WO2018181559A1 - 遮熱コーティング皮膜およびタービン部材 - Google Patents

遮熱コーティング皮膜およびタービン部材 Download PDF

Info

Publication number
WO2018181559A1
WO2018181559A1 PCT/JP2018/012944 JP2018012944W WO2018181559A1 WO 2018181559 A1 WO2018181559 A1 WO 2018181559A1 JP 2018012944 W JP2018012944 W JP 2018012944W WO 2018181559 A1 WO2018181559 A1 WO 2018181559A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrier coating
thermal barrier
coating film
molten salt
thermal
Prior art date
Application number
PCT/JP2018/012944
Other languages
English (en)
French (fr)
Inventor
大祐 工藤
鳥越 泰治
妻鹿 雅彦
堀江 茂斉
秀次 谷川
芳史 岡嶋
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US16/497,067 priority Critical patent/US20210123124A1/en
Priority to DE112018001695.1T priority patent/DE112018001695T5/de
Priority to JP2019510030A priority patent/JPWO2018181559A1/ja
Priority to CN201880020863.1A priority patent/CN110520599A/zh
Publication of WO2018181559A1 publication Critical patent/WO2018181559A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/24Heat or noise insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/514Porosity

Definitions

  • the present invention relates to a thermal barrier coating film and a turbine member using the same.
  • This application claims priority based on Japanese Patent Application No. 2017-62063 for which it applied to Japan on March 28, 2017, and uses the content here.
  • thermal barrier coating (hereinafter sometimes referred to as “TBC”) to the surface of a base material.
  • Thermal barrier coating is to coat the surface of the base material with thermal spraying material with low thermal conductivity by thermal spraying, for example, porous ceramic material with low thermal conductivity. Can be improved.
  • thermal barrier coating is exposed to a molten salt containing sodium sulfate generated by sodium or sulfur contained in the heavy oil, and the molten salt penetrates into the thermal barrier coating. There is a concern that the thermal barrier coating made of ceramic may be damaged by the permeated molten salt.
  • Patent Document 1 has already been proposed as a technique in consideration of problems in a molten salt environment in a thermal barrier coating of a heavy oil-fired gas turbine.
  • a thermal barrier coating formed on a base material made of a heat-resistant alloy is divided into a thermal barrier layer (porous layer) made of porous ceramics and a ceramic formed on the porous layer. It has a two-layer structure with a dense environmental shielding layer (dense layer) containing fibers and having silica as a main component, and the pores of the porous layer are impregnated with a part of the silica of the dense layer.
  • thermal barrier coating proposed in Patent Document 1, when used in a molten salt environment such as a heavy oil-fired gas turbine, a dense layer mainly composed of silica on the outermost surface is made of partially stabilized zirconia or the like. It is said that by preventing the molten salt from penetrating into the porous layer (heat shielding layer), the thermal barrier coating is prevented from being peeled off and high durability is exhibited.
  • Patent Document 2 zirconia partially stabilized by ytterbium oxide (ytterbia; Yb 2 O 3 ) (ytterbia partially stabilized zirconia; hereinafter sometimes referred to as “YbSZ”) is used as an ordinary gas-fired gas turbine. It has been shown that high thermal cycle durability is exhibited by its high temperature crystal stability in an environment, ie, in the absence of sulfate. In the case of gas burning, high thermal cycle durability is shown by setting the porosity of the film to 8 to 15%.
  • the size of the powder particles in particular, the particle size distribution in which the integrated particle size 10% particle size is 30 ⁇ m or more and 100 ⁇ m or less is the maximum.
  • the particle size is 150 ⁇ m or less, and it is shown that sprayed powder particles containing 3% or less of particles having a particle size of 30 ⁇ m and 8% or less of particles having a particle size of 40 ⁇ m are used. By doing so, defects in the film are greatly reduced, and high thermal cycle durability is exhibited.
  • thermo barrier coating film in forming a thermal barrier coating film, not only is a partially stabilized zirconia sprayed to form a porous layer (thermal barrier layer), but also a silica as a main component and Since it is necessary to form a dense layer containing ceramic fibers and impregnate the porous layer with silica of the dense layer, the process is complicated, the number of processes is large, the productivity is inferior, and the cost is not high. There is a problem of not getting.
  • Patent Document 2 and Patent Document 3 are only considered in the case of gas burning, and are not considered for a turbine using a low quality fuel such as heavy oil burning.
  • a low quality fuel such as heavy oil burning
  • an object of the present invention is to provide a thermal barrier coating that exhibits high durability and can be formed efficiently at low cost.
  • the present invention provides the following aspects (1) to (6).
  • a thermal barrier coating film made of a ceramic material spray-formed on a base material made of a heat-resistant alloy constituting a turbine member in a gas turbine engine using a low-quality fuel, and ytterbia partial stability as the ceramic material of the film A thermal barrier coating film in which zirconia fluoride is used and the porosity of the film is 5% or more and less than 8%.
  • thermo barrier coating film of any one of (1) to (3) is formed on a base material.
  • the thermal barrier coating film of the present invention can exhibit excellent durability and can be formed at low cost.
  • FIG. 1 is a schematic configuration diagram of a gas turbine according to an embodiment of the present invention.
  • the gas turbine 1 in the present embodiment includes a compressor 2, a combustor 3, a turbine body 4, and a rotor 5.
  • the compressor 2 takes in a large amount of air and compresses it.
  • the combustor 3 mixes fuel with the compressed air A compressed by the compressor 2 and burns it.
  • the turbine body 4 converts the thermal energy of the combustion gas G introduced from the combustor 3 into rotational energy.
  • the turbine body 4 generates power by converting the thermal energy of the combustion gas G into mechanical rotational energy by blowing the combustion gas G onto the rotor blades 7 provided in the rotor 5.
  • the turbine body 4 is provided with a plurality of stationary blades 8 in a casing 6 of the turbine body 4 in addition to the plurality of rotor blades 7 on the rotor 5 side.
  • the moving blades 7 and the stationary blades 8 are alternately arranged in the axial direction of the rotor 5.
  • the rotor 5 transmits a part of the rotating power of the turbine body 4 to the compressor 2 to rotate the compressor 2.
  • the moving blade 7 of the turbine body 4 will be described as an example of the turbine member of the present invention.
  • FIG. 2 is a perspective view showing a schematic configuration of the moving blade in the embodiment of the present invention.
  • the moving blade 7 includes a moving blade main body 71, a platform 72, a blade root 73, and a shroud 74.
  • the rotor blade main body 71 is arranged in the combustion gas G flow path in the casing 6 of the turbine main body 4.
  • the platform 72 is provided at the proximal end of the rotor blade main body 71.
  • the platform 72 defines a flow path for the combustion gas G on the proximal end side of the rotor blade body 71.
  • the blade root 73 is formed so as to protrude from the platform 72 to the opposite side of the rotor blade main body 71.
  • the shroud 74 is provided at the tip of the rotor blade main body 71.
  • the shroud 74 defines a flow path for the combustion gas G on the tip side of the rotor blade body 71.
  • FIG. 3 is an enlarged cross-sectional view of the main part of the rotor blade in the embodiment of the present invention.
  • the moving blade 7 includes a base material 10 and a coating layer 11.
  • the base material 10 is made of a heat-resistant alloy such as a Ni-based alloy.
  • Coating layer 11 is formed so as to cover the surface of base material 10.
  • the coating layer 11 includes a bonding layer 12 and a thermal barrier coating film 13.
  • the bonding layer 12 is for suppressing the thermal barrier coating film 13 from being peeled off from the base material 10, has high bonding strength to the base material 10 and the thermal barrier coating film 13, and is resistant to corrosion and oxidation. Constructed by excellent metal.
  • the material of the bonding layer 12 and the method for forming the bonding layer 12 are not particularly limited, but in general, for example, it is preferable to form a metal spray powder of MCrALY alloy as the spraying material on the surface of the base material 10.
  • “M” in the MCrAlY alloy constituting the bonding layer 12 indicates a metal element.
  • the metal element “M” is composed of, for example, a single metal element such as NiCo, Ni, Co, or a combination of two or more of these.
  • the thermal barrier coating 13 is laminated on the surface of the bonding layer 12.
  • the thermal barrier coating 13 is formed by spraying a thermal spray material containing ceramic on the surface of the bonding layer 12.
  • a thermal spray material containing ceramic containing ceramic on the surface of the bonding layer 12.
  • the ceramic particularly, ytterbium oxide (Yb 2 O 3 ; ytterbia) is used.
  • YbSZ Ytterbia-stabilized zirconia
  • ZrO 2 zirconia
  • the thermal barrier coating film 13 is formed so that its porosity (occupancy ratio of pores per unit volume; vol%) is 5% or more and less than 8%, more preferably 5% or more and less than 6%. ing.
  • ytterbia-stabilized zirconia (YbSZ) is used as the ceramic material of the thermal barrier coating film 13 and the porosity is within a specific range, so that a low-quality fuel such as a heavy oil-fired boiler is used.
  • YbSZ ytterbia-stabilized zirconia
  • the thermal barrier coating In gas turbines using low quality fuels such as heavy oil, the thermal barrier coating is exposed to molten salt containing sodium sulfate generated by sodium, sulfur, etc. contained in heavy oil, and the molten salt penetrates into the thermal barrier coating. There is a concern that the thermal barrier coating may be damaged by the permeated molten salt.
  • Several mechanisms are considered for damage of ceramic coatings by molten salt. For example, when the conventional general YSZ is used as a coating material, the elastic modulus of the film is reduced due to material deterioration due to a chemical reaction between YSZ and molten salt (Na 2 SO 4, etc.), or the molten salt blocks pores.
  • the present inventors have developed an apparatus and method for evaluating the durability of a thermal barrier coating film in a molten salt environment that simulates the use environment in a heavy oil-fired gas turbine. , "Molten salt penetration test apparatus and molten salt penetration test method" have been applied for a patent.
  • the degree of penetration of the molten salt into the thermal barrier coating film in the molten salt environment can be evaluated. Accordingly, it is possible to simulate the penetration of the molten salt during use into the thermal barrier coating film on the surface of a turbine member such as a moving blade or a stationary blade in a heavy oil-fired gas turbine. And if a thermal cycle test is conducted on the thermal barrier coating film in which the molten salt is infiltrated by such a molten salt penetration test method, the durability of the thermal barrier coating film when used in a heavy oil-fired gas turbine can be evaluated. It has become possible.
  • the thermal barrier coating film 13 made of YbSZ when the porosity of the thermal barrier coating film 13 made of YbSZ is less than 5%, the thermal conductivity becomes high and it becomes difficult to sufficiently exhibit the thermal barrier effect on the base material 10. .
  • the porosity if the porosity is 8% or more, it is difficult to ensure sufficient durability in use in a molten salt environment. That is, even if the thermal barrier coating film 13 made of YbSZ has a porosity of 8% or more, it is compared with a conventional thermal barrier coating film made of YSZ having a porosity of about 10% (conventional material). Thus, it cannot be said that the durability in use in a molten salt environment is sufficiently excellent.
  • the influence of the porosity of the thermal barrier coating film 13 made of YbSZ on the durability in use in a molten salt environment is determined by detailed experiments by the present inventors as will be described in detail according to experimental examples later. It has been found.
  • the method for measuring the porosity of the thermal barrier coating film 13 is not particularly limited.
  • the cross section of the film 13 may be observed and the occupation ratio of the pores in the cross section may be measured.
  • an optical microscope photograph for example, FIG. 15
  • the photograph is binarized into a white portion and a black portion by image processing, and the obtained binarized image (
  • the area ratio of a portion for example, a white portion
  • the area ratio may be used as the porosity.
  • the area ratio of the pore portion is substantially equal to the volume ratio of the pore portion, and therefore the porosity (vol%) is determined by the above area ratio value. Can be considered.
  • the thickness of the bonding layer 12 is not particularly limited, but generally, for example, as shown in claim 4 of Patent Document 4, it is desirable that the thickness be about 0.01 mm to 1 mm.
  • the thickness of the thermal barrier coating film 13 is preferably about 0.01 mm to 1 mm as shown in claim 4 of Patent Document 4. If it is less than 0.01 mm, it may be difficult to sufficiently exert the heat shielding effect. On the other hand, if it exceeds 1 mm, the heat shielding property is increased, but the durability tends to be lowered.
  • the composition of the thermal spray material when the thermal barrier coating film 13 is formed by thermal spraying is such that ytterbium oxide (Yb 2 O 3 ) as a stabilizing material is 16 to 20 as shown in claim 6 of Patent Document 2. It is desirable that the remaining amount is substantially zirconia (ZrO 2 ).
  • FIG. 4 is a flowchart of the turbine forming method according to the embodiment of the present invention.
  • a base material forming step S ⁇ b> 1 a base material 10 is formed so as to have a shape of a target turbine member, for example, a moving blade 7.
  • the base material 10 in this embodiment is formed using the Ni-base heat-resistant alloy described above.
