WO2018181312A1 - Balloon catheter and method for manufacturing medical elongated body - Google Patents

Balloon catheter and method for manufacturing medical elongated body Download PDF

Info

Publication number
WO2018181312A1
WO2018181312A1 PCT/JP2018/012433 JP2018012433W WO2018181312A1 WO 2018181312 A1 WO2018181312 A1 WO 2018181312A1 JP 2018012433 W JP2018012433 W JP 2018012433W WO 2018181312 A1 WO2018181312 A1 WO 2018181312A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
inner shaft
proximal end
proximal
lumen
Prior art date
Application number
PCT/JP2018/012433
Other languages
French (fr)
Japanese (ja)
Inventor
明彦 垂永
啓二 福田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2019509887A priority Critical patent/JP6982061B2/en
Publication of WO2018181312A1 publication Critical patent/WO2018181312A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/0015Making lateral openings in a catheter tube, e.g. holes, slits, ports, piercings of guidewire ports; Methods for processing the holes, e.g. smoothing the edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0183Rapid exchange or monorail catheters

Definitions

  • the present invention relates to a balloon catheter and a method for producing a medical elongated body.
  • a balloon catheter is widely known as a medical device for dilating a lesion such as a stenosis formed in a body lumen such as a blood vessel.
  • Balloon catheters generally include what is called an over-the-wire type and what is called a rapid exchange type.
  • a rapid exchange type balloon catheter has a guide wire lumen through which a guide wire is inserted only at the distal end side of the catheter shaft on which the balloon is disposed.
  • a guide wire port proximal end opening
  • a guide wire port is provided at a predetermined position on the distal end side in the axial direction (longitudinal direction) of the catheter shaft so that the guide wire can be taken in and out of the guide wire lumen.
  • the catheter shaft used for the rapid exchange type balloon catheter is formed by integrating the outer distal shaft, the outer proximal shaft, and the inner shaft constituting the catheter shaft with each other in the vicinity of the guide wire port.
  • the outer distal shaft and the outer proximal shaft are tubular members that form an expansion lumen through which a pressurized medium (working fluid) for balloon expansion flows.
  • the inner shaft is a tubular member with a lumen that forms a guidewire lumen.
  • An operator such as a doctor inserts a guide wire into a lesion such as a stenosis formed in a blood vessel in a procedure using a balloon catheter.
  • the surgeon inserts the proximal end side of the guide wire into the guide wire lumen from the distal end side of the inner shaft, and guides the guide wire from the guide wire lumen through the guide wire port on the proximal end side of the inner shaft. Then, the surgeon guides the balloon of the balloon catheter to the lesion by moving the balloon catheter along the guide wire.
  • the operator moves the guide wire to the proximal side or the distal side with the guide wire inserted through the guide wire lumen of the balloon catheter, or removes the guide wire from the proximal end opening of the inner shaft.
  • the inner shaft of the balloon catheter may break.
  • the guide wire is sandwiched between the broken portions (the torn portions) of the inner shaft, it becomes difficult for the operator to move the guide wire smoothly, so that the operability of the guide wire is significantly reduced.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a balloon catheter capable of preventing the inner shaft from breaking near the proximal end opening of the balloon catheter, and a method for manufacturing a medical elongated body.
  • a balloon catheter includes an outer distal shaft, and an outer proximal shaft fixed to the proximal end side of the outer distal shaft and having a lumen communicating with the lumen of the outer distal shaft.
  • a proximal end of the inner shaft has a proximal end opening that opens at an outer surface of the outer proximal shaft, and the inner shaft is a part of a peripheral edge that forms the proximal end opening.
  • the manufacturing method of the medical elongated body according to the present invention includes an outer distal shaft, an outer proximal shaft, an inner shaft, a first mandrel disposed in a lumen of the inner shaft, and the outer distal shaft.
  • a second mandrel disposed in a lumen and a lumen of the outer proximal shaft, wherein the first mandrel overlaps the first region and the proximal side of the first region in the axial direction, A second region extending proximally from the proximal end of the first region, a recess is formed between the first region and the second region, and the outer distal shaft
  • the inner shaft is disposed in a lumen, and the first region of the first mandrel is inserted into the lumen of the inner shaft so that the proximal end of the inner shaft is axially aligned with the recess of the first mandrel.
  • the second mandrel is inserted into the outer distal shaft lumen and the outer proximal shaft lumen to cover the outer distal shaft, the outer proximal shaft, the inner shaft, and the second region of the first mandrel.
  • the heat shrinkable tube is arranged in such a manner that heat is applied to the heat shrinkable tube to cause shrinkage, and the outer distal shaft, the outer proximal shaft, and the inner shaft are fused and disposed in the recess of the first mandrel. Forming a convex portion at the proximal end of the inner shaft.
  • the balloon catheter configured as described above has a convex portion formed at a part of the peripheral edge forming the proximal end opening of the inner shaft.
  • the convex portion of the inner shaft can prevent the inner shaft from breaking even when excessive stress concentration occurs in the vicinity of the proximal end opening when the guide wire is taken out from the proximal end opening of the inner shaft. For this reason, the balloon catheter can prevent the inner shaft from being broken, and can prevent the operability of the guide wire from being lowered as the inner shaft is broken.
  • the first region included in the first mandrel is inserted into the inner shaft lumen, and the first region of the first mandrel is inserted.
  • the base end of the inner shaft is disposed in a recess formed between the first mandrel and the second region of the first mandrel, and covers the outer tip shaft, the outer base shaft, the inner shaft, and the second region of the first mandrel. Place the heat shrink tube so that.
  • the said manufacturing method gives heat to a heat contraction tube, and is made to shrink
  • a convex part is formed at the base end.
  • FIG. 4 is a view for explaining the method for manufacturing the medical elongated body according to the embodiment, and FIG. 4A is a cross-sectional view showing a state in which the inner shaft is disposed so as to overlap the outer tip shaft in the axial direction.
  • FIG. 4B is a cross-sectional view showing a state where the first mandrel is inserted into the inner shaft
  • FIG. 4C is a cross-sectional view showing a state where the outer proximal shaft is inserted into the lumen of the outer distal shaft.
  • FIG. 5 is a view for explaining the method for manufacturing the medical elongated body according to the embodiment
  • FIG. 5 (A) shows the second mandrel in the lumen of the outer distal shaft and the lumen of the outer proximal shaft
  • FIG. 5B is a cross-sectional view showing a state in which a heat-shrinkable tube is arranged.
  • FIG. 6 is a diagram for explaining a method for manufacturing a medical elongated body according to the embodiment
  • FIG. 6A is an enlarged cross-sectional view illustrating a state where a convex portion is formed on the inner shaft.
  • FIG. 6B is an enlarged cross-sectional view illustrating a state after the convex portion is formed on the inner shaft. It is sectional drawing for demonstrating the positional relationship of the large diameter part formed in a heat contraction tube and an outer front end shaft. It is an expanded sectional view showing the convex part of the inner side shaft concerning a modification. It is an expanded sectional view showing the convex part of the inner side shaft concerning a modification. It is an expanded sectional view which shows the convex part of the inner side shaft which concerns on another modification.
  • the balloon catheter 10 expands a balloon 160 disposed on the distal end side of the shaft 100 at a lesion such as a stenosis formed in a living body lumen, thereby causing a lesion.
  • a lesion such as a stenosis formed in a living body lumen
  • the balloon catheter 10 is configured as a PTCA treatment balloon catheter used to widen the stenosis of the coronary artery.
  • the balloon catheter 10 is used to treat lesions such as stenosis formed in other blood vessels, bile ducts, trachea, esophagus, other gastrointestinal tract, urethra, ear nasal lumen, and other living organs. It can also be configured as the intended balloon catheter.
  • a balloon catheter 10 includes a long shaft (corresponding to a “medical long body”) 100, a balloon 160 disposed on the distal end side of the shaft 100, and a proximal end of the shaft 100. And a hub 190 disposed on the side.
  • the side on which the balloon 160 is disposed is the distal end side of the balloon catheter 10
  • the side on which the hub 190 is disposed is the proximal end side of the balloon catheter 10
  • the direction in which the shaft 100 extends is the axial direction.
  • the distal end portion means a certain range including the distal end (the most distal end) and the periphery thereof
  • the proximal end portion means a certain range including the proximal end (the most proximal end) and the periphery thereof. Means range.
  • the balloon catheter 10 is configured as a so-called rapid exchange type catheter in which a proximal end opening (guide wire port) 105 through which a guide wire 200 can enter and exit is formed near the distal end side of the shaft 100. ing.
  • the shaft 100 is disposed in the outer shaft 110 including the inner lumen (expansion lumen) 115, the inner lumen 115 of the outer shaft 110, and the guide wire 200. And an inner shaft 140 provided with a lumen (guide wire lumen) 145 through which is inserted.
  • the shaft 100 has a proximal end opening (corresponding to a “proximal opening of the inner shaft”) 105 that communicates with the lumen 145 of the inner shaft 140. Yes.
  • the proximal end opening 105 is formed near the proximal end of the inner shaft 140.
  • the outer shaft 110 has an outer distal shaft 120 and an outer proximal shaft 130 fixed to the proximal end side of the outer distal shaft 120.
  • the outer front end shaft 120 is formed of a tubular member in which a lumen 125 extending in the axial direction is formed.
  • the outer proximal shaft 130 is formed of a tubular member in which a lumen 135 extending in the axial direction is formed.
  • the outer distal shaft 120 and the outer proximal shaft 130 are integrally connected (fused) with the inner shaft 140 in the vicinity of the proximal opening 105 of the shaft 100.
  • the lumen 125 of the outer distal shaft 120 and the lumen 135 of the outer proximal shaft 130 communicate with each other.
  • the lumen 125 of the outer distal shaft 120 and the lumen 135 of the outer proximal shaft 130 are in communication with each other to form a lumen (expansion lumen) 115 that communicates with the expansion space 167 of the balloon 160.
  • the outer distal shaft 120 and the outer proximal shaft 130 are, for example, polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, thermoplastic resins such as soft polyvinyl chloride, polyurethane elastomer, polyamide It can be formed of various elastomers such as elastomer and polyester elastomer, and crystalline plastics such as polyamide, crystalline polyethylene, and crystalline polypropylene.
  • polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, thermoplastic resins such as soft polyvinyl chloride, polyurethane elastomer, polyamide It can be formed of various elastomers such as elastomer and polyester elastomer, and crystalline plastics such as polyamide, crystalline polyethylene, and crystalline polypropylene.
  • the distal end side of the inner shaft 140 is disposed in the lumen 125 of the outer distal shaft 120. As shown in FIG. A certain range on the distal end side of the inner shaft 140 is arranged so as to protrude toward the distal end side of the outer distal shaft 120. Further, as shown in FIG. 2B, the inner shaft 140 has the proximal end side of the inner shaft 140 disposed on the outer surface of the outer proximal shaft 130.
  • the inner shaft 140 has a tip member 180 disposed on the tip side.
  • the tip member 180 has a lumen 181 through which the guide wire 200 can be inserted.
  • the inner shaft 140 is provided with the tip member 180 on the tip side, so that it is possible to prevent the living organ from being damaged when the tip of the balloon catheter 10 contacts the living body lumen (such as the inner wall of the blood vessel).
  • the tip member 180 can be formed of, for example, a flexible resin material. However, the material of the tip member 180 is not particularly limited as long as it can be fixed to the inner shaft 140.
  • the lumen 145 of the inner shaft 140 communicates with the lumen 181 of the tip member 180 on the tip side of the inner shaft 140.
  • the inner lumen 145 of the inner shaft 140 communicates with the proximal end opening 105 on the proximal end side of the inner shaft 140.
  • a convex portion 150 described later is formed in the vicinity of the proximal end opening portion 105 of the inner shaft 140.
  • the inner shaft 140 can be formed of the same material as exemplified as the constituent material of the outer shaft 110, for example.
  • the balloon 160 is fixed to a tip 161 fixed to the tip 141 of the inner shaft 140 and a tip 111 of the outer shaft 110 (corresponding to “tip of the outer tip shaft”).
  • a proximal end portion 163 and an intermediate portion 166 forming a maximum outer diameter portion formed between the distal end portion 161 of the balloon 160 and the proximal end portion 163 of the balloon 160.
  • the balloon 160 includes a distal end side tapered portion 164 formed between the distal end portion 161 of the balloon 160 and the intermediate portion 166 of the balloon 160, and a gap between the proximal end portion 163 of the balloon 160 and the intermediate portion 166 of the balloon 160.
  • a proximal end side taper portion 165 formed in the above.
  • the balloon 160 forms an expansion space 167 communicating with the lumen 115 of the outer shaft 110 between the outer peripheral surface of the shaft 100.
  • the balloon 160 expands in a radial direction that intersects the axial direction of the balloon 160.
  • the balloon 160 is made of, for example, polyethylene, polypropylene, polyolefin of ethylene-propylene copolymer, polyester such as polyethylene terephthalate, polyvinyl chloride, ethylene-vinyl acetate copolymer, cross-linked ethylene-vinyl acetate copolymer, polyurethane, etc. It can be formed of thermoplastic resin, polyamide, polyamide elastomer, polystyrene elastomer, silicone rubber, latex rubber or the like.
  • the inner shaft 140 has a contrast marker 170 indicating the approximate center position of the intermediate portion 166 of the balloon 160 in the axial direction.
  • the contrast marker 170 can be formed of, for example, a metal such as platinum, gold, silver, iridium, titanium, tungsten, or an alloy thereof. Note that the contrast marker 170 is located at the position indicating the boundary between the distal tapered portion 164 and the intermediate portion 166 on the inner shaft 140 and between the proximal tapered portion 165 and the intermediate portion 166 on the inner shaft 140. You may arrange
  • the hub 190 has a port 191 that can be connected in a liquid-tight and air-tight manner to a supply device (not shown) such as an indeflator for supplying a fluid (for example, a contrast medium or physiological saline). is doing.
  • a supply device such as an indeflator for supplying a fluid (for example, a contrast medium or physiological saline).
  • the port 191 of the hub 190 can be configured by, for example, a known luer taper configured such that a tube or the like can be connected / separated.
  • a proximal end opening (guide wire port) 105 that opens on the outer surface of the outer proximal shaft 130 is formed on the proximal end side of the inner shaft 140.
  • the inner shaft 140 has a convex portion 150 on a part of the peripheral edge part 105 a (part along the circumferential direction of the peripheral edge part 105 a) forming the proximal end opening 105.
  • the convex portion 150 is formed from the proximal end side to the distal end side of the inner shaft 140 in order to ensure flexibility while preventing breakage of the peripheral edge portion 105a forming the proximal end opening portion 105, as shown in FIG. It is preferably formed by increasing the wall thickness.
  • FIG. 3 is an enlarged cross-sectional view (enlarged cross-sectional view of the inner shaft 140 in the axial direction) of the 3A portion surrounded by a broken line shown in FIG.
  • the above-mentioned “having a convex portion whose thickness increases from the proximal end side to the distal end side of the inner shaft” means at least the circumferential direction of the peripheral edge portion 105 a that forms the proximal end opening 105 of the inner shaft 140.
  • the convex portion 150 may have a cross-sectional shape in which the thickness continuously increases from the proximal end side to the distal end side of the inner shaft 140, or a later-described modification example As shown in FIG. 10 (see FIG. 10), it may be a cross-sectional shape in which the thickness increases stepwise (a shape in which the thickness increases to a certain size with an arbitrary portion in the axial direction as a boundary).
  • the convex portion 150 is connected to the first inclined portion 151 inclined from the proximal end side to the distal end side of the inner shaft 140 and the distal end of the first inclined portion 151 in the cross section of the inner shaft 140. And a second inclined portion 152 that is inclined from the distal end of the first inclined portion 151 toward the distal end side of the inner shaft 140.
  • the first inclined portion 151 is inclined radially outward (in a direction away from the axis of the inner shaft 140) from the peripheral edge portion 105 a of the inner shaft 140 toward the proximal end side of the inner shaft 140. ing.
  • the first inclined portion 151 extends substantially parallel to the opening surface of the proximal end opening 105. That is, the 1st inclination part 151 and the base end opening part 105 exist on the same plane.
  • the second inclined portion 152 extends from the distal end of the first inclined portion 151 to the distal end side of the inner shaft 140 so as to exhibit a cross-sectional shape different from that of the first inclined portion 151.
  • the proximal end side of the second inclined portion 152 is curved so as to draw an arc toward the distal end side of the inner shaft 140.
  • the distal end side of the second inclined portion 152 has a cross-sectional shape that draws an arc from the proximal end side of the first inclined portion 151 toward the outer surface side of the inner shaft 140 so as to be connected to the outer surface of the inner shaft 140.
  • the 1st inclination part 151 and the 2nd inclination part 152 are integrally formed as a part of the inner side shaft 140, they are not divided clearly on drawing, but the boundary of both is shown in FIG. In the cross section, it exists in the boundary part of the convex part 150 which the direction (direction which leaves
  • the axial length L1 of the first inclined portion 151 of the convex portion 150 is formed longer than the axial length L2 of the second inclined portion 152 of the convex portion 150.
  • the length L1 in the axial direction of the first inclined portion 151 and the length L2 in the axial direction of the second inclined portion 152 are the length in the axial direction of the longest portion on the cross section shown in FIG. It is.
  • the axial length L1 of the first inclined portion 151 of the convex portion 150 can be formed, for example, to 0.2 mm to 1.0 mm, and the axial length L2 of the second inclined portion 152 of the convex portion 150 is, for example, , 0.1 mm to 0.8 mm.
  • the proximal end opening 105 of the inner shaft 140 is disposed closer to the proximal end than the proximal end 123 of the outer distal shaft 120. Further, the inner shaft 140 has a flexible portion 158 that is thinner than the convex portion 150 and is flexible between the base end 123 of the outer distal shaft 120 and the convex portion 150.
  • the flexible part 158 is formed so as to have a thinner wall thickness than the convex part 150 of the inner shaft 140. That is, the flexible portion 158 is located in the vicinity of the distal end of the inner shaft 140 where the inner shaft 140 and the proximal end 123 of the outer distal shaft 120 are fused, and the proximal opening 105 of the inner shaft 140 is formed. This is a portion having a smaller thickness than the convex portion 150 provided on at least a part of the peripheral edge portion 105a to be formed.
  • the outer surface of the flexible portion 158 has a shape that is recessed inward of the inner shaft 140 relative to the convex portion 150 in the cross section shown in FIG.
  • the flexible portion 158 is located between the base end 123 of the outer front end shaft 120 and the convex portion 150, and from the position of the outer surface of the shaft 100 at the base end 123 of the outer front end shaft 120 and the convex portion 150. Is also in a recessed position.
  • the resin forming the inner shaft 140 forms the convex portion 150. It is formed by flowing in. For this reason, the thickness of the flexible part 158 is smaller than the convex part 150 and smaller than the part other than the part where the convex part 150 is formed on the inner shaft 140.
  • the convex portion 150 can be formed, for example, in the range of 0.1 mm to 1.0 mm from the peripheral edge portion 105 a forming the proximal end opening portion 105 to the distal end side in the axial direction of the inner shaft 140.
  • the flexible portion 158 can be formed in the range of 0.5 mm to 3.0 mm from the proximal end 123 of the outer distal shaft to the proximal end side of the inner shaft 140, for example.
  • the portion t1 having the largest thickness in the convex portion 150 can be formed to be 0.1 mm to 0.5 mm, for example.
  • the portion t2 having the smallest wall thickness in the flexible portion 158 can be formed to 0.02 mm to 0.2 mm, for example.
  • the proximal end opening 105 of the inner shaft 140 is inclined from the proximal end side to the distal end side of the inner shaft 140 in the axial section of the inner shaft 140.
  • the first inclined portion 151 of the convex portion 150 and the proximal end opening portion 105 are arranged substantially in parallel so as to overlap on the same plane, but the proximal end opening portion 105 is, for example, the convex portion 150. You may arrange
  • the peripheral edge portion 105 a of the base end opening 105 of the inner shaft 140 is formed with a curved surface in the axial section of the inner shaft 140.
  • the cross-sectional shape of the peripheral edge portion 105a can be formed, for example, so as to be curved with a predetermined curvature from the peripheral edge portion 105a toward the proximal end opening 105 formed on the inside thereof, as shown in the figure.
  • the cross-sectional shape of the peripheral edge portion 105a is not limited to a curved shape, and may be, for example, a triangle or a rectangle.
  • the outer front end shaft 120 has a large-diameter portion 126 formed with a predetermined outer diameter D1. Further, the outer diameter D2 formed by the outer shaft 110 and the inner shaft 140 at a portion corresponding to the convex portion 150 of the inner shaft 140 is smaller than the outer diameter D1 of the large diameter portion 126.
  • both the shafts 110, 140 are heat-shrinkable tubes 400.
  • a predetermined range (range indicated by arrow A1 in FIG. 7) is covered.
  • both shafts 110 and 140 are contracted radially inward (in the direction toward the inside of the shaft 100) in the range covered with the heat-shrinkable tube 400.
  • the outer diameter is maintained before and after the fusion of the shafts 110 and 140 within a range not affected by heat.
  • a portion where the outer diameter of the outer front end shaft 120 is maintained before and after the fusion forms a large diameter portion 126.
  • the outer diameter of the portion where the outer diameter is reduced after the shafts 110 and 140 are fused is larger than the outer diameter portion 126.
  • a small small diameter portion 127 is formed.
  • a boundary portion 128 is formed in which the outer diameter gradually increases from the small diameter portion 127 toward the large diameter portion 126 due to the effect of heat applied to the heat shrinkable tube 400.
  • the region (indicated by the arrow A1 in FIG. 7) where the heat-shrinkable tube 400 is disposed is the region where the heat-shrinkable tube 400 is the outer distal shaft 120, the outer proximal shaft 130, the inner shaft 140, and the There is no particular limitation as long as it covers the second region 312 of the one mandrel 310.
  • the distal end of the heat-shrinkable tube 400 is disposed at a position away from the distal end of the proximal end opening 105 of the inner shaft 140 toward the distal end side, and the proximal end of the heat-shrinkable tube 400 is the base of the proximal end opening 105 of the inner shaft 140. It arrange
  • the convex portion 150 of the inner shaft 140 has a width along the axial direction of the inner shaft 140.
  • “having a width along the axial direction” as used herein means a portion (indicated by a broken line arrow w in the figure) in which the convex portion 150 extends along the axial direction in the cross section shown in FIG. It has a region to be shown).
