WO2018181089A1 - Electric current sensor - Google Patents

Electric current sensor Download PDF

Info

Publication number
WO2018181089A1
WO2018181089A1 PCT/JP2018/011969 JP2018011969W WO2018181089A1 WO 2018181089 A1 WO2018181089 A1 WO 2018181089A1 JP 2018011969 W JP2018011969 W JP 2018011969W WO 2018181089 A1 WO2018181089 A1 WO 2018181089A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference voltage
power supply
current
oscillation signal
node
Prior art date
Application number
PCT/JP2018/011969
Other languages
French (fr)
Japanese (ja)
Inventor
竜麿 堀
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2018181089A1 publication Critical patent/WO2018181089A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the present invention relates to a current sensor, and more particularly to a current sensor provided with a self-excited oscillation circuit including an H bridge circuit.
  • Patent Document 1 discloses a current sensor including an H bridge circuit.
  • the H-bridge circuit has first and second connection nodes whose polarities are alternately reversed, and is wound around a magnetic core between the first connection node and the second connection node.
  • a detection coil is connected. Since the inductance of the detection coil changes depending on the magnetic permeability of the magnetic core, if the magnetic permeability of the magnetic core changes due to the current flowing through the primary coil, the time required for the magnetic core to saturate changes. Therefore, it is possible to know the amount of current to be measured by detecting the time until the magnetic core is saturated.
  • a method of configuring a self-excited oscillation circuit with an H-bridge circuit and monitoring the frequency and duty of the oscillation signal can be considered.
  • the self-excited oscillation circuit is configured by the H bridge circuit, the output voltage of the H bridge circuit is compared with the reference voltage, and the polarity of the first and second connection nodes is reversed every time the output voltage exceeds the reference voltage. Good.
  • the current detection sensitivity varies greatly depending on the power supply voltage, so that the amount of current cannot be measured correctly when a power supply voltage different from the specification is used or in an environment where the power supply voltage fluctuates. was there.
  • an object of the present invention is to suppress a change in detection sensitivity due to a change in power supply voltage in a current sensor including a self-excited oscillation circuit including an H bridge circuit.
  • a current sensor includes a magnetic core magnetically coupled to a current path, first and second connection nodes whose polarities are alternately inverted based on an oscillation signal, a power supply node to which a power supply voltage is applied, and an output node
  • An H bridge circuit including: a detection coil that is wound around the magnetic core and connected between the first connection node and the second connection node; and a voltage and a reference voltage of the output node.
  • a comparator for comparison; an oscillation signal generation circuit for inverting the oscillation signal based on an output of the comparator; and a reference voltage generation circuit for changing the reference voltage in accordance with the power supply voltage.
  • the reference voltage changes according to the power supply voltage, it is possible to suppress a change in current detection sensitivity due to a change in the power supply voltage.
  • the reference voltage generation circuit preferably makes the power supply voltage and the reference voltage proportional.
  • the reference voltage generation circuit includes a voltage dividing resistor that divides the power supply voltage. According to this, it is possible to make the power supply voltage and the reference voltage proportional with a simple configuration.
  • the voltage dividing resistor may include a variable resistor. This makes it possible to adjust the relationship between the power supply voltage and the reference voltage.
  • the current sensor according to the present invention includes a negative feedback coil that cancels a magnetic flux generated in the magnetic core due to a current flowing through the current path, and a negative feedback current output circuit that flows a negative feedback current to the negative feedback coil based on the oscillation signal. It is preferable to further comprise. According to this, since closed loop control is performed, more accurate measurement can be performed.
  • a change in detection sensitivity due to a change in power supply voltage can be suppressed in a current sensor including a self-excited oscillation circuit including an H bridge circuit.
  • FIG. 1 is a block diagram showing a configuration of a current sensor 100 according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining an example of the positional relationship among the primary coil 10, the magnetic core 20, the detection coil Lp, and the negative feedback coil Lc.
  • FIG. 3 is a circuit diagram of the self-excited oscillation circuit 30.
  • FIG. 4 is a waveform diagram of the oscillation signal Q.
  • FIG. 5 is a graph for explaining the magnetic characteristics of the magnetic core 20 and shows a case where the external magnetic field H ext is zero.
  • FIG. 6 is a graph for explaining the magnetic characteristics of the magnetic core 20 and shows a case where an external magnetic field H ext is present.
  • FIG. 7 is a waveform diagram showing changes in the level Vc of the output node N4.
  • FIG. 8 is a waveform diagram showing changes in the oscillation signal Q and the inverted oscillation signal / Q.
  • FIG. 9 is a graph showing the relationship between the reference voltage Vcmp and the detection sensitivity.
  • FIG. 10 is a graph showing the relationship between the reference voltage Vcmp and the detection sensitivity.
  • FIG. 1 is a block diagram showing a configuration of a current sensor 100 according to an embodiment of the present invention.
  • the current sensor 100 is a device that measures a current Ip flowing in a current path P, and is a magnetic core that is magnetically coupled to a primary coil (bus bar) 10 provided in the current path P. 20, a detection coil Lp wound around the magnetic core 20, and a self-excited oscillation circuit 30 connected to the detection coil Lp.
  • the self-excited oscillation circuit 30 includes an H-bridge circuit, whereby the polarity of the voltage applied to both ends S1, S2 of the detection coil Lp is periodically inverted.
  • the current sensor 100 includes a negative feedback coil Lc, a negative feedback current output circuit 40 that supplies a negative feedback current Io to the negative feedback coil Lc, and a signal that generates a sensor output OUT based on the negative feedback current Io. And an output circuit 50.
  • FIG. 2 is a schematic diagram for explaining an example of the positional relationship among the primary coil 10, the magnetic core 20, the detection coil Lp, and the negative feedback coil Lc.
  • the magnetic core 20 is inserted into the coil axis of the primary coil 10, and the detection coil Lp is wound around the magnetic core 20. Further, a negative feedback coil Lc is disposed in the vicinity of the detection coil Lp, whereby the detection coil Lp and the negative feedback coil Lc are magnetically coupled as indicated by a symbol M.
  • the primary coil 10, the magnetic core 20, the detection coil Lp, and the negative feedback coil Lc are covered with a magnetic shield 70 for shielding an external magnetic field.
  • the magnetic flux B 1 generated thereby flows through the magnetic shield 70, and a part thereof passes through the magnetic core 20.
  • the magnetic permeability of the magnetic core 20 changes, so that the inductance of the detection coil Lp changes.
  • the negative feedback coil Lc is given a negative feedback current Io that cancels the magnetic flux B1 generated in the magnetic core 20 by the current Ip flowing through the primary coil 10.
  • the negative feedback coil Lc generates the magnetic flux B2, and cancels the magnetic flux B1 generated in the magnetic core 20.
  • FIG. 3 is a circuit diagram of the self-excited oscillation circuit 30.
  • the self-excited oscillation circuit 30 is an H-bridge self-excited oscillation circuit, and switches SW1 to SW4, resistors R1 to R3, a comparator 31, a flip-flop circuit 32, and a reference voltage generation circuit. 33 is provided.
  • the switch SW1 and the switch SW3 are connected in series between the power supply node N3 and the output node N4, and the first connection node N1 that is a connection point thereof is connected to one end S1 of the detection coil Lp via the resistor R1. It is connected.
  • the switch SW2 and the switch SW4 are connected in series between the power supply node N3 and the output node N4, and the second connection node N2, which is the connection point, is connected to the detection coil Lp via the resistor R2. Connected to the other end S2. A power supply voltage Vcc is applied to power supply node N3. The output node N4 is grounded via the resistor R3.