  • a bonding layer lamination (bond coat layer formation) step S21, a thermal barrier coating film lamination (top coat layer formation) step S22, and a surface adjustment step S23 are sequentially performed.
  • a bonding layer (bond coat layer) 12 is formed on the surface of the base material 10.
  • a metal spray powder such as an MCrAlY alloy is sprayed on the surface of the base material 10 by a low pressure plasma spraying method.
  • a thermal barrier coating film (topcoat layer) 13 is laminated on the bonding layer 12.
  • YbSZ powder as described above is sprayed onto the bonding layer 12 as a thermal spray material by, for example, atmospheric pressure plasma spraying (PlasmamSpray: APS).
  • the porosity of the thermal barrier coating film 13 is set to 5% or more and less than 8%, more preferably 5 to 6%.
  • a typical method is to change the spraying distance. That is, if the other spraying conditions are fixed, the porosity of the sprayed layer decreases, that is, becomes denser as the spraying distance is shortened.
  • the spraying distance may be set so that the porosity of the thermal barrier coating film 13 is 5% or more and less than 8%, more preferably 5 to 6%.
  • the porosity of the thermal barrier coating film 13 can be further reduced by, for example, increasing the thermal spray current of the thermal spray apparatus.
  • a desired porosity may be obtained by controlling both the spraying distance and the spraying current.
  • the surface state of the coating layer 11 is adjusted. Specifically, in the surface adjustment step S23, the surface of the thermal barrier coating 13 is slightly shaved to adjust the film thickness of the coating layer 11 or to make the surface smoother. By this surface adjustment step S23, for example, the heat transfer rate to the rotor blade 7 can be reduced. In the surface adjustment step S23 of this embodiment, the thermal barrier coating film 13 is shaved by several tens of ⁇ m to smooth the surface and adjust the film thickness.
  • the particle size distribution of the sprayed powder when the thermal barrier coating film (topcoat layer) 13 is formed by spraying a powder made of YbSZ is, as described in Patent Document 3, 10% cumulative particle size. It has a particle size distribution of 30 ⁇ m or more and 100 ⁇ m or less, a maximum particle size of 150 ⁇ m or less, and particles containing 30 ⁇ m in size at 3% or less and particles having a particle size of 40 ⁇ m in a ratio of 8% or less. preferable. Not only the porosity of the film is 5% or more and less than 8%, but also the thermal cycle durability can be more reliably improved by adjusting the particle size distribution of the sprayed powder as described above.
  • the thermal barrier coating film of the present invention is formed on a turbine member constituting a gas turbine engine using a low quality fuel.
  • the low quality fuel is typically one type (A heavy oil) defined in JIS 2205, but other low quality fuels, for example, two types (B heavy oil) also defined in JIS 2205, or three types.
  • C heavy oil or an equivalent heavy oil fuel such as crude oil called ASL (Arab Super Light) or AXL (Arab Extra Light) is also effective.
  • thermal barrier coating film of the present invention is effective not only for oil fuel but also when coal gasification fuel or the like is used as a low quality fuel.
  • FIG. 5 is a partial cross-sectional perspective view of a test piece 100 subjected to a molten salt penetration test.
  • the test piece 100 is formed by simulating the surface of a turbine blade of a gas turbine.
  • the test piece 100 includes a base material 10 and a coating layer 11 on the base material 10, and the coating layer 11 includes a bonding layer 12 on the base material side, a thermal barrier coating film 13 on the surface side, and It is constituted by.
  • the test piece 100 is formed in a disk shape.
  • FIG. 6 is a partial cross-sectional view showing the configuration of the molten salt penetration test apparatus in this example.
  • the molten salt penetration test apparatus 50 includes a combustor 51, an accommodation support part 53, an accelerator 54, and a salt supply part 60.
  • the molten salt permeation test apparatus 50 is an apparatus that causes combustion gas containing molten salt to collide with the test piece 100 described above.
  • the user can evaluate the penetration state of the molten salt in the coating layer 11 by observing the test piece 100 tested by the molten salt penetration test apparatus 50.
  • Combustor 51 mixes fuel with compressed air compressed by a compressor (not shown) and burns it.
  • the combustor 51 includes an air supply unit 55 that can supply compressed air to the combustion gas G from the outside.
  • the air supply unit 55 can finely adjust the amount of air supplied to the combustion gas G by an electromagnetic valve or the like. According to the air supply unit 55, for example, the temperature of the combustion gas G can be lowered by increasing the amount of air supplied to the combustion gas G.
  • the combustor 51 is disposed above the accommodation support portion 53 by a gantry 56.
  • the combustor 51 is attached to the gantry 56 such that the injection port 51a faces downward so that the combustion gas G is directed vertically downward.
  • the combustor 51 includes a container 51b having excellent heat insulation properties, and suppresses release of thermal energy of the combustion gas G to the outside through the container 51b.
  • the accommodation support part 53 accommodates the test piece 100 whose surface is coated with the coating layer 11 in a state of being supported from below.
  • the accommodation support part 53 includes a chamber 57 and a support part main body 58.
  • the chamber 57 includes an accommodation space S in which the test piece 100 is accommodated.
  • Each wall part 59 which comprises the chamber 57 is also formed using the material excellent in heat insulation like the container 51b of the combustor 51 mentioned above. That is, the chamber 57 can keep the accommodation space S warm due to the heat insulation of the wall portion 59.
  • the wall 59 and the container 51b are formed by the heat insulating material itself, or are formed by attaching a heat insulating material to a housing (not shown).
  • FIG. 7 is an enlarged cross-sectional view of the support body in the embodiment of the present invention.
  • the support body 58 supports the test piece 100 from below and cools the base material 10 exposed on the back side of the test piece 100.
  • the support portion main body 58 includes a cooling air supply portion 61 and a support ring portion 62.
  • the cooling air supply unit 61 blows cooling air supplied from the outside against the base material 100.
  • the cooling air supply unit 61 includes an air supply pipe 63 and a box body 64.
  • the air supply pipe 63 is formed in a tubular shape that penetrates the side wall 57a (see FIG. 6) of the chamber 57 and extends toward the center of the accommodation space S in the horizontal direction.
  • the cooling air supplied from the outside flows through the inside of the air supply pipe 63 toward the center of the accommodation space S.
  • the end of the air supply pipe 63 is connected to the side wall of the box 64.
  • the box 64 has a function of changing the flow direction of the cooling air supplied by the air supply pipe 63 so as to be directed upward with the back surface of the test piece 100.
  • Only the upper wall 64a of the box body 64 in this embodiment is formed of a punching metal or mesh having a plurality of holes. Due to the upper wall 64a, the cooling air flowing into the box body 64 from the air supply pipe 63 is ejected upward through the hole of the upper wall 64a.
  • the support ring portion 62 is formed in an annular shape that protrudes upward from the periphery of the upper wall of the box body 64 of the cooling air supply portion 61.
  • the test piece 100 is held by the support ring 62. Examples of the method for holding the test piece 100 include bolt connection and welding. Accordingly, the test piece 100 is separated from the upper wall 64a of the box 64 by a predetermined distance and is supported from below by the support ring portion 62 in a posture parallel to the upper wall 64a.
  • the cooling air supply unit 61 may have a temperature detection unit such as a thermocouple in a flow path through which the cooling air flows. By doing in this way, the flow rate of cooling air can be adjusted according to the temperature of the cooling air detected by the temperature detection part, and the temperature distribution of the test piece 100 in the thickness direction can be controlled.
  • the air supply pipe 63, the box body 64, and the support ring part 62 constituting the support body 58 described above are not only functions as a conduit for supplying cooling air, but also cantilever that supports the test piece 100 from below. Also serves as a beam.
  • the accommodation support part 53 includes an observation window part 65.
  • the observation window portion 65 communicates with the accommodation space S that accommodates the test piece 100 from the outside.
  • the observation window portion 65 extends in the radial direction around the test piece 100 supported by the support portion main body 58.
  • a thermoview TV capable of detecting the temperature distribution of the test piece 100 is attached to the observation window 65 in this embodiment.
  • the case where only one observation window 65 is formed on the accommodation support 53 is illustrated.
  • a plurality of observation window portions 65 may be formed on the accommodation support portion 53.
  • the support ring 62 described above is, for example, a notch (not shown) so that the cooling air that has collided with the back surface of the test piece 100 can be discharged into the accommodation space S. ) Etc.
  • the accommodation support part 53 is provided with a discharge mechanism (not shown) for discharging the combustion gas G sprayed on the test piece 100. By this discharge mechanism, the combustion gas G sprayed on the test piece 100 is sucked by the discharge mechanism and discharged to the outside of the chamber 57.
  • the accelerator 54 accelerates the flow velocity of the combustion gas G containing the molten salt to collide with the test piece 100.
  • the accelerator 54 includes a throttle portion 66 and a straight pipe portion 67.
  • the throttle 66 is connected to the combustor 51 at the upstream end in the direction in which the combustion gas G flows.
  • the throttle portion 66 is formed in a tubular shape in which the cross-sectional area of the flow path gradually decreases toward the downstream side in the direction in which the combustion gas G flows.
  • the flow path cross-sectional area decreases at a constant inclination angle.
  • the restricting portion 66 may have a double structure including an inner wall and an outer wall, and cooling air for suppressing overheating of the restricting portion 66 may flow through the space therebetween.
  • the straight pipe portion 67 is formed in a straight tube shape having a constant flow path cross-sectional area.
  • the straight pipe portion 67 connects the end portion 66 a on the downstream side of the throttle portion 66 and the accommodation support portion 53. More specifically, the straight pipe portion 67 extends from the downstream end portion 66 a of the throttle portion 66 to the inside of the accommodation space S of the accommodation support portion 53.
  • the downstream end 67 a of the straight pipe portion 67 is disposed at a position immediately above the test piece 100.
  • the straight pipe portion 67 is arranged such that its axis O1 is orthogonal to the surface of the test piece 100 accommodated inside the accommodation support portion 53. That is, the accelerator 54 makes the internal space S1 of the combustor 51 and the accommodation space S of the accommodation support portion 53 communicate with each other.
  • FIG. 8 is an explanatory diagram of an accelerator and a salt supply unit in the molten salt permeation test apparatus of this example.
  • the inclination angle ⁇ of the throttle portion 66 in this embodiment is formed at an angle necessary for acceleration of the combustion gas G.
  • the inclination angle ⁇ is an angle with respect to a horizontal plane perpendicular to the axis O1.
  • the inner diameter D2 of the straight pipe portion 67 is set such that the flow velocity at the outlet of the straight pipe portion 67 is lower than the speed of sound based on the amount of combustion gas G in the combustor 51.
  • the inner diameter D2 (Q / Vc ⁇ 4 / ⁇ ) 0.5 (1)
  • the straight pipe portion 67 is formed with a length L such that the flow rate of the combustion gas G (hereinafter referred to as a gas flow rate) becomes a target value.
  • a gas flow rate the flow rate of the combustion gas G
  • V1 / V2 D2 / D1 (2)
  • the salt supply unit 60 supplies salt to the combustion gas G.
  • the salt supplied to the combustion gas G melts into a molten salt, and further evaporates to change into a gaseous state.
  • the molten salt changed into a gaseous state penetrates from the surface of the test piece 100, that is, from the thermal barrier coating film 13 toward the bonding layer 12.
  • the salt supply unit 60 includes a compressor 40, a solution tank 41, a metering pump 42, a two-fluid nozzle (supply nozzle) 43, and a supply pipe 44.
  • the compressor 40 supplies compressed air toward the two-fluid nozzle 43 at a constant pressure.
  • the compressor 40 may be shared with a compressor that supplies cooling air to the throttle unit 36 described above.
  • the solution tank 41 stores an aqueous salt solution.
  • the solution tank 41 in this embodiment stores, for example, an aqueous solution of sodium sulfate (Na2SO4).
  • the salt concentration of the aqueous solution stored in the solution tank 41 can be 0.1% by mass to 0.5% by mass, and further 0.25% by mass to 0.35% by mass.
  • an aqueous solution containing 0.3% by mass of sodium sulfate is used.
  • the metering pump 42 supplies the aqueous solution stored in the solution tank 41 toward the two-fluid nozzle 43 at a constant volume flow rate.
  • the volume flow rate of the aqueous solution supplied toward the two-fluid nozzle 43 by the metering pump 42 can be in the range of 0.5 (L / h) to 0.7 (L / h).
  • the aqueous solution is supplied to the two-fluid nozzle 43 at 0.6 (L / h).
  • the two-fluid nozzle 43 atomizes the aqueous solution supplied from the solution tank 41 using, for example, compressed air supplied from the compressor 40.
  • the two-fluid nozzle 43 can employ various types of two-fluid nozzles such as an internal mixing type, an external mixing type, and a collision type.