  • the width of the convex portion 150 of the inner shaft 140 increases toward the outer shaft 110 (outer proximal shaft 130) side. That is, the outer peripheral shape of the convex portion 150 is formed in such a shape that the contact area (fused area) with the outer shaft 110 gradually increases in the width direction toward the proximal end side along the axial direction of the inner shaft 140. ing.
  • the convex portion 150 has a shape that is inclined so as to widen toward the outer shaft 110 side toward the proximal end side of the inner shaft 140.
  • the shape of the convex part 150 is not limited to such a shape.
  • the convex portion 150 has a shape that is inclined so that the width decreases toward the outer shaft 110 side toward the proximal end side of the inner shaft 140, or a constant width toward the proximal end side of the inner shaft 140. You may form so that it may be formed.
  • an operator who manufactures the shaft 100 supplies (preparation) the outer distal shaft 120, the outer proximal shaft 130, and the inner shaft 140.
  • the operator prepares, for example, a tubular member having an outer diameter and an inner diameter substantially constant in the axial direction as the outer tip shaft 120.
  • the operator may use, for example, a tubular member whose outer base end shaft 130 is inclined obliquely from the front end side toward the base end side, and a portion other than the front end has a substantially constant outer diameter and inner diameter in the axial direction.
  • the operator may, for example, as the inner shaft 140, a tubular member having a base end inclined obliquely from the base end side toward the front end side, and a portion other than the base end having a substantially constant outer diameter and inner diameter in the axial direction. (Refer to FIG. 4C for examples of shapes of the shafts 120, 130, and 140).
  • An operator may have a first mandrel 310 disposed in the lumen (guidewire lumen) 145 of the inner shaft 140, and a second mandrel disposed in the lumen 125 of the outer distal shaft 120 and the lumen 135 of the outer proximal shaft 130. 320 is supplied (prepared) (see FIG. 5A).
  • the first mandrel 310 includes a first region 311 disposed in the inner lumen 145 of the inner shaft 140 and a first end of the first region 311 while overlapping the proximal end side of the first region 311 in the axial direction.
  • a second region 312 extending to the base end side of the base end of the region 311.
  • a recess 313 is formed between the first region 311 of the first mandrel 310 and the second region 312 of the first mandrel 310.
  • the first region 311 of the first mandrel 310 extends substantially linearly in the axial direction.
  • the second region 312 of the first mandrel 310 has a tip inclined toward the tip side, and forms a predetermined space with the first region 311.
  • the concave portion 313 of the first mandrel 310 is formed so that the shape of the portion 313a facing the base end of the inner shaft 140 is the base end so that the peripheral edge portion 105a of the base end opening 105 of the inner shaft 140 can be formed in a curved cross-sectional shape. Curved concavely toward the side.
  • the worker arranges the inner shaft 140 in the inner cavity 125 of the outer tip shaft 120 as shown in FIG.
  • the worker places the first mandrel 310 in the inner lumen 145 of the inner shaft 140 as shown in FIG. Specifically, the operator inserts the first mandrel 310 into the inner lumen 145 of the inner shaft 140 and the first mandrel 310 so that the proximal end of the inner shaft 140 overlaps the recess 313 of the first mandrel 310 in the axial direction. Place. At this time, the worker arranges the first mandrel 310 so that a part of the inner shaft 140 is exposed between the base end 123 of the outer distal shaft 120 and the recess 313 of the first mandrel 310.
  • the operator places the inner shaft 140 along the outer surface of the outer proximal shaft 130, the lumen 125 of the outer distal shaft 120, and the inner proximal shaft 130.
  • the outer proximal shaft 130 is arranged so that the cavities 135 are continuous.
  • the second mandrel 320 may be a known one that extends substantially linearly in the axial direction.
  • the operator performs an operation of placing the inner shaft 140 in the inner cavity 125 of the outer distal shaft 120, an operation of arranging the first mandrel 310 on the inner shaft 140, and an operation of arranging the outer proximal shaft 130 on the outer distal shaft 120.
  • the operation of inserting the second mandrel 320 into the lumen 125 of the outer distal shaft 120 and the lumen 135 of the outer proximal shaft 130 can be performed in any order.
  • the worker covers the outer distal shaft 120, the outer proximal shaft 130, the inner shaft 140, and the second region 312 of the first mandrel 310 so as to cover the heat contraction tube 400.
  • the heat-shrinkable tube 400 for example, a hollow cylindrical member made of polyolefin or the like can be used.
  • the worker applies heat to the heat-shrinkable tube 400 in a state where the heat-shrinkable tube 400 is arranged, and fuses the outer distal shaft 120, the outer proximal shaft 130, and the inner shaft 140.
  • the heat-shrinkable tube 400 contracts when heated, and deforms such that the inner diameter of the heat-shrinkable tube 400 after heating is smaller than the inner diameter of the heat-shrinkable tube 400 before heating.
  • the inner shaft 140 is melted at a portion exposed from the concave portion 313 of the first mandrel 310 of the inner shaft 140, and the resin constituting the inner shaft 140 is made of resin of the first mandrel 310.
  • the resin flows into the concave portion 313 side (in FIG. 6A, the resin flowing into the concave portion 313 side is indicated by a symbol f).
  • the resin constituting the inner shaft 140 that has flowed into the concave portion 313 side of the first mandrel 310 has increased in thickness from the proximal end side to the distal end side of the inner shaft 140.
  • the convex part 150 is formed.
  • the operator has exposed the portion where the thickness of the inner shaft 140 is reduced (exposed from the recess 313) due to the resin flowing into the recess 313 side between the base end 123 of the outer tip shaft 120 and the tip of the projection 150.
  • the flexible part 158 is formed in the part).
  • a small diameter portion 127 is formed in a portion (range indicated by arrow A ⁇ b> 1 in FIG. 7) covered with the heat shrink tube 400 in each shaft 120, 130, 140.
  • a boundary portion 128 is formed on the uncovered portion (the tip side from the small diameter portion 127), and a large diameter portion 126 is formed on the tip side of the boundary portion 128.
  • the operator performs the above-described steps to obtain the inner shaft 140 formed with the convex portion 150 and the flexible portion 158, and the outer shaft 110 constituted by the outer distal shaft 120 and the outer proximal shaft 130.
  • the provided shaft 100 can be manufactured.
  • the balloon catheter 10 includes an outer distal shaft 120 and an outer proximal shaft having a lumen 135 that is fixed to the proximal end side of the outer distal shaft 120 and communicates with the lumen 125 of the outer distal shaft 120. 130, an inner shaft 140 whose distal end side is disposed in the lumen 125 of the outer distal shaft 120 and whose proximal end is disposed on the outer surface of the outer proximal shaft 130, and the inner shaft 140. And a balloon 160 fixed to the outer distal shaft 120.
  • the base end of the inner shaft 140 has a base end opening (guide wire port) 105 that opens on the outer surface of the outer base end shaft 130, and the inner shaft 140 has a peripheral edge that forms the base end opening 105.
  • a part of 105a has a convex portion 150 whose thickness increases from the proximal end side toward the distal end side.
  • a convex portion 150 is formed on a part of the peripheral edge portion 105a that forms the proximal end opening portion 105 of the inner shaft 140.
  • the convex portion 150 of the inner shaft 140 breaks the inner shaft 140 even when excessive stress concentration occurs in the vicinity of the proximal end opening 105 when the guide wire 200 is taken out from the proximal end opening 105 of the inner shaft 140. Can be prevented. For this reason, the balloon catheter 10 can prevent the inner shaft 140 from being broken, and can prevent the operability of the guide wire 200 from being lowered as the inner shaft 140 is broken.
  • the proximal end opening 105 of the inner shaft 140 is disposed on the proximal end side with respect to the proximal end 123 of the outer distal shaft 120, and the inner shaft 140 is disposed between the proximal end 123 of the outer distal shaft 120 and the convex portion 150. Further, the flexible portion 158 is thinner than the convex portion 150 and is flexible.
  • the balloon catheter 10 configured as described above has a flexible portion 158 formed on the distal end side of the inner shaft 140 with respect to the convex portion 150. Therefore, when a stress acts on the convex portion 150 from the guide wire 200 when the guide wire 200 is operated, the inner shaft 140 is deformed (bent) so that the vicinity of the convex portion 150 is swollen starting from the flexible portion 158. Therefore, it is possible to prevent stress concentration from occurring near the proximal end opening 105 of the inner shaft 140. Thereby, the balloon catheter 10 can more preferably prevent the proximal end opening 105 of the inner shaft 140 from being broken.
  • the balloon catheter 10 has a flexible portion 158 formed on the distal end side of the inner shaft 140 with respect to the convex portion 150, the flexible portion 158 is moved by the guide wire 200 along the guide wire 200 when the balloon catheter 10 is moved. Following 200 is easily curved, and the followability to guide wire 200 is enhanced.
  • the proximal end opening 105 of the inner shaft 140 is inclined from the proximal end side toward the distal end side in the axial section of the inner shaft 140. For this reason, the opening area of the proximal end opening 105 can be formed larger than when the proximal end opening 105 of the inner shaft 140 is opened so as to be orthogonal to the axial direction of the inner shaft 140. Thereby, the operator can easily take out the guide wire 200 through the proximal end opening 105 of the balloon catheter 10.
  • the outer tip shaft 120 has a large-diameter portion 126 formed with a predetermined outer diameter, and the outer shaft 110 and the inner shaft 140 are formed at portions corresponding to the convex portions 150 formed on the inner shaft 140.
  • the diameter is smaller than the outer diameter of the large diameter portion 126.
  • the balloon catheter 10 and another medical device are used.
  • another balloon catheter or a catheter device used for diagnostic imaging may be inserted.
  • the balloon catheter 10 is formed on the inner shaft 140 because the outer diameter of the convex portion 150 formed on the inner shaft 140 is smaller than the outer diameter of the large diameter portion 126 of the outer tip shaft 120 as described above. Regardless of the formation of the convex portion 150, it is possible to suitably prevent interference with other medical devices in the lumen of the catheter.
  • the convex portion 150 of the inner shaft 140 has a width along the axial direction of the inner shaft 140, and the width of the convex portion 150 increases toward the outer shaft 110 side.
  • the inner shaft 140 has a larger contact area (fusion area) where the convex portion 150 and the outer surface of the outer shaft 110 are in contact with each other on the proximal end side of the inner shaft 140. Fixing force can be increased.
  • the convex portion 150 formed on the inner shaft 140 includes a first inclined portion 151 that is inclined from the proximal end side toward the distal end side in the axial section of the inner shaft 140, and the distal end of the first inclined portion 151. And a second inclined portion 152 that is inclined from the distal end of the first inclined portion 151 toward the distal end side of the inner shaft 140.
  • the length of the first inclined portion 151 in the axial direction is longer than the length of the second inclined portion 152 in the axial direction.
  • the balloon catheter 10 configured as described above has a relatively long axial length of the first inclined portion 151 formed on the proximal end side of the convex portion 150, so that the inner side in the axial direction of the inner shaft 140 is formed.
  • the region where the outer diameter of the shaft 140 changes (the region from the base end of the convex portion 150 to the maximum outer diameter portion of the convex portion 150) becomes longer. That is, since the inner shaft 140 has a longer axial length in a region where the outer diameter of the convex portion 150 changes so as to increase, a sudden decrease in the outer diameter of the convex portion 150 can be suppressed.
  • the amount of increase in the outer diameter from the proximal end side to the distal end side of the convex portion 150 becomes gradual, so that a kink or the like of the inner shaft 140 caused by a sudden increase in the outer diameter occurs. Can be prevented.
  • peripheral edge portion 105a of the base end opening 105 of the inner shaft 140 is formed as a curved surface. For this reason, when the operator takes out the guide wire 200 from the proximal end opening 105 of the inner shaft 140, the guide wire 200 can be prevented from being caught by the peripheral edge 105a of the proximal end opening 105, and the guide wire 200 can be smoothly moved. It can be taken out.
  • the manufacturing method of the shaft 100 includes the outer distal shaft 120, the outer proximal shaft 130, the inner shaft 140, the first mandrel 310 disposed in the lumen 145 of the inner shaft 140, and the outer distal shaft 120.
  • a second mandrel 320 disposed in the lumen 135 of the outer proximal shaft 130, and the first mandrel 310 has a first region 311, a proximal end side of the first region 311 and a shaft
  • a second region 312 extending closer to the base end side than the base end of the first region 311 while overlapping in the direction, and a recess 313 is formed between the first region 311 and the second region 312.
  • the inner shaft 140 is disposed in the inner lumen 125 of the outer tip shaft 120, and the first region 311 of the first mandrel 310 is inserted into the inner lumen 145 of the inner shaft 140.
  • the first mandrel 310 is disposed so that the proximal end thereof overlaps the concave portion 313 of the first mandrel 310 in the axial direction, and the inner shaft 140 is disposed along the outer surface of the outer proximal shaft 130, and the lumen 125 of the outer distal shaft 120 is disposed.
  • outer proximal shaft 130 are arranged so that the inner lumen 135 of the outer proximal shaft 130 is continuous, and the second mandrel 320 is inserted into the inner lumen 125 of the outer distal shaft 120 and the inner lumen 135 of the outer proximal shaft 130.
  • the heat-shrinkable tube 400 is disposed so as to cover the second region 312, and heat is applied to the heat-shrinkable tube 400 to contract, and the outer distal shaft 120, the outer proximal shaft 130, and the inner shaft 140 are fused, A convex portion 150 is formed at the proximal end of the inner shaft 140 disposed in the concave portion 313 of the first mandrel 310.
  • the first region 311 provided in the first mandrel 310 is inserted into the lumen 145 of the inner shaft 140 and the first mandrel 310 is inserted.
  • the base end of the inner shaft 140 is disposed in a recess 313 formed between the first region 311 of the first mandrel 310 and the second region 312 of the first mandrel 310, and the outer distal shaft 120, the outer proximal shaft 130, and the inner shaft 140 and the heat shrink tube 400 are arranged to cover the second region 312 of the first mandrel 310.
  • the manufacturing method heat is applied to the heat shrinkable tube 400 to cause the heat shrinkable tube 400 to shrink, thereby fusing the outer distal shaft 120, the outer proximal shaft 130, and the inner shaft 140 to the recess 313 of the first mandrel 310.
  • a convex portion 150 is formed at the proximal end of the arranged inner shaft 140. Therefore, the manufacturing method can provide the shaft 100 including the inner shaft 140 in which the convex portion 150 that prevents the inner shaft 140 from breaking near the proximal end opening 105 is formed.
  • the first mandrel 310 has the inner shaft 140 exposed so that the inner shaft 140 is exposed between the proximal end 123 of the outer distal shaft 120 and the distal end of the second region 312 of the first mandrel 310. Placed in.
  • the portion of the inner shaft 140 exposed from the first mandrel 310 flows into the proximal end side of the inner shaft 140 so as to form a convex portion 150 when heat is applied to the heat shrinkable tube 400 and contracted.
  • a flexible portion 158 having a thickness smaller than that of the convex portion 150 is formed.
  • the above manufacturing method of the shaft 100 can form the convex portion 150 on the inner shaft 140 and can form the flexible portion 158 on the distal end side of the inner shaft 140 with respect to the convex portion 150.
  • the inner shaft 140 is deformed (bent) so that when the guide wire 200 is operated and stress is applied to the convex portion 150 from the guide wire 200, the vicinity of the convex portion 150 is swollen starting from the flexible portion 158. Further, stress concentration is prevented from occurring near the proximal end opening 105 of the inner shaft 140. Further, when the balloon catheter 10 is moved along the guide wire 200, the flexible portion 158 easily curves following the guide wire 200, thereby improving the followability of the balloon catheter 10 with respect to the guide wire 200.
  • the recess 313 of the first mandrel 310 is formed in a shape in which a portion 313a facing the base end of the inner shaft 140 is curved.
  • the proximal end of the inner shaft 140 is formed in a curved shape by the recess 313 of the first mandrel 310.
  • the peripheral edge portion 105a of the proximal end opening 105 formed at the proximal end of the inner shaft 140 is formed in a curved sectional shape (curved sectional shape). Accordingly, when the operator takes out the guide wire 200 from the proximal end opening 105 of the inner shaft 140, the guide wire 200 can be prevented from being caught by the peripheral edge 105a of the proximal end opening 105, and the guide wire 200 can be smoothly moved. It can be taken out.
  • FIG. 8 is a cross-sectional view showing a convex portion 550 of a balloon catheter according to a modification.
  • the balloon catheter according to Modification 1 is different from the balloon catheter 10 according to the embodiment described above in the cross-sectional shape of the convex portion 550 formed on the inner shaft 140.
  • the convex portion 550 formed on the inner shaft 140 is a first inclination that is inclined from the proximal end side toward the distal end side in the axial cross section of the inner shaft 140 (the cross section shown in FIG. 7). Part 551 and a second inclined part 552 connected to the tip of the first inclined part 551.
  • the first inclined portion 551 extends substantially linearly at a predetermined inclination angle from the proximal end side to the distal end side of the inner shaft 140.
  • the peripheral edge portion 105a of the base end opening 105 formed near the base end of the first inclined portion 551 is formed with a curved surface.
  • the second inclined portion 552 is inclined from the distal end of the first inclined portion 551 toward the distal end side of the inner shaft 140.
  • the cross-sectional shape of the tip of the first inclined portion 551 is switched from the first inclined portion 551 extending in a substantially linear shape toward the curved second inclined portion 552 in the cross-sectional view shown in FIG. Present) at the boundary.
  • the second inclined portion 552 extends from the distal end of the first inclined portion 551 to the distal end side of the inner shaft 140 so as to exhibit a different cross-sectional shape from the first inclined portion 551 in the cross section shown in FIG.
  • the proximal end side of the second inclined portion 552 has a cross-sectional shape that draws an arc from the distal end of the first inclined portion 551 toward the distal end side.
  • the distal end side of the second inclined portion 552 has a cross-sectional shape that draws an arc from the proximal end side of the second inclined portion 552 toward the outer surface side of the inner shaft 140 so as to be connected to the outer surface of the inner shaft 140. ing.
  • the axial length L1 of the first inclined portion 551 of the convex portion 550 is shorter than the axial length L2 of the second inclined portion 552 of the convex portion 550.
  • the length L1 in the axial direction of the first inclined portion 551 and the length L2 in the axial direction of the second inclined portion 552 are the length in the axial direction of the longest portion on the cross section shown in FIG. It is.
  • the length L1 in the axial direction of the first inclined portion 551 of the convex portion 550 can be formed to be 0.1 mm to 0.8 mm, for example, and the length L2 in the axial direction of the second inclined portion 552 of the convex portion 550 is, for example, , 0.2 mm to 1.0 mm.
  • the operator When forming the convex portion 550 according to the present modification, the operator prepares a mandrel having a concave portion having a cross-sectional shape corresponding to the cross-sectional shape of the convex portion 550 as the first mandrel. Similarly, when forming convex portions 650 and 750 according to each modification described below, the operator prepares a first mandrel having a cross-sectional shape corresponding to the cross-sectional shape of each convex portion 650 and 750.
  • the balloon catheter according to the present modification includes the first inclined portion in which the convex portion 550 formed on the inner shaft 140 is inclined from the proximal end side toward the distal end side in the axial section of the inner shaft 140. 551 and a second inclined portion 552 that is continuous with the distal end of the first inclined portion 551 and is inclined from the distal end of the first inclined portion 551 toward the distal end side of the inner shaft 140.
  • the length of the first inclined portion 551 in the axial direction is shorter than the length of the second inclined portion 552 in the axial direction.
  • the balloon catheter has the convex portion 550 having a cross-sectional shape as described in the present modified example formed on the inner shaft 140, when the guide wire 200 is taken out from the proximal end opening 105 of the inner shaft 140, etc. It is possible to prevent the inner shaft 140 from being broken near the proximal end opening 105, and to prevent the operability of the guide wire 200 from being lowered as the inner shaft 140 is broken.
  • the axial length L1 of the first inclined portion 551 of the convex portion 550 and the axial length L2 of the second inclined portion 552 of the convex portion 550 are the same length. You may have. Even in this case, the balloon catheter can prevent the inner shaft 140 from breaking near the proximal end opening 105 when the guide wire 200 is taken out from the proximal end opening 105 of the inner shaft 140. It is possible to prevent the operability of the guide wire 200 from being lowered due to the breakage of the guide wire 200.
  • the specific cross-sectional shape and the like are not particularly limited.
  • the convex portion 650 has a cross-sectional shape in which the first inclined portion 651 is inclined obliquely toward the distal end side, and the second inclined portion 652 is extended substantially perpendicular to the direction orthogonal to the axial direction. You may have.
  • the convex part 750 may have a substantially rectangular cross-sectional shape in which the first inclined part and the second inclined part are not formed.
  • the inner shaft 140 may not have the peripheral edge portion 105 a of the proximal end opening portion 105 formed in a curved surface (curved shape).
  • the balloon catheter has a cross-sectional shape as shown in FIGS. 9 and 10, and even when the convex portions 650 and 750 are formed, when the guide wire 200 is taken out from the proximal end opening 105 of the inner shaft 140, It is possible to prevent the inner shaft 140 from being broken near the proximal end opening 105, and to prevent the operability of the guide wire 200 from being lowered as the inner shaft 140 is broken.
  • the range to be formed is not particularly limited.
  • the structure of the balloon catheter and the arrangement of the members described in the embodiments and the like can be changed as appropriate, and the use of the additional members described with reference to the drawings is omitted, or other additional operations that are not particularly described. The use of such a member can be performed as appropriate. Similarly, each step relating to the method for producing a medical long body and instruments used for production can be appropriately changed.
  • 10 balloon catheter 100 shaft (medical long body), 105 proximal end opening (inner shaft proximal end opening), 105a peripheral edge, 110 outer shaft, 115 lumen of the outer shaft, 120 outer tip shaft, 123 proximal end of outer distal shaft, 125 lumen of the outer tip shaft, 126 Large diameter part, 127 Small diameter part, 128 border, 130 outer proximal shaft, 135 lumen of the outer proximal shaft, 140 inner shaft, 145 lumen of the inner shaft, 150, 550, 650, 750 convex portion, 151, 551 first inclined portion, 152, 552 second inclined portion, 158 flexible part, 160 balloon, 200 guide wire, 310 first mandrel, 311 first region, 312 second region, 313 recess, 313a a portion facing the proximal end of the inner shaft, 320 Second mandrel, 400 heat shrink tube.