  • the non-inverting input terminal (+) of the comparator 31 is connected to the output node N4, and the reference voltage Vcmp is applied to the inverting input terminal ( ⁇ ).
  • the reference voltage Vcmp is generated by the reference voltage generation circuit 33.
  • the reference voltage generation circuit 33 is a voltage dividing resistor including resistors R4 and R5 connected in series between a power supply line to which a power supply voltage Vcc is applied and a power supply line to which a ground potential is applied. For this reason, the level of the reference voltage Vcmp is proportional to the level of the power supply voltage Vcc.
  • the output of the comparator 31 is input to the clock node of the flip-flop circuit 32.
  • the oscillation signal Q output from the flip-flop circuit 32 controls the switches SW1 and SW4, and the inverted oscillation signal / Q controls the switches SW2 and SW3.
  • the inverted oscillation signal / Q is fed back to the data node of the flip-flop circuit 32.
  • the logic levels of the oscillation signal Q and the inverted oscillation signal / Q output from the flip-flop circuit 32 are inverted each time the output of the comparator 31 changes from the low level to the high level.
  • the flip-flop circuit 32 constitutes an oscillation signal generation circuit that generates the oscillation signal Q and the inverted oscillation signal / Q.
  • the switches SW1 and SW4 are turned on and the switches SW2 and SW3 are turned off, the switches SW2 and SW3 are turned on, and the switches SW1 and SW4 are turned off.
  • the second state appears alternately.
  • a current flows from the power supply line to which the power supply voltage Vcc is applied through the switch SW1, the resistor R1, the detection coil Lp, the resistor R2, the switch SW4, and the resistor R3.
  • the level Vc of the output node N4 gradually increases, and when this exceeds the reference voltage Vcmp, the output of the comparator 31 changes from the low level to the high level.
  • the output of the comparator 31 changes to a high level, the logic levels of the oscillation signal Q and the inverted oscillation signal / Q are inverted, and a transition is made to the second state.
  • a current flows from the power supply line to which the power supply voltage Vcc is applied through the switch SW2, the resistor R2, the detection coil Lp, the resistor R1, the switch SW3, and the resistor R3.
  • the level Vc of the output node N4 gradually increases, and when this exceeds the reference voltage Vcmp, the output of the comparator 31 changes from the low level to the high level.
  • the self-excited oscillation circuit 30 alternately enters the first state and the second state.
  • the polarity of the voltage applied to both ends of the detection coil Lp is periodically reversed, so that the waveform of the oscillation signal Q is a waveform that alternately repeats a high level and a low level as shown in FIG.
  • reference numeral T in FIG. 4 shows the oscillation period of the self-oscillation circuit 30
  • reference numeral T 1 represents a period in a first state
  • symbol T 2 denotes a period in the second state.
  • the oscillation period T of the self-excited oscillation circuit 30 and the duty of the oscillation signal Q change depending on the magnetic permeability of the magnetic core 20.
  • this phenomenon will be described in more detail.
  • FIG. 5 and 6 are graphs for explaining the magnetic characteristics of the magnetic core 20.
  • FIG. 5 shows a case where the external magnetic field H ext is zero
  • FIG. 6 shows a case where the external magnetic field H ext exists. ing.
  • the horizontal axis represents the magnetic field strength H
  • the vertical axis represents the magnetic flux density B.
  • the BH curve that appears when the magnetic field applied by the detection coil Lp changes in one direction (Point 1 ⁇ point 2) and the BH curve (point 3 ⁇ point 4) appearing when the magnetic field applied by the detection coil Lp changes in the opposite direction are symmetrical.
  • the point 2 indicates a point where the magnetic flux density B becomes a predetermined value Bth when the magnetic field applied by the detection coil Lp changes in one direction.
  • the point 4 indicates a point where the magnetic flux density B becomes a predetermined value ⁇ B th when the magnetic field applied by the detection coil Lp changes in the reverse direction.
  • the case where the magnetic field applied by the detection coil Lp changes in one direction is a state where a current flows from the terminal S1 to the terminal S2 shown in FIG. 3, that is, the first state.
  • the case where the magnetic field applied by the detection coil Lp changes in the reverse direction is a state where a current flows from the terminal S2 to the terminal S1 shown in FIG. 3, that is, the second state.
  • FIG. 7 is a waveform diagram showing changes in the level Vc of the output node N4
  • FIG. 8 is a waveform diagram showing changes in the oscillation signal Q and the inverted oscillation signal / Q.
  • the solid line indicates the case where the external magnetic field H ext is zero (when the current Ip does not flow in the current path P)
  • the broken line indicates the case where the external magnetic field H ext exists (the current Ip in the current path P). Is shown).
  • the polarity reverses every time the level Vc of the output node N4 reaches the reference voltage Vcmp with the passage of time, and instantaneously drops to ⁇ Vcmp.
  • Level Vcmp corresponds to the value B th in FIG. 5 and FIG. 6, the level of -Vcmp corresponds to a value -B th shown in FIGS.
  • the BH curve is asymmetrical, so that the duty of the oscillation signal Q exceeds 50% (T 1 ′> T 2 ′) as shown in FIG.
  • the period T of the oscillation signal Q is shortened by the decrease in the inductance of the detection coil Lp due to the magnetic saturation of the magnetic core 20. That is, the oscillation frequency of the self-excited oscillation circuit 30 is increased.
  • the oscillation signal Q and the inverted oscillation signal / Q generated by the self-excited oscillation circuit 30 are supplied to the negative feedback current output circuit 40 as shown in FIG.
  • the negative feedback current output circuit 40 monitors the duty or frequency of the oscillation signal Q and the inverted oscillation signal / Q, and generates a negative feedback current Io based on this. For example, the control is performed so that the amount of the negative feedback current Io increases as the duty of the oscillation signal Q and the inverted oscillation signal / Q increases from 50%.
  • the negative feedback current Io is supplied to the negative feedback coil Lc, and generates a magnetic flux B2 that cancels the magnetic flux B1 generated by the primary coil 10. By such closed loop control, the magnetic flux B1 generated by the primary coil 10 is always canceled and the duty of the oscillation signal Q is controlled to be 50%.
  • the negative feedback current Io is converted into a voltage Vd by a resistor R6 connected in series with the negative feedback coil Lc, and the level thereof is detected by the signal output circuit 50.
  • the signal output circuit 50 generates a sensor output OUT based on the voltage Vd and outputs it to the outside.
  • FIG. 9 and 10 are graphs showing the relationship between the reference voltage Vcmp and the detection sensitivity, and the vertical axis indicating the sensitivity indicates the rate of change (% / A) of the sensor output OUT with respect to the current Ip flowing through the primary coil 10.
  • the difference between FIG. 9 and FIG. 10 is the difference in material and shape of the magnetic core 20.
  • the sensitivity of the current sensor 100 varies depending on the reference voltage Vcmp and the power supply voltage Vcc.
  • the reference voltage Vcmp is a constant value
  • the sensitivity is about 4.1% / A and the power supply voltage Vcc is 5. If it is 0V, the sensitivity is about 3.2% / A, and if the power supply voltage Vcc is 5.5V, the sensitivity is about 2.7% / A.
  • the characteristics shown in FIG. 9 when the reference voltage Vcmp is fixed at 500 mV, if the power supply voltage Vcc is 4.5 V, the sensitivity is about 4.1% / A and the power supply voltage Vcc is 5. If it is 0V, the sensitivity is about 3.2% / A, and if the power supply voltage Vcc is 5.5V, the sensitivity is about 2.7% / A.