  • an internal mixing type such as an internal mixing type, an external mixing type, and a collision type.
  • suction type two-fluid nozzle 43 that sucks up and sprays the aqueous solution with the force of compressed air may be employed.
  • the supply pipe 44 supplies the aqueous solution atomized by the two-fluid nozzle 43 to the inside of the accelerator 24. Since the supply pipe 44 in this embodiment is connected to the accelerator 24, for example, a ceramic pipe may be used from the viewpoint of heat resistance.
  • the inner diameter of the supply pipe 44 can be in the range of 5 mm to 7 mm.
  • the inner diameter of the supply pipe 44 in this embodiment is in the range of 5.5 mm to 6.5 mm (for example, 6.0 mm).
  • the salt supply unit 60 includes a valve V ⁇ b> 1 between the metering pump 42 and the solution tank 41. Similarly, the salt supply unit 60 includes a valve V ⁇ b> 2 between the compressor 40 and the two-fluid nozzle 43.
  • the valve V1 is opened when the aqueous solution is supplied to the two-fluid nozzle 43, and the other valve is closed.
  • the valve V2 is always open and is closed, for example, during maintenance.
  • FIG. 9 is a flowchart of the molten salt penetration test method in this example.
  • the test piece 100 having the coating layer 11 on the surface of the base material 10 is created (step S01), and an aqueous salt solution is created (step S02).
  • the test piece 100 is set on the support body 58 (step S03), and the aqueous solution is stored in the solution tank 41 (step S04).
  • an aqueous solution may be prepared by mixing salt and water in the solution tank 41.
  • step S01 and step S02 may be reversed or performed simultaneously, and similarly, the order of step S04 and step S05 may be reversed or performed simultaneously. .
  • the molten salt penetration test apparatus 50 is started. Then, in the combustor 51, the compressed air and the fuel are burned in a mixed state, and a high-temperature combustion gas G is generated. Further, compressed air is supplied to the high-temperature combustion gas G through the air supply unit 55 to adjust the temperature.
  • the cooling air is blown from the back surface to the test piece 100 arranged in the accommodation space S of the accommodation support part 53 by the cooling air supply part 61.
  • cooling of the base material 10 is continued.
  • the valves V1 and V2 of the salt supply unit 60 are opened, and the supply of the atomized aqueous solution to the accelerator 54 is started (step S06).
  • the salt contained in the aqueous solution is heated by the combustion gas G to become a molten salt, and this molten salt is further gasified.
  • the water contained in the aqueous solution is heated and evaporated.
  • the combustion gas G containing a certain amount of the gasified molten salt is accelerated to a target flow velocity by the accelerator 54.
  • the combustion gas G accelerated to the target speed collides with the coating layer 11 of the test piece 100 held in the accommodation space S via the accelerator 54, more specifically, the thermal barrier coating film 13.
  • the temperature distribution of the test piece 100 is monitored by the user by the thermoview TV, and the temperature adjustment of the combustion gas G and the temperature adjustment of the test piece 100 by the cooling air are performed so that the temperature distribution is equivalent to that of the actual machine. Done.
  • step S07 After continuing this state for a predetermined time (step S07), the user stops the molten salt permeation test apparatus 50 (step S08), takes out the test piece 100 from the housing support part 53, and then melts the molten salt of the thermal barrier coating film 13. The penetration state and the like are evaluated (step S09).
  • the combustion gas G of the combustor 51 can be used as the salt carrier gas. Therefore, the temperature of the test piece 100 can be heated to a temperature equivalent to that of the actual turbine member. Furthermore, the combustion gas G containing salt can be collided with the test piece 100 after being accelerated by the accelerator 54. Thereby, the flow velocity of the combustion gas G containing salt can be increased to a flow velocity equivalent to that of the actual combustion gas while using the small combustor 51. That is, the boundary condition of the coating layer 11 of the test piece 100 can be made equal to the boundary condition of the thermal barrier coating in the actual machine. As a result, it is possible to correctly evaluate the penetration state of the molten salt with respect to the coating layer 11 of the test piece 100 while suppressing the increase in size of the apparatus.
  • the molten salt can be more uniformly mixed with the combustion gas G. Therefore, the combustion gas G in the same state as the actual machine can be reproduced.
  • the cooling air supply unit 61 by providing the cooling air supply unit 61, the base material 10 of the test piece 100 covered with the coating layer 11 can be cooled. Therefore, a temperature distribution similar to the temperature distribution in the thickness direction of the turbine member of the actual machine can also appear in the test piece 100. As a result, the penetration state of the molten salt with respect to the coating layer 11 of the test piece 100 can be more accurately evaluated.
  • the flow passage cross-sectional area of the throttle portion 66 gradually decreases, so that the flow velocity of the combustion gas can be increased smoothly. Furthermore, by providing the straight pipe portion 67, the combustion gas G whose flow velocity is increased by the throttle portion 66 can be rectified, and the combustion gas G can be further accelerated. As a result, the combustion gas G containing the molten salt can be efficiently collided with the test piece 100 while sufficiently increasing the flow velocity of the combustion gas G.
  • the temperature adjusting air can be supplied to the combustion gas G to lower the temperature of the combustion gas G. Therefore, the temperature of the coating layer 11 of the test piece 100 can be easily adjusted to a desired temperature by increasing or decreasing the supply amount of the temperature adjusting air. Furthermore, the state of the test piece 100 during the erosion test can be observed through the observation window portion 65. Therefore, it can suppress that a shift
  • FIG. 10 is a partial cross-sectional view showing the configuration of the thermal cycle test apparatus.
  • the thermal cycle test apparatus 80 includes a sample holder 82 disposed on a main body 83 and a sample 101 in which a coating layer 11 is formed on a base material 10.
  • the sample 101 is heated from the coating layer 11 side by irradiating the sample 101 with the laser light L from the CO 2 laser device 84.
  • the gas flow F discharged from the tip of the cooling gas nozzle 85 that passes through the main body 83 simultaneously with the heating by the CO 2 laser device 84 and faces the back side of the sample 101 inside the main body 83.
  • the sample 101 is cooled from the back side.
  • a temperature gradient can be easily formed inside the sample 101, and an evaluation in accordance with the use environment when applied to a high-temperature part such as a gas turbine member can be performed. .
  • FIG. 11 is a graph schematically showing a temperature change of a sample subjected to a thermal cycle test by the apparatus shown in FIG.
  • FIG. 12 is a diagram showing temperature measurement points of a sample subjected to a thermal cycle test. Curves A to C shown in FIG. 11 correspond to temperature measurement points A to C in the sample 101 shown in FIG. 10, respectively.
  • the surface (A) of the coating layer 11 of the sample 101, the interface (B) between the coating layer 11 and the base material 10, and the back side of the base material 10 It can heat so that temperature may become low in order of C). Therefore, for example, by setting the surface of the coating layer 11 to a high temperature of 1200 ° C. or higher and the temperature of the interface between the coating layer 11 and the base material 10 to 800 to 900 ° C., the temperature conditions are the same as those of an actual gas turbine. Can do. By adjusting the output of the CO 2 laser device 84 and the gas flow F, the heating temperature and temperature gradient by the thermal cycle test device can be easily set to desired temperature conditions.
  • a test piece 100 as shown in FIG. 5 was prepared as follows.
  • a bond coat layer (bonding layer) made of a CoNiCrAlY alloy having a composition of Co-32Ni-21Cr-8Al-0.5Y shown in Example 1 of Patent Document 2 is formed on the surface of the base material 10 made of Ni-based alloy.
  • a thickness of 0.1 mm was formed by plasma spraying.
  • YbSZ is sprayed by an atmospheric pressure plasma spraying method to form a topcoat layer (thermal barrier coating film) 13, and the coating layer 11 is formed with a total average thickness of 0.5 m.
  • the spraying distance is 1 on the basis of the spraying distance in the case of normal YSZ, and in the case of YbSZ, the ratio (relative spraying distance) to the reference distance is 0.47, 0.80, 1.20.
  • the ratio (relative spraying distance) to the reference distance is 0.47, 0.80, 1.20.
  • three types of test pieces No1 with a relative spray distance of 0.47, No2 with a relative spray distance of 0.80, No3 with a relative spray distance of 1.20 were produced.
  • the conventional material test piece No. 1 in which the thermal barrier coating film 13 is formed by thermal spraying of YSZ. 4 was created.
  • the spraying distance at this time is 1 as described above as a reference for the relative distance.
  • ytterbia Yb 2 O 3
  • ZrO 2 substantially zirconia
  • the particle size of the powder is shown in Patent Document 3, in which the cumulative particle size 10% particle size is 30 ⁇ m or more and 100 ⁇ m or less. Specifically, the cumulative particle size 10% particle size is 45 ⁇ m and the maximum particle size is 150 ⁇ m or less.
  • a highly durable powder that can reduce layer defects by thermal spraying a powder having a particle size of 40 ⁇ m and a ratio of 8% or less was used.
  • the conventional material test piece No. As the thermal spray material No. 4, a commercially available yttria (Y 2 O 3 ) that is generally commercially available is 8% by weight and the balance is substantially zirconia (ZrO 2 ).
  • Each test piece No. 1 to 4 were subjected to a molten salt penetration test using the molten salt penetration test apparatus shown in FIGS. 6 to 8 according to the method shown in FIG.
  • the test conditions are as follows. ⁇ Combustion gas temperature: 1500 °C ⁇ Combustion gas type: LPG gas ⁇ Combustion gas flow velocity: 300 m / s -TBC surface temperature: 1100 ° C -Bond coat temperature: 800 ° C Feed molten salt: sodium sulfate (Na 2 SO 4 ) aqueous solution Feed concentration: mixed with pure water to a concentration of 0.046% Feed time: 8 h Note these test conditions, Na 2 SO 4 confirms sufficiently penetrate conditions in the thermal barrier coating in film using conventional YSZ by preliminary tests, but in accordance with the conditions.
  • the value of the temperature difference ⁇ T is an index indicating the degree of durability of the thermal barrier coating film, and as a durability evaluation there is a limit temperature difference at which peeling does not occur even after 1000 cycles. It evaluated by (DELTA) T (temperature difference in peeling limit TBC).
  • the penetration state of the molten salt into the film was examined by the presence state of Na in the film cross section for each test piece after the molten salt penetration test. That is, when the amount of Na in the cross section of the coating was examined by surface analysis using an electron probe microanalyzer (EPMA), No. 1 with a short spraying distance was obtained. 1 and No. In 2, it was confirmed that the penetration of Na was greatly reduced. On the other hand, No. with a long spray distance. No. 3 and YSZ of the conventional material No. In No. 4, it was confirmed that a large amount of Na permeated throughout the film.
  • EPMA electron probe microanalyzer
  • the thermal cycle durability evaluation in FIGS. No. 4 peeling limit TBC temperature difference ⁇ T is a reference value 1
  • the relative values of ⁇ T of the test pieces 1 to No3 are shown.
  • the porosity of the topcoat layer in each test piece is obtained by binarizing a cross-sectional optical micrograph (for example, FIG. 15) by image processing, and calculating the porosity from the binarized image (for example, FIG. 16). A portion was extracted and obtained from the area ratio of the pore portion.
  • test piece No. 1 having a porosity within the range of the present invention (5% or more and less than 8%). 1, no.
  • the critical temperature difference ⁇ T in which peeling does not occur even after 1000 cycles has passed is the test piece No. 2 whose porosity exceeds the range of the present invention. It is clearly greater than 3 and excellent in durability.
  • the target critical temperature difference ⁇ T for ensuring the heat cycle durability in the molten salt aims to improve 25% or more of the conventional material using YSZ.
  • the porosity needs to be controlled to less than 8%. This is described in Patent Document 2 described above, in a normal gas-fired gas turbine environment (in an environment where no molten salt is present), and when YbSZ is used, a porosity of 8 to 15% is high and heat cycle durability is high. It is a different result and a newly discovered finding.
  • the porosity decreases, the Young's modulus of the film increases and the thermal stress during operation increases, so it is generally thought that if the porosity decreases, the durability decreases.
  • the influence of the molten salt penetrating into the pores is larger, and in this case, the optimum porosity is found to be different from the optimum range of the porosity which has been conventionally known.
  • controlling the particle size distribution and reducing laminar defects peculiar to thermal spraying is considered to have resulted in high durability.
  • the value of ⁇ T at 1000 cycles in the thermal cycle test is stated to be 1.25 (25% improvement over the conventional material No. 4), but if the porosity is less than 8%, then 1. A ⁇ T of 25 or more can be ensured. Therefore, in the present invention, the upper limit of the porosity is set to less than 8%.
  • Gas turbine 2 Compressor 3: Combustor 4: Turbine body 5: Rotor 6: Casing 7: Rotor blade 8: Stator blade 10: Base material 11: Coating layer 12: Bonding layer (bond coat layer) 13: Thermal barrier coating film (topcoat layer)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

