For example, the estimation unit 22 performs the division so that the growth rate of the division degradation value qd [j] decreases with the growth of the division degradation value qd [j] (so that the growth rate of the division degradation value gradually decreases).
- a degradation value qd [j] is calculated.
- the index j is an integer from 1 to Dnum.
- the estimation unit 22 uses the following equation (6) based on the equation (4) to increase the division degradation value qd [j] increment ⁇ at the sampling times ts [N ⁇ 1] to ts [N]. (Sj [N]) is calculated.
- ⁇ t is an interval between sampling times ts [N ⁇ 1] to ts [N].
- the coefficient kr (sc [N], tmp [N]) is a coefficient corresponding to sc [N] and the temperature tmp [N] at the sampling time ts [N], and can be calculated based on the correspondence table Tblr.
- Formula (6) is a method of consolidating (integrating) the past deterioration history (deterioration path) from the initial stage to N-1, and newly taking the time from N-1 to N as the next sampling timing based on the aggregation.
- the estimation unit 22 calculates the division deterioration value qd [j] at the sampling time ts [N] by adding ⁇ (Sj [N]) to qd [j] [N ⁇ 1].
- the values calculated by the estimating unit 22 until the peeling occurs are indicated by hatching in each of the divided deterioration values qd [1] to qd [Dnum].
- the estimation unit 22 estimates the deterioration of the battery by performing the following processing. For example, when the fluctuation magnitude of the SOC satisfies the predetermined condition C1, the estimation unit 22 adds the number of division deterioration values corresponding to the fluctuation magnitude among the plurality of division deterioration values to the peeling deterioration value Qdst. At the same time, each of the division deterioration values used for adding the peeling deterioration value Qdst is set to a predetermined value smaller than the division deterioration value.
- the predetermined condition C1 is, for example, that the magnitude of the SOC fluctuation is larger than the interval INT.
- the SOC variation of greater than 12% and less than or equal to 14% occurs, and the situation where the SEI film is peeled off is shown.
- the predetermined condition C1 is satisfied.
- the estimating unit 22 adds the sum of each of the divided deterioration values qd [j] to qd [j + 5] before the occurrence of peeling to the peeling deterioration value Qdst.
- the index j is, for example, a value at which the SOC immediately before the change is greater than (j ⁇ 1) ⁇ INT and the SOC is equal to or less than j ⁇ INT.
- estimation part 22 sets each value of division
- the estimation unit 22 is not limited to the configuration in which each of the divided deterioration values qd [j] to qd [j + 5] is set to zero, and may be a value smaller than each of the divided deterioration values qd [j] to qd [j + 5]. For example, it may be configured to set to a predetermined value other than zero.
- the monitoring apparatus 151 or the deterioration estimation apparatus 101 in the monitoring apparatus 151 includes a control unit 20, and the control unit 20 reads out a deterioration estimation program 231 including some or all of the steps of the flowchart shown below from the storage unit 23. Execute.
- FIG. 11 is a flowchart that defines an operation procedure when the deterioration estimation device estimates the deterioration of the battery.
- control unit 20 of degradation estimation apparatus 101 receives an estimation command from another apparatus.
- the degradation estimation apparatus 101 acquires time-series data of the battery SOC and temperature T (step S102).
- the deterioration estimation device 101 calculates a non-energization deterioration value Qcnd of the battery based on the time series data of the SOC and the temperature T (step S104).
- the deterioration estimation device 101 calculates a battery energization deterioration value Qcur based on the time-series data of the SOC and the temperature T (step S106).
- Degradation estimation apparatus 101 calculates the sum of energization deterioration value Qcur and non-energization deterioration value Qcnd as deterioration value Qdeg indicating the deterioration of the battery, and estimates the deterioration of the battery based on the calculation result (step S108).
- steps S104 and S106 are not limited to the above, and the order may be changed.
- FIG. 12 is a flowchart that defines an operation procedure when the deterioration estimation device calculates an energization deterioration value based on time-series data.
- FIG. 12 shows details of the operation in step S106 of FIG.
- the sampling interval is assumed such that the fluctuation range of the SOC in the sampling interval is smaller than the interval INT.
- the degradation estimation apparatus 101 initializes the index N to 1 (step S202).
- the deterioration estimation apparatus 101 initializes the SOC_old, the array Aqd, and the peeling deterioration value Qdst. Specifically, degradation estimation apparatus 101 sets SOC_old to sc [1]. In addition, the degradation estimation apparatus 101 initializes each element qd [1] to qd [Dnum] in the array Aqd and the peel degradation value Qdst to zero (step S204).
- Degradation estimation apparatus 101 increments index N (step S206).
- Degradation estimation apparatus 101 determines index jt corresponding to the magnitude of the SOC variation (step S210) when sc [N] is larger than the sum of SOC_old and interval INT (YES in step S208).
- Degradation estimation apparatus 101 determines, for example, an index jt where SOC_old is greater than (jt-1) ⁇ INT and SOC_old is equal to or less than jt ⁇ INT.
- the deterioration estimation device 101 adds the division deterioration value qd [jt] to the peeling deterioration value Qdst (step S212).
- Degradation estimation apparatus 101 sets division degradation value qd [jt] to zero (step S214).
- Degradation estimation apparatus 101 updates the value of SOC_old to the sum of SOC_old and interval INT (step S216).
- degradation estimating apparatus 101 compares sc [N] with a value obtained by subtracting interval INT from SOC_old (step S218). ).
- Degradation estimation apparatus 101 updates the value of SOC_old to a value obtained by subtracting interval INT from SOC_old when sc [N] is equal to or less than the value obtained by subtracting interval INT from SOC_old (step S220).
- degradation estimation apparatus 101 updates SOC_old (steps S216 and S220), or when sc [N] is larger than the value obtained by subtracting interval INT from SOC_old (NO in step S218), equation (6) Is used to update the values of the respective elements qd [1] to qd [Dnum] of the array Aqd (step S222).
- the degradation estimation apparatus 101 compares the index N with the number of elements Snum of the array Ats, and if the index N is different from the number of elements Snum (NO in step S224), the index N is incremented (step S226).
- degradation estimation apparatus 101 compares sc [N] with the sum of SOC_old and interval INT (step S208).
- the deterioration estimation device 101 performs a calculation process of the energization deterioration value Qcur (step S228). Specifically, the degradation estimation apparatus 101 calculates the sum of the film degradation value Qrgn that is the sum of qd [1] to qd [Dnum] and the peeling degradation value Qdst as the energization degradation value Qcur.
- the sampling interval is assumed such that the fluctuation range of the SOC in the sampling interval is smaller than the interval INT.
- the fluctuation range is equal to or larger than the interval INT, in step S210, By determining a plurality of indexes, it is possible to calculate the energization deterioration value Qcur.
- [effect] 13 to 20 are diagrams showing an example of errors in battery deterioration estimation by the deterioration estimating apparatus. 13 to 20, the vertical axis indicates an error, and the horizontal axis indicates the number of cycles.
- the error is, for example, a value obtained by dividing the absolute value of the difference between the calculated value and the actual measurement value by the actual measurement value in percentage.
- the calculated value according to the comparative example is calculated based on, for example, the integrated value of the absolute value of the current flowing into and out of the battery, which is the amount of energized electricity.
- FIGS. 13 to 16 show the results when the fluctuation range of the SOC is fixed to 20% while the central SOC is changed.
- FIG. 14 plots error changes Cvi and Cvr after repeated charging and discharging so that the SOC variation is 20% to 40% against the number of cycles.
- FIG. 15 plots error changes Cvi and Cvr after repeated charging and discharging so that the SOC variation is 40% to 60% against the number of cycles.
- FIG. 16 plots error changes Cvi and Cvr after repeated charging and discharging so that the SOC variation is 60% to 80% against the number of cycles.
- the error is suppressed when the SOC variation is 40% to 60% and 60% to 80%, but the SOC variation is 0% to 20%. In the case of 20% to 40%, the error increases as the number of cycles increases.
- the error is suppressed regardless of the increase in the number of cycles regardless of the magnitude of the fluctuation of the SOC.
- FIG. 17 to FIG. 20 show results when the center SOC is fixed at 60% and the fluctuation range of the SOC is changed.
- FIG. 17 plots error changes Cvi and Cvr after repeated charging and discharging so that the center SOC is 60% and the fluctuation range of the SOC is 1% against the number of cycles. Has been.
- FIG. 18 plots error changes Cvi and Cvr after repeated charging and discharging so that the center SOC is 60% and the fluctuation range of SOC is 10% against the number of cycles.
- FIG. 19 plots error changes Cvi and Cvr after repeated charging and discharging so that the center SOC is 60% and the fluctuation range of the SOC is 40% against the number of cycles.
- FIG. 20 plots error changes Cvi and Cvr after repeated charging and discharging so that the center SOC is 60% and the fluctuation range of the SOC is 60% against the number of cycles.
- the error is suppressed when the SOC fluctuation ranges are 10% and 40%, but the error is suppressed when the SOC fluctuation ranges are 1% and 60%. large.
- the error is equal or suppressed in any SOC fluctuation range.
- the degradation estimation apparatus 101 according to the second embodiment has the same configuration as the degradation estimation apparatus 101 according to the first embodiment except that the following points are different.
- the history creation unit 54 of the degradation estimation apparatus 101 stores the count value of the counter 55 at the sampling time and the digital signals Di, Dv, and Dt in the storage unit 56.
- the storage unit 56 stores the sampling time, current value, voltage value, and temperature T at each sampling time, and stores the number of charge / discharge cycles. Each time charge / discharge is repeated, the number of charge / discharge cycles is updated.
- control unit 20 of degradation estimation apparatus 101 receives an estimation command from another apparatus.
- control unit 20 of degradation estimation apparatus 101 receives an estimation command from another apparatus.
- charge / discharge is repeated so that the SOC reciprocates between 40% and 80% will be described.
- the degradation estimation apparatus 101 acquires the number of charge / discharge cycles (step S300).
- Deterioration estimating apparatus 101 acquires time-series data of battery SOC and temperature T (step S302).
- the deterioration estimation device 101 calculates a non-energization deterioration value Qcnd of the battery based on the time series data of the SOC and the temperature T (step S304).
- Degradation estimation apparatus 101 calculates a battery energization deterioration value Qcur based on time-series data of SOC and temperature T (step S306).
- the degradation estimation device 101 calculates the sum of the energization degradation value Qcur and the non-energization degradation value Qcnd as a degradation value Qdeg indicating the degradation of the battery, and estimates the degradation of the battery (shift in capacity balance) based on the computation result (step) S308).
- the energization deterioration value Qcur and the non-energization deterioration value Qcnd are calculated such that the difference between the energization deterioration value Qcur and the non-energization deterioration value Qcnd increases as the number of charge / discharge cycles increases. For example, a cycle test is performed in advance, and at least one of the coefficient kc and the coefficient kr is changed according to the number of charge / discharge cycles.
- steps S300 and S302 and the order of steps S304 and S306 are not limited to the above, and the order may be changed.
- FIGS. 13 to 20 also show an example of an error in battery deterioration estimation by the deterioration estimating apparatus 101 of the second embodiment. That is, FIG. 13 shows a change in error with respect to the number of cycles when charging / discharging is repeated so that the SOC reciprocates between 0% and 20%.
- FIG. 14 shows a change in error with respect to the number of cycles when charging / discharging is repeated so that the SOC reciprocates between 20% and 40%.
- FIG. 15 shows a change in error with respect to the number of cycles when charge and discharge are repeated so that the SOC reciprocates between 40% and 60%.
- FIG. 16 shows a change in error with respect to the number of cycles when charging / discharging is repeated so that the SOC reciprocates between 60% and 80%.
- FIG. 17 shows an error change with respect to the number of cycles when the charge / discharge is repeated so that the SOC reciprocates between 59.5% and 60.5%.
- FIG. 18 shows a change in error with respect to the number of cycles when charge and discharge are repeated so that the SOC reciprocates between 55% and 65%.
- FIG. 19 shows a change in error with respect to the number of cycles when charging / discharging is repeated so that the SOC reciprocates between 40% and 80%.
- FIG. 20 shows a change in error with respect to the number of cycles when charge and discharge are repeated so that the SOC reciprocates between 30% and 90%.
- the internal state of the electricity storage device can be grasped by estimating the amount of decrease in the amount of electricity that can be reversibly extracted from the electricity storage device due to an increase in capacity balance deviation. Since the potential of the negative electrode at 100% SOC is also known, when the power storage element is a lithium ion secondary battery, the risk of deposition of metallic lithium on the negative electrode is also known. The SOH (State of Health) of the electricity storage element including the risk can be monitored. Since the SOC-OCV curve can be obtained based on the deviation of the capacity balance, it is also possible to determine how to control the storage element.
- the deterioration estimation apparatus 101 is configured to be provided inside the monitoring apparatus 151, the present invention is not limited to this.
- the degradation estimation apparatus 101 may be provided outside the monitoring apparatus 151. In this case, the deterioration estimation apparatus 101 acquires SOC time-series data from the monitoring apparatus 151 via a bus such as a USB (Universal Serial Bus) cable.
- a bus such as a USB (Universal Serial Bus) cable.
- the deterioration estimation apparatus 101 is configured to use SOC time-series data, but is not limited thereto.
- Degradation estimation apparatus 101 may use time-series data of an absolute value such as a charge amount, time-series data of a charge level, and the like, instead of time-series data of SOC.
- the SOC time-series data may be ⁇ SOC obtained by a current integration method or the like, or may be data obtained by adding / subtracting ⁇ SOC to the initial SOC value.
- the estimation unit 22 is configured to calculate the deterioration value as the battery deterioration estimation, but the present invention is not limited to this.
- the estimation unit 22 may calculate a level indicating battery deterioration, battery life, battery replacement time, and the like.
- the estimation unit 22 is configured to calculate the energization deterioration value Qcur based on the SOC fluctuation magnitude, the SOC at each acquisition time point, and the temperature T at each acquisition time point, but is not limited thereto. Not what you want.
- the estimation unit 22 may estimate the deterioration of the battery based on the magnitude of the SOC fluctuation. For example, the estimation unit 22 may set the coefficient kr as a fixed value when the variation of the SOC is small and the variation of the temperature T is small.
- the estimation unit 22 may be configured to estimate deterioration due to energization of the battery based on, for example, the magnitude of SOC variation. For example, the estimation unit 22 calculates the energization deterioration value Qcur using the coefficient kr as a fixed value.
- the estimation unit 22 may be configured to estimate battery deterioration based on, for example, the magnitude of SOC fluctuation and the center of SOC fluctuation in time-series data, and the magnitude of SOC fluctuation.
- the battery deterioration may be estimated based on the SOC at each acquisition time point. For example, when the variation in temperature T is small, the estimation unit 22 can calculate the energization deterioration value Qcur and the non-energization deterioration value Qcnd using the coefficient kr and the coefficient kc as functions of the SOC.
- the estimation unit 22 is configured to estimate the deterioration of the storage element based on the sum of the energization deterioration value Qcur and the non-energization deterioration value Qcnd, but the present invention is not limited to this.
- the estimation unit 22 may be configured to estimate the deterioration of the storage element based on the energization deterioration value Qcur without using the non-energization deterioration value Qcnd. For example, when the elapsed time from the new battery state is short, the estimation unit 22 can accurately estimate the deterioration of the storage element based on the energization deterioration value Qcur.
- the estimation unit 22 is configured to calculate the energization deterioration value Qcur based on the peeling deterioration value Qdst, but is not limited thereto.
- the estimation unit 22 may calculate the energization deterioration value Qcur without using the peeling deterioration value Qdst.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
The objective of the present invention is to provide a degradation estimating device, a degradation estimating method and a computer program with which it is possible for degradation of an electricity storage element to be estimated accurately. A degradation estimating device (101) is provided with: an acquiring unit (21) which acquires time-series data of the state of charge (SOC) of an electricity storage element; and an estimating unit (22) which estimates the degradation of the electricity storage element on the basis of the magnitude of variation of the SOC in the time-series data acquired by the acquiring unit (21). An electricity storage element degradation estimating method comprises: acquiring time-series data of the SOC of an electricity storage element; and estimating the degradation of the electricity storage element on the basis of the magnitude of variation of the SOC in the acquired time-series data.
Description
本発明は、蓄電素子の劣化を推定する劣化推定装置、劣化推定方法およびコンピュータプログラムに関する。
The present invention relates to a deterioration estimation device, a deterioration estimation method, and a computer program for estimating deterioration of a storage element.
電気エネルギーを蓄積し、必要な時に動力源としてエネルギーを供給できる蓄電素子が利用されている。蓄電素子は、携帯機器、電源装置、自動車や鉄道を含む輸送機器、航空・宇宙・建設用を含む産業用機器等に適用されている。必要な時に必要なだけ蓄積しておいたエネルギーを利用できるよう、蓄電素子の蓄電容量を常時把握することは重要である。蓄電素子は時間、および使用頻度に応じて主に化学的に劣化することが知られている。そのため、活用できるエネルギーが時間、および使用頻度に応じて減少する。必要な時に必要なだけエネルギーを利用するために、蓄電素子の劣化状態を把握することは重要である。これまでに、蓄電素子の劣化を推定するための技術が開発されている。
Electrical storage elements that store electrical energy and can supply energy as a power source when necessary are used. The power storage element is applied to portable equipment, power supply devices, transportation equipment including automobiles and railways, industrial equipment including aviation, space, and construction. It is important to always know the storage capacity of the storage element so that the energy stored as much as necessary can be used when necessary. It is known that a power storage element is chemically degraded mainly depending on time and use frequency. Therefore, the energy which can be utilized decreases according to time and use frequency. In order to use as much energy as necessary when necessary, it is important to grasp the deterioration state of the power storage element. So far, a technique for estimating deterioration of a power storage element has been developed.
特開2011-220900号公報には、電池劣化推定方法が開示されている。二次電池の容量劣化のレベルを推定する電池劣化推定方法は、前記二次電池の容量劣化に影響する複数の使用条件のそれぞれに対応して、その二次電池に流れる電流量、または経過時間を所定の期間に亘って積算する第1の手順を有する。電池劣化推定方法は、単一の使用条件のときの前記二次電池の劣化速度に対する前記複数の使用条件における前記二次電池の劣化速度の比を示す劣化係数を、対応する複数の使用条件のそれぞれについて算出する第2の手順を有する。電池劣化推定方法は、前記第1の手順で前記複数の使用条件ごとに積算された電流積算値または経過時間を、前記第2の手順で対応する複数の使用条件ごとに算出された前記劣化係数によって補正し、前記単一の使用条件における電流積算値または経過時間に換算する第3の手順を有する。電池劣化推定方法は、前記第3の手順で換算された電流積算値または経過時間と前記単一の使用条件における劣化速度とに基づいて、前記二次電池の容量劣化のレベルを推定する第4の手順を有する。
Japanese Patent Laid-Open No. 2011-220900 discloses a battery deterioration estimation method. A battery deterioration estimation method for estimating the level of capacity deterioration of a secondary battery is a method of estimating the amount of current flowing through the secondary battery or the elapsed time corresponding to each of a plurality of usage conditions affecting the capacity deterioration of the secondary battery. Is accumulated over a predetermined period. In the battery deterioration estimation method, the deterioration coefficient indicating the ratio of the deterioration rate of the secondary battery in the plurality of use conditions to the deterioration rate of the secondary battery in a single use condition is calculated according to the corresponding plurality of use conditions. A second procedure is calculated for each. In the battery deterioration estimation method, the deterioration coefficient calculated for each of a plurality of use conditions corresponding to the second procedure is calculated by using the current integrated value or elapsed time integrated for each of the plurality of use conditions in the first procedure. And a third procedure for converting into the current integrated value or the elapsed time in the single use condition. The battery deterioration estimation method is a fourth method for estimating the level of capacity deterioration of the secondary battery based on the integrated current value or elapsed time converted in the third procedure and the deterioration rate under the single use condition. The procedure is as follows.
従来の方法では、蓄電素子の劣化の推定精度が十分でない場合がある。
従来の方法では、蓄電素子の様々な使用条件(充放電パターン、充放電レート、環境温度など)を予測し、それぞれの予測使用条件で試験を行ったり計算を行ったりすることで、蓄電素子の劣化に関するデータを予めデータテーブルに記憶している。蓄電素子の使用を開始した後、実際の使用条件をリアルタイムで測定し、その実際の使用条件に近い予測使用条件に関連付けられたデータをデータテーブルから読み出して、蓄電素子の劣化の推定を行っている。従来の方法において劣化の推定精度を向上するには、出来る限り多くの予測使用条件についてデータを記憶しておく必要がある。このような膨大なデータを用意することは煩雑である。
多くの予測使用条件についてデータを用意しても、実際の使用条件が予測使用条件から乖離することがある。このような乖離が生じると、劣化の推定精度が低下する。さらに、多くの予測使用条件についてのデータを、実際の使用条件に応じて適切に選択して劣化推定・予測を行うことは、十分には実現されていない。このような状況から、蓄電素子の劣化を精度よく推定するための技術が求められている。 In the conventional method, there is a case where the estimation accuracy of deterioration of the power storage element is not sufficient.
