WO2018181503A1 - Decorative sheet and decorated resin molded article - Google Patents

Decorative sheet and decorated resin molded article Download PDF

Info

Publication number
WO2018181503A1
WO2018181503A1 PCT/JP2018/012823 JP2018012823W WO2018181503A1 WO 2018181503 A1 WO2018181503 A1 WO 2018181503A1 JP 2018012823 W JP2018012823 W JP 2018012823W WO 2018181503 A1 WO2018181503 A1 WO 2018181503A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
meth
surface protective
resin
decorative sheet
Prior art date
Application number
PCT/JP2018/012823
Other languages
French (fr)
Japanese (ja)
Inventor
正博 安原
重徳 奥薗
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017070834A external-priority patent/JP6822280B2/en
Priority claimed from JP2017070833A external-priority patent/JP6922343B2/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2018181503A1 publication Critical patent/WO2018181503A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters

Definitions

  • the present invention relates to a decorative sheet and a decorative resin molded product.
  • Decorative resin molded products decorated by laminating decorative sheets on the surface of molded products are used in various applications such as vehicle interior parts.
  • the decorative sheet is formed into a three-dimensional shape in advance by a vacuum mold, the molded sheet is inserted into an injection mold, and the resin in a fluid state is placed in the mold.
  • An insert molding method for example, see Patent Document 1 for injecting a resin and a molded sheet and a decorative sheet inserted into a mold at the time of injection molding, and a molten resin injected and injected into a cavity
  • Patent Document 2 and Patent Document 3 an injection molding simultaneous decorating method that integrates and decorates the surface of the resin molded body.
  • the above decorative resin molded product is provided with a surface protective layer for the purpose of improving the scratch resistance of the surface.
  • an ionizing radiation curable resin such as an ultraviolet curable resin
  • the surface protective layer By using an ionizing radiation curable resin such as an ultraviolet curable resin as the surface protective layer and increasing the crosslinking density of the resin that forms the surface protective layer of the decorative sheet, the surface wear resistance and scratch resistance of the decorative resin molded product are increased. Attempts have been made to improve adherence.
  • the decorative sheet in the insert molding method, the decorative sheet is preliminarily formed into a three-dimensional (three-dimensional) shape by a vacuum mold, and in the simultaneous injection molding method, the decorative sheet is preliminarily used.
  • the decorative sheet is molded by vacuum / pneumatic action or by pulling of molten resin pressure or shear stress Since it is extended beyond the minimum necessary amount to conform to the shape, there is a problem that a crack is formed in the surface protective layer of the curved surface portion of the molded product.
  • an ionizing radiation curable resin such as an ultraviolet curable resin
  • a surface protective layer to make a semi-cured state in the decorative sheet stage, and to completely cure after the decorative molding.
  • the surface protective layer containing the uncured resin component is easily damaged and difficult to handle, and there is a problem of mold contamination due to the uncured resin component adhering to the mold.
  • there is a method of providing a protective film on the semi-cured surface protective layer In order to solve this problem, there is a method of providing a protective film on the semi-cured surface protective layer. However, the manufacturing is complicated and the cost is increased.
  • JP 2004-322501 A Japanese Patent Publication No. 50-19132 Japanese Patent Publication No. 61-17255 Japanese Patent Application Laid-Open No. 6-134859
  • a decorative sheet used for decorating a decorative resin molded product is required to have excellent scratch resistance and excellent three-dimensional formability.
  • the present invention provides a decorative sheet having a high gloss design, an excellent scratch resistance in a high temperature environment, and an excellent three-dimensional formability. Main purpose.
  • the present inventor has intensively studied to solve the above problems. As a result, it is a decorative sheet comprising at least a base sheet and a surface protective layer provided on the base sheet, and the surface gloss value at an incident angle of 60 ° of the surface protective layer is 70 or more.
  • a decorative sheet comprising a cured product of an ionizing radiation curable resin composition, in which the protective layer contains at least polycarbonate (meth) acrylate and inorganic particles having a primary particle size of 0.25 ⁇ m or less, has a high gloss design. Furthermore, it has been found that it has excellent scratch resistance in a high temperature environment and excellent three-dimensional formability.
  • the present invention is an invention that has been completed through further studies based on these findings.
  • this invention provides the invention of the aspect hung up below.
  • Item 1 At least a decorative sheet comprising a base sheet and a surface protective layer provided on the base sheet, The surface gloss value at an incident angle of 60 ° of the surface protective layer is 70 or more, The decorative sheet which consists of a hardened
  • Item 2. Item 2. The decorative sheet according to Item 1, wherein the coefficient of dynamic friction between the surface of the surface protective layer in an environment at a temperature of 20 ° C.
  • Item 3. The decoration according to Item 1, wherein the coefficient of dynamic friction between the surface of the surface protective layer in an environment of a temperature of 60 ° C. and the cotton cloth No. 3-1 defined by JIS L0803: 2011 is 0.30 or less. Sheet.
  • Item 4. Item 4. The mass ratio of the polycarbonate (meth) acrylate resin and the inorganic particles contained in the ionizing radiation curable resin composition is 100: 5 to 100: 50, Decorative sheet.
  • Item 5. The decorative sheet according to any one of Items 1 to 4, wherein the inorganic particles are silica particles.
  • Item 6. Item 6.
  • the index value of the content of the inorganic particles in the surface protective layer, calculated by the following formula, is 2.5 ⁇ 10 ⁇ 4 or more and 25 ⁇ 10 ⁇ 4 or less, The decorative sheet as described.
  • Index value of content of inorganic particles primary particle diameter of the inorganic particles ( ⁇ m) ⁇ (mass of the inorganic particles (g) / mass of ionizing radiation curable resin contained in the surface protective layer (g)) ⁇ the above Surface protective layer thickness ( ⁇ m)
  • At least a decorative resin molded product comprising a molded resin and a surface protective layer provided on the molded resin,
  • the surface gloss value at an incident angle of 60 ° of the surface protective layer is 70 or more
  • a decorative resin molded article comprising a cured product of an ionizing radiation curable resin composition, wherein the surface protective layer contains at least polycarbonate (meth) acrylate and inorganic particles having a primary particle diameter of 0.25 ⁇ m or less.
  • a decorative sheet having a high gloss design and further having excellent scratch resistance in a high temperature environment and excellent three-dimensional formability.
  • a decorative resin molded product using the decorative sheet can also be provided.
  • Decorative sheet of the decorative sheet present invention includes at least a base sheet, a decorative sheet and a surface protective layer provided on the substrate sheet, the surface at an incident angle of 60 ° of the surface protective layer
  • the gloss value is 70 or more
  • the surface protective layer comprises a cured product of an ionizing radiation curable resin composition containing at least polycarbonate (meth) acrylate and inorganic particles having a primary particle diameter of 0.25 ⁇ m or less. It is characterized by.
  • the surface gloss value at an incident angle of 60 ° of the surface protective layer is 70 or more
  • the surface protective layer is at least polycarbonate (meth) acrylate, and an inorganic whose primary particle diameter is 0.25 ⁇ m or less. It consists of a cured product of ionizing radiation curable resin composition containing particles, and has a high gloss design, and also exhibits excellent scratch resistance in high temperature environments and excellent three-dimensional moldability. can do. That is, the decorative sheet of the present invention can be suitably used as a three-dimensional decorative sheet.
  • the decorative sheet of the present invention will be described in detail.
  • the numerical range indicated by “to” means “above” or “below”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • (meth) acrylate means “acrylate or methacrylate”, and other similar things have the same meaning.
  • the decorative sheet of the present invention may not have a pattern layer or the like, and may be transparent, for example.
  • the decorative sheet of the present invention has at least a laminated structure in which a base sheet 1 and a surface protective layer 2 are laminated.
  • a primer layer 3 is provided on the surface of the surface protective layer 2 on the substrate sheet 1 side in order to improve adhesion between the surface protective layer 2 and the layer in contact with the surface protective layer 2. May be.
  • the back surface (molding) of the pattern layer 4 is provided.
  • a concealing layer (not shown) may be provided on the resin layer 5 side).
  • a laminated structure of the decorative sheet of the present invention a laminated structure in which a base sheet / surface protective layer is laminated in this order; a laminated structure in which a base sheet / primer layer / surface protective layer is laminated in this order; Laminated structure in which picture layer / primer layer / surface protective layer are laminated in this order; Laminated structure in which base sheet / hiding layer / picture layer / primer layer / surface protective layer are laminated in this order; Back surface adhesive layer / base sheet Examples include a laminated structure in which / hiding layer / pattern layer / primer layer / surface protective layer are laminated in this order.
  • FIG. 1 the schematic sectional drawing of an example of the decorating sheet
  • FIG. 2 the schematic sectional drawing of an example of the decorating sheet
  • the base sheet 1 is a layer that plays a role as a support in the decorative sheet of the present invention. It does not specifically limit as the base material sheet 1, Although a fiber sheet, a resin sheet, a metal sheet, a wood-type base material sheet etc. can be used according to the use of a decorating sheet, it is used for manufacture of a decorating resin molded product. In some cases, such as when three-dimensional formability is required, it is preferably formed of a resin sheet (resin film).
  • the resin component used for the base sheet 1 is not particularly limited and may be appropriately selected according to the three-dimensional moldability, compatibility with the molded resin layer, and the like, and preferably a thermoplastic resin.
  • thermoplastic resin examples include acrylonitrile-butadiene-styrene resin (hereinafter sometimes referred to as “ABS resin”); acrylonitrile-styrene-acrylate resin; acrylic resin; polyolefins such as polypropylene and polyethylene Resin; polycarbonate resin; vinyl chloride resin; polyethylene terephthalate (PET).
  • ABS resin acrylonitrile-butadiene-styrene resin
  • acrylic resin polyolefins such as polypropylene and polyethylene Resin
  • acrylic resin or ABS resin is preferable from the viewpoint of three-dimensional moldability.
  • a resin component which forms the base material sheet 1 only 1 type may be used and 2 or more types may be mixed and used.
  • the base material sheet 1 may be formed with these single layer sheets, and may be formed with the multilayer sheet
  • seat examples of the thermoplastic
  • the base sheet 1 may be subjected to physical or chemical surface treatment such as an oxidation method or an unevenness method on one side or both sides as necessary in order to improve the adhesion with an adjacent layer.
  • the oxidation method performed as the surface treatment of the base sheet 1 include a corona discharge treatment, a plasma treatment, a chromium oxidation treatment, a flame treatment, a hot air treatment, and an ozone ultraviolet treatment method.
  • corrugated method performed as surface treatment of the base material sheet 1 a sandblasting method, a solvent processing method, etc. are mentioned, for example. These surface treatments are appropriately selected according to the type of the resin component constituting the base sheet 1, and preferably a corona discharge treatment method from the viewpoints of effects and operability.
  • the base material sheet 1 may be colored with a colorant or the like, painted for adjusting the color, or formed with a pattern for imparting design.
  • the thickness of the base sheet 1 is selected according to the use, but is usually about 0.05 to 1.0 mm, and is generally about 0.1 to 0.7 mm in consideration of cost and the like.
  • the surface protective layer 2 constitutes the surface of the decorative sheet and contains at least a polycarbonate (meth) acrylate and inorganic particles having a primary particle diameter of 0.25 ⁇ m or less, and an ionizing radiation curable resin. It consists of the hardened
  • the ionizing radiation curable resin composition refers to a composition containing an ionizing radiation curable resin.
  • the ionizing radiation curable resin refers to a resin having an energy quantum capable of crosslinking and polymerizing molecules in an electromagnetic wave or a charged particle beam, that is, a resin that is crosslinked and cured by irradiation with ultraviolet rays or electron beams.
  • the surface gloss value at an incident angle of 60 ° of the surface protective layer is 70 or more from the viewpoint of a high gloss design.
  • the surface gloss value is preferably about 75 to 150, more preferably about 80 to 120.
  • the surface gloss value is a value measured on the surface of the surface protective layer of the decorative sheet, and a specific measurement method can employ the method described in the examples.
  • the surface protective layer 2 in an environment at a temperature of 20 ° C. from the viewpoint of exhibiting excellent scratch resistance in a high temperature environment and excellent three-dimensional formability while having a high gloss design.
  • the coefficient of dynamic friction between the surface of the surface protective layer 2 in an environment at a temperature of 60 ° C. and the cotton cloth 3-1 defined in JIS L0803: 2011 is preferably 0.30 or less. More preferably, it is about 0.05 to 0.25, and more preferably about 0.05 to 0.20.
  • the dynamic friction coefficient at a temperature of 20 ° C. or a temperature of 60 ° C. is a value measured for the surface of the surface protective layer of the decorative sheet, and specifically, a value measured by the following method.
  • JIS L0803: 2011 cotton cloth 3-1 was brought into contact with the horizontal surface of the surface protective layer whose surface temperature was kept at 20 ° C. or 60 ° C., vertical load 500 gf, speed 3 mm. Measure the dynamic friction coefficient when rubbing in the horizontal direction at / sec.
  • the index value of the content of inorganic particles in the surface protective layer 2 is preferably in the range of 2.5 ⁇ 10 ⁇ 4 to 25 ⁇ 10 ⁇ 4 or less.
  • the index is preferably about 5.0 ⁇ 10 ⁇ 4 to 20.0 ⁇ 10 ⁇ 4 , more preferably about 5.0 ⁇ 10 ⁇ 4 to 15.0 ⁇ 10 ⁇ 4 .
  • Index value of content of inorganic particles primary particle diameter of the inorganic particles ( ⁇ m) ⁇ (mass of the inorganic particles (g) / mass of ionizing radiation curable resin contained in the surface protective layer (g)) ⁇ the above Surface protective layer thickness ( ⁇ m)
  • the inorganic particles are not particularly limited, but silica particles (colloidal silica, fumed silica, precipitated silica, etc.), alumina from the viewpoint of exhibiting excellent scratch resistance in a high temperature environment and excellent three-dimensional formability.
  • Preferred examples include metal oxide particles such as particles, zirconia particles, titania particles, and zinc oxide particles, silica particles and alumina particles are preferred, and silica particles are particularly preferred.
  • the primary particle diameter of the inorganic particles is not particularly limited as long as it is 0.25 ⁇ m or less, but from the above viewpoint, it is preferably about 0.01 to 0.15 ⁇ m. Preferably, it is about 0.01 to 0.10 ⁇ m.
  • the primary particle diameter of the inorganic particles is not particularly limited as long as it is 0.25 ⁇ m or less, but from the above viewpoint, it is preferably about 0.01 to 0.15 ⁇ m. Preferably, it is about 0.01 to 0.10 ⁇ m.
  • the primary particle size of the inorganic particles is randomly selected by observing a cross section in the thickness direction of the surface protective layer with a scanning electron microscope (SEM) under the conditions of an acceleration voltage of 3.0 kV and an enlargement magnification of 50,000 times.
  • SEM scanning electron microscope
  • the mass ratio of the polycarbonate (meth) acrylate resin and the inorganic particles contained in the ionizing radiation curable resin composition forming the surface protective layer 2 is not particularly limited, but from the above viewpoint, preferably 100: Examples include about 5 to 100: 50, more preferably about 100: 10 to 100: 45, and still more preferably about 100: 15 to 100: 40.
  • the ionizing radiation curable resin composition forming the surface protective layer 2 preferably contains at least polycarbonate (meth) acrylate and polyfunctional (meth) acrylate. Furthermore, the mass ratio of the polycarbonate (meth) acrylate to the polyfunctional (meth) acrylate (polycarbonate (meth) acrylate: polyfunctional (meth) acrylate) is preferably about 98: 2 to 70:30. When the mass ratio of the polycarbonate (meth) acrylate and the polyfunctional (meth) acrylate is in such a range, the three-dimensional formability can be improved while improving the scratch resistance of the decorative sheet.
  • the polycarbonate (meth) acrylate is not particularly limited as long as it has a carbonate bond in the polymer main chain and (meth) acrylate in the terminal or side chain.
  • This (meth) acrylate preferably has two or more functional groups from the viewpoint of crosslinking and curing.
  • the polycarbonate (meth) acrylate may be, for example, urethane (meth) acrylate having a polycarbonate skeleton.
  • the above polycarbonate (meth) acrylate is obtained, for example, by converting part or all of the hydroxyl groups of polycarbonate polyol into (meth) acrylate (acrylic acid ester or methacrylic acid ester).
  • This esterification reaction can be performed by a normal esterification reaction.
  • 1) a method of condensing polycarbonate polyol and acrylic acid halide or methacrylic acid halide in the presence of a base 2) a method of condensing polycarbonate polyol and acrylic acid anhydride or methacrylic acid anhydride in the presence of a catalyst, Or 3) the method of condensing polycarbonate polyol and acrylic acid or methacrylic acid in the presence of an acid catalyst.
  • the above-mentioned polycarbonate polyol is a polymer having a carbonate bond in the polymer main chain and having 2 or more, preferably 2 to 50, more preferably 2 to 10 hydroxyl groups in the terminal or side chain.
  • a typical method for producing this polycarbonate polyol is a method by a polycondensation reaction from a diol compound (A), a trihydric or higher polyhydric alcohol (B), and a compound (C) to be a carbonyl component.
  • the diol compound (A) used as a raw material is represented by the general formula HO—R 1 —OH.
  • R 1 is a divalent hydrocarbon group having 2 to 20 carbon atoms, and the group may contain an ether bond.
  • a linear or branched alkylene group, a cyclohexylene group, or a phenylene group is represented by the general formula HO—R 1 —OH.
  • diol compound examples include ethylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol, neopentyl glycol, 1,3-propanediol, 1,4-butanediol, , 5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,3-bis (2-hydroxyethoxy) benzene, 1,4-bis (2 -Hydroxyethoxy) benzene, neopentyl glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like. These diols may be used alone or in admixture of two or more.
  • examples of the trihydric or higher polyhydric alcohol (B) include alcohols such as trimethylolpurpan, trimethylolethane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, glycerin, sorbitol. Further, alcohols having a hydroxyl group obtained by adding 1 to 5 equivalents of ethylene oxide, propylene oxide, or other alkylene oxide to the hydroxyl group of these polyhydric alcohols may be used. These polyhydric alcohols may be used alone or in combination of two or more.
  • the compound (C) serving as the carbonyl component is any compound selected from carbonic acid diester, phosgene, and equivalents thereof. Specific examples thereof include carbonic acid diesters such as dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, diphenyl carbonate, ethylene carbonate and propylene carbonate, phosgene, and halogenated formates such as methyl chloroformate, ethyl chloroformate and phenyl chloroformate. Etc. These may be used alone or in admixture of two or more.
  • the polycarbonate polyol is synthesized by subjecting the above-described diol compound (A), a trihydric or higher polyhydric alcohol (B), and a compound (C) to be a carbonyl component to a polycondensation reaction under general conditions.
  • the charged molar ratio of the diol compound (A) to the polyhydric alcohol (B) is preferably in the range of 50:50 to 99: 1, and the diol compound (C) as the carbonyl component
  • the charged molar ratio of A) to the polyhydric alcohol (B) is preferably 0.2 to 2 equivalents relative to the hydroxyl groups of the diol compound and polyhydric alcohol.
  • the number of equivalents (eq./mol) of hydroxyl groups present in the polycarbonate polyol after the polycondensation reaction at the above charge ratio is 3 or more on average in one molecule, preferably 3 to 50, more preferably 3 to 20. Within this range, a necessary amount of (meth) acrylate groups are formed by the esterification reaction described later, and moderate flexibility is imparted to the polycarbonate (meth) acrylate resin.
  • the terminal functional group of this polycarbonate polyol is usually an OH group, but a part thereof may be a carbonate group.
  • the method for producing the polycarbonate polyol described above is described in, for example, JP-A No. 64-1726.
  • the polycarbonate polyol can also be produced by an ester exchange reaction between a polycarbonate diol and a trihydric or higher polyhydric alcohol as described in JP-A-3-181517.
  • the urethane (meth) acrylate having the above polycarbonate skeleton can be easily produced by reacting, for example, polycarbonate polyol, an organic polyisocyanate compound, and hydroxy (meth) acrylate.
  • the molecular weight of the polycarbonate (meth) acrylate used in the present invention is preferably 500 or more, more preferably 1,000 or more, as measured by GPC analysis and converted to standard polystyrene. More preferably, it exceeds 2,000.
  • the upper limit of the weight average molecular weight of the polycarbonate (meth) acrylate is not particularly limited, but is preferably 100,000 or less and more preferably 50,000 or less from the viewpoint of controlling the viscosity not to be too high. From the viewpoint of achieving both scratch resistance and three-dimensional formability, it is more preferably more than 2,000 and not more than 60,000, and particularly preferably 5,000 to 40,000.
  • the polyfunctional (meth) acrylate is not particularly limited as long as it is a bifunctional or higher (meth) acrylate.
  • trifunctional or higher functional (meth) acrylates are preferred from the viewpoint of curability.
  • bifunctional means having two ethylenically unsaturated bonds ⁇ (meth) acryloyl group ⁇ in the molecule.
  • the polyfunctional (meth) acrylate may be either an oligomer or a monomer, but a polyfunctional (meth) acrylate oligomer is preferable from the viewpoint of improving scratch resistance.
  • polyfunctional (meth) acrylate oligomer examples include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyester (meth) acrylate oligomers, and polyether (meth) acrylate oligomers.
  • the urethane (meth) acrylate oligomer can be obtained, for example, by esterifying a polyurethane oligomer obtained by the reaction of polyether polyol or polyester polyol and polyisocyanate with (meth) acrylic acid.
  • the epoxy (meth) acrylate oligomer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it. Further, a carboxyl-modified epoxy (meth) acrylate oligomer obtained by partially modifying this epoxy (meth) acrylate oligomer with a dibasic carboxylic acid anhydride can also be used.
  • polyester (meth) acrylate oligomers examples include esterification of hydroxyl groups of polyester oligomers having hydroxyl groups at both ends obtained by condensation of polycarboxylic acid and polyhydric alcohol with (meth) acrylic acid, It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a carboxylic acid with (meth) acrylic acid.
  • the polyether (meth) acrylate oligomer can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid.
  • polyfunctional (meth) acrylate oligomers include polybutadiene (meth) acrylate oligomers with high hydrophobicity having (meth) acrylate groups in the side chain of polybutadiene oligomers, and silicones (meta-methacrylate) having polysiloxane bonds in the main chain.
  • polyfunctional (meth) acrylate monomer examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6- Hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified di Cyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane Li (meth) acrylate, ethylene oxide modified trimethylolpropane tri (
  • the ionizing radiation curable resin composition is preferably composed of a cured product of an ionizing radiation curable resin composition further containing a silicone-modified urethane (meth) acrylate oligomer in addition to the polycarbonate (meth) acrylate. .
  • polyfunctional (meth) acrylate oligomers and polyfunctional (meth) acrylate monomers described above may be used alone or in combination of two or more.
  • a monofunctional (meth) acrylate can be used in combination with the polyfunctional (meth) acrylate, as long as the object of the present invention is not impaired, for the purpose of reducing the viscosity.
  • monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl ( Examples include meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, and (meth) acryloylmorpholine. These monofunctional (meth) acrylates may be used alone or in combination of two or more.
  • an ultraviolet curable resin composition When an ultraviolet curable resin composition is used as the ionizing radiation curable resin composition, it is desirable to add about 0.1 to 5 parts by mass of a photopolymerization initiator with respect to 100 parts by mass of the ultraviolet curable resin. .
  • the initiator for photopolymerization can be appropriately selected from those conventionally used, and is not particularly limited.
  • benzoin benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin Isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- Hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2 (hydroxy-2-propyl) ketone, Nzophenone, p-phenylbenzophenone, 4,4′-diethylaminobenzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone
  • the photosensitizer for example, p-dimethylbenzoic acid ester, tertiary amines, thiol sensitizers and the like can be used.
  • an electron beam curable resin composition as the ionizing radiation curable resin composition. This is because the electron beam curable resin composition can be made solvent-free, is more preferable from the viewpoint of environment and health, and does not require a photopolymerization initiator, and can provide stable curing characteristics.