重油焚きガスタービンなど、溶融塩環境下において使用されるガスタービンであっても、高い耐久性を示し、しかも複雑な工程を要さずに、低コストで効率よく形成することができる遮熱コーティング皮膜(13)を提供することを課題とし、タービン部材を構成する耐熱合金からなる母材(10)上に溶射形成されたセラミック材料からなる遮熱コーティング皮膜(13)であって、皮膜(13)のセラミック材料としてイッテルビア部分安定化ジルコニアが用いられ、且つその皮膜(13)の気孔率が5%以上、8%未満である遮熱コーティング皮膜(13)を提供する。

Description

遮熱コーティング皮膜およびタービン部材
 本発明は、遮熱コーティング皮膜、及びそれを用いたタービン部材に関する。
 本願は、2017年3月28日に日本に出願された特願2017-62063号に基づき優先権を主張し、その内容をここに援用する。
 例えばガスタービン部材等の高温部品については、母材の表面に、遮熱コーティング(Thermal Barrier Coating:以下“TBC”と記すことがある)を施すことが従来から行われている。遮熱コーティングとは、母材の表面に、溶射により熱伝導率の小さい溶射材、例えば熱伝導率の小さい多孔質のセラミックス系材料を被覆することであり、これによって高温部品の遮熱性及び耐久性を向上させることができる。
一方、ガスタービンに用いられる燃料は多様化しており、従来のガスを用いるガスタービンだけでなく、燃料として、低質燃料、例えばA重油と称される油燃料を用いるガスタービンのニーズも高まっている。このような重油焚きのガスタービンでは、遮熱コーティングが、重油に含有されるナトリウムや硫黄等によって生じる硫酸ナトリウムを含む溶融塩に曝されて、溶融塩が遮熱コーティングの内部に浸透し、この浸透した溶融塩によって、セラミックスからなる遮熱コーティングが損傷することが懸念される。
重油焚きガスタービンの遮熱コーティングにおける、溶融塩環境での問題を考慮した技術として、既に特許文献1の技術が提案されている。
特許文献1の提案では、耐熱合金からなる母材上に形成される遮熱コーティングを、多孔質のセラミックスからなる遮熱層(多孔質層)と、その多孔質層上に形成される、セラミック繊維を含有し且つシリカを主成分とする緻密質の環境遮蔽層(緻密層)との2層構造とし、且つ多孔質層の気孔内に、緻密層のシリカの一部を含浸させた構成としている。なお特許文献1の提案では、遮熱層である多孔質層のセラミック材料としては、安定化ジルコニアを使用することが好ましく、特にイットリア(Y)により部分安定化したジルコニア(イットリア部分安定化ジルコニア;以下“YSZ”と記すことがある)が好適であるとされている。
このような特許文献1の提案の遮熱コーティングでは、重油焚きガスタービンなどの溶融塩環境下での使用において、最表面側のシリカを主成分とする緻密層が、部分安定化ジルコニアなどからなる多孔質層(遮熱層)への溶融塩の浸透を防止することにより、遮熱コーティングの剥離を防止して、高い耐久性を示すとされている。
一方、特許文献2においては、酸化イッテルビウム(イッテルビア;Yb)によって部分安定化したジルコニア(イッテルビア部分安定化ジルコニア;以下“YbSZ”と記すことがある)が、通常のガス焚きのガスタービン環境下すなわち硫酸塩の存在しない環境下で、その高い高温結晶安定性によって高い熱サイクル耐久性を示すことが明らかにされている。また、ガス焚きの場合には、皮膜の気孔率を8~15%とすることによって高い熱サイクル耐久性を示すとされている。
さらに、特許文献3では、セラミック遮熱コーティングにおいて、YbSZ等の溶射粉末として、その粉末粒子の大きさ、特に、積算粒度10%粒径が30μm以上100μm以下とされる粒度分布を有し、最大粒径が150μm以下とされ、粒径30μmの粒子を3%以下、粒径40μmの粒子を8%以下の割合で含有する溶射粉末粒子を用いることが示されており、このような粒度分布とすることによって皮膜中の欠陥が大きく低減され、高い熱サイクル耐久性を示すとされている。
特開2011-167994号公報 特許第4388466号公報 特許第5602156号公報 特許第4969094号公報 特開2017-116272号公報
特許文献1の提案の技術では、遮熱コーティング皮膜を形成するにあたっては、部分安定化ジルコニア等を溶射して多孔質層(遮熱層)を形成するばかりでなく、さらにシリカを主成分とし且つセラミック繊維を含有する緻密層の形成と、その緻密層のシリカの多孔質層への含浸を行わなければならないため、工程が複雑で工程数が多く、生産性に劣るとともに、高コストとならざるを得ない、という問題がある。
また特許文献2、特許文献3の提案は、いずれもガス焚きの場合について考慮したものに過ぎず、重油焚きのような低質燃料を用いたタービンについて検討したものではない。重油焚きのような低質燃料の場合には、皮膜中に溶融塩が浸透し、セラミックス皮膜を弱化させる現象があり、そのため特許文献2、特許文献3の提案の技術では、耐久性を確実に向上させることは困難と考えられる。
 したがって本発明は、高い耐久性を示し、しかも低コストで効率よく形成することができる遮熱コーティングを提供することを課題としている。
 前述の課題を解決するため、本発明では、次の(1)~(6)の各態様を提供する。
(1)低質燃料を使用するガスタービンエンジンにおけるタービン部材を構成する耐熱合金からなる母材上に溶射形成されたセラミック材料からなる遮熱コーティング皮膜であって、前記皮膜のセラミック材料としてイッテルビア部分安定化ジルコニアが用いられ、且つその皮膜の気孔率が5%以上、8%未満である遮熱コーティング皮膜。
(2)前記気孔率が5~6%の範囲内である、前記(1)に記載の遮熱コーティング皮膜。
(3)皮膜形成のためのセラミック溶射粉末として、積算粒度10%粒径が30μm以上100μm以下とされる粒度分布を有し、かつ最大粒径が150μm以下とされ、粒径30μmの粒子を3%以下、粒径40μmの粒子を8%以下の割合で含有する溶射粉末が用いられている、前記(1)又は(2)のいずれかに記載の遮熱コーティング皮膜。
(4)前記(1)~(3)のいずれかの遮熱コーティング皮膜が、母材上に形成されてなるタービン部材。
(5)前記遮熱コーティング皮膜が、前記母材の表面に、結合層を介して形成された、前記(4)に記載のタービン部材。
(6)用途が重油焚きガスタービンである前記(1)~(3)のいずれかに記載のタービン部材。
本発明の遮熱コーティング皮膜は、優れた耐久性を示すことができ、しかも低コストで形成することができる。
本発明の実施形態におけるガスタービンの概略構成図である。 本発明の実施形態における動翼の概略構成を示す斜視図である。 本発明の実施形態における動翼の要部を拡大した断面図である。 本発明の実施形態における遮熱コーティング皮膜の形成方法のフローチャートである。 本発明の実施形態において溶融塩浸透試験に使用される試験片の部分断面斜視図である。 本発明の実施形態において適用される溶融塩浸透試験装置の構成を示す部分断面図である。 前記溶融塩浸透試験装置における支持部本体の拡大断面図である。 前記溶融塩浸透試験装置における加速器及び塩供給部の説明図である。 溶融塩浸透試験方法のフローチャートである。 本発明の実施形態において適用される熱サイクル試験装置の構成を示す部分断面図である。 図10に示す装置により熱サイクル試験に供された試料の温度変化を模式的に示すグラフである。 図10の熱サイクル試験に供された試料の温度測定点を示す図である。 実験例の溶射距離と熱サイクル試験における耐久性との関係を示すグラフである。 実験例の皮膜気孔率熱サイクル試験における耐久性との関係を示すグラフである。 皮膜の気孔率を算出するにあたっての皮膜断面の光学顕微鏡写真の一例を示す写真である。 皮膜の気孔率を算出するにあたっての皮膜断面の光学顕微鏡写真を2値化した画像の一例を示す写真である。
以下、本発明の一実施形態に係る遮熱コーティング皮膜、およびタービン部材について、図面に基づき説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
<タービンの構成>
 図1は、本発明の実施形態におけるガスタービンの概略構成図である。
 図1に示すように、本実施形態におけるガスタービン1は、圧縮機2と、燃焼器3と、タービン本体4と、ロータ5とを備えている。
 圧縮機2は、多量の空気を内部に取り入れて圧縮する。
 燃焼器3は、圧縮機2にて圧縮された圧縮空気Aに燃料を混合して燃焼させる。
 タービン本体4は、燃焼器3から導入された燃焼ガスGの熱エネルギーを回転エネルギーに変換する。このタービン本体4は、ロータ5に設けられた動翼7に燃焼ガスGを吹き付けることで燃焼ガスGの熱エネルギーを機械的な回転エネルギーに変換して動力を発生する。タービン本体4には、ロータ5側の複数の動翼7の他に、タービン本体4のケーシング6に複数の静翼8が設けられる。タービン本体4では、これら動翼7と静翼8とが、ロータ5の軸方向に交互に配列されている。
 ロータ5は、タービン本体4の回転する動力の一部を圧縮機2に伝達して圧縮機2を回転させる。
以下、本実施形態においては、タービン本体4の動翼7を、本発明のタービン部材の一例として説明する。
<動翼(タービン部材)とコーティング皮膜>
 図2は、本発明の実施形態における動翼の概略構成を示す斜視図である。
 図2に示すように、動翼7は、動翼本体71と、プラットホーム72と、翼根73と、シュラウド74と、を備えている。動翼本体71は、タービン本体4のケーシング6内の燃焼ガスG流路内に配されている。プラットホーム72は、動翼本体71の基端に設けられている。このプラットホーム72は、動翼本体71の基端側において燃焼ガスGの流路を画成する。翼根73は、プラットホーム72から動翼本体71と反対側へ突出して形成されている。シュラウド74は、動翼本体71の先端に設けられている。このシュラウド74は、動翼本体71の先端側において燃焼ガスGの流路を画成する。
図3は、本発明の実施形態における動翼の要部を拡大した断面図である。
 図3に示すように、動翼7は、母材10と、コーティング層11とにより構成されている。
 母材10は、Ni基合金等の耐熱合金からなる。
 コーティング層11は、母材10の表面を覆うように形成されている。このコーティング層11は、結合層12と、遮熱コーティング皮膜13とを備えている。
 結合層12は、母材10から遮熱コーティング皮膜13が剥離することを抑制するためのものであって、母材10及び遮熱コーティング皮膜13に対する接合強度が高く、且つ耐食性および耐酸化性に優れた金属によって構成される。この結合層12の材料及びその形成方法は特に限定されないが、一般には、例えば、溶射材としてMCrALY合金の金属溶射粉を、母材10の表面に対して溶射して形成することが好ましい。ここで、結合層12を構成する上記のMCrAlY合金の「M」は、金属元素を示している。この金属元素「M」は、例えば,NiCo,Ni、Co等の単独の金属元素、又は、これらのうち2種以上の組み合わせからなる。
 遮熱コーティング皮膜13は、結合層12の表面に積層されている。この遮熱コーティング皮膜13は、セラミックを含む溶射材を結合層12の表面に溶射することで形成されるものであるが、本発明では、特にそのセラミックとして、酸化イッテルビウム(Yb;イッテルビア)で部分安定化させたジルコニア(ZrO)であるイッテルビア安定化ジルコニア(YbSZ)を用いている。また遮熱コーティング皮膜13は、その気孔率(単位体積当たりの気孔の占有率;vol%)が、5%以上、8%未満、より好ましくは5%以上、6%未満となるように形成されている。
 このように、本実施形態では、遮熱コーティング皮膜13のセラミックス材料として、イッテルビア安定化ジルコニア(YbSZ)を用い、且つその気孔率を特定の範囲内とすることによって、重油焚きボイラ等の低質燃料を使用するタービン部材として、高い耐久性を示すことが可能となった。これは、次のような本発明者等の新規な知見によるものである。