Abstract

[PROBLEM] To provide a balloon catheter capable of preventing fracture of an inner shaft in the vicinity of a base end opening portion of the balloon catheter, and to provide a method for manufacturing a medical elongated body. [SOLUTION] A balloon catheter 10 is provided with an inner shaft 140, a base end of which has a base end opening portion 105 that opens on the outer surface of an outer base end shaft 130, and the inner shaft 140 has a convex portion 150 on a portion of a circumferential portion 105a forming the base end opening portion 105.

Description

バルーンカテーテル、および医療用長尺体の製造方法Balloon catheter and method for producing medical elongated body
 本発明は、バルーンカテーテル、および医療用長尺体の製造方法に関する。 The present invention relates to a balloon catheter and a method for producing a medical elongated body.
 血管等の生体管腔に形成された狭窄部等の病変部を拡張する医療装置としてバルーンカテーテルが広く知られている。バルーンカテーテルには、一般的に、オーバー・ザ・ワイヤタイプと呼ばれるものと、ラピッド・エクスチェンジタイプと呼ばれるものが存在する。 A balloon catheter is widely known as a medical device for dilating a lesion such as a stenosis formed in a body lumen such as a blood vessel. Balloon catheters generally include what is called an over-the-wire type and what is called a rapid exchange type.
 下記特許文献1に記載されているように、ラピッド・エクスチェンジタイプのバルーンカテーテルは、バルーンが配置されたカテーテルシャフトの先端側のみにガイドワイヤが挿通されるガイドワイヤルーメンが形成されている。このため、カテーテルシャフトの軸方向(長手方向)の先端側の所定位置には、ガイドワイヤルーメンへのガイドワイヤの出し入れを可能にするガイドワイヤポート(基端開口部)が設けられている。 As described in Patent Document 1 described below, a rapid exchange type balloon catheter has a guide wire lumen through which a guide wire is inserted only at the distal end side of the catheter shaft on which the balloon is disposed. For this reason, a guide wire port (proximal end opening) is provided at a predetermined position on the distal end side in the axial direction (longitudinal direction) of the catheter shaft so that the guide wire can be taken in and out of the guide wire lumen.
 ラピッド・エクスチェンジタイプのバルーンカテーテルに用いられるカテーテルシャフトは、カテーテルシャフトを構成する外側先端シャフト、外側基端シャフト、および内側シャフトをガイドワイヤポート付近において相互に熱融着して一体化している。なお、外側先端シャフトおよび外側基端シャフトは、バルーン拡張用の加圧媒体(作動流体)を流通させる拡張ルーメンを形成するチューブ状の部材である。内側シャフトは、ガイドワイヤルーメンを形成する内腔を備えるチューブ状の部材である。 The catheter shaft used for the rapid exchange type balloon catheter is formed by integrating the outer distal shaft, the outer proximal shaft, and the inner shaft constituting the catheter shaft with each other in the vicinity of the guide wire port. The outer distal shaft and the outer proximal shaft are tubular members that form an expansion lumen through which a pressurized medium (working fluid) for balloon expansion flows. The inner shaft is a tubular member with a lumen that forms a guidewire lumen.
特開2015-93173号JP2015-93173A
 医師等の術者は、バルーンカテーテルを使用した手技において、血管に形成された狭窄部等の病変部にガイドワイヤを挿通させる。術者は、ガイドワイヤの基端側を内側シャフトの先端側からガイドワイヤルーメンに挿入し、内側シャフトの基端側のガイドワイヤポートを介して、ガイドワイヤをガイドワイヤルーメンから導出させる。そして、術者は、ガイドワイヤに沿わせてバルーンカテーテルを移動させることにより、バルーンカテーテルのバルーンを病変部まで案内する。 An operator such as a doctor inserts a guide wire into a lesion such as a stenosis formed in a blood vessel in a procedure using a balloon catheter. The surgeon inserts the proximal end side of the guide wire into the guide wire lumen from the distal end side of the inner shaft, and guides the guide wire from the guide wire lumen through the guide wire port on the proximal end side of the inner shaft. Then, the surgeon guides the balloon of the balloon catheter to the lesion by moving the balloon catheter along the guide wire.
 術者は、手技の最中、バルーンカテーテルのガイドワイヤルーメンにガイドワイヤを挿通した状態でガイドワイヤを基端側や先端側へ移動させたり、ガイドワイヤを内側シャフトの基端開口部から取り出したりする。術者がこれらの操作を行う際に、内側シャフトのガイドワイヤポート付近に過剰な応力集中が発生すると、バルーンカテーテルの内側シャフトが破断してしまう可能性がある。そして、ガイドワイヤが内側シャフトの破断した部分(引き裂かれた部分)に挟み込まれると、術者は、ガイドワイヤを円滑に移動させることが困難になるため、ガイドワイヤの操作性が著しく低下する。 During the procedure, the operator moves the guide wire to the proximal side or the distal side with the guide wire inserted through the guide wire lumen of the balloon catheter, or removes the guide wire from the proximal end opening of the inner shaft. To do. When the surgeon performs these operations, if an excessive stress concentration occurs near the guide wire port of the inner shaft, the inner shaft of the balloon catheter may break. When the guide wire is sandwiched between the broken portions (the torn portions) of the inner shaft, it becomes difficult for the operator to move the guide wire smoothly, so that the operability of the guide wire is significantly reduced.
 本発明は上記課題に鑑みてなされたものであり、バルーンカテーテルの基端開口部付近で内側シャフトが破断するのを防止できるバルーンカテーテル、および医療用長尺体の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a balloon catheter capable of preventing the inner shaft from breaking near the proximal end opening of the balloon catheter, and a method for manufacturing a medical elongated body. And
 本発明に係るバルーンカテーテルは、外側先端シャフトと、前記外側先端シャフトの基端側に固定され、かつ、前記外側先端シャフトの内腔と連通する内腔を有する外側基端シャフトと、を備える外側シャフトと、先端側が前記外側先端シャフトの内腔に配置され、かつ、基端側が前記外側基端シャフトの外表面に配置された内側シャフトと、前記内側シャフトと前記外側先端シャフトに固定されたバルーンと、を備え、前記内側シャフトの基端は、前記外側基端シャフトの外表面で開口する基端開口部を有し、前記内側シャフトは、前記基端開口部を形成する周縁部の一部に凸部を有する。 A balloon catheter according to the present invention includes an outer distal shaft, and an outer proximal shaft fixed to the proximal end side of the outer distal shaft and having a lumen communicating with the lumen of the outer distal shaft. A shaft, an inner shaft in which a distal end side is disposed in a lumen of the outer distal shaft and a proximal end side is disposed on an outer surface of the outer proximal shaft, and a balloon fixed to the inner shaft and the outer distal shaft And a proximal end of the inner shaft has a proximal end opening that opens at an outer surface of the outer proximal shaft, and the inner shaft is a part of a peripheral edge that forms the proximal end opening. Have protrusions.
 また、本発明に係る医療用長尺体の製造方法は、外側先端シャフトと、外側基端シャフトと、内側シャフトと、前記内側シャフトの内腔に配置する第1マンドレルと、前記外側先端シャフトの内腔および前記外側基端シャフトの内腔に配置される第2マンドレルと、を供給し、前記第1マンドレルは、第1領域と、前記第1領域の基端側と軸方向に重なりつつ、前記第1領域の基端よりも基端側に延在する第2領域と、を有し、前記第1領域と前記第2領域の間には凹部が形成されており、前記外側先端シャフトの内腔に前記内側シャフトを配置し、前記内側シャフトの内腔に前記第1マンドレルの前記第1領域を挿入することにより、前記内側シャフトの基端が前記第1マンドレルの前記凹部と軸方向に重なるように前記第1マンドレルを配置し、前記外側基端シャフトの外表面に前記内側シャフトを沿わせつつ、前記外側先端シャフトの内腔と前記外側基端シャフトの内腔が連なるように前記外側基端シャフトを配置し、前記外側先端シャフトの内腔および前記外側基端シャフトの内腔に前記第2マンドレルを挿入し、前記外側先端シャフト、前記外側基端シャフト、前記内側シャフト、および前記第1マンドレルの第2領域を覆うように熱収縮チューブを配置し、前記熱収縮チューブに熱を付与して収縮させ、前記外側先端シャフト、前記外側基端シャフト、前記内側シャフトを融着しつつ、前記第1マンドレルの凹部に配置された前記内側シャフトの基端に凸部を形成する、ことを含む。 In addition, the manufacturing method of the medical elongated body according to the present invention includes an outer distal shaft, an outer proximal shaft, an inner shaft, a first mandrel disposed in a lumen of the inner shaft, and the outer distal shaft. A second mandrel disposed in a lumen and a lumen of the outer proximal shaft, wherein the first mandrel overlaps the first region and the proximal side of the first region in the axial direction, A second region extending proximally from the proximal end of the first region, a recess is formed between the first region and the second region, and the outer distal shaft The inner shaft is disposed in a lumen, and the first region of the first mandrel is inserted into the lumen of the inner shaft so that the proximal end of the inner shaft is axially aligned with the recess of the first mandrel. The first mandrel to overlap And arranging the outer proximal shaft such that the lumen of the outer distal shaft and the lumen of the outer proximal shaft are continuous with the inner shaft along the outer surface of the outer proximal shaft, The second mandrel is inserted into the outer distal shaft lumen and the outer proximal shaft lumen to cover the outer distal shaft, the outer proximal shaft, the inner shaft, and the second region of the first mandrel. The heat shrinkable tube is arranged in such a manner that heat is applied to the heat shrinkable tube to cause shrinkage, and the outer distal shaft, the outer proximal shaft, and the inner shaft are fused and disposed in the recess of the first mandrel. Forming a convex portion at the proximal end of the inner shaft.
 上記のように構成したバルーンカテーテルは、内側シャフトの基端開口部を形成する周縁部の一部に凸部が形成されている。内側シャフトの凸部は、ガイドワイヤを内側シャフトの基端開口部から取り出す際などに基端開口部付近に過剰な応力集中が発生した場合においても、内側シャフトが破断するのを防止できる。このため、バルーンカテーテルは、内側シャフトに破断が生じるのを防止でき、内側シャフトの破断に伴ってガイドワイヤの操作性が低下するのを防止できる。 The balloon catheter configured as described above has a convex portion formed at a part of the peripheral edge forming the proximal end opening of the inner shaft. The convex portion of the inner shaft can prevent the inner shaft from breaking even when excessive stress concentration occurs in the vicinity of the proximal end opening when the guide wire is taken out from the proximal end opening of the inner shaft. For this reason, the balloon catheter can prevent the inner shaft from being broken, and can prevent the operability of the guide wire from being lowered as the inner shaft is broken.
 上記の医療用長尺体の製造方法は、内側シャフトと外側シャフトを融着する際、第1マンドレルが備える第1領域を内側シャフトの内腔に挿入し、かつ、第1マンドレルの第1領域と第1マンドレルの第2領域との間に形成された凹部に内側シャフトの基端を配置した状態とし、外側先端シャフト、外側基端シャフト、内側シャフト、および第1マンドレルの第2領域を覆うように熱収縮チューブを配置する。そして、上記製造方法は、熱収縮チューブに熱を付与して収縮させることにより、外側先端シャフト、外側基端シャフト、内側シャフトを融着しつつ、第1マンドレルの凹部に配置された内側シャフトの基端に凸部を形成する。これにより、上記製造方法は、基端開口部付近で内側シャフトに破断が生じるのを防止する凸部が形成された内側シャフトを備える医療用長尺体を提供できる。 In the manufacturing method of the above-described medical elongated body, when the inner shaft and the outer shaft are fused, the first region included in the first mandrel is inserted into the inner shaft lumen, and the first region of the first mandrel is inserted. The base end of the inner shaft is disposed in a recess formed between the first mandrel and the second region of the first mandrel, and covers the outer tip shaft, the outer base shaft, the inner shaft, and the second region of the first mandrel. Place the heat shrink tube so that. And the said manufacturing method gives heat to a heat contraction tube, and is made to shrink | contract, while fuse | melting an outer front end shaft, an outer base end shaft, and an inner shaft, the inner shaft arrange | positioned in the recessed part of a 1st mandrel. A convex part is formed at the base end. Thereby, the said manufacturing method can provide a medical elongate body provided with the inner side shaft in which the convex part which prevents that a fracture | rupture arises in an inner side shaft near a base end opening part was formed.
実施形態に係るバルーンカテーテルを示す図である。It is a figure which shows the balloon catheter which concerns on embodiment. 図2(A)は、図1において破線部2Aで囲んだ部分の拡大断面図であり、図2(B)は、図1において破線部2Bで囲んだ部分の拡大断面図である。2A is an enlarged cross-sectional view of a portion surrounded by a broken line portion 2A in FIG. 1, and FIG. 2B is an enlarged cross-sectional view of a portion surrounded by the broken line portion 2B in FIG. 図2(B)において破線部3Aで囲んだ部分を拡大して示す図である。It is a figure which expands and shows the part enclosed with the broken-line part 3A in FIG. 2 (B). 図4は、実施形態に係る医療用長尺体の製造方法を説明するための図であり、図4(A)は、内側シャフトを外側先端シャフトに軸方向に重ねて配置した状態を示す断面図、図4(B)は、第1マンドレルを内側シャフトに挿入した状態を示す断面図、図4(C)は、外側先端シャフトの内腔に外側基端シャフトを挿入した状態を示す断面図である。FIG. 4 is a view for explaining the method for manufacturing the medical elongated body according to the embodiment, and FIG. 4A is a cross-sectional view showing a state in which the inner shaft is disposed so as to overlap the outer tip shaft in the axial direction. 4B is a cross-sectional view showing a state where the first mandrel is inserted into the inner shaft, and FIG. 4C is a cross-sectional view showing a state where the outer proximal shaft is inserted into the lumen of the outer distal shaft. It is. 図5は、実施形態に係る医療用長尺体の製造方法を説明するための図であり、図5(A)は、外側先端シャフトの内腔および外側基端シャフトの内腔に第2マンドレルを挿入した状態を示す断面図であり、図5(B)は、熱収縮チューブを配置した状態を示す断面図である。FIG. 5 is a view for explaining the method for manufacturing the medical elongated body according to the embodiment, and FIG. 5 (A) shows the second mandrel in the lumen of the outer distal shaft and the lumen of the outer proximal shaft. FIG. 5B is a cross-sectional view showing a state in which a heat-shrinkable tube is arranged. 図6は、実施形態に係る医療用長尺体の製造方法を説明するための図であり、図6(A)は、内側シャフトに凸部が形成される際の様子を拡大して示す断面図であり、図6(B)は、内側シャフトに凸部が形成された後の様子を拡大して示す断面図である。FIG. 6 is a diagram for explaining a method for manufacturing a medical elongated body according to the embodiment, and FIG. 6A is an enlarged cross-sectional view illustrating a state where a convex portion is formed on the inner shaft. FIG. 6B is an enlarged cross-sectional view illustrating a state after the convex portion is formed on the inner shaft. 熱収縮チューブと外側先端シャフトに形成される大径部の位置関係を説明するための断面図である。It is sectional drawing for demonstrating the positional relationship of the large diameter part formed in a heat contraction tube and an outer front end shaft. 変形例に係る内側シャフトの凸部を示す拡大断面図である。It is an expanded sectional view showing the convex part of the inner side shaft concerning a modification. 改変例に係る内側シャフトの凸部を示す拡大断面図である。It is an expanded sectional view showing the convex part of the inner side shaft concerning a modification. 他の改変例に係る内側シャフトの凸部を示す拡大断面図である。It is an expanded sectional view which shows the convex part of the inner side shaft which concerns on another modification.
 図1に示すように、本実施形態に係るバルーンカテーテル10は、シャフト100の先端側に配置されたバルーン160を生体管腔に形成された狭窄部等の病変部において拡張させることにより、病変部を押し広げて治療する医療装置である。 As shown in FIG. 1, the balloon catheter 10 according to the present embodiment expands a balloon 160 disposed on the distal end side of the shaft 100 at a lesion such as a stenosis formed in a living body lumen, thereby causing a lesion. Is a medical device that spreads and treats.
 バルーンカテーテル10は、冠動脈の狭窄部を広げるために使用されるPTCA治療用バルーンカテーテルとして構成している。ただし、バルーンカテーテル10は、例えば、他の血管、胆管、気管、食道、その他消化管、尿道、耳鼻内腔、その他の臓器等の生体器官内に形成された狭窄部等の病変部位の治療を目的としたバルーンカテーテルとして構成することもできる。 The balloon catheter 10 is configured as a PTCA treatment balloon catheter used to widen the stenosis of the coronary artery. However, the balloon catheter 10 is used to treat lesions such as stenosis formed in other blood vessels, bile ducts, trachea, esophagus, other gastrointestinal tract, urethra, ear nasal lumen, and other living organs. It can also be configured as the intended balloon catheter.
 以下、バルーンカテーテル10について説明する。 Hereinafter, the balloon catheter 10 will be described.
 図1に示すように、バルーンカテーテル10は、長尺状のシャフト(「医療用長尺体」に相当する)100と、シャフト100の先端側に配置されたバルーン160と、シャフト100の基端側に配置されたハブ190と、を有している。 As shown in FIG. 1, a balloon catheter 10 includes a long shaft (corresponding to a “medical long body”) 100, a balloon 160 disposed on the distal end side of the shaft 100, and a proximal end of the shaft 100. And a hub 190 disposed on the side.
 実施形態の説明において、バルーン160を配置した側をバルーンカテーテル10の先端側とし、ハブ190を配置した側をバルーンカテーテル10の基端側とし、シャフト100が延伸する方向を軸方向とする。また、実施形態の説明において、先端部とは、先端(最先端)およびその周辺を含む一定の範囲を意味し、基端部とは、基端(最基端)およびその周辺を含む一定の範囲を意味する。 In the description of the embodiment, the side on which the balloon 160 is disposed is the distal end side of the balloon catheter 10, the side on which the hub 190 is disposed is the proximal end side of the balloon catheter 10, and the direction in which the shaft 100 extends is the axial direction. Further, in the description of the embodiments, the distal end portion means a certain range including the distal end (the most distal end) and the periphery thereof, and the proximal end portion means a certain range including the proximal end (the most proximal end) and the periphery thereof. Means range.
 図1に示すように、バルーンカテーテル10は、シャフト100の先端側寄りにガイドワイヤ200が出入り可能な基端開口部(ガイドワイヤポート)105が形成された、いわゆるラピッドエクスチェンジ型のカテーテルとして構成している。 As shown in FIG. 1, the balloon catheter 10 is configured as a so-called rapid exchange type catheter in which a proximal end opening (guide wire port) 105 through which a guide wire 200 can enter and exit is formed near the distal end side of the shaft 100. ing.
 図2(A)および図2(B)に示すように、シャフト100は、内腔(拡張ルーメン)115を備える外側シャフト110と、外側シャフト110の内腔115に配置され、かつ、ガイドワイヤ200が挿通される内腔(ガイドワイヤルーメン)145を備える内側シャフト140と、を有している。 As shown in FIGS. 2A and 2B, the shaft 100 is disposed in the outer shaft 110 including the inner lumen (expansion lumen) 115, the inner lumen 115 of the outer shaft 110, and the guide wire 200. And an inner shaft 140 provided with a lumen (guide wire lumen) 145 through which is inserted.
 図1および図2(B)に示すように、シャフト100は、内側シャフト140の内腔145に連通する基端開口部(「内側シャフトの基端開口部」に相当する)105を有している。基端開口部105は、内側シャフト140の基端付近に形成している。 As shown in FIGS. 1 and 2B, the shaft 100 has a proximal end opening (corresponding to a “proximal opening of the inner shaft”) 105 that communicates with the lumen 145 of the inner shaft 140. Yes. The proximal end opening 105 is formed near the proximal end of the inner shaft 140.
 図2(B)に示すように、外側シャフト110は、外側先端シャフト120と、外側先端シャフト120の基端側に固定された外側基端シャフト130と、を有している。 As shown in FIG. 2B, the outer shaft 110 has an outer distal shaft 120 and an outer proximal shaft 130 fixed to the proximal end side of the outer distal shaft 120.
 外側先端シャフト120は、軸方向に延伸する内腔125が形成された管状部材で形成している。同様に、外側基端シャフト130は、軸方向に延伸する内腔135が形成された管状部材で形成している。 The outer front end shaft 120 is formed of a tubular member in which a lumen 125 extending in the axial direction is formed. Similarly, the outer proximal shaft 130 is formed of a tubular member in which a lumen 135 extending in the axial direction is formed.
 外側先端シャフト120および外側基端シャフト130は、シャフト100の基端開口部105付近において内側シャフト140と一体的に接続(融着)している。 The outer distal shaft 120 and the outer proximal shaft 130 are integrally connected (fused) with the inner shaft 140 in the vicinity of the proximal opening 105 of the shaft 100.
 外側先端シャフト120の内腔125と外側基端シャフト130の内腔135は互いに連通している。また、外側先端シャフト120の内腔125と外側基端シャフト130の内腔135は互いに連通した状態で、バルーン160の拡張空間167と連通する内腔(拡張ルーメン)115を形成している。 The lumen 125 of the outer distal shaft 120 and the lumen 135 of the outer proximal shaft 130 communicate with each other. In addition, the lumen 125 of the outer distal shaft 120 and the lumen 135 of the outer proximal shaft 130 are in communication with each other to form a lumen (expansion lumen) 115 that communicates with the expansion space 167 of the balloon 160.
 外側先端シャフト120および外側基端シャフト130は、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体等のポリオレフィン、軟質ポリ塩化ビニル等の熱可塑性樹脂、ポリウレタンエラストマー、ポリアミドエラストマー、ポリエステルエラストマー等の各種エラストマー、ポリアミド、結晶性ポリエチレン、結晶性ポリプロピレン等の結晶性プラスチック等で形成できる。 The outer distal shaft 120 and the outer proximal shaft 130 are, for example, polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, thermoplastic resins such as soft polyvinyl chloride, polyurethane elastomer, polyamide It can be formed of various elastomers such as elastomer and polyester elastomer, and crystalline plastics such as polyamide, crystalline polyethylene, and crystalline polypropylene.
 図2(A)に示すように、内側シャフト140の先端側は、外側先端シャフト120の内腔125に配置されている。内側シャフト140の先端側の一定の範囲は、外側先端シャフト120の先端側へ突出するように配置されている。また、図2(B)に示すように、内側シャフト140は、内側シャフト140の基端側が外側基端シャフト130の外表面に配置されている。 2A, the distal end side of the inner shaft 140 is disposed in the lumen 125 of the outer distal shaft 120. As shown in FIG. A certain range on the distal end side of the inner shaft 140 is arranged so as to protrude toward the distal end side of the outer distal shaft 120. Further, as shown in FIG. 2B, the inner shaft 140 has the proximal end side of the inner shaft 140 disposed on the outer surface of the outer proximal shaft 130.
 図2(A)に示すように、内側シャフト140は、先端側に配置された先端部材180を有している。先端部材180は、ガイドワイヤ200を挿通可能な内腔181を有している。 As shown in FIG. 2 (A), the inner shaft 140 has a tip member 180 disposed on the tip side. The tip member 180 has a lumen 181 through which the guide wire 200 can be inserted.
 内側シャフト140は、先端側に先端部材180を備えることにより、バルーンカテーテル10の先端が生体管腔(血管の内壁等)に接触した際に、生体器官に損傷が生じるのを防止できる。先端部材180は、例えば、柔軟な樹脂材料で形成できる。ただし、先端部材180の材質は、内側シャフト140に対して固定が可能なものであれば特に限定されない。 The inner shaft 140 is provided with the tip member 180 on the tip side, so that it is possible to prevent the living organ from being damaged when the tip of the balloon catheter 10 contacts the living body lumen (such as the inner wall of the blood vessel). The tip member 180 can be formed of, for example, a flexible resin material. However, the material of the tip member 180 is not particularly limited as long as it can be fixed to the inner shaft 140.