  • various additives can further be mix
  • this additive include a weather resistance improver, an abrasion resistance improver, a polymerization inhibitor, a crosslinking agent, an infrared absorber, an antistatic agent, an adhesion improver, a leveling agent, a thixotropic agent, a coupling agent, A plasticizer, an antifoamer, a filler, a solvent, a coloring agent, etc. are mentioned.
  • an ultraviolet absorber or a light stabilizer can be used as the weather resistance improving agent.
  • the ultraviolet absorber may be either inorganic or organic.
  • titanium dioxide, cerium oxide, zinc oxide or the like having an average particle size of about 5 to 120 nm can be preferably used.
  • organic ultraviolet absorbers include benzotriazoles, specifically 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-tert- And amylphenyl) benzotriazole, 3- [3- (benzotriazol-2-yl) -5-tert-butyl-4-hydroxyphenyl] propionic acid ester of polyethylene glycol, and the like.
  • examples of light stabilizers include hindered amines, specifically 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2′-n-butylmalonate bis (1,2,2). , 6,6-pentamethyl-4-piperidyl), bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl)- 1,2,3,4-butanetetracarboxylate and the like.
  • the ultraviolet absorber or light stabilizer a reactive ultraviolet absorber or light stabilizer having a polymerizable group such as a (meth) acryloyl group in the molecule can be used. Moreover, it can also be copolymerized and used to such an extent that the performance (scratch resistance and three-dimensional moldability) as a surface protective layer of the polymer of this invention is not impaired.
  • polymerization inhibitor examples include hydroquinone, p-benzoquinone, hydroquinone monomethyl ether, pyrogallol, and t-butylcatechol.
  • crosslinking agent examples include a polyisocyanate compound, an epoxy compound, a metal chelate compound, an aziridine compound, and an oxazoline compound. Used.
  • filler for example, barium sulfate, talc, clay, calcium carbonate, aluminum hydroxide and the like are used.
  • colorant for example, known coloring pigments such as quinacridone red, isoindolinone yellow, phthalocyanine blue, phthalocyanine green, titanium oxide, and carbon black are used.
  • the infrared absorber for example, a dithiol metal complex, a phthalocyanine compound, a diimmonium compound, or the like is used.
  • the formation of the surface protective layer 2 can be obtained by preparing a coating liquid containing the above-mentioned ionizing radiation curable resin composition, applying it, and crosslinking and curing it.
  • the viscosity of a coating liquid should just be a viscosity which can form a non-hardened resin layer on the surface of a base material by the below-mentioned coating system, and there is no restriction
  • the prepared coating solution is a known method such as gravure coating, bar coating, roll coating, reverse roll coating, comma coating, etc., preferably so that the thickness after curing is 1-1000 ⁇ m, preferably It is applied by gravure coating to form an uncured resin layer.
  • the uncured resin layer thus formed is irradiated with ionizing radiation such as an electron beam and ultraviolet rays to cure the uncured resin layer.
  • ionizing radiation such as an electron beam and ultraviolet rays
  • the acceleration voltage can be appropriately selected according to the resin to be used and the thickness of the layer, but the uncured resin layer is usually cured at an acceleration voltage of about 70 to 300 kV. preferable.
  • the transmission capability increases as the acceleration voltage increases. Therefore, when a base material that deteriorates due to an electron beam is used as the base material sheet 1, the penetration depth of the electron beam and the thickness of the resin layer are used. By selecting the accelerating voltage so that the two are substantially equal, it is possible to suppress the irradiation of the extra electron beam to the base sheet 1 and to minimize the deterioration of the base material due to the excess electron beam. Can do.
  • the irradiation dose is preferably such that the crosslinking density of the resin layer is saturated, and is usually selected in the range of 5 to 300 kGy (0.5 to 30 Mrad), preferably 10 to 50 kGy (1 to 5 Mrad).
  • the electron beam source is not particularly limited.
  • various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type. Can be used.
  • ultraviolet rays When ultraviolet rays are used as ionizing radiation, those containing ultraviolet rays having a wavelength of 190 to 380 nm are emitted.
  • an ultraviolet-ray source For example, a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a carbon arc lamp, etc. are used.
  • the cured resin layer thus formed has various functions by adding various additives, for example, high hardness and scratch resistance, so-called hard coat function, anti-fogging coating function, anti-fouling coating.
  • hard coat function for example, high hardness and scratch resistance
  • anti-fogging coating function for example, anti-fouling coating.
  • anti-fogging coating function for example, anti-fouling coating.
  • anti-fogging coating function anti-fouling coating.
  • a function, an antiglare coating function, an antireflection coating function, an ultraviolet shielding coating function, an infrared shielding coating function, and the like can also be imparted.
  • the thickness of the surface protective layer 2 after curing is preferably 1 to 1000 ⁇ m. If the thickness of the surface protective layer 2 after curing is 1 ⁇ m or more, sufficient physical properties as a protective layer such as scratch resistance and weather resistance can be obtained. On the other hand, when the thickness of the surface protective layer 2 after curing is 1000 ⁇ m or less, it is easy to uniformly apply ionizing radiation, and uniform curing is easily obtained, which is economically advantageous.
  • the thickness of the surface protective layer 2 after curing is more preferably 1 to 50 ⁇ m, and further preferably 1 to 30 ⁇ m, so that the three-dimensional formability is improved and the complex three-dimensional shape such as an automobile interior use is obtained. High followability can be obtained. Therefore, in the decorative sheet of the present invention, even if a hard ionizing radiation curable resin is blended, excellent three-dimensional formability can be expressed, and the coating film is hardened without impairing the three-dimensional formability. Therefore, it is possible to provide excellent scratch resistance that is preferable in terms of processing and practical use.
  • the decorative sheet of the present invention is required to have a high film thickness particularly for the surface protective layer because sufficiently high three-dimensional formability can be obtained even if the thickness of the surface protective layer 2 is made thicker than the conventional one. It is also useful as a decorative sheet for a member such as a vehicle exterior part.
  • the primer layer 3 is a layer that is included as necessary for the purpose of improving the adhesion between the surface protective layer 2 and the layer located therebelow.
  • the primer layer 3 can be formed of a resin.
  • the primer composition constituting the primer layer 3 is (meth) acrylic resin, urethane resin, (meth) acrylic-urethane copolymer resin, vinyl chloride-vinyl acetate copolymer, polyester resin, butyral resin, chlorinated polypropylene, Chlorinated polyethylene or the like is used.
  • (Meth) acrylic resins include (meth) acrylic acid ester homopolymers, copolymers of two or more different (meth) acrylic acid ester monomers, or (meth) acrylic acid esters and other monomers.
  • Polymer specifically, poly (meth) methyl acrylate, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, methyl (meth) acrylate- (Meth) butyl acrylate copolymer, (meth) ethyl acrylate- (meth) butyl acrylate copolymer, ethylene- (meth) methyl acrylate copolymer, styrene- (meth) methyl acrylate copolymer A (meth) acrylic resin composed of a homopolymer or a copolymer containing a (meth) acrylic acid ester such as is preferably used.
  • polyurethane resin polyurethane having a polyol (polyhydric alcohol) as a main ingredient and an isocyanate as a crosslinking agent (curing agent) can be used.
  • polyol polyhydric alcohol
  • isocyanate as a crosslinking agent
  • the polyol one having two or more hydroxyl groups in the molecule, for example, polyester polyol, polyethylene glycol, polypropylene glycol, acrylic polyol, polyether polyol and the like are used.
  • isocyanate examples include polyvalent isocyanate having two or more isocyanate groups in the molecule, aromatic isocyanate such as 4,4-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated diphenylmethane diisocyanate.
  • aromatic isocyanate such as 4,4-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated diphenylmethane diisocyanate.
  • Aliphatic (or alicyclic) isocyanates such as are used. It is also possible to mix urethane resin and butyral resin.
  • an acrylic / urethane (polyester urethane) block copolymer resin is preferable.
  • the curing agent the above-mentioned various isocyanates are used.
  • the acrylic / urethane (polyester urethane) block copolymer resin has an acrylic / urethane ratio (mass ratio) of preferably (9/1) to (1/9), more preferably (8/2) to (2), if desired. Since it can be adjusted within the range of / 8) and used for various decorative sheets, it is particularly preferable as a resin used in the primer composition.
  • the thickness of the primer layer 3 is preferably about 0.1 to 10 ⁇ m. When it is 0.1 ⁇ m or more, the effect of preventing the surface protective layer from cracking, breaking, whitening, etc. can be sufficiently exerted. On the other hand, if the thickness of the primer layer is 10 ⁇ m or less, it is preferable that the three-dimensional formability does not fluctuate since the drying and curing of the coating film is stable when the primer layer is applied.
  • Primer layer 3 includes gravure coat, gravure reverse coat, gravure offset coat, spinner coat, roll coat, reverse roll coat, kiss coat, wheeler coat, dip coat, silk screen solid coat, wire bar coat, flow coat, comma coat, coat It is formed by a usual coating method such as sink coating, brush coating, spray coating, or transfer coating method.
  • the transfer coating method is a method in which a coating film of the primer layer 3 or the back surface adhesive layer is once formed on a thin sheet (film base material) and then coated on the target layer surface in the decorative sheet.
  • the pattern layer 4 is a layer which is provided on the base material sheet 1 as necessary and gives decorativeness to the decorative sheet.
  • the pattern layer 4 is formed, for example, by printing various patterns using ink and a printing machine.
  • the pattern formed by the pattern layer 4 is not particularly limited.
  • a grain pattern simulating the surface of a rock such as a grain pattern, a marble pattern (for example, a travertine marble pattern), a cloth simulating a texture or a cloth pattern Patterns, tiled patterns, brickwork patterns, etc., and patterns such as marquetry and patchwork that combine these are also included.
  • These patterns can be formed by multicolor printing with normal yellow, red, blue and black process colors, or by multicolor printing with special colors prepared by preparing individual color plates constituting the pattern. It is formed.
  • a binder and a colorant such as a pigment and a dye, an extender pigment, a solvent, a stabilizer, a plasticizer, a catalyst, and a curing agent are appropriately mixed.
  • the binder is not particularly limited, and examples thereof include polyurethane resins, vinyl chloride-vinyl acetate copolymer resins, vinyl chloride-vinyl acetate-acrylic copolymer resins, chlorinated polypropylene resins, acrylic resins, Examples thereof include polyester resins, polyamide resins, butyral resins, polystyrene resins, nitrocellulose resins, and cellulose acetate resins. These resins may be used alone or in combination of two or more.
  • the colorant is not particularly limited.
  • carbon black black
  • iron black titanium white, antimony white, chrome yellow, titanium yellow, petal, cadmium red, ultramarine, cobalt blue, and other inorganic pigments
  • quinacridone red Organic pigments or dyes such as isoindolinone yellow and phthalocyanine blue
  • metallic pigments composed of scaly foils such as aluminum and brass
  • pearl luster composed of scaly foils
  • the pattern layer 4 is formed by a normal printing method such as gravure printing.
  • the pattern layer 4 is formed by a normal printing method such as gravure printing or a normal coating method such as gravure coating, gravure reverse coating, gravure offset coating, spinner coating, roll coating, and reverse roll coating.
  • the thickness of the pattern layer 4 is not particularly limited, but for example, about 1 to 30 ⁇ m, preferably about 1 to 20 ⁇ m.
  • the hiding layer is provided with a pattern layer 4 between the base sheet 1 and the surface protective layer 2 for the purpose of suppressing color change and variation of the base sheet 1, the base sheet 1 and the pattern layer 4 are provided. It is a layer provided as needed, for example.
  • the concealing layer is provided to suppress the base sheet 1 from adversely affecting the color tone and design of the decorative sheet, it is generally formed as an opaque layer.
  • the hiding layer is formed using an ink composition in which a binder, a colorant such as a pigment or a dye, an extender pigment, a solvent, a stabilizer, a plasticizer, a catalyst, or a curing agent is appropriately mixed.
  • the ink composition for forming the concealing layer is appropriately selected from those used for the picture layer 4 described above.
  • the concealing layer is usually set to a thickness of about 1 to 20 ⁇ m and is desirably formed as a so-called solid printing layer.
  • a back surface adhesive layer (not shown) is provided in the back surface (surface on the opposite side to the surface protection layer 2) of a decorating sheet depending on necessity.
  • a thermoplastic resin or a curable resin is used for the back surface adhesive layer depending on the injection resin.
  • thermoplastic resins include acrylic resins, acrylic-modified polyolefin resins, chlorinated polyolefin resins, vinyl chloride-vinyl acetate copolymers, thermoplastic urethane resins, thermoplastic polyester resins, polyamide resins, rubber resins, etc. Can be used alone or in combination of two or more.
  • the thermosetting resin include urethane resin and epoxy resin.
  • the thickness of the back surface adhesive layer is preferably about 0.1 to 10 ⁇ m. Further, the back surface adhesive layer can be formed in the same manner as the method exemplified for the primer layer 3.
  • the decorated resin molded product of the present invention is, as shown in FIG. 3, a decorated resin comprising a molded resin (molded resin layer 5) and a surface protective layer 2 provided on the molded resin.
  • a cured product of the ionizing radiation curable resin composition can be produced, for example, by integrating the decorative sheet of the present invention and a molded resin.
  • the decorative resin molded product of the present invention can be produced using the decorative sheet of the present invention, has a high gloss design, and can exhibit excellent scratch resistance in a high temperature environment. Further, as described above, from the viewpoint of improving the scratch resistance, the index value of the content of the inorganic particles in the surface protective layer 2 is in the range of 2.5 ⁇ 10 ⁇ 4 to 25 ⁇ 10 ⁇ 4 or less. It is preferable that it exists in.
  • the decorative resin molded product of the present invention is produced, for example, by various injection molding methods such as insert molding, simultaneous injection molding, blow molding, and gas injection molding using the decorative sheet of the present invention.
  • various injection molding methods such as insert molding, simultaneous injection molding, blow molding, and gas injection molding using the decorative sheet of the present invention.
  • an insert molding method and an injection molding simultaneous decorating method are preferable.
  • the decorative resin molded product of the present invention is a decorative method of sticking the decorative sheet of the present invention on a prepared three-dimensional resin molded body (molded resin layer 5) such as a vacuum pressure bonding method. Can also be produced.
  • the decorative sheet of the present invention is vacuum formed (off-line pre-molding) into a molded product surface shape in advance by a vacuum forming die, and then an excess portion is trimmed as necessary.
  • a molded sheet is obtained.
  • This molded sheet is inserted into an injection mold, the injection mold is clamped, a resin in a fluid state is injected into the mold from the base sheet side, solidified, and simultaneously with the injection molding, on the outer surface of the resin molded product
  • a decorative resin molded product is manufactured by integrating the decorative sheet.
  • the decorative resin molded product of the present invention is manufactured by an insert molding method including the following steps.
  • the decorative sheet may be heated and molded.
  • the heating temperature at this time is not particularly limited, and may be appropriately selected depending on the type of resin constituting the decorative sheet, the thickness of the decorative sheet, and the like, for example, when an ABS resin film is used as the base sheet.
  • the temperature can be usually about 100 to 250 ° C., preferably about 130 to 200 ° C.
  • the temperature of the resin in the fluidized state is not particularly limited, but is usually about 180 to 320 ° C., preferably about 220 to 280 ° C.
  • the decorative sheet of the present invention is placed in a female mold that also serves as a vacuum forming mold provided with a suction hole for injection molding, and preliminary molding (in-line preliminary molding) is performed with this female mold.
  • preliminary molding in-line preliminary molding
  • the resin in a fluid state is injected and filled into the mold from the base sheet side, solidified, and decorated on the outer surface of the resin molding simultaneously with the injection molding.
  • a decorative resin molded product is manufactured by integrating the sheets.
  • the decorative resin molded product of the present invention is manufactured by the simultaneous injection molding method including the following steps. After the decorative sheet of the present invention is installed so that the surface of the base sheet of the decorative sheet faces the molding surface of the movable mold having a molding surface of a predetermined shape, the decorative sheet is heated, A pre-molding step of pre-molding the decorative sheet by softening and vacuum-sucking from the movable mold side and bringing the softened decorative sheet into close contact with the molding surface of the movable mold, After clamping the movable mold and the fixed mold having the decorative sheet closely adhered along the molding surface, the fluidized resin is injected from the base sheet side into the cavity formed by both molds.
  • the heating temperature of the decorative sheet is not particularly limited, and may be appropriately selected depending on the type of resin constituting the decorative sheet, the thickness of the decorative sheet, etc. If a polyester resin film or an acrylic resin film is used as the base sheet, the temperature can usually be about 70 to 130 ° C. In the injection molding step, the temperature of the resin in the fluidized state is not particularly limited, but can usually be about 180 to 320 ° C., preferably about 220 to 280 ° C.
  • the decorative sheet and the resin molded body of the first pressure chamber located on the upper side and the second vacuum chamber located on the lower side in the vacuum pressure bonding machine the decorative sheet is the first.
  • Install in the vacuum press so that the vacuum chamber side, the resin molded body becomes the second vacuum chamber side, and the base sheet side of the decorative sheet face the resin molded body side, and the two vacuum chambers are in a vacuum state .
  • the resin molding is installed on a lifting platform that is provided on the second vacuum chamber side and can be moved up and down.
  • the molded body is pressed against the decorative sheet using an elevator, and the resin molded body is stretched while stretching the decorative sheet using the pressure difference between the two vacuum chambers. Adhere to the surface.
  • the two vacuum chambers are opened to the atmospheric pressure, and the decorative resin molded product of the present invention can be obtained by trimming the excess portion of the decorative sheet as necessary.
  • the vacuum pressure bonding method it is preferable to include a step of heating the decorative sheet in order to soften the decorative sheet and improve the moldability before the step of pressing the above-mentioned molded body against the decorative sheet.
  • the vacuum pressure bonding method provided with the said process may be especially called a vacuum thermocompression bonding method.
  • the heating temperature in the said process should just be suitably selected with the kind of resin which comprises a decorating sheet, the thickness of a decorating sheet, etc., if it is a case where a polyester resin film or an acrylic resin film is used as a base material sheet Usually, the temperature can be about 60 to 200 ° C.
  • the molded resin layer 5 may be formed by selecting a resin according to the application.
  • the resin forming the molded resin layer 5 may be a thermoplastic resin or a thermosetting resin.
  • thermoplastic resin examples include polyolefin resins such as polyethylene and polypropylene, ABS resins, styrene resins, polycarbonate resins, acrylic resins, and vinyl chloride resins. These thermoplastic resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • thermosetting resin examples include urethane resin and epoxy resin. These thermosetting resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the surface of the decorative resin molded body produced as described above has high scratch resistance.
  • the decorative resin molded product of the present invention includes, for example, interior materials or exterior materials for vehicles such as automobiles; fittings such as window frames and door frames; interior materials for buildings such as walls, floors, and ceilings; television receivers and air conditioners. It can be used as a housing for home appliances such as a machine;
  • Examples 1 to 8 and Comparative Examples 1 to 4> (Preparation of decorative sheet) An ABS resin film (flexural modulus: 2000 MPa, thickness: 400 ⁇ m) was used as a substrate, and a woodgrain pattern layer was formed on the surface of the film by gravure printing using an acrylic resin composition. Next, a primer layer made of an acrylic resin (acrylic ester homopolymer) was applied to the surface of the pattern layer by gravure coating. The thickness of the primer layer was 3 ⁇ m. Next, an electron beam curable resin composition having the composition shown in Table 1 is applied to the surface of the primer layer by gravure coating so that the thickness ( ⁇ m) after curing of the resin composition becomes the value shown in Table 1. did.
  • An ABS resin film flexural modulus: 2000 MPa, thickness: 400 ⁇ m
  • a woodgrain pattern layer was formed on the surface of the film by gravure printing using an acrylic resin composition.
  • a primer layer made of an acrylic resin (acrylic ester homopolymer) was applied to the surface of the pattern layer
  • This uncured resin layer was irradiated with an electron beam having an acceleration voltage of 165 kV and an irradiation dose of 50 kGy (5 Mrad) to cure the electron beam curable resin composition to obtain each decorative sheet.
  • Each decorative sheet was evaluated as follows. The evaluation results are shown in Table 1.
  • the dynamic friction coefficient of the surface protective layer of each decorative sheet obtained above was measured in an environment of 20 ° C. and an environment of 60 ° C., respectively.
  • a load-fluctuating friction and wear test system HEIDON HHS-2000
  • the cotton 3-1 of JIS L0803: 2011 was brought into contact with the horizontal surface of the surface protective layer maintained at a surface temperature of 20 ° C. or 60 ° C.
  • the dynamic friction coefficient when rubbing in the horizontal direction at a vertical load of 500 gf and a speed of 3 mm / sec is measured.
  • the decorative sheet was heated to 160 ° C. and softened using an infrared heater. Next, vacuum forming was performed using a vacuum forming die (maximum draw ratio: 250%), and the decorative sheet was formed into the internal shape of the die. After cooling the decorative sheet, the decorative sheet was released from the mold. The surface state of the decorative sheet after molding was visually observed, and the moldability was evaluated according to the following criteria. The results are shown in Table 1.
  • B Slight cracks and whitening were observed at the maximum stretched portion of the surface protective layer, but there were no practical problems.
  • C Practically problematic cracks and whitening were observed in the maximum stretched portion of the surface protective layer.
  • Resin 1 Bifunctional urethane acrylate having a polycarbonate skeleton, weight average molecular weight 40,000
  • Resin 2 Bifunctional urethane acrylate having a polycarbonate skeleton, weight average molecular weight 30,000
  • Resin 3 Bifunctional urethane acrylate having a polycarbonate skeleton, weight average molecular weight 20,000
  • Resin 4 Silicone-modified hexafunctional urethane acrylate, weight average molecular weight 3,000
  • Particles 1 Silica particles having an average primary particle diameter of 0.05 ⁇ m 2: Silica particles having an average primary particle diameter of 0.1 ⁇ m 3: Silica particles having an average primary particle diameter of 0.2 ⁇ m 4: Primary particles Silica particles with an average particle diameter of 0.3 ⁇ m
  • the surface protective layer has a surface gloss value of 70 or more at an incident angle of 60 °, the surface protective layer is at least polycarbonate (meth) acrylate, and inorganic particles having a primary particle size of 0.25 ⁇ m or less.
  • the decorative sheets of Examples 1 to 8 comprising a cured product of an ionizing radiation curable resin composition containing a high surface gloss value, a high gloss design, and excellent in a high temperature environment It can be seen that it has scratch resistance and excellent three-dimensional formability.
  • This uncured resin layer was irradiated with an electron beam having an acceleration voltage of 165 kV and an irradiation dose of 50 kGy (5 Mrad) to cure the electron beam curable resin composition to obtain each decorative sheet.
  • Each decorative sheet was evaluated as follows. The evaluation results are shown in Table 2.
  • Resin 1 Bifunctional urethane acrylate having a polycarbonate skeleton, weight average molecular weight 30,000
  • Resin 2 Silicone-modified hexafunctional urethane acrylate, weight average molecular weight 3,000
  • Particle 1 Silica particles having an average primary particle size of 0.05 ⁇ m 2: Silica particles having an average primary particle size of 0.10 ⁇ m 3: Silica particles having an average primary particle size of 0.20 ⁇ m
  • the surface protective layer comprises a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate and inorganic particles having a primary particle size of 0.25 ⁇ m or less, index value of the content of the inorganic particles in the protective layer, decorative sheets of examples 9-17 which is in the range of 2.5 ⁇ 10 -4 ⁇ 25 ⁇ 10 -4 has a superior scratch resistance Furthermore, it can be seen that cracks in the surface protective layer due to three-dimensional molding in a high-temperature environment are effectively suppressed, and excellent three-dimensional moldability is provided.