 重油等の低質燃料を用いたガスタービンでは、遮熱コーティングが、重油に含有されるナトリウムや硫黄等によって生じる硫酸ナトリウムを含む溶融塩に曝されて、溶融塩が遮熱コーティングの内部に浸透し、この浸透した溶融塩によって、遮熱コーティングが損傷することが懸念される。溶融塩によるセラミックスコーティングの損傷には、いくつかのメカニズムが考えられている。例えば、コーティング材料として従来の一般的なYSZを用いた場合の、YSZと溶融塩(NaSO等)の化学反応による材質劣化、あるいは溶融塩が気孔を閉塞することにより皮膜の弾性率が増加して熱応力が増加すること、さらには溶融塩が気孔内部で結晶成長してコーティングを弱化させること、等,多くのメカニズムが考えられているが、現状では、必ずしも明確化されていない。いずれにしても、溶融塩のセラミックスコーティング内部への浸透は、皮膜の耐久性を低下させることから、重油等の低質燃料を用いるガスタービンのような溶融塩の存在する環境下で使用しても、高い耐久性を有する遮熱コーティングの開発が強く望まれていた。
 一方、本発明者等は、重油焚きガスタービンにおける使用環境を模擬した、溶融塩環境下での遮熱コーティング皮膜における耐久性を評価するための装置、手法を開発し、既に特許文献5に示す、「溶融塩浸透試験装置、および、溶融塩浸透試験方法」を特許出願している。
上記の特許文献5の溶融塩浸透試験方法によれば、溶融塩環境下での遮熱コーティング皮膜中への溶融塩の浸透の度合を評価することができる。したがって、重油焚きガスタービンおける動翼や静翼等のタービン部材表面の遮熱コーティング皮膜への、使用時における溶融塩の浸透を模擬的に再現することができる。そしてこのような溶融塩浸透試験方法によって溶融塩を浸透させた遮熱コーティング皮膜について、熱サイクル試験を行えば、重油焚きガスタービンでの使用時における遮熱コーティング皮膜の耐久性を評価することが可能となった。
そして本発明者等が、遮熱コーティング皮膜のセラミック材料の種類、さらにはその気孔率と、上記のような溶融塩浸透試験方法及び熱サイクル試験による耐久性評価結果との関係を調査したところ、セラミックとしてイッテルビア安定化ジルコニア(YbSZ)を使用して、しかも皮膜の気孔率を5%以上、8%未満とすることによって、従来から常用されているイットリア部分安定化ジルコニア(YSZ)からなる気孔率10%程度のポーラスな遮熱コーティング皮膜よりも、溶融塩環境下での耐久性が確実に優れることを新規に見出した。
なお、タービン部材における遮熱コーティング皮膜のセラミック材料として、YSZに代えて、YbSZを使用すること自体は、例えば特許文献2~4に示されるように、一部では既に考えられているが、溶融塩環境下でのYbSZの使用に関しては、これまで十分な検討がなされていない。すなわち、前述のように本発明者等が開発した特許文献5に示される溶融塩浸透試験装置、試験方法によって、はじめて溶融塩環境下での遮熱コーティング皮膜への溶融塩の浸透を再現して、溶融塩環境下での遮熱コーティング皮膜の耐久性を評価することが可能となったのであるが、上記の溶融塩浸透試験装置、試験方法の開発以前の時点では、溶融塩環境下での耐久性を正しく評価することは困難であり、そのため、YbSZを溶融塩環境下で使用しても、その耐久性を正しく把握することはできなかった。
 しかるに、特許文献5に示される新規な溶融塩浸透試験装置、試験方法の開発により、重油焚きガスタービンに使用した場合(したがって溶融塩環境下で使用した場合)の遮熱コーティング皮膜の耐久性を評価することが可能となり、それに伴い、所定の気孔率範囲内のYbSZの使用の有効性を新規に見出したのである。
本発明の実施形態において、YbSZからなる遮熱コーティング皮膜13の気孔率が5%未満では、熱伝導率が高くなって、母材10に対する遮熱の効果を充分に発揮させることが困難となる。一方、気孔率が8%以上となれば、溶融塩環境下での使用における耐久性を充分に確保することが困難となる。すなわち、YbSZからなる遮熱コーティング皮膜13であっても、その気孔率が8%以上となれば、従来の一般的なYSZからなる気孔率10%程度の遮熱コーティング皮膜(従来材)と比較して、溶融塩環境下での使用における耐久性が充分に優れているとは言えなくなる。
 このようにYbSZからなる遮熱コーティング皮膜13の気孔率が溶融塩環境下での使用における耐久性に及ぼす影響は、後に実験例に従って詳細に説明するように、本発明者等の詳細な実験によって見出されたことである。
なお遮熱コーティング皮膜13の気孔率の測定方法は特に限定されないが、例えば皮膜13の断面を観察して、その断面における気孔部分の占有率を測定すればよい。具体的には、例えば皮膜の厚み方向の断面の光学顕微鏡写真(例えば図15)を撮り、その写真を、画像処理によって白色部分と黒色部分とに2値化し、得られた2値化画像(例えば図16)における、気孔部分に相当する部分(例えば白色部分)の面積率を求め、その面積率をもって気孔率とすればよい。なおこの場合、面積率が算出されることになるが、気孔部分の面積率は、気孔部分の体積率と実質的に同等であるから、上記の面積率の値をもって気孔率(vol%)とみなすことができる。
さらに、コーティング層11についての、上記以外の好ましい条件について説明する。
 結合層12の厚みは特に限定されないが、一般には、例えば特許文献4の請求項4に示されるように、0.01mm~1mm程度とすることが望ましい。
 また遮熱コーティング皮膜13の厚みは、一般には、同じく特許文献4の請求項4に示されるように、0.01mm~1mm程度が好ましい。0.01mm未満では、遮熱の効果を充分に発揮させることが困難となるおそれがある。一方、1mmを越えれば、遮熱性は高くなるものの、耐久性が低下傾向となるおそれがある。
 遮熱コーティング皮膜13を溶射によって形成する際の溶射材の組成は、安定化材としての酸化イッテルビウム(Yb)が、特許文献2の請求項6に示されると同様に、16~20重量%、残部が実質的にジルコニア(ZrO)であることが望ましい。
<タービン部材の形成方法>
 次に、上述したコーティング層11を母材10の表面に形成するタービン部材の形成方法の一例について説明する。
 図4は、この発明の実施形態におけるタービンの形成方法のフローチャートである。
 図4に示すように、まず、母材形成工程S1として、母材10を目的のタービン部材、例えば、動翼7の形状となるように形成する。この実施形態における母材10は、上述したNi基耐熱合金などを用いて形成する。
 次いで、コーティング方法S2として、結合層積層(ボンドコート層形成)工程S21と、遮熱コーティング皮膜積層(トップコート層形成)工程S22と、表面調整工程S23とを順次行う。
結合層積層工程S21においては、母材10の表面に対して結合層(ボンドコート層)12を形成する。この実施形態の結合層積層工程S21においては、例えば、低圧プラズマ溶射法によりMCrAlY合金などの金属溶射粉を母材10の表面に溶射する。
遮熱コーティング皮膜積層工程S22においては、結合層12上に遮熱コーティング皮膜(トップコート層)13を積層させる。この実施形態の遮熱コーティング皮膜積層工程S22においては、例えば、大気圧プラズマ溶射法(Atmospheric pressure Plasma Spray:APS)により、溶射材として前述のようなYbSZの粉末を結合層12上に溶射する。
ここで、遮熱コーティング皮膜積層工程S22においては、遮熱コーティング皮膜13の気孔率を5%以上、8%未満、より好ましくは5~6%となるようにする。このように遮熱コーティング皮膜13の気孔率を制御する方法としては、例えば、上述した溶射材を噴射する溶射装置のノズルの先端(図示せず)と、母材10との距離(言い換えれば、溶射距離)を変える方法が代表的である。すなわち、他の溶射条件が固定されていれば、溶射距離を短くするほど、溶射された層の気孔率が小さくなる、すなわち緻密になる。したがって、遮熱コーティング皮膜13の気孔率を5%以上、8%未満、より好ましくは5~6%となるように溶射距離を設定すればよい。そのほか、例えば、溶射装置の溶射電流を増加させるなどの方法によっても、遮熱コーティング皮膜13の気孔率をより小さくすることができる。さらに溶射距離と溶射電流の両方を制御することによって所望の気孔率を得るようにしても良い。
表面調整工程S23は、コーティング層11の表面の状態を調整する。具体的には、表面調整工程S23においては、遮熱コーティング皮膜13の表面を僅かに削ってコーティング層11の膜厚を調整したり、表面をより滑らかにしたりする。この表面調整工程S23により、例えば、動翼7への熱伝達率を低下させることができる。この実施形態の表面調整工程S23においては、遮熱コーティング皮膜13を数10μm削ることによって、表面を滑らかにするとともに膜厚を調整している。
なおYbSZからなる粉末を溶射して遮熱コーティング皮膜(トップコート層)13を形成する際の溶射粉末の粒度分布としては、特許文献3に記載されているように、積算粒度10%粒径が30μm以上100μm以下とされる粒度分布を有し、かつ最大粒径が150μm以下であって、粒径30μmの粒子を3%以下、粒径40μmの粒子を8%以下の割合で含有することが好ましい。皮膜の気孔率を5%以上、8%未満とするばかりでなく、上記のように溶射粉末の粒度分布を調整することによって、熱サイクル耐久性を、より確実に向上させることが可能となる。
なおまた、本発明の遮熱コーティング皮膜は、低質燃料を使用するガスタービンエンジンを構成するタービン部材に形成されるものである。ここで、低質燃料とは、JIS 2205で規定される1種(A重油)が代表的であるが、そのほかの低質燃料、例えば同じくJIS 2205で規定される2種(B重油)、もしくは3種(C重油)、あるいはそれらと同等の重油燃料、例えばASL(Arab Super Light)やAXL (Arab Extra Light)と称される原油を使用する場合にも有効である。これらは、Siemens社の下記URLのホームページに公開されている『Latest Developments of Siemens Heavy Duty Gas Turbines for the Saudi Arabian Market』によれば、ASLのRabighII原油では、Na+Kが2.1ppm、Vが0.5ppm、Sが0.1wt%程度含まれており、当該ガスタービンメーカも、このような原油を使用する場合に、これら成分が過剰に多い場合には、考慮が必要としている。さらに、本発明の遮熱コーティング皮膜は、油燃料に限らず、低質燃料として石炭ガス化燃料などを使用する場合にも有効である。
[http://www.energy.siemens.com/hq/pool/hq/energy-topics/pdfs/en/techninal%20paper/Siemens-Technical%20Paper-Latest-Developments-for-Saudi-Arabian-Market.pdf]
 次に本発明者等が行った実験例について説明する。
 以下の実験は、本発明者等が開発した溶融塩浸透試験装置を用いて溶融塩浸透実験を行い、さらに溶融塩浸透実験後の試験片について、レーザ熱サイクル試験を行ったものである。そこで、先ず溶融塩浸透試験装置及びその装置を用いての溶融塩浸透実験について、図5~図9を参照して説明する。
<溶融塩浸透試験>
 図5は、溶融塩浸透試験に供した試験片100の部分断面斜視図である。
 図5に示すように、試験片100は、ガスタービンのタービン翼の表面を模擬して形成されている。この試験片100は、母材10と、その母材10上のコーティング層11とにより構成されており、コーティング層11は、母材側の結合層12と、表面側の遮熱コーティング皮膜13とによって構成されている。また試験片100は、円盤状に形成されている。
 図6は、本例における溶融塩浸透試験装置の構成を示す部分断面図である。
 図6に示すように、溶融塩浸透試験装置50は、燃焼器51と、収容支持部53と、加速器54と、塩供給部60とを備えている。この溶融塩浸透試験装置50は、溶融塩を含む燃焼ガスを、上述した試験片100に衝突させる装置である。ユーザは、この溶融塩浸透試験装置50により試験を行った試験片100を観察することで、コーティング層11の溶融塩の浸透状態を評価することができる。ここで、コーティング層11について、溶融塩の浸透状態を評価することで、例えば、コーティング層11の劣化を判断することができる。