In the conventional method, various usage conditions (charge / discharge pattern, charge / discharge rate, environmental temperature, etc.) of the storage element are predicted, and tests and calculations are performed under the respective predicted use conditions. Data on deterioration is stored in advance in a data table. After starting the use of the storage element, measure the actual use condition in real time, read the data associated with the predicted use condition close to the actual use condition from the data table, and estimate the deterioration of the storage element Yes. In order to improve the estimation accuracy of deterioration in the conventional method, it is necessary to store data for as many predicted use conditions as possible. Preparing such a large amount of data is complicated.
Even if data is prepared for many predicted usage conditions, the actual usage conditions may deviate from the predicted usage conditions. When such a divergence occurs, the estimation accuracy of deterioration decreases. Further, it has not been sufficiently realized to perform deterioration estimation / prediction by appropriately selecting data on many predicted usage conditions according to actual usage conditions. Under such circumstances, there is a need for a technique for accurately estimating the deterioration of the power storage element.
従来の方法では、蓄電素子の様々な使用条件(充放電パターン、充放電レート、環境温度など)を予測し、それぞれの予測使用条件で試験を行ったり計算を行ったりすることで、蓄電素子の劣化に関するデータを予めデータテーブルに記憶している。蓄電素子の使用を開始した後、実際の使用条件をリアルタイムで測定し、その実際の使用条件に近い予測使用条件に関連付けられたデータをデータテーブルから読み出して、蓄電素子の劣化の推定を行っている。従来の方法において劣化の推定精度を向上するには、出来る限り多くの予測使用条件についてデータを記憶しておく必要がある。このような膨大なデータを用意することは煩雑である。
多くの予測使用条件についてデータを用意しても、実際の使用条件が予測使用条件から乖離することがある。このような乖離が生じると、劣化の推定精度が低下する。さらに、多くの予測使用条件についてのデータを、実際の使用条件に応じて適切に選択して劣化推定・予測を行うことは、十分には実現されていない。このような状況から、蓄電素子の劣化を精度よく推定するための技術が求められている。 In the conventional method, there is a case where the estimation accuracy of deterioration of the power storage element is not sufficient.
In the conventional method, various usage conditions (charge / discharge pattern, charge / discharge rate, environmental temperature, etc.) of the storage element are predicted, and tests and calculations are performed under the respective predicted use conditions. Data on deterioration is stored in advance in a data table. After starting the use of the storage element, measure the actual use condition in real time, read the data associated with the predicted use condition close to the actual use condition from the data table, and estimate the deterioration of the storage element Yes. In order to improve the estimation accuracy of deterioration in the conventional method, it is necessary to store data for as many predicted use conditions as possible. Preparing such a large amount of data is complicated.
Even if data is prepared for many predicted usage conditions, the actual usage conditions may deviate from the predicted usage conditions. When such a divergence occurs, the estimation accuracy of deterioration decreases. Further, it has not been sufficiently realized to perform deterioration estimation / prediction by appropriately selecting data on many predicted usage conditions according to actual usage conditions. Under such circumstances, there is a need for a technique for accurately estimating the deterioration of the power storage element.
この発明は、上述の課題を解決するためになされたもので、その目的は、蓄電素子の劣化を精度よく推定することが可能な劣化推定装置、劣化推定方法およびコンピュータプログラムを提供することである。
The present invention has been made to solve the above-described problems, and an object thereof is to provide a deterioration estimation device, a deterioration estimation method, and a computer program capable of accurately estimating deterioration of a power storage element. .
この発明の一局面に係る劣化推定装置は、蓄電素子における充電状態(SOC:State Of Charge)の時系列データを取得する取得部と、前記取得部によって取得された前記時系列データにおける前記SOCの変動の大きさ(差分)に基づいて、前記蓄電素子の劣化を推定する推定部とを備える。
A deterioration estimation apparatus according to one aspect of the present invention includes an acquisition unit that acquires time-series data of a state of charge (SOC) in a storage element, and the SOC of the SOC in the time-series data acquired by the acquisition unit. An estimation unit configured to estimate deterioration of the power storage element based on the magnitude (difference) of fluctuation.
ここでいう「時系列データにおけるSOCの変動の大きさ」とは、ある時刻tにおけるSOCからΔt時間経過した時のSOCの差分である。
本発明者は、蓄電素子に対する電気エネルギーの出し入れによる(通電による)、「動的な」劣化(通電による劣化)を考慮して、新たな容量劣化モデルを考案した。本発明者は、そのモデルから導かれる劣化推定に関するアルゴリズムを見出した。詳細には、時系列データにおけるSOCの変動の大きさ(差分)に応じて蓄電素子の通電による劣化の程度が異なることを本発明者は見出した。つまり本発明者は、蓄電素子の劣化は時系列データにおけるSOCの変動の大きさ(差分)に依存することを見出した。時系列データにおけるSOCの変動の大きさを考慮しない従来の推定手法では、たとえば、SOC50%を中心として±10%の範囲でSOCが変動したときの劣化推定値と、SOC50%を中心として±30%の範囲でSOCが変動したときの劣化推定値とが同じになる(図21AおよびB参照)。従来の手法では、ユーザーによって千差万別である蓄電素子の使用パターン(充放電パターン)に適応することができず、劣化の推定精度を十分に向上できない。時系列データにおけるSOCの変動の大きさに基づいて、推定部により蓄電素子の劣化を推定することで、劣化の推定精度を向上することが期待できる。 Here, “the magnitude of variation in SOC in time series data” is the difference in SOC when Δt time has elapsed from the SOC at a certain time t.
The present inventor has devised a new capacity deterioration model in consideration of “dynamic” deterioration (deterioration due to energization) due to insertion / extraction of electric energy to / from the power storage element. The present inventor has found an algorithm related to deterioration estimation derived from the model. Specifically, the present inventor has found that the degree of deterioration due to energization of the power storage element varies depending on the magnitude (difference) of SOC variation in the time series data. That is, the present inventor has found that the deterioration of the power storage element depends on the magnitude (difference) of the SOC fluctuation in the time series data. In the conventional estimation method that does not consider the magnitude of the SOC variation in the time series data, for example, the degradation estimated value when the SOC varies in the range of ± 10% centering on theSOC 50%, and ± 30 centering on the SOC 50%. %, The deterioration estimated value when the SOC fluctuates is the same (see FIGS. 21A and 21B). In the conventional method, it is impossible to adapt to the usage pattern (charge / discharge pattern) of the power storage element, which varies from user to user, and the estimation accuracy of deterioration cannot be sufficiently improved. It can be expected that the estimation accuracy of the deterioration can be improved by estimating the deterioration of the storage element by the estimation unit based on the magnitude of the SOC fluctuation in the time series data.
本発明者は、蓄電素子に対する電気エネルギーの出し入れによる(通電による)、「動的な」劣化(通電による劣化)を考慮して、新たな容量劣化モデルを考案した。本発明者は、そのモデルから導かれる劣化推定に関するアルゴリズムを見出した。詳細には、時系列データにおけるSOCの変動の大きさ(差分)に応じて蓄電素子の通電による劣化の程度が異なることを本発明者は見出した。つまり本発明者は、蓄電素子の劣化は時系列データにおけるSOCの変動の大きさ(差分)に依存することを見出した。時系列データにおけるSOCの変動の大きさを考慮しない従来の推定手法では、たとえば、SOC50%を中心として±10%の範囲でSOCが変動したときの劣化推定値と、SOC50%を中心として±30%の範囲でSOCが変動したときの劣化推定値とが同じになる(図21AおよびB参照)。従来の手法では、ユーザーによって千差万別である蓄電素子の使用パターン(充放電パターン)に適応することができず、劣化の推定精度を十分に向上できない。時系列データにおけるSOCの変動の大きさに基づいて、推定部により蓄電素子の劣化を推定することで、劣化の推定精度を向上することが期待できる。 Here, “the magnitude of variation in SOC in time series data” is the difference in SOC when Δt time has elapsed from the SOC at a certain time t.
The present inventor has devised a new capacity deterioration model in consideration of “dynamic” deterioration (deterioration due to energization) due to insertion / extraction of electric energy to / from the power storage element. The present inventor has found an algorithm related to deterioration estimation derived from the model. Specifically, the present inventor has found that the degree of deterioration due to energization of the power storage element varies depending on the magnitude (difference) of SOC variation in the time series data. That is, the present inventor has found that the deterioration of the power storage element depends on the magnitude (difference) of the SOC fluctuation in the time series data. In the conventional estimation method that does not consider the magnitude of the SOC variation in the time series data, for example, the degradation estimated value when the SOC varies in the range of ± 10% centering on the
モデル、およびアルゴリズムの一例では、電気エネルギーの出し入れの担い手(蓄電素子がリチウムイオン電池である場合はリチウムイオン)が電極表面の被膜(蓄電素子がリチウムイオン電池である場合はSEI被膜)を通じて出入りすると考え、その被膜内に存在するリチウムイオンの総量を考慮した。
さらに、充放電に伴い電極表面から剥離した被膜に含まれるリチウムイオンを考慮してもよい。
このようなイオンの存在分布、および/あるいは挙動を考慮したアルゴリズムの妥当性は、実験データから支持されるものである。その考察に関しては後述する。 In an example of a model and an algorithm, a person who takes in and out electric energy (lithium ions when the storage element is a lithium ion battery) enters and exits through a film on the electrode surface (SEI film when the storage element is a lithium ion battery). The total amount of lithium ions present in the coating was considered.
Furthermore, you may consider the lithium ion contained in the film which peeled from the electrode surface with charging / discharging.
The validity of the algorithm considering the ion distribution and / or behavior is supported by experimental data. The consideration will be described later.
さらに、充放電に伴い電極表面から剥離した被膜に含まれるリチウムイオンを考慮してもよい。
このようなイオンの存在分布、および/あるいは挙動を考慮したアルゴリズムの妥当性は、実験データから支持されるものである。その考察に関しては後述する。 In an example of a model and an algorithm, a person who takes in and out electric energy (lithium ions when the storage element is a lithium ion battery) enters and exits through a film on the electrode surface (SEI film when the storage element is a lithium ion battery). The total amount of lithium ions present in the coating was considered.
Furthermore, you may consider the lithium ion contained in the film which peeled from the electrode surface with charging / discharging.
The validity of the algorithm considering the ion distribution and / or behavior is supported by experimental data. The consideration will be described later.
劣化の推定に用いるパラメータをSOCの変動パターンごとに準備することなく、当該劣化をSOCの時系列データに基づき精度よく推定することができるので、蓄電素子の劣化の推定のための準備を著しく簡素化することができる。また、ユーザーによって千差万別である蓄電素子の使用パターン(SOC変動パターン)に関わらず、蓄電素子の劣化を精度よく推定することができる。
Since it is possible to accurately estimate the deterioration based on the time-series data of the SOC without preparing the parameters used for estimating the deterioration for each SOC fluctuation pattern, the preparation for estimating the deterioration of the storage element is remarkably simplified. Can be Further, it is possible to accurately estimate the deterioration of the power storage element regardless of the usage pattern (SOC fluctuation pattern) of the power storage element, which varies from user to user.
前記推定部は、前記SOCの変動の大きさ、および前記時系列データにおける前記SOCの変動の中心に基づいて、前記蓄電素子の劣化を推定してもよい。
The estimation unit may estimate the deterioration of the storage element based on the magnitude of the SOC fluctuation and the center of the SOC fluctuation in the time series data.
本発明者は、SOCの変動の大きさの他に、SOCの変動の中心(中心SOC)も蓄電素子の通電による劣化と関連することを見出した。あるSOCを基準として、充電側(プラス側)および放電側(マイナス側)にSOCを変動させるときのSOC変動幅が同じであっても、中心SOCが異なると、蓄電素子の通電による劣化量も異なるのである(図21C参照)。劣化現象は化学変化であり、化学変化は主たる化学種の周辺環境に依存する。中心SOCが異なるとその環境が変わるため、蓄電素子の通電による劣化量も異なると考えられる。蓄電素子の容量劣化の主要因は、正極と負極の容量バランスのずれ(蓄電素子の正極と負極における、可逆的に電荷イオンが電極から出入りできる容量の相違)であると考えられる。容量バランスのずれは、負極活物質上の被膜(蓄電素子がリチウムイオン電池である場合はSEI被膜)が成長することにより起こるとされている。中心SOCが異なる、つまり負極活物質の電位が異なることで、SEI被膜の成長に影響するものと推察される。SOCの変動の大きさ、およびSOCの変動の中心に基づいて蓄電素子の劣化を推定する構成により、SOCの変動の中心の相違に関わらず蓄電素子の劣化を精度よく推定することができる。
The present inventor has found that in addition to the magnitude of the fluctuation of the SOC, the center of fluctuation of the SOC (central SOC) is also related to the deterioration due to energization of the power storage element. Even if the SOC fluctuation range when the SOC is fluctuated between the charge side (positive side) and the discharge side (minus side) with respect to a certain SOC is different, if the center SOC is different, the amount of deterioration due to energization of the storage element is also reduced. It is different (see FIG. 21C). The deterioration phenomenon is a chemical change, and the chemical change depends on the surrounding environment of the main chemical species. Since the environment changes when the center SOC is different, it is considered that the amount of deterioration due to energization of the power storage element is also different. The main cause of the capacity deterioration of the storage element is considered to be a difference in capacity balance between the positive electrode and the negative electrode (difference in capacity where charge ions can reversibly enter and exit the electrode between the positive electrode and the negative electrode of the storage element). The deviation in capacity balance is said to be caused by the growth of a film on the negative electrode active material (an SEI film when the power storage element is a lithium ion battery). It is assumed that the center SOC is different, that is, the potential of the negative electrode active material is different, which affects the growth of the SEI film. With the configuration in which the deterioration of the power storage element is estimated based on the magnitude of the SOC fluctuation and the center of the SOC fluctuation, the deterioration of the power storage element can be accurately estimated regardless of the difference in the center of the SOC fluctuation.
前記推定部は、前記SOCの変動の大きさに基づいて、前記蓄電素子の通電による劣化を示す通電劣化値を算出し、算出した前記通電劣化値と前記蓄電素子の通電によらない劣化を示す非通電劣化値との和に基づいて前記蓄電素子の劣化を推定してもよい。
The estimation unit calculates an energization deterioration value indicating deterioration due to energization of the power storage element based on a magnitude of fluctuation of the SOC, and indicates the calculated energization deterioration value and deterioration not caused by energization of the power storage element. You may estimate degradation of the said electrical storage element based on the sum with a non-energization degradation value.
本発明者は、そのまま放置しておいても経時劣化する蓄電素子に通電すると、劣化がさらに進行することに着目した。通電によってさらに進行した劣化を示す通電劣化値をSOCの変動の大きさに基づいて算出し、算出結果と非通電劣化値との和に基づいて蓄電素子の劣化を推定する構成により、蓄電素子の劣化をより精度よく推定することができる。本発明者は、単純な経時変化に伴う「静的な」蓄電素子の劣化(通電によらない、放置による劣化)だけではなく、電気エネルギーの出し入れによる(通電による)、「動的な」劣化(通電による劣化)を考慮して、新たな容量劣化モデルを考案した。そのモデルから導かれる劣化推定に関するアルゴリズムを見出した。
The inventor of the present invention has focused on the fact that the deterioration further proceeds when a power storage element that deteriorates with time even when left as it is is energized. A configuration in which an energization deterioration value indicating deterioration further progressed by energization is calculated based on the magnitude of variation in SOC and the deterioration of the storage element is estimated based on the sum of the calculation result and the non-energization deterioration value. Degradation can be estimated more accurately. The present inventor not only “deteriorated” static electricity storage elements with deterioration with time (not due to energization, deterioration due to neglect) but also “dynamic” deterioration due to electric energy input / output (due to energization). A new capacity deterioration model was devised in consideration of (deterioration due to energization). We found an algorithm for degradation estimation derived from the model.
前記推定部は、前記SOCの変動の大きさに基づく、前記蓄電素子の負極におけるSEI(Solid Electrolyte Interface)被膜の状態の変化に基づいて、前記蓄電素子の劣化を推定してもよい。
The estimation unit may estimate the deterioration of the power storage element based on a change in a state of a SEI (Solid Electrolyte Interface) film on a negative electrode of the power storage element based on a magnitude of fluctuation of the SOC.
本発明者は、蓄電素子の劣化量の推定に、SOCの変動の大きさに応じた負極におけるSEI被膜の状態の変化を取り入れた。負極における物理現象を考慮した推定を行うことにより、蓄電素子の劣化の推定精度をより高めることができる。
The present inventor incorporated a change in the state of the SEI film on the negative electrode in accordance with the magnitude of the SOC variation in the estimation of the deterioration amount of the storage element. By performing the estimation in consideration of the physical phenomenon in the negative electrode, it is possible to further improve the estimation accuracy of the deterioration of the storage element.
前記推定部は、前記蓄電素子の負極におけるSEI被膜の破壊と再生成が考慮された数式モデルに基づいて、前記蓄電素子の劣化を推定してもよい。
The estimation unit may estimate the deterioration of the power storage element based on a mathematical model that takes into account the destruction and regeneration of the SEI film on the negative electrode of the power storage element.
本発明者は、蓄電素子の通電による劣化を推定するために、蓄電素子の負極におけるSEI被膜の破壊と再生成が考慮された数式モデルを考案した。この数式モデルは、従来の数式モデルと比較して、電極における物理現象をより正しく表していると考えられる。
The present inventor has devised a mathematical model that takes into account the destruction and regeneration of the SEI film on the negative electrode of the electricity storage element in order to estimate the deterioration of the electricity storage element due to energization. This mathematical model is considered to represent the physical phenomenon in the electrode more correctly than the conventional mathematical model.
前記数式モデルは、前記蓄電素子の負極から剥離したSEI被膜による、前記蓄電素子の劣化も考慮する。
The mathematical model also takes into account the deterioration of the storage element due to the SEI film peeled from the negative electrode of the storage element.
本発明者は、数式モデルに、負極から剥離したSEI被膜による劣化を取り入れた。この数式モデルは、従来の数式モデルと比較して、電極における物理現象をより正しく表していると考えられる。
The present inventor incorporated deterioration due to the SEI coating peeled from the negative electrode into the mathematical model. This mathematical model is considered to represent the physical phenomenon in the electrode more correctly than the conventional mathematical model.
上述したように、蓄電素子の容量劣化の主要因は容量バランスのずれである。従来、時間の経過に伴って、蓄電素子の容量が劣化することは知られていた。
本発明者は、通電によって容量バランスのずれが増大することを見出した。この新しい知見に基づき、下記のように正極と負極の容量バランスのずれを推定することにより、蓄電素子の劣化推定を行う。 As described above, the main cause of the capacity deterioration of the power storage element is a shift in capacity balance. Conventionally, it has been known that the capacity of a power storage element deteriorates with time.
The present inventor has found that the deviation in capacity balance increases due to energization. Based on this new knowledge, the deterioration of the storage element is estimated by estimating the deviation in the capacity balance between the positive electrode and the negative electrode as described below.
本発明者は、通電によって容量バランスのずれが増大することを見出した。この新しい知見に基づき、下記のように正極と負極の容量バランスのずれを推定することにより、蓄電素子の劣化推定を行う。 As described above, the main cause of the capacity deterioration of the power storage element is a shift in capacity balance. Conventionally, it has been known that the capacity of a power storage element deteriorates with time.
The present inventor has found that the deviation in capacity balance increases due to energization. Based on this new knowledge, the deterioration of the storage element is estimated by estimating the deviation in the capacity balance between the positive electrode and the negative electrode as described below.
この発明の他局面に係る劣化推定装置は、蓄電素子から可逆的に取り出せる電気量である蓄電素子の容量の劣化を充放電サイクル数に基づいて推定する推定部を備える。
A deterioration estimation device according to another aspect of the present invention includes an estimation unit that estimates the deterioration of the capacity of a power storage element, which is the amount of electricity that can be reversibly extracted from the power storage element, based on the number of charge / discharge cycles.