Abstract

Provided is a decorative sheet having a highly glossy design, wherein the decorative sheet has excellent scratch resistance in a high temperature environment and also has excellent three-dimensional moldability. The decorative sheet of the present invention is a decorative sheet provided with at least a substrate sheet, and a surface protection layer provided on the substrate sheet. The surface protection layer has a surface gloss value of 70 or more at an incident angle of 60°, and is made of a cured material of an ionizing radiation curable resin composition containing at least polycarbonate (meth)acrylate and inorganic particles having a primary particle size of 0.25 μm or less.

Description

加飾シート及び加飾樹脂成形品Decorative sheet and decorative resin molded product
 本発明は、加飾シート及び加飾樹脂成形品に関する。 The present invention relates to a decorative sheet and a decorative resin molded product.
 成形品の表面に加飾シートを積層することで加飾した加飾樹脂成形品が、車両内装部品などの各種用途で使用されている。このような加飾樹脂成形品の成形方法としては、加飾シートを真空成形型により予め立体形状に成形しておき、該成形シートを射出成形型に挿入し、流動状態の樹脂を型内に射出して樹脂と成形シートを一体化するインサート成形法(例えば、特許文献1参照)や射出成形の際に金型内に挿入された加飾シートを、キャビティ内に射出注入された溶融樹脂と一体化させ、樹脂成形体表面に加飾を施す射出成形同時加飾法(例えば、特許文献2、特許文献3参照)などがある。 Decorative resin molded products decorated by laminating decorative sheets on the surface of molded products are used in various applications such as vehicle interior parts. As a molding method of such a decorative resin molded product, the decorative sheet is formed into a three-dimensional shape in advance by a vacuum mold, the molded sheet is inserted into an injection mold, and the resin in a fluid state is placed in the mold. An insert molding method (for example, see Patent Document 1) for injecting a resin and a molded sheet and a decorative sheet inserted into a mold at the time of injection molding, and a molten resin injected and injected into a cavity There is an injection molding simultaneous decorating method (for example, see Patent Document 2 and Patent Document 3) that integrates and decorates the surface of the resin molded body.
 上記の加飾樹脂成形品は表面の耐傷付き性を向上させる目的で表面保護層が設けられる。表面保護層として紫外線硬化性樹脂などの電離放射線硬化性樹脂を用い、加飾シートの表面保護層を形成する樹脂の架橋密度を高めることにより、加飾樹脂成形品の表面の耐摩耗性や耐傷付き性を向上させる試みがなされている。しかしながら、上述の加飾樹脂成形品の成形方法において、インサート成形法では加飾シートを真空成形型により予め三次元(立体)形状に成形する過程、射出成形同時加飾法では加飾シートが予備成形時にあるいは溶融樹脂の射出時に、キャビティの内周面に沿うように延伸されて密着する過程で、加飾シートが真空圧空作用により、あるいは溶融樹脂の圧力、剪断応力による引っ張りなどによって、金型形状に沿うために最低必要な量以上に伸ばされるため、成形品の曲面部の表面保護層にクラックが入るという問題がある。 The above decorative resin molded product is provided with a surface protective layer for the purpose of improving the scratch resistance of the surface. By using an ionizing radiation curable resin such as an ultraviolet curable resin as the surface protective layer and increasing the crosslinking density of the resin that forms the surface protective layer of the decorative sheet, the surface wear resistance and scratch resistance of the decorative resin molded product are increased. Attempts have been made to improve adherence. However, in the molding method of the decorative resin molded product described above, in the insert molding method, the decorative sheet is preliminarily formed into a three-dimensional (three-dimensional) shape by a vacuum mold, and in the simultaneous injection molding method, the decorative sheet is preliminarily used. During molding or injection of molten resin, in the process of drawing and adhering along the inner peripheral surface of the cavity, the decorative sheet is molded by vacuum / pneumatic action or by pulling of molten resin pressure or shear stress Since it is extended beyond the minimum necessary amount to conform to the shape, there is a problem that a crack is formed in the surface protective layer of the curved surface portion of the molded product.
 また、表面保護層として紫外線硬化性樹脂などの電離放射線硬化性樹脂を用い、加飾シートの段階では半硬化状態とし、加飾成形された後に完全硬化させる方法が試みられたが(特許文献4参照)、未硬化樹脂成分を含む表面保護層は傷つきやすく、取り扱いが困難であり、未硬化樹脂成分が金型に付着することによる金型汚染の問題がある。この問題点を解決するために半硬化状態の表面保護層上に保護フィルムを設ける方法があるが、製造が煩雑になるとともに、コストアップの要因ともなる。 In addition, an attempt has been made to use an ionizing radiation curable resin such as an ultraviolet curable resin as a surface protective layer, to make a semi-cured state in the decorative sheet stage, and to completely cure after the decorative molding (Patent Document 4). The surface protective layer containing the uncured resin component is easily damaged and difficult to handle, and there is a problem of mold contamination due to the uncured resin component adhering to the mold. In order to solve this problem, there is a method of providing a protective film on the semi-cured surface protective layer. However, the manufacturing is complicated and the cost is increased.
特開2004-322501号公報JP 2004-322501 A 特公昭50-19132号公報Japanese Patent Publication No. 50-19132 特公昭61-17255号公報Japanese Patent Publication No. 61-17255 特開平6-134859号公報Japanese Patent Application Laid-Open No. 6-134859
 前述の通り、加飾樹脂成形品の加飾に使用される加飾シートには、優れた耐傷付き性と優れた三次元成形性が求められている。 As described above, a decorative sheet used for decorating a decorative resin molded product is required to have excellent scratch resistance and excellent three-dimensional formability.
 さらに、近年、車両内装部品などにおいては、高級感を有する内装とするために、グロス値が高く、高光沢の意匠を備える加飾樹脂成形品が求められている。一方、車両内などにおいては、夏場などに高温になることがある。高光沢の意匠を備える加飾樹脂成形品の表面は、特に傷が目立ちやすく、さらに、高温環境下では傷が付きやすいため、車両内装部品などにおいては、高温環境における耐傷付き性をより一層向上させることが望まれる。しかしながら、従来の加飾シートでは、高温環境下における耐傷付き性について、十分に検討されていない。 Further, in recent years, decorative resin molded products having a high gloss value and a high gloss design have been demanded for vehicle interior parts and the like in order to provide a high-class interior. On the other hand, in a vehicle or the like, the temperature may be high in summer. The surface of a decorative resin molded product with a high-gloss design is particularly prone to scratches, and is also easily scratched in high-temperature environments, so it is possible to further improve scratch resistance in high-temperature environments, such as vehicle interior parts. It is hoped that However, in the conventional decorative sheet, the scratch resistance under a high temperature environment has not been sufficiently studied.
 このような状況下、本発明は、高光沢の意匠を備えている加飾シートにおいて、高温環境における優れた耐傷付き性を備え、三次元成形性にも優れた加飾シートを提供することを主な目的とする。 Under such circumstances, the present invention provides a decorative sheet having a high gloss design, an excellent scratch resistance in a high temperature environment, and an excellent three-dimensional formability. Main purpose.
 本発明者は、上記のような課題を解決すべく鋭意検討を行った。その結果、少なくとも、基材シートと、基材シート上に設けられた表面保護層とを備える加飾シートであって、表面保護層の入射角60°における表面グロス値が70以上であり、表面保護層が、少なくともポリカーボネート(メタ)アクリレートと、一次粒子径が0.25μm以下の無機粒子とを含有する、電離放射線硬化性樹脂組成物の硬化物からなる加飾シートは、高光沢の意匠を備えており、さらに、高温環境における優れた耐傷付き性と、優れた三次元成形性を備えることを見出した。 The present inventor has intensively studied to solve the above problems. As a result, it is a decorative sheet comprising at least a base sheet and a surface protective layer provided on the base sheet, and the surface gloss value at an incident angle of 60 ° of the surface protective layer is 70 or more. A decorative sheet comprising a cured product of an ionizing radiation curable resin composition, in which the protective layer contains at least polycarbonate (meth) acrylate and inorganic particles having a primary particle size of 0.25 μm or less, has a high gloss design. Furthermore, it has been found that it has excellent scratch resistance in a high temperature environment and excellent three-dimensional formability.
 本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。 The present invention is an invention that has been completed through further studies based on these findings.
 すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. 少なくとも、基材シートと、前記基材シート上に設けられた表面保護層とを備える加飾シートであって、
 前記表面保護層の入射角60°における表面グロス値が70以上であり、
 前記表面保護層が、少なくともポリカーボネート(メタ)アクリレートと、一次粒子径が0.25μm以下の無機粒子とを含有する、電離放射線硬化性樹脂組成物の硬化物からなる、加飾シート。
項2. 温度20℃の環境における前記表面保護層の表面と、JIS L0803:2011に規定された綿布3-1号との間の動摩擦係数が、0.10以下である、項1に記載の加飾シート。
項3. 温度60℃の環境における前記表面保護層の表面と、JIS L0803:2011に規定された綿布3-1号綿布との間の動摩擦係数が、0.30以下である、項1に記載の加飾シート。
項4. 前記電離放射線硬化性樹脂組成物に含まれる、前記ポリカーボネート(メタ)アクリレート樹脂と、前記無機粒子との質量比が、100:5~100:50である、項1~3のいずれかに記載の加飾シート。
項5. 前記無機粒子が、シリカ粒子である、項1~4のいずれかに記載の加飾シート。
項6. 前記電離放射線硬化性樹脂組成物が、シリコーン変性ウレタン(メタ)アクリレートオリゴマーをさらに含有する、項1~5のいずれかに記載の加飾シート。
項7. 下記式によって算出される、前記表面保護層中の前記無機粒子の含有量の指標値が、2.5×10-4以上、25×10-4以下である、項1~6のいずれかに記載の加飾シート。
 無機粒子の含有量の指標値=前記無機粒子の一次粒子径(μm)×(前記無機粒子の質量(g)/前記表面保護層に含まれる電離放射線硬化性樹脂の質量(g))÷前記表面保護層の厚み(μm)
項8. 少なくとも、成形樹脂と、前記成形樹脂上に設けられた表面保護層とを備える加飾樹脂成形品であって、
 前記表面保護層の入射角60°における表面グロス値が70以上であり、
 前記表面保護層が、少なくともポリカーボネート(メタ)アクリレートと、一次粒子径が0.25μm以下の無機粒子とを含有する、電離放射線硬化性樹脂組成物の硬化物からなる、加飾樹脂成形品。
That is, this invention provides the invention of the aspect hung up below.
Item 1. At least a decorative sheet comprising a base sheet and a surface protective layer provided on the base sheet,
The surface gloss value at an incident angle of 60 ° of the surface protective layer is 70 or more,
The decorative sheet which consists of a hardened | cured material of the ionizing radiation-curable resin composition in which the said surface protective layer contains a polycarbonate (meth) acrylate and an inorganic particle whose primary particle diameter is 0.25 micrometer or less.
Item 2. Item 2. The decorative sheet according to Item 1, wherein the coefficient of dynamic friction between the surface of the surface protective layer in an environment at a temperature of 20 ° C. and the cotton cloth 3-1 defined in JIS L0803: 2011 is 0.10 or less. .
Item 3. Item 2. The decoration according to Item 1, wherein the coefficient of dynamic friction between the surface of the surface protective layer in an environment of a temperature of 60 ° C. and the cotton cloth No. 3-1 defined by JIS L0803: 2011 is 0.30 or less. Sheet.
Item 4. Item 4. The mass ratio of the polycarbonate (meth) acrylate resin and the inorganic particles contained in the ionizing radiation curable resin composition is 100: 5 to 100: 50, Decorative sheet.
Item 5. Item 5. The decorative sheet according to any one of Items 1 to 4, wherein the inorganic particles are silica particles.
Item 6. Item 6. The decorative sheet according to any one of Items 1 to 5, wherein the ionizing radiation curable resin composition further contains a silicone-modified urethane (meth) acrylate oligomer.
Item 7. Item 4. The index value of the content of the inorganic particles in the surface protective layer, calculated by the following formula, is 2.5 × 10 −4 or more and 25 × 10 −4 or less, The decorative sheet as described.
Index value of content of inorganic particles = primary particle diameter of the inorganic particles (μm) × (mass of the inorganic particles (g) / mass of ionizing radiation curable resin contained in the surface protective layer (g)) ÷ the above Surface protective layer thickness (μm)
Item 8. At least a decorative resin molded product comprising a molded resin and a surface protective layer provided on the molded resin,
The surface gloss value at an incident angle of 60 ° of the surface protective layer is 70 or more,
A decorative resin molded article comprising a cured product of an ionizing radiation curable resin composition, wherein the surface protective layer contains at least polycarbonate (meth) acrylate and inorganic particles having a primary particle diameter of 0.25 μm or less.
 本発明によれば、高光沢の意匠を備えており、さらに、高温環境における優れた耐傷付き性と、優れた三次元成形性を備える加飾シートを提供することができる。さらに、本発明によれば、当該加飾シートを利用した加飾樹脂成形品を提供することもできる。 According to the present invention, it is possible to provide a decorative sheet having a high gloss design, and further having excellent scratch resistance in a high temperature environment and excellent three-dimensional formability. Furthermore, according to the present invention, a decorative resin molded product using the decorative sheet can also be provided.
本発明の加飾シートの一例の略図的断面図である。It is a schematic sectional drawing of an example of the decorating sheet of this invention. 本発明の加飾シートの一例の略図的断面図である。It is a schematic sectional drawing of an example of the decorating sheet of this invention. 本発明の加飾樹脂成形品の一例の略図的断面図である。It is a schematic sectional drawing of an example of the decorating resin molded product of this invention.
1.加飾シート
 本発明の加飾シートは、少なくとも、基材シートと、前記基材シート上に設けられた表面保護層とを備える加飾シートであって、表面保護層の入射角60°における表面グロス値が70以上であり、表面保護層が、少なくともポリカーボネート(メタ)アクリレートと、一次粒子径が0.25μm以下の無機粒子とを含有する、電離放射線硬化性樹脂組成物の硬化物からなることを特徴とする。
1. Decorative sheet of the decorative sheet present invention includes at least a base sheet, a decorative sheet and a surface protective layer provided on the substrate sheet, the surface at an incident angle of 60 ° of the surface protective layer The gloss value is 70 or more, and the surface protective layer comprises a cured product of an ionizing radiation curable resin composition containing at least polycarbonate (meth) acrylate and inorganic particles having a primary particle diameter of 0.25 μm or less. It is characterized by.
 本発明の加飾シートにおいては、表面保護層の入射角60°における表面グロス値が70以上であり、表面保護層が、少なくともポリカーボネート(メタ)アクリレートと、一次粒子径が0.25μm以下の無機粒子とを含有する、電離放射線硬化性樹脂組成物の硬化物からなることにより、高光沢の意匠を備えており、さらに、高温環境における優れた耐傷付き性と、優れた三次元成形性を発揮することができる。すなわち、本発明の加飾シートは、三次元成形用加飾シートとして好適に使用することができる。以下、本発明の加飾シートについて詳述する。 In the decorative sheet of the present invention, the surface gloss value at an incident angle of 60 ° of the surface protective layer is 70 or more, the surface protective layer is at least polycarbonate (meth) acrylate, and an inorganic whose primary particle diameter is 0.25 μm or less. It consists of a cured product of ionizing radiation curable resin composition containing particles, and has a high gloss design, and also exhibits excellent scratch resistance in high temperature environments and excellent three-dimensional moldability. can do. That is, the decorative sheet of the present invention can be suitably used as a three-dimensional decorative sheet. Hereinafter, the decorative sheet of the present invention will be described in detail.
 なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。また、本明細書において、「(メタ)アクリレート」は、「アクリレートまたはメタクリレート」を意味し、他の類似するものも同様の意である。また、本発明の加飾シートは、絵柄層などを有していなくてもよく、例えば透明であってもよい。 In this specification, the numerical range indicated by “to” means “above” or “below”. For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less. Further, in this specification, “(meth) acrylate” means “acrylate or methacrylate”, and other similar things have the same meaning. Further, the decorative sheet of the present invention may not have a pattern layer or the like, and may be transparent, for example.
加飾シートの積層構造
 本発明の加飾シートは、少なくとも、基材シート1と、表面保護層2とが積層された積層構造を有する。本発明の加飾シートにおいて、表面保護層2とこれに接面する層との密着性を向上させるために、表面保護層2の基材シート1側の表面にはプライマー層3が設けられていてもよい。また、本発明の加飾シートには、樹脂成形品に装飾性を付与することなどを目的として、必要に応じて、絵柄層4を設けてもよい。さらに、基材シート1の色の変化やバラツキを抑制することなどを目的として、基材シート1と表面保護層2との間、絵柄層4を設ける場合であれば絵柄層4の裏面(成形樹脂層5側)などに、必要に応じて、隠蔽層(図示しない)を設けてもよい。さらに、成形樹脂層5側の最表面に、裏面接着層(図示しない)などを設けてもよい。
Laminated structure of decorative sheet The decorative sheet of the present invention has at least a laminated structure in which a base sheet 1 and a surface protective layer 2 are laminated. In the decorative sheet of the present invention, a primer layer 3 is provided on the surface of the surface protective layer 2 on the substrate sheet 1 side in order to improve adhesion between the surface protective layer 2 and the layer in contact with the surface protective layer 2. May be. Moreover, you may provide the pattern layer 4 as needed in the decorating sheet of this invention for the purpose of providing a decorative property to a resin molded product. Furthermore, if the pattern layer 4 is provided between the base sheet 1 and the surface protective layer 2 for the purpose of suppressing color change or variation of the base sheet 1, the back surface (molding) of the pattern layer 4 is provided. If necessary, a concealing layer (not shown) may be provided on the resin layer 5 side). Furthermore, you may provide a back surface adhesive layer (not shown) etc. in the outermost surface by the side of the molding resin layer 5. FIG.
 本発明の加飾シートの積層構造として、基材シート/表面保護層がこの順に積層された積層構造;基材シート/プライマー層/表面保護層がこの順に積層された積層構造;基材シート/絵柄層/プライマー層/表面保護層がこの順に積層された積層構造;基材シート/隠蔽層/絵柄層/プライマー層/表面保護層がこの順に積層された積層構造;裏面接着層/基材シート/隠蔽層/絵柄層/プライマー層/表面保護層がこの順に積層された積層構造などが挙げられる。図1に、本発明の加飾シートの積層構造の一態様として、基材シート/表面保護層がこの順に積層された加飾シートの一例の略図的断面図を示す。図2に、本発明の加飾シートの積層構造の一態様として、基材シート/絵柄層/プライマー層/表面保護層がこの順に積層された加飾シートの一例の略図的断面図を示す。 As a laminated structure of the decorative sheet of the present invention, a laminated structure in which a base sheet / surface protective layer is laminated in this order; a laminated structure in which a base sheet / primer layer / surface protective layer is laminated in this order; Laminated structure in which picture layer / primer layer / surface protective layer are laminated in this order; Laminated structure in which base sheet / hiding layer / picture layer / primer layer / surface protective layer are laminated in this order; Back surface adhesive layer / base sheet Examples include a laminated structure in which / hiding layer / pattern layer / primer layer / surface protective layer are laminated in this order. In FIG. 1, the schematic sectional drawing of an example of the decorating sheet | seat on which the base material sheet / surface protective layer was laminated | stacked in this order is shown as one aspect | mode of the laminated structure of the decorating sheet of this invention. In FIG. 2, the schematic sectional drawing of an example of the decorating sheet | seat in which the base material sheet / picture layer / primer layer / surface protective layer was laminated | stacked in this order as one aspect | mode of the laminated structure of the decorating sheet of this invention is shown.
加飾シートを形成する各層の組成
[基材シート1]
 基材シート1は、本発明の加飾シートにおいて支持体としての役割を果たす層である。基材シート1としては特に限定されず、加飾シートの用途に応じて繊維質シート、樹脂シート、金属シート、木質系基材シート等を使用できるが、加飾樹脂成形品の製造に用いられる場合など、三次元成形性が要求される場合は、樹脂シート(樹脂フィルム)により形成されていることが好ましい。基材シート1に使用される樹脂成分については、特に制限されず、三次元成形性や成形樹脂層との相性等に応じて適宜選定すればよいが、好ましくは、熱可塑性樹脂が挙げられる。熱可塑性樹脂としては、具体的には、アクリロニトリル-ブタジエン-スチレン樹脂(以下「ABS樹脂」と表記することもある);アクリロニトリル-スチレン-アクリル酸エステル樹脂;アクリル樹脂;ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂;ポリカーボネート樹脂;塩化ビニル系樹脂;ポリエチレンテレフタラート(PET)等が挙げられる。これらの中でも、アクリル樹脂またはABS樹脂が三次元成形性の観点から好ましい。基材シート1を形成する樹脂成分としては、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。また、基材シート1は、これらの単層シートで形成されていてもよく、また同種又は異種のシートによる複層シートで形成されていてもよい。
Composition of each layer forming the decorative sheet [base sheet 1]
The base sheet 1 is a layer that plays a role as a support in the decorative sheet of the present invention. It does not specifically limit as the base material sheet 1, Although a fiber sheet, a resin sheet, a metal sheet, a wood-type base material sheet etc. can be used according to the use of a decorating sheet, it is used for manufacture of a decorating resin molded product. In some cases, such as when three-dimensional formability is required, it is preferably formed of a resin sheet (resin film). The resin component used for the base sheet 1 is not particularly limited and may be appropriately selected according to the three-dimensional moldability, compatibility with the molded resin layer, and the like, and preferably a thermoplastic resin. Specific examples of the thermoplastic resin include acrylonitrile-butadiene-styrene resin (hereinafter sometimes referred to as “ABS resin”); acrylonitrile-styrene-acrylate resin; acrylic resin; polyolefins such as polypropylene and polyethylene Resin; polycarbonate resin; vinyl chloride resin; polyethylene terephthalate (PET). Among these, acrylic resin or ABS resin is preferable from the viewpoint of three-dimensional moldability. As a resin component which forms the base material sheet 1, only 1 type may be used and 2 or more types may be mixed and used. Moreover, the base material sheet 1 may be formed with these single layer sheets, and may be formed with the multilayer sheet | seat by the same kind or different kind | species sheet | seat.
 基材シート1は、隣接する層との密着性を向上させるために、必要に応じて、片面又は両面に酸化法や凹凸化法等の物理的又は化学的表面処理が施されていてもよい。基材シート1の表面処理として行われる酸化法としては、例えば、コロナ放電処理、プラズマ処理、クロム酸化処理、火炎処理、熱風処理、オゾン紫外線処理法等が挙げられる。また、基材シート1の表面処理として行われる凹凸化法としては、例えばサンドブラスト法、溶剤処理法等が挙げられる。これらの表面処理は、基材シート1を構成する樹脂成分の種類に応じて適宜選択されるが、効果及び操作性等の観点から、好ましくはコロナ放電処理法が挙げられる。 The base sheet 1 may be subjected to physical or chemical surface treatment such as an oxidation method or an unevenness method on one side or both sides as necessary in order to improve the adhesion with an adjacent layer. . Examples of the oxidation method performed as the surface treatment of the base sheet 1 include a corona discharge treatment, a plasma treatment, a chromium oxidation treatment, a flame treatment, a hot air treatment, and an ozone ultraviolet treatment method. Moreover, as the uneven | corrugated method performed as surface treatment of the base material sheet 1, a sandblasting method, a solvent processing method, etc. are mentioned, for example. These surface treatments are appropriately selected according to the type of the resin component constituting the base sheet 1, and preferably a corona discharge treatment method from the viewpoints of effects and operability.
 また、基材シート1には、着色剤などを配合した着色、色彩を整えるための塗装、デザイン性を付与するための模様の形成などがなされていてもよい。 Further, the base material sheet 1 may be colored with a colorant or the like, painted for adjusting the color, or formed with a pattern for imparting design.
 基材シート1の厚さは、用途に応じて選定されるが、通常、0.05~1.0mm程度であり、コスト等を考慮すると0.1~0.7mm程度が一般的である。 The thickness of the base sheet 1 is selected according to the use, but is usually about 0.05 to 1.0 mm, and is generally about 0.1 to 0.7 mm in consideration of cost and the like.
[表面保護層2]
 本発明において、表面保護層2は、加飾シートの表面を構成しており、少なくともポリカーボネート(メタ)アクリレートと、一次粒子径が0.25μm以下の無機粒子とを含有する、電離放射線硬化性樹脂組成物の硬化物からなる。
[Surface protective layer 2]
In the present invention, the surface protective layer 2 constitutes the surface of the decorative sheet and contains at least a polycarbonate (meth) acrylate and inorganic particles having a primary particle diameter of 0.25 μm or less, and an ionizing radiation curable resin. It consists of the hardened | cured material of a composition.
 ここで、電離放射線硬化性樹脂組成物とは、電離放射線硬化性樹脂を含有する組成物をいう。電離放射線硬化性樹脂とは、電磁波又は荷電粒子線の中で分子を架橋、重合させ得るエネルギー量子を有するもの、すなわち、紫外線又は電子線などを照射することにより、架橋、硬化する樹脂を指す。 Here, the ionizing radiation curable resin composition refers to a composition containing an ionizing radiation curable resin. The ionizing radiation curable resin refers to a resin having an energy quantum capable of crosslinking and polymerizing molecules in an electromagnetic wave or a charged particle beam, that is, a resin that is crosslinked and cured by irradiation with ultraviolet rays or electron beams.
 本発明の加飾シートにおいては、高光沢の意匠とする観点から、表面保護層の入射角60°における表面グロス値が70以上である。当該表面グロス値としては、好ましくは75~150程度、より好ましくは80~120程度が挙げられる。 In the decorative sheet of the present invention, the surface gloss value at an incident angle of 60 ° of the surface protective layer is 70 or more from the viewpoint of a high gloss design. The surface gloss value is preferably about 75 to 150, more preferably about 80 to 120.
 表面グロス値は、加飾シートの表面保護層の表面について測定された値であり、具体的な測定方法は、実施例に記載の方法を採用することができる。 The surface gloss value is a value measured on the surface of the surface protective layer of the decorative sheet, and a specific measurement method can employ the method described in the examples.