  • the sensitivity is about 3.4% / A and the power supply voltage Vcc is 5.0 V if the power supply voltage Vcc is 4.5 V. If so, the sensitivity is about 1.9% / A, and if the power supply voltage Vcc is 5.5V, the sensitivity is about 1.4% / A.
  • the sensitivity is about 3.2% / A, and if the power supply voltage Vcc is 5.5V, the reference voltage Vcmp is 550 mV, so the sensitivity is about 3.1% / A, and the reference voltage Vcmp is fixed to 500 mV. It can be seen that the change in sensitivity is significantly suppressed compared to the case.
  • Vcmp Vcc ⁇ 3/25 If the power supply voltage Vcc is 4.5 V, the reference voltage Vcmp is 540 mV, so the sensitivity is about 1.5% / A, and if the power supply voltage Vcc is 5.0 V, the reference voltage Vcmp is 600 mV. Therefore, if the sensitivity is about 1.9% / A and the power supply voltage Vcc is 5.5V, the reference voltage Vcmp is 660 mV, so the sensitivity is about 2.1% / A, and the reference voltage Vcmp is fixed at 600 mV. It can be seen that the change in sensitivity is significantly suppressed compared to the case.
  • the settable reference voltage Vcmp is also low.
  • the upper limit of the reference voltage Vcmp when the power supply voltage Vcc is 4.5V is about 620 mV
  • the upper limit of the reference voltage Vcmp when the power supply voltage Vcc is 5.0V is about 710 mV.
  • the upper limit of the reference voltage Vcmp is about 830 mV. If a reference voltage Vcmp exceeding this is applied, correct oscillation operation cannot be performed. For this reason, when the reference voltage Vcmp is fixed, the level of the reference voltage Vcmp must be set to a certain level in consideration of fluctuations in the power supply voltage Vcc. As a result, it is difficult to obtain high sensitivity.
  • the level of the reference voltage Vcmp changes in proportion to the power supply voltage Vcc, even if the power supply voltage Vcc varies by appropriately setting the voltage dividing ratio of the resistors R4 and R5.
  • the reference voltage Vcmp near the upper limit can always be used. For this reason, it is possible to obtain higher sensitivity than in the case where the reference voltage Vcmp is fixed.
  • the reference voltage Vcmp is generated using the voltage dividing resistor composed of the resistors R4 and R5.
  • the voltage dividing ratio can be made variable by making one of the resistors R4 and R5 a variable resistor. Is also possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

This electric current sensor is provided with: a magnetic core (20) magnetically coupled with an electric current path (P); an H-bridge circuit having first and second connection nodes (N1, N2) alternately inverted in polarity on the basis of an oscillation signal (Q), a power source node (N3) to which a power source voltage (Vcc) is applied, and an output node (N4); a detection coil (Lp) wound on the magnetic core (20) and connected between the first connection node (N1) and the second connection node (N2); a comparator (31) for comparing the voltage (Vc) of the output node (N4) and a reference voltage (Vcmp); a flip-flop circuit (32) for inverting the oscillation signal (Q) on the basis of the output of the comparator (31); and a reference voltage generating circuit (33) for changing the reference voltage (Vcmp) in accordance with the power source voltage (Vcc). Through the present invention, a change in the sensitivity of detection of electric current due to a change in the power source voltage (Vcc) is suppressed.

Description

電流センサCurrent sensor
 本発明は電流センサに関し、特に、Hブリッジ回路を含む自励発振回路を備えた電流センサに関する。 The present invention relates to a current sensor, and more particularly to a current sensor provided with a self-excited oscillation circuit including an H bridge circuit.
 特許文献1には、Hブリッジ回路を含む電流センサが開示されている。Hブリッジ回路は、極性が交互に反転する第1及び第2の接続ノードを有しており、第1の接続ノードと第2の接続ノードとの間には、磁性体コアに巻回された検出コイルが接続される。検出コイルのインダクタンスは磁性体コアの透磁率によって変化するため、一次コイルに電流が流れることによって磁性体コアの透磁率が変化すると、磁性体コアが飽和するのに要する時間が変化する。したがって、磁性体コアが飽和するまでの時間を検出することによって、測定対象である電流の電流量を知ることが可能となる。 Patent Document 1 discloses a current sensor including an H bridge circuit. The H-bridge circuit has first and second connection nodes whose polarities are alternately reversed, and is wound around a magnetic core between the first connection node and the second connection node. A detection coil is connected. Since the inductance of the detection coil changes depending on the magnetic permeability of the magnetic core, if the magnetic permeability of the magnetic core changes due to the current flowing through the primary coil, the time required for the magnetic core to saturate changes. Therefore, it is possible to know the amount of current to be measured by detecting the time until the magnetic core is saturated.
特表2012-526981号公報Special table 2012-526981 gazette
 磁性体コアが飽和するまでの時間を検出する方法として、Hブリッジ回路によって自励発振回路を構成し、発振信号の周波数やデューティをモニタする方法が考えられる。Hブリッジ回路によって自励発振回路を構成する場合、Hブリッジ回路の出力電圧と基準電圧を比較し、出力電圧が基準電圧を超える度に第1及び第2の接続ノードの極性を反転させればよい。 As a method of detecting the time until the magnetic core is saturated, a method of configuring a self-excited oscillation circuit with an H-bridge circuit and monitoring the frequency and duty of the oscillation signal can be considered. When the self-excited oscillation circuit is configured by the H bridge circuit, the output voltage of the H bridge circuit is compared with the reference voltage, and the polarity of the first and second connection nodes is reversed every time the output voltage exceeds the reference voltage. Good.
 しかしながら、この方法では、電源電圧によって電流の検出感度が大きく変化するため、仕様と異なる電源電圧を用いた場合や、電源電圧が変動する環境においては、電流量を正しく測定することができないという問題があった。 However, with this method, the current detection sensitivity varies greatly depending on the power supply voltage, so that the amount of current cannot be measured correctly when a power supply voltage different from the specification is used or in an environment where the power supply voltage fluctuates. was there.
 したがって、本発明は、Hブリッジ回路を含む自励発振回路を備えた電流センサにおいて、電源電圧の変化による検出感度の変化を抑制することを目的とする。 Therefore, an object of the present invention is to suppress a change in detection sensitivity due to a change in power supply voltage in a current sensor including a self-excited oscillation circuit including an H bridge circuit.
 本発明による電流センサは、電流経路と磁気結合する磁性体コアと、発振信号に基づいて極性が交互に反転する第1及び第2の接続ノードと、電源電圧が与えられる電源ノードと、出力ノードとを有するHブリッジ回路と、前記磁性体コアに巻回され、前記第1の接続ノードと前記第2の接続ノードとの間に接続された検出コイルと、前記出力ノードの電圧と基準電圧を比較するコンパレータと、前記コンパレータの出力に基づいて前記発振信号を反転させる発振信号生成回路と、前記電源電圧に応じて前記基準電圧を変化させる基準電圧生成回路と、を備えることを特徴とする。 A current sensor according to the present invention includes a magnetic core magnetically coupled to a current path, first and second connection nodes whose polarities are alternately inverted based on an oscillation signal, a power supply node to which a power supply voltage is applied, and an output node An H bridge circuit including: a detection coil that is wound around the magnetic core and connected between the first connection node and the second connection node; and a voltage and a reference voltage of the output node. A comparator for comparison; an oscillation signal generation circuit for inverting the oscillation signal based on an output of the comparator; and a reference voltage generation circuit for changing the reference voltage in accordance with the power supply voltage.
 本発明によれば、電源電圧に応じて基準電圧が変化することから、電源電圧の変化による電流の検出感度の変化を抑制することが可能となる。 According to the present invention, since the reference voltage changes according to the power supply voltage, it is possible to suppress a change in current detection sensitivity due to a change in the power supply voltage.