本明細書において、「充放電サイクル数に基づいて推定する」とは、充放電サイクル数そのもの、充放電サイクル数と相関を有する数値(たとえば通電時間)、または充放電サイクル数の代替的な表現(たとえば百分率、平方根)に基づいて、蓄電素子の容量劣化を推定する場合を含む。
In this specification, “estimate based on the number of charge / discharge cycles” means the number of charge / discharge cycles themselves, a numerical value (for example, energization time) correlated with the number of charge / discharge cycles, or an alternative expression of the number of charge / discharge cycles. This includes a case where capacity deterioration of the power storage element is estimated based on (for example, percentage, square root).
上記の充放電サイクル数に基づく蓄電素子の容量劣化の推定は、数式モデルを用いて行ってもよい。代替的に、上記の充放電サイクル数に基づく蓄電素子の容量劣化の推定は、蓄電素子の様々な予測使用条件で試験を行ったり計算を行ったりすることで、蓄電素子の容量劣化に関するデータをあらかじめデータテーブルに記憶しておき、実際の使用条件に応じて適切にデータを選択することで、上記の充放電サイクル数に基づく蓄電素子の容量劣化の推定を行ってもよい。
The estimation of the capacity deterioration of the power storage element based on the number of charge / discharge cycles may be performed using a mathematical model. Alternatively, the estimation of the capacity deterioration of the power storage element based on the number of charge / discharge cycles described above is performed by performing tests or calculations under various predicted use conditions of the power storage element, thereby obtaining data on the capacity deterioration of the power storage element. By preliminarily storing the data in a data table and selecting data appropriately according to actual use conditions, the capacity deterioration of the storage element based on the number of charge / discharge cycles may be estimated.
通電により(充放電サイクル数の増加に伴い)、例えば正極および負極のうちの一方が完全に充電されないようになり、蓄電素子から可逆的に取り出せる電気量が減少する、即ち正極と負極との「容量バランスのずれ」が増大するという新しい知見を採用する。これにより、従来よりも、蓄電素子の劣化を精度良く推定することができる。
By energization (with an increase in the number of charge / discharge cycles), for example, one of the positive electrode and the negative electrode is not completely charged, and the amount of electricity that can be reversibly taken out from the storage element is reduced. Adopt new knowledge that “capacity shift” will increase. Thereby, deterioration of an electrical storage element can be estimated more accurately than before.
前記推定部は、所定の充放電サイクル数における前記蓄電素子の容量の劣化を、その時点における前記蓄電素子の通電による劣化を示す通電劣化値と、前記蓄電素子の通電によらない劣化を示す非通電劣化値との和により推定してもよい。
The estimation unit indicates a deterioration in the capacity of the power storage element at a predetermined number of charge / discharge cycles, an energization deterioration value indicating deterioration due to energization of the power storage element at that time, and a non-reduction indicating non-energization of the power storage element. You may estimate by the sum with an electricity supply degradation value.
上述のように、本発明者は、通電によって容量バランスのずれが増大することを見出した。従来は、蓄電素子に通電した場合でも通電しない場合でも容量バランスのずれは時間の経過に伴って同じだけ生じると考えられていた。新しい知見に基づき、所定の充放電サイクル数における前記蓄電素子の容量の劣化を、その時点における通電劣化値と非通電劣化値との和により推定すると、従来よりも、蓄電素子の劣化を精度良く推定することができる。
As described above, the present inventor has found that the deviation in capacity balance increases due to energization. Conventionally, it has been considered that the same amount of deviation in the capacity balance occurs over time regardless of whether the power storage element is energized or not. Based on new knowledge, if the deterioration of the capacity of the power storage element at a predetermined number of charge / discharge cycles is estimated by the sum of the current-carrying deterioration value and the non-energization deterioration value at that time, the deterioration of the power storage element is more accurate than before. Can be estimated.
前記通電劣化値と前記非通電劣化値との差は、充放電サイクル数の増加に伴って増加するように構成してもよい。
The difference between the energization deterioration value and the non-energization deterioration value may be configured to increase as the number of charge / discharge cycles increases.
充放電サイクル数に基づく蓄電素子の容量劣化の推定を、数式モデルまたはデータテーブルを用いて行う際に、前記通電劣化値と前記非通電劣化値との差が充放電サイクル数の増加に伴って増加するように数式モデルまたはデータテーブルを構成することで、従来よりも、蓄電素子の劣化を精度良く推定することができる。
When estimating the capacity deterioration of the electricity storage element based on the number of charge / discharge cycles using a mathematical model or a data table, the difference between the energized deterioration value and the non-energized deterioration value increases as the number of charge / discharge cycles increases. By configuring the mathematical model or the data table so as to increase, it is possible to estimate the deterioration of the storage element with higher accuracy than in the past.
前記推定部は、前記通電劣化値を、前記蓄電素子の負極で成長するSEI被膜に起因する膜劣化値と、前記負極から剥離したSEI被膜に起因する剥離劣化値との和により推定してもよい。
The estimation unit may estimate the energization deterioration value by a sum of a film deterioration value caused by the SEI film grown on the negative electrode of the power storage element and a peel deterioration value caused by the SEI film peeled from the negative electrode. Good.
本発明者は、蓄電素子の通電による劣化を推定するために、蓄電素子の負極におけるSEI被膜の破壊と再生成が考慮された数式モデルを考案した。この数式モデルは、従来の数式モデルと比較して、電極における物理現象をより正しく表していると考えられる。前記推定部は、前記通電劣化値を、前記蓄電素子の負極で成長するSEI被膜に起因する膜劣化値と、前記負極から剥離したSEI被膜に起因する剥離劣化値との和により推定することで、従来よりも、蓄電素子の劣化を精度良く推定することができる。
The present inventor has devised a mathematical model that takes into account the destruction and regeneration of the SEI film on the negative electrode of the electricity storage element in order to estimate the deterioration of the electricity storage element due to energization. This mathematical model is considered to represent the physical phenomenon in the electrode more correctly than the conventional mathematical model. The estimation unit estimates the energization deterioration value by a sum of a film deterioration value caused by the SEI film grown on the negative electrode of the power storage element and a peel deterioration value caused by the SEI film peeled from the negative electrode. Therefore, it is possible to estimate the deterioration of the power storage element with higher accuracy than in the past.
劣化推定装置は、前記蓄電素子におけるSOCの時系列データを取得する取得部をさらに備え、前記推定部は、前記通電劣化値を、前記SOCの時系列データに基づいて推定してもよい。
The deterioration estimation device may further include an acquisition unit that acquires time-series data of SOC in the power storage element, and the estimation unit may estimate the energization deterioration value based on the time-series data of the SOC.
前記推定部は、前記通電劣化値を、前記SOCの時系列データに基づいて推定することで、従来よりも、蓄電素子の劣化を精度良く推定することができる。
The estimation unit can estimate the deterioration of the electricity storage device more accurately than the conventional one by estimating the energization deterioration value based on the time-series data of the SOC.
この発明の他の局面に係る蓄電素子の劣化推定方法は、蓄電素子におけるSOCの時系列データを取得し、取得した前記時系列データにおける前記SOCの変動の大きさに基づいて、前記蓄電素子の劣化を推定する。
According to another aspect of the present invention, there is provided a method for estimating deterioration of a power storage element, wherein time series data of SOC in the power storage element is acquired, and based on the magnitude of fluctuation of the SOC in the acquired time series data, Estimate degradation.
この発明の他の局面に係る劣化推定方法は、蓄電素子から可逆的に取り出せる電気量である蓄電素子の容量の劣化を充放電サイクル数に基づいて推定する。
The deterioration estimation method according to another aspect of the present invention estimates the deterioration of the capacity of the electricity storage element, which is the amount of electricity that can be reversibly extracted from the electricity storage element, based on the number of charge / discharge cycles.
この発明の他の局面に係るコンピュータプログラムは、コンピュータに、蓄電素子におけるSOCの時系列データを取得し、取得した前記時系列データにおける前記SOCの変動の大きさに基づいて、前記蓄電素子の劣化を推定する処理を実行させる。
A computer program according to another aspect of the present invention acquires, in a computer, time series data of SOC in a power storage element, and the deterioration of the power storage element based on the magnitude of fluctuation of the SOC in the acquired time series data. The process which estimates is performed.
この発明の他の局面に係るコンピュータプログラムは、コンピュータに、蓄電素子から可逆的に取り出せる電気量である蓄電素子の容量の劣化を充放電サイクル数に基づいて推定する処理を実行させる。
A computer program according to another aspect of the present invention causes a computer to execute a process of estimating deterioration of the capacity of a power storage element, which is an amount of electricity that can be reversibly extracted from the power storage element, based on the number of charge / discharge cycles.
この発明の一局面に係る劣化推定装置は、監視装置であるバッテリーマネジメントユニット(BMU)やセルモニタリングユニット(CMU)に実装されてもよい。劣化推定装置は、そうした監視装置が組み込まれた蓄電装置の一部であってもよい。劣化推定装置は、蓄電素子や蓄電装置とは別個に構成されて、劣化推定対象の蓄電素子を含む蓄電装置に、劣化推定時に接続されてもよい。劣化推定装置は、蓄電素子や蓄電装置を遠隔監視してもよい。
The deterioration estimation device according to one aspect of the present invention may be mounted on a battery management unit (BMU) or a cell monitoring unit (CMU) that is a monitoring device. The deterioration estimation device may be a part of a power storage device in which such a monitoring device is incorporated. The degradation estimation device may be configured separately from the electrical storage element and the electrical storage device, and may be connected to the electrical storage device including the electrical storage element targeted for degradation estimation at the time of degradation estimation. The deterioration estimation device may remotely monitor the power storage element and the power storage device.
この発明の他の局面に係る劣化推定方法は、この方法を実現するためのコンピュータプログラムを記録した記録媒体等、種々の態様で実現することができる。
The deterioration estimation method according to another aspect of the present invention can be realized in various modes such as a recording medium on which a computer program for realizing this method is recorded.
このように、本発明の局面によれば、蓄電素子の劣化を精度よく推定することができる。
Thus, according to the aspect of the present invention, it is possible to accurately estimate the deterioration of the power storage element.
(第1実施形態)
以下、本発明の第1実施形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 (First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. Moreover, you may combine arbitrarily at least one part of embodiment described below.
以下、本発明の第1実施形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 (First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. Moreover, you may combine arbitrarily at least one part of embodiment described below.
[構成および基本動作]
図1は、監視装置の構成を示す図である。監視装置151は、電流センサ51と、電圧センサ52と、温度センサ53と、履歴作成部54と、カウンタ55と、記憶部56と、通信部57と、劣化推定装置101とを備える。 [Configuration and basic operation]
FIG. 1 is a diagram illustrating a configuration of a monitoring device. Themonitoring device 151 includes a current sensor 51, a voltage sensor 52, a temperature sensor 53, a history creation unit 54, a counter 55, a storage unit 56, a communication unit 57, and a deterioration estimation device 101.
図1は、監視装置の構成を示す図である。監視装置151は、電流センサ51と、電圧センサ52と、温度センサ53と、履歴作成部54と、カウンタ55と、記憶部56と、通信部57と、劣化推定装置101とを備える。 [Configuration and basic operation]
FIG. 1 is a diagram illustrating a configuration of a monitoring device. The
監視装置151に含まれる構成要素のうちの一部が他の構成要素と離れて配置されてもよい。たとえば、劣化推定装置101が遠隔地に配置されて、通信部57と通信してもよい。また、遠隔地に配置されてネットワークに接続されたサーバが、劣化推定装置101として機能してもよい。
Some of the constituent elements included in the monitoring device 151 may be arranged apart from other constituent elements. For example, the deterioration estimation device 101 may be disposed in a remote place and communicate with the communication unit 57. In addition, a server that is arranged in a remote place and connected to the network may function as the degradation estimation apparatus 101.
監視装置151は、監視対象の蓄電素子(本実施形態ではリチウムイオン2次電池)の劣化を監視する。監視装置151は、1つの電池セルを監視対象としてもよいし、直列または並列に接続された複数の電池セル(組電池)を監視対象としてもよい。監視装置151は、組電池とともに蓄電装置(電池パック)を構成してもよい。
The monitoring device 151 monitors the deterioration of the storage element to be monitored (in this embodiment, a lithium ion secondary battery). The monitoring device 151 may monitor one battery cell, or may monitor a plurality of battery cells (assembled batteries) connected in series or in parallel. Monitoring device 151 may constitute a power storage device (battery pack) together with the assembled battery.
監視対象の蓄電素子は、リチウムイオン2次電池等の非水電解質2次電池に限定はされず、後述する仮説、アルゴリズムおよび数式モデルが適合する他の電気化学セルであってもよい。以下、監視対象の蓄電素子を、単に電池とも称する。
The storage element to be monitored is not limited to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and may be another electrochemical cell to which a hypothesis, an algorithm, and a mathematical model described later are applicable. Hereinafter, the storage element to be monitored is also simply referred to as a battery.
監視装置151におけるカウンタ55は、水晶振動子を用いた発振回路等により生成されるクロックパルスをカウントし、カウントした値を保持する。このカウント値は、現在時刻を示してもよい。
The counter 55 in the monitoring device 151 counts clock pulses generated by an oscillation circuit using a crystal resonator, and holds the counted value. This count value may indicate the current time.
電流センサ51は、電池に充電される電流、および電池から放電される電流を計測し、計測結果を示すアナログ信号Aiを履歴作成部54へ出力する。
The current sensor 51 measures the current charged in the battery and the current discharged from the battery, and outputs an analog signal Ai indicating the measurement result to the history creating unit 54.
電圧センサ52は、電池における正極および負極間の電圧を計測し、計測結果を示すアナログ信号Avを履歴作成部54へ出力する。
The voltage sensor 52 measures the voltage between the positive electrode and the negative electrode in the battery, and outputs an analog signal Av indicating the measurement result to the history creating unit 54.
温度センサ53は、電池の所定部位における温度Tを計測し、計測結果を示すアナログ信号Atを履歴作成部54へ出力する。
The temperature sensor 53 measures the temperature T at a predetermined part of the battery and outputs an analog signal At indicating the measurement result to the history creating unit 54.
履歴作成部54は、たとえば、所定のサンプリング時刻ごとに電流センサ51、電圧センサ52および温度センサ53からそれぞれ受けるアナログ信号Ai、AvおよびAtを、デジタル信号Di、DvおよびDtへ変換する。
The history creation unit 54 converts, for example, analog signals Ai, Av, and At received from the current sensor 51, the voltage sensor 52, and the temperature sensor 53, respectively, into digital signals Di, Dv, and Dt at every predetermined sampling time.
履歴作成部54は、サンプリング時刻におけるカウンタ55のカウント値、ならびにデジタル信号Di、DvおよびDtを記憶部56に保存する。記憶部56には、サンプリング時刻、電流値、電圧値および温度Tがサンプリング時刻ごとに蓄積される。
The history creation unit 54 stores the count value of the counter 55 at the sampling time and the digital signals Di, Dv, and Dt in the storage unit 56. The storage unit 56 accumulates the sampling time, current value, voltage value, and temperature T for each sampling time.
通信部57は、たとえば、車両におけるメイン制御装置(メインECU(Electronic Control Unit))、パーソナルコンピュータ、サーバ、スマートフォンおよび電池整備用の端末等の他の装置と通信してもよい。
The communication unit 57 may communicate with other devices such as a main control device (main ECU (Electronic Control Unit)) in a vehicle, a personal computer, a server, a smartphone, and a battery maintenance terminal, for example.
通信部57は、たとえば、電池の劣化状態の推定命令を他の装置から受信すると、受信した推定命令を劣化推定装置101へ出力する。なお、監視装置151に各センサが含まれていない構成であってもよい。
For example, when the communication unit 57 receives an instruction for estimating the deterioration state of the battery from another device, the communication unit 57 outputs the received estimation command to the deterioration estimation device 101. The monitoring device 151 may not include each sensor.
図2は、劣化推定装置の構成を示す図である。
FIG. 2 is a diagram illustrating a configuration of the deterioration estimation apparatus.
図2を参照して、劣化推定装置101は、制御部20と、記憶部23と、インタフェース部24とを備える。インタフェース部24は、例えば、LANインタフェースおよびUSBインタフェース等により構成され、有線又は無線により例えば監視装置151等の他の装置との通信を行う。
劣化推定装置101から通信部57に向かう信号線または端子が、推定結果等を出力する出力部として機能してもよい。通信部57が、出力部として機能してもよい。
劣化推定装置101に、異なるインプットデータを入力すると、出力部から異なるアウトプットが得られる。異なるSOC変動幅(および/または中心SOC)を劣化推定装置101に入力した場合に、出力部が異なるアウトプット(たとえば電圧値、デューティー比)を出力してもよい。
出力部には、出力結果を表示する表示部(または報知部)が接続されてもよい。出力部からアウトプットを、通信部57を経由して、表示部(または報知部)に表示させてもよい。 With reference to FIG. 2,degradation estimation apparatus 101 includes control unit 20, storage unit 23, and interface unit 24. The interface unit 24 includes, for example, a LAN interface and a USB interface, and communicates with other devices such as the monitoring device 151 by wire or wireless.
A signal line or a terminal heading from thedegradation estimation apparatus 101 to the communication unit 57 may function as an output unit that outputs an estimation result or the like. The communication unit 57 may function as an output unit.
When different input data is input to thedegradation estimation apparatus 101, different outputs are obtained from the output unit. When different SOC fluctuation ranges (and / or central SOC) are input to the deterioration estimation apparatus 101, the output unit may output different outputs (for example, voltage value, duty ratio).
A display unit (or a notification unit) for displaying the output result may be connected to the output unit. The output from the output unit may be displayed on the display unit (or notification unit) via thecommunication unit 57.
劣化推定装置101から通信部57に向かう信号線または端子が、推定結果等を出力する出力部として機能してもよい。通信部57が、出力部として機能してもよい。
劣化推定装置101に、異なるインプットデータを入力すると、出力部から異なるアウトプットが得られる。異なるSOC変動幅(および/または中心SOC)を劣化推定装置101に入力した場合に、出力部が異なるアウトプット(たとえば電圧値、デューティー比)を出力してもよい。
出力部には、出力結果を表示する表示部(または報知部)が接続されてもよい。出力部からアウトプットを、通信部57を経由して、表示部(または報知部)に表示させてもよい。 With reference to FIG. 2,
A signal line or a terminal heading from the
When different input data is input to the
A display unit (or a notification unit) for displaying the output result may be connected to the output unit. The output from the output unit may be displayed on the display unit (or notification unit) via the
記憶部23には、後述する劣化推定処理を実行するための劣化推定プログラム231が格納されている。劣化推定プログラム231は、例えば、CD-ROMやDVD-ROM、USBメモリ等のコンピュータ読み取り可能な記録媒体60に格納された状態で提供され、劣化推定装置101にインストールすることにより記憶部23に格納される。また、通信網に接続されている図示しない外部コンピュータから劣化推定プログラム231を取得し、記憶部23に記憶させることにしてもよい。
記憶部23は劣化推定処理時に必要なデータ等も記憶する。 Thestorage unit 23 stores a deterioration estimation program 231 for executing a deterioration estimation process described later. The deterioration estimation program 231 is provided in a state stored in a computer-readable recording medium 60 such as a CD-ROM, DVD-ROM, or USB memory, for example, and is stored in the storage unit 23 by being installed in the deterioration estimation apparatus 101. Is done. Further, the deterioration estimation program 231 may be acquired from an external computer (not shown) connected to the communication network and stored in the storage unit 23.
Thestorage unit 23 also stores data and the like necessary for the deterioration estimation process.
記憶部23は劣化推定処理時に必要なデータ等も記憶する。 The
The
制御部20は、例えばCPUやROM、RAM等により構成され、記憶部23から読み出した劣化推定プログラム231等のコンピュータプログラムを実行することにより、劣化推定装置101の動作を制御する。制御部20は、劣化推定プログラム231を読み出して実行することにより、劣化推定処理を実行する処理部として機能する。
具体的には、制御部20は、取得部21と、推定部22とを含む。 Thecontrol unit 20 includes, for example, a CPU, a ROM, a RAM, and the like, and controls the operation of the deterioration estimation apparatus 101 by executing a computer program such as the deterioration estimation program 231 read from the storage unit 23. The control unit 20 functions as a processing unit that executes the deterioration estimation process by reading and executing the deterioration estimation program 231.
Specifically, thecontrol unit 20 includes an acquisition unit 21 and an estimation unit 22.
具体的には、制御部20は、取得部21と、推定部22とを含む。 The
Specifically, the
劣化推定装置101における取得部21は、電池におけるSOC(State Of Charge)の時系列データを取得する。
The acquisition unit 21 in the deterioration estimation apparatus 101 acquires time-series data of SOC (State Of Charge) in the battery.