 燃焼器51は、圧縮機(図示せず)にて圧縮された圧縮空気に燃料を混合して燃焼させる。この燃焼器51は、燃焼ガスGに対して外部から圧縮空気を供給可能な空気供給部55を備えている。空気供給部55は、電磁弁等により燃焼ガスGに対して供給する空気量を細かく調整可能となっている。この空気供給部55によれば、例えば、燃焼ガスGに対して供給する空気量を増加させることで、燃焼ガスGの温度を低下させることができる。
 燃焼器51は、架台56によって収容支持部53の上方に配置されている。燃焼器51は、燃焼ガスGが鉛直下方に向かうように、その噴射口51aが下方を向くようにして架台56に取り付けられている。燃焼器51は、断熱性に優れた容器51bを備え、燃焼ガスGの熱エネルギーが容器51bを介して外部に放出されることを抑制している。
収容支持部53は、コーティング層11により表面が被覆された試験片100を下方から支持した状態で収容する。この収容支持部53は、チャンバー57と、支持部本体58とを備えている。
 チャンバー57は、その内部に試験片100を収容する収容空間Sを備える。チャンバー57を構成する各壁部59も、上述した燃焼器51の容器51bと同様に、断熱性に優れた材料を用いて形成されている。つまり、チャンバー57は、壁部59の断熱性により収容空間Sを保温可能となっている。これら壁部59および容器51bは、断熱材自体により形成されるか、又は、躯体(図示せず)に断熱材が取り付けられて形成されている。
 図7は、本発明の実施形態における支持部本体の拡大断面図である。
 図6、図7に示すように、支持部本体58は、試験片100を下方から支持するとともに、試験片100の裏面側に露出する母材10を冷却する。この支持部本体58は、冷却空気供給部61と、支持環部62と、を備えている。
 冷却空気供給部61は、外部から供給される冷却空気を、母材100に対して吹き付ける。この冷却空気供給部61は、空気供給管63と、箱体64とを備えている。
 空気供給管63は、チャンバー57の側壁57a(図6参照)を貫通して、収容空間Sの水平方向における中心に向けて延びる管状に形成されている。この空気供給管63の内部を収容空間Sの中心に向かって外部から供給された冷却空気が流れる。この空気供給管63の端部は、箱体64の側壁に接続されている。
箱体64は、空気供給管63によって供給された冷却空気の流れる向きを、試験片100の裏面の有る上方に向かうように変える機能を有する。この実施形態における箱体64は、その上壁64aのみが、複数の孔を有するパンチングメタルやメッシュ等で形成されている。この上壁64aにより、空気供給管63から箱体64に流入した冷却空気は、上壁64aの孔を介して上方に向かって噴出する。
支持環部62は、冷却空気供給部61の箱体64の上壁周縁から上方に向かって突出する環状に形成されている。試験片100は、この支持環部62に保持される。試験片100の保持方法としては、ボルト結合や、溶接等が挙げられる。これにより、試験片100は、箱体64の上壁64aから所定距離だけ離間するとともに、上壁64aと平行な姿勢で支持環部62により下方から支持される。ここで、冷却空気供給部61は、冷却空気が流れる流路に熱電対等の温度検出部を有していても良い。このようにすることで、温度検出部により検出された冷却空気の温度に応じて冷却空気の流量を調整して、試験片100の厚さ方向の温度分布を制御することができる。
上述した支持部本体58を構成する空気供給管63、箱体64、および、支持環部62は、冷却空気を供給する管路としての機能だけではなく、試験片100を下方から支持する片持ち梁を兼ねている。
収容支持部53は、観察窓部65を備えている。この観察窓部65は、外部から試験片100を収容する収容空間Sに通じている。観察窓部65は、支持部本体58に支持された試験片100を中心として、放射方向に延びている。この実施形態における観察窓部65には、試験片100の温度分布を検出可能なサーモビュアTVが取り付けられている。この実施形態においては、収容支持部53に観察窓部65が一つだけ形成されている場合を例示した。しかし、収容支持部53に対して複数の観察窓部65を形成するようにしても良い。また、上述した観察窓部65に、サーモビュア以外の観測装置を取り付けるようにしても良い。
図7においては、図示都合上省略しているが、上述した支持環部62は、試験片100の裏面に衝突した冷却空気を収容空間Sに排出できるように、例えば、切り欠き(図示せず)等を備えている。さらに、収容支持部53には、試験片100に吹き付けられる燃焼ガスGを排出する排出機構(図示せず)が設けられている。この排出機構によって、試験片100に吹き付けられた燃焼ガスGは、排出機構によって吸引されてチャンバー57の外部に排出される。
加速器54は、溶融塩を含む燃焼ガスGの流速を加速させて試験片100に衝突させる。
 図6に示すように、この加速器54は、絞り部66と、直管部67と、を備えている。
 絞り部66は、燃焼ガスGの流れる方向における上流側の端部が、燃焼器51に接続されている。この絞り部66は、燃焼ガスGの流れる方向で下流側に向かうほど流路断面積が漸次減少する管状に形成されている。この実施形態における絞り部66は、一定の傾斜角度で流路断面積が減少している。絞り部66は、例えば、内壁と外壁とからなる二重構造として、その間の空間に絞り部66の過熱を抑制するための冷却空気を流すようにしても良い。
直管部67は、一定の流路断面積を有する直管状に形成されている。この直管部67は、絞り部66の下流側の端部66aと収容支持部53との間を繋いでいる。より具体的には、直管部67は、絞り部66の下流側の端部66aから収容支持部53の収容空間Sの内部にまで延びている。この直管部67の下流側の端部67aは、試験片100の直ぐ上の位置に配される。この直管部67は、その軸線O1が、収容支持部53の内部に収容された試験片100の表面と直交するように配置されている。つまり、加速器54は、燃焼器51の内部空間S1と、収容支持部53の収容空間Sとを連通させている。
図8は、本例の溶融塩浸透試験装置における加速器および塩供給部の説明図である。
 図8に示すように、この実施形態における絞り部66の傾斜角度θは、燃焼ガスGの加速に必要な角度に形成されている。ここで、傾斜角度θは、軸線O1に垂直な水平面に対する角度である。
 直管部67の内径D2は、燃焼器51の燃焼ガスGの量を基に、直管部67の出口における流速が、音速よりも低くなる大きさとされている。例えば、燃焼器51の負荷が100%のときの燃焼ガスGの量を「Q」(m/s)、燃焼ガスGの音速を「Vc」(m/s)とすると、内径D2は、以下の(1)式で求めることができる。
 D2=(Q/Vc×4/π)0.5・・・(1)
直管部67は、燃焼ガスGの流速(以下、ガス流速と称する)が目標値となるような長さLで形成される。
 絞り部66のガス流速を「V1」、直管部67のガス流速を「V2」とすると、以下の(2)式が成り立つ。
 V1/V2=D2/D1・・・(2)
塩供給部60は、燃焼ガスGに塩を供給する。燃焼ガスGに供給された塩は、溶融して溶融塩となり、更に蒸発してガス状に変化する。このガス状に変化した溶融塩が試験片100の表面、すなわち遮熱コーティング皮膜13から結合層12に向かって浸透する。
塩供給部60は、圧縮機40と、溶液タンク41と、定量ポンプ42と、二流体ノズル(供給ノズル)43と、供給管44と、を備えている。
 圧縮機40は、一定の圧力で二流体ノズル43に向けて圧縮された空気を供給する。この圧縮機40は、上述した絞り部36に冷却空気を供給する圧縮機と共用するようにしても良い。
溶液タンク41は、塩の水溶液を貯留する。この実施形態における溶液タンク41は、例えば、硫酸ナトリウム(Na2SO4)の水溶液を貯留している。ここで、溶液タンク41に貯留される水溶液の塩濃度は、0.1質量%から0.5質量%、更には0.25質量%から0.35質量%とすることができる。この実施形態においては、硫酸ナトリウムを0.3質量%含む水溶液を用いている。
定量ポンプ42は、溶液タンク41に貯留されている水溶液を、二流体ノズル43に向けて一定の体積流量で供給する。ここで、定量ポンプ42により二流体ノズル43に向かって供給される水溶液の体積流量は、0.5(L/h)から0.7(L/h)の範囲とすることができる。この実施形態においては、0.6(L/h)で水溶液を二流体ノズル43に供給している。
二流体ノズル43は、溶液タンク41から供給された水溶液を、圧縮機40から供給された圧縮空気を用いて例えば霧状に微粒化する。ここで、二流体ノズル43は、例えば、内部混合形、外部混合形、衝突形など、様々な形式の二流体ノズルを採用できる。ここで、この実施形態においては、溶液タンク41の水溶液を定量ポンプ42により供給する加圧方式を採用する場合について説明した。しかし、圧縮空気の力で水溶液を吸い上げて噴霧するいわゆるサクション方式の二流体ノズル43を採用しても良い。
供給管44は、二流体ノズル43によって微粒化された水溶液を、加速器24の内部に供給する。この実施形態における供給管44は、加速器24に接続されるため、例えば、耐熱性の観点でセラミック管を用いてもよい。この供給管44の内径は、5mmから7mmの範囲とすることができる。この実施形態における供給管44の内径は、5.5mmから6.5mmの範囲(例えば、6.0mm)とされている。
塩供給部60は、定量ポンプ42と溶液タンク41との間にバルブV1を備えている。
同様に、塩供給部60は、圧縮機40と二流体ノズル43との間にバルブV2を備えている。バルブV1は、二流体ノズル43へ水溶液を供給する際に開弁され、それ以外は閉弁される。一方で、バルブV2は、常時開弁されており、例えば、メンテナンス時等に閉弁される。
<溶融塩浸透試験方法>
 次に、上記の溶融塩浸透試験装置50による溶融塩浸透試験方法について説明する。
 図9は、本例における溶融塩浸透試験方法のフローチャートである。
 図9に示すように、まず、母材10の表面にコーティング層11を有する試験片100を作成する(ステップS01)とともに、塩の水溶液を作成する(ステップS02)。
 その後、試験片100を支持部本体58にセットする(ステップS03)とともに、水溶液を溶液タンク41に貯留させる(ステップS04)。なお、溶液タンク41の中で塩と水とを混ぜて水溶液を作成しても良い。なお、ステップS01とステップS02との順番は逆にしたり、同時に行うようにしたりしても良く、同様に、ステップS04とステップS05との順番は、逆にしたり同時に行うようにしたりしても良い。
次いで、溶融塩浸透試験装置50を始動させる。
 すると、燃焼器51において圧縮空気と燃料とが混合状態で燃焼されて、高温の燃焼ガスGが生成される。さらに、この高温の燃焼ガスGに対して、空気供給部55を介して圧縮空気が供給されて温度調整される。
一方で、収容支持部53の収容空間Sに配される試験片100に対して、冷却空気供給部61によって裏面から冷却空気が吹き付けられる。これにより、母材10の冷却が継続される。
 さらに、塩供給部60のバルブV1,V2を開弁して、加速器54に霧化された水溶液の供給を開始する(ステップS06)。すると、燃焼ガスGにより水溶液に含まれる塩が加熱されて溶融塩となり、この溶融塩がさらにガス化する。ここで、水溶液に含まれる水は、加熱されて蒸発する。
このガス化された溶融塩を一定量含む燃焼ガスGは、加速器54によって目標速度となる流速にまで加速される。目標速度にまで加速された燃焼ガスGは、加速器54を介して収容空間Sで保持された試験片100のコーティング層11、より具体的には遮熱コーティング皮膜13に衝突する。この際、サーモビュアTVにより、試験片100の温度分布がユーザにより監視されて、実機と同等の温度分布となるように、燃焼ガスGの温度調整、および、冷却空気による試験片100の温度調整が行われる。
 ユーザは、この状態を所定時間継続した後(ステップS07)、溶融塩浸透試験装置50を停止させて(ステップS08)、試験片100を収容支持部53から取り出し、遮熱コーティング皮膜13の溶融塩の浸透状態などを評価する(ステップS09)。