 図2(A)に示すように、内側シャフト140の内腔145は、内側シャフト140の先端側で先端部材180の内腔181と連通している。また、図2(B)に示すように、内側シャフト140の内腔145は、内側シャフト140の基端側で基端開口部105と連通している。内側シャフト140の基端開口部105付近には、後述する凸部150が形成されている。 2A, the lumen 145 of the inner shaft 140 communicates with the lumen 181 of the tip member 180 on the tip side of the inner shaft 140. As shown in FIG. Further, as shown in FIG. 2B, the inner lumen 145 of the inner shaft 140 communicates with the proximal end opening 105 on the proximal end side of the inner shaft 140. A convex portion 150 described later is formed in the vicinity of the proximal end opening portion 105 of the inner shaft 140.
 内側シャフト140は、例えば、外側シャフト110の構成材料として例示したものと同様のもので形成できる。 The inner shaft 140 can be formed of the same material as exemplified as the constituent material of the outer shaft 110, for example.
 図2(A)に示すように、バルーン160は、内側シャフト140の先端141に固定された先端部161と、外側シャフト110の先端111(「外側先端シャフトの先端」に相当する)に固定された基端部163と、バルーン160の先端部161とバルーン160の基端部163との間に形成された最大外径部を形成する中間部166と、を有している。また、バルーン160は、バルーン160の先端部161とバルーン160の中間部166との間に形成された先端側テーパー部164と、バルーン160の基端部163とバルーン160の中間部166との間に形成された基端側テーパー部165と、を有している。 As shown in FIG. 2A, the balloon 160 is fixed to a tip 161 fixed to the tip 141 of the inner shaft 140 and a tip 111 of the outer shaft 110 (corresponding to “tip of the outer tip shaft”). A proximal end portion 163 and an intermediate portion 166 forming a maximum outer diameter portion formed between the distal end portion 161 of the balloon 160 and the proximal end portion 163 of the balloon 160. Further, the balloon 160 includes a distal end side tapered portion 164 formed between the distal end portion 161 of the balloon 160 and the intermediate portion 166 of the balloon 160, and a gap between the proximal end portion 163 of the balloon 160 and the intermediate portion 166 of the balloon 160. And a proximal end side taper portion 165 formed in the above.
 バルーン160は、シャフト100の外周面との間に、外側シャフト110の内腔115と連通する拡張空間167を形成している。バルーン160は、拡張空間167内に流体が流入すると、バルーン160の軸方向と交差する放射方向へ拡張する。 The balloon 160 forms an expansion space 167 communicating with the lumen 115 of the outer shaft 110 between the outer peripheral surface of the shaft 100. When the fluid flows into the expansion space 167, the balloon 160 expands in a radial direction that intersects the axial direction of the balloon 160.
 バルーン160は、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリ塩化ビニル、エチレン-酢酸ビニル共重合体、架橋型エチレン-酢酸ビニル共重合体、ポリウレタン等の熱可塑性樹脂、ポリアミド、ポリアミドエラストマー、ポリスチレンエラストマー、シリコーンゴム、ラテックスゴム等で形成できる。 The balloon 160 is made of, for example, polyethylene, polypropylene, polyolefin of ethylene-propylene copolymer, polyester such as polyethylene terephthalate, polyvinyl chloride, ethylene-vinyl acetate copolymer, cross-linked ethylene-vinyl acetate copolymer, polyurethane, etc. It can be formed of thermoplastic resin, polyamide, polyamide elastomer, polystyrene elastomer, silicone rubber, latex rubber or the like.
 図2(A)に示すように、内側シャフト140は、バルーン160の中間部166の軸方向の略中心位置を示す造影マーカー170を有している。造影マーカー170は、例えば、白金、金、銀、イリジウム、チタン、タングステン等の金属、またはこれらの合金等により形成できる。なお、造影マーカー170は、内側シャフト140において先端側テーパー部164と中間部166との間の境界部を示す位置、および、内側シャフト140において基端側テーパー部165と中間部166との間の境界部を示す位置に配置してもよい。 As shown in FIG. 2 (A), the inner shaft 140 has a contrast marker 170 indicating the approximate center position of the intermediate portion 166 of the balloon 160 in the axial direction. The contrast marker 170 can be formed of, for example, a metal such as platinum, gold, silver, iridium, titanium, tungsten, or an alloy thereof. Note that the contrast marker 170 is located at the position indicating the boundary between the distal tapered portion 164 and the intermediate portion 166 on the inner shaft 140 and between the proximal tapered portion 165 and the intermediate portion 166 on the inner shaft 140. You may arrange | position in the position which shows a boundary part.
 図1に示すように、ハブ190は、流体(例えば、造影剤や生理食塩水)を供給するためのインデフレーター等の供給装置(図示省略)と液密・気密に接続可能なポート191を有している。ハブ190のポート191は、例えば、チューブ等が接続・分離可能に構成された公知のルアーテーパー等によって構成できる。 As shown in FIG. 1, the hub 190 has a port 191 that can be connected in a liquid-tight and air-tight manner to a supply device (not shown) such as an indeflator for supplying a fluid (for example, a contrast medium or physiological saline). is doing. The port 191 of the hub 190 can be configured by, for example, a known luer taper configured such that a tube or the like can be connected / separated.
 次に、内側シャフト140について詳述する。 Next, the inner shaft 140 will be described in detail.
 図2(B)に示すように、内側シャフト140の基端側には、外側基端シャフト130の外表面で開口する基端開口部(ガイドワイヤポート)105を形成している。 As shown in FIG. 2B, a proximal end opening (guide wire port) 105 that opens on the outer surface of the outer proximal shaft 130 is formed on the proximal end side of the inner shaft 140.
 また、図3に示すように、内側シャフト140は、基端開口部105を形成する周縁部105aの一部(周縁部105aの周方向に沿う一部)に凸部150を有している。なお、凸部150は、基端開口部105を形成する周縁部105aの破断を防止しつつ、柔軟性を確保するため、図3に示すように、内側シャフト140の基端側から先端側に向かって肉厚が増加することによって形成されることが好ましい。図3は、図2(B)に示す破線で囲んだ3A部分の拡大断面図(内側シャフト140の軸方向の拡大断面図)である。 Further, as shown in FIG. 3, the inner shaft 140 has a convex portion 150 on a part of the peripheral edge part 105 a (part along the circumferential direction of the peripheral edge part 105 a) forming the proximal end opening 105. Note that the convex portion 150 is formed from the proximal end side to the distal end side of the inner shaft 140 in order to ensure flexibility while preventing breakage of the peripheral edge portion 105a forming the proximal end opening portion 105, as shown in FIG. It is preferably formed by increasing the wall thickness. FIG. 3 is an enlarged cross-sectional view (enlarged cross-sectional view of the inner shaft 140 in the axial direction) of the 3A portion surrounded by a broken line shown in FIG.
 なお、上記の「内側シャフトの基端側から先端側に向かって肉厚が増加する凸部を有する」とは、内側シャフト140の基端開口部105を形成する周縁部105aの周方向の少なくとも一部に、内側シャフト140において外側先端シャフト120の基端123と融着された部分の肉厚又は内側シャフト140と外側先端シャフト120の基端123とが融着された部分の先端側近傍若しくは基端側近傍に位置する融着されていない部分の肉厚よりも大きな肉厚を有する部分が形成されていることを意味する。例えば、凸部150は、図3に示すように、内側シャフト140の基端側から先端側に向けて肉厚が連続的に大きくなるような断面形状であってもよいし、後述する変形例(図10を参照)に示すように、肉厚が段階的に大きくなる断面形状(肉厚が軸方向の任意の部分を境界にして一定の大きさまで大きくなる形状)であってもよい。 The above-mentioned “having a convex portion whose thickness increases from the proximal end side to the distal end side of the inner shaft” means at least the circumferential direction of the peripheral edge portion 105 a that forms the proximal end opening 105 of the inner shaft 140. In part, the thickness of the portion of the inner shaft 140 fused to the proximal end 123 of the outer distal shaft 120 or the vicinity of the distal end of the portion where the inner shaft 140 and the proximal end 123 of the outer distal shaft 120 are fused or It means that a portion having a thickness larger than the thickness of the non-fused portion located in the vicinity of the base end side is formed. For example, as shown in FIG. 3, the convex portion 150 may have a cross-sectional shape in which the thickness continuously increases from the proximal end side to the distal end side of the inner shaft 140, or a later-described modification example As shown in FIG. 10 (see FIG. 10), it may be a cross-sectional shape in which the thickness increases stepwise (a shape in which the thickness increases to a certain size with an arbitrary portion in the axial direction as a boundary).
 図3に示すように、凸部150は、内側シャフト140の断面において、内側シャフト140の基端側から先端側に向かって傾斜する第1傾斜部151と、第1傾斜部151の先端と連なり、第1傾斜部151の先端から内側シャフト140の先端側に向かって傾斜する第2傾斜部152と、を有している。 As shown in FIG. 3, the convex portion 150 is connected to the first inclined portion 151 inclined from the proximal end side to the distal end side of the inner shaft 140 and the distal end of the first inclined portion 151 in the cross section of the inner shaft 140. And a second inclined portion 152 that is inclined from the distal end of the first inclined portion 151 toward the distal end side of the inner shaft 140.
 第1傾斜部151は、図3に示す断面において、内側シャフト140の周縁部105aから内側シャフト140の基端側へ向けて放射方向外方(内側シャフト140の軸心から離れる方向)へ傾斜している。また、第1傾斜部151は、基端開口部105の開口面と略平行に延びている。つまり、第1傾斜部151と基端開口部105は同一平面上に存在する。 In the cross section shown in FIG. 3, the first inclined portion 151 is inclined radially outward (in a direction away from the axis of the inner shaft 140) from the peripheral edge portion 105 a of the inner shaft 140 toward the proximal end side of the inner shaft 140. ing. The first inclined portion 151 extends substantially parallel to the opening surface of the proximal end opening 105. That is, the 1st inclination part 151 and the base end opening part 105 exist on the same plane.
 第2傾斜部152は、図3に示す断面において、第1傾斜部151の先端から第1傾斜部151とは異なる断面形状を呈するように、内側シャフト140の先端側へ延びている。具体的には、第2傾斜部152の基端側は、内側シャフト140の先端側へ向けて弧を描くように湾曲している。第2傾斜部152の先端側は、内側シャフト140の外表面に繋がるように、第1傾斜部151の基端側から内側シャフト140の外表面側に向けて弧を描く断面形状を呈している。 In the cross section shown in FIG. 3, the second inclined portion 152 extends from the distal end of the first inclined portion 151 to the distal end side of the inner shaft 140 so as to exhibit a cross-sectional shape different from that of the first inclined portion 151. Specifically, the proximal end side of the second inclined portion 152 is curved so as to draw an arc toward the distal end side of the inner shaft 140. The distal end side of the second inclined portion 152 has a cross-sectional shape that draws an arc from the proximal end side of the first inclined portion 151 toward the outer surface side of the inner shaft 140 so as to be connected to the outer surface of the inner shaft 140. .
 なお、第1傾斜部151と第2傾斜部152は、内側シャフト140の一部として一体的に形成されているため、図面上明瞭に区分けしていないが、両者の境界は、図3に示す断面において、第1傾斜部151の傾斜する方向(内側シャフト140の軸心から離れる方向)が異なる方向(内側シャフト140の軸心側に向かう方向)に遷移する凸部150の境界部に存在する。 In addition, since the 1st inclination part 151 and the 2nd inclination part 152 are integrally formed as a part of the inner side shaft 140, they are not divided clearly on drawing, but the boundary of both is shown in FIG. In the cross section, it exists in the boundary part of the convex part 150 which the direction (direction which leaves | separates from the axial center of the inner shaft 140) in which the 1st inclination part 151 inclines changes in a different direction (direction which goes to the axial center side of the inner shaft 140). .
 図3に示すように、凸部150の第1傾斜部151の軸方向の長さL1は、凸部150の第2傾斜部152の軸方向の長さL2よりも長く形成している。なお、第1傾斜部151の軸方向の長さL1および第2傾斜部152の軸方向の長さL2は、凸部150において図3に示す断面上で最長となる部分の軸方向の長さである。 As shown in FIG. 3, the axial length L1 of the first inclined portion 151 of the convex portion 150 is formed longer than the axial length L2 of the second inclined portion 152 of the convex portion 150. The length L1 in the axial direction of the first inclined portion 151 and the length L2 in the axial direction of the second inclined portion 152 are the length in the axial direction of the longest portion on the cross section shown in FIG. It is.
 凸部150の第1傾斜部151の軸方向の長さL1は、例えば、0.2mm~1.0mmに形成でき、凸部150の第2傾斜部152の軸方向の長さL2は、例えば、0.1mm~0.8mmに形成できる。 The axial length L1 of the first inclined portion 151 of the convex portion 150 can be formed, for example, to 0.2 mm to 1.0 mm, and the axial length L2 of the second inclined portion 152 of the convex portion 150 is, for example, , 0.1 mm to 0.8 mm.
 内側シャフト140の基端開口部105は、外側先端シャフト120の基端123よりも基端側に配置している。また、内側シャフト140は、外側先端シャフト120の基端123と凸部150の間に、凸部150よりも肉厚が薄く、かつ、柔軟な柔軟部158を有している。 The proximal end opening 105 of the inner shaft 140 is disposed closer to the proximal end than the proximal end 123 of the outer distal shaft 120. Further, the inner shaft 140 has a flexible portion 158 that is thinner than the convex portion 150 and is flexible between the base end 123 of the outer distal shaft 120 and the convex portion 150.
 柔軟部158は、内側シャフト140の凸部150よりも薄い肉厚を有するように形成している。すなわち、柔軟部158は、内側シャフト140において、内側シャフト140と外側先端シャフト120の基端123とが融着された部分の先端近傍に位置し、かつ、内側シャフト140の基端開口部105を形成する周縁部105aの少なくとも一部に設けられた凸部150よりも肉厚が小さい部分である。また、柔軟部158の外表面は、図3に示す断面において、凸部150よりも内側シャフト140の内側に凹んだ形状を有している。具体的には、柔軟部158は、外側先端シャフト120の基端123と凸部150との間に位置し、外側先端シャフト120の基端123及び凸部150におけるシャフト100の外表面の位置よりも凹んだ位置に存在する。後述するように、柔軟部158は、柔軟部158よりも内側シャフト140の基端側に配置された凸部150を形成する際に、内側シャフト140を構成する樹脂が凸部150を形成する部分に流れ込むことにより形成されている。このため、柔軟部158の肉厚は、凸部150よりも小さく、かつ、内側シャフト140において凸部150が形成された部分以外の部分よりも小さくなっている。 The flexible part 158 is formed so as to have a thinner wall thickness than the convex part 150 of the inner shaft 140. That is, the flexible portion 158 is located in the vicinity of the distal end of the inner shaft 140 where the inner shaft 140 and the proximal end 123 of the outer distal shaft 120 are fused, and the proximal opening 105 of the inner shaft 140 is formed. This is a portion having a smaller thickness than the convex portion 150 provided on at least a part of the peripheral edge portion 105a to be formed. In addition, the outer surface of the flexible portion 158 has a shape that is recessed inward of the inner shaft 140 relative to the convex portion 150 in the cross section shown in FIG. Specifically, the flexible portion 158 is located between the base end 123 of the outer front end shaft 120 and the convex portion 150, and from the position of the outer surface of the shaft 100 at the base end 123 of the outer front end shaft 120 and the convex portion 150. Is also in a recessed position. As will be described later, when the flexible portion 158 forms the convex portion 150 disposed on the proximal end side of the inner shaft 140 with respect to the flexible portion 158, the resin forming the inner shaft 140 forms the convex portion 150. It is formed by flowing in. For this reason, the thickness of the flexible part 158 is smaller than the convex part 150 and smaller than the part other than the part where the convex part 150 is formed on the inner shaft 140.
 凸部150は、例えば、基端開口部105を形成する周縁部105aから内側シャフト140の軸方向の先端側へ0.1mm~1.0mmの範囲に形成できる。柔軟部158は、例えば、外側先端シャフトの基端123から内側シャフト140の基端側へ0.5mm~3.0mmの範囲に形成できる。また、凸部150において肉厚が最も大きい部分t1は、例えば、0.1mm~0.5mmに形成できる。また、柔軟部158において肉厚が最も小さい部分t2は、例えば、0.02mm~0.2mmに形成できる。 The convex portion 150 can be formed, for example, in the range of 0.1 mm to 1.0 mm from the peripheral edge portion 105 a forming the proximal end opening portion 105 to the distal end side in the axial direction of the inner shaft 140. The flexible portion 158 can be formed in the range of 0.5 mm to 3.0 mm from the proximal end 123 of the outer distal shaft to the proximal end side of the inner shaft 140, for example. In addition, the portion t1 having the largest thickness in the convex portion 150 can be formed to be 0.1 mm to 0.5 mm, for example. Further, the portion t2 having the smallest wall thickness in the flexible portion 158 can be formed to 0.02 mm to 0.2 mm, for example.
 図3に示すように、内側シャフト140の基端開口部105は、内側シャフト140の軸方向の断面において、内側シャフト140の基端側から先端側に向かって傾斜している。本実施形態では、凸部150の第1傾斜部151と基端開口部105は同一平面上に重なるように略平行に配置しているが、基端開口部105は、例えば、凸部150の第1傾斜部151と非平行に配置してもよく、傾斜する角度等に特に制限はない。 As shown in FIG. 3, the proximal end opening 105 of the inner shaft 140 is inclined from the proximal end side to the distal end side of the inner shaft 140 in the axial section of the inner shaft 140. In the present embodiment, the first inclined portion 151 of the convex portion 150 and the proximal end opening portion 105 are arranged substantially in parallel so as to overlap on the same plane, but the proximal end opening portion 105 is, for example, the convex portion 150. You may arrange | position in parallel with the 1st inclination part 151, and there is no restriction | limiting in particular in the angle etc. which incline.
 図3に示すように、内側シャフト140の基端開口部105の周縁部105aは、内側シャフト140の軸方向の断面において、曲面で形成している。周縁部105aの断面形状は、例えば、図示するように、周縁部105aからその内側に形成される基端開口部105側に向けて所定の曲率で湾曲するように形成できる。 As shown in FIG. 3, the peripheral edge portion 105 a of the base end opening 105 of the inner shaft 140 is formed with a curved surface in the axial section of the inner shaft 140. The cross-sectional shape of the peripheral edge portion 105a can be formed, for example, so as to be curved with a predetermined curvature from the peripheral edge portion 105a toward the proximal end opening 105 formed on the inside thereof, as shown in the figure.
 なお、周縁部105aの断面形状は湾曲した形状に限定されることはなく、例えば、三角形や矩形状であってもよい。 The cross-sectional shape of the peripheral edge portion 105a is not limited to a curved shape, and may be, for example, a triangle or a rectangle.
 図2に示すように、外側先端シャフト120は、所定の外径D1で形成された大径部126を有している。また、内側シャフト140の凸部150に対応する部分で外側シャフト110および内側シャフト140が形成する外径D2は、大径部126の外径D1よりも小さくなっている。 As shown in FIG. 2, the outer front end shaft 120 has a large-diameter portion 126 formed with a predetermined outer diameter D1. Further, the outer diameter D2 formed by the outer shaft 110 and the inner shaft 140 at a portion corresponding to the convex portion 150 of the inner shaft 140 is smaller than the outer diameter D1 of the large diameter portion 126.
 後述するように、内側シャフト140と外側シャフト110(外側先端シャフト120および外側基端シャフト130)とを融着する際(図5(B)を参照)、両シャフト110、140は熱収縮チューブ400で所定の範囲(図7の矢印A1で示す範囲)が覆われる。この状態で両シャフト110、140に熱を付与すると、両シャフト110、140は、熱収縮チューブ400で覆われた範囲が放射方向内方(シャフト100の内側に向かう方向)に収縮する。この際、熱の影響が及ばない範囲は、両シャフト110、140の融着前後において外径を維持する。図2(B)に示すように、融着前後において外側先端シャフト120の外径が維持された部分は、大径部126を形成する。 As will be described later, when the inner shaft 140 and the outer shaft 110 (the outer distal shaft 120 and the outer proximal shaft 130) are fused (see FIG. 5B), both the shafts 110, 140 are heat-shrinkable tubes 400. A predetermined range (range indicated by arrow A1 in FIG. 7) is covered. When heat is applied to both shafts 110 and 140 in this state, both shafts 110 and 140 are contracted radially inward (in the direction toward the inside of the shaft 100) in the range covered with the heat-shrinkable tube 400. At this time, the outer diameter is maintained before and after the fusion of the shafts 110 and 140 within a range not affected by heat. As shown in FIG. 2B, a portion where the outer diameter of the outer front end shaft 120 is maintained before and after the fusion forms a large diameter portion 126.
 なお、両シャフト110、140の融着後に外径が小さくなった部分、つまり両シャフト110、140を融着する際に熱収縮チューブ400で被覆され部分は、大径部126よりも外径が小さい小径部127を形成する。また、大径部126と小径部127の間には、熱収縮チューブ400に付与した熱の影響で小径部127から大径部126に向けて外径が徐々に大きくなる境界部128が形成される。 Note that the outer diameter of the portion where the outer diameter is reduced after the shafts 110 and 140 are fused, that is, the portion covered with the heat-shrinkable tube 400 when the shafts 110 and 140 are fused is larger than the outer diameter portion 126. A small small diameter portion 127 is formed. Further, between the large diameter portion 126 and the small diameter portion 127, a boundary portion 128 is formed in which the outer diameter gradually increases from the small diameter portion 127 toward the large diameter portion 126 due to the effect of heat applied to the heat shrinkable tube 400. The
 シャフト100を製造する際に、熱収縮チューブ400を配置する領域(図7において矢印A1で示す領域)は、熱収縮チューブ400が外側先端シャフト120、外側基端シャフト130、内側シャフト140、および第1マンドレル310の第2領域312を覆うに限り、特に限定されない。熱収縮チューブ400の先端は、内側シャフト140の基端開口部105の先端から先端側に離れた位置に配置され、熱収縮チューブ400の基端は、内側シャフト140の基端開口部105の基端から基端側に離れた位置に配置される。 When the shaft 100 is manufactured, the region (indicated by the arrow A1 in FIG. 7) where the heat-shrinkable tube 400 is disposed is the region where the heat-shrinkable tube 400 is the outer distal shaft 120, the outer proximal shaft 130, the inner shaft 140, and the There is no particular limitation as long as it covers the second region 312 of the one mandrel 310. The distal end of the heat-shrinkable tube 400 is disposed at a position away from the distal end of the proximal end opening 105 of the inner shaft 140 toward the distal end side, and the proximal end of the heat-shrinkable tube 400 is the base of the proximal end opening 105 of the inner shaft 140. It arrange | positions in the position away from the end to the base end side.
 図3に示すように、内側シャフト140の凸部150は、内側シャフト140の軸方向に沿う幅を有している。なお、ここでいう「軸方向に沿う幅を有する」とは、図3に示す断面において、凸部150が軸方向に沿って一定の長さで延在した部分(図中の破線矢印wで示す領域)を有することを意味する。 As shown in FIG. 3, the convex portion 150 of the inner shaft 140 has a width along the axial direction of the inner shaft 140. Note that “having a width along the axial direction” as used herein means a portion (indicated by a broken line arrow w in the figure) in which the convex portion 150 extends along the axial direction in the cross section shown in FIG. It has a region to be shown).