より詳細には、取得部21は、通信部57から推定命令を受けると、受けた推定命令に従って、各サンプリング時刻、ならびに当該各サンプリング時刻における電流値、電圧値および温度Tを監視装置151における記憶部56からインタフェース部24を介して取得する。
このように取得部21は、電池の使用開始後に測定したデータを記憶部56から取得する。
取得部21は、代替的に、データファイルからデータを取得してもよい。 More specifically, when receiving the estimation command from thecommunication unit 57, the acquisition unit 21 stores each sampling time, and the current value, voltage value, and temperature T at each sampling time in the monitoring device 151 according to the received estimation command. Obtained from the unit 56 via the interface unit 24.
In this way, theacquisition unit 21 acquires data measured after the start of battery use from the storage unit 56.
Theacquisition unit 21 may alternatively acquire data from the data file.
このように取得部21は、電池の使用開始後に測定したデータを記憶部56から取得する。
取得部21は、代替的に、データファイルからデータを取得してもよい。 More specifically, when receiving the estimation command from the
In this way, the
The
取得部21は、サンプリング時刻、SOCおよび温度についてのデータを格納するための記憶領域を確保する。
取得部21は、たとえば、Snum個のサンプリング時刻についてのデータを格納するための、ts[1]~ts[Snum]の要素を有する配列Atsを確保する。 Theacquisition unit 21 secures a storage area for storing data on sampling time, SOC, and temperature.
For example, the acquiringunit 21 secures an array Ats having elements of ts [1] to ts [Snum] for storing data on Snum sampling times.
取得部21は、たとえば、Snum個のサンプリング時刻についてのデータを格納するための、ts[1]~ts[Snum]の要素を有する配列Atsを確保する。 The
For example, the acquiring
また、取得部21は、サンプリング時刻ts[1]~ts[Snum]におけるSOCについてのデータを格納するための、sc[1]~sc[Snum]の要素を有する配列Asocを確保する。
Also, the acquisition unit 21 secures an array Asoc having elements of sc [1] to sc [Snum] for storing data about the SOC at the sampling times ts [1] to ts [Snum].
また、取得部21は、サンプリング時刻ts[1]~ts[Snum]における温度Tについてのデータを格納するための、tmp[1]~tmp[Snum]の要素を有する配列Atmpを確保する。
Also, the acquisition unit 21 secures an array Atmp having elements of tmp [1] to tmp [Snum] for storing data about the temperature T at the sampling times ts [1] to ts [Snum].
取得部21は、たとえば、各サンプリング時刻における電流値を集計することにより電池に通電された電気量を算出し、算出した電気量をSOCの変化量に変換する。取得部21は、変換結果に基づいて各サンプリング時刻におけるSOCを算出する。取得部21は、たとえば開放電圧の計測値を用いてSOCの補正を行ってもよい。
The acquisition unit 21 calculates, for example, the amount of electricity supplied to the battery by counting current values at each sampling time, and converts the calculated amount of electricity into a change amount of the SOC. The acquisition unit 21 calculates the SOC at each sampling time based on the conversion result. The acquisition unit 21 may correct the SOC using, for example, a measured value of the open circuit voltage.
取得部21は、配列AtsのインデックスN(ここで、Nは1~Snumの整数である。)が時系列順になるように、配列Atsの各要素に対応のサンプリング時刻を格納する。
The acquisition unit 21 stores the sampling time corresponding to each element of the array Ats so that the index N of the array Ats (N is an integer from 1 to Snum) is in time series order.
取得部21は、サンプリング時刻ts[1]~ts[Snum]におけるSOCをsc[1]~sc[Snum]にそれぞれ格納する。同様に、取得部21は、サンプリング時刻ts[1]~ts[Snum]における温度Tをtmp[1]~tmp[Snum]にそれぞれ格納する。
取得部21は、配列Ats、AsocおよびAtmpを推定部22へ出力する。 Theacquisition unit 21 stores the SOC at the sampling times ts [1] to ts [Snum] in sc [1] to sc [Snum], respectively. Similarly, the acquisition unit 21 stores the temperatures T at the sampling times ts [1] to ts [Snum] in tmp [1] to tmp [Snum], respectively.
Theacquisition unit 21 outputs the arrays Ats, Asoc, and Atmp to the estimation unit 22.
取得部21は、配列Ats、AsocおよびAtmpを推定部22へ出力する。 The
The
図3は、劣化推定装置が推定する電池の劣化を説明するための図である。図3では、縦軸は、新品時の電池容量を基準とした場合における電池の容量を百分率で示し、横軸は、充放電の総回数である全サイクル数を基準とした場合におけるサイクル数を百分率で示す。横軸は、新品状態からの経過時間とみなすことも可能である。
図3を参照して、容量変化Cvu3は、電池の充放電が行われた場合における容量のサイクル数に対する変化(真のサイクル劣化:true cycle capacity fading)であり、通電試験により得られた結果である。容量変化Cvn3は、電池の通電が行われなかった場合における容量の時間変化(経時劣化:calendar capacity fading)であり、事前に行った放置試験に基づいて得られた結果である。 FIG. 3 is a diagram for explaining battery deterioration estimated by the deterioration estimating apparatus. In FIG. 3, the vertical axis shows the battery capacity as a percentage when the battery capacity is new, and the horizontal axis shows the number of cycles when the total number of cycles, which is the total number of charge and discharge, is used as a reference. Shown as a percentage. The horizontal axis can also be regarded as the elapsed time from the new state.
Referring to FIG. 3, capacity change Cvu3 is a change with respect to the number of cycles of capacity when a battery is charged / discharged (true cycle deterioration fading), and is a result obtained by an energization test. is there. The capacity change Cvn3 is a capacity change with time when the battery is not energized (calendar capacity fading), and is a result obtained based on a neglect test performed in advance.
図3を参照して、容量変化Cvu3は、電池の充放電が行われた場合における容量のサイクル数に対する変化(真のサイクル劣化:true cycle capacity fading)であり、通電試験により得られた結果である。容量変化Cvn3は、電池の通電が行われなかった場合における容量の時間変化(経時劣化:calendar capacity fading)であり、事前に行った放置試験に基づいて得られた結果である。 FIG. 3 is a diagram for explaining battery deterioration estimated by the deterioration estimating apparatus. In FIG. 3, the vertical axis shows the battery capacity as a percentage when the battery capacity is new, and the horizontal axis shows the number of cycles when the total number of cycles, which is the total number of charge and discharge, is used as a reference. Shown as a percentage. The horizontal axis can also be regarded as the elapsed time from the new state.
Referring to FIG. 3, capacity change Cvu3 is a change with respect to the number of cycles of capacity when a battery is charged / discharged (true cycle deterioration fading), and is a result obtained by an energization test. is there. The capacity change Cvn3 is a capacity change with time when the battery is not energized (calendar capacity fading), and is a result obtained based on a neglect test performed in advance.
このように、電池の通電が行われた場合、電池を放置した場合と比べて劣化の度合いが大きくなる。容量変化Cvu3の示す容量と容量変化Cvn3の示す容量との差分を、電池の通電による劣化とみなすことが可能である。言い換えると、電池の劣化は、電池の通電によらない劣化に電池の通電による劣化を加えたものである。
Thus, when the battery is energized, the degree of deterioration is greater than when the battery is left unattended. The difference between the capacity indicated by the capacity change Cvu3 and the capacity indicated by the capacity change Cvn3 can be regarded as deterioration due to energization of the battery. In other words, the deterioration of the battery is a deterioration not caused by the energization of the battery plus the deterioration caused by the energization of the battery.
[容量バランスのずれ]
図4は、新品の電池におけるSOC-P曲線(SOC-V曲線)を説明するための図である。図4では、縦軸は、電位を示し、横軸は、SOCを示す。
図4には、新品の電池における、正極単体の電位のSOCに対する変化Cvp4、および負極単体の電位のSOCに対する変化Cvn4が示される。正極単体の電位および負極単体の電位の差が電池における電極間の電圧(電池電圧)である。変化Cvc4は、電極間の電圧のSOCに対する変化である。 [Displacement of capacity balance]
FIG. 4 is a diagram for explaining an SOC-P curve (SOC-V curve) in a new battery. In FIG. 4, the vertical axis indicates the potential, and the horizontal axis indicates the SOC.
FIG. 4 shows a change Cvp4 of the potential of the single positive electrode with respect to the SOC and a change Cvn4 of the potential of the single negative electrode with respect to the SOC in a new battery. The difference between the potential of the single positive electrode and the potential of the single negative electrode is the voltage between the electrodes in the battery (battery voltage). The change Cvc4 is a change of the voltage between the electrodes with respect to the SOC.
図4は、新品の電池におけるSOC-P曲線(SOC-V曲線)を説明するための図である。図4では、縦軸は、電位を示し、横軸は、SOCを示す。
図4には、新品の電池における、正極単体の電位のSOCに対する変化Cvp4、および負極単体の電位のSOCに対する変化Cvn4が示される。正極単体の電位および負極単体の電位の差が電池における電極間の電圧(電池電圧)である。変化Cvc4は、電極間の電圧のSOCに対する変化である。 [Displacement of capacity balance]
FIG. 4 is a diagram for explaining an SOC-P curve (SOC-V curve) in a new battery. In FIG. 4, the vertical axis indicates the potential, and the horizontal axis indicates the SOC.
FIG. 4 shows a change Cvp4 of the potential of the single positive electrode with respect to the SOC and a change Cvn4 of the potential of the single negative electrode with respect to the SOC in a new battery. The difference between the potential of the single positive electrode and the potential of the single negative electrode is the voltage between the electrodes in the battery (battery voltage). The change Cvc4 is a change of the voltage between the electrodes with respect to the SOC.
図5は、リチウムイオン2次電池におけるキャリアの移動を模式的に表した図である。リチウム金属酸化物により形成される正極Pp、および炭素により形成される負極Npは、電解液ELに浸される。正極Ppには、リチウムイオンを収容可能な複数のサイトSpが存在する。負極Npには、リチウムイオンを収容可能な複数のサイトSnが存在する。
FIG. 5 is a diagram schematically showing carrier movement in a lithium ion secondary battery. The positive electrode Pp formed of lithium metal oxide and the negative electrode Np formed of carbon are immersed in the electrolytic solution EL. The positive electrode Pp has a plurality of sites Sp that can accommodate lithium ions. The negative electrode Np has a plurality of sites Sn that can accommodate lithium ions.
図示している状態と異なるが、新品電池の放電状態では、すべてのリチウムイオンが正極PpにおけるサイトSpに収容されている。電池が充電されると、正極Ppに収容されたリチウムイオンの一部は、電解液を経由して負極Npへ移動してサイトSnに収容される。
Although different from the state shown in the figure, in the discharge state of the new battery, all lithium ions are accommodated in the site Sp in the positive electrode Pp. When the battery is charged, some of the lithium ions accommodated in the positive electrode Pp move to the negative electrode Np via the electrolytic solution and are accommodated in the site Sn.
図5に示すように、劣化した電池では、SEI(Solid Electrolyte Interface)被膜Lsが負極の表面に形成されることが知られている。SEI被膜Lsは、リチウムイオンを捕獲する性質を有する。
SEI被膜Lsにリチウムイオンが捕獲された場合、放電状態において、リチウムイオンが収容されないサイトSpが発生する。また、充電状態において、サイトSnに収容されるリチウムイオンの個数が、新品電池の場合と比べて減少する。 As shown in FIG. 5, it is known that in a deteriorated battery, a SEI (Solid Electrolyte Interface) coating Ls is formed on the surface of the negative electrode. The SEI film Ls has a property of capturing lithium ions.
When lithium ions are trapped in the SEI film Ls, a site Sp that does not contain lithium ions is generated in a discharged state. Further, in the charged state, the number of lithium ions accommodated at the site Sn is reduced as compared with a new battery.
SEI被膜Lsにリチウムイオンが捕獲された場合、放電状態において、リチウムイオンが収容されないサイトSpが発生する。また、充電状態において、サイトSnに収容されるリチウムイオンの個数が、新品電池の場合と比べて減少する。 As shown in FIG. 5, it is known that in a deteriorated battery, a SEI (Solid Electrolyte Interface) coating Ls is formed on the surface of the negative electrode. The SEI film Ls has a property of capturing lithium ions.
When lithium ions are trapped in the SEI film Ls, a site Sp that does not contain lithium ions is generated in a discharged state. Further, in the charged state, the number of lithium ions accommodated at the site Sn is reduced as compared with a new battery.
図6は、電池における容量バランスのずれを説明するための図である。図6の見方は、図4と同様である。
図6には、劣化した電池における、正極単体の電位のSOCに対する変化Cvp6、負極単体の電位のSOCに対する変化Cvn6、および電極間の電圧のSOCに対する変化Cvc6が示される。 FIG. 6 is a diagram for explaining a shift in capacity balance in the battery. 6 is the same as FIG.
FIG. 6 shows a change Cvp6 of the potential of the single positive electrode with respect to the SOC, a change Cvn6 of the potential of the single negative electrode with respect to the SOC, and a change Cvc6 of the voltage between the electrodes with respect to the SOC in the deteriorated battery.
図6には、劣化した電池における、正極単体の電位のSOCに対する変化Cvp6、負極単体の電位のSOCに対する変化Cvn6、および電極間の電圧のSOCに対する変化Cvc6が示される。 FIG. 6 is a diagram for explaining a shift in capacity balance in the battery. 6 is the same as FIG.
FIG. 6 shows a change Cvp6 of the potential of the single positive electrode with respect to the SOC, a change Cvn6 of the potential of the single negative electrode with respect to the SOC, and a change Cvc6 of the voltage between the electrodes with respect to the SOC in the deteriorated battery.
SEI被膜Lsにリチウムイオンが捕獲された場合(図5参照)、負極単体の電位のSOCに対する変化が、負極Npが完全充電されない方向にずれる。具体的には、図4に示す変化Cvn4がずれることにより、図6に示す変化Cvn6となる。
このようなずれが発生すると、正極Ppおよび負極Pnの容量が劣化しない場合においても、電池から可逆的に取り出せる電気量が減少する。従って、電池容量が減少する。
この現象、および当該現象によって低下した電池容量を、本明細書では「容量バランスのずれ」と定義する。
一般的に、正極Ppおよび負極Pnにおける副反応速度が異なることにより、上記現象が発生する。上述のように負極Pnに炭素を用いる場合、負極Pnにおいて形成されるSEI被膜Lsにより上記現象が発生するとされている。 When lithium ions are trapped in the SEI film Ls (see FIG. 5), the change in the potential of the negative electrode alone with respect to the SOC shifts in a direction in which the negative electrode Np is not fully charged. Specifically, the change Cvn4 shown in FIG. 4 shifts to become the change Cvn6 shown in FIG.
When such a shift occurs, the amount of electricity that can be reversibly taken out from the battery decreases even when the capacities of the positive electrode Pp and the negative electrode Pn do not deteriorate. Accordingly, the battery capacity is reduced.
This phenomenon and the battery capacity reduced by the phenomenon are defined as “capacity balance deviation” in this specification.
Generally, the above phenomenon occurs due to the difference in the side reaction rate between the positive electrode Pp and the negative electrode Pn. As described above, when carbon is used for the negative electrode Pn, the above phenomenon occurs due to the SEI film Ls formed on the negative electrode Pn.
このようなずれが発生すると、正極Ppおよび負極Pnの容量が劣化しない場合においても、電池から可逆的に取り出せる電気量が減少する。従って、電池容量が減少する。
この現象、および当該現象によって低下した電池容量を、本明細書では「容量バランスのずれ」と定義する。
一般的に、正極Ppおよび負極Pnにおける副反応速度が異なることにより、上記現象が発生する。上述のように負極Pnに炭素を用いる場合、負極Pnにおいて形成されるSEI被膜Lsにより上記現象が発生するとされている。 When lithium ions are trapped in the SEI film Ls (see FIG. 5), the change in the potential of the negative electrode alone with respect to the SOC shifts in a direction in which the negative electrode Np is not fully charged. Specifically, the change Cvn4 shown in FIG. 4 shifts to become the change Cvn6 shown in FIG.
When such a shift occurs, the amount of electricity that can be reversibly taken out from the battery decreases even when the capacities of the positive electrode Pp and the negative electrode Pn do not deteriorate. Accordingly, the battery capacity is reduced.
This phenomenon and the battery capacity reduced by the phenomenon are defined as “capacity balance deviation” in this specification.
Generally, the above phenomenon occurs due to the difference in the side reaction rate between the positive electrode Pp and the negative electrode Pn. As described above, when carbon is used for the negative electrode Pn, the above phenomenon occurs due to the SEI film Ls formed on the negative electrode Pn.
[新しい知見1]
図7は、電池における容量バランスのずれを説明するための図である。図7では、縦軸は、劣化量を示し、横軸は、サイクル数の平方根を示す。横軸は、新品状態からの経過時間の平方根とみなすことも可能である。 [New findings 1]
FIG. 7 is a diagram for explaining a shift in capacity balance in the battery. In FIG. 7, the vertical axis represents the deterioration amount, and the horizontal axis represents the square root of the cycle number. The horizontal axis can also be regarded as the square root of the elapsed time from the new state.
図7は、電池における容量バランスのずれを説明するための図である。図7では、縦軸は、劣化量を示し、横軸は、サイクル数の平方根を示す。横軸は、新品状態からの経過時間の平方根とみなすことも可能である。 [New findings 1]
FIG. 7 is a diagram for explaining a shift in capacity balance in the battery. In FIG. 7, the vertical axis represents the deterioration amount, and the horizontal axis represents the square root of the cycle number. The horizontal axis can also be regarded as the square root of the elapsed time from the new state.
図7を参照して、Cvu7は、電池の充放電が行われた場合における容量バランスのずれの実測値の、サイクル数の平方根に対する変化である。Cvn7は、電池の充放電が行われなかった場合における容量バランスのずれの推定値の変化である。つまり前者が通電時における容量バランスのずれの推移であり、後者が非通電時における、経時的に起こる容量バランスのずれの推移である。後者は次のようにして求めることができる。まず、SOCと温度の異なる複数の電池について放置試験を行うことで、各SOCおよび温度における経時劣化量(後述の非通電劣化値Qcnd)を求める。また、後述の式(2)または式(3)を用いて各SOCおよび温度における係数を求める。次に、サイクル試験における各SOCとそのSOCに滞在する時間(たとえば、微小時間)の平方根と、事前に求めた対応する係数から、サイクル試験中の微小時間における経時劣化量を所定時間間隔で求める。それらの経時劣化量を累積することで、サイクル試験における経時劣化量を算出する。
Referring to FIG. 7, Cvu7 is a change with respect to the square root of the cycle number of the measured value of the capacity balance deviation when the battery is charged / discharged. Cvn7 is a change in the estimated value of the deviation in capacity balance when the battery is not charged or discharged. That is, the former is a transition of capacity balance deviation when energized, and the latter is a transition of capacity balance deviation that occurs over time when non-energized. The latter can be obtained as follows. First, by performing a standing test on a plurality of batteries having different temperatures from the SOC, the amount of deterioration with time (non-energization deterioration value Qcnd described later) at each SOC and temperature is obtained. Further, the coefficient at each SOC and temperature is obtained by using the following formula (2) or formula (3). Next, the amount of deterioration over time in the minute time during the cycle test is obtained at predetermined time intervals from each SOC in the cycle test, the square root of the time spent in that SOC (for example, minute time), and the corresponding coefficient obtained in advance. . The amount of deterioration with time in the cycle test is calculated by accumulating the amount of deterioration with time.
リチウムイオン2次電池では、負極においてSEI被膜が成長することが知られている。このSEI被膜の成長に従ってSEI被膜に捕獲されるリチウムイオンの量が増えることにより、容量バランスのずれが大きくなる。
言い換えると、SEI被膜の成長に従って、負極において挿入および離脱するリチウムイオンの量と、正極において挿入および離脱するリチウムイオンの量とのバランスがずれる。 In a lithium ion secondary battery, it is known that an SEI film grows on the negative electrode. As the amount of lithium ions trapped in the SEI film increases as the SEI film grows, the deviation in capacity balance increases.
In other words, as the SEI film grows, the balance between the amount of lithium ions inserted and removed at the negative electrode and the amount of lithium ions inserted and removed at the positive electrode are shifted.
言い換えると、SEI被膜の成長に従って、負極において挿入および離脱するリチウムイオンの量と、正極において挿入および離脱するリチウムイオンの量とのバランスがずれる。 In a lithium ion secondary battery, it is known that an SEI film grows on the negative electrode. As the amount of lithium ions trapped in the SEI film increases as the SEI film grows, the deviation in capacity balance increases.
In other words, as the SEI film grows, the balance between the amount of lithium ions inserted and removed at the negative electrode and the amount of lithium ions inserted and removed at the positive electrode are shifted.