したがって、上述した例によれば、燃焼器51の燃焼ガスGを塩のキャリアガスとして用いることができる。そのため、試験片100の温度を、実機のタービン部材と同等の温度まで加熱することができる。さらに、塩を含む燃焼ガスGを、加速器54によって加速させた後に試験片100に衝突させることができる。これにより、小型の燃焼器51を用いつつ、実機の燃焼ガスと同等の流速まで、塩を含む燃焼ガスGの流速を高めることができる。つまり、試験片100のコーティング層11の境界条件を、実機における遮熱コーティングの境界条件と同等にすることができる。その結果、装置の大型化を抑制しつつ、試験片100のコーティング層11に対する溶融塩の浸透状態を正しく評価することが可能となる。
さらに、二流体ノズル43を備えていることで、燃焼ガスGに対して溶融塩を、より均一に混合させることができる。そのため、実機と同様の状態の燃焼ガスGを再現することができる。
さらに、冷却空気供給部61を備えていることで、コーティング層11で被覆された試験片100の母材10を冷却することができる。そのため、実機のタービン部材の厚さ方向の温度分布と同様の温度分布を、試験片100にも出現させることができる。その結果、試験片100のコーティング層11に対する溶融塩の浸透状態をより正確に評価することができる。
さらに、加速器54において、絞り部66の流路断面積が漸次減少することで、円滑に燃焼ガスの流速を高めることができる。さらに、直管部67を設けることで、絞り部66により流速が高められた燃焼ガスGを整流して、燃焼ガスGをより加速させることができる。その結果、燃焼ガスGの流速を十分に高めつつ試験片100に対して効率よく溶融塩を含む燃焼ガスGを衝突させることができる。
さらに、燃焼ガスGに温度調整用の空気を供給して、燃焼ガスGの温度を低下させることができる。そのため、温度調整用の空気の供給量を増減することで、試験片100のコーティング層11の温度を、所望の温度に容易に調整することができる。
 さらに、観察窓部65を介してエロージョン試験中の試験片100の状態を観察することができる。そのため、試験片100の境界条件と、実機の境界条件との間にずれが生じることを抑制できる。
次に、上記の溶融塩浸透試験装置を用いて溶融塩浸透実験を行なった後の試験片について、レーザ熱サイクル試験を行ったので、そのレーザ熱サイクル試験装置について図10を参照して説明する。
<熱サイクル試験装置>
図10は、熱サイクル試験装置の構成を示す部分断面図である。
 図10に示すように、熱サイクル試験装置80は、本体部83上に配設された試料ホルダ82に、母材10上にコーティング層11が形成された試料101を、コーティング層11が外側となるように配置し、この試料101に対してCOレーザ装置84からレーザ光Lを照射することで試料101を、コーティング層11側から加熱するようになっている。また、COレーザ装置84による加熱と同時に本体部83を貫通して本体部83の内部の試料101裏面側と対向する位置に配設された冷却ガスノズル85の先端から吐出されるガス流Fにより試料101をその裏面側から冷却するようになっている。
 このような熱サイクル試験装置によれば、容易に試料101内部に温度勾配を形成することができ、ガスタービン部材などの高温部品に適用された場合の使用環境に即した評価を行うことができる。
図11は、図10に示す装置により熱サイクル試験に供された試料の温度変化を模式的に示すグラフである。図12は、熱サイクル試験に供された試料の温度測定点を示す図である。図11に示す曲線A~Cは、それぞれ図10に示す試料101における温度測定点A~Cに対応している。
図11に示すように、図10に示す熱サイクル試験装置によれば試料101のコーティング層11表面(A)、コーティング層11と母材10との界面(B)、母材10の裏面側(C)の順に温度が低くなるように加熱することができる。そのため、例えば、コーティング層11の表面を1200℃以上の高温とし、コーティング層11と母材10との界面の温度を800~900℃とすることで、実機ガスタービンと同様の温度条件とすることができる。この熱サイクル試験装置による加熱温度と温度勾配は、COレーザ装置84の出力とガス流Fとを調整することで、容易に所望の温度条件とすることができる。
 以下に、試験片に遮熱コーティング皮膜を溶射によって形成し、その試験片を溶融塩浸透試験、さらに熱サイクル試験に供した実験例を示す。
<実験例>
 図5に示すような試験片100を次のようにして作成した。
 Ni基合金からなる母材10の表面に、特許文献2の実施例1に示されるCo-32Ni-21Cr-8Al-0.5Yなる組成のCoNiCrAlY合金からなるボンドコート層(結合層)を、低圧プラズマ溶射法により、厚さ0.1mmに形成した。
 その結合層12の表面に、YbSZを大気圧プラズマ溶射法により溶射してトップコート層(遮熱コーティング皮膜)13を形成して、コーティング層11をトータル平均厚み0.5m厚で形成し、試験片No.1~No.3とした。
この際、溶射距離は通常のYSZの場合の溶射距離を基準として1とし、YbSZの場合には、その基準距離に対する比率(相対溶射距離)を、0.47、0.80、1.20と3段階に異ならしめ、3種類の試験片(相対溶射距離0.47のNo1、相対溶射距離0.80のNo2、相対溶射距離1.20のNo3)を作製した。
また比較のため、遮熱コーティング皮膜13をYSZの溶射によって形成した従来材試験片No.4を作成した。この際の溶射距離は、相対距離の基準として先に述べたように1である。
なお試験片No.1~3の作成にあたって、YbSZの溶射材としては、特許文献2の請求項1に示されるように、イッテルビア(Yb)が16重量%、残部が実質的にジルコニア(ZrO)のものを用いた。また、粉末粒径は、特許文献3に示される積算粒度10%粒径が30μm以上100μm以下とされる粒度分布、具体的には、積算粒度10%粒径が45μm、最大粒径が150μm以下で、かつ粒径40μmの粒子が8%以下の割合の粉末を用いて溶射成膜することにより、層状欠陥を低減し得るようにした高耐久性粉末を用いた。
一方、従来材試験片No.4の溶射材としては、一般的に市販されるイットリア(Y)が8重量%、残部が実質的にジルコニア(ZrO)のものを用いた。
各試験片No.1~4について、図6~図8に示す溶融塩浸透試験装置を用い、図9に示した方法にしたがって溶融塩浸透試験に供した。試験条件は次の通りである。
 ・燃焼ガス温度:1500℃
 ・燃焼ガス種類:LPGガス
 ・燃焼ガス流速:300m/s
 ・TBC表面温度:1100℃
 ・ボンドコート温度:800℃
 ・供給溶融塩:硫酸ナトリウム(NaSO)水溶液
 ・供給濃度 :0.046%の濃度となるように純水と混合
 ・供給時間:8h
 なおこれらの試験条件は,予備試験により通常のYSZを用いた遮熱コーティング皮膜内にNaSOが充分に浸透する条件を確認し、その条件に従ったものである。
さらに、溶融塩浸透試験後の各試験片No.1~4について、図10に示すレーザ熱サイクル試験装置を用い、熱サイクル試験に供した。
そして、遮熱コーティング皮膜13の表面の温度T1と、遮熱コーティング皮膜13と結合層12の界面位置の温度T2との差ΔT(=T1-T2)を繰り返し付与し、遮熱コーティング皮膜の耐久性を調べた。ここで、上記の温度差ΔTの値は、遮熱コーティング皮膜における耐久性の程度を示す指標であり、そこで耐久性評価としては,1000サイクルを経過しても、剥離が生じない限界の温度差ΔT(剥離限界TBC内温度差)にて評価した。
以上の実験から、YbSZを用いたNo.1~3では、皮膜剥離までの熱サイクル数が、YSZを用いた従来材のNo.4よりも大きく、このことから溶融塩環境下での耐久性が優れていることが明らかとなった。またYbSZを用いたNo.1~3のうちでも、溶射距離が70mmのNo.1、溶射距離が120mmのNo.2は、溶射距離が180mmのNo.3よりもΔTが大きいことが確認された。このことは、溶射距離が70mmのNo.1、溶射距離が120mmのNo.2は、溶射距離が180mmのNo.3よりも遮熱性が優れていることを意味する。
さらに、図には示していないが、前述の溶融塩浸透試験後の各試験片について、皮膜中への溶融塩の浸透状態を、皮膜断面におけるNaの存在状態によって調べた。すなわち、電子線マイクロアナライザー(EPMA:Electron Probe Micro Analyzer)による面分析により、皮膜断面のNa量を調べたところ、溶射距離が短いNo.1やNo.2では、Naの浸透が大幅に軽減していることが確認された。
これに対して溶射距離が長いNo.3およびYSZを用いた従来材のNo.4では、皮膜全体にわたりNaが多量に浸透していることが確認された。
また、以上のような各試験片について、溶射距離と熱サイクル試験における遮熱コーティング皮膜の耐久性との関係を図13に示し、遮熱コーティング皮膜内の気孔率と熱サイクル試験における遮熱コーティング皮膜の耐久性との関係を図14に示す。
ここで、図13、図14における熱サイクル耐久性評価は、従来材No.4の剥離限界TBC内温度差ΔTを基準値1とし、それに対するNo.1~No3の試験片のΔTの相対値で示した。なお各試験片におけるトップコート層の気孔率は、既に説明したように、断面の光学顕微鏡写真(例えば図15)を画像処理により2値化して、その2値化画像(例えば図16)から気孔部分を抽出し、その気孔部分の面積率から求めた。
前述のようにYbSZを用いたNo.1~2では、厳しい溶融塩存在環境下における1000サイクルを経過時の剥離を生じない限界のTBC内温度差ΔTは、通常のYSZを用いた従来材No.4の溶融塩中での限界温度ΔTを1として、約30%優れており,極めて高い耐久性を示していることが確認された。
一方、YbSZを用い、溶射距離が長いNO.3も、通常のYSZを用いたNo.4に比べれば、高い耐久性を示すものの、No.1、No.2と比べれば、やや耐久性が低くなっている。
また図13、図14から、同じ溶射材料でも、溶射距離を変えることによって、皮膜の気孔率が変化することが読み取れる。
そして図14から、YbSZを用いたNo.1~3の試験片のうち、気孔率が本発明の範囲内(5%以上、8%未満)の試験片No.1、No.2における、1000サイクルを経過しても剥離を生じない限界温度差ΔTは、気孔率が本発明の範囲を超える試験片No.3よりも大きく、耐久性が優れていることが明らかである。
ここで、溶融塩中での熱サイクル耐久性を確保するための目標限界温度差ΔTは、YSZを用いた従来材の25%以上の改善を目指している。その場合,図14から、気孔率は8%未満に制御する必要があることが分かる。これは、先に示した特許文献2で、通常のガス焚きのガスタービン環境下(溶融塩の存在しない環境下)で、YbSZを用いた場合に気孔率8~15%が高い熱サイクル耐久性を示すとされることとは,異なる結果であり、新たに見出された知見である。
すなわち、気孔率が低下すれば皮膜のヤング率が上昇して、運転時の熱応力が高くなるため、一般には、気孔率が低くなれば耐久性は低下すると考えられているが、低質燃料を用いる場合、溶融塩が気孔内に浸透する影響の方が大きく、その場合、最適気孔率が、従来言われている気孔率の最適範囲とは異なることを見出したのである。加えて、粒度分布を制御し、溶射独特の層状欠陥を低減していることも、高い耐久性を示す結果となったと考えられる。
ここで、熱サイクル試験における1000サイクル時のΔTの値として,1.25(従来材No.4の25%向上)を目標とすると述べたが、気孔率が8%未満であれば、1.25以上のΔTを確保することができ、そこで本発明では、気孔率の上限を8%未満とした。
以上、本発明の好ましい実施形態、実験例について説明したが、これらの実施形態、実験例は、あくまで本発明の要旨の範囲内の一つの例に過ぎず、本発明の要旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。すなわち本発明は、前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定され、その範囲内で適宜変更可能であることはもちろんである。
1:ガスタービン
2:圧縮機
3:燃焼器
4:タービン本体
5:ロータ
6:ケーシング
7:動翼
8:静翼
10:母材
11:コーティング層
12:結合層(ボンドコート層)
13:遮熱コーティング皮膜(トップコート層)