 本発明において、前記基準電圧生成回路は、前記電源電圧と前記基準電圧を比例させることが好ましい。この場合、前記基準電圧生成回路は、前記電源電圧を分圧する分圧抵抗を含むことが好ましい。これによれば、簡単な構成によって電源電圧と基準電圧を比例させることが可能となる。さらにこの場合、前記分圧抵抗は可変抵抗を含んでいても構わない。これによれば、電源電圧と基準電圧との関係を調整することが可能となる。 In the present invention, the reference voltage generation circuit preferably makes the power supply voltage and the reference voltage proportional. In this case, it is preferable that the reference voltage generation circuit includes a voltage dividing resistor that divides the power supply voltage. According to this, it is possible to make the power supply voltage and the reference voltage proportional with a simple configuration. Furthermore, in this case, the voltage dividing resistor may include a variable resistor. This makes it possible to adjust the relationship between the power supply voltage and the reference voltage.
 本発明による電流センサは、前記電流経路に流れる電流によって前記磁性体コアに生じる磁束を打ち消す負帰還コイルと、前記発振信号に基づいて前記負帰還コイルに負帰還電流を流す負帰還電流出力回路とをさらに備えることが好ましい。これによれば、クローズドループ制御が行われることから、より正確な測定を行うことが可能となる。 The current sensor according to the present invention includes a negative feedback coil that cancels a magnetic flux generated in the magnetic core due to a current flowing through the current path, and a negative feedback current output circuit that flows a negative feedback current to the negative feedback coil based on the oscillation signal. It is preferable to further comprise. According to this, since closed loop control is performed, more accurate measurement can be performed.
 以上説明したように、本発明によれば、Hブリッジ回路を含む自励発振回路を備えた電流センサにおいて、電源電圧の変化による検出感度の変化を抑制することが可能となる。 As described above, according to the present invention, a change in detection sensitivity due to a change in power supply voltage can be suppressed in a current sensor including a self-excited oscillation circuit including an H bridge circuit.
図1は、本発明の実施形態による電流センサ100の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a current sensor 100 according to an embodiment of the present invention. 図2は、一次コイル10、磁性体コア20、検出コイルLp及び負帰還コイルLcの位置関係の一例を説明するための模式図である。FIG. 2 is a schematic diagram for explaining an example of the positional relationship among the primary coil 10, the magnetic core 20, the detection coil Lp, and the negative feedback coil Lc. 図3は、自励発振回路30の回路図である。FIG. 3 is a circuit diagram of the self-excited oscillation circuit 30. 図4は、発振信号Qの波形図である。FIG. 4 is a waveform diagram of the oscillation signal Q. 図5は、磁性体コア20の磁気特性を説明するためのグラフであり、外部磁場Hextがゼロである場合を示している。FIG. 5 is a graph for explaining the magnetic characteristics of the magnetic core 20 and shows a case where the external magnetic field H ext is zero. 図6は、磁性体コア20の磁気特性を説明するためのグラフであり、外部磁場Hextが存在する場合を示している。FIG. 6 is a graph for explaining the magnetic characteristics of the magnetic core 20 and shows a case where an external magnetic field H ext is present. 図7は、出力ノードN4のレベルVcの変化を示す波形図である。FIG. 7 is a waveform diagram showing changes in the level Vc of the output node N4. 図8は、発振信号Q及び反転発振信号/Qの変化を示す波形図である。FIG. 8 is a waveform diagram showing changes in the oscillation signal Q and the inverted oscillation signal / Q. 図9は、基準電圧Vcmpと検出感度の関係を示すグラフである。FIG. 9 is a graph showing the relationship between the reference voltage Vcmp and the detection sensitivity. 図10は、基準電圧Vcmpと検出感度の関係を示すグラフである。FIG. 10 is a graph showing the relationship between the reference voltage Vcmp and the detection sensitivity.
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明の実施形態による電流センサ100の構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of a current sensor 100 according to an embodiment of the present invention.
 図1に示すように、本実施形態による電流センサ100は、電流経路Pに流れる電流Ipを測定する装置であり、電流経路Pに設けられた一次コイル(バスバー)10と磁気結合する磁性体コア20と、磁性体コア20に巻回された検出コイルLpと、検出コイルLpに接続された自励発振回路30とを備える。後述するように、自励発振回路30はHブリッジ回路を含んでおり、これにより検出コイルLpの両端S1,S2に印加される電圧の極性が周期的に反転する。 As shown in FIG. 1, the current sensor 100 according to the present embodiment is a device that measures a current Ip flowing in a current path P, and is a magnetic core that is magnetically coupled to a primary coil (bus bar) 10 provided in the current path P. 20, a detection coil Lp wound around the magnetic core 20, and a self-excited oscillation circuit 30 connected to the detection coil Lp. As will be described later, the self-excited oscillation circuit 30 includes an H-bridge circuit, whereby the polarity of the voltage applied to both ends S1, S2 of the detection coil Lp is periodically inverted.
 さらに、本実施形態による電流センサ100は、負帰還コイルLcと、負帰還コイルLcに負帰還電流Ioを流す負帰還電流出力回路40と、負帰還電流Ioに基づいてセンサ出力OUTを生成する信号出力回路50とを備えている。 Furthermore, the current sensor 100 according to the present embodiment includes a negative feedback coil Lc, a negative feedback current output circuit 40 that supplies a negative feedback current Io to the negative feedback coil Lc, and a signal that generates a sensor output OUT based on the negative feedback current Io. And an output circuit 50.
 図2は、一次コイル10、磁性体コア20、検出コイルLp及び負帰還コイルLcの位置関係の一例を説明するための模式図である。 FIG. 2 is a schematic diagram for explaining an example of the positional relationship among the primary coil 10, the magnetic core 20, the detection coil Lp, and the negative feedback coil Lc.
 図2に示す例では、磁性体コア20が一次コイル10のコイル軸に挿入されており、さらに、磁性体コア20の周囲に検出コイルLpが巻回された構成を有している。さらに、検出コイルLpの近傍には負帰還コイルLcが配置されており、これにより検出コイルLpと負帰還コイルLcは符号Mで示すように磁気結合している。また、一次コイル10、磁性体コア20、検出コイルLp及び負帰還コイルLcは、外部磁場を遮るための磁気シールド70によって覆われている。 In the example shown in FIG. 2, the magnetic core 20 is inserted into the coil axis of the primary coil 10, and the detection coil Lp is wound around the magnetic core 20. Further, a negative feedback coil Lc is disposed in the vicinity of the detection coil Lp, whereby the detection coil Lp and the negative feedback coil Lc are magnetically coupled as indicated by a symbol M. The primary coil 10, the magnetic core 20, the detection coil Lp, and the negative feedback coil Lc are covered with a magnetic shield 70 for shielding an external magnetic field.
 そして、一次コイル10に電流Ipが流れると、これによって生じる磁束B1が磁気シールド70に流れ、その一部が磁性体コア20を通過する。これによって磁性体コア20の透磁率が変化するため、検出コイルLpのインダクタンスが変化する。一方、負帰還コイルLcには、一次コイル10に流れる電流Ipによって磁性体コア20に生じる磁束B1を打ち消す負帰還電流Ioが与えられる。これにより、負帰還コイルLcは磁束B2を発生させ、磁性体コア20に生じている磁束B1を打ち消す。 When the current Ip flows through the primary coil 10, the magnetic flux B 1 generated thereby flows through the magnetic shield 70, and a part thereof passes through the magnetic core 20. As a result, the magnetic permeability of the magnetic core 20 changes, so that the inductance of the detection coil Lp changes. On the other hand, the negative feedback coil Lc is given a negative feedback current Io that cancels the magnetic flux B1 generated in the magnetic core 20 by the current Ip flowing through the primary coil 10. Thereby, the negative feedback coil Lc generates the magnetic flux B2, and cancels the magnetic flux B1 generated in the magnetic core 20.