 また、本発明の加飾シートにおいては、高光沢の意匠としつつ、高温環境における優れた耐傷付き性と、優れた三次元成形性を発揮させる観点から、温度20℃の環境における表面保護層2の表面と、JIS L0803:2011に規定された綿布3-1号との間の動摩擦係数が、0.10以下であることが好ましく、0.01~0.08程度であることがより好ましく、0.01~0.05程度であることがさらに好ましい。 In the decorative sheet of the present invention, the surface protective layer 2 in an environment at a temperature of 20 ° C. from the viewpoint of exhibiting excellent scratch resistance in a high temperature environment and excellent three-dimensional formability while having a high gloss design. Is preferably 0.10 or less, more preferably about 0.01 to 0.08, and the dynamic friction coefficient between the surface of the cotton and the cotton cloth 3-1 defined in JIS L0803: 2011 More preferably, it is about 0.01 to 0.05.
 同様の観点から、温度60℃の環境における表面保護層2の表面と、JIS L0803:2011に規定された綿布3-1号との間の動摩擦係数は、0.30以下であることが好ましく、0.05~0.25程度であることがより好ましく、0.05~0.20程度であることがさらに好ましい。 From the same viewpoint, the coefficient of dynamic friction between the surface of the surface protective layer 2 in an environment at a temperature of 60 ° C. and the cotton cloth 3-1 defined in JIS L0803: 2011 is preferably 0.30 or less. More preferably, it is about 0.05 to 0.25, and more preferably about 0.05 to 0.20.
 温度20℃または温度60℃における動摩擦係数は、加飾シートの表面保護層の表面について測定された値であり、具体的には、以下の方法により測定された値である。
荷重変動型摩擦摩耗試験システムを用いて、表面温度を20℃または60℃に保持した表面保護層の水平表面に、JIS L0803:2011の綿布3-1号を接触させ、垂直荷重500gf、速度3mm/secで水平方向に摩擦した際の動摩擦係数を測定する。
The dynamic friction coefficient at a temperature of 20 ° C. or a temperature of 60 ° C. is a value measured for the surface of the surface protective layer of the decorative sheet, and specifically, a value measured by the following method.
Using a load variation type frictional wear test system, JIS L0803: 2011 cotton cloth 3-1 was brought into contact with the horizontal surface of the surface protective layer whose surface temperature was kept at 20 ° C. or 60 ° C., vertical load 500 gf, speed 3 mm. Measure the dynamic friction coefficient when rubbing in the horizontal direction at / sec.
 また、耐傷付き性を向上させつつ、高温環境下での成形による表面保護層のクラックをより一層効果的に抑制し、さらに優れた三次元成形性を発揮する観点からは、下記式によって算出される、表面保護層2中の無機粒子の含有量の指標値が、2.5×10-4~25×10-4以下の範囲にあることが好ましい。当該指標としては、より好ましくは5.0×10-4~20.0×10-4程度、さらに好ましくは5.0×10-4~15.0×10-4程度が挙げられる。 In addition, from the viewpoint of further effectively suppressing cracking of the surface protective layer due to molding in a high temperature environment while improving scratch resistance, and further exhibiting excellent three-dimensional formability, it is calculated by the following formula: The index value of the content of inorganic particles in the surface protective layer 2 is preferably in the range of 2.5 × 10 −4 to 25 × 10 −4 or less. The index is preferably about 5.0 × 10 −4 to 20.0 × 10 −4 , more preferably about 5.0 × 10 −4 to 15.0 × 10 −4 .
(表面保護層中の前記無機粒子の含有量の指標値)
 無機粒子の含有量の指標値=前記無機粒子の一次粒子径(μm)×(前記無機粒子の質量(g)/前記表面保護層に含まれる電離放射線硬化性樹脂の質量(g))÷前記表面保護層の厚み(μm)
(Index value of the content of the inorganic particles in the surface protective layer)
Index value of content of inorganic particles = primary particle diameter of the inorganic particles (μm) × (mass of the inorganic particles (g) / mass of ionizing radiation curable resin contained in the surface protective layer (g)) ÷ the above Surface protective layer thickness (μm)
 無機粒子としては、特に制限されないが、高温環境における優れた耐傷付き性と、優れた三次元成形性を発揮する観点からは、シリカ粒子(コロイダルシリカ、ヒュームドシリカ、沈降性シリカなど)、アルミナ粒子、ジルコニア粒子、チタニア粒子、酸化亜鉛粒子などの金属酸化物粒子が好ましく挙げられ、シリカ粒子及びアルミナ粒子が好ましく、特にシリカ粒子が好ましい。 The inorganic particles are not particularly limited, but silica particles (colloidal silica, fumed silica, precipitated silica, etc.), alumina from the viewpoint of exhibiting excellent scratch resistance in a high temperature environment and excellent three-dimensional formability. Preferred examples include metal oxide particles such as particles, zirconia particles, titania particles, and zinc oxide particles, silica particles and alumina particles are preferred, and silica particles are particularly preferred.
 また、高光沢の意匠とする観点から、無機粒子の一次粒子径としては、0.25μm以下であれば特に制限されないが、前記の観点からは、好ましくは0.01~0.15μm程度、より好ましくは0.01~0.10μm程度が挙げられる。また、耐傷付き性を向上させつつ、高温環境下での成形による表面保護層のクラックをより一層効果的に抑制し、さらに優れた三次元成形性を発揮する観点からは、好ましくは0.05~0.20μm程度、より好ましくは0.05~0.10μm程度が挙げられる。なお、無機粒子の一次粒子径は、表面保護層の厚み方向の断面を、加速電圧3.0kV、拡大倍率5万倍の条件にて走査型電子顕微鏡(SEM)で観察し、無作為に選択した100個の無機粒子の非凝集体について粒子径を測定した平均値を意味する。 Further, from the viewpoint of a high gloss design, the primary particle diameter of the inorganic particles is not particularly limited as long as it is 0.25 μm or less, but from the above viewpoint, it is preferably about 0.01 to 0.15 μm. Preferably, it is about 0.01 to 0.10 μm. In addition, from the viewpoint of further effectively suppressing cracks in the surface protective layer due to molding in a high temperature environment while improving scratch resistance, further exhibiting excellent three-dimensional formability, preferably 0.05 About 0.20 μm, more preferably about 0.05 to 0.10 μm. The primary particle size of the inorganic particles is randomly selected by observing a cross section in the thickness direction of the surface protective layer with a scanning electron microscope (SEM) under the conditions of an acceleration voltage of 3.0 kV and an enlargement magnification of 50,000 times. The average value which measured the particle diameter about the non-aggregate of 100 inorganic particles which were done is meant.
 表面保護層2を形成する電離放射線硬化性樹脂組成物に含まれる、ポリカーボネート(メタ)アクリレート樹脂と、無機粒子との質量比としては、特に制限されないが、前記の観点からは、好ましくは100:5~100:50程度、より好ましくは100:10~100:45程度、さらに好ましくは100:15~100:40程度が挙げられる。 The mass ratio of the polycarbonate (meth) acrylate resin and the inorganic particles contained in the ionizing radiation curable resin composition forming the surface protective layer 2 is not particularly limited, but from the above viewpoint, preferably 100: Examples include about 5 to 100: 50, more preferably about 100: 10 to 100: 45, and still more preferably about 100: 15 to 100: 40.
 また、表面保護層2を形成する電離放射線硬化性樹脂組成物は、少なくともポリカーボネート(メタ)アクリレートと多官能(メタ)アクリレートとを含むことが好ましい。さらに、ポリカーボネート(メタ)アクリレートと多官能(メタ)アクリレートの質量比(ポリカーボネート(メタ)アクリレート:多官能(メタ)アクリレート)としては、98:2~70:30程度であることが好ましい。ポリカーボネート(メタ)アクリレートと多官能(メタ)アクリレートの質量比がこのような範囲にあることにより、加飾シートの耐傷付き性を向上させつつ、三次元成形性を向上させることができる。 The ionizing radiation curable resin composition forming the surface protective layer 2 preferably contains at least polycarbonate (meth) acrylate and polyfunctional (meth) acrylate. Furthermore, the mass ratio of the polycarbonate (meth) acrylate to the polyfunctional (meth) acrylate (polycarbonate (meth) acrylate: polyfunctional (meth) acrylate) is preferably about 98: 2 to 70:30. When the mass ratio of the polycarbonate (meth) acrylate and the polyfunctional (meth) acrylate is in such a range, the three-dimensional formability can be improved while improving the scratch resistance of the decorative sheet.
 ポリカーボネート(メタ)アクリレートは、特に限定されず、ポリマー主鎖にカーボネート結合を有し、且つ末端あるいは側鎖に(メタ)アクリレートを有するものであれば良い。この(メタ)アクリレートは、架橋、硬化する観点から、2官能以上有することが好ましい。ポリカーボネート(メタ)アクリレートは、例えば、ポリカーボネート骨格を有するウレタン(メタ)アクリレートなどであってもよい。 The polycarbonate (meth) acrylate is not particularly limited as long as it has a carbonate bond in the polymer main chain and (meth) acrylate in the terminal or side chain. This (meth) acrylate preferably has two or more functional groups from the viewpoint of crosslinking and curing. The polycarbonate (meth) acrylate may be, for example, urethane (meth) acrylate having a polycarbonate skeleton.
 上記のポリカーボネート(メタ)アクリレートは、例えば、ポリカーボネートポリオールの水酸基の一部又は全てを(メタ)アクリレート(アクリル酸エステル又はメタクリル酸エステル)に変換して得られる。このエステル化反応は、通常のエステル化反応によって行うことができる。例えば、1)ポリカーボネートポリオールとアクリル酸ハライド又はメタクリル酸ハライドとを、塩基存在下に縮合させる方法、2)ポリカーボネートポリオールとアクリル酸無水物又はメタクリル酸無水物とを、触媒存在下に縮合させる方法、あるいは3)ポリカーボネートポリオールとアクリル酸又はメタクリル酸とを、酸触媒存在下に縮合させる方法などが挙げられる。 The above polycarbonate (meth) acrylate is obtained, for example, by converting part or all of the hydroxyl groups of polycarbonate polyol into (meth) acrylate (acrylic acid ester or methacrylic acid ester). This esterification reaction can be performed by a normal esterification reaction. For example, 1) a method of condensing polycarbonate polyol and acrylic acid halide or methacrylic acid halide in the presence of a base, 2) a method of condensing polycarbonate polyol and acrylic acid anhydride or methacrylic acid anhydride in the presence of a catalyst, Or 3) the method of condensing polycarbonate polyol and acrylic acid or methacrylic acid in the presence of an acid catalyst.
 上記のポリカーボネートポリオールは、ポリマー主鎖にカーボネート結合を有し、末端あるいは側鎖に2個以上、好ましくは2~50個の、より好ましくは2~10個の水酸基を有する重合体である。このポリカーボネートポリオールの代表的な製造方法は、ジオール化合物(A)、3価以上の多価アルコール(B)、及びカルボニル成分となる化合物(C)とから重縮合反応による方法である。 The above-mentioned polycarbonate polyol is a polymer having a carbonate bond in the polymer main chain and having 2 or more, preferably 2 to 50, more preferably 2 to 10 hydroxyl groups in the terminal or side chain. A typical method for producing this polycarbonate polyol is a method by a polycondensation reaction from a diol compound (A), a trihydric or higher polyhydric alcohol (B), and a compound (C) to be a carbonyl component.
 原料として用いられるジオール化合物(A)は、一般式 HO-R1-OHで表される。ここで、R1は、炭素数2~20の2価炭化水素基であって、基中にエーテル結合を含んでいても良い。例えば、直鎖、又は分岐状のアルキレン基、シクロヘキシレン基、フェニレン基である。 The diol compound (A) used as a raw material is represented by the general formula HO—R 1 —OH. Here, R 1 is a divalent hydrocarbon group having 2 to 20 carbon atoms, and the group may contain an ether bond. For example, a linear or branched alkylene group, a cyclohexylene group, or a phenylene group.
 ジオール化合物の具体例としては、エチレングリコール、1,2-プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコール、ネオペンチルグリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、ネオペンチルグリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。これらジオールは、それを単独で用いても、あるいは2種以上を混合して用いても良い。 Specific examples of the diol compound include ethylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol, neopentyl glycol, 1,3-propanediol, 1,4-butanediol, , 5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,3-bis (2-hydroxyethoxy) benzene, 1,4-bis (2 -Hydroxyethoxy) benzene, neopentyl glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like. These diols may be used alone or in admixture of two or more.
 また、3価以上の多価アルコール(B)の例としては、トリメチロールプルパン、トリメチロールエタン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、グリセリン、ソルビトールなどのアルコール類を挙げることができる。さらに、これらの多価アルコールの水酸基に対して、1~5当量のエチレンオキシド、プロピレンオキシド、あるいはその他のアルキレンオキシドを付加させた水酸基を有するアルコール類であっても良い。多価アルコールは、これらを単独で用いても、あるいは2種以上を混合して用いても良い。 Also, examples of the trihydric or higher polyhydric alcohol (B) include alcohols such as trimethylolpurpan, trimethylolethane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, glycerin, sorbitol. Further, alcohols having a hydroxyl group obtained by adding 1 to 5 equivalents of ethylene oxide, propylene oxide, or other alkylene oxide to the hydroxyl group of these polyhydric alcohols may be used. These polyhydric alcohols may be used alone or in combination of two or more.
 カルボニル成分となる化合物(C)は、炭酸ジエステル、ホスゲン、又はこれらの等価体の中から選ばれるいずれかの化合物である。その具体例としては、炭酸ジメチル、炭酸ジエチル、炭酸ジイソプロピル、炭酸ジフェニル、エチレンカーボネート、プロピレンカーボネートなどの炭酸ジエステル類、ホスゲン、あるいはクロロギ酸メチル、クロロギ酸エチル、クロロギ酸フェニルなどのハロゲン化ギ酸エステル類などが挙げられる。これらは、単独で用いても、あるいは2種以上を混合して用いても良い。 The compound (C) serving as the carbonyl component is any compound selected from carbonic acid diester, phosgene, and equivalents thereof. Specific examples thereof include carbonic acid diesters such as dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, diphenyl carbonate, ethylene carbonate and propylene carbonate, phosgene, and halogenated formates such as methyl chloroformate, ethyl chloroformate and phenyl chloroformate. Etc. These may be used alone or in admixture of two or more.
 ポリカーボネートポリオールは、前記したジオール化合物(A)、3価以上の多価アルコール(B)、及びカルボニル成分となる化合物(C)とを、一般的な条件下で重縮合反応することにより合成される。例えば、ジオール化合物(A)と多価アルコール(B)との仕込みモル比は、50:50~99:1の範囲にあることが好ましく、また、カルボニル成分となる化合物(C)のジオール化合物(A)と多価アルコール(B)に対する仕込みモル比は、ジオール化合物及び多価アルコールの持つ水酸基に対して、0.2~2当量であることが好ましい。 The polycarbonate polyol is synthesized by subjecting the above-described diol compound (A), a trihydric or higher polyhydric alcohol (B), and a compound (C) to be a carbonyl component to a polycondensation reaction under general conditions. . For example, the charged molar ratio of the diol compound (A) to the polyhydric alcohol (B) is preferably in the range of 50:50 to 99: 1, and the diol compound (C) as the carbonyl component ( The charged molar ratio of A) to the polyhydric alcohol (B) is preferably 0.2 to 2 equivalents relative to the hydroxyl groups of the diol compound and polyhydric alcohol.
 前記の仕込み割合で重縮合反応した後のポリカーボネートポリオール中に存在する水酸基の当量数(eq./mol)は、1分子中に平均して3以上、好ましくは3~50、より好ましくは3~20である。この範囲であると、後述するエステル化反応によって必要な量の(メタ)アクリレート基が形成され、またポリカーボネート(メタ)アクリレート樹脂に適度な可撓性が付与される。なお、このポリカーボネートポリオールの末端官能基は、通常はOH基であるが、その一部がカーボネート基であっても良い。 The number of equivalents (eq./mol) of hydroxyl groups present in the polycarbonate polyol after the polycondensation reaction at the above charge ratio is 3 or more on average in one molecule, preferably 3 to 50, more preferably 3 to 20. Within this range, a necessary amount of (meth) acrylate groups are formed by the esterification reaction described later, and moderate flexibility is imparted to the polycarbonate (meth) acrylate resin. The terminal functional group of this polycarbonate polyol is usually an OH group, but a part thereof may be a carbonate group.
 以上説明したポリカーボネートポリオールの製造方法は、例えば、特開昭64-1726号公報に記載されている。また、このポリカーボネートポリオールは、特開平3-181517号公報に記載されているように、ポリカーボネートジオールと3価以上の多価アルコールとのエステル交換反応によっても製造することができる。 The method for producing the polycarbonate polyol described above is described in, for example, JP-A No. 64-1726. The polycarbonate polyol can also be produced by an ester exchange reaction between a polycarbonate diol and a trihydric or higher polyhydric alcohol as described in JP-A-3-181517.
 また、上記のポリカーボネート骨格を有するウレタン(メタ)アクリレートは、例えば、ポリカーボネートポリオールと、有機ポリイソシアネート化合物と、ヒドロキシ(メタ)アクリレートとを反応させることにより容易に製造することができる。 The urethane (meth) acrylate having the above polycarbonate skeleton can be easily produced by reacting, for example, polycarbonate polyol, an organic polyisocyanate compound, and hydroxy (meth) acrylate.
 本発明に用いられるポリカーボネート(メタ)アクリレートの分子量は、GPC分析によって測定され、かつ標準ポリスチレンで換算された重量平均分子量が、500以上であることが好ましく、1,000以上であることがより好ましく、2,000を超えることがさらに好ましい。ポリカーボネート(メタ)アクリレートの重量平均分子量の上限は特に制限されないが、粘度が高くなり過ぎないように制御する観点から100,000以下が好ましく、50,000以下がより好ましい。耐傷付き性と三次元成形性とを両立させる観点から、さらに好ましくは、2,000を超え60,000以下であり、特に好ましくは、5,000~40,000である。 The molecular weight of the polycarbonate (meth) acrylate used in the present invention is preferably 500 or more, more preferably 1,000 or more, as measured by GPC analysis and converted to standard polystyrene. More preferably, it exceeds 2,000. The upper limit of the weight average molecular weight of the polycarbonate (meth) acrylate is not particularly limited, but is preferably 100,000 or less and more preferably 50,000 or less from the viewpoint of controlling the viscosity not to be too high. From the viewpoint of achieving both scratch resistance and three-dimensional formability, it is more preferably more than 2,000 and not more than 60,000, and particularly preferably 5,000 to 40,000.
 また、多官能(メタ)アクリレートは、2官能以上の(メタ)アクリレートであれば良く、特に制限はない。ただし、硬化性の観点から3官能以上の(メタ)アクリレートが好ましい。ここで、2官能とは、分子内にエチレン性不飽和結合{(メタ)アクリロイル基}を2個有することをいう。 The polyfunctional (meth) acrylate is not particularly limited as long as it is a bifunctional or higher (meth) acrylate. However, trifunctional or higher functional (meth) acrylates are preferred from the viewpoint of curability. Here, bifunctional means having two ethylenically unsaturated bonds {(meth) acryloyl group} in the molecule.
 多官能(メタ)アクリレートは、オリゴマー及びモノマーのいずれでも良いが、耐傷付き性向上の観点から多官能(メタ)アクリレートオリゴマーが好ましい。 The polyfunctional (meth) acrylate may be either an oligomer or a monomer, but a polyfunctional (meth) acrylate oligomer is preferable from the viewpoint of improving scratch resistance.
 上記の多官能(メタ)アクリレートオリゴマーとしては、例えばウレタン(メタ)アクリレート系オリゴマー、エポキシ(メタ)アクリレート系オリゴマー、ポリエステル(メタ)アクリレート系オリゴマー、ポリエーテル(メタ)アクリレート系オリゴマーなどが挙げられる。ここで、ウレタン(メタ)アクリレート系オリゴマーは、例えば、ポリエーテルポリオールやポリエステルポリオールとポリイソシアネートの反応によって得られるポリウレタンオリゴマーを、(メタ)アクリル酸でエステル化することにより得ることができる。エポキシ(メタ)アクリレート系オリゴマーは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂のオキシラン環に、(メタ)アクリル酸を反応させエステル化することにより得ることができる。また、このエポキシ(メタ)アクリレート系オリゴマーを部分的に二塩基性カルボン酸無水物で変性したカルボキシル変性型のエポキシ(メタ)アクリレートオリゴマーも用いることができる。ポリエステル(メタ)アクリレート系オリゴマーとしては、例えば多価カルボン酸と多価アルコールの縮合によって得られる両末端に水酸基を有するポリエステルオリゴマーの水酸基を(メタ)アクリル酸でエステル化することにより、あるいは、多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマーの末端の水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。ポリエーテル(メタ)アクリレート系オリゴマーは、ポリエーテルポリオールの水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。 Examples of the polyfunctional (meth) acrylate oligomer include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyester (meth) acrylate oligomers, and polyether (meth) acrylate oligomers. Here, the urethane (meth) acrylate oligomer can be obtained, for example, by esterifying a polyurethane oligomer obtained by the reaction of polyether polyol or polyester polyol and polyisocyanate with (meth) acrylic acid. The epoxy (meth) acrylate oligomer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it. Further, a carboxyl-modified epoxy (meth) acrylate oligomer obtained by partially modifying this epoxy (meth) acrylate oligomer with a dibasic carboxylic acid anhydride can also be used. Examples of polyester (meth) acrylate oligomers include esterification of hydroxyl groups of polyester oligomers having hydroxyl groups at both ends obtained by condensation of polycarboxylic acid and polyhydric alcohol with (meth) acrylic acid, It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a carboxylic acid with (meth) acrylic acid. The polyether (meth) acrylate oligomer can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid.
 さらに、他の多官能(メタ)アクリレートオリゴマーとしては、ポリブタジエンオリゴマーの側鎖に(メタ)アクリレート基をもつ疎水性の高いポリブタジエン(メタ)アクリレート系オリゴマー、主鎖にポリシロキサン結合をもつシリコーン(メタ)アクリレート系オリゴマー、小さな分子内に多くの反応性基をもつアミノプラスト樹脂を変性したアミノプラスト樹脂(メタ)アクリレート系オリゴマーなどが挙げられる。 Furthermore, other polyfunctional (meth) acrylate oligomers include polybutadiene (meth) acrylate oligomers with high hydrophobicity having (meth) acrylate groups in the side chain of polybutadiene oligomers, and silicones (meta-methacrylate) having polysiloxane bonds in the main chain. ) Acrylate oligomers, aminoplast resin (meth) acrylate oligomers obtained by modifying aminoplast resins having many reactive groups in small molecules.
 また、上記の多官能(メタ)アクリレートモノマーとしては、具体的にはエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキシド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。 Specific examples of the polyfunctional (meth) acrylate monomer include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6- Hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified di Cyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane Li (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, propionic acid modified dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified tri Methylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, propionic acid modified dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ethylene oxide modified dipentaerythritol hexa (meth) acrylate, caprolactone Examples thereof include modified dipentaerythritol hexa (meth) acrylate.
 多官能(メタ)アクリレートとしては、シリコーン変性ウレタン(メタ)アクリレートオリゴマーが好ましい。本発明においては、電離放射線硬化性樹脂組成物が、ポリカーボネート(メタ)アクリレートに加えて、シリコーン変性ウレタン(メタ)アクリレートオリゴマーをさらに含有する電離放射線硬化性樹脂組成物の硬化物からなることが好ましい。 As the polyfunctional (meth) acrylate, a silicone-modified urethane (meth) acrylate oligomer is preferable. In the present invention, the ionizing radiation curable resin composition is preferably composed of a cured product of an ionizing radiation curable resin composition further containing a silicone-modified urethane (meth) acrylate oligomer in addition to the polycarbonate (meth) acrylate. .
 以上述べた多官能性(メタ)アクリレートオリゴマー及び多官能性(メタ)アクリレートモノマーは1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。 The polyfunctional (meth) acrylate oligomers and polyfunctional (meth) acrylate monomers described above may be used alone or in combination of two or more.
 本発明においては、前記多官能性(メタ)アクリレートとともに、その粘度を低下させるなどの目的で、単官能性(メタ)アクリレートを、本発明の目的を損なわない範囲で適宜併用することができる。単官能性(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、(メタ)アクリロイルモルホリンなどが挙げられる。これらの単官能性(メタ)アクリレートは1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。 In the present invention, a monofunctional (meth) acrylate can be used in combination with the polyfunctional (meth) acrylate, as long as the object of the present invention is not impaired, for the purpose of reducing the viscosity. Examples of monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl ( Examples include meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, and (meth) acryloylmorpholine. These monofunctional (meth) acrylates may be used alone or in combination of two or more.
 電離放射線硬化性樹脂組成物として紫外線硬化性樹脂組成物を用いる場合には、光重合用開始剤を紫外線硬化性樹脂100質量部に対して、0.1~5質量部程度添加することが望ましい。光重合用開始剤としては、従来慣用されているものから適宜選択することができ、特に限定されず、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-2(ヒドロキシ-2-プロピル)ケトン、ベンゾフェノン、p-フェニルベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、ジクロロベンゾフェノン、2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリーブチルアントラキノン、2-アミノアントラキノン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタールなどが挙げられる。 When an ultraviolet curable resin composition is used as the ionizing radiation curable resin composition, it is desirable to add about 0.1 to 5 parts by mass of a photopolymerization initiator with respect to 100 parts by mass of the ultraviolet curable resin. . The initiator for photopolymerization can be appropriately selected from those conventionally used, and is not particularly limited. For example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin Isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- Hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2 (hydroxy-2-propyl) ketone, Nzophenone, p-phenylbenzophenone, 4,4′-diethylaminobenzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiarybutylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone, 2-ethylthioxanthone, Examples include 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, benzyl dimethyl ketal, and acetophenone dimethyl ketal.
 また、光増感剤としては、例えばp-ジメチル安息香酸エステル、第三級アミン類、チオール系増感剤などを用いることができる。 As the photosensitizer, for example, p-dimethylbenzoic acid ester, tertiary amines, thiol sensitizers and the like can be used.
 本発明においては、電離放射線硬化性樹脂組成物として電子線硬化性樹脂組成物を用いることが好ましい。電子線硬化性樹脂組成物は無溶剤化が可能であって、環境や健康の観点からより好ましく、かつ、光重合用開始剤を必要とせず、安定な硬化特性が得られるからである。 In the present invention, it is preferable to use an electron beam curable resin composition as the ionizing radiation curable resin composition. This is because the electron beam curable resin composition can be made solvent-free, is more preferable from the viewpoint of environment and health, and does not require a photopolymerization initiator, and can provide stable curing characteristics.
 また本発明における表面保護層2を構成する電離放射線硬化性樹脂組成物には、得られる硬化樹脂層の所望物性に応じて、前記の無機粒子に加えて、各種添加剤をさらに配合することができる。この添加剤としては、例えば耐候性改善剤、耐摩耗性向上剤、重合禁止剤、架橋剤、赤外線吸収剤、帯電防止剤、接着性向上剤、レベリング剤、チクソ性付与剤、カップリング剤、可塑剤、消泡剤、充填剤、溶剤、着色剤などが挙げられる。 Moreover, in addition to the said inorganic particle, various additives can further be mix | blended with the ionizing radiation-curable resin composition which comprises the surface protective layer 2 in this invention according to the desired physical property of the cured resin layer obtained. it can. Examples of this additive include a weather resistance improver, an abrasion resistance improver, a polymerization inhibitor, a crosslinking agent, an infrared absorber, an antistatic agent, an adhesion improver, a leveling agent, a thixotropic agent, a coupling agent, A plasticizer, an antifoamer, a filler, a solvent, a coloring agent, etc. are mentioned.