 図3に示すように、内側シャフト140の凸部150の幅は、外側シャフト110(外側基端シャフト130)側に向かって増加する。つまり、凸部150の外周形状は、内側シャフト140の軸方向に沿って基端側に向かうにしたがって、外側シャフト110との接触面積(融着面積)が幅方向に徐々に広がる形状で形成されている。 As shown in FIG. 3, the width of the convex portion 150 of the inner shaft 140 increases toward the outer shaft 110 (outer proximal shaft 130) side. That is, the outer peripheral shape of the convex portion 150 is formed in such a shape that the contact area (fused area) with the outer shaft 110 gradually increases in the width direction toward the proximal end side along the axial direction of the inner shaft 140. ing.
 なお、本実施形態では、図3に示す断面において、凸部150は、内側シャフト140の基端側へ向かうにしたがって、外側シャフト110側に向けて幅が大きく広がるように傾斜した形状を有しているが、凸部150の形状はこのような形状に限定されることはない。例えば、凸部150は、内側シャフト140の基端側へ向かうにしたがって、外側シャフト110側に向けて幅が小さくなるように傾斜した形状や、内側シャフト140の基端側へ向けて一定の幅で形成されるように形成してもよい。 In the present embodiment, in the cross section shown in FIG. 3, the convex portion 150 has a shape that is inclined so as to widen toward the outer shaft 110 side toward the proximal end side of the inner shaft 140. However, the shape of the convex part 150 is not limited to such a shape. For example, the convex portion 150 has a shape that is inclined so that the width decreases toward the outer shaft 110 side toward the proximal end side of the inner shaft 140, or a constant width toward the proximal end side of the inner shaft 140. You may form so that it may be formed.
 次に、シャフト(医療用長尺体)100の製造方法を説明する。 Next, a method for manufacturing the shaft (long medical body) 100 will be described.
 まず、シャフト100を製造する作業者は、外側先端シャフト120と、外側基端シャフト130と、内側シャフト140と、を供給(準備)する。 First, an operator who manufactures the shaft 100 supplies (preparation) the outer distal shaft 120, the outer proximal shaft 130, and the inner shaft 140.
 作業者は、外側先端シャフト120として、例えば、外径および内径が軸方向に略一定に形成された管状部材を準備する。また、作業者は、外側基端シャフト130として、例えば、先端が先端側から基端側へ向けて斜めに傾斜し、先端以外の部分が軸方向に略一定の外径および内径を有する管状部材を準備する。また、作業者は、内側シャフト140として、例えば、基端が基端側から先端側へ向けて斜めに傾斜し、基端以外の部分が軸方向に略一定の外径および内径を有する管状部材を準備する(各シャフト120、130、140の形状例は図4(C)を参照)。 The operator prepares, for example, a tubular member having an outer diameter and an inner diameter substantially constant in the axial direction as the outer tip shaft 120. In addition, the operator may use, for example, a tubular member whose outer base end shaft 130 is inclined obliquely from the front end side toward the base end side, and a portion other than the front end has a substantially constant outer diameter and inner diameter in the axial direction. Prepare. In addition, the operator may, for example, as the inner shaft 140, a tubular member having a base end inclined obliquely from the base end side toward the front end side, and a portion other than the base end having a substantially constant outer diameter and inner diameter in the axial direction. (Refer to FIG. 4C for examples of shapes of the shafts 120, 130, and 140).
 作業者は、内側シャフト140の内腔(ガイドワイヤルーメン)145に配置する第1マンドレル310と、外側先端シャフト120の内腔125および外側基端シャフト130の内腔135に配置される第2マンドレル320を供給(準備)する(図5(A)を参照)。 An operator may have a first mandrel 310 disposed in the lumen (guidewire lumen) 145 of the inner shaft 140, and a second mandrel disposed in the lumen 125 of the outer distal shaft 120 and the lumen 135 of the outer proximal shaft 130. 320 is supplied (prepared) (see FIG. 5A).
 図4(A)に示すように、第1マンドレル310は、内側シャフト140の内腔145に配置される第1領域311と、第1領域311の基端側と軸方向に重なりつつ、第1領域311の基端よりも基端側に延在する第2領域312と、を有している。第1マンドレル310の第1領域311と第1マンドレル310の第2領域312の間には凹部313が形成されている。 As shown in FIG. 4A, the first mandrel 310 includes a first region 311 disposed in the inner lumen 145 of the inner shaft 140 and a first end of the first region 311 while overlapping the proximal end side of the first region 311 in the axial direction. A second region 312 extending to the base end side of the base end of the region 311. A recess 313 is formed between the first region 311 of the first mandrel 310 and the second region 312 of the first mandrel 310.
 第1マンドレル310の第1領域311は軸方向に略直線状に延在している。第1マンドレル310の第2領域312は、先端が先端側に向けて傾斜しており、第1領域311との間に所定の空間を形成している。第1マンドレル310の凹部313は、内側シャフト140の基端開口部105の周縁部105aを湾曲した断面形状に形成し得るように、内側シャフト140の基端と対向する部分313aの形状が基端側に向けて凹状に湾曲している。 The first region 311 of the first mandrel 310 extends substantially linearly in the axial direction. The second region 312 of the first mandrel 310 has a tip inclined toward the tip side, and forms a predetermined space with the first region 311. The concave portion 313 of the first mandrel 310 is formed so that the shape of the portion 313a facing the base end of the inner shaft 140 is the base end so that the peripheral edge portion 105a of the base end opening 105 of the inner shaft 140 can be formed in a curved cross-sectional shape. Curved concavely toward the side.
 作業者は、図4(A)に示すように、外側先端シャフト120の内腔125に内側シャフト140を配置する。 The worker arranges the inner shaft 140 in the inner cavity 125 of the outer tip shaft 120 as shown in FIG.
 次に、作業者は、図4(B)に示すように、内側シャフト140の内腔145に第1マンドレル310を配置する。具体的には、作業者は、内側シャフト140の内腔145に第1マンドレル310を挿入し、内側シャフト140の基端が第1マンドレル310の凹部313と軸方向に重なるように第1マンドレル310を配置する。また、この際、作業者は、外側先端シャフト120の基端123と第1マンドレル310の凹部313との間で内側シャフト140の一部が露出するように、第1マンドレル310を配置する。 Next, the worker places the first mandrel 310 in the inner lumen 145 of the inner shaft 140 as shown in FIG. Specifically, the operator inserts the first mandrel 310 into the inner lumen 145 of the inner shaft 140 and the first mandrel 310 so that the proximal end of the inner shaft 140 overlaps the recess 313 of the first mandrel 310 in the axial direction. Place. At this time, the worker arranges the first mandrel 310 so that a part of the inner shaft 140 is exposed between the base end 123 of the outer distal shaft 120 and the recess 313 of the first mandrel 310.
 次に、作業者は、図4(C)に示すように、外側基端シャフト130の外表面に内側シャフト140を沿わせつつ、外側先端シャフト120の内腔125と外側基端シャフト130の内腔135が連なるように外側基端シャフト130を配置する。 Next, as shown in FIG. 4C, the operator places the inner shaft 140 along the outer surface of the outer proximal shaft 130, the lumen 125 of the outer distal shaft 120, and the inner proximal shaft 130. The outer proximal shaft 130 is arranged so that the cavities 135 are continuous.
 次に、作業者は、図5(A)に示すように、外側先端シャフト120の内腔125および外側基端シャフト130の内腔135に第2マンドレル320を挿入する。なお、第2マンドレル320は、軸方向に略直線状に延在する公知のものを用いることができる。 Next, the operator inserts the second mandrel 320 into the inner cavity 125 of the outer distal shaft 120 and the inner cavity 135 of the outer proximal shaft 130 as shown in FIG. The second mandrel 320 may be a known one that extends substantially linearly in the axial direction.
 なお、作業者は、外側先端シャフト120の内腔125に内側シャフト140を配置する作業、第1マンドレル310を内側シャフト140に配置する作業、外側先端シャフト120に外側基端シャフト130を配置する作業、第2マンドレル320を外側先端シャフト120の内腔125および外側基端シャフト130の内腔135に挿入する作業を順不同で行うことができる。 The operator performs an operation of placing the inner shaft 140 in the inner cavity 125 of the outer distal shaft 120, an operation of arranging the first mandrel 310 on the inner shaft 140, and an operation of arranging the outer proximal shaft 130 on the outer distal shaft 120. The operation of inserting the second mandrel 320 into the lumen 125 of the outer distal shaft 120 and the lumen 135 of the outer proximal shaft 130 can be performed in any order.
 次に、作業者は、図5(C)に示すように、外側先端シャフト120、外側基端シャフト130、内側シャフト140、および第1マンドレル310の第2領域312を覆うように熱収縮チューブ400を配置する。熱収縮チューブ400としては、例えば、ポリオレフィンなどにより構成された中空状の筒部材を用いることができる。 Next, as shown in FIG. 5C, the worker covers the outer distal shaft 120, the outer proximal shaft 130, the inner shaft 140, and the second region 312 of the first mandrel 310 so as to cover the heat contraction tube 400. Place. As the heat-shrinkable tube 400, for example, a hollow cylindrical member made of polyolefin or the like can be used.
 作業者は、熱収縮チューブ400を配置した状態で、熱収縮チューブ400に熱を付与し、外側先端シャフト120、外側基端シャフト130、内側シャフト140を融着する。熱収縮チューブ400は、加熱されると収縮し、加熱前の熱収縮チューブ400の内径よりも加熱後の熱収縮チューブ400の内径が小さくなるように変形する。 The worker applies heat to the heat-shrinkable tube 400 in a state where the heat-shrinkable tube 400 is arranged, and fuses the outer distal shaft 120, the outer proximal shaft 130, and the inner shaft 140. The heat-shrinkable tube 400 contracts when heated, and deforms such that the inner diameter of the heat-shrinkable tube 400 after heating is smaller than the inner diameter of the heat-shrinkable tube 400 before heating.
 この際、図6(A)に示すように、内側シャフト140は、内側シャフト140の第1マンドレル310の凹部313から露出した部分が溶融し、内側シャフト140を構成する樹脂が第1マンドレル310の凹部313側へ流れ込む(図6(A)において凹部313側に流れ込む樹脂を符号fで示す)。 At this time, as shown in FIG. 6A, the inner shaft 140 is melted at a portion exposed from the concave portion 313 of the first mandrel 310 of the inner shaft 140, and the resin constituting the inner shaft 140 is made of resin of the first mandrel 310. The resin flows into the concave portion 313 side (in FIG. 6A, the resin flowing into the concave portion 313 side is indicated by a symbol f).
 そして、図6(B)に示すように、第1マンドレル310の凹部313側へ流れ込んだ内側シャフト140を構成する樹脂は、内側シャフト140の基端側から先端側に向かって肉厚が増加した凸部150を形成する。この際、作業者は、外側先端シャフト120の基端123と凸部150の先端との間に、凹部313側へ樹脂が流れ込むことにより内側シャフト140の厚みが減少した部分(凹部313から露出した部分)に柔軟部158を形成する。 As shown in FIG. 6B, the resin constituting the inner shaft 140 that has flowed into the concave portion 313 side of the first mandrel 310 has increased in thickness from the proximal end side to the distal end side of the inner shaft 140. The convex part 150 is formed. At this time, the operator has exposed the portion where the thickness of the inner shaft 140 is reduced (exposed from the recess 313) due to the resin flowing into the recess 313 side between the base end 123 of the outer tip shaft 120 and the tip of the projection 150. The flexible part 158 is formed in the part).
 なお、図7に示すように、各シャフト120、130、140において熱収縮チューブ400により覆われた部分(図7の矢印A1で示す範囲)には小径部127が形成され、熱収縮チューブ400により覆われなかった部分(小径部127よりも先端側)には境界部128が形成され、境界部128の先端側には大径部126が形成される。 As shown in FIG. 7, a small diameter portion 127 is formed in a portion (range indicated by arrow A <b> 1 in FIG. 7) covered with the heat shrink tube 400 in each shaft 120, 130, 140. A boundary portion 128 is formed on the uncovered portion (the tip side from the small diameter portion 127), and a large diameter portion 126 is formed on the tip side of the boundary portion 128.
 作業者は、以上の各工程を実施することにより、凸部150および柔軟部158が形成された内側シャフト140と、外側先端シャフト120および外側基端シャフト130により構成された外側シャフト110と、を備えるシャフト100を製造できる。 The operator performs the above-described steps to obtain the inner shaft 140 formed with the convex portion 150 and the flexible portion 158, and the outer shaft 110 constituted by the outer distal shaft 120 and the outer proximal shaft 130. The provided shaft 100 can be manufactured.
 次に、本実施形態に係るバルーンカテーテル10の作用、およびシャフト100の製造方法の作用を説明する。 Next, the operation of the balloon catheter 10 according to this embodiment and the operation of the method for manufacturing the shaft 100 will be described.
 本実施形態に係るバルーンカテーテル10は、外側先端シャフト120と、外側先端シャフト120の基端側に固定され、かつ、外側先端シャフト120の内腔125と連通する内腔135を有する外側基端シャフト130と、を備える外側シャフト110と、先端側が外側先端シャフト120の内腔125に配置され、かつ、基端側が外側基端シャフト130の外表面に配置された内側シャフト140と、内側シャフト140と外側先端シャフト120に固定されたバルーン160と、を備えている。また、内側シャフト140の基端は、外側基端シャフト130の外表面で開口する基端開口部(ガイドワイヤポート)105を有し、内側シャフト140は、基端開口部105を形成する周縁部105aの一部に基端側から先端側に向かって肉厚が増加する凸部150を有している。 The balloon catheter 10 according to this embodiment includes an outer distal shaft 120 and an outer proximal shaft having a lumen 135 that is fixed to the proximal end side of the outer distal shaft 120 and communicates with the lumen 125 of the outer distal shaft 120. 130, an inner shaft 140 whose distal end side is disposed in the lumen 125 of the outer distal shaft 120 and whose proximal end is disposed on the outer surface of the outer proximal shaft 130, and the inner shaft 140. And a balloon 160 fixed to the outer distal shaft 120. The base end of the inner shaft 140 has a base end opening (guide wire port) 105 that opens on the outer surface of the outer base end shaft 130, and the inner shaft 140 has a peripheral edge that forms the base end opening 105. A part of 105a has a convex portion 150 whose thickness increases from the proximal end side toward the distal end side.
 上記のように構成したバルーンカテーテル10は、内側シャフト140の基端開口部105を形成する周縁部105aの一部に凸部150が形成されている。内側シャフト140の凸部150は、ガイドワイヤ200を内側シャフト140の基端開口部105から取り出す際などに基端開口部105付近に過剰な応力集中が発生した場合においても、内側シャフト140が破断するのを防止できる。このため、バルーンカテーテル10は、内側シャフト140に破断が生じるのを防止でき、内側シャフト140の破断に伴ってガイドワイヤ200の操作性が低下するのを防止できる。 In the balloon catheter 10 configured as described above, a convex portion 150 is formed on a part of the peripheral edge portion 105a that forms the proximal end opening portion 105 of the inner shaft 140. The convex portion 150 of the inner shaft 140 breaks the inner shaft 140 even when excessive stress concentration occurs in the vicinity of the proximal end opening 105 when the guide wire 200 is taken out from the proximal end opening 105 of the inner shaft 140. Can be prevented. For this reason, the balloon catheter 10 can prevent the inner shaft 140 from being broken, and can prevent the operability of the guide wire 200 from being lowered as the inner shaft 140 is broken.
 また、内側シャフト140の基端開口部105は、外側先端シャフト120の基端123よりも基端側に配置され、内側シャフト140は、外側先端シャフト120の基端123と凸部150の間に、凸部150よりも肉厚が薄く、かつ、柔軟な柔軟部158を有している。 The proximal end opening 105 of the inner shaft 140 is disposed on the proximal end side with respect to the proximal end 123 of the outer distal shaft 120, and the inner shaft 140 is disposed between the proximal end 123 of the outer distal shaft 120 and the convex portion 150. Further, the flexible portion 158 is thinner than the convex portion 150 and is flexible.
 上記のように構成したバルーンカテーテル10は、凸部150よりも内側シャフト140の先端側に形成された柔軟部158を有する。そのため、ガイドワイヤ200を操作した際にガイドワイヤ200から凸部150に対して応力が作用すると、内側シャフト140は、柔軟部158を起点にして凸部150付近が捲れ上がるように変形(屈曲)するため、内側シャフト140の基端開口部105付近で応力集中が生じるのを防止できる。これにより、バルーンカテーテル10は、内側シャフト140の基端開口部105が破断するのをより好適に防止できる。さらに、バルーンカテーテル10は、凸部150よりも内側シャフト140の先端側に形成された柔軟部158を有するため、ガイドワイヤ200に沿ってバルーンカテーテル10を移動等させる際、柔軟部158がガイドワイヤ200に追従して容易に湾曲し、ガイドワイヤ200への追従性が高められる。 The balloon catheter 10 configured as described above has a flexible portion 158 formed on the distal end side of the inner shaft 140 with respect to the convex portion 150. Therefore, when a stress acts on the convex portion 150 from the guide wire 200 when the guide wire 200 is operated, the inner shaft 140 is deformed (bent) so that the vicinity of the convex portion 150 is swollen starting from the flexible portion 158. Therefore, it is possible to prevent stress concentration from occurring near the proximal end opening 105 of the inner shaft 140. Thereby, the balloon catheter 10 can more preferably prevent the proximal end opening 105 of the inner shaft 140 from being broken. Further, since the balloon catheter 10 has a flexible portion 158 formed on the distal end side of the inner shaft 140 with respect to the convex portion 150, the flexible portion 158 is moved by the guide wire 200 along the guide wire 200 when the balloon catheter 10 is moved. Following 200 is easily curved, and the followability to guide wire 200 is enhanced.
 また、内側シャフト140の基端開口部105は、内側シャフト140の軸方向の断面において、基端側から先端側に向かって傾斜している。このため、内側シャフト140の基端開口部105が内側シャフト140の軸方向に対して直交するように開口している場合に比べて基端開口部105の開口面積を大きく形成できる。これにより、術者は、バルーンカテーテル10の基端開口部105を介してガイドワイヤ200を容易に取り出すことができる。 Further, the proximal end opening 105 of the inner shaft 140 is inclined from the proximal end side toward the distal end side in the axial section of the inner shaft 140. For this reason, the opening area of the proximal end opening 105 can be formed larger than when the proximal end opening 105 of the inner shaft 140 is opened so as to be orthogonal to the axial direction of the inner shaft 140. Thereby, the operator can easily take out the guide wire 200 through the proximal end opening 105 of the balloon catheter 10.
 また、外側先端シャフト120は、所定の外径で形成された大径部126を有し、内側シャフト140に形成された凸部150に対応する部分で外側シャフト110および内側シャフト140が形成する外径は、大径部126の外径よりも小さい。 The outer tip shaft 120 has a large-diameter portion 126 formed with a predetermined outer diameter, and the outer shaft 110 and the inner shaft 140 are formed at portions corresponding to the convex portions 150 formed on the inner shaft 140. The diameter is smaller than the outer diameter of the large diameter portion 126.
 術者は、バルーンカテーテル10を血管等の生体管腔へ挿入する際、例えば、一つのカテーテル(公知のガイディングカテーテル等)を利用して、バルーンカテーテル10とともに他の医療デバイス(例えば、バルーンカテーテルとは別のバルーンカテーテルや画像診断に用いられるカテーテルデバイス等)を挿入することがある。この際、バルーンカテーテル10に形成された凸部150におけるシャフト100の外径が過度に大きいと、カテーテル内においてバルーンカテーテル10と他の医療デバイスが干渉してしまい、両者の円滑な移動が妨げられることがある。バルーンカテーテル10は、上記のように内側シャフト140に形成された凸部150の外径が外側先端シャフト120の大径部126の外径と比較して小さく形成されているため、内側シャフト140に凸部150が形成されているに関わらず、カテーテルの内腔で他の医療デバイスと干渉するのを好適に防止できる。 When an operator inserts the balloon catheter 10 into a living body lumen such as a blood vessel, for example, using one catheter (a known guiding catheter or the like), the balloon catheter 10 and another medical device (for example, a balloon catheter) are used. In some cases, another balloon catheter or a catheter device used for diagnostic imaging may be inserted. At this time, if the outer diameter of the shaft 100 at the convex portion 150 formed on the balloon catheter 10 is excessively large, the balloon catheter 10 and other medical devices interfere with each other in the catheter, and the smooth movement of both is hindered. Sometimes. The balloon catheter 10 is formed on the inner shaft 140 because the outer diameter of the convex portion 150 formed on the inner shaft 140 is smaller than the outer diameter of the large diameter portion 126 of the outer tip shaft 120 as described above. Regardless of the formation of the convex portion 150, it is possible to suitably prevent interference with other medical devices in the lumen of the catheter.
 また、内側シャフト140の凸部150は、内側シャフト140の軸方向に沿う幅を有しており、凸部150の幅は、外側シャフト110側に向かって増加する。これにより、内側シャフト140は、内側シャフト140の基端側で凸部150と外側シャフト110の外表面とが接触する接触面積(融着面積)が大きくなるため、内側シャフト140と外側シャフト110の固定力を高めることができる。 Further, the convex portion 150 of the inner shaft 140 has a width along the axial direction of the inner shaft 140, and the width of the convex portion 150 increases toward the outer shaft 110 side. As a result, the inner shaft 140 has a larger contact area (fusion area) where the convex portion 150 and the outer surface of the outer shaft 110 are in contact with each other on the proximal end side of the inner shaft 140. Fixing force can be increased.
 また、内側シャフト140に形成された凸部150は、内側シャフト140の軸方向の断面において、基端側から先端側に向かって傾斜する第1傾斜部151と、第1傾斜部151の先端と連なり、第1傾斜部151の先端から内側シャフト140の先端側に向かって傾斜する第2傾斜部152と、を有している。そして、第1傾斜部151の軸方向の長さは、第2傾斜部152の軸方向の長さよりも長く形成している。 In addition, the convex portion 150 formed on the inner shaft 140 includes a first inclined portion 151 that is inclined from the proximal end side toward the distal end side in the axial section of the inner shaft 140, and the distal end of the first inclined portion 151. And a second inclined portion 152 that is inclined from the distal end of the first inclined portion 151 toward the distal end side of the inner shaft 140. The length of the first inclined portion 151 in the axial direction is longer than the length of the second inclined portion 152 in the axial direction.
 上記のように構成したバルーンカテーテル10は、凸部150の基端側に形成された第1傾斜部151の軸方向の長さが比較的長く形成されるため、内側シャフト140の軸方向において内側シャフト140の外径が変化する領域(凸部150の基端から凸部150の最大外径部までの領域)が長くなる。つまり、内側シャフト140は、凸部150において外径が大きくなるように変化する領域の軸方向の長さが長くなるため、凸部150の外径の急減な増加が抑えられる。したがって、バルーンカテーテル10は、凸部150の基端側から先端側に向けて外径の増加量が緩やかになるため、急激な外径の増加に起因して生じる内側シャフト140のキンク等が発生するのを防止できる。 The balloon catheter 10 configured as described above has a relatively long axial length of the first inclined portion 151 formed on the proximal end side of the convex portion 150, so that the inner side in the axial direction of the inner shaft 140 is formed. The region where the outer diameter of the shaft 140 changes (the region from the base end of the convex portion 150 to the maximum outer diameter portion of the convex portion 150) becomes longer. That is, since the inner shaft 140 has a longer axial length in a region where the outer diameter of the convex portion 150 changes so as to increase, a sudden decrease in the outer diameter of the convex portion 150 can be suppressed. Accordingly, in the balloon catheter 10, the amount of increase in the outer diameter from the proximal end side to the distal end side of the convex portion 150 becomes gradual, so that a kink or the like of the inner shaft 140 caused by a sudden increase in the outer diameter occurs. Can be prevented.