 図3は、自励発振回路30の回路図である。 FIG. 3 is a circuit diagram of the self-excited oscillation circuit 30.
 図3に示すように、自励発振回路30はHブリッジ型の自励発振回路であり、スイッチSW1~SW4と、抵抗R1~R3と、コンパレータ31と、フリップフロップ回路32と、基準電圧生成回路33を備えている。スイッチSW1とスイッチSW3は、電源ノードN3と出力ノードN4との間に直列に接続されており、その接続点である第1の接続ノードN1は、抵抗R1を介して検出コイルLpの一端S1に接続されている。同様に、スイッチSW2とスイッチSW4は、電源ノードN3と出力ノードN4との間に直列に接続されており、その接続点である第2の接続ノードN2は、抵抗R2を介して検出コイルLpの他端S2に接続されている。電源ノードN3には電源電圧Vccが与えられる。また、出力ノードN4は抵抗R3を介して接地される。 As shown in FIG. 3, the self-excited oscillation circuit 30 is an H-bridge self-excited oscillation circuit, and switches SW1 to SW4, resistors R1 to R3, a comparator 31, a flip-flop circuit 32, and a reference voltage generation circuit. 33 is provided. The switch SW1 and the switch SW3 are connected in series between the power supply node N3 and the output node N4, and the first connection node N1 that is a connection point thereof is connected to one end S1 of the detection coil Lp via the resistor R1. It is connected. Similarly, the switch SW2 and the switch SW4 are connected in series between the power supply node N3 and the output node N4, and the second connection node N2, which is the connection point, is connected to the detection coil Lp via the resistor R2. Connected to the other end S2. A power supply voltage Vcc is applied to power supply node N3. The output node N4 is grounded via the resistor R3.
 コンパレータ31の非反転入力端子(+)は出力ノードN4に接続され、反転入力端子(-)には基準電圧Vcmpが印加される。これにより、出力ノードN4のレベルVcが基準電圧Vcmpを超えると、コンパレータ31の出力はハイレベルに変化する。基準電圧Vcmpは、基準電圧生成回路33によって生成される。基準電圧生成回路33は、電源電圧Vccが与えられる電源ラインと接地電位が与えられる電源ラインとの間に直列に接続された抵抗R4,R5からなる分圧抵抗である。このため、基準電圧Vcmpのレベルは、電源電圧Vccのレベルと比例することになる。 The non-inverting input terminal (+) of the comparator 31 is connected to the output node N4, and the reference voltage Vcmp is applied to the inverting input terminal (−). Thereby, when the level Vc of the output node N4 exceeds the reference voltage Vcmp, the output of the comparator 31 changes to a high level. The reference voltage Vcmp is generated by the reference voltage generation circuit 33. The reference voltage generation circuit 33 is a voltage dividing resistor including resistors R4 and R5 connected in series between a power supply line to which a power supply voltage Vcc is applied and a power supply line to which a ground potential is applied. For this reason, the level of the reference voltage Vcmp is proportional to the level of the power supply voltage Vcc.
 コンパレータ31の出力は、フリップフロップ回路32のクロックノードに入力される。フリップフロップ回路32から出力される発振信号QはスイッチSW1,SW4を制御し、反転発振信号/QはスイッチSW2,SW3を制御する。また、反転発振信号/Qは、フリップフロップ回路32のデータノードにフィードバックされる。これにより、フリップフロップ回路32から出力される発振信号Q及び反転発振信号/Qの論理レベルは、コンパレータ31の出力がローレベルからハイレベルに変化する度に反転することになる。このように、フリップフロップ回路32は、発振信号Q及び反転発振信号/Qを生成する発振信号生成回路を構成する。但し、本発明において発振信号生成回路をフリップフロップ回路によって構成することは必須でない。 The output of the comparator 31 is input to the clock node of the flip-flop circuit 32. The oscillation signal Q output from the flip-flop circuit 32 controls the switches SW1 and SW4, and the inverted oscillation signal / Q controls the switches SW2 and SW3. The inverted oscillation signal / Q is fed back to the data node of the flip-flop circuit 32. As a result, the logic levels of the oscillation signal Q and the inverted oscillation signal / Q output from the flip-flop circuit 32 are inverted each time the output of the comparator 31 changes from the low level to the high level. Thus, the flip-flop circuit 32 constitutes an oscillation signal generation circuit that generates the oscillation signal Q and the inverted oscillation signal / Q. However, in the present invention, it is not essential to configure the oscillation signal generation circuit by a flip-flop circuit.
 図3に示す自励発振回路30に電源投入すると、スイッチSW1,SW4がオンし、スイッチSW2,SW3がオフする第1の状態と、スイッチSW2,SW3がオンし、スイッチSW1,SW4がオフする第2の状態が交互に現れる。第1の状態においては、電源電圧Vccが与えられる電源ラインから、スイッチSW1、抵抗R1、検出コイルLp、抵抗R2、スイッチSW4、抵抗R3を介して電流が流れる。これにより、出力ノードN4のレベルVcが徐々に上昇し、これが基準電圧Vcmpを超えると、コンパレータ31の出力がローレベルからハイレベルに変化する。 When the self-excited oscillation circuit 30 shown in FIG. 3 is turned on, the switches SW1 and SW4 are turned on and the switches SW2 and SW3 are turned off, the switches SW2 and SW3 are turned on, and the switches SW1 and SW4 are turned off. The second state appears alternately. In the first state, a current flows from the power supply line to which the power supply voltage Vcc is applied through the switch SW1, the resistor R1, the detection coil Lp, the resistor R2, the switch SW4, and the resistor R3. As a result, the level Vc of the output node N4 gradually increases, and when this exceeds the reference voltage Vcmp, the output of the comparator 31 changes from the low level to the high level.
 コンパレータ31の出力がハイレベルに変化すると、発振信号Q及び反転発振信号/Qの論理レベルが反転し、第2の状態に遷移する。第2の状態においては、電源電圧Vccが与えられる電源ラインから、スイッチSW2、抵抗R2、検出コイルLp、抵抗R1、スイッチSW3、抵抗R3を介して電流が流れる。これにより、出力ノードN4のレベルVcが徐々に上昇し、これが基準電圧Vcmpを超えると、コンパレータ31の出力がローレベルからハイレベルに変化する。 When the output of the comparator 31 changes to a high level, the logic levels of the oscillation signal Q and the inverted oscillation signal / Q are inverted, and a transition is made to the second state. In the second state, a current flows from the power supply line to which the power supply voltage Vcc is applied through the switch SW2, the resistor R2, the detection coil Lp, the resistor R1, the switch SW3, and the resistor R3. As a result, the level Vc of the output node N4 gradually increases, and when this exceeds the reference voltage Vcmp, the output of the comparator 31 changes from the low level to the high level.