 ここで、耐候性改善剤としては、紫外線吸収剤や光安定剤を用いることができる。紫外線吸収剤は、無機系、有機系のいずれでも良く、無機系紫外線吸収剤としては、平均粒径が5~120nm程度の二酸化チタン、酸化セリウム、酸化亜鉛などを好ましく用いることができる。また、有機系紫外線吸収剤としては、例えばベンゾトリアゾール系、具体的には、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾール、ポリエチレングリコールの3-[3-(ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル]プロピオン酸エステルなどが挙げられる。一方、光安定剤としては、例えばヒンダードアミン系、具体的には2-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2’-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレートなどが挙げられる。また、紫外線吸収剤や光安定剤として、分子内に(メタ)アクリロイル基などの重合性基を有する反応性の紫外線吸収剤や光安定剤を用いることもできる。また、本発明のポリマーの表面保護層としての性能(耐傷付き性と三次元成形性)を損なわない程度に共重合して使用することもできる。 Here, as the weather resistance improving agent, an ultraviolet absorber or a light stabilizer can be used. The ultraviolet absorber may be either inorganic or organic. As the inorganic ultraviolet absorber, titanium dioxide, cerium oxide, zinc oxide or the like having an average particle size of about 5 to 120 nm can be preferably used. Examples of organic ultraviolet absorbers include benzotriazoles, specifically 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-tert- And amylphenyl) benzotriazole, 3- [3- (benzotriazol-2-yl) -5-tert-butyl-4-hydroxyphenyl] propionic acid ester of polyethylene glycol, and the like. On the other hand, examples of light stabilizers include hindered amines, specifically 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2′-n-butylmalonate bis (1,2,2). , 6,6-pentamethyl-4-piperidyl), bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl)- 1,2,3,4-butanetetracarboxylate and the like. Further, as the ultraviolet absorber or light stabilizer, a reactive ultraviolet absorber or light stabilizer having a polymerizable group such as a (meth) acryloyl group in the molecule can be used. Moreover, it can also be copolymerized and used to such an extent that the performance (scratch resistance and three-dimensional moldability) as a surface protective layer of the polymer of this invention is not impaired.
 重合禁止剤としては、例えばハイドロキノン、p-ベンゾキノン、ハイドロキノンモノメチルエーテル、ピロガロール、t-ブチルカテコールなどが、架橋剤としては、例えばポリイソシアネート化合物、エポキシ化合物、金属キレート化合物、アジリジン化合物、オキサゾリン化合物などが用いられる。 Examples of the polymerization inhibitor include hydroquinone, p-benzoquinone, hydroquinone monomethyl ether, pyrogallol, and t-butylcatechol. Examples of the crosslinking agent include a polyisocyanate compound, an epoxy compound, a metal chelate compound, an aziridine compound, and an oxazoline compound. Used.
 充填剤としては、例えば硫酸バリウム、タルク、クレー、炭酸カルシウム、水酸化アルミニウムなどが用いられる。 As the filler, for example, barium sulfate, talc, clay, calcium carbonate, aluminum hydroxide and the like are used.
 着色剤としては、例えばキナクリドンレッド、イソインドリノンイエロー、フタロシアニンブルー、フタロシアニングリーン、酸化チタン、カーボンブラックなどの公知の着色用顔料などが用いられる。 As the colorant, for example, known coloring pigments such as quinacridone red, isoindolinone yellow, phthalocyanine blue, phthalocyanine green, titanium oxide, and carbon black are used.
 赤外線吸収剤としては、例えば、ジチオール系金属錯体、フタロシアニン系化合物、ジインモニウム化合物などが用いられる。 As the infrared absorber, for example, a dithiol metal complex, a phthalocyanine compound, a diimmonium compound, or the like is used.
 表面保護層2の形成は上述の電離放射線硬化性樹脂組成物を含有する塗工液を調製し、これを塗布し、架橋硬化することで得ることができる。なお、塗工液の粘度は、後述の塗工方式により、基材の表面に未硬化樹脂層を形成し得る粘度であれば良く、特に制限はない。 The formation of the surface protective layer 2 can be obtained by preparing a coating liquid containing the above-mentioned ionizing radiation curable resin composition, applying it, and crosslinking and curing it. In addition, the viscosity of a coating liquid should just be a viscosity which can form a non-hardened resin layer on the surface of a base material by the below-mentioned coating system, and there is no restriction | limiting in particular.
 本発明においては、調製された塗工液を、硬化後の厚さが1~1000μmになるように、グラビアコート、バーコート、ロールコート、リバースロールコート、コンマコートなどの公知の方式、好ましくはグラビアコートにより塗工し、未硬化樹脂層を形成させる。 In the present invention, the prepared coating solution is a known method such as gravure coating, bar coating, roll coating, reverse roll coating, comma coating, etc., preferably so that the thickness after curing is 1-1000 μm, preferably It is applied by gravure coating to form an uncured resin layer.
 本発明においては、このようにして形成された未硬化樹脂層に、電子線、紫外線などの電離放射線を照射して該未硬化樹脂層を硬化させる。ここで、電離放射線として電子線を用いる場合、その加速電圧については、用いる樹脂や層の厚みに応じて適宜選定し得るが、通常加速電圧70~300kV程度で未硬化樹脂層を硬化させることが好ましい。 In the present invention, the uncured resin layer thus formed is irradiated with ionizing radiation such as an electron beam and ultraviolet rays to cure the uncured resin layer. Here, when an electron beam is used as the ionizing radiation, the acceleration voltage can be appropriately selected according to the resin to be used and the thickness of the layer, but the uncured resin layer is usually cured at an acceleration voltage of about 70 to 300 kV. preferable.
 なお、電子線の照射においては、加速電圧が高いほど透過能力が増加するため、基材シート1として電子線により劣化する基材を使用する場合には、電子線の透過深さと樹脂層の厚みが実質的に等しくなるように、加速電圧を選定することにより、基材シート1への余分な電子線の照射を抑制することができ、過剰電子線による基材の劣化を最小限にとどめることができる。 In addition, in electron beam irradiation, the transmission capability increases as the acceleration voltage increases. Therefore, when a base material that deteriorates due to an electron beam is used as the base material sheet 1, the penetration depth of the electron beam and the thickness of the resin layer are used. By selecting the accelerating voltage so that the two are substantially equal, it is possible to suppress the irradiation of the extra electron beam to the base sheet 1 and to minimize the deterioration of the base material due to the excess electron beam. Can do.
 また、照射線量は、樹脂層の架橋密度が飽和する量が好ましく、通常5~300kGy(0.5~30Mrad)、好ましくは10~50kGy(1~5Mrad)の範囲で選定される。 The irradiation dose is preferably such that the crosslinking density of the resin layer is saturated, and is usually selected in the range of 5 to 300 kGy (0.5 to 30 Mrad), preferably 10 to 50 kGy (1 to 5 Mrad).
 さらに、電子線源としては、特に制限はなく、例えばコックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型などの各種電子線加速器を用いることができる。 Further, the electron beam source is not particularly limited. For example, various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type. Can be used.
 電離放射線として紫外線を用いる場合には、波長190~380nmの紫外線を含むものを放射する。紫外線源としては特に制限はなく、例えば高圧水銀燈、低圧水銀燈、メタルハライドランプ、カーボンアーク燈などが用いられる。 When ultraviolet rays are used as ionizing radiation, those containing ultraviolet rays having a wavelength of 190 to 380 nm are emitted. There is no restriction | limiting in particular as an ultraviolet-ray source, For example, a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a carbon arc lamp, etc. are used.
 このようにして、形成された硬化樹脂層には、各種の添加剤を添加して各種の機能、例えば、高硬度で耐傷付き性を有する、いわゆるハードコート機能、防曇コート機能、防汚コート機能、防眩コート機能、反射防止コート機能、紫外線遮蔽コート機能、赤外線遮蔽コート機能などを付与することもできる。 The cured resin layer thus formed has various functions by adding various additives, for example, high hardness and scratch resistance, so-called hard coat function, anti-fogging coating function, anti-fouling coating. A function, an antiglare coating function, an antireflection coating function, an ultraviolet shielding coating function, an infrared shielding coating function, and the like can also be imparted.
 本発明においては、表面保護層2の硬化後の厚さが1~1000μmであることが好ましい。表面保護層2の硬化後の厚さが1μm以上であれば、耐傷付き性、耐候性などの保護層としての十分な物性が得られる。一方、表面保護層2の硬化後の厚さが1000μm以下であれば、電離放射線を均一に照射し易く、均一な硬化が得られ易く、経済的にも有利となる。 In the present invention, the thickness of the surface protective layer 2 after curing is preferably 1 to 1000 μm. If the thickness of the surface protective layer 2 after curing is 1 μm or more, sufficient physical properties as a protective layer such as scratch resistance and weather resistance can be obtained. On the other hand, when the thickness of the surface protective layer 2 after curing is 1000 μm or less, it is easy to uniformly apply ionizing radiation, and uniform curing is easily obtained, which is economically advantageous.
 また、表面保護層2の硬化後の厚さをより好ましくは1~50μm、さらに好ましくは1~30μmとすることにより、三次元成形性が向上し、自動車内装用途などの複雑な3次元形状への高い追従性を得ることができる。従って、本発明の加飾シートにおいて、硬質な電離放射線硬化性樹脂を配合しても優れた三次元成形性を発現させることができ、三次元成形性を損なうことなく、塗膜を硬くすることができるため、加工や実用面で好ましい優れた耐傷付き性を持たせることができる。 Further, the thickness of the surface protective layer 2 after curing is more preferably 1 to 50 μm, and further preferably 1 to 30 μm, so that the three-dimensional formability is improved and the complex three-dimensional shape such as an automobile interior use is obtained. High followability can be obtained. Therefore, in the decorative sheet of the present invention, even if a hard ionizing radiation curable resin is blended, excellent three-dimensional formability can be expressed, and the coating film is hardened without impairing the three-dimensional formability. Therefore, it is possible to provide excellent scratch resistance that is preferable in terms of processing and practical use.
 本発明の加飾シートは、表面保護層2の厚さを従来のものより厚くしても、十分に高い三次元成形性が得られることから、特に表面保護層に高い膜厚を要求される部材、例えば車両外装部品などの加飾シートとしても有用である。 The decorative sheet of the present invention is required to have a high film thickness particularly for the surface protective layer because sufficiently high three-dimensional formability can be obtained even if the thickness of the surface protective layer 2 is made thicker than the conventional one. It is also useful as a decorative sheet for a member such as a vehicle exterior part.
[プライマー層3]
 プライマー層3は、表面保護層2とその下に位置する層との密着性を高めることなどを目的として、必要に応じて含まれる層である。プライマー層3は、樹脂により形成することができる。
[Primer layer 3]
The primer layer 3 is a layer that is included as necessary for the purpose of improving the adhesion between the surface protective layer 2 and the layer located therebelow. The primer layer 3 can be formed of a resin.
 プライマー層3を構成するプライマー組成物は、(メタ)アクリル樹脂、ウレタン樹脂、(メタ)アクリル-ウレタン共重合体樹脂、塩化ビニル-酢酸ビニル共重合体、ポリエステル樹脂、ブチラール樹脂、塩素化ポリプロピレン、塩素化ポリエチレンなどが用いられる。 The primer composition constituting the primer layer 3 is (meth) acrylic resin, urethane resin, (meth) acrylic-urethane copolymer resin, vinyl chloride-vinyl acetate copolymer, polyester resin, butyral resin, chlorinated polypropylene, Chlorinated polyethylene or the like is used.
 (メタ)アクリル樹脂としては、(メタ)アクリル酸エステルの単独重合体、2種以上の異なる(メタ)アクリル酸エステルモノマーの共重合体、又は(メタ)アクリル酸エステルと他のモノマーとの共重合体が挙げられ、具体的には、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸ブチル、(メタ)アクリル酸メチル-(メタ)アクリル酸ブチル共重合体、(メタ)アクリル酸エチル-(メタ)アクリル酸ブチル共重合体、エチレン-(メタ)アクリル酸メチル共重合体、スチレン-(メタ)アクリル酸メチル共重合体などの(メタ)アクリル酸エステルを含む単独又は共重合体からなる(メタ)アクリル樹脂が好適に用いられる。 (Meth) acrylic resins include (meth) acrylic acid ester homopolymers, copolymers of two or more different (meth) acrylic acid ester monomers, or (meth) acrylic acid esters and other monomers. Polymer, specifically, poly (meth) methyl acrylate, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, methyl (meth) acrylate- (Meth) butyl acrylate copolymer, (meth) ethyl acrylate- (meth) butyl acrylate copolymer, ethylene- (meth) methyl acrylate copolymer, styrene- (meth) methyl acrylate copolymer A (meth) acrylic resin composed of a homopolymer or a copolymer containing a (meth) acrylic acid ester such as is preferably used.
 ウレタン樹脂としては、ポリオール(多価アルコール)を主剤とし、イソシアネートを架橋剤(硬化剤)とするポリウレタンを使用できる。ポリオールとしては、分子中に2個以上の水酸基を有するもので、例えばポリエステルポリオール、ポリエチレングリコール、ポリプロピレングリコール、アクリルポリオール、ポリエーテルポリオールなどが使用される。前記イソシアネートとしては、分子中に2個以上のイソシアネート基を有する多価イソシアネート、4,4-ジフェニルメタンジイソシアネートなどの芳香族イソシアネート、或いはヘキサメチレンジイソシアネート、イソホロンジイソシアネート、水素添加トリレンジイソシアネート、水素添加ジフェニルメタンジイソシアネートなどの脂肪族(又は脂環族)イソシアネートが用いられる。また、ウレタン樹脂とブチラール樹脂を混ぜて構成することも可能である。 As the urethane resin, polyurethane having a polyol (polyhydric alcohol) as a main ingredient and an isocyanate as a crosslinking agent (curing agent) can be used. As the polyol, one having two or more hydroxyl groups in the molecule, for example, polyester polyol, polyethylene glycol, polypropylene glycol, acrylic polyol, polyether polyol and the like are used. Examples of the isocyanate include polyvalent isocyanate having two or more isocyanate groups in the molecule, aromatic isocyanate such as 4,4-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated diphenylmethane diisocyanate. Aliphatic (or alicyclic) isocyanates such as are used. It is also possible to mix urethane resin and butyral resin.
 (メタ)アクリル・ウレタン共重合体樹脂としては、例えばアクリル/ウレタン(ポリエステルウレタン)ブロック共重合系樹脂が好ましい。硬化剤としては、上記の各種イソシアネートが用いられる。アクリル/ウレタン(ポリエステルウレタン)ブロック共重合系樹脂は所望により、アクリル/ウレタン比(質量比)を好ましくは(9/1)~(1/9)、より好ましくは(8/2)~(2/8)の範囲で調整し、種々の加飾シートに用いることができるので、プライマー組成物に用いられる樹脂として特に好ましい。 As the (meth) acryl / urethane copolymer resin, for example, an acrylic / urethane (polyester urethane) block copolymer resin is preferable. As the curing agent, the above-mentioned various isocyanates are used. The acrylic / urethane (polyester urethane) block copolymer resin has an acrylic / urethane ratio (mass ratio) of preferably (9/1) to (1/9), more preferably (8/2) to (2), if desired. Since it can be adjusted within the range of / 8) and used for various decorative sheets, it is particularly preferable as a resin used in the primer composition.
 プライマー層3の厚さは0.1~10μm程度であることが好ましい。0.1μm以上であると、表面保護層の割れ、破断、白化などを防ぐ効果を十分に発揮させることができる。一方、プライマー層の厚さが10μm以下であれば、プライマー層を塗工した際、塗膜の乾燥、硬化が安定であるので三次元成形性が変動することが無く好ましい。 The thickness of the primer layer 3 is preferably about 0.1 to 10 μm. When it is 0.1 μm or more, the effect of preventing the surface protective layer from cracking, breaking, whitening, etc. can be sufficiently exerted. On the other hand, if the thickness of the primer layer is 10 μm or less, it is preferable that the three-dimensional formability does not fluctuate since the drying and curing of the coating film is stable when the primer layer is applied.
 プライマー層3は、グラビアコート、グラビアリバースコート、グラビアオフセットコート、スピンナーコート、ロールコート、リバースロールコート、キスコート、ホイラーコート、ディップコート、シルクスクリーンによるベタコート、ワイヤーバーコート、フローコート、コンマコート、かけ流しコート、刷毛塗り、スプレーコートなどの通常の塗工方法や転写コーティング法により形成される。転写コーティング法は、一旦、薄いシート(フィルム基材)にプライマー層3や裏面接着層の塗膜を形成し、しかる後に加飾シート中の対象となる層表面に被覆する方法である。 Primer layer 3 includes gravure coat, gravure reverse coat, gravure offset coat, spinner coat, roll coat, reverse roll coat, kiss coat, wheeler coat, dip coat, silk screen solid coat, wire bar coat, flow coat, comma coat, coat It is formed by a usual coating method such as sink coating, brush coating, spray coating, or transfer coating method. The transfer coating method is a method in which a coating film of the primer layer 3 or the back surface adhesive layer is once formed on a thin sheet (film base material) and then coated on the target layer surface in the decorative sheet.
[絵柄層4]
 絵柄層4は、必要に応じて、基材シート1の上に設けられ、加飾シートに装飾性を与える層である。絵柄層4は、例えば、種々の模様をインキと印刷機を使用して印刷することにより形成される。絵柄層4によって形成される模様は、特に制限されず、例えば、木目模様、大理石模様(例えばトラバーチン大理石模様)等の岩石の表面を模した石目模様、布目や布状の模様を模した布地模様、タイル貼模様、煉瓦積模様など挙げられ、これらを複合した寄木、パッチワーク等の模様も挙げられる。これらの模様は、通常の黄色、赤色、青色、及び黒色のプロセスカラーによる多色印刷によって形成される他、模様を構成する個々の色の版を用意して行う特色による多色印刷等によっても形成される。
[Picture layer 4]
The pattern layer 4 is a layer which is provided on the base material sheet 1 as necessary and gives decorativeness to the decorative sheet. The pattern layer 4 is formed, for example, by printing various patterns using ink and a printing machine. The pattern formed by the pattern layer 4 is not particularly limited. For example, a grain pattern simulating the surface of a rock such as a grain pattern, a marble pattern (for example, a travertine marble pattern), a cloth simulating a texture or a cloth pattern Patterns, tiled patterns, brickwork patterns, etc., and patterns such as marquetry and patchwork that combine these are also included. These patterns can be formed by multicolor printing with normal yellow, red, blue and black process colors, or by multicolor printing with special colors prepared by preparing individual color plates constituting the pattern. It is formed.
 絵柄層4に用いる絵柄インキとしては、バインダーに顔料、染料などの着色剤、体質顔料、溶剤、安定剤、可塑剤、触媒、硬化剤などを適宜混合したものが使用される。該バインダーとしては、特に制限されず、例えば、ポリウレタン系樹脂、塩化ビニル-酢酸ビニル系共重合体樹脂、塩化ビニル-酢酸ビニル-アクリル系共重合体樹脂、塩素化ポリプロピレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ブチラール系樹脂、ポリスチレン系樹脂、ニトロセルロース系樹脂、酢酸セルロース系樹脂などが挙げられる。これらの樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 As the pattern ink used for the pattern layer 4, a binder and a colorant such as a pigment and a dye, an extender pigment, a solvent, a stabilizer, a plasticizer, a catalyst, and a curing agent are appropriately mixed. The binder is not particularly limited, and examples thereof include polyurethane resins, vinyl chloride-vinyl acetate copolymer resins, vinyl chloride-vinyl acetate-acrylic copolymer resins, chlorinated polypropylene resins, acrylic resins, Examples thereof include polyester resins, polyamide resins, butyral resins, polystyrene resins, nitrocellulose resins, and cellulose acetate resins. These resins may be used alone or in combination of two or more.
 着色剤としては、特に制限されず、例えば、カーボンブラック(墨)、鉄黒、チタン白、アンチモン白、黄鉛、チタン黄、弁柄、カドミウム赤、群青、コバルトブルー等の無機顔料、キナクリドンレッド、イソインドリノンイエロー、フタロシアニンブルー等の有機顔料又は染料、アルミニウム、真鍮等の鱗片状箔片からなる金属顔料、二酸化チタン被覆雲母、塩基性炭酸鉛等の鱗片状箔片からなる真珠光沢(パール)顔料などが挙げられる。 The colorant is not particularly limited. For example, carbon black (black), iron black, titanium white, antimony white, chrome yellow, titanium yellow, petal, cadmium red, ultramarine, cobalt blue, and other inorganic pigments, quinacridone red Organic pigments or dyes such as isoindolinone yellow and phthalocyanine blue, metallic pigments composed of scaly foils such as aluminum and brass, pearl luster composed of scaly foils such as titanium dioxide-coated mica and basic lead carbonate (pearl) ) Pigments.
 絵柄層4はグラビア印刷などの通常の印刷方法により形成される。絵柄層4はグラビア印刷などの通常の印刷方法やグラビアコート、グラビアリバースコート、グラビアオフセットコート、スピンナーコート、ロールコート、リバースロールコートなどの通常の塗工方法により形成される。 The pattern layer 4 is formed by a normal printing method such as gravure printing. The pattern layer 4 is formed by a normal printing method such as gravure printing or a normal coating method such as gravure coating, gravure reverse coating, gravure offset coating, spinner coating, roll coating, and reverse roll coating.
 絵柄層4の厚みは、特に制限されないが、例えば1~30μm程度、好ましくは1~20μm程度が挙げられる。 The thickness of the pattern layer 4 is not particularly limited, but for example, about 1 to 30 μm, preferably about 1 to 20 μm.
[隠蔽層]
 隠蔽層は、基材シート1の色の変化やバラツキを抑制する目的で、基材シート1と表面保護層2との間、絵柄層4を設ける場合であれば基材シート1と絵柄層4との間などに、必要に応じて設けられる層である。
[Hidden layer]
If the hiding layer is provided with a pattern layer 4 between the base sheet 1 and the surface protective layer 2 for the purpose of suppressing color change and variation of the base sheet 1, the base sheet 1 and the pattern layer 4 are provided. It is a layer provided as needed, for example.
 隠蔽層は、基材シート1が加飾シートの色調や絵柄に悪影響を及ぼすのを抑制するために設けられるため、一般には不透明色の層として形成される。 Since the concealing layer is provided to suppress the base sheet 1 from adversely affecting the color tone and design of the decorative sheet, it is generally formed as an opaque layer.
 隠蔽層は、バインダーに、顔料、染料などの着色剤、体質顔料、溶剤、安定剤、可塑剤、触媒、硬化剤などを適宜混合したインキ組成物を用いて形成される。隠蔽層を形成するインキ組成物は、上述の絵柄層4に使用されるものから適宜選択して使用される。 The hiding layer is formed using an ink composition in which a binder, a colorant such as a pigment or a dye, an extender pigment, a solvent, a stabilizer, a plasticizer, a catalyst, or a curing agent is appropriately mixed. The ink composition for forming the concealing layer is appropriately selected from those used for the picture layer 4 described above.
 隠蔽層は、通常、厚みが1~20μm程度に設定され、所謂ベタ印刷層として形成されることが望ましい。 The concealing layer is usually set to a thickness of about 1 to 20 μm and is desirably formed as a so-called solid printing layer.
[裏面接着層]
 本発明の加飾シートは射出樹脂との密着性を向上させるため、所望により、加飾シートの裏面(表面保護層2とは反対側の面)に裏面接着層(図示しない。)を設けることができる。裏面接着層には、射出樹脂に応じて、熱可塑性樹脂又は硬化性樹脂が用いられる。熱可塑性樹脂としては、アクリル樹脂、アクリル変性ポリオレフィン樹脂、塩素化ポリオレフィン樹脂、塩化ビニル-酢酸ビニル共重合体、熱可塑性ウレタン樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ゴム系樹脂などが挙げられ、これらは1種又は2種以上を混合して用いることができる。また、熱硬化性樹脂としては、ウレタン樹脂、エポキシ樹脂などが挙げられる。
[Back adhesive layer]
In order that the decorating sheet of this invention may improve adhesiveness with injection resin, a back surface adhesive layer (not shown) is provided in the back surface (surface on the opposite side to the surface protection layer 2) of a decorating sheet depending on necessity. Can do. A thermoplastic resin or a curable resin is used for the back surface adhesive layer depending on the injection resin. Examples of thermoplastic resins include acrylic resins, acrylic-modified polyolefin resins, chlorinated polyolefin resins, vinyl chloride-vinyl acetate copolymers, thermoplastic urethane resins, thermoplastic polyester resins, polyamide resins, rubber resins, etc. Can be used alone or in combination of two or more. Examples of the thermosetting resin include urethane resin and epoxy resin.
 裏面接着層の厚みは、0.1~10μm程度であることが好ましい。また、裏面接着層は、プライマー層3で例示した方法と同様にして形成することができる。 The thickness of the back surface adhesive layer is preferably about 0.1 to 10 μm. Further, the back surface adhesive layer can be formed in the same manner as the method exemplified for the primer layer 3.
2.加飾樹脂成形品
 本発明の加飾樹脂成形品は、図3に示されるように、成形樹脂(成形樹脂層5)と、成形樹脂上に設けられた表面保護層2とを備える加飾樹脂成形品であって、表面保護層2の入射角60°における表面グロス値が70以上であり、表面保護層2が、少なくともポリカーボネート(メタ)アクリレートと、一次粒子径が0.25μm以下の無機粒子とを含有する、電離放射線硬化性樹脂組成物の硬化物からなることを特徴とする。本発明の加飾樹脂成形品は、例えば、本発明の加飾シートと成形樹脂とを一体化させることにより製造することができる。加飾樹脂成形品には、前述の通り、基材シート1、プライマー層3、絵柄層4、隠蔽層、裏面接着層などのうち少なくとも一層をさらに設けてもよい。本発明の加飾樹脂成形品は、本発明の加飾シートを用いて製造することができ、高光沢の意匠を有し、高温環境における優れた耐傷付き性を発揮することができる。また、前記の通り、耐傷付き性を向上させる等の観点から、表面保護層2中の無機粒子の含有量の前記指標値は、2.5×10-4~25×10-4以下の範囲にあることが好ましい。
2. Decorated resin molded product The decorated resin molded product of the present invention is, as shown in FIG. 3, a decorated resin comprising a molded resin (molded resin layer 5) and a surface protective layer 2 provided on the molded resin. A molded article having a surface gloss value of 70 or more at an incident angle of 60 ° of the surface protective layer 2, the surface protective layer 2 being at least polycarbonate (meth) acrylate, and an inorganic particle having a primary particle diameter of 0.25 μm or less And a cured product of the ionizing radiation curable resin composition. The decorative resin molded product of the present invention can be produced, for example, by integrating the decorative sheet of the present invention and a molded resin. As described above, at least one layer of the base material sheet 1, the primer layer 3, the pattern layer 4, the concealing layer, the back surface adhesive layer, and the like may be further provided on the decorative resin molded product. The decorative resin molded product of the present invention can be produced using the decorative sheet of the present invention, has a high gloss design, and can exhibit excellent scratch resistance in a high temperature environment. Further, as described above, from the viewpoint of improving the scratch resistance, the index value of the content of the inorganic particles in the surface protective layer 2 is in the range of 2.5 × 10 −4 to 25 × 10 −4 or less. It is preferable that it exists in.
 本発明の加飾樹脂成形品は、例えば、本発明の加飾シートを用いて、インサート成形法、射出成形同時加飾法、ブロー成形法、ガスインジェクション成形法等の各種射出成形法により作製される。これらの射出成形法の中でも、好ましくはインサート成形法及び射出成形同時加飾法が挙げられる。また、本発明の加飾樹脂成形品は、真空圧着法等の、予め用意された立体的な樹脂成形体(成形樹脂層5)上に、本発明の加飾シートを貼着する加飾方法によっても作製することができる。 The decorative resin molded product of the present invention is produced, for example, by various injection molding methods such as insert molding, simultaneous injection molding, blow molding, and gas injection molding using the decorative sheet of the present invention. The Among these injection molding methods, an insert molding method and an injection molding simultaneous decorating method are preferable. In addition, the decorative resin molded product of the present invention is a decorative method of sticking the decorative sheet of the present invention on a prepared three-dimensional resin molded body (molded resin layer 5) such as a vacuum pressure bonding method. Can also be produced.