電池の通電が行われない場合においてもSEI被膜が成長し、劣化量変化Cvn7のように電池が劣化することは、従来から知られていた。つまり、電池の通電が行われない場合においても、経時的な容量バランスのずれによって、電池が劣化することは知られていた。
本発明者が行った実験によると、図7のCvu7に示すように、サイクル数が増えるにつれて、電池の通電が行われない場合と比べて、電池の通電が行われた場合における容量バランスのずれが増大した。このことから本発明者は、通電によって容量バランスのずれがさらに増大することを見出した。このことは、従来知られていた理論や法則からは予測できない、新しい知見である。サイクル数が増えるにつれて、容量バランスのずれが増大していることから、通電により負極活物質上におけSEI被膜の生成量が増大していることが推察される。SEI被膜は負極活物質上における分解反応が起こることで生じ、膜厚さが厚くなると成長が鈍化するため、非通電時においては、SEI被膜の生成量、つまり容量バランスのずれは次第に飽和すると報告されている。以上より、通電により負極活物質が膨張収縮することで、SEI被膜が破壊されたり、活物質から剥離したりすることにより、SEI被膜の成長が鈍化することなく再生成し続ける為、非通電時よりも過剰量のSEI被膜が生成していると考えることが出来る。 It has been conventionally known that even when the battery is not energized, the SEI film grows and the battery deteriorates like the deterioration amount change Cvn7. That is, even when the battery is not energized, it has been known that the battery deteriorates due to a shift in capacity balance over time.
According to the experiment conducted by the present inventor, as shown by Cvu7 in FIG. 7, as the number of cycles increases, the capacity balance shifts when the battery is energized compared to when the battery is not energized. Increased. From this, the present inventor has found that the deviation of the capacity balance is further increased by energization. This is a new finding that cannot be predicted from previously known theories and laws. As the number of cycles increases, the capacity balance shift increases, so it is presumed that the amount of SEI coating produced on the negative electrode active material is increased by energization. SEI coating is caused by the decomposition reaction on the negative electrode active material, and the growth slows down as the film thickness increases, so it is reported that the generation amount of SEI coating, that is, the deviation in capacity balance, gradually saturates when no current is applied. Has been. As described above, since the negative electrode active material expands and contracts by energization, the SEI film is destroyed or peeled off from the active material, so that the growth of the SEI film continues to regenerate without slowing down. It can be considered that an excessive amount of SEI film is formed.
本発明者が行った実験によると、図7のCvu7に示すように、サイクル数が増えるにつれて、電池の通電が行われない場合と比べて、電池の通電が行われた場合における容量バランスのずれが増大した。このことから本発明者は、通電によって容量バランスのずれがさらに増大することを見出した。このことは、従来知られていた理論や法則からは予測できない、新しい知見である。サイクル数が増えるにつれて、容量バランスのずれが増大していることから、通電により負極活物質上におけSEI被膜の生成量が増大していることが推察される。SEI被膜は負極活物質上における分解反応が起こることで生じ、膜厚さが厚くなると成長が鈍化するため、非通電時においては、SEI被膜の生成量、つまり容量バランスのずれは次第に飽和すると報告されている。以上より、通電により負極活物質が膨張収縮することで、SEI被膜が破壊されたり、活物質から剥離したりすることにより、SEI被膜の成長が鈍化することなく再生成し続ける為、非通電時よりも過剰量のSEI被膜が生成していると考えることが出来る。 It has been conventionally known that even when the battery is not energized, the SEI film grows and the battery deteriorates like the deterioration amount change Cvn7. That is, even when the battery is not energized, it has been known that the battery deteriorates due to a shift in capacity balance over time.
According to the experiment conducted by the present inventor, as shown by Cvu7 in FIG. 7, as the number of cycles increases, the capacity balance shifts when the battery is energized compared to when the battery is not energized. Increased. From this, the present inventor has found that the deviation of the capacity balance is further increased by energization. This is a new finding that cannot be predicted from previously known theories and laws. As the number of cycles increases, the capacity balance shift increases, so it is presumed that the amount of SEI coating produced on the negative electrode active material is increased by energization. SEI coating is caused by the decomposition reaction on the negative electrode active material, and the growth slows down as the film thickness increases, so it is reported that the generation amount of SEI coating, that is, the deviation in capacity balance, gradually saturates when no current is applied. Has been. As described above, since the negative electrode active material expands and contracts by energization, the SEI film is destroyed or peeled off from the active material, so that the growth of the SEI film continues to regenerate without slowing down. It can be considered that an excessive amount of SEI film is formed.
[新しい知見2]
図8は、SOCの変動幅に対する電池の通電による劣化量の変化の一例を示す図である。図8では、縦軸は、所定の電気量を通電した場合における劣化量と3%のSOC変動幅における劣化量との差分を示し、横軸は、SOCの変動幅を示す。
図8には、中心SOCが60%になるように所定回数充放電を繰り返した後の、通電による劣化量が、SOCの変動幅に対してプロットされている。 [New knowledge 2]
FIG. 8 is a diagram illustrating an example of a change in the deterioration amount due to the energization of the battery with respect to the SOC fluctuation range. In FIG. 8, the vertical axis indicates the difference between the deterioration amount when a predetermined amount of electricity is energized and the deterioration amount in the 3% SOC fluctuation range, and the horizontal axis indicates the SOC fluctuation range.
In FIG. 8, the amount of deterioration due to energization after charging / discharging a predetermined number of times so that the center SOC becomes 60% is plotted against the fluctuation range of the SOC.
図8は、SOCの変動幅に対する電池の通電による劣化量の変化の一例を示す図である。図8では、縦軸は、所定の電気量を通電した場合における劣化量と3%のSOC変動幅における劣化量との差分を示し、横軸は、SOCの変動幅を示す。
図8には、中心SOCが60%になるように所定回数充放電を繰り返した後の、通電による劣化量が、SOCの変動幅に対してプロットされている。 [New knowledge 2]
FIG. 8 is a diagram illustrating an example of a change in the deterioration amount due to the energization of the battery with respect to the SOC fluctuation range. In FIG. 8, the vertical axis indicates the difference between the deterioration amount when a predetermined amount of electricity is energized and the deterioration amount in the 3% SOC fluctuation range, and the horizontal axis indicates the SOC fluctuation range.
In FIG. 8, the amount of deterioration due to energization after charging / discharging a predetermined number of times so that the center SOC becomes 60% is plotted against the fluctuation range of the SOC.
図8に示すように、本発明者は、中心SOCが同じであってもSOCの変動幅が異なる場合、通電による劣化量が変化することを見出した。通電による劣化が、SOCの変動の大きさに応じて大きくなることを見出した。
この現象のメカニズムはまだ十分には解明されていない。本発明者は、SOCの変動の大きさが大きいほど、負極の膨張(充電時)と収縮(放電時)が顕著になることで負極の表面に形成されたSEI被膜が部分的に破壊され、その結果として電池の通電による劣化量が大きくなると考察している。 As shown in FIG. 8, the present inventor has found that even when the center SOC is the same, the amount of deterioration due to energization changes when the variation range of the SOC is different. It has been found that deterioration due to energization increases in accordance with the magnitude of SOC variation.
The mechanism of this phenomenon is not yet fully understood. The present inventor partially destroyed the SEI film formed on the surface of the negative electrode due to significant expansion (charge) and contraction (discharge) of the negative electrode as the variation of the SOC was larger, As a result, it is considered that the amount of deterioration due to energization of the battery increases.
この現象のメカニズムはまだ十分には解明されていない。本発明者は、SOCの変動の大きさが大きいほど、負極の膨張(充電時)と収縮(放電時)が顕著になることで負極の表面に形成されたSEI被膜が部分的に破壊され、その結果として電池の通電による劣化量が大きくなると考察している。 As shown in FIG. 8, the present inventor has found that even when the center SOC is the same, the amount of deterioration due to energization changes when the variation range of the SOC is different. It has been found that deterioration due to energization increases in accordance with the magnitude of SOC variation.
The mechanism of this phenomenon is not yet fully understood. The present inventor partially destroyed the SEI film formed on the surface of the negative electrode due to significant expansion (charge) and contraction (discharge) of the negative electrode as the variation of the SOC was larger, As a result, it is considered that the amount of deterioration due to energization of the battery increases.
[新しい知見3]
図9は、中心SOCに対する電池の通電による劣化量の変化の一例を示す図である。図9では、縦軸は、所定の電気量を通電した場合における劣化量と10%の中心SOCにおける劣化量との差分を示し、横軸は、SOCの変動の中心である中心SOCを示す。ここで、中心SOCは、SOCの時系列データにおけるSOCの変動の中心の一例である。 [New knowledge 3]
FIG. 9 is a diagram illustrating an example of a change in the deterioration amount due to the energization of the battery with respect to the center SOC. In FIG. 9, the vertical axis indicates the difference between the deterioration amount when a predetermined amount of electricity is energized and the deterioration amount at the central SOC of 10%, and the horizontal axis indicates the central SOC that is the center of the SOC fluctuation. Here, the center SOC is an example of the center of the SOC fluctuation in the time-series data of the SOC.
図9は、中心SOCに対する電池の通電による劣化量の変化の一例を示す図である。図9では、縦軸は、所定の電気量を通電した場合における劣化量と10%の中心SOCにおける劣化量との差分を示し、横軸は、SOCの変動の中心である中心SOCを示す。ここで、中心SOCは、SOCの時系列データにおけるSOCの変動の中心の一例である。 [New knowledge 3]
FIG. 9 is a diagram illustrating an example of a change in the deterioration amount due to the energization of the battery with respect to the center SOC. In FIG. 9, the vertical axis indicates the difference between the deterioration amount when a predetermined amount of electricity is energized and the deterioration amount at the central SOC of 10%, and the horizontal axis indicates the central SOC that is the center of the SOC fluctuation. Here, the center SOC is an example of the center of the SOC fluctuation in the time-series data of the SOC.
図9には、SOCの変動幅が20%になるように所定回数充放電を繰り返した後の通電による劣化量が、中心SOCに対してプロットされている。
ここで、充放電動作について一例を挙げて説明する。中心SOCが10%であり、かつSOCの変動幅が20%になるように充放電を繰り返すことは、SOCが0%~20%の間を往復するように充放電を繰り返すことである。 In FIG. 9, the amount of deterioration due to energization after charging and discharging is repeated a predetermined number of times so that the fluctuation range of the SOC becomes 20% is plotted with respect to the center SOC.
Here, an example is given and demonstrated about charging / discharging operation | movement. Repeating charging / discharging so that the center SOC is 10% and the fluctuation range of SOC is 20% is repeating charging / discharging so that the SOC reciprocates between 0% and 20%.
ここで、充放電動作について一例を挙げて説明する。中心SOCが10%であり、かつSOCの変動幅が20%になるように充放電を繰り返すことは、SOCが0%~20%の間を往復するように充放電を繰り返すことである。 In FIG. 9, the amount of deterioration due to energization after charging and discharging is repeated a predetermined number of times so that the fluctuation range of the SOC becomes 20% is plotted with respect to the center SOC.
Here, an example is given and demonstrated about charging / discharging operation | movement. Repeating charging / discharging so that the center SOC is 10% and the fluctuation range of SOC is 20% is repeating charging / discharging so that the SOC reciprocates between 0% and 20%.
図9に示すように、本発明者は、SOCの変動幅が同じであっても、中心SOCが異なると、通電による劣化量が変化することを見出した。通電による劣化の進行度合いが、中心SOCに応じて異なることを見出した。中心SOCが低い時(たとえば、中心SOCが10%の時)は中心SOCが50%付近の時と比較して、SOC変動幅が同じであるにも関わらず、劣化量が小さい。中心SOCが高い時(たとえば、中心SOCが70%の時)も中心SOCが50%付近の時と比較して、SOC変動幅が同じであるにも関わらず、劣化量が小さい。
As shown in FIG. 9, the present inventor has found that even when the SOC fluctuation range is the same, the deterioration amount due to energization changes when the central SOC is different. It has been found that the progress of deterioration due to energization varies depending on the central SOC. When the center SOC is low (for example, when the center SOC is 10%), the amount of deterioration is small although the SOC fluctuation range is the same as when the center SOC is around 50%. When the center SOC is high (for example, when the center SOC is 70%), the amount of deterioration is small compared to when the center SOC is around 50%, although the SOC fluctuation range is the same.
[新しい数式モデルに関する着想]
上述の新しい知見1~3に基づき、本発明者は、蓄電素子の通電による劣化を推定するための新しい数式モデルに関する以下の着想を得た。
(A)数式モデルに、負極におけるSEI被膜の破壊と再生成を取り入れる。SEI被膜が形成されるに従いSEI被膜の成長速度が低下するという知見とともに、SEI被膜が破壊された箇所ではSEI被膜の成長速度が元に戻るという独自のアイディアを数式モデルで表現する。
(B)SOCの変動の大きさが大きいほど、蓄電素子の通電による劣化量が大きくなるようにする。
(C)係数に、SOC依存性を持たせる(中心SOC、および/または、SOC変動幅に応じて係数値を異ならせる)。
(D)数式モデルにおいて、蓄電素子の負極から破壊して、剥離したSEI被膜による、前記蓄電素子の通電による劣化も考慮する。
この数式モデルは、電気エネルギーの出し入れの担い手であるイオンが電極表面の被膜(SEI被膜)を通じて出入りすると考えたものである。より詳細には、被膜内に存在するイオンを考慮し、さらに、充放電に伴い電極表面から剥離した被膜に含まれるイオンをも考慮した劣化推定モデルである。 [Concept for new mathematical model]
Based on the above-mentionednew findings 1 to 3, the present inventor has obtained the following idea regarding a new mathematical model for estimating deterioration due to energization of a storage element.
(A) Incorporate the destruction and regeneration of the SEI coating on the negative electrode into the mathematical model. In addition to the knowledge that the growth rate of the SEI film decreases as the SEI film is formed, a unique idea that the growth rate of the SEI film returns to the original position when the SEI film is destroyed is expressed by a mathematical model.
(B) The amount of deterioration due to energization of the power storage element is increased as the variation of the SOC is increased.
(C) The coefficient has SOC dependency (the coefficient value varies according to the central SOC and / or the SOC fluctuation range).
(D) In the mathematical model, deterioration due to energization of the power storage element due to the SEI film that is broken and peeled off from the negative electrode of the power storage element is also considered.
This mathematical model is based on the assumption that ions, which are responsible for taking in and out electrical energy, enter and exit through the electrode surface coating (SEI coating). More specifically, it is a deterioration estimation model that takes into account ions present in the film, and also takes into account ions contained in the film peeled off from the electrode surface during charge and discharge.
上述の新しい知見1~3に基づき、本発明者は、蓄電素子の通電による劣化を推定するための新しい数式モデルに関する以下の着想を得た。
(A)数式モデルに、負極におけるSEI被膜の破壊と再生成を取り入れる。SEI被膜が形成されるに従いSEI被膜の成長速度が低下するという知見とともに、SEI被膜が破壊された箇所ではSEI被膜の成長速度が元に戻るという独自のアイディアを数式モデルで表現する。
(B)SOCの変動の大きさが大きいほど、蓄電素子の通電による劣化量が大きくなるようにする。
(C)係数に、SOC依存性を持たせる(中心SOC、および/または、SOC変動幅に応じて係数値を異ならせる)。
(D)数式モデルにおいて、蓄電素子の負極から破壊して、剥離したSEI被膜による、前記蓄電素子の通電による劣化も考慮する。
この数式モデルは、電気エネルギーの出し入れの担い手であるイオンが電極表面の被膜(SEI被膜)を通じて出入りすると考えたものである。より詳細には、被膜内に存在するイオンを考慮し、さらに、充放電に伴い電極表面から剥離した被膜に含まれるイオンをも考慮した劣化推定モデルである。 [Concept for new mathematical model]
Based on the above-mentioned
(A) Incorporate the destruction and regeneration of the SEI coating on the negative electrode into the mathematical model. In addition to the knowledge that the growth rate of the SEI film decreases as the SEI film is formed, a unique idea that the growth rate of the SEI film returns to the original position when the SEI film is destroyed is expressed by a mathematical model.
(B) The amount of deterioration due to energization of the power storage element is increased as the variation of the SOC is increased.
(C) The coefficient has SOC dependency (the coefficient value varies according to the central SOC and / or the SOC fluctuation range).
(D) In the mathematical model, deterioration due to energization of the power storage element due to the SEI film that is broken and peeled off from the negative electrode of the power storage element is also considered.
This mathematical model is based on the assumption that ions, which are responsible for taking in and out electrical energy, enter and exit through the electrode surface coating (SEI coating). More specifically, it is a deterioration estimation model that takes into account ions present in the film, and also takes into account ions contained in the film peeled off from the electrode surface during charge and discharge.
[非通電劣化値Qcndの算出処理]
再び図2を参照して、推定部22は、取得部21によって取得されたSOCの時系列データにおけるSOCの変動の大きさに基づいて、電池の劣化を推定する。
推定部22は、たとえば、通電劣化値Qcurと非通電劣化値Qcndとの和に基づいて電池の劣化を推定する。具体的には、推定部22は、以下の式(1)に示すように、通電劣化値Qcurと非通電劣化値Qcndとの和を電池の劣化を示す劣化値Qdegとして算出する。
[Calculation process of non-energized deterioration value Qcnd]
Referring to FIG. 2 again,estimation unit 22 estimates the deterioration of the battery based on the magnitude of the SOC variation in the SOC time-series data acquired by acquisition unit 21.
Theestimation unit 22 estimates the deterioration of the battery based on, for example, the sum of the energization deterioration value Qcur and the non-energization deterioration value Qcnd. Specifically, as shown in the following formula (1), the estimation unit 22 calculates the sum of the energization deterioration value Qcur and the non-energization deterioration value Qcnd as a deterioration value Qdeg indicating battery deterioration.
再び図2を参照して、推定部22は、取得部21によって取得されたSOCの時系列データにおけるSOCの変動の大きさに基づいて、電池の劣化を推定する。
推定部22は、たとえば、通電劣化値Qcurと非通電劣化値Qcndとの和に基づいて電池の劣化を推定する。具体的には、推定部22は、以下の式(1)に示すように、通電劣化値Qcurと非通電劣化値Qcndとの和を電池の劣化を示す劣化値Qdegとして算出する。
Referring to FIG. 2 again,
The
推定部22は、算出した劣化値Qdegを示す推定結果情報を、推定命令の応答として通信部57経由で他の装置へ送信してもよい。
推定部22は、通電劣化値Qcurと非通電劣化値Qcndとの和である劣化値Qdegを電池の劣化として推定する構成であるとしたが、これに限定するものではない。推定部22は、上記和に基づく値、劣化値Qdegの所定の基準に対する百分率値、または劣化値Qdegに応じた劣化レベル等を電池の劣化として推定する構成であってもよい。Qcurは少なくともQrgnとQdstで構成されている。詳細には、負極で成長するSEI被膜に起因する膜劣化値Qrgn、および負極から剥離したSEI被膜に起因する剥離劣化値Qdstを含む。QrgnはSOC変動によりSEI被膜が剥離して新たに電極上に形成された被膜による劣化値であり、QdstはSOC変動により剥離した被膜による劣化値である。 Theestimation unit 22 may transmit estimation result information indicating the calculated degradation value Qdeg to another device via the communication unit 57 as a response to the estimation command.
Theestimation unit 22 is configured to estimate the degradation value Qdeg, which is the sum of the energization degradation value Qcur and the non-energization degradation value Qcnd, as battery degradation, but is not limited thereto. The estimation unit 22 may be configured to estimate a value based on the sum, a percentage value of the deterioration value Qdeg with respect to a predetermined reference, a deterioration level according to the deterioration value Qdeg, or the like as battery deterioration. Qcur is composed of at least Qrgn and Qdst. Specifically, it includes a film deterioration value Qrgn caused by the SEI film grown on the negative electrode and a peeling deterioration value Qdst caused by the SEI film peeled from the negative electrode. Qrgn is a deterioration value due to the film newly formed on the electrode by peeling off the SEI film due to SOC fluctuation, and Qdst is a deterioration value due to the film peeled off due to SOC fluctuation.
推定部22は、通電劣化値Qcurと非通電劣化値Qcndとの和である劣化値Qdegを電池の劣化として推定する構成であるとしたが、これに限定するものではない。推定部22は、上記和に基づく値、劣化値Qdegの所定の基準に対する百分率値、または劣化値Qdegに応じた劣化レベル等を電池の劣化として推定する構成であってもよい。Qcurは少なくともQrgnとQdstで構成されている。詳細には、負極で成長するSEI被膜に起因する膜劣化値Qrgn、および負極から剥離したSEI被膜に起因する剥離劣化値Qdstを含む。QrgnはSOC変動によりSEI被膜が剥離して新たに電極上に形成された被膜による劣化値であり、QdstはSOC変動により剥離した被膜による劣化値である。 The
The
非通電劣化値Qcndは、時間の経過とともに増加する。たとえば、非通電劣化値Qcndの微小時間dtあたりの増分dQcndは、以下の式(2)により算出される。
The non-energized deterioration value Qcnd increases with time. For example, the increment dQcnd per minute time dt of the non-energized deterioration value Qcnd is calculated by the following equation (2).