 このような動作を繰り返すことによって、自励発振回路30は交互に第1の状態と第2の状態となる。これにより、検出コイルLpの両端に印加される電圧の極性が周期的に反転することから、発振信号Qの波形は、図4に示すようにハイレベルとローレベルを交互に繰り返す波形となる。ここで、図4に示す符号Tは自励発振回路30の発振周期を示し、符号Tは第1の状態である期間を示し、符号Tは第2の状態である期間を示す。そして、自励発振回路30の発振周期Tや発振信号Qのデューティは、磁性体コア20の透磁率によって変化する。以下、この現象についてより詳細に説明する。 By repeating such an operation, the self-excited oscillation circuit 30 alternately enters the first state and the second state. As a result, the polarity of the voltage applied to both ends of the detection coil Lp is periodically reversed, so that the waveform of the oscillation signal Q is a waveform that alternately repeats a high level and a low level as shown in FIG. Here, reference numeral T in FIG. 4 shows the oscillation period of the self-oscillation circuit 30, reference numeral T 1 represents a period in a first state, symbol T 2 denotes a period in the second state. The oscillation period T of the self-excited oscillation circuit 30 and the duty of the oscillation signal Q change depending on the magnetic permeability of the magnetic core 20. Hereinafter, this phenomenon will be described in more detail.
 図5及び図6は磁性体コア20の磁気特性を説明するためのグラフであり、図5は外部磁場Hextがゼロである場合を示し、図6は外部磁場Hextが存在する場合を示している。いずれも、横軸は磁界強度Hであり、縦軸は磁束密度Bである。 5 and 6 are graphs for explaining the magnetic characteristics of the magnetic core 20. FIG. 5 shows a case where the external magnetic field H ext is zero, and FIG. 6 shows a case where the external magnetic field H ext exists. ing. In either case, the horizontal axis represents the magnetic field strength H, and the vertical axis represents the magnetic flux density B.
 図5に示すように、外部磁場Hextがゼロである場合(電流経路Pに電流Ipが流れていない場合)は、検出コイルLpによって与えられる磁場が一方向に変化する場合に現れるBH曲線(ポイント1→ポイント2)と、検出コイルLpによって与えられる磁場が逆方向に変化する場合に現れるBH曲線(ポイント3→ポイント4)は対称形となる。ここで、ポイント2は、検出コイルLpによって与えられる磁場が一方向に変化する場合において、磁束密度Bが所定の値Bthとなる点を指す。同様に、ポイント4は、検出コイルLpによって与えられる磁場が逆方向に変化する場合において、磁束密度Bが所定の値-Bthとなる点を指す。 As shown in FIG. 5, when the external magnetic field H ext is zero (when the current Ip does not flow in the current path P), the BH curve that appears when the magnetic field applied by the detection coil Lp changes in one direction ( Point 1 → point 2) and the BH curve (point 3 → point 4) appearing when the magnetic field applied by the detection coil Lp changes in the opposite direction are symmetrical. Here, the point 2 indicates a point where the magnetic flux density B becomes a predetermined value Bth when the magnetic field applied by the detection coil Lp changes in one direction. Similarly, the point 4 indicates a point where the magnetic flux density B becomes a predetermined value −B th when the magnetic field applied by the detection coil Lp changes in the reverse direction.
 検出コイルLpによって与えられる磁場が一方向に変化する場合とは、図3に示す端子S1から端子S2に電流が流れる状態、つまり第1の状態である。一方、検出コイルLpによって与えられる磁場が逆方向に変化する場合とは、図3に示す端子S2から端子S1に電流が流れる状態、つまり第2の状態である。そして、外部磁場Hextがゼロである場合(電流経路Pに電流Ipが流れていない場合)には、BH曲線が対称形であることから、発振信号Qのデューティは50%となる。 The case where the magnetic field applied by the detection coil Lp changes in one direction is a state where a current flows from the terminal S1 to the terminal S2 shown in FIG. 3, that is, the first state. On the other hand, the case where the magnetic field applied by the detection coil Lp changes in the reverse direction is a state where a current flows from the terminal S2 to the terminal S1 shown in FIG. 3, that is, the second state. When the external magnetic field H ext is zero (when the current Ip does not flow in the current path P), the duty of the oscillation signal Q is 50% because the BH curve is symmetrical.
 これに対し、外部磁場Hextが存在する場合(電流経路Pに電流Ipが流れている場合)には、図6に示すように、外部磁場Hextの強度分だけBH曲線がシフトする。その結果、検出コイルLpによって与えられる磁場が一方向に変化する場合に現れるBH曲線(ポイント1→ポイント2)と、検出コイルLpによって与えられる磁場が逆方向に変化する場合に現れるBH曲線(ポイント3→ポイント4)は非対称となる。このため、発振信号Qのデューティは50%から外れる。 On the other hand, when the external magnetic field H ext exists (when the current Ip flows in the current path P), the BH curve is shifted by the intensity of the external magnetic field H ext as shown in FIG. As a result, a BH curve (point 1 → point 2) that appears when the magnetic field applied by the detection coil Lp changes in one direction and a BH curve (point that appears when the magnetic field applied by the detection coil Lp changes in the opposite direction are shown. 3 → Point 4) is asymmetric. For this reason, the duty of the oscillation signal Q deviates from 50%.
 図7は出力ノードN4のレベルVcの変化を示す波形図であり、図8は発振信号Q及び反転発振信号/Qの変化を示す波形図である。いずれの図においても、実線は外部磁場Hextがゼロである場合(電流経路Pに電流Ipが流れていない場合)を示し、破線は外部磁場Hextが存在する場合(電流経路Pに電流Ipが流れている場合)を示している。 FIG. 7 is a waveform diagram showing changes in the level Vc of the output node N4, and FIG. 8 is a waveform diagram showing changes in the oscillation signal Q and the inverted oscillation signal / Q. In both figures, the solid line indicates the case where the external magnetic field H ext is zero (when the current Ip does not flow in the current path P), and the broken line indicates the case where the external magnetic field H ext exists (the current Ip in the current path P). Is shown).
 図7に示すように、いずれの場合も、時間の経過に伴って出力ノードN4のレベルVcが基準電圧Vcmpに達する度に極性が反転し、瞬間的に-Vcmpまで低下する。Vcmpのレベルは図5及び図6に示す値Bthに対応し、-Vcmpのレベルは図5及び図6に示す値-Bthに対応する。そして、外部磁場Hextがゼロである場合はBH曲線が対称形であることから、図8に示すように、発振信号Qのデューティは50%となる(T=T)。これに対し、外部磁場Hextが存在する場合はBH曲線が非対称形であることから、図8に示すように、発振信号Qのデューティは50%超となる(T'>T')とともに、磁性体コア20の磁気飽和による検出コイルLpのインダクタンスの低下によって、発振信号Qの周期Tが短くなる。つまり、自励発振回路30の発振周波数が高くなる。 As shown in FIG. 7, in any case, the polarity reverses every time the level Vc of the output node N4 reaches the reference voltage Vcmp with the passage of time, and instantaneously drops to −Vcmp. Level Vcmp corresponds to the value B th in FIG. 5 and FIG. 6, the level of -Vcmp corresponds to a value -B th shown in FIGS. When the external magnetic field H ext is zero, since the BH curve is symmetrical, the duty of the oscillation signal Q is 50% (T 1 = T 2 ) as shown in FIG. On the other hand, when the external magnetic field H ext is present, the BH curve is asymmetrical, so that the duty of the oscillation signal Q exceeds 50% (T 1 ′> T 2 ′) as shown in FIG. At the same time, the period T of the oscillation signal Q is shortened by the decrease in the inductance of the detection coil Lp due to the magnetic saturation of the magnetic core 20. That is, the oscillation frequency of the self-excited oscillation circuit 30 is increased.