 また、内側シャフト140の基端開口部105の周縁部105aは曲面で形成されている。このため、術者は、内側シャフト140の基端開口部105からガイドワイヤ200を取り出す際、ガイドワイヤ200が基端開口部105の周縁部105aに引っ掛かるのを防止でき、ガイドワイヤ200を円滑に取り出すことができる。 Further, the peripheral edge portion 105a of the base end opening 105 of the inner shaft 140 is formed as a curved surface. For this reason, when the operator takes out the guide wire 200 from the proximal end opening 105 of the inner shaft 140, the guide wire 200 can be prevented from being caught by the peripheral edge 105a of the proximal end opening 105, and the guide wire 200 can be smoothly moved. It can be taken out.
 本実施形態に係るシャフト100の製造方法は、外側先端シャフト120と、外側基端シャフト130と、内側シャフト140と、内側シャフト140の内腔145に配置する第1マンドレル310と、外側先端シャフト120の内腔125および外側基端シャフト130の内腔135に配置される第2マンドレル320と、を供給し、第1マンドレル310は、第1領域311と、第1領域311の基端側と軸方向に重なりつつ、第1領域311の基端よりも基端側に延在する第2領域312と、を有し、第1領域311と第2領域312の間には凹部313が形成されている。そして、当該製造方法は、外側先端シャフト120の内腔125に内側シャフト140を配置し、内側シャフト140の内腔145に第1マンドレル310の第1領域311を挿入することにより、内側シャフト140の基端が第1マンドレル310の凹部313と軸方向に重なるように第1マンドレル310を配置し、外側基端シャフト130の外表面に内側シャフト140を沿わせつつ、外側先端シャフト120の内腔125と外側基端シャフト130の内腔135が連なるように外側基端シャフト130を配置し、外側先端シャフト120の内腔125および外側基端シャフト130の内腔135に第2マンドレル320を挿入し、外側先端シャフト120、外側基端シャフト130、内側シャフト140、および第1マンドレル310の第2領域312を覆うように熱収縮チューブ400を配置し、熱収縮チューブ400に熱を付与して収縮させ、外側先端シャフト120、外側基端シャフト130、内側シャフト140を融着しつつ、第1マンドレル310の凹部313に配置された内側シャフト140の基端に凸部150を形成する。 The manufacturing method of the shaft 100 according to the present embodiment includes the outer distal shaft 120, the outer proximal shaft 130, the inner shaft 140, the first mandrel 310 disposed in the lumen 145 of the inner shaft 140, and the outer distal shaft 120. , And a second mandrel 320 disposed in the lumen 135 of the outer proximal shaft 130, and the first mandrel 310 has a first region 311, a proximal end side of the first region 311 and a shaft A second region 312 extending closer to the base end side than the base end of the first region 311 while overlapping in the direction, and a recess 313 is formed between the first region 311 and the second region 312. Yes. In the manufacturing method, the inner shaft 140 is disposed in the inner lumen 125 of the outer tip shaft 120, and the first region 311 of the first mandrel 310 is inserted into the inner lumen 145 of the inner shaft 140. The first mandrel 310 is disposed so that the proximal end thereof overlaps the concave portion 313 of the first mandrel 310 in the axial direction, and the inner shaft 140 is disposed along the outer surface of the outer proximal shaft 130, and the lumen 125 of the outer distal shaft 120 is disposed. And the outer proximal shaft 130 are arranged so that the inner lumen 135 of the outer proximal shaft 130 is continuous, and the second mandrel 320 is inserted into the inner lumen 125 of the outer distal shaft 120 and the inner lumen 135 of the outer proximal shaft 130. Outer distal shaft 120, outer proximal shaft 130, inner shaft 140, and first mandrel 31 The heat-shrinkable tube 400 is disposed so as to cover the second region 312, and heat is applied to the heat-shrinkable tube 400 to contract, and the outer distal shaft 120, the outer proximal shaft 130, and the inner shaft 140 are fused, A convex portion 150 is formed at the proximal end of the inner shaft 140 disposed in the concave portion 313 of the first mandrel 310.
 上記のシャフト100の製造方法は、内側シャフト140と外側シャフト110を融着する際、第1マンドレル310が備える第1領域311を内側シャフト140の内腔145に挿入し、かつ、第1マンドレル310の第1領域311と第1マンドレル310の第2領域312との間に形成された凹部313に内側シャフト140の基端を配置した状態とし、外側先端シャフト120、外側基端シャフト130、内側シャフト140、および第1マンドレル310の第2領域312を覆うように熱収縮チューブ400を配置する。そして、上記製造方法は、熱収縮チューブ400に熱を付与して収縮させることにより、外側先端シャフト120、外側基端シャフト130、内側シャフト140を融着しつつ、第1マンドレル310の凹部313に配置された内側シャフト140の基端に凸部150を形成する。したがって、上記製造方法は、基端開口部105付近で内側シャフト140が破断するのを防止する凸部150が形成された内側シャフト140を備えるシャフト100を提供できる。 In the manufacturing method of the shaft 100 described above, when the inner shaft 140 and the outer shaft 110 are fused, the first region 311 provided in the first mandrel 310 is inserted into the lumen 145 of the inner shaft 140 and the first mandrel 310 is inserted. The base end of the inner shaft 140 is disposed in a recess 313 formed between the first region 311 of the first mandrel 310 and the second region 312 of the first mandrel 310, and the outer distal shaft 120, the outer proximal shaft 130, and the inner shaft 140 and the heat shrink tube 400 are arranged to cover the second region 312 of the first mandrel 310. In the manufacturing method, heat is applied to the heat shrinkable tube 400 to cause the heat shrinkable tube 400 to shrink, thereby fusing the outer distal shaft 120, the outer proximal shaft 130, and the inner shaft 140 to the recess 313 of the first mandrel 310. A convex portion 150 is formed at the proximal end of the arranged inner shaft 140. Therefore, the manufacturing method can provide the shaft 100 including the inner shaft 140 in which the convex portion 150 that prevents the inner shaft 140 from breaking near the proximal end opening 105 is formed.
 また、シャフト100の製造方法において、第1マンドレル310は、外側先端シャフト120の基端123と第1マンドレル310の第2領域312の先端との間で内側シャフト140を露出させるように内側シャフト140に配置される。そして、内側シャフト140において第1マンドレル310から露出した部分は、熱収縮チューブ400に熱を付与して収縮させる際、凸部150を形成するように内側シャフト140の基端側へ流れ込むことによって、凸部150よりも肉厚が薄い柔軟部158を形成する。 Further, in the method for manufacturing the shaft 100, the first mandrel 310 has the inner shaft 140 exposed so that the inner shaft 140 is exposed between the proximal end 123 of the outer distal shaft 120 and the distal end of the second region 312 of the first mandrel 310. Placed in. The portion of the inner shaft 140 exposed from the first mandrel 310 flows into the proximal end side of the inner shaft 140 so as to form a convex portion 150 when heat is applied to the heat shrinkable tube 400 and contracted. A flexible portion 158 having a thickness smaller than that of the convex portion 150 is formed.
 上記のシャフト100の製造方法は、内側シャフト140に凸部150を形成するとともに、凸部150よりも内側シャフト140の先端側に柔軟部158を形成できる。内側シャフト140は、ガイドワイヤ200を操作した際にガイドワイヤ200から凸部150に対して応力が作用すると、柔軟部158を起点にして凸部150付近が捲れ上がるように変形(屈曲)するため、内側シャフト140の基端開口部105付近で応力集中が生じるのを防止する。また、柔軟部158は、ガイドワイヤ200に沿ってバルーンカテーテル10を移動等させる際、ガイドワイヤ200に追従して容易に湾曲することにより、ガイドワイヤ200に対するバルーンカテーテル10の追従性を高める。 The above manufacturing method of the shaft 100 can form the convex portion 150 on the inner shaft 140 and can form the flexible portion 158 on the distal end side of the inner shaft 140 with respect to the convex portion 150. The inner shaft 140 is deformed (bent) so that when the guide wire 200 is operated and stress is applied to the convex portion 150 from the guide wire 200, the vicinity of the convex portion 150 is swollen starting from the flexible portion 158. Further, stress concentration is prevented from occurring near the proximal end opening 105 of the inner shaft 140. Further, when the balloon catheter 10 is moved along the guide wire 200, the flexible portion 158 easily curves following the guide wire 200, thereby improving the followability of the balloon catheter 10 with respect to the guide wire 200.
 また、シャフト100の製造方法において、第1マンドレル310の凹部313は、内側シャフト140の基端と対向する部分313aが湾曲した形状で形成されている。そして、内側シャフト140の基端は、第1マンドレル310の凹部313により湾曲した形状に形成される。 Further, in the method for manufacturing the shaft 100, the recess 313 of the first mandrel 310 is formed in a shape in which a portion 313a facing the base end of the inner shaft 140 is curved. The proximal end of the inner shaft 140 is formed in a curved shape by the recess 313 of the first mandrel 310.
 上記のシャフト100の製造方法は、内側シャフト140の基端に形成された基端開口部105の周縁部105aを湾曲した断面形状(曲面状の断面形状)で形成する。これにより、術者は、内側シャフト140の基端開口部105からガイドワイヤ200を取り出す際、ガイドワイヤ200が基端開口部105の周縁部105aに引っ掛かるのを防止でき、ガイドワイヤ200を円滑に取り出すことができる。 In the manufacturing method of the shaft 100 described above, the peripheral edge portion 105a of the proximal end opening 105 formed at the proximal end of the inner shaft 140 is formed in a curved sectional shape (curved sectional shape). Accordingly, when the operator takes out the guide wire 200 from the proximal end opening 105 of the inner shaft 140, the guide wire 200 can be prevented from being caught by the peripheral edge 105a of the proximal end opening 105, and the guide wire 200 can be smoothly moved. It can be taken out.
 次に、上述した実施形態の変形例を説明する。なお、変形例において特に言及しない構成や部材、製造工程等については、前述した実施形態と同様のものとすることができ、その説明を省略する。 Next, a modification of the above-described embodiment will be described. Note that configurations, members, manufacturing processes, and the like that are not particularly mentioned in the modification can be the same as those in the above-described embodiment, and a description thereof is omitted.
 <変形例>
 図8は、変形例に係るバルーンカテーテルの凸部550を示す断面図である。
<Modification>
FIG. 8 is a cross-sectional view showing a convex portion 550 of a balloon catheter according to a modification.
 変形例1に係るバルーンカテーテルは、内側シャフト140に形成された凸部550の断面形状が前述した実施形態に係るバルーンカテーテル10と相違する。 The balloon catheter according to Modification 1 is different from the balloon catheter 10 according to the embodiment described above in the cross-sectional shape of the convex portion 550 formed on the inner shaft 140.
 図8に示すように、内側シャフト140に形成された凸部550は、内側シャフト140の軸方向の断面(図7に示す断面)において、基端側から先端側に向かって傾斜する第1傾斜部551と、第1傾斜部551の先端と連なる第2傾斜部552と、を有している。 As shown in FIG. 8, the convex portion 550 formed on the inner shaft 140 is a first inclination that is inclined from the proximal end side toward the distal end side in the axial cross section of the inner shaft 140 (the cross section shown in FIG. 7). Part 551 and a second inclined part 552 connected to the tip of the first inclined part 551.
 第1傾斜部551は、内側シャフト140の基端側から先端側へ向けて所定の傾斜角度で略直線状に延在している。第1傾斜部551の基端付近に形成された基端開口部105の周縁部105aは、曲面で形成している。 The first inclined portion 551 extends substantially linearly at a predetermined inclination angle from the proximal end side to the distal end side of the inner shaft 140. The peripheral edge portion 105a of the base end opening 105 formed near the base end of the first inclined portion 551 is formed with a curved surface.
 第2傾斜部552は、第1傾斜部551の先端から内側シャフト140の先端側に向かって傾斜している。なお、第1傾斜部551の先端は、図3に示す断面図において、略直線状に延在した第1傾斜部551から湾曲した形状の第2傾斜部552に向けて断面形状が切り替わる(遷移する)境界部に存在する。 The second inclined portion 552 is inclined from the distal end of the first inclined portion 551 toward the distal end side of the inner shaft 140. The cross-sectional shape of the tip of the first inclined portion 551 is switched from the first inclined portion 551 extending in a substantially linear shape toward the curved second inclined portion 552 in the cross-sectional view shown in FIG. Present) at the boundary.
 第2傾斜部552は、図3に示す断面において、第1傾斜部551の先端から第1傾斜部551とは異なる断面形状を呈するように、内側シャフト140の先端側へ延びている。具体的には、第2傾斜部552の基端側は、第1傾斜部551の先端から先端側へ向けて弧を描く断面形状を呈している。また、第2傾斜部552の先端側は、内側シャフト140の外表面に繋がるように、第2傾斜部552の基端側から内側シャフト140の外表面側に向けて弧を描く断面形状を呈している。 The second inclined portion 552 extends from the distal end of the first inclined portion 551 to the distal end side of the inner shaft 140 so as to exhibit a different cross-sectional shape from the first inclined portion 551 in the cross section shown in FIG. Specifically, the proximal end side of the second inclined portion 552 has a cross-sectional shape that draws an arc from the distal end of the first inclined portion 551 toward the distal end side. Further, the distal end side of the second inclined portion 552 has a cross-sectional shape that draws an arc from the proximal end side of the second inclined portion 552 toward the outer surface side of the inner shaft 140 so as to be connected to the outer surface of the inner shaft 140. ing.
 図8に示すように、凸部550の第1傾斜部551の軸方向の長さL1は、凸部550の第2傾斜部552の軸方向の長さL2よりも短く形成している。なお、第1傾斜部551の軸方向の長さL1および第2傾斜部552の軸方向の長さL2は、凸部550において図7に示す断面上で最長となる部分の軸方向の長さである。 As shown in FIG. 8, the axial length L1 of the first inclined portion 551 of the convex portion 550 is shorter than the axial length L2 of the second inclined portion 552 of the convex portion 550. The length L1 in the axial direction of the first inclined portion 551 and the length L2 in the axial direction of the second inclined portion 552 are the length in the axial direction of the longest portion on the cross section shown in FIG. It is.
 凸部550の第1傾斜部551の軸方向の長さL1は、例えば、0.1mm~0.8mmに形成でき、凸部550の第2傾斜部552の軸方向の長さL2は、例えば、0.2mm~1.0mmに形成できる。 The length L1 in the axial direction of the first inclined portion 551 of the convex portion 550 can be formed to be 0.1 mm to 0.8 mm, for example, and the length L2 in the axial direction of the second inclined portion 552 of the convex portion 550 is, for example, , 0.2 mm to 1.0 mm.
 本変形例に係る凸部550を形成する際、作業者は、第1マンドレルとして、凸部550の断面形状に対応した断面形状の凹部を備えるマンドレルを準備する。後述する各改変例に係る凸部650、750を形成する場合も同様に、作業者は、各凸部650、750の断面形状に対応した断面形状を備える第1マンドレルを準備する。 When forming the convex portion 550 according to the present modification, the operator prepares a mandrel having a concave portion having a cross-sectional shape corresponding to the cross-sectional shape of the convex portion 550 as the first mandrel. Similarly, when forming convex portions 650 and 750 according to each modification described below, the operator prepares a first mandrel having a cross-sectional shape corresponding to the cross-sectional shape of each convex portion 650 and 750.
 以上のように、本変形例に係るバルーンカテーテルは、内側シャフト140に形成された凸部550が内側シャフト140の軸方向の断面において、基端側から先端側に向かって傾斜する第1傾斜部551と、第1傾斜部551の先端と連なり、第1傾斜部551の先端から内側シャフト140の先端側に向かって傾斜する第2傾斜部552と、を有している。そして、第1傾斜部551の軸方向の長さは、第2傾斜部552の軸方向の長さよりも短く形成している。 As described above, the balloon catheter according to the present modification includes the first inclined portion in which the convex portion 550 formed on the inner shaft 140 is inclined from the proximal end side toward the distal end side in the axial section of the inner shaft 140. 551 and a second inclined portion 552 that is continuous with the distal end of the first inclined portion 551 and is inclined from the distal end of the first inclined portion 551 toward the distal end side of the inner shaft 140. The length of the first inclined portion 551 in the axial direction is shorter than the length of the second inclined portion 552 in the axial direction.
 バルーンカテーテルは、本変形例で説明したような断面形状の凸部550が内側シャフト140に形成されている場合においても、ガイドワイヤ200を内側シャフト140の基端開口部105から取り出す際などに、基端開口部105付近で内側シャフト140に破断が生じるのを防止でき、内側シャフト140の破断に伴ってガイドワイヤ200の操作性が低下するのを防止できる。 Even when the balloon catheter has the convex portion 550 having a cross-sectional shape as described in the present modified example formed on the inner shaft 140, when the guide wire 200 is taken out from the proximal end opening 105 of the inner shaft 140, etc. It is possible to prevent the inner shaft 140 from being broken near the proximal end opening 105, and to prevent the operability of the guide wire 200 from being lowered as the inner shaft 140 is broken.
 なお、図8の変形例に係るバルーンカテーテルは、凸部550の第1傾斜部551の軸方向の長さL1と凸部550の第2傾斜部552の軸方向の長さL2とが同じ長さを有していてもよい。この場合においても、バルーンカテーテルは、ガイドワイヤ200を内側シャフト140の基端開口部105から取り出す際などに、基端開口部105付近で内側シャフト140に破断が生じるのを防止でき、内側シャフト140の破断に伴ってガイドワイヤ200の操作性が低下するのを防止できる。 In the balloon catheter according to the modification of FIG. 8, the axial length L1 of the first inclined portion 551 of the convex portion 550 and the axial length L2 of the second inclined portion 552 of the convex portion 550 are the same length. You may have. Even in this case, the balloon catheter can prevent the inner shaft 140 from breaking near the proximal end opening 105 when the guide wire 200 is taken out from the proximal end opening 105 of the inner shaft 140. It is possible to prevent the operability of the guide wire 200 from being lowered due to the breakage of the guide wire 200.
 <改変例>
 内側シャフト140に形成する凸部は、内側シャフト140の基端側から先端側に向かって肉厚が増加する限り、具体的な断面形状等は特に限定されない。例えば、図9に示すように、凸部650は、第1傾斜部651が先端側に斜めに傾斜し、第2傾斜部652が軸方向と直交する方向に略垂直に延在した断面形状を有するものであってもよい。また、図10に示すように、凸部750は、第1傾斜部および第2傾斜部が形成されてない略矩形の断面形状を有するものであってもよい。また、内側シャフト140は、図9および図10に示すように基端開口部105の周縁部105aが曲面(湾曲した形状)に形成されていなくてもよい。
<Modification example>
As long as the thickness of the convex portion formed on the inner shaft 140 increases from the proximal end side to the distal end side of the inner shaft 140, the specific cross-sectional shape and the like are not particularly limited. For example, as shown in FIG. 9, the convex portion 650 has a cross-sectional shape in which the first inclined portion 651 is inclined obliquely toward the distal end side, and the second inclined portion 652 is extended substantially perpendicular to the direction orthogonal to the axial direction. You may have. Moreover, as shown in FIG. 10, the convex part 750 may have a substantially rectangular cross-sectional shape in which the first inclined part and the second inclined part are not formed. Further, as shown in FIGS. 9 and 10, the inner shaft 140 may not have the peripheral edge portion 105 a of the proximal end opening portion 105 formed in a curved surface (curved shape).
 バルーンカテーテルは、図9および図10に示すような断面形状で各凸部650、750が形成されている場合においても、ガイドワイヤ200を内側シャフト140の基端開口部105から取り出す際などに、基端開口部105付近で内側シャフト140に破断が生じるのを防止でき、内側シャフト140の破断に伴ってガイドワイヤ200の操作性が低下するのを防止できる。 The balloon catheter has a cross-sectional shape as shown in FIGS. 9 and 10, and even when the convex portions 650 and 750 are formed, when the guide wire 200 is taken out from the proximal end opening 105 of the inner shaft 140, It is possible to prevent the inner shaft 140 from being broken near the proximal end opening 105, and to prevent the operability of the guide wire 200 from being lowered as the inner shaft 140 is broken.
 以上、実施形態等を通じて本発明に係るバルーンカテーテルおよび医療用長尺体の製造方法を説明したが、本発明は特許請求の範囲の記載に基づいて種々改変することができ、説明した各実施形態の内容のみに限定されることはない。 As mentioned above, although the manufacturing method of the balloon catheter which concerns on this invention, and a medical elongate body through embodiment etc. was demonstrated, this invention can be variously modified based on description of a claim, and each described embodiment It is not limited only to the contents.
 例えば、内側シャフトに形成する凸部は、内側シャフトの基端開口部を形成する周縁部の一部に形成されている限り、その形成する範囲は特に限定されない。 For example, as long as the convex portion formed on the inner shaft is formed on a part of the peripheral edge portion forming the proximal end opening of the inner shaft, the range to be formed is not particularly limited.
 また、例えば、実施形態等において説明したバルーンカテーテルの構造や部材の配置等は適宜変更することができ、図示により説明した付加的な部材の使用の省略や、特に説明されなかったその他の付加的な部材の使用等も適宜に行い得る。同様に、医療用長尺体の製造方法に関する各工程や製造に使用される器具等についても適宜変更し得る。 Further, for example, the structure of the balloon catheter and the arrangement of the members described in the embodiments and the like can be changed as appropriate, and the use of the additional members described with reference to the drawings is omitted, or other additional operations that are not particularly described. The use of such a member can be performed as appropriate. Similarly, each step relating to the method for producing a medical long body and instruments used for production can be appropriately changed.
 本出願は、2017年3月28日に出願された日本国特許出願第2017-063765号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2017-063765 filed on Mar. 28, 2017, the disclosure of which is incorporated by reference in its entirety.
10 バルーンカテーテル、
100 シャフト(医療用長尺体)、
105 基端開口部(内側シャフトの基端開口部)、
105a 周縁部、
110 外側シャフト、
115 外側シャフトの内腔、
120 外側先端シャフト、
123 外側先端シャフトの基端、
125 外側先端シャフトの内腔、
126 大径部、
127 小径部、
128 境界部、
130 外側基端シャフト、
135 外側基端シャフトの内腔、
140 内側シャフト、
145 内側シャフトの内腔、
150、550、650、750 凸部、
151、551 第1傾斜部、
152、552 第2傾斜部、
158 柔軟部、
160 バルーン、
200 ガイドワイヤ、
310 第1マンドレル、
311 第1領域、
312 第2領域、
313 凹部、
313a 内側シャフトの基端と対向する部分、
320 第2マンドレル、
400 熱収縮チューブ。
10 balloon catheter,
100 shaft (medical long body),
105 proximal end opening (inner shaft proximal end opening),
105a peripheral edge,
110 outer shaft,
115 lumen of the outer shaft,
120 outer tip shaft,
123 proximal end of outer distal shaft,
125 lumen of the outer tip shaft,
126 Large diameter part,
127 Small diameter part,
128 border,
130 outer proximal shaft,
135 lumen of the outer proximal shaft,
140 inner shaft,
145 lumen of the inner shaft,
150, 550, 650, 750 convex portion,
151, 551 first inclined portion,
152, 552 second inclined portion,
158 flexible part,
160 balloon,
200 guide wire,
310 first mandrel,
311 first region,
312 second region,
313 recess,
313a a portion facing the proximal end of the inner shaft,
320 Second mandrel,
400 heat shrink tube.