ここで、係数kcは、SOCおよび温度Tの関数である。式(2)を変形することにより、式(3)が得られる。
Here, the coefficient kc is a function of the SOC and the temperature T. By transforming Equation (2), Equation (3) is obtained.
ここで、tは経過時間を示し、kcr=√(2×kc)である。従って、非通電劣化値Qcndは、ルート則に従って増加する。ルート則に従って増加するとは、時間の経過に伴って非通電劣化値Qcndの単位時間当たりの増加分が漸減することを意味する。推定部22は、式(2)および式(3)の少なくともいずれか一方を用いて非通電劣化値Qcndを算出する。
Here, t indicates elapsed time, and kcr = √ (2 × kc). Therefore, the non-energized deterioration value Qcnd increases according to the root rule. Increasing according to the route rule means that the increment per unit time of the non-energized deterioration value Qcnd gradually decreases with the passage of time. The estimation unit 22 calculates the non-energization deterioration value Qcnd using at least one of the equations (2) and (3).
[通電劣化値Qcurの算出処理]
推定部22は、たとえば、SOCの変動の大きさに基づく電池の電極における膜の状態の変化に基づいて、電池の通電による劣化を推定する。
本実施形態では、推定部22は、電池の電極から剥離した被膜に起因する剥離劣化値も考慮して、電池の通電による劣化を推定する。
より詳細には、推定部22は、電池における電極の被膜に起因する膜劣化値、および剥離劣化値の和を通電劣化値Qcurとして算出する。 [Calculation process of energization deterioration value Qcur]
Theestimation unit 22 estimates the deterioration due to the energization of the battery based on, for example, the change in the state of the film in the battery electrode based on the magnitude of the SOC variation.
In the present embodiment, theestimation unit 22 estimates the deterioration due to the energization of the battery in consideration of the peeling deterioration value caused by the coating peeled from the battery electrode.
More specifically, theestimation unit 22 calculates the sum of the film deterioration value due to the electrode film in the battery and the peeling deterioration value as the energization deterioration value Qcur.
推定部22は、たとえば、SOCの変動の大きさに基づく電池の電極における膜の状態の変化に基づいて、電池の通電による劣化を推定する。
本実施形態では、推定部22は、電池の電極から剥離した被膜に起因する剥離劣化値も考慮して、電池の通電による劣化を推定する。
より詳細には、推定部22は、電池における電極の被膜に起因する膜劣化値、および剥離劣化値の和を通電劣化値Qcurとして算出する。 [Calculation process of energization deterioration value Qcur]
The
In the present embodiment, the
More specifically, the
推定部22は、式(1)に示すように、リチウムイオン2次電池における負極で成長するSEI被膜に起因する膜劣化値Qrgn、および負極から剥離したSEI被膜に起因する剥離劣化値Qdstの和を通電劣化値Qcurとして算出する。
As shown in Formula (1), the estimation unit 22 calculates the sum of the film deterioration value Qrgn caused by the SEI film grown on the negative electrode in the lithium ion secondary battery and the peel deterioration value Qdst caused by the SEI film peeled from the negative electrode. Is calculated as an energization deterioration value Qcur.
記憶部23は、SOCと電池の通電による劣化の進行度合いを示す劣化係数である係数kr(後述の式(4)参照)との対応関係を保持する。記憶部23は、SOCおよび温度Tと係数krとの対応関係を示す対応テーブルTblrを保持してもよい。
The storage unit 23 holds a correspondence relationship between the SOC and a coefficient kr (see formula (4) described later), which is a deterioration coefficient indicating the degree of progress of deterioration due to energization of the battery. The storage unit 23 may hold a correspondence table Tblr indicating a correspondence relationship between the SOC, the temperature T, and the coefficient kr.
たとえば、温度TごとかつSOCごとの通電による劣化量の時間変化が事前の試験により計測される。
係数krは、当該試験の計測結果に基づいて算出される。詳細には、係数krは、後述する分割劣化値を計算する配列の要素とともに、計測結果と照らし合わせて、最適化計算で求めることが望ましい。 For example, the temporal change of the deterioration amount due to energization for each temperature T and for each SOC is measured by a prior test.
The coefficient kr is calculated based on the measurement result of the test. Specifically, it is desirable that the coefficient kr is obtained by optimization calculation in comparison with the measurement result together with the elements of the array for calculating the division deterioration value described later.
係数krは、当該試験の計測結果に基づいて算出される。詳細には、係数krは、後述する分割劣化値を計算する配列の要素とともに、計測結果と照らし合わせて、最適化計算で求めることが望ましい。 For example, the temporal change of the deterioration amount due to energization for each temperature T and for each SOC is measured by a prior test.
The coefficient kr is calculated based on the measurement result of the test. Specifically, it is desirable that the coefficient kr is obtained by optimization calculation in comparison with the measurement result together with the elements of the array for calculating the division deterioration value described later.
また、記憶部23は、SOCと電池の通電によらない劣化の進行度合いを示す劣化係数(上述の係数kc)との対応関係を保持する。記憶部23は、SOCおよび温度Tと係数kcとの対応関係を示す対応テーブルTblcを保持してもよい。
Further, the storage unit 23 holds a correspondence relationship between the SOC and the deterioration coefficient (the above-described coefficient kc) indicating the degree of progress of deterioration not due to the energization of the battery. The storage unit 23 may hold a correspondence table Tblc indicating a correspondence relationship between the SOC, the temperature T, and the coefficient kc.
SOCおよび温度Tと係数kcとの対応関係は、たとえば、係数krの算出と同様の試験を行うことにより導出される。
The correspondence relationship between the SOC and temperature T and the coefficient kc is derived, for example, by performing a test similar to the calculation of the coefficient kr.
推定部22は、たとえば、膜劣化値Qrgnを時間の経過とともに増加させる。推定部22は、たとえば、膜劣化値Qrgnの増加が当該膜劣化値Qrgnの大きさに応じて小さくなり、かつ当該増加が、SOCに対応する係数krに応じて大きくなるように当該膜劣化値Qrgnを算出する。
The estimation unit 22 increases the film degradation value Qrgn with the passage of time, for example. For example, the estimating unit 22 determines that the film deterioration value Qrgn increases according to the coefficient kr corresponding to the SOC so that the increase in the film deterioration value Qrgn decreases according to the magnitude of the film deterioration value Qrgn. Qrgn is calculated.
具体的には、膜劣化値Qrgnの微小時間dtあたりの増分dQrgnは、以下の式(4)により算出される。
Specifically, the increment dQrgn per minute time dt of the film deterioration value Qrgn is calculated by the following equation (4).
ここで、krr=√(2×kr)である。従って、膜劣化値Qrgnは、ルート則に従って増加する。ルート則に従って増加するとは、時間の経過に伴って膜劣化値Qrgnの単位時間当たりの増加分が漸減することを意味する。推定部22は、式(4)および式(5)の少なくともいずれか一方を用いて膜劣化値Qrgnを算出する。
Here, krr = √ (2 × kr). Therefore, the film deterioration value Qrgn increases according to the root rule. Increasing according to the root rule means that the increment per unit time of the film deterioration value Qrgn gradually decreases with the passage of time. The estimation unit 22 calculates the film deterioration value Qrgn using at least one of the equations (4) and (5).
図10は、劣化推定装置における推定部が用いる配列の一例を示す図である。図10において縦軸は、中心SOCと、SOC変動幅との両方を示す、仮想的な軸である。図10の左側はSEI被膜の剥離が発生する前の状態を表し、図10の右側はSEI被膜の剥離が発生した後の状態を表す。図10は、後述のようにあるSOC(qd[j+2]とqd[j+3]との間のSOC値)を中心に12%より大きく14%以下のSOCの変動が発生した状況を示す。推定部22は、たとえば、膜劣化値Qrgnを複数の分割劣化値の和によって算出する。
FIG. 10 is a diagram illustrating an example of an array used by the estimation unit in the degradation estimation apparatus. In FIG. 10, the vertical axis is a virtual axis that indicates both the center SOC and the SOC fluctuation range. The left side of FIG. 10 represents a state before the peeling of the SEI film occurs, and the right side of FIG. 10 represents a state after the peeling of the SEI film occurs. FIG. 10 shows a situation in which a variation in SOC of more than 12% and less than 14% occurs with a certain SOC (an SOC value between qd [j + 2] and qd [j + 3]) as described later. For example, the estimation unit 22 calculates the film deterioration value Qrgn by the sum of a plurality of division deterioration values.
具体的には、推定部22は、各分割劣化値を格納するための記憶領域を確保する。
推定部22は、Dnum個の分割劣化値を格納するための、qd[1]~qd[Dnum]の要素を有する配列Aqdを確保する。
ここで、配列Aqdの要素数Dnumは、たとえば、100%を間隔INTで除した値である。間隔INTは、任意に設定可能な値であり、この例では間隔INTが2である。したがって、この例では、Dnumは50である。 Specifically, theestimation unit 22 secures a storage area for storing each division deterioration value.
Theestimation unit 22 reserves an array Aqd having elements qd [1] to qd [Dnum] for storing Dnum division degradation values.
Here, the number of elements Dnum of the array Aqd is, for example, a value obtained by dividing 100% by the interval INT. The interval INT is a value that can be arbitrarily set. In this example, the interval INT is 2. Therefore, in this example, Dnum is 50.
推定部22は、Dnum個の分割劣化値を格納するための、qd[1]~qd[Dnum]の要素を有する配列Aqdを確保する。
ここで、配列Aqdの要素数Dnumは、たとえば、100%を間隔INTで除した値である。間隔INTは、任意に設定可能な値であり、この例では間隔INTが2である。したがって、この例では、Dnumは50である。 Specifically, the
The
Here, the number of elements Dnum of the array Aqd is, for example, a value obtained by dividing 100% by the interval INT. The interval INT is a value that can be arbitrarily set. In this example, the interval INT is 2. Therefore, in this example, Dnum is 50.
推定部22は、たとえば、複数の分割劣化値の各々を時間の経過とともに増加させる。推定部22は、たとえば、分割劣化値qd[j]の成長速度が該分割劣化値qd[j]の成長に応じて小さくなるように(分割劣化値の成長速度が漸減するように)当該分割劣化値qd[j]を算出する。ここで、インデックスjは1~Dnumの整数である。
The estimation unit 22 increases, for example, each of the plurality of division deterioration values with the passage of time. For example, the estimation unit 22 performs the division so that the growth rate of the division degradation value qd [j] decreases with the growth of the division degradation value qd [j] (so that the growth rate of the division degradation value gradually decreases). A degradation value qd [j] is calculated. Here, the index j is an integer from 1 to Dnum.
具体的には、推定部22は、式(4)に基づく以下の式(6)を用いて、サンプリング時刻ts[N-1]~ts[N]における分割劣化値qd[j]の増分Δ(Sj[N])を算出する。
Specifically, the estimation unit 22 uses the following equation (6) based on the equation (4) to increase the division degradation value qd [j] increment Δ at the sampling times ts [N−1] to ts [N]. (Sj [N]) is calculated.
ここで、Δtは、サンプリング時刻ts[N-1]~ts[N]の間隔である。係数kr(sc[N],tmp[N])は、サンプリング時刻ts[N]におけるsc[N]および温度tmp[N]に対応する係数であり、対応テーブルTblrに基づいて算出可能である。式(6)は、これまでの劣化履歴(劣化経路)を初期からN-1まで集約(積分
)し、その集約を踏まえ、新たに、N-1から次のサンプリングタイミングであるNまで
の時間(Δt)における増加分であるΔ(Sj[N])分割劣化値qd[j]の増分(変化値)をルート則に従って求めているものである。また、式(6)の関数fは、以下の式(7)により表される。
Here, Δt is an interval between sampling times ts [N−1] to ts [N]. The coefficient kr (sc [N], tmp [N]) is a coefficient corresponding to sc [N] and the temperature tmp [N] at the sampling time ts [N], and can be calculated based on the correspondence table Tblr. Formula (6) is a method of consolidating (integrating) the past deterioration history (deterioration path) from the initial stage to N-1, and newly taking the time from N-1 to N as the next sampling timing based on the aggregation. Increment (change value) of Δ (Sj [N]) divided deterioration value qd [j], which is an increase in (Δt), is obtained according to the root rule. Further, the function f of the equation (6) is expressed by the following equation (7).
)し、その集約を踏まえ、新たに、N-1から次のサンプリングタイミングであるNまで
の時間(Δt)における増加分であるΔ(Sj[N])分割劣化値qd[j]の増分(変化値)をルート則に従って求めているものである。また、式(6)の関数fは、以下の式(7)により表される。
また、サンプリング時刻ts[N-1]における分割劣化値qd[j]をqd[j][N-1]によって表すことにより、式(7)を以下の式(8)に変形することが可能である。
Further, by expressing the divided deterioration value qd [j] at the sampling time ts [N−1] by qd [j] [N−1], the equation (7) can be transformed into the following equation (8). It is.
サンプリング時刻ts[N-1]における分割劣化値qd[j]が小さいほど、Δ(Sj[N])が小さくなる。言い換えると、サンプリング時刻ts[N-1]における分割劣化値qd[j]が大きいほど、Δ(Sj[N])が大きくなる。
The smaller the degradation value qd [j] at the sampling time ts [N−1], the smaller Δ (Sj [N]). In other words, Δ (Sj [N]) increases as the divided deterioration value qd [j] at the sampling time ts [N−1] increases.
推定部22は、qd[j][N-1]にΔ(Sj[N])を加算することにより、サンプリング時刻ts[N]における分割劣化値qd[j]を算出する。
The estimation unit 22 calculates the division deterioration value qd [j] at the sampling time ts [N] by adding Δ (Sj [N]) to qd [j] [N−1].
図10の剥離発生前における配列Aqdに示すように、剥離発生までに推定部22によって算出された値が分割劣化値qd[1]~qd[Dnum]の各々においてハッチングにより示される。
As shown in the array Aqd before the occurrence of peeling in FIG. 10, the values calculated by the estimating unit 22 until the peeling occurs are indicated by hatching in each of the divided deterioration values qd [1] to qd [Dnum].
推定部22では、以下の処理を行うことにより電池の劣化を推定する。推定部22は、たとえば、SOCの変動の大きさが所定条件C1を満たした場合、複数の分割劣化値のうちの変動の大きさに応じた個数の分割劣化値を剥離劣化値Qdstに加算するとともに、剥離劣化値Qdstの加算に用いた分割劣化値の各々を当該分割劣化値より小さい所定値に設定する。
The estimation unit 22 estimates the deterioration of the battery by performing the following processing. For example, when the fluctuation magnitude of the SOC satisfies the predetermined condition C1, the estimation unit 22 adds the number of division deterioration values corresponding to the fluctuation magnitude among the plurality of division deterioration values to the peeling deterioration value Qdst. At the same time, each of the division deterioration values used for adding the peeling deterioration value Qdst is set to a predetermined value smaller than the division deterioration value.
具体的には、所定条件C1は、たとえば、SOCの変動の大きさが間隔INTより大きくなることである。図10に示す例では、12%より大きくかつ14%以下のSOCの変動が発生し、SEI被膜の剥離が発生した状況が示される。この場合、SOCの変動の大きさが間隔INT、言い換えると2より大きいので、所定条件C1が満たされる。
Specifically, the predetermined condition C1 is, for example, that the magnitude of the SOC fluctuation is larger than the interval INT. In the example shown in FIG. 10, the SOC variation of greater than 12% and less than or equal to 14% occurs, and the situation where the SEI film is peeled off is shown. In this case, since the magnitude of the variation of the SOC is larger than the interval INT, in other words, 2, the predetermined condition C1 is satisfied.
推定部22は、所定条件C1が満たされると、剥離発生前における分割劣化値qd[j]~qd[j+5]の各値の和を剥離劣化値Qdstに加算する。ここで、インデックスjは、たとえば、変動直前のSOCが(j-1)×INTより大きく、かつ当該SOCがj×INT以下となる値である。
When the predetermined condition C1 is satisfied, the estimating unit 22 adds the sum of each of the divided deterioration values qd [j] to qd [j + 5] before the occurrence of peeling to the peeling deterioration value Qdst. Here, the index j is, for example, a value at which the SOC immediately before the change is greater than (j−1) × INT and the SOC is equal to or less than j × INT.
そして、推定部22は、剥離発生後における配列Aqdに示すように、分割劣化値qd[j]~qd[j+5]の各値をゼロに設定する。
And the estimation part 22 sets each value of division | segmentation degradation value qd [j] -qd [j + 5] to zero, as shown to the arrangement | sequence Aqd after peeling generation | occurrence | production.
推定部22は、分割劣化値qd[j]~qd[j+5]の各値をゼロに設定する構成に限らず、分割劣化値qd[j]~qd[j+5]の各値より小さい値であれば、ゼロ以外の所定値に設定する構成であってもよい。
The estimation unit 22 is not limited to the configuration in which each of the divided deterioration values qd [j] to qd [j + 5] is set to zero, and may be a value smaller than each of the divided deterioration values qd [j] to qd [j + 5]. For example, it may be configured to set to a predetermined value other than zero.
[動作の流れ]
監視装置151または監視装置151における劣化推定装置101は、制御部20を備え、制御部20は、以下に示すフローチャートの各ステップの一部または全部を含む劣化推定プログラム231を記憶部23から読み出して実行する。 [Flow of operation]
Themonitoring apparatus 151 or the deterioration estimation apparatus 101 in the monitoring apparatus 151 includes a control unit 20, and the control unit 20 reads out a deterioration estimation program 231 including some or all of the steps of the flowchart shown below from the storage unit 23. Execute.
監視装置151または監視装置151における劣化推定装置101は、制御部20を備え、制御部20は、以下に示すフローチャートの各ステップの一部または全部を含む劣化推定プログラム231を記憶部23から読み出して実行する。 [Flow of operation]
The
図11は、劣化推定装置が電池の劣化の推定を行う際の動作手順を定めたフローチャートである。
FIG. 11 is a flowchart that defines an operation procedure when the deterioration estimation device estimates the deterioration of the battery.
図11を参照して、劣化推定装置101の制御部20が他の装置から推定命令を受信した状況を想定する。
Referring to FIG. 11, a situation is assumed in which control unit 20 of degradation estimation apparatus 101 receives an estimation command from another apparatus.
まず、劣化推定装置101は、電池のSOCおよび温度Tの時系列データを取得する(ステップS102)。
First, the degradation estimation apparatus 101 acquires time-series data of the battery SOC and temperature T (step S102).
次に、劣化推定装置101は、SOCおよび温度Tの時系列データに基づいて、電池の非通電劣化値Qcndを算出する(ステップS104)。
Next, the deterioration estimation device 101 calculates a non-energization deterioration value Qcnd of the battery based on the time series data of the SOC and the temperature T (step S104).
劣化推定装置101は、SOCおよび温度Tの時系列データに基づいて、電池の通電劣化値Qcurを算出する(ステップS106)。
The deterioration estimation device 101 calculates a battery energization deterioration value Qcur based on the time-series data of the SOC and the temperature T (step S106).
劣化推定装置101は、通電劣化値Qcurおよび非通電劣化値Qcndの和を電池の劣化を示す劣化値Qdegとして算出し、算出結果に基づいて電池の劣化を推定する(ステップS108)。
Degradation estimation apparatus 101 calculates the sum of energization deterioration value Qcur and non-energization deterioration value Qcnd as deterioration value Qdeg indicating the deterioration of the battery, and estimates the deterioration of the battery based on the calculation result (step S108).
上記ステップS104およびS106の順番は、上記に限らず、順番を入れ替えてもよい。
The order of steps S104 and S106 is not limited to the above, and the order may be changed.
図12は、劣化推定装置が時系列データに基づいて通電劣化値の算出を行う際の動作手順を定めたフローチャートである。図12は、図11のステップS106における動作の詳細を示している。この例では、図9に示す場合と異なり、サンプリング間隔におけるSOCの変動幅が、間隔INTより小さくなるようなサンプリング間隔を想定している。
FIG. 12 is a flowchart that defines an operation procedure when the deterioration estimation device calculates an energization deterioration value based on time-series data. FIG. 12 shows details of the operation in step S106 of FIG. In this example, unlike the case shown in FIG. 9, the sampling interval is assumed such that the fluctuation range of the SOC in the sampling interval is smaller than the interval INT.