 自励発振回路30によって生成される発振信号Q及び反転発振信号/Qは、図1に示すように、負帰還電流出力回路40に供給される。負帰還電流出力回路40は、発振信号Q及び反転発振信号/Qのデューティ又は周波数をモニタし、これに基づいて負帰還電流Ioを生成する。例えば、発振信号Q及び反転発振信号/Qのデューティが50%から離れるほど、負帰還電流Ioの量が増大するよう制御する。負帰還電流Ioは負帰還コイルLcに供給され、一次コイル10によって生じる磁束B1を打ち消す磁束B2を生成する。このようなクローズドループ制御により、一次コイル10によって生じる磁束B1は常に打ち消され、発振信号Qのデューティが50%となるよう制御される。 The oscillation signal Q and the inverted oscillation signal / Q generated by the self-excited oscillation circuit 30 are supplied to the negative feedback current output circuit 40 as shown in FIG. The negative feedback current output circuit 40 monitors the duty or frequency of the oscillation signal Q and the inverted oscillation signal / Q, and generates a negative feedback current Io based on this. For example, the control is performed so that the amount of the negative feedback current Io increases as the duty of the oscillation signal Q and the inverted oscillation signal / Q increases from 50%. The negative feedback current Io is supplied to the negative feedback coil Lc, and generates a magnetic flux B2 that cancels the magnetic flux B1 generated by the primary coil 10. By such closed loop control, the magnetic flux B1 generated by the primary coil 10 is always canceled and the duty of the oscillation signal Q is controlled to be 50%.
 負帰還電流Ioは、負帰還コイルLcに対して直列に接続された抵抗R6によって電圧Vdに変換され、そのレベルが信号出力回路50によって検出される。信号出力回路50は、電圧Vdに基づいてセンサ出力OUTを生成し、これを外部に出力する。 The negative feedback current Io is converted into a voltage Vd by a resistor R6 connected in series with the negative feedback coil Lc, and the level thereof is detected by the signal output circuit 50. The signal output circuit 50 generates a sensor output OUT based on the voltage Vd and outputs it to the outside.
 図9及び図10は基準電圧Vcmpと検出感度の関係を示すグラフであり、感度を示す縦軸は、一次コイル10に流れる電流Ipに対するセンサ出力OUTの変化率(%/A)を示す。また、図9と図10の違いは磁性体コア20の材料及び形状の違いである。 9 and 10 are graphs showing the relationship between the reference voltage Vcmp and the detection sensitivity, and the vertical axis indicating the sensitivity indicates the rate of change (% / A) of the sensor output OUT with respect to the current Ip flowing through the primary coil 10. The difference between FIG. 9 and FIG. 10 is the difference in material and shape of the magnetic core 20.
 図9及び図10に示すように、電流センサ100の感度は、基準電圧Vcmp及び電源電圧Vccによって変化することが分かる。ここで、仮に基準電圧Vcmpが一定値であるとすると、電源電圧Vccが変動した場合、これに伴って感度が大きく変化する。一例として、図9に示す特性であれば、基準電圧Vcmpが500mVに固定されている場合、電源電圧Vccが4.5Vであれば感度は約4.1%/A、電源電圧Vccが5.0Vであれば感度は約3.2%/A、電源電圧Vccが5.5Vであれば感度は約2.7%/Aとなる。また、図10に示す特性であれば、基準電圧Vcmpが600mVに固定されている場合、電源電圧Vccが4.5Vであれば感度は約3.4%/A、電源電圧Vccが5.0Vであれば感度は約1.9%/A、電源電圧Vccが5.5Vであれば感度は約1.4%/Aとなる。 9 and 10, it can be seen that the sensitivity of the current sensor 100 varies depending on the reference voltage Vcmp and the power supply voltage Vcc. Here, assuming that the reference voltage Vcmp is a constant value, when the power supply voltage Vcc fluctuates, the sensitivity greatly changes accordingly. As an example, in the case of the characteristics shown in FIG. 9, when the reference voltage Vcmp is fixed at 500 mV, if the power supply voltage Vcc is 4.5 V, the sensitivity is about 4.1% / A and the power supply voltage Vcc is 5. If it is 0V, the sensitivity is about 3.2% / A, and if the power supply voltage Vcc is 5.5V, the sensitivity is about 2.7% / A. In the case of the characteristics shown in FIG. 10, when the reference voltage Vcmp is fixed at 600 mV, the sensitivity is about 3.4% / A and the power supply voltage Vcc is 5.0 V if the power supply voltage Vcc is 4.5 V. If so, the sensitivity is about 1.9% / A, and if the power supply voltage Vcc is 5.5V, the sensitivity is about 1.4% / A.
 しかしながら、本実施形態による電流センサ100は、電源電圧Vccを分圧することによって基準電圧Vcmpを生成していることから、基準電圧Vcmpのレベルは固定されておらず、電源電圧Vccに比例して変化する。その結果、電源電圧Vccが変動しても、これに伴う感度の変化が抑制される。一例として、図9に示す特性であれば、
  Vcmp=Vcc×1/10
に設定すると、電源電圧Vccが4.5Vであれば基準電圧Vcmpが450mVとなることから感度は約3.4%/A、電源電圧Vccが5.0Vであれば基準電圧Vcmpが500mVとなることから感度は約3.2%/A、電源電圧Vccが5.5Vであれば基準電圧Vcmpが550mVとなることから感度は約3.1%/Aとなり、基準電圧Vcmpを500mVに固定した場合と比べて感度の変化が大幅に抑制されることが分かる。
However, since the current sensor 100 according to the present embodiment generates the reference voltage Vcmp by dividing the power supply voltage Vcc, the level of the reference voltage Vcmp is not fixed and changes in proportion to the power supply voltage Vcc. To do. As a result, even if the power supply voltage Vcc fluctuates, a change in sensitivity associated therewith is suppressed. As an example, if the characteristics shown in FIG.
Vcmp = Vcc × 1/10
If the power supply voltage Vcc is 4.5 V, the reference voltage Vcmp is 450 mV, so the sensitivity is about 3.4% / A, and if the power supply voltage Vcc is 5.0 V, the reference voltage Vcmp is 500 mV. Therefore, the sensitivity is about 3.2% / A, and if the power supply voltage Vcc is 5.5V, the reference voltage Vcmp is 550 mV, so the sensitivity is about 3.1% / A, and the reference voltage Vcmp is fixed to 500 mV. It can be seen that the change in sensitivity is significantly suppressed compared to the case.
 同様に、図10に示す特性であれば、
  Vcmp=Vcc×3/25
に設定すると、電源電圧Vccが4.5Vであれば基準電圧Vcmpが540mVとなることから感度は約1.5%/A、電源電圧Vccが5.0Vであれば基準電圧Vcmpが600mVとなることから感度は約1.9%/A、電源電圧Vccが5.5Vであれば基準電圧Vcmpが660mVとなることから感度は約2.1%/Aとなり、基準電圧Vcmpを600mVに固定した場合と比べて感度の変化が大幅に抑制されることが分かる。
Similarly, if the characteristics shown in FIG.
Vcmp = Vcc × 3/25
If the power supply voltage Vcc is 4.5 V, the reference voltage Vcmp is 540 mV, so the sensitivity is about 1.5% / A, and if the power supply voltage Vcc is 5.0 V, the reference voltage Vcmp is 600 mV. Therefore, if the sensitivity is about 1.9% / A and the power supply voltage Vcc is 5.5V, the reference voltage Vcmp is 660 mV, so the sensitivity is about 2.1% / A, and the reference voltage Vcmp is fixed at 600 mV. It can be seen that the change in sensitivity is significantly suppressed compared to the case.