 インサート成形法では、まず、真空成形工程において、本発明の加飾シートを真空成形型により予め成形品表面形状に真空成形(オフライン予備成形)し、次いで必要に応じて余分な部分をトリミングして成形シートを得る。この成形シートを射出成形型に挿入し、射出成形型を型締めし、基材シート側から流動状態の樹脂を型内に射出し、固化させて、射出成形と同時に樹脂成形物の外表面に加飾シートを一体化させることにより、加飾樹脂成形品が製造される。 In the insert molding method, first, in the vacuum forming step, the decorative sheet of the present invention is vacuum formed (off-line pre-molding) into a molded product surface shape in advance by a vacuum forming die, and then an excess portion is trimmed as necessary. A molded sheet is obtained. This molded sheet is inserted into an injection mold, the injection mold is clamped, a resin in a fluid state is injected into the mold from the base sheet side, solidified, and simultaneously with the injection molding, on the outer surface of the resin molded product A decorative resin molded product is manufactured by integrating the decorative sheet.
 より具体的には、下記の工程を含むインサート成形法によって、本発明の加飾樹脂成形品が製造される。
 本発明の加飾シートを真空成形型により予め立体形状に成形する真空成形工程、
 真空成形された加飾シートの余分な部分をトリミングして成形シートを得るトリミング工程、及び
 成形シートを射出成形型に挿入し、射出成形型を閉じ、基材シート側から流動状態の樹脂を射出成形型内に射出して樹脂と成形シートを一体化する一体化工程。
More specifically, the decorative resin molded product of the present invention is manufactured by an insert molding method including the following steps.
A vacuum forming step of forming the decorative sheet of the present invention into a three-dimensional shape in advance by a vacuum forming die,
Trimming process to trim the excess part of the vacuum-decorated decorative sheet to obtain the molded sheet, and insert the molded sheet into the injection mold, close the injection mold, and inject the fluid resin from the base sheet side An integration process in which the resin and the molded sheet are integrated by injection into the mold.
 インサート成形法における真空成形工程では、加飾シートを加熱して成形してもよい。この時の加熱温度は、特に限定されず、加飾シートを構成する樹脂の種類や、加飾シートの厚みなどによって適宜選択すればよいが、例えば基材シートとしてABS樹脂フィルムを用いる場合であれば、通常100~250℃程度、好ましくは130~200℃程度とすることができる。また、一体化工程において、流動状態の樹脂の温度は、特に限定されないが、通常180~320℃程度、好ましくは220~280℃程度とすることができる。 In the vacuum forming step in the insert molding method, the decorative sheet may be heated and molded. The heating temperature at this time is not particularly limited, and may be appropriately selected depending on the type of resin constituting the decorative sheet, the thickness of the decorative sheet, and the like, for example, when an ABS resin film is used as the base sheet. For example, the temperature can be usually about 100 to 250 ° C., preferably about 130 to 200 ° C. In the integration step, the temperature of the resin in the fluidized state is not particularly limited, but is usually about 180 to 320 ° C., preferably about 220 to 280 ° C.
 また、射出成形同時加飾法では、本発明の加飾シートを射出成形の吸引孔が設けられた真空成形型との兼用雌型に配置し、この雌型で予備成形(インライン予備成形)を行った後、射出成形型を型締めして、基材シート側から流動状態の樹脂を型内に射出充填し、固化させて、射出成形と同時に樹脂成形物の外表面に本発明の加飾シートを一体化させることにより、加飾樹脂成形品が製造される。 In addition, in the simultaneous injection molding decoration method, the decorative sheet of the present invention is placed in a female mold that also serves as a vacuum forming mold provided with a suction hole for injection molding, and preliminary molding (in-line preliminary molding) is performed with this female mold. After the injection mold is clamped, the resin in a fluid state is injected and filled into the mold from the base sheet side, solidified, and decorated on the outer surface of the resin molding simultaneously with the injection molding. A decorative resin molded product is manufactured by integrating the sheets.
 より具体的には、下記の工程を含む射出成形同時加飾法によって、本発明の加飾樹脂成形品が製造される。
 本発明の加飾シートを、所定形状の成形面を有する可動金型の当該成形面に対し、加飾シートの基材シートの表面が対面するように設置した後、当該加飾シートを加熱、軟化させると共に、可動金型側から真空吸引して、軟化した加飾シートを当該可動金型の成形面に沿って密着させることにより、加飾シートを予備成形する予備成形工程、
 成形面に沿って密着された加飾シートを有する可動金型と固定金型とを型締めした後、両金型で形成されるキャビティ内に、基材シート側から流動状態の樹脂を射出、充填して固化させることにより樹脂成形体を形成し、樹脂成形体と加飾シートを積層一体化させる一体化工程、及び
 可動金型を固定金型から離間させて、加飾シート全層が積層されてなる樹脂成形体を取り出す取出工程。
More specifically, the decorative resin molded product of the present invention is manufactured by the simultaneous injection molding method including the following steps.
After the decorative sheet of the present invention is installed so that the surface of the base sheet of the decorative sheet faces the molding surface of the movable mold having a molding surface of a predetermined shape, the decorative sheet is heated, A pre-molding step of pre-molding the decorative sheet by softening and vacuum-sucking from the movable mold side and bringing the softened decorative sheet into close contact with the molding surface of the movable mold,
After clamping the movable mold and the fixed mold having the decorative sheet closely adhered along the molding surface, the fluidized resin is injected from the base sheet side into the cavity formed by both molds. Filling and solidifying to form a resin molded body, integrating the resin molded body and the decorative sheet by stacking and integrating, and moving the movable mold away from the fixed mold, the entire decorative sheet is laminated The extraction process of taking out the molded resin product.
 射出成形同時加飾法の予備成形工程において、加飾シートの加熱温度は、特に限定されず、加飾シートを構成する樹脂の種類や、加飾シートの厚みなどによって適宜選択すればよいが、基材シートとしてポリエステル樹脂フィルムやアクリル樹脂フィルムを使用する場合であれば、通常70~130℃程度とすることができる。また、射出成形工程において、流動状態の樹脂の温度は、特に限定されないが、通常180~320℃程度、好ましくは220~280℃程度とすることができる。 In the preforming step of the simultaneous injection molding method, the heating temperature of the decorative sheet is not particularly limited, and may be appropriately selected depending on the type of resin constituting the decorative sheet, the thickness of the decorative sheet, etc. If a polyester resin film or an acrylic resin film is used as the base sheet, the temperature can usually be about 70 to 130 ° C. In the injection molding step, the temperature of the resin in the fluidized state is not particularly limited, but can usually be about 180 to 320 ° C., preferably about 220 to 280 ° C.
 真空圧着法では、まず、上側に位置する第1真空室及び下側に位置する第2真空室からなる真空圧着機内に、本発明の加飾シート及び樹脂成形体を、加飾シートが第1真空室側、樹脂成形体が第2真空室側となるように、且つ加飾シートの基材シート側が樹脂成形体側に向くように真空圧着機内に設置し、2つの真空室を真空状態とする。樹脂成形体は、第2真空室側に備えられた、上下に昇降可能な昇降台上に設置される。次いで、第1の真空室を加圧すると共に、昇降台を用いて成形体を加飾シートに押し当て、2つの真空室間の圧力差を利用して、加飾シートを延伸しながら樹脂成形体の表面に貼着する。最後に2つの真空室を大気圧に開放し、必要に応じて加飾シートの余分な部分をトリミングすることにより、本発明の加飾樹脂成形品を得ることができる。 In the vacuum bonding method, first, the decorative sheet and the resin molded body of the first pressure chamber located on the upper side and the second vacuum chamber located on the lower side in the vacuum pressure bonding machine, the decorative sheet is the first. Install in the vacuum press so that the vacuum chamber side, the resin molded body becomes the second vacuum chamber side, and the base sheet side of the decorative sheet face the resin molded body side, and the two vacuum chambers are in a vacuum state . The resin molding is installed on a lifting platform that is provided on the second vacuum chamber side and can be moved up and down. Next, while pressurizing the first vacuum chamber, the molded body is pressed against the decorative sheet using an elevator, and the resin molded body is stretched while stretching the decorative sheet using the pressure difference between the two vacuum chambers. Adhere to the surface. Finally, the two vacuum chambers are opened to the atmospheric pressure, and the decorative resin molded product of the present invention can be obtained by trimming the excess portion of the decorative sheet as necessary.
 真空圧着法においては、上記の成形体を加飾シートに押し当てる工程の前に、加飾シートを軟化させて成形性を高めるため、加飾シートを加熱する工程を備えることが好ましい。当該工程を備える真空圧着法は、特に真空加熱圧着法と呼ばれることがある。当該工程における加熱温度は、加飾シートを構成する樹脂の種類や、加飾シートの厚みなどによって適宜選択すればよいが、基材シートとしてポリエステル樹脂フィルムやアクリル樹脂フィルムを使用する場合であれば、通常60~200℃程度とすることができる。 In the vacuum pressure bonding method, it is preferable to include a step of heating the decorative sheet in order to soften the decorative sheet and improve the moldability before the step of pressing the above-mentioned molded body against the decorative sheet. The vacuum pressure bonding method provided with the said process may be especially called a vacuum thermocompression bonding method. Although the heating temperature in the said process should just be suitably selected with the kind of resin which comprises a decorating sheet, the thickness of a decorating sheet, etc., if it is a case where a polyester resin film or an acrylic resin film is used as a base material sheet Usually, the temperature can be about 60 to 200 ° C.
 本発明の加飾樹脂成形品において、成形樹脂層5は、用途に応じた樹脂を選択して形成すればよい。成形樹脂層5を形成する樹脂としては、熱可塑性樹脂であってもよく、また熱硬化性樹脂であってもよい。 In the decorative resin molded product of the present invention, the molded resin layer 5 may be formed by selecting a resin according to the application. The resin forming the molded resin layer 5 may be a thermoplastic resin or a thermosetting resin.
 熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ABS樹脂、スチレン樹脂、ポリカーボネート樹脂、アクリル樹脂、塩化ビニル系樹脂等が挙げられる。これらの熱可塑性樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Examples of the thermoplastic resin include polyolefin resins such as polyethylene and polypropylene, ABS resins, styrene resins, polycarbonate resins, acrylic resins, and vinyl chloride resins. These thermoplastic resins may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、熱硬化性樹脂としては、例えば、ウレタン樹脂、エポキシ樹脂等が挙げられる。これらの熱硬化性樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Further, examples of the thermosetting resin include urethane resin and epoxy resin. These thermosetting resins may be used individually by 1 type, and may be used in combination of 2 or more type.
 以上のようにして製造された加飾樹脂成形体の表面は、高い耐傷付き性を有する。 The surface of the decorative resin molded body produced as described above has high scratch resistance.
 本発明の加飾樹脂成形品は、例えば、自動車等の車両の内装材又は外装材;窓枠、扉枠等の建具;壁、床、天井等の建築物の内装材;テレビ受像機、空調機等の家電製品の筐体;容器等として利用することができる。 The decorative resin molded product of the present invention includes, for example, interior materials or exterior materials for vehicles such as automobiles; fittings such as window frames and door frames; interior materials for buildings such as walls, floors, and ceilings; television receivers and air conditioners. It can be used as a housing for home appliances such as a machine;
 以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
<実施例1~8及び比較例1~4>
(加飾シートの作製)
 基材としてABS樹脂フィルム(曲げ弾性率;2000MPa、厚さ;400μm)を用い、該フィルムの表面に、アクリル系樹脂組成物を用いグラビア印刷により木目柄の絵柄層を形成した。次いで、絵柄層の表面にアクリル樹脂(アクリル酸エステルの単独重合体)からなるプライマー層をグラビアコートにより塗工した。プライマー層の厚さは3μmであった。次に、プライマー層の表面に、表1に示す組成の電子線硬化性樹脂組成物を樹脂組成物の硬化後の厚さ(μm)が表1に示す値となるようにグラビアコートにより塗工した。表1に記載の樹脂及び粒子の詳細は、後述の通りである。この未硬化樹脂層に加速電圧165kV、照射線量50kGy(5Mrad)の電子線を照射して、電子線硬化性樹脂組成物を硬化させて、各加飾シートを得た。各加飾シートについて、以下の評価を行った。評価結果を表1に示す。
<Examples 1 to 8 and Comparative Examples 1 to 4>
(Preparation of decorative sheet)
An ABS resin film (flexural modulus: 2000 MPa, thickness: 400 μm) was used as a substrate, and a woodgrain pattern layer was formed on the surface of the film by gravure printing using an acrylic resin composition. Next, a primer layer made of an acrylic resin (acrylic ester homopolymer) was applied to the surface of the pattern layer by gravure coating. The thickness of the primer layer was 3 μm. Next, an electron beam curable resin composition having the composition shown in Table 1 is applied to the surface of the primer layer by gravure coating so that the thickness (μm) after curing of the resin composition becomes the value shown in Table 1. did. Details of the resins and particles described in Table 1 are as described later. This uncured resin layer was irradiated with an electron beam having an acceleration voltage of 165 kV and an irradiation dose of 50 kGy (5 Mrad) to cure the electron beam curable resin composition to obtain each decorative sheet. Each decorative sheet was evaluated as follows. The evaluation results are shown in Table 1.
(動摩擦係数)
 以下の方法により、上記で得られた各加飾シートの表面保護層の動摩擦係数を20℃の環境下、60℃の環境下において、それぞれ測定した。荷重変動型摩擦摩耗試験システム(HEIDON HHS-2000)を用いて、表面温度を20℃または60℃に保持した表面保護層の水平表面に、JIS L0803:2011の綿布3-1号を接触させ、垂直荷重500gf、速度3mm/secで水平方向に摩擦した際の動摩擦係数を測定する。
(Dynamic friction coefficient)
By the following method, the dynamic friction coefficient of the surface protective layer of each decorative sheet obtained above was measured in an environment of 20 ° C. and an environment of 60 ° C., respectively. Using a load-fluctuating friction and wear test system (HEIDON HHS-2000), the cotton 3-1 of JIS L0803: 2011 was brought into contact with the horizontal surface of the surface protective layer maintained at a surface temperature of 20 ° C. or 60 ° C. The dynamic friction coefficient when rubbing in the horizontal direction at a vertical load of 500 gf and a speed of 3 mm / sec is measured.
(表面グロス値)
 上記で得られた各加飾シートの表面保護層の表面について、BYKガードナー社製のマイクロトリグロスにて、入射光角60°での表面グロス値を測定した。
(Surface gloss value)
About the surface of the surface protection layer of each decorating sheet obtained above, the surface gloss value at an incident light angle of 60 ° was measured with microtrigloss manufactured by BYK Gardner.
(三次元成形性)
 赤外線ヒータを用いて、加飾シートを160℃に加熱して軟化させた。次に、真空成形型を用いて真空成形を行い(最大延伸倍率250%)、加飾シートを型の内部形状に成形した。加飾シートを冷却後、型から加飾シートを離型した。成形後の加飾シートの表面状態を目視で観察し、成形性を以下の基準で評価した。結果を表1に示す。
A:表面保護層の表面にクラック、白化が見られず外観良好であった。
B:表面保護層の最大延伸部に僅かなクラック、白化が見られたが、実用上の問題はなし。
C:表面保護層の最大延伸部に実用上問題のあるクラック、白化が見られた。
(Three-dimensional formability)
The decorative sheet was heated to 160 ° C. and softened using an infrared heater. Next, vacuum forming was performed using a vacuum forming die (maximum draw ratio: 250%), and the decorative sheet was formed into the internal shape of the die. After cooling the decorative sheet, the decorative sheet was released from the mold. The surface state of the decorative sheet after molding was visually observed, and the moldability was evaluated according to the following criteria. The results are shown in Table 1.
A: The surface of the surface protective layer was good in appearance with no cracks or whitening.
B: Slight cracks and whitening were observed at the maximum stretched portion of the surface protective layer, but there were no practical problems.
C: Practically problematic cracks and whitening were observed in the maximum stretched portion of the surface protective layer.
(耐傷付き性)
 #0000スチールウールを用いて、上記で得られた各加飾シートの表面保護層の表面を荷重500gfで5回往復ラビングした後の外観を以下の基準により評価した。
+:表面保護層の表面に形成された傷が、1分以内に修復し、表面保護層の表面に傷が残らなかった。
A:表面保護層の表面に形成された傷が5分以内に修復し、表面保護層の表面に傷が残らなかった。
B:表面保護層の表面に軽微な傷が残ったが、実用上の問題はなし。
C:表面保護層の表面に実用上問題のある傷が残った。
(Scratch resistance)
Using # 0000 steel wool, the appearance after the surface of the surface protective layer of each decorative sheet obtained above was rubbed 5 times with a load of 500 gf was evaluated according to the following criteria.
A + : The scratch formed on the surface of the surface protective layer was repaired within 1 minute, and no scratch was left on the surface of the surface protective layer.
A: The scratch formed on the surface of the surface protective layer was repaired within 5 minutes, and no scratch was left on the surface of the surface protective layer.
B: Although slight scratches remained on the surface of the surface protective layer, there was no practical problem.
C: Scratches having practical problems remained on the surface of the surface protective layer.
(加熱ラビング)
 上記で得られた各加飾シートを60℃のオーブン内に1時間放置した。次に、加飾シートをオーブンから取出した直後、綿布3-1号を用いて、表面保護層の表面を荷重2kgfで30往復ラビングした後の外観を、下記の基準により評価した。
A:表面保護層の剥がれは見られなかった。
B:僅かに表面保護層の剥がれが見られたが、実用上の問題なし。
C:実用上問題のある表面保護層の剥がれが見られた。
(Heating rubbing)
Each decorative sheet obtained above was left in an oven at 60 ° C. for 1 hour. Next, immediately after the decorative sheet was taken out of the oven, the appearance after the surface of the surface protective layer was rubbed 30 times with a load of 2 kgf using cotton cloth 3-1 was evaluated according to the following criteria.
A: The surface protective layer was not peeled off.
B: Slight peeling of the surface protective layer was observed, but there was no practical problem.
C: Peeling of the surface protective layer having a practical problem was observed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す樹脂1、樹脂2、樹脂3、樹脂4、粒子1、粒子2、粒子3、及び粒子4の詳細は以下の通りである。
樹脂1:ポリカーボネート骨格を有する2官能ウレタンアクリレート、重量平均分子量40,000
樹脂2:ポリカーボネート骨格を有する2官能ウレタンアクリレート、重量平均分子量30,000
樹脂3:ポリカーボネート骨格を有する2官能ウレタンアクリレート、重量平均分子量20,000
樹脂4:シリコーン変性6官能ウレタンアクリレート、重量平均分子量3,000
粒子1:一次粒子の平均粒子径0.05μmのシリカ粒子
粒子2:一次粒子の平均粒子径0.1μmのシリカ粒子
粒子3:一次粒子の平均粒子径0.2μmのシリカ粒子
粒子4:一次粒子の平均粒子径0.3μmのシリカ粒子
Details of resin 1, resin 2, resin 3, resin 4, particle 1, particle 2, particle 3, and particle 4 shown in Table 1 are as follows.
Resin 1: Bifunctional urethane acrylate having a polycarbonate skeleton, weight average molecular weight 40,000
Resin 2: Bifunctional urethane acrylate having a polycarbonate skeleton, weight average molecular weight 30,000
Resin 3: Bifunctional urethane acrylate having a polycarbonate skeleton, weight average molecular weight 20,000
Resin 4: Silicone-modified hexafunctional urethane acrylate, weight average molecular weight 3,000
Particles 1: Silica particles having an average primary particle diameter of 0.05 μm 2: Silica particles having an average primary particle diameter of 0.1 μm 3: Silica particles having an average primary particle diameter of 0.2 μm 4: Primary particles Silica particles with an average particle diameter of 0.3 μm
 表1に示されるように、表面保護層の入射角60°における表面グロス値が70以上であり、表面保護層が、少なくともポリカーボネート(メタ)アクリレートと、一次粒子径が0.25μm以下の無機粒子とを含有する、電離放射線硬化性樹脂組成物の硬化物からなる実施例1~8の加飾シートは、表面グロス値が高く、高光沢の意匠を備えており、さらに、高温環境における優れた耐傷付き性と、優れた三次元成形性を備えることが分かる。 As shown in Table 1, the surface protective layer has a surface gloss value of 70 or more at an incident angle of 60 °, the surface protective layer is at least polycarbonate (meth) acrylate, and inorganic particles having a primary particle size of 0.25 μm or less. The decorative sheets of Examples 1 to 8 comprising a cured product of an ionizing radiation curable resin composition containing a high surface gloss value, a high gloss design, and excellent in a high temperature environment It can be seen that it has scratch resistance and excellent three-dimensional formability.
<実施例9~17及び比較例5~8>
(加飾シートの作製)
 基材シートとしてABS樹脂フィルム(曲げ弾性率;2000MPa、厚さ;400μm)を用い、該フィルムの表面に、アクリル系樹脂組成物を用いグラビア印刷により木目柄の絵柄層を形成した。次いで、絵柄層の表面にアクリル樹脂(アクリル酸エステルの単独重合体)からなるプライマー層をグラビアコートにより塗工した。プライマー層の厚さは3μmであった。次に、プライマー層の表面に、表2に示す組成の電子線硬化性樹脂組成物を樹脂組成物の硬化後の厚さ(μm)が表2に示す値となるようにグラビアコートにより塗工した。表2に記載の樹脂及び粒子の詳細は、後述の通りである。この未硬化樹脂層に加速電圧165kV、照射線量50kGy(5Mrad)の電子線を照射して、電子線硬化性樹脂組成物を硬化させて、各加飾シートを得た。各加飾シートについて、以下の評価を行った。評価結果を表2に示す。
<Examples 9 to 17 and Comparative Examples 5 to 8>
(Preparation of decorative sheet)
An ABS resin film (flexural modulus: 2000 MPa, thickness: 400 μm) was used as a base sheet, and a woodgrain pattern layer was formed on the surface of the film by gravure printing using an acrylic resin composition. Next, a primer layer made of an acrylic resin (acrylic ester homopolymer) was applied to the surface of the pattern layer by gravure coating. The thickness of the primer layer was 3 μm. Next, an electron beam curable resin composition having the composition shown in Table 2 is applied to the surface of the primer layer by gravure coating so that the thickness (μm) after curing of the resin composition becomes the value shown in Table 2. did. Details of the resins and particles described in Table 2 are as described below. This uncured resin layer was irradiated with an electron beam having an acceleration voltage of 165 kV and an irradiation dose of 50 kGy (5 Mrad) to cure the electron beam curable resin composition to obtain each decorative sheet. Each decorative sheet was evaluated as follows. The evaluation results are shown in Table 2.
(高温環境下での成形性の評価)
 以下の方法により、実施例9~17及び比較例5~8の各加飾シートを110℃下において、延伸倍率250%に延伸し、表面保護層にクラックが生じているか否かを確認することにより、高温環境下での成形性を評価した。まず、オリエント社製のテンシロンのチャッキング部に、加飾シート(MD120mm×TD30mm)を固定する。次に、環境温度110℃で1分間保持して、加飾シートの表面温度を110℃とする。次に、試験速度50mm/minの条件で、初期チャック間距離(10mm)から250%(35mm)まで引き伸ばす。250%引き伸ばした状態で停止して、そのまま1分間保持して、表面保護層のクラック有無を確認する。評価基準は、以下の通りである。
A:表面保護層にクラックが見られず、外観良好であった。
B:250%伸ばした状態で1分間経過した後に、表面保護層に僅かなクラックが見られたが、実用上の問題なし。
C:250%伸びに達する前に、表面保護層にクラックが生じ始め、250%伸びに達した時点では実用上問題のあるクラックが見られた。
(Evaluation of formability in high temperature environment)
The decorative sheets of Examples 9 to 17 and Comparative Examples 5 to 8 are stretched at a stretch ratio of 250% at 110 ° C. by the following method to confirm whether or not cracks are generated in the surface protective layer. Thus, the formability in a high temperature environment was evaluated. First, a decorative sheet (MD 120 mm × TD 30 mm) is fixed to the chucking part of Tensilon manufactured by Orient. Next, it hold | maintains for 1 minute at environmental temperature 110 degreeC, and makes the surface temperature of a decorating sheet 110 degreeC. Next, stretching is performed from the initial chuck distance (10 mm) to 250% (35 mm) under the condition of a test speed of 50 mm / min. Stop in the stretched state of 250%, hold it for 1 minute, and check for cracks in the surface protective layer. The evaluation criteria are as follows.
A: No cracks were observed in the surface protective layer, and the appearance was good.
B: Slight cracks were observed in the surface protective layer after 1 minute with 250% extended, but there was no practical problem.
C: Before reaching 250% elongation, cracks started to appear in the surface protective layer, and when reaching 250% elongation, cracks having practical problems were observed.
(三次元成形性)
 実施例1~8及び比較例1~4と同様にして、実施例9~17及び比較例5~8の各加飾シートの三次元成形性を評価した。結果を表2に示す。
(Three-dimensional formability)
In the same manner as in Examples 1 to 8 and Comparative Examples 1 to 4, the three-dimensional formability of the decorative sheets of Examples 9 to 17 and Comparative Examples 5 to 8 was evaluated. The results are shown in Table 2.
(耐傷付き性)
 実施例1~8及び比較例1~4と同様にして、実施例9~17及び比較例5~8の各加飾シートの耐傷付き性を評価した。結果を表2に示す。
(Scratch resistance)
In the same manner as in Examples 1 to 8 and Comparative Examples 1 to 4, the flaw resistance of each decorative sheet of Examples 9 to 17 and Comparative Examples 5 to 8 was evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す樹脂1、樹脂2、粒子1、粒子2、及び粒子3の詳細は以下の通りである。
樹脂1:ポリカーボネート骨格を有する2官能ウレタンアクリレート、重量平均分子量30,000
樹脂2:シリコーン変性6官能ウレタンアクリレート、重量平均分子量3,000
粒子1:一次粒子の平均粒子径0.05μmのシリカ粒子
粒子2:一次粒子の平均粒子径0.10μmのシリカ粒子
粒子3:一次粒子の平均粒子径0.20μmのシリカ粒子
Details of resin 1, resin 2, particle 1, particle 2, and particle 3 shown in Table 2 are as follows.
Resin 1: Bifunctional urethane acrylate having a polycarbonate skeleton, weight average molecular weight 30,000
Resin 2: Silicone-modified hexafunctional urethane acrylate, weight average molecular weight 3,000
Particle 1: Silica particles having an average primary particle size of 0.05 μm 2: Silica particles having an average primary particle size of 0.10 μm 3: Silica particles having an average primary particle size of 0.20 μm
 表2に示されるように、表面保護層が、ポリカーボネート(メタ)アクリレートと、一次粒子径が0.25μm以下の無機粒子とを含有する、電離放射線硬化性樹脂組成物の硬化物からなり、表面保護層中の無機粒子の含有量の指標値が、2.5×10-4~25×10-4の範囲内にある実施例9~17の加飾シートは、優れた耐傷付き性を備えており、さらに、高温環境下での三次元成形による表面保護層のクラックが効果的に抑制され、優れた三次元成形性を備えることが分かる。 As shown in Table 2, the surface protective layer comprises a cured product of an ionizing radiation curable resin composition containing polycarbonate (meth) acrylate and inorganic particles having a primary particle size of 0.25 μm or less, index value of the content of the inorganic particles in the protective layer, decorative sheets of examples 9-17 which is in the range of 2.5 × 10 -4 ~ 25 × 10 -4 has a superior scratch resistance Furthermore, it can be seen that cracks in the surface protective layer due to three-dimensional molding in a high-temperature environment are effectively suppressed, and excellent three-dimensional moldability is provided.
1…基材シート
2…表面保護層
3…プライマー層
4…絵柄層
5…成形樹脂層
DESCRIPTION OF SYMBOLS 1 ... Base material sheet 2 ... Surface protective layer 3 ... Primer layer 4 ... Pattern layer 5 ... Molding resin layer