Claims (10)

  1.  外側先端シャフトと、前記外側先端シャフトの基端側に固定され、かつ、前記外側先端シャフトの内腔と連通する内腔を有する外側基端シャフトと、を備える外側シャフトと、
     先端側が前記外側先端シャフトの内腔に配置され、かつ、基端側が前記外側基端シャフトの外表面に配置された内側シャフトと、
     前記内側シャフトと前記外側先端シャフトに固定されたバルーンと、を備え、
     前記内側シャフトの基端は、前記外側基端シャフトの外表面で開口する基端開口部を有し、
     前記内側シャフトは、前記基端開口部を形成する周縁部の一部に凸部を有する、バルーンカテーテル。
    An outer shaft comprising: an outer distal shaft; and an outer proximal shaft fixed to a proximal end side of the outer distal shaft and having a lumen communicating with the lumen of the outer distal shaft;
    An inner shaft having a distal end disposed in the lumen of the outer distal shaft, and a proximal end disposed on an outer surface of the outer proximal shaft;
    A balloon fixed to the inner shaft and the outer tip shaft;
    The proximal end of the inner shaft has a proximal opening that opens at the outer surface of the outer proximal shaft;
    The inner shaft has a convex portion at a part of a peripheral edge forming the proximal end opening.
  2.  前記基端開口部は、前記外側先端シャフトの基端よりも基端側に配置され、
     前記内側シャフトは、前記外側先端シャフトの基端と前記凸部の間に、前記凸部よりも肉厚が薄く、かつ、柔軟な柔軟部を有する、請求項1に記載のバルーンカテーテル。
    The proximal end opening is disposed closer to the proximal side than the proximal end of the outer distal shaft,
    The balloon catheter according to claim 1, wherein the inner shaft has a flexible portion that is thinner than the convex portion and is flexible between the proximal end of the outer distal shaft and the convex portion.
  3.  前記基端開口部は、前記内側シャフトの軸方向の断面において、基端側から先端側に向かって傾斜する、請求項1または請求項2に記載のバルーンカテーテル。 The balloon catheter according to claim 1 or 2, wherein the proximal end opening portion is inclined from the proximal end side toward the distal end side in an axial section of the inner shaft.
  4.  前記外側先端シャフトは、所定の外径で形成された大径部を有し、
     前記凸部に対応する部分で前記外側シャフトおよび前記内側シャフトが形成する外径は、前記大径部の外径よりも小さい、請求項1~3のいずれか1項に記載のバルーンカテーテル。
    The outer tip shaft has a large diameter portion formed with a predetermined outer diameter,
    The balloon catheter according to any one of claims 1 to 3, wherein an outer diameter formed by the outer shaft and the inner shaft at a portion corresponding to the convex portion is smaller than an outer diameter of the large diameter portion.
  5.  前記凸部は、前記内側シャフトの軸方向に沿う幅を有し、
     前記凸部の幅は、前記外側シャフト側に向かって増加する、請求項1~4のいずれか1項に記載のバルーンカテーテル。
    The convex portion has a width along the axial direction of the inner shaft,
    The balloon catheter according to any one of claims 1 to 4, wherein a width of the convex portion increases toward the outer shaft side.
  6.  前記凸部は、前記内側シャフトの軸方向の断面において、基端側から先端側に向かって傾斜する第1傾斜部と、前記第1傾斜部の先端と連なり、前記第1傾斜部の先端から前記内側シャフトの先端側に向かって傾斜する第2傾斜部と、を有し、
     前記第1傾斜部の軸方向の長さは、前記第2傾斜部の軸方向の長さよりも長い、請求項1~5のいずれか1項に記載のバルーンカテーテル。
    In the axial cross section of the inner shaft, the convex portion is connected to the first inclined portion inclined from the proximal end side toward the distal end side, and the distal end of the first inclined portion, and from the distal end of the first inclined portion. A second inclined portion that is inclined toward the tip side of the inner shaft,
    The balloon catheter according to any one of claims 1 to 5, wherein an axial length of the first inclined portion is longer than an axial length of the second inclined portion.
  7.  前記基端開口部の周縁部は、曲面で形成される、請求項1~6のいずれか1項に記載のバルーンカテーテル。 The balloon catheter according to any one of claims 1 to 6, wherein a peripheral edge portion of the proximal end opening is formed with a curved surface.
  8.  外側先端シャフトと、外側基端シャフトと、内側シャフトと、前記内側シャフトの内腔に配置する第1マンドレルと、前記外側先端シャフトの内腔および前記外側基端シャフトの内腔に配置される第2マンドレルと、を供給し、前記第1マンドレルは、第1領域と、前記第1領域の基端側と軸方向に重なりつつ、前記第1領域の基端よりも基端側に延在する第2領域と、を有し、前記第1領域と前記第2領域の間には凹部が形成されており、
     前記外側先端シャフトの内腔に前記内側シャフトを配置し、
     前記内側シャフトの内腔に前記第1マンドレルの第1領域を挿入することにより、前記内側シャフトの基端が前記第1マンドレルの凹部と軸方向に重なるように前記第1マンドレルを配置し、
     前記外側基端シャフトの外表面に前記内側シャフトを沿わせつつ、前記外側先端シャフトの内腔と前記外側基端シャフトの内腔が連なるように前記外側基端シャフトを配置し、
     前記外側先端シャフトの内腔および前記外側基端シャフトの内腔に前記第2マンドレルを挿入し、
     前記外側先端シャフト、前記外側基端シャフト、前記内側シャフト、および前記第1マンドレルの第2領域を覆うように熱収縮チューブを配置し、
     前記熱収縮チューブに熱を付与して収縮させ、前記外側先端シャフト、前記外側基端シャフト、前記内側シャフトを融着しつつ、前記第1マンドレルの凹部に配置された前記内側シャフトの基端に凸部を形成する、ことを含む医療用長尺体の製造方法。
    An outer distal shaft, an outer proximal shaft, an inner shaft, a first mandrel disposed in the lumen of the inner shaft, a lumen disposed in the lumen of the outer distal shaft and a lumen of the outer proximal shaft; The first mandrel extends in the proximal direction from the proximal end of the first region while overlapping the first region and the proximal end side of the first region in the axial direction. A second region, and a recess is formed between the first region and the second region,
    Placing the inner shaft in the lumen of the outer tip shaft;
    By inserting the first region of the first mandrel into the lumen of the inner shaft, the first mandrel is arranged so that the proximal end of the inner shaft overlaps the recess of the first mandrel in the axial direction;
    The outer proximal shaft is arranged so that the lumen of the outer distal shaft and the lumen of the outer proximal shaft are continuous with the inner shaft along the outer surface of the outer proximal shaft,
    Inserting the second mandrel into the lumen of the outer distal shaft and the lumen of the outer proximal shaft;
    A heat-shrinkable tube is disposed to cover the outer distal shaft, the outer proximal shaft, the inner shaft, and the second region of the first mandrel;
    Heat is applied to the heat-shrinkable tube to cause the tube to shrink, and the outer distal shaft, the outer proximal shaft, and the inner shaft are fused to the proximal end of the inner shaft disposed in the recess of the first mandrel. The manufacturing method of the medical elongate body including forming a convex part.
  9.  前記第1マンドレルは、前記外側先端シャフトの基端と前記第1マンドレルの第2領域の先端との間で前記内側シャフトを露出させるように前記内側シャフトに配置し、
     前記内側シャフトにおいて前記第1マンドレルから露出した部分は、前記熱収縮チューブに熱を付与して収縮させる際、前記凸部を形成するように前記内側シャフトの基端側へ流れ込むことによって、前記凸部よりも肉厚が薄い柔軟部を形成する、請求項8に記載の医療用長尺体の製造方法。
    The first mandrel is disposed on the inner shaft so as to expose the inner shaft between a proximal end of the outer distal shaft and a distal end of the second region of the first mandrel;
    The portion exposed from the first mandrel in the inner shaft flows into the proximal end side of the inner shaft so as to form the convex portion when the heat shrinkable tube is contracted by applying heat to the convex portion. The manufacturing method of the medical elongate body of Claim 8 which forms the flexible part whose thickness is thinner than a part.
  10.  前記第1マンドレルの凹部は、前記内側シャフトの基端と対向する部分が湾曲した形状で形成されており、
     前記内側シャフトの基端は、前記凹部により湾曲した形状に形成する、請求項8または請求項9に記載の医療用長尺体の製造方法。
    The concave portion of the first mandrel is formed in a shape in which a portion facing the proximal end of the inner shaft is curved,
    The method for producing a medical elongated body according to claim 8 or 9, wherein a proximal end of the inner shaft is formed in a shape curved by the recess.
PCT/JP2018/012433 2017-03-28 2018-03-27 Balloon catheter and method for manufacturing medical elongated body WO2018181312A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509887A JP6982061B2 (en) 2017-03-28 2018-03-27 How to manufacture balloon catheters and medical long bodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-063765 2017-03-28
JP2017063765 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018181312A1 true WO2018181312A1 (en) 2018-10-04