まず、劣化推定装置101は、インデックスNを1に初期化する(ステップS202)。
First, the degradation estimation apparatus 101 initializes the index N to 1 (step S202).
次に、劣化推定装置101は、SOC_old、配列Aqdおよび剥離劣化値Qdstを初期化する。具体的には、劣化推定装置101は、SOC_oldをsc[1]に設定する。また、劣化推定装置101は、配列Aqdにおける各要素qd[1]~qd[Dnum]、および剥離劣化値Qdstの値をゼロに初期化する(ステップS204)。
Next, the deterioration estimation apparatus 101 initializes the SOC_old, the array Aqd, and the peeling deterioration value Qdst. Specifically, degradation estimation apparatus 101 sets SOC_old to sc [1]. In addition, the degradation estimation apparatus 101 initializes each element qd [1] to qd [Dnum] in the array Aqd and the peel degradation value Qdst to zero (step S204).
劣化推定装置101は、インデックスNをインクリメントする(ステップS206)。
Degradation estimation apparatus 101 increments index N (step S206).
劣化推定装置101は、sc[N]がSOC_oldおよび間隔INTの和より大きい場合(ステップS208でYES)、SOCの変動の大きさに対応するインデックスjtを決定する(ステップS210)。
Degradation estimation apparatus 101 determines index jt corresponding to the magnitude of the SOC variation (step S210) when sc [N] is larger than the sum of SOC_old and interval INT (YES in step S208).
劣化推定装置101は、たとえば、SOC_oldが(jt-1)×INTより大きく、かつSOC_oldがjt×INT以下となるインデックスjtを決定する。
Degradation estimation apparatus 101 determines, for example, an index jt where SOC_old is greater than (jt-1) × INT and SOC_old is equal to or less than jt × INT.
劣化推定装置101は、剥離劣化値Qdstに分割劣化値qd[jt]を加算する(ステップS212)。
The deterioration estimation device 101 adds the division deterioration value qd [jt] to the peeling deterioration value Qdst (step S212).
劣化推定装置101は、分割劣化値qd[jt]をゼロに設定する(ステップS214)。
Degradation estimation apparatus 101 sets division degradation value qd [jt] to zero (step S214).
劣化推定装置101は、SOC_oldの値をSOC_oldおよび間隔INTの和に更新する(ステップS216)。
Degradation estimation apparatus 101 updates the value of SOC_old to the sum of SOC_old and interval INT (step S216).
一方、劣化推定装置101は、sc[N]がSOC_oldおよび間隔INTの和以下である場合(ステップS208でNO)、sc[N]とSOC_oldから間隔INTを差し引いた値とを比較する(ステップS218)。
On the other hand, when sc [N] is less than or equal to the sum of SOC_old and interval INT (NO in step S208), degradation estimating apparatus 101 compares sc [N] with a value obtained by subtracting interval INT from SOC_old (step S218). ).
劣化推定装置101は、sc[N]がSOC_oldから間隔INTを差し引いた値以下である場合(ステップS218でYES)、SOC_oldの値をSOC_oldから間隔INTを差し引いた値に更新する(ステップS220)。
Degradation estimation apparatus 101 updates the value of SOC_old to a value obtained by subtracting interval INT from SOC_old when sc [N] is equal to or less than the value obtained by subtracting interval INT from SOC_old (step S220).
次に、劣化推定装置101は、SOC_oldを更新するか(ステップS216およびステップS220)、またはsc[N]がSOC_oldから間隔INTを差し引いた値より大きい場合(ステップS218でNO)、式(6)を用いて配列Aqdの各要素qd[1]~qd[Dnum]の値を更新する(ステップS222)。
Next, degradation estimation apparatus 101 updates SOC_old (steps S216 and S220), or when sc [N] is larger than the value obtained by subtracting interval INT from SOC_old (NO in step S218), equation (6) Is used to update the values of the respective elements qd [1] to qd [Dnum] of the array Aqd (step S222).
劣化推定装置101は、インデックスNと配列Atsの要素数Snumとを比較し、インデックスNと要素数Snumとが異なる場合(ステップS224でNO)、インデックスNをインクリメントする(ステップS226)。
The degradation estimation apparatus 101 compares the index N with the number of elements Snum of the array Ats, and if the index N is different from the number of elements Snum (NO in step S224), the index N is incremented (step S226).
次に、劣化推定装置101は、sc[N]とSOC_oldおよび間隔INTの和とを比較する(ステップS208)。
Next, degradation estimation apparatus 101 compares sc [N] with the sum of SOC_old and interval INT (step S208).
一方、劣化推定装置101は、インデックスNと要素数Snumとが一致する場合(ステップS224でYES)、通電劣化値Qcurの算出処理を行う(ステップS228)。具体的には、劣化推定装置101は、qd[1]~qd[Dnum]の和である膜劣化値Qrgnと剥離劣化値Qdstとの和を通電劣化値Qcurとして算出する。
On the other hand, when the index N matches the number of elements Snum (YES in step S224), the deterioration estimation device 101 performs a calculation process of the energization deterioration value Qcur (step S228). Specifically, the degradation estimation apparatus 101 calculates the sum of the film degradation value Qrgn that is the sum of qd [1] to qd [Dnum] and the peeling degradation value Qdst as the energization degradation value Qcur.
上述のように、このフローチャートでは、サンプリング間隔におけるSOCの変動幅が間隔INTより小さくなるようなサンプリング間隔を想定しているが、当該変動幅が間隔INT以上である場合、上記ステップS210において、対応のインデックスを複数決定することにより通電劣化値Qcurを算出することが可能となる。
As described above, in this flowchart, the sampling interval is assumed such that the fluctuation range of the SOC in the sampling interval is smaller than the interval INT. However, if the fluctuation range is equal to or larger than the interval INT, in step S210, By determining a plurality of indexes, it is possible to calculate the energization deterioration value Qcur.
[効果]
図13~図20は、劣化推定装置による電池の劣化推定における誤差の一例を示す図である。図13~図20では、縦軸は誤差を示し、横軸はサイクル数を示す。 [effect]
13 to 20 are diagrams showing an example of errors in battery deterioration estimation by the deterioration estimating apparatus. 13 to 20, the vertical axis indicates an error, and the horizontal axis indicates the number of cycles.
図13~図20は、劣化推定装置による電池の劣化推定における誤差の一例を示す図である。図13~図20では、縦軸は誤差を示し、横軸はサイクル数を示す。 [effect]
13 to 20 are diagrams showing an example of errors in battery deterioration estimation by the deterioration estimating apparatus. 13 to 20, the vertical axis indicates an error, and the horizontal axis indicates the number of cycles.
ここで、誤差は、たとえば、計算値と実測値との差の絶対値を当該実測値で除した値を百分率で表した値である。
Here, the error is, for example, a value obtained by dividing the absolute value of the difference between the calculated value and the actual measurement value by the actual measurement value in percentage.
図13~図20には、本発明の実施の形態に係る劣化推定装置による誤差変化Cvi、および比較例による誤差変化Cvrが示される。比較例による計算値は、たとえば、通電電気量である電池に流出入した電流の絶対値の積算値に基づいて算出される。
13 to 20 show an error change Cvi by the deterioration estimation apparatus according to the embodiment of the present invention and an error change Cvr by the comparative example. The calculated value according to the comparative example is calculated based on, for example, the integrated value of the absolute value of the current flowing into and out of the battery, which is the amount of energized electricity.
図13~図16には、SOCの変動幅を20%に固定する一方、中心SOCを変化させた場合における結果が示される。
FIGS. 13 to 16 show the results when the fluctuation range of the SOC is fixed to 20% while the central SOC is changed.
より詳細には、図13には、SOCの変動が0%~20%になるように充放電を繰り返した後の誤差変化Cvi,Cvrが、サイクル数に対してプロットされている。
More specifically, in FIG. 13, error changes Cvi and Cvr after repeated charging and discharging are plotted against the number of cycles so that the SOC variation is 0% to 20%.
図14には、SOCの変動が20%~40%になるように充放電を繰り返した後の誤差変化Cvi,Cvrが、サイクル数に対してプロットされている。
FIG. 14 plots error changes Cvi and Cvr after repeated charging and discharging so that the SOC variation is 20% to 40% against the number of cycles.
図15には、SOCの変動が40%~60%になるように充放電を繰り返した後の誤差変化Cvi,Cvrが、サイクル数に対してプロットされている。
FIG. 15 plots error changes Cvi and Cvr after repeated charging and discharging so that the SOC variation is 40% to 60% against the number of cycles.
図16には、SOCの変動が60%~80%になるように充放電を繰り返した後の誤差変化Cvi,Cvrが、サイクル数に対してプロットされている。
FIG. 16 plots error changes Cvi and Cvr after repeated charging and discharging so that the SOC variation is 60% to 80% against the number of cycles.
図13~図16に示すように、比較例では、SOCの変動が40%~60%、および60%~80%の場合に誤差が抑制されているが、SOCの変動が0%~20%、および20%~40%の場合に、サイクル数の増大に応じて誤差が増大している。
As shown in FIGS. 13 to 16, in the comparative example, the error is suppressed when the SOC variation is 40% to 60% and 60% to 80%, but the SOC variation is 0% to 20%. In the case of 20% to 40%, the error increases as the number of cycles increases.
一方、本発明の実施の形態に係る劣化推定装置では、いずれのSOCの変動の大きさにおいても、サイクル数の増大に関わらず、誤差が抑制されている。
On the other hand, in the deterioration estimation apparatus according to the embodiment of the present invention, the error is suppressed regardless of the increase in the number of cycles regardless of the magnitude of the fluctuation of the SOC.
図17~図20には、中心SOCを60%に固定する一方、SOCの変動幅を変化させた場合における結果が示される。
FIG. 17 to FIG. 20 show results when the center SOC is fixed at 60% and the fluctuation range of the SOC is changed.
より詳細には、図17には、中心SOCが60%であり、かつSOCの変動幅が1%になるように充放電を繰り返した後の誤差変化Cvi,Cvrが、サイクル数に対してプロットされている。
More specifically, FIG. 17 plots error changes Cvi and Cvr after repeated charging and discharging so that the center SOC is 60% and the fluctuation range of the SOC is 1% against the number of cycles. Has been.
図18には、中心SOCが60%であり、かつSOCの変動幅が10%になるように充放電を繰り返した後の誤差変化Cvi,Cvrが、サイクル数に対してプロットされている。
FIG. 18 plots error changes Cvi and Cvr after repeated charging and discharging so that the center SOC is 60% and the fluctuation range of SOC is 10% against the number of cycles.
図19には、中心SOCが60%であり、かつSOCの変動幅が40%になるように充放電を繰り返した後の誤差変化Cvi,Cvrが、サイクル数に対してプロットされている。
FIG. 19 plots error changes Cvi and Cvr after repeated charging and discharging so that the center SOC is 60% and the fluctuation range of the SOC is 40% against the number of cycles.
図20には、中心SOCが60%であり、かつSOCの変動幅が60%になるように充放電を繰り返した後の誤差変化Cvi,Cvrが、サイクル数に対してプロットされている。
FIG. 20 plots error changes Cvi and Cvr after repeated charging and discharging so that the center SOC is 60% and the fluctuation range of the SOC is 60% against the number of cycles.
図17~図20に示すように、比較例では、SOCの変動幅が10%および40%の場合に誤差が抑制されているが、SOCの変動幅が1%および60%の場合に誤差が大きい。
As shown in FIGS. 17 to 20, in the comparative example, the error is suppressed when the SOC fluctuation ranges are 10% and 40%, but the error is suppressed when the SOC fluctuation ranges are 1% and 60%. large.
一方、本発明の実施の形態に係る劣化推定装置101では、いずれのSOCの変動幅においても、誤差が同等あるいは抑制されている。
On the other hand, in degradation estimating apparatus 101 according to the embodiment of the present invention, the error is equal or suppressed in any SOC fluctuation range.
(第2実施形態)
第2実施形態に係る劣化推定装置101は、下記の点が相違すること以外は、第1実施形態に係る劣化推定装置101と同様の構成を有する。 (Second Embodiment)
Thedegradation estimation apparatus 101 according to the second embodiment has the same configuration as the degradation estimation apparatus 101 according to the first embodiment except that the following points are different.
第2実施形態に係る劣化推定装置101は、下記の点が相違すること以外は、第1実施形態に係る劣化推定装置101と同様の構成を有する。 (Second Embodiment)
The
第2実施形態の劣化推定装置101の履歴作成部54は、サンプリング時刻におけるカウンタ55のカウント値、ならびにデジタル信号Di、DvおよびDtを記憶部56に保存する。記憶部56には、サンプリング時刻、電流値、電圧値および温度Tがサンプリング時刻ごとに蓄積されることに加え、充放電サイクル数が記憶される。充放電を繰り返す都度、充放電サイクル数は更新される。
The history creation unit 54 of the degradation estimation apparatus 101 according to the second embodiment stores the count value of the counter 55 at the sampling time and the digital signals Di, Dv, and Dt in the storage unit 56. The storage unit 56 stores the sampling time, current value, voltage value, and temperature T at each sampling time, and stores the number of charge / discharge cycles. Each time charge / discharge is repeated, the number of charge / discharge cycles is updated.
図22を参照して、劣化推定装置101の制御部20が他の装置から推定命令を受信した状況を想定する。以下、例えばSOCが40%~80%の間を往復するように充放電を繰り返す場合につき説明する。
Referring to FIG. 22, a situation is assumed in which control unit 20 of degradation estimation apparatus 101 receives an estimation command from another apparatus. Hereinafter, for example, a case where charge / discharge is repeated so that the SOC reciprocates between 40% and 80% will be described.
まず、劣化推定装置101は、充放電サイクル数を取得する(ステップS300)。
劣化推定装置101は、電池のSOCおよび温度Tの時系列データを取得する(ステップS302)。 First, thedegradation estimation apparatus 101 acquires the number of charge / discharge cycles (step S300).
Deterioration estimating apparatus 101 acquires time-series data of battery SOC and temperature T (step S302).
劣化推定装置101は、電池のSOCおよび温度Tの時系列データを取得する(ステップS302)。 First, the
次に、劣化推定装置101は、SOCおよび温度Tの時系列データに基づいて、電池の非通電劣化値Qcndを算出する(ステップS304)。
Next, the deterioration estimation device 101 calculates a non-energization deterioration value Qcnd of the battery based on the time series data of the SOC and the temperature T (step S304).
劣化推定装置101は、SOCおよび温度Tの時系列データに基づいて、電池の通電劣化値Qcurを算出する(ステップS306)。
Degradation estimation apparatus 101 calculates a battery energization deterioration value Qcur based on time-series data of SOC and temperature T (step S306).
劣化推定装置101は、通電劣化値Qcurおよび非通電劣化値Qcndの和を電池の劣化を示す劣化値Qdegとして算出し、算出結果に基づいて電池の劣化(容量バランスのずれ)を推定する(ステップS308)。通電劣化値Qcurおよび非通電劣化値Qcndは、通電劣化値Qcurと非通電劣化値Qcndとの差が、充放電サイクル数の増加に伴って増加するように算出される。例えば、予めサイクル試験を行い、充放電サイクル数に対応して前記係数kcおよび係数krのうちの少なくとも一方を変えるようにする。
The degradation estimation device 101 calculates the sum of the energization degradation value Qcur and the non-energization degradation value Qcnd as a degradation value Qdeg indicating the degradation of the battery, and estimates the degradation of the battery (shift in capacity balance) based on the computation result (step) S308). The energization deterioration value Qcur and the non-energization deterioration value Qcnd are calculated such that the difference between the energization deterioration value Qcur and the non-energization deterioration value Qcnd increases as the number of charge / discharge cycles increases. For example, a cycle test is performed in advance, and at least one of the coefficient kc and the coefficient kr is changed according to the number of charge / discharge cycles.
上記ステップS300およびS302の順番、ステップS304およびS306の順番は、上記に限らず、順番を入れ替えてもよい。
The order of steps S300 and S302 and the order of steps S304 and S306 are not limited to the above, and the order may be changed.
前記図13~図20は、第2実施形態の劣化推定装置101による電池の劣化推定における誤差の一例を示すことにもなる。即ち、図13はSOCが0%~20%の間を往復するように充放電を繰り返した場合のサイクル数に対する誤差変化を示す。図14は、SOCが20%~40%の間を往復するように充放電を繰り返した場合のサイクル数に対する誤差変化を示す。図15は、SOCが40%~60%の間を往復するように充放電を繰り返した場合のサイクル数に対する誤差変化を示す。図16は、SOCが60%~80%の間を往復するように充放電を繰り返した場合のサイクル数に対する誤差変化を示す。
FIGS. 13 to 20 also show an example of an error in battery deterioration estimation by the deterioration estimating apparatus 101 of the second embodiment. That is, FIG. 13 shows a change in error with respect to the number of cycles when charging / discharging is repeated so that the SOC reciprocates between 0% and 20%. FIG. 14 shows a change in error with respect to the number of cycles when charging / discharging is repeated so that the SOC reciprocates between 20% and 40%. FIG. 15 shows a change in error with respect to the number of cycles when charge and discharge are repeated so that the SOC reciprocates between 40% and 60%. FIG. 16 shows a change in error with respect to the number of cycles when charging / discharging is repeated so that the SOC reciprocates between 60% and 80%.
図17はSOCが59.5%~60.5%の間を往復するように充放電を繰り返した場合のサイクル数に対する誤差変化を示す。図18は、SOCが55%~65%の間を往復するように充放電を繰り返した場合のサイクル数に対する誤差変化を示す。図19は、SOCが40%~80%の間を往復するように充放電を繰り返した場合のサイクル数に対する誤差変化を示す。図20は、SOCが30%~90%の間を往復するように充放電を繰り返した場合のサイクル数に対する誤差変化を示す。
FIG. 17 shows an error change with respect to the number of cycles when the charge / discharge is repeated so that the SOC reciprocates between 59.5% and 60.5%. FIG. 18 shows a change in error with respect to the number of cycles when charge and discharge are repeated so that the SOC reciprocates between 55% and 65%. FIG. 19 shows a change in error with respect to the number of cycles when charging / discharging is repeated so that the SOC reciprocates between 40% and 80%. FIG. 20 shows a change in error with respect to the number of cycles when charge and discharge are repeated so that the SOC reciprocates between 30% and 90%.
図13~図20より、充放電サイクル数の増加に伴って、容量バランスのずれが増大するという新しい知見を採用することで、従来よりも、蓄電素子の劣化を精度良く推定することができることが確認された。
From FIG. 13 to FIG. 20, it is possible to estimate the deterioration of the storage element with higher accuracy than before by adopting the new knowledge that the deviation of the capacity balance increases as the number of charge / discharge cycles increases. confirmed.
容量バランスのずれの増大による、蓄電素子から可逆的に取り出せる電気量の減少量(容量の劣化量)を推定することにより、蓄電素子の内部状態を把握できる。負極のSOC100%における電位も分かるので、蓄電素子がリチウムイオン二次電池である場合、負極における金属リチウムの析出のリスクも分かる。該リスクも含めた蓄電素子のSOH(State of Health)を監視できる。容量バランスのずれに基づいて、SOC-OCV曲線を求めることもできるので、蓄電素子をどのように制御するかを決定することもできる。
The internal state of the electricity storage device can be grasped by estimating the amount of decrease in the amount of electricity that can be reversibly extracted from the electricity storage device due to an increase in capacity balance deviation. Since the potential of the negative electrode at 100% SOC is also known, when the power storage element is a lithium ion secondary battery, the risk of deposition of metallic lithium on the negative electrode is also known. The SOH (State of Health) of the electricity storage element including the risk can be monitored. Since the SOC-OCV curve can be obtained based on the deviation of the capacity balance, it is also possible to determine how to control the storage element.
本発明の第1実施形態及び第2実施形態に係る劣化推定装置101は、監視装置151の内部に設けられる構成としたが、これに限定するものではない。劣化推定装置101は、監視装置151の外部に設けられてもよい。この場合、劣化推定装置101は、たとえば、USB(Universal Serial Bus)ケーブル等のバスを介して監視装置151からSOCの時系列データを取得する。
Although the deterioration estimation apparatus 101 according to the first embodiment and the second embodiment of the present invention is configured to be provided inside the monitoring apparatus 151, the present invention is not limited to this. The degradation estimation apparatus 101 may be provided outside the monitoring apparatus 151. In this case, the deterioration estimation apparatus 101 acquires SOC time-series data from the monitoring apparatus 151 via a bus such as a USB (Universal Serial Bus) cable.