Claims (8)

  1.  少なくとも、基材シートと、前記基材シート上に設けられた表面保護層とを備える加飾シートであって、
     前記表面保護層の入射角60°における表面グロス値が70以上であり、
     前記表面保護層が、少なくともポリカーボネート(メタ)アクリレートと、一次粒子径が0.25μm以下の無機粒子とを含有する、電離放射線硬化性樹脂組成物の硬化物からなる、加飾シート。
    At least a decorative sheet comprising a base sheet and a surface protective layer provided on the base sheet,
    The surface gloss value at an incident angle of 60 ° of the surface protective layer is 70 or more,
    The decorative sheet which consists of a hardened | cured material of the ionizing radiation-curable resin composition in which the said surface protective layer contains a polycarbonate (meth) acrylate and an inorganic particle whose primary particle diameter is 0.25 micrometer or less.
  2.  温度20℃の環境における前記表面保護層の表面と、JIS L0803:2011に規定された綿布3-1号との間の動摩擦係数が、0.10以下である、請求項1に記載の加飾シート。 The decoration according to claim 1, wherein a coefficient of dynamic friction between the surface of the surface protective layer in an environment of a temperature of 20 ° C and a cotton cloth 3-1 defined in JIS L0803: 2011 is 0.10 or less. Sheet.
  3.  温度60℃の環境における前記表面保護層の表面と、JIS L0803:2011に規定された綿布3-1号綿布との間の動摩擦係数が、0.30以下である、請求項1に記載の加飾シート。 2. The additive according to claim 1, wherein a coefficient of dynamic friction between the surface of the surface protective layer in an environment at a temperature of 60 ° C. and a cotton cloth 3-1 cotton cloth defined in JIS L0803: 2011 is 0.30 or less. Decorative sheet.
  4.  前記電離放射線硬化性樹脂組成物に含まれる、前記ポリカーボネート(メタ)アクリレート樹脂と、前記無機粒子との質量比が、100:5~100:50である、請求項1~3のいずれかに記載の加飾シート。 The mass ratio of the polycarbonate (meth) acrylate resin and the inorganic particles contained in the ionizing radiation curable resin composition is 100: 5 to 100: 50. Decorative sheet.
  5.  前記無機粒子が、シリカ粒子である、請求項1~4のいずれかに記載の加飾シート。 The decorative sheet according to any one of claims 1 to 4, wherein the inorganic particles are silica particles.
  6.  前記電離放射線硬化性樹脂組成物が、シリコーン変性ウレタン(メタ)アクリレートオリゴマーをさらに含有する、請求項1~5のいずれかに記載の加飾シート。 The decorative sheet according to any one of claims 1 to 5, wherein the ionizing radiation curable resin composition further contains a silicone-modified urethane (meth) acrylate oligomer.
  7.  下記式によって算出される、前記表面保護層中の前記無機粒子の含有量の指標値が、2.5×10-4以上、25×10-4以下である、請求項1~6のいずれかに記載の加飾シート。
     無機粒子の含有量の指標値=前記無機粒子の一次粒子径(μm)×(前記無機粒子の質量(g)/前記表面保護層に含まれる電離放射線硬化性樹脂の質量(g))÷前記表面保護層の厚み(μm)
    The index value of the content of the inorganic particles in the surface protective layer, calculated by the following formula, is 2.5 × 10 −4 or more and 25 × 10 −4 or less. The decorative sheet described in 1.
    Index value of content of inorganic particles = primary particle diameter of the inorganic particles (μm) × (mass of the inorganic particles (g) / mass of ionizing radiation curable resin contained in the surface protective layer (g)) ÷ the above Surface protective layer thickness (μm)
  8.  少なくとも、成形樹脂と、前記成形樹脂上に設けられた表面保護層とを備える加飾樹脂成形品であって、
     前記表面保護層の入射角60°における表面グロス値が70以上であり、
     前記表面保護層が、少なくともポリカーボネート(メタ)アクリレートと、一次粒子径が0.25μm以下の無機粒子とを含有する、電離放射線硬化性樹脂組成物の硬化物からなる、加飾樹脂成形品。
    At least a decorative resin molded product comprising a molded resin and a surface protective layer provided on the molded resin,
    The surface gloss value at an incident angle of 60 ° of the surface protective layer is 70 or more,
    A decorative resin molded article comprising a cured product of an ionizing radiation curable resin composition, wherein the surface protective layer contains at least polycarbonate (meth) acrylate and inorganic particles having a primary particle diameter of 0.25 μm or less.
PCT/JP2018/012823 2017-03-31 2018-03-28 Decorative sheet and decorated resin molded article WO2018181503A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-070833 2017-03-31
JP2017-070834 2017-03-31
JP2017070834A JP6822280B2 (en) 2017-03-31 2017-03-31 Decorative sheet and decorative resin molded product
JP2017070833A JP6922343B2 (en) 2017-03-31 2017-03-31 Decorative sheet and decorative resin molded product