Family

ID=63676078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012433 WO2018181312A1 (en) 2017-03-28 2018-03-27 Balloon catheter and method for manufacturing medical elongated body

Country Status (2)

Country Link
JP (1) JP6982061B2 (en)
WO (1) WO2018181312A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211308A (en) * 2004-01-29 2005-08-11 Terumo Corp Catheter and manufacturing method thereof
JP2007503869A (en) * 2003-09-02 2007-03-01 ボストン サイエンティフィック リミテッド CATHETER PROVIDED WITH INTEGRATED TIP-SIDE GUIDEWIRE PORT AND MANUFACTURING METHOD
JP2008200317A (en) * 2007-02-21 2008-09-04 Goodman Co Ltd Balloon catheter
JP2010220760A (en) * 2009-03-23 2010-10-07 Nippon Zeon Co Ltd Balloon catheter and method of manufacturing the same
JP2014195487A (en) * 2013-03-29 2014-10-16 日本ライフライン株式会社 Balloon catheter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503869A (en) * 2003-09-02 2007-03-01 ボストン サイエンティフィック リミテッド CATHETER PROVIDED WITH INTEGRATED TIP-SIDE GUIDEWIRE PORT AND MANUFACTURING METHOD
JP2005211308A (en) * 2004-01-29 2005-08-11 Terumo Corp Catheter and manufacturing method thereof
JP2008200317A (en) * 2007-02-21 2008-09-04 Goodman Co Ltd Balloon catheter
JP2010220760A (en) * 2009-03-23 2010-10-07 Nippon Zeon Co Ltd Balloon catheter and method of manufacturing the same
JP2014195487A (en) * 2013-03-29 2014-10-16 日本ライフライン株式会社 Balloon catheter

Also Published As

Publication number Publication date
JPWO2018181312A1 (en) 2020-02-06
JP6982061B2 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
US9199058B2 (en) Multifilar cable catheter
JP6804370B2 (en) Medical long body
EP1824548B1 (en) Multifilar cable catheter
JP6831335B2 (en) Balloon catheters and long medical bodies
JP2009519811A (en) Modular medical catheter
JP5378092B2 (en) Balloon catheter and sheath processing method
JP6931697B2 (en) How to manufacture balloon catheters and medical long bodies
WO2018181312A1 (en) Balloon catheter and method for manufacturing medical elongated body
JP7410990B2 (en) In-vivo indwelling tube
US20220088354A1 (en) Balloon catheter
WO2018135533A1 (en) Balloon catheter
JP2018149082A (en) Medical long body
JP6363922B2 (en) catheter
JP7148308B2 (en) balloon catheter
JP7076044B2 (en) Balloon catheter
JP6769905B2 (en) Medical long body
JP6872969B2 (en) Medical long body
WO2022138813A1 (en) Medical instrument and method for manufacturing medical instrument
JP2018161415A (en) Medical long body
US10850075B2 (en) Balloon catheter and manufacturing method of elongated member for balloon catheter
JP2020156526A (en) Balloon catheter
JP2021053005A (en) Balloon catheter, and manufacturing method of balloon
CN115175724A (en) Medical balloon catheter
JP2019058331A (en) Balloon catheter
WO2019065280A1 (en) Balloon catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777596

Country of ref document: EP

Kind code of ref document: A1