劣化推定装置101は、SOCの時系列データを用いる構成としたが、これに限定するものではない。劣化推定装置101は、SOCの時系列データの代わりに、充電量といった絶対値の時系列データおよび充電レベルの時系列データ等を用いてもよい。SOCの時系列データは、電流積算法等によって求められるΔSOCであってもよいし、SOC初期値にΔSOCを加算/減算したデータであってもよい。
The deterioration estimation apparatus 101 is configured to use SOC time-series data, but is not limited thereto. Degradation estimation apparatus 101 may use time-series data of an absolute value such as a charge amount, time-series data of a charge level, and the like, instead of time-series data of SOC. The SOC time-series data may be ΔSOC obtained by a current integration method or the like, or may be data obtained by adding / subtracting ΔSOC to the initial SOC value.
劣化推定装置101では、推定部22は、電池の劣化推定として劣化値を算出する構成としたが、これに限定するものではない。推定部22は、電池の劣化を示すレベル、電池の寿命および電池の交換時期等を算出してもよい。
In the deterioration estimation apparatus 101, the estimation unit 22 is configured to calculate the deterioration value as the battery deterioration estimation, but the present invention is not limited to this. The estimation unit 22 may calculate a level indicating battery deterioration, battery life, battery replacement time, and the like.
劣化推定装置101では、推定部22は、SOCの変動の大きさ、各取得時点のSOC、および各取得時点の温度Tに基づいて、通電劣化値Qcurを算出する構成としたが、これに限定するものではない。推定部22は、SOCの変動の大きさに基づいて、電池の劣化を推定してもよい。推定部22は、たとえば、SOCの変動の大きさが小さく、かつ温度Tの変動が小さい場合には、係数krを固定値としてもよい。
In the deterioration estimation device 101, the estimation unit 22 is configured to calculate the energization deterioration value Qcur based on the SOC fluctuation magnitude, the SOC at each acquisition time point, and the temperature T at each acquisition time point, but is not limited thereto. Not what you want. The estimation unit 22 may estimate the deterioration of the battery based on the magnitude of the SOC fluctuation. For example, the estimation unit 22 may set the coefficient kr as a fixed value when the variation of the SOC is small and the variation of the temperature T is small.
推定部22は、たとえば、SOCの変動の大きさに基づいて、電池の通電による劣化を推定する構成であってもよい。推定部22は、たとえば、係数krを固定値として用いて通電劣化値Qcurを算出する。
The estimation unit 22 may be configured to estimate deterioration due to energization of the battery based on, for example, the magnitude of SOC variation. For example, the estimation unit 22 calculates the energization deterioration value Qcur using the coefficient kr as a fixed value.
推定部22は、たとえば、SOCの変動の大きさ、および時系列データにおけるSOCの変動の中心に基づいて、電池の劣化を推定する構成であってもよいし、また、SOCの変動の大きさ、および各取得時点のSOCに基づいて、電池の劣化を推定する構成であってもよい。推定部22は、たとえば、温度Tの変動が小さい場合には、係数krおよび係数kcをSOCの関数として用いて、通電劣化値Qcurおよび非通電劣化値Qcndを算出することが可能である。
劣化推定装置101では、推定部22は、通電劣化値Qcurと非通電劣化値Qcndとの和に基づいて蓄電素子の劣化を推定する構成としたが、これに限定するものではない。推定部22は、非通電劣化値Qcndを用いずに、通電劣化値Qcurに基づいて蓄電素子の劣化を推定する構成であってもよい。たとえば、電池の新品状態からの経過時間が短い場合、推定部22は、通電劣化値Qcurに基づいて蓄電素子の劣化を精度よく推定することが可能である。 Theestimation unit 22 may be configured to estimate battery deterioration based on, for example, the magnitude of SOC fluctuation and the center of SOC fluctuation in time-series data, and the magnitude of SOC fluctuation. The battery deterioration may be estimated based on the SOC at each acquisition time point. For example, when the variation in temperature T is small, the estimation unit 22 can calculate the energization deterioration value Qcur and the non-energization deterioration value Qcnd using the coefficient kr and the coefficient kc as functions of the SOC.
In thedeterioration estimation device 101, the estimation unit 22 is configured to estimate the deterioration of the storage element based on the sum of the energization deterioration value Qcur and the non-energization deterioration value Qcnd, but the present invention is not limited to this. The estimation unit 22 may be configured to estimate the deterioration of the storage element based on the energization deterioration value Qcur without using the non-energization deterioration value Qcnd. For example, when the elapsed time from the new battery state is short, the estimation unit 22 can accurately estimate the deterioration of the storage element based on the energization deterioration value Qcur.
劣化推定装置101では、推定部22は、通電劣化値Qcurと非通電劣化値Qcndとの和に基づいて蓄電素子の劣化を推定する構成としたが、これに限定するものではない。推定部22は、非通電劣化値Qcndを用いずに、通電劣化値Qcurに基づいて蓄電素子の劣化を推定する構成であってもよい。たとえば、電池の新品状態からの経過時間が短い場合、推定部22は、通電劣化値Qcurに基づいて蓄電素子の劣化を精度よく推定することが可能である。 The
In the
劣化推定装置101では、推定部22は、剥離劣化値Qdstに基づいて通電劣化値Qcurを算出する構成としたが、これに限定するものではない。推定部22は、剥離劣化値Qdstを用いずに通電劣化値Qcurを算出してもよい。
In the deterioration estimation device 101, the estimation unit 22 is configured to calculate the energization deterioration value Qcur based on the peeling deterioration value Qdst, but is not limited thereto. The estimation unit 22 may calculate the energization deterioration value Qcur without using the peeling deterioration value Qdst.
上記実施の形態は、制限的なものではない。本発明の範囲は、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The above embodiment is not restrictive. The scope of the present invention is intended to include all modifications within the scope and meaning equivalent to the terms of the claims.
20 制御部
21 取得部
22 推定部
23 記憶部
231 劣化推定プログラム
51 電流センサ
52 電圧センサ
53 温度センサ
54 履歴作成部
55 カウンタ
56 記憶部
57 通信部
60 記録媒体
101 劣化推定装置
151 監視装置 DESCRIPTION OFSYMBOLS 20 Control part 21 Acquisition part 22 Estimation part 23 Storage part 231 Degradation estimation program 51 Current sensor 52 Voltage sensor 53 Temperature sensor 54 History creation part 55 Counter 56 Storage part 57 Communication part 60 Recording medium 101 Degradation estimation apparatus 151 Monitoring apparatus
21 取得部
22 推定部
23 記憶部
231 劣化推定プログラム
51 電流センサ
52 電圧センサ
53 温度センサ
54 履歴作成部
55 カウンタ
56 記憶部
57 通信部
60 記録媒体
101 劣化推定装置
151 監視装置 DESCRIPTION OF
Claims (15)
- 蓄電素子におけるSOCの時系列データを取得する取得部と、
前記取得部によって取得された前記時系列データにおける前記SOCの変動の大きさに基づいて、前記蓄電素子の劣化を推定する推定部と
を備える、劣化推定装置。 An acquisition unit for acquiring time-series data of SOC in the storage element;
A degradation estimation device comprising: an estimation unit that estimates degradation of the power storage element based on a magnitude of fluctuation of the SOC in the time-series data acquired by the acquisition unit. - 前記推定部は、前記SOCの変動の大きさ、および前記時系列データにおける前記SOCの変動の中心に基づいて、前記蓄電素子の劣化を推定する、請求項1に記載の劣化推定装置。 The deterioration estimation device according to claim 1, wherein the estimation unit estimates deterioration of the power storage element based on a magnitude of fluctuation of the SOC and a center of fluctuation of the SOC in the time series data.
- 前記推定部は、前記SOCの変動の大きさに基づいて、前記蓄電素子の通電による劣化を示す通電劣化値を算出し、算出した前記通電劣化値と前記蓄電素子の通電によらない劣化を示す非通電劣化値との和に基づいて前記蓄電素子の劣化を推定する、請求項1または請求項2に記載の劣化推定装置。 The estimation unit calculates an energization deterioration value indicating deterioration due to energization of the power storage element based on a magnitude of fluctuation of the SOC, and indicates the calculated energization deterioration value and deterioration not caused by energization of the power storage element. The deterioration estimation device according to claim 1, wherein deterioration of the power storage element is estimated based on a sum with a non-energized deterioration value.
- 前記推定部は、前記SOCの変動の大きさに基づく、前記蓄電素子の負極におけるSEI被膜の状態の変化に基づいて、前記蓄電素子の劣化を推定する、請求項1から請求項3のいずれか1項に記載の劣化推定装置。 The said estimation part estimates deterioration of the said electrical storage element based on the change of the state of the SEI film in the negative electrode of the said electrical storage element based on the magnitude | size of the fluctuation | variation of the said SOC. The degradation estimation apparatus according to item 1.
- 前記推定部は、前記蓄電素子の負極におけるSEI被膜の破壊と再生成が考慮された数式モデルに基づいて、前記蓄電素子の劣化を推定する、請求項4に記載の劣化推定装置。 The deterioration estimation device according to claim 4, wherein the estimation unit estimates the deterioration of the electricity storage element based on a mathematical model that takes into account the destruction and regeneration of the SEI film on the negative electrode of the electricity storage element.
- 前記数式モデルは、前記蓄電素子の負極から剥離したSEI被膜による、前記蓄電素子の劣化も考慮している、請求項5に記載の劣化推定装置。 The deterioration estimation device according to claim 5, wherein the mathematical model also takes into account the deterioration of the storage element due to the SEI film peeled from the negative electrode of the storage element.
- 蓄電素子から可逆的に取り出せる電気量である蓄電素子の容量の劣化を充放電サイクル数に基づいて推定する推定部を備える、劣化推定装置。 Deterioration estimation apparatus comprising an estimation unit that estimates the deterioration of the capacity of a storage element, which is the amount of electricity that can be reversibly extracted from the storage element, based on the number of charge / discharge cycles.
- 前記推定部は、所定の充放電サイクル数における前記蓄電素子の容量の劣化を、その時点における前記蓄電素子の通電による劣化を示す通電劣化値と、前記蓄電素子の通電によらない劣化を示す非通電劣化値との和により推定する、請求項7に記載の劣化推定装置。 The estimation unit indicates a deterioration in the capacity of the power storage element at a predetermined number of charge / discharge cycles, an energization deterioration value indicating deterioration due to energization of the power storage element at that time, and a non-reduction indicating non-energization of the power storage element. The deterioration estimation apparatus according to claim 7, wherein the deterioration estimation apparatus estimates the sum by an energization deterioration value.
- 前記通電劣化値と前記非通電劣化値との差は、充放電サイクル数の増加に伴って増加するように構成されている、請求項8に記載の劣化推定装置。 The deterioration estimation device according to claim 8, wherein a difference between the energization deterioration value and the non-energization deterioration value is configured to increase as the number of charge / discharge cycles increases.
- 前記推定部は、前記通電劣化値を、前記蓄電素子の負極で成長するSEI被膜に起因する膜劣化値と、前記負極から剥離したSEI被膜に起因する剥離劣化値との和により推定する、請求項8または9に記載の劣化推定装置。 The estimation unit estimates the energization deterioration value by a sum of a film deterioration value caused by an SEI film grown on a negative electrode of the power storage element and a peel deterioration value caused by an SEI film peeled from the negative electrode. Item 10. The deterioration estimation device according to Item 8 or 9.
- 前記蓄電素子におけるSOCの時系列データを取得する取得部をさらに備え、
前記推定部は、前記通電劣化値を、前記SOCの時系列データに基づいて推定する、請求項8~10のいずれか1項に記載の劣化推定装置。 An acquisition unit for acquiring SOC time-series data in the power storage device;
The deterioration estimation device according to any one of claims 8 to 10, wherein the estimation unit estimates the energization deterioration value based on time series data of the SOC. - 蓄電素子の劣化推定方法であって、
蓄電素子におけるSOCの時系列データを取得し、
取得した前記時系列データにおける前記SOCの変動の大きさに基づいて、前記蓄電素子の劣化を推定する、劣化推定方法。 A method for estimating deterioration of a storage element,
Obtain time-series data of SOC in the electricity storage device,
A degradation estimation method for estimating degradation of the power storage element based on a magnitude of fluctuation of the SOC in the acquired time series data. - 蓄電素子の劣化推定方法であって、
蓄電素子から可逆的に取り出せる電気量である蓄電素子の容量の劣化を充放電サイクル数に基づいて推定する、劣化推定方法。 A method for estimating deterioration of a storage element,
A degradation estimation method for estimating degradation of a capacity of a storage element, which is an amount of electricity that can be reversibly extracted from the storage element, based on the number of charge / discharge cycles. - コンピュータに、
蓄電素子におけるSOCの時系列データを取得し、
取得した前記時系列データにおける前記SOCの変動の大きさに基づいて、前記蓄電素子の劣化を推定する処理を実行させるコンピュータプログラム。 On the computer,
Obtain time-series data of SOC in the electricity storage device,
A computer program that executes processing for estimating deterioration of the power storage element based on the magnitude of fluctuation of the SOC in the acquired time-series data. - コンピュータに、
蓄電素子から可逆的に取り出せる電気量である蓄電素子の容量の劣化を充放電サイクル数に基づいて推定する処理を実行させるコンピュータプログラム。 On the computer,
A computer program that executes processing for estimating deterioration of a capacity of a power storage element, which is an amount of electricity that can be reversibly extracted from the power storage element, based on the number of charge / discharge cycles.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880023079.6A CN110476072B (en) | 2017-03-29 | 2018-03-28 | Degradation estimation device, degradation estimation method, and recording medium |
US16/498,868 US11428747B2 (en) | 2017-03-29 | 2018-03-28 | Degradation estimating device, degradation estimating method, and computer program |
EP18776545.8A EP3605124B1 (en) | 2017-03-29 | 2018-03-28 | Degradation estimating device, degradation estimating method, and computer program |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017065532 | 2017-03-29 | ||
JP2017-065532 | 2017-03-29 | ||
JP2017065536 | 2017-03-29 | ||
JP2017-065536 | 2017-03-29 | ||
JP2018060828A JP6428957B2 (en) | 2017-03-29 | 2018-03-27 | Degradation estimation apparatus, degradation estimation method, and computer program |
JP2018-060828 | 2018-03-27 | ||
JP2018060829A JP6428958B2 (en) | 2017-03-29 | 2018-03-27 | Degradation estimation apparatus, degradation estimation method, and computer program |
JP2018-060829 | 2018-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181609A1 true WO2018181609A1 (en) | 2018-10-04 |
Family
ID=63676116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013035 WO2018181609A1 (en) | 2017-03-29 | 2018-03-28 | Degradation estimating device, degradation estimating method, and computer program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018181609A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020195264A (en) * | 2019-05-30 | 2020-12-03 | 株式会社Gsユアサ | Generation device, prediction system, generation method, and computer program |
WO2020241372A1 (en) * | 2019-05-30 | 2020-12-03 | 株式会社Gsユアサ | Generation device, prediction system, generation method, and computer program |
JP2021144881A (en) * | 2020-03-12 | 2021-09-24 | 株式会社Gsユアサ | Generation device, generation method, information processing method, and computer program |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011004550A1 (en) * | 2009-07-10 | 2011-01-13 | パナソニック株式会社 | Circuit for counting number of cycles, battery pack, and battery system |
JP2011220900A (en) | 2010-04-12 | 2011-11-04 | Honda Motor Co Ltd | Battery deterioration estimation method, battery capacity estimation method, battery capacity equalization method and battery deterioration estimation device |
JP2014167406A (en) * | 2013-02-28 | 2014-09-11 | Sekisui Chem Co Ltd | Battery model construction method, and accumulator degradation estimation device |
WO2014155726A1 (en) * | 2013-03-29 | 2014-10-02 | 株式会社日立製作所 | Method for estimating cell characteristics, device for estimating cell characteristics, and program |
WO2016092811A1 (en) * | 2014-12-10 | 2016-06-16 | 株式会社Gsユアサ | Power storage element state estimation device and power storage element state estimation method |
JP2016176709A (en) * | 2015-03-18 | 2016-10-06 | 積水化学工業株式会社 | Secondary battery deterioration detection system and method for detecting secondary battery deterioration |
WO2016194082A1 (en) * | 2015-05-29 | 2016-12-08 | 日産自動車株式会社 | Device for estimating degree of battery degradation, and estimation method |
JP2017020916A (en) * | 2015-07-10 | 2017-01-26 | 株式会社Gsユアサ | Power storage element deterioration state estimation device, power storage element deterioration state estimation method, and power storage system |
-
2018
- 2018-03-28 WO PCT/JP2018/013035 patent/WO2018181609A1/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011004550A1 (en) * | 2009-07-10 | 2011-01-13 | パナソニック株式会社 | Circuit for counting number of cycles, battery pack, and battery system |
JP2011220900A (en) | 2010-04-12 | 2011-11-04 | Honda Motor Co Ltd | Battery deterioration estimation method, battery capacity estimation method, battery capacity equalization method and battery deterioration estimation device |
JP2014167406A (en) * | 2013-02-28 | 2014-09-11 | Sekisui Chem Co Ltd | Battery model construction method, and accumulator degradation estimation device |
WO2014155726A1 (en) * | 2013-03-29 | 2014-10-02 | 株式会社日立製作所 | Method for estimating cell characteristics, device for estimating cell characteristics, and program |
WO2016092811A1 (en) * | 2014-12-10 | 2016-06-16 | 株式会社Gsユアサ | Power storage element state estimation device and power storage element state estimation method |
JP2016176709A (en) * | 2015-03-18 | 2016-10-06 | 積水化学工業株式会社 | Secondary battery deterioration detection system and method for detecting secondary battery deterioration |
WO2016194082A1 (en) * | 2015-05-29 | 2016-12-08 | 日産自動車株式会社 | Device for estimating degree of battery degradation, and estimation method |
JP2017020916A (en) * | 2015-07-10 | 2017-01-26 | 株式会社Gsユアサ | Power storage element deterioration state estimation device, power storage element deterioration state estimation method, and power storage system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020195264A (en) * | 2019-05-30 | 2020-12-03 | 株式会社Gsユアサ | Generation device, prediction system, generation method, and computer program |
WO2020241372A1 (en) * | 2019-05-30 | 2020-12-03 | 株式会社Gsユアサ | Generation device, prediction system, generation method, and computer program |
JP2021077652A (en) * | 2019-05-30 | 2021-05-20 | 株式会社Gsユアサ | Information processing method |
JP7173180B2 (en) | 2019-05-30 | 2022-11-16 | 株式会社Gsユアサ | Information processing method |
JP2021144881A (en) * | 2020-03-12 | 2021-09-24 | 株式会社Gsユアサ | Generation device, generation method, information processing method, and computer program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6428957B2 (en) | Degradation estimation apparatus, degradation estimation method, and computer program | |
JP6897748B2 (en) | Power storage element state estimation device and power storage element state estimation method | |
EP3605124B1 (en) | Degradation estimating device, degradation estimating method, and computer program | |
JP6567582B2 (en) | Charge / discharge control device, use condition creation device, program, and power storage system | |
CN108780931B (en) | Lithium ion secondary battery life estimating device | |
WO2013054672A1 (en) | Lead storage battery system | |
JP5936711B2 (en) | Storage device life prediction apparatus and storage device life prediction method | |
JP6405942B2 (en) | Battery pack abnormality determination device | |
JP2017166874A (en) | Storage battery evaluation device, storage battery, storage battery evaluation method, and program | |
EP3145021B1 (en) | Secondary-battery monitoring device and method for predicting capacity of secondary battery | |
JP6798051B2 (en) | Charging pattern creation device, charge control device, charging pattern creation method, program, and power storage system | |
EP3657190A1 (en) | Estimation device, power storage device, estimation method, and computer program | |
WO2018181609A1 (en) | Degradation estimating device, degradation estimating method, and computer program | |
EP3561531B1 (en) | Power storage element management device, power storage device, solar power generation system, deterioration amount estimation method, and computer program | |
JP2013254710A (en) | Power storage element life estimation device, life estimation method, and power storage system | |
JP2021163632A (en) | Secondary battery deterioration estimation method, life estimation method and control device | |
JP6428958B2 (en) | Degradation estimation apparatus, degradation estimation method, and computer program | |
EP3979387B1 (en) | Estimation device, estimation method, and computer program | |
US20230243893A1 (en) | Battery degradation prediction device, battery degradation prediction system, and preparation method for battery degradation prediction | |
JP2022101196A (en) | Deterioration estimation device, deterioration estimation method, and computer program | |
WO2020241449A1 (en) | Estimation device, estimation method, and computer program | |
Karthikeyan et al. | Improved State-Of-Charge Estimation Algorithms for Lithium-ion Batteries in Electric Vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18776545 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018776545 Country of ref document: EP Effective date: 20191029 |