Publications (1)

Publication Number Publication Date
WO2018181503A1 true WO2018181503A1 (en) 2018-10-04

Family

ID=63677718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012823 WO2018181503A1 (en) 2017-03-31 2018-03-28 Decorative sheet and decorated resin molded article

Country Status (1)

Country Link
WO (1) WO2018181503A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210221036A1 (en) * 2020-01-20 2021-07-22 Panasonic Intellectual Property Management Co., Ltd. Insert molding sheet, molded product, and method of manufacturing molded product

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044195A (en) * 2004-08-09 2006-02-16 Mitsubishi Rayon Co Ltd Photosetting sheet and molded product using the same
WO2012133235A1 (en) * 2011-03-30 2012-10-04 大日本印刷株式会社 Decorated sheet and decorated resin molded article using same
JP2013203041A (en) * 2012-03-29 2013-10-07 Dainippon Printing Co Ltd Three-dimensionally molded decorative film
JP2014069520A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Decorative sheet, and decorative resin molding
WO2014083851A1 (en) * 2012-11-29 2014-06-05 凸版印刷株式会社 Transfer film
WO2015046472A1 (en) * 2013-09-28 2015-04-02 日本製紙株式会社 Hard-coated film for molding
JP2015182438A (en) * 2014-03-26 2015-10-22 大日本印刷株式会社 Three-dimensional molding sheet
JP2016068362A (en) * 2014-09-29 2016-05-09 大日本印刷株式会社 Transfer sheet
JP2016193494A (en) * 2015-03-31 2016-11-17 大日本印刷株式会社 Decorative sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044195A (en) * 2004-08-09 2006-02-16 Mitsubishi Rayon Co Ltd Photosetting sheet and molded product using the same
WO2012133235A1 (en) * 2011-03-30 2012-10-04 大日本印刷株式会社 Decorated sheet and decorated resin molded article using same
JP2013203041A (en) * 2012-03-29 2013-10-07 Dainippon Printing Co Ltd Three-dimensionally molded decorative film
JP2014069520A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Decorative sheet, and decorative resin molding
WO2014083851A1 (en) * 2012-11-29 2014-06-05 凸版印刷株式会社 Transfer film
WO2015046472A1 (en) * 2013-09-28 2015-04-02 日本製紙株式会社 Hard-coated film for molding
JP2015182438A (en) * 2014-03-26 2015-10-22 大日本印刷株式会社 Three-dimensional molding sheet
JP2016068362A (en) * 2014-09-29 2016-05-09 大日本印刷株式会社 Transfer sheet
JP2016193494A (en) * 2015-03-31 2016-11-17 大日本印刷株式会社 Decorative sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210221036A1 (en) * 2020-01-20 2021-07-22 Panasonic Intellectual Property Management Co., Ltd. Insert molding sheet, molded product, and method of manufacturing molded product

Similar Documents

Publication Publication Date Title
US9605120B2 (en) Decorative sheet, and decorative resin-molded article employing same
JP5747626B2 (en) Decorative sheet and decorative resin molded product using the same
JP5476903B2 (en) Decorative sheet and decorative resin molded product using the same
JP5663927B2 (en) Decorative sheet, decorative resin molded product using the same, and method for producing the same
JP5708157B2 (en) Three-dimensional decorative sheet, method for producing the decorative sheet, decorative resin molded product, and method for producing decorative resin molded product
JP6565278B2 (en) Decorative sheet
JP5732984B2 (en) Decorative sheet and decorative resin molded product using the same
JP5359753B2 (en) Decorative sheet and decorative resin molded product using the same
JP5962814B2 (en) Decorative sheet and decorative resin molded product using the same
JP5673099B2 (en) Decorative sheet and decorative resin molded product
JP6020642B2 (en) Decorative sheet and decorative resin molded product using the same
JP6039885B2 (en) Decorative sheet and decorative resin molded product using the same
WO2018181503A1 (en) Decorative sheet and decorated resin molded article
JP6922343B2 (en) Decorative sheet and decorative resin molded product
JP6822280B2 (en) Decorative sheet and decorative resin molded product
JP5830901B2 (en) Three-dimensional decorative sheet, method for producing the decorative sheet, decorative resin molded product, and method for producing decorative resin molded product
JP5733439B2 (en) Decorative sheet and decorative resin molded product using the same
JP5975118B2 (en) Three-dimensional decorative sheet, method for producing the decorative sheet, decorative resin molded product, and method for producing decorative resin molded product
JP5736923B2 (en) Decorative sheet and decorative resin molded product using the same
JP5850129B2 (en) Decorative sheet and decorative resin molded product
JP2021073107A (en) Decorative sheet and decorative resin molded product
JP6028775B2 (en) Decorative sheet, decorative resin molded product using the same, and method for producing the same
JP2015110335A (en) Decorative sheet for three-dimensional molding, manufacturing method of the decorative sheet, decorative resin molded article and manufacturing method of the decorative resin molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777443

Country of ref document: EP

Kind code of ref document: A1