Claims (6)

  1.  低質燃料を使用するガスタービンエンジンにおけるタービン部材を構成する耐熱合金からなる母材上に溶射形成されたセラミック材料からなる遮熱コーティング皮膜であって、
     前記皮膜のセラミック材料としてイッテルビア部分安定化ジルコニアが用いられ、且つその皮膜の気孔率が5%以上、8%未満である遮熱コーティング皮膜。
  2. 請求項1に記載の遮熱コーティング皮膜において、前記気孔率が5~6%の範囲内である遮熱コーティング皮膜。
  3. 皮膜形成のためのセラミック溶射粉末として、積算粒度10%粒径が30μm以上100μm以下とされる粒度分布を有し、かつ最大粒径が150μm以下とされ、粒径30μmの粒子を3%以下、粒径40μmの粒子を8%以下の割合で含有する溶射粉末が用いられている遮熱コーティング皮膜。
  4. 請求項1~請求項3のいずれかの請求項に記載の遮熱コーティング皮膜が、母材上に形成されているタービン部材。
  5. 請求項4に記載のタービン部材において、前記遮熱コーティング皮膜が、前記母材の表面に結合層を介して形成されているタービン部材。
  6. 請求項4、請求項5のいずれかの請求項に記載のタービン部材において、その用途が重油焚きガスタービンであるタービン部材。
PCT/JP2018/012944 2017-03-28 2018-03-28 遮熱コーティング皮膜およびタービン部材 WO2018181559A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/497,067 US20210123124A1 (en) 2017-03-28 2018-03-28 Thermal barrier coating film and turbine member
DE112018001695.1T DE112018001695T5 (de) 2017-03-28 2018-03-28 Wärmedämmschicht und turbinenelement
JP2019510030A JPWO2018181559A1 (ja) 2017-03-28 2018-03-28 遮熱コーティング皮膜およびタービン部材
CN201880020863.1A CN110520599A (zh) 2017-03-28 2018-03-28 隔热涂层膜以及涡轮构件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062063 2017-03-28
JP2017-062063 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018181559A1 true WO2018181559A1 (ja) 2018-10-04

Family

ID=63676351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012944 WO2018181559A1 (ja) 2017-03-28 2018-03-28 遮熱コーティング皮膜およびタービン部材

Country Status (5)

Country Link
US (1) US20210123124A1 (ja)
JP (1) JPWO2018181559A1 (ja)
CN (1) CN110520599A (ja)
DE (1) DE112018001695T5 (ja)
WO (1) WO2018181559A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022150300A1 (en) * 2021-01-05 2022-07-14 Oerlikon Metco (Us) Inc. Thermally stable thermal barrier coatings that exhibit improved thermal conductivity and erosion resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137073A (ja) * 2010-12-28 2012-07-19 Hitachi Ltd 遮熱コーティングを有するガスタービン用部品と、それを用いたガスタービン
JP5602156B2 (ja) * 2009-12-17 2014-10-08 三菱重工業株式会社 遮熱コーティングの製造方法、該遮熱コーティングを備えるタービン部材及びガスタービン
WO2016076305A1 (ja) * 2014-11-11 2016-05-19 三菱日立パワーシステムズ株式会社 遮熱コーティング、および、タービン部材
WO2016129521A1 (ja) * 2015-02-12 2016-08-18 三菱日立パワーシステムズ株式会社 遮熱コーティング、タービン部材、ガスタービン及び遮熱コーティングの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527462B2 (ja) 1972-11-08 1980-07-21
JPS562156A (en) 1979-06-21 1981-01-10 Teijin Ltd Treatment of aromatic polyamide fiber used for reinforcing rubber
US7354663B2 (en) * 2004-04-02 2008-04-08 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating, manufacturing method thereof, turbine part and gas turbine
JP4388466B2 (ja) 2004-12-27 2009-12-24 三菱重工業株式会社 ガスタービン、遮熱コーティング材、その製造方法及びタービン部材
JP4959213B2 (ja) * 2006-03-31 2012-06-20 三菱重工業株式会社 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
JP5702749B2 (ja) * 2012-03-21 2015-04-15 三菱日立パワーシステムズ株式会社 ガスタービン翼、燃焼器、シュラウド及びこれらを用いたガスタービン
US9289917B2 (en) * 2013-10-01 2016-03-22 General Electric Company Method for 3-D printing a pattern for the surface of a turbine shroud
JP6365969B2 (ja) * 2014-03-17 2018-08-01 三菱日立パワーシステムズ株式会社 遮熱コーティング材、これを有するタービン部材及び遮熱コーティング方法
JP6476100B2 (ja) 2015-09-24 2019-02-27 東芝キヤリア株式会社 空調システム、および空調システムの稼働状態報知方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5602156B2 (ja) * 2009-12-17 2014-10-08 三菱重工業株式会社 遮熱コーティングの製造方法、該遮熱コーティングを備えるタービン部材及びガスタービン
JP2012137073A (ja) * 2010-12-28 2012-07-19 Hitachi Ltd 遮熱コーティングを有するガスタービン用部品と、それを用いたガスタービン
WO2016076305A1 (ja) * 2014-11-11 2016-05-19 三菱日立パワーシステムズ株式会社 遮熱コーティング、および、タービン部材
WO2016129521A1 (ja) * 2015-02-12 2016-08-18 三菱日立パワーシステムズ株式会社 遮熱コーティング、タービン部材、ガスタービン及び遮熱コーティングの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022150300A1 (en) * 2021-01-05 2022-07-14 Oerlikon Metco (Us) Inc. Thermally stable thermal barrier coatings that exhibit improved thermal conductivity and erosion resistance

Also Published As

Publication number Publication date
CN110520599A (zh) 2019-11-29
US20210123124A1 (en) 2021-04-29
JPWO2018181559A1 (ja) 2020-02-06
DE112018001695T5 (de) 2019-12-19

Similar Documents

Publication Publication Date Title
Vaßen et al. New thermal barrier coatings based on pyrochlore/YSZ double‐layer systems
US10808308B2 (en) Thermal barrier coating, turbine member, and gas turbine
Bernard et al. Effect of suspension plasma-sprayed YSZ columnar microstructure and bond coat surface preparation on thermal barrier coating properties
Vaßen et al. Suspension plasma spraying: process characteristics and applications
Schneider et al. Thermal spraying for power generation components
US8053089B2 (en) Single layer bond coat and method of application
CN101879661A (zh) 用于改进的薄膜冷却的系统和方法
JP6319663B2 (ja) エロージョン試験装置、および、エロージョン試験方法
US20080107810A1 (en) Method for forming anti-corrosion and anti-oxidation coating layer on high-temperature components of gas turbine fuel additive
WO2018181559A1 (ja) 遮熱コーティング皮膜およびタービン部材
Ma et al. Practical aspects of suspension plasma spray for thermal barrier coatings on potential gas turbine components
JP5656528B2 (ja) 耐高温部材及びガスタービン
JP5657048B2 (ja) 耐高温部材及びガスタービン
WO2017110617A1 (ja) 溶融塩浸透試験装置、および、溶融塩浸透試験方法
JP7045236B2 (ja) 遮熱コーティング、タービン部材及びガスタービン
US20170226620A1 (en) Heat shielding coating and turbine member
Kirschner et al. Erosion testing of thermal barrier coatings in a high enthalpy wind tunnel
JP5693631B2 (ja) 耐高温部材及びガスタービン
Higuero et al. High temperature oxidation of plasma and HVOF thermal sprayed CoNiCrAlY coatings in simulated gas turbine and furnace environments
Saeedi et al. Study of microstructure and thermal shock behavior of two types of thermal barrier coatings
Ashofteh et al. Thermal shock behavior of mixed composite top coat APS TBCs
JP2015096638A (ja) 耐熱部材及びそれを用いたガスタービン部材並びに耐熱部材の製造方法
Moskal Microstructure and thermal diffusivity of micro-and nano-sized YSZ
KR102245879B1 (ko) 차열 코팅막, 터빈 부재 및 차열 코팅 방법
Memon et al. Suspension High‐Velocity Oxy‐Fuel–Sprayed Dense Vertically Cracked and Suspension‐Plasma‐Sprayed Columnar Yttria‐Stabilized Zirconia Coatings: Calcia Magnesia Alumino Silicates Infiltration and Thermal Cycling Performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510030

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18777302

Country of ref document: EP

Kind code of ref document: A1