 また、基準電圧Vcmpが高いほど電流センサ100の感度も高くなる傾向があるが、図9及び図10に示すように、電源電圧Vccが低いと、設定可能な基準電圧Vcmpも低くなってしまう。例えば、図9に示す特性であれば、電源電圧Vccが4.5Vである場合における基準電圧Vcmpの上限は約620mV、電源電圧Vccが5.0Vである場合における基準電圧Vcmpの上限は約710mV、電源電圧Vccが5.5Vである場合における基準電圧Vcmpの上限は約830mVであり、これを超える基準電圧Vcmpを与えると正しい発振動作が行われなくなる。このため、基準電圧Vcmpを固定する場合は、電源電圧Vccの変動などを考慮して、基準電圧Vcmpのレベルをある程度低めに設定せざるを得ない。その結果、高い感度を得ることが困難となる。 The higher the reference voltage Vcmp, the higher the sensitivity of the current sensor 100 tends to be. However, as shown in FIGS. 9 and 10, when the power supply voltage Vcc is low, the settable reference voltage Vcmp is also low. For example, with the characteristics shown in FIG. 9, the upper limit of the reference voltage Vcmp when the power supply voltage Vcc is 4.5V is about 620 mV, and the upper limit of the reference voltage Vcmp when the power supply voltage Vcc is 5.0V is about 710 mV. When the power supply voltage Vcc is 5.5V, the upper limit of the reference voltage Vcmp is about 830 mV. If a reference voltage Vcmp exceeding this is applied, correct oscillation operation cannot be performed. For this reason, when the reference voltage Vcmp is fixed, the level of the reference voltage Vcmp must be set to a certain level in consideration of fluctuations in the power supply voltage Vcc. As a result, it is difficult to obtain high sensitivity.
 しかしながら、本実施形態においては、電源電圧Vccに比例して基準電圧Vcmpのレベルが変化することから、抵抗R4,R5の分圧比を適切に設定することにより、電源電圧Vccが変動しても、常に上限近傍の基準電圧Vcmpを用いることができる。このため、基準電圧Vcmpを固定する場合と比べ、より高い感度を得ることが可能となる。 However, in this embodiment, since the level of the reference voltage Vcmp changes in proportion to the power supply voltage Vcc, even if the power supply voltage Vcc varies by appropriately setting the voltage dividing ratio of the resistors R4 and R5. The reference voltage Vcmp near the upper limit can always be used. For this reason, it is possible to obtain higher sensitivity than in the case where the reference voltage Vcmp is fixed.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, it is included in the range.
 例えば、上記実施形態では、抵抗R4,R5からなる分圧抵抗を用いて基準電圧Vcmpを生成しているが、抵抗R4,R5の一方を可変抵抗とすることにより、分圧比を可変とすることも可能である。 For example, in the above embodiment, the reference voltage Vcmp is generated using the voltage dividing resistor composed of the resistors R4 and R5. However, the voltage dividing ratio can be made variable by making one of the resistors R4 and R5 a variable resistor. Is also possible.
10  一次コイル
20  磁性体コア
30  自励発振回路
31  コンパレータ
32  フリップフロップ回路(発振信号生成回路)
33  基準電圧生成回路
40  負帰還電流出力回路
50  信号出力回路
70  磁気シールド
100  電流センサ
Lc  負帰還コイル
Lp  検出コイル
N1  第1の接続ノード
N2  第2の接続ノード
N3  電源ノード
N4  出力ノード
P  電流経路
R1~R6  抵抗
SW1~SW4  スイッチ
10 Primary coil 20 Magnetic core 30 Self-excited oscillation circuit 31 Comparator 32 Flip-flop circuit (oscillation signal generation circuit)
33 Reference Voltage Generation Circuit 40 Negative Feedback Current Output Circuit 50 Signal Output Circuit 70 Magnetic Shield 100 Current Sensor Lc Negative Feedback Coil Lp Detection Coil N1 First Connection Node N2 Second Connection Node N3 Power Supply Node N4 Output Node P Current Path R1 ~ R6 Resistance SW1 ~ SW4 switch

Claims (5)

  1.  電流経路と磁気結合する磁性体コアと、
     発振信号に基づいて極性が交互に反転する第1及び第2の接続ノードと、電源電圧が与えられる電源ノードと、出力ノードとを有するHブリッジ回路と、
     前記磁性体コアに巻回され、前記第1の接続ノードと前記第2の接続ノードとの間に接続された検出コイルと、
     前記出力ノードの電圧と基準電圧を比較するコンパレータと、
     前記コンパレータの出力に基づいて前記発振信号を反転させる発振信号生成回路と、
     前記電源電圧に応じて前記基準電圧を変化させる基準電圧生成回路と、を備えることを特徴とする電流センサ。
    A magnetic core that is magnetically coupled to the current path;
    An H-bridge circuit having first and second connection nodes whose polarities are alternately inverted based on an oscillation signal, a power supply node to which a power supply voltage is applied, and an output node;
    A detection coil wound around the magnetic core and connected between the first connection node and the second connection node;
    A comparator that compares the voltage of the output node with a reference voltage;
    An oscillation signal generation circuit for inverting the oscillation signal based on the output of the comparator;
    A current sensor comprising: a reference voltage generation circuit that changes the reference voltage in accordance with the power supply voltage.
  2.  前記基準電圧生成回路は、前記電源電圧と前記基準電圧を比例させることを特徴とする請求項1に記載の電流センサ。 The current sensor according to claim 1, wherein the reference voltage generation circuit makes the power supply voltage proportional to the reference voltage.
  3.  前記基準電圧生成回路は、前記電源電圧を分圧する分圧抵抗を含むことを特徴とする請求項2に記載の電流センサ。 3. The current sensor according to claim 2, wherein the reference voltage generation circuit includes a voltage dividing resistor that divides the power supply voltage.
  4.  前記分圧抵抗が可変抵抗を含むことを特徴とする請求項3に記載の電流センサ。 The current sensor according to claim 3, wherein the voltage dividing resistor includes a variable resistor.
  5.  前記電流経路に流れる電流によって前記磁性体コアに生じる磁束を打ち消す負帰還コイルと、前記発振信号に基づいて前記負帰還コイルに負帰還電流を流す負帰還電流出力回路とをさらに備えることを特徴とする請求項1乃至4のいずれか一項に記載の電流センサ。 A negative feedback coil that cancels magnetic flux generated in the magnetic core due to a current flowing through the current path; and a negative feedback current output circuit that causes a negative feedback current to flow through the negative feedback coil based on the oscillation signal. The current sensor according to any one of claims 1 to 4.
PCT/JP2018/011969 2017-03-30 2018-03-26 Electric current sensor WO2018181089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017067122A JP6551448B2 (en) 2017-03-30 2017-03-30 Current sensor
JP2017-067122 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181089A1 true WO2018181089A1 (en) 2018-10-04

Family

ID=63677380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011969 WO2018181089A1 (en) 2017-03-30 2018-03-26 Electric current sensor

Country Status (2)

Country Link
JP (1) JP6551448B2 (en)
WO (1) WO2018181089A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043464A (en) * 2018-09-11 2020-03-19 ネクスト・イット株式会社 Virtual currency trading system using virtual currency, user terminal on user side, virtual currency trading system support system, and virtual currency trading method
KR102525791B1 (en) * 2022-09-28 2023-04-26 주식회사 온누리이엔지 Ess(energy storage system) safety inspection apparatus and the inspection method using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314200A (en) * 1977-09-01 1982-02-02 Bbc Brown, Boveri & Company Limited Method and apparatus for detection of magnetization
JP2012526981A (en) * 2009-05-11 2012-11-01 リエゾン、エレクトロニク−メカニク、エルウエム、ソシエテ、アノニム Closed loop fluxgate current sensor
CN102788930A (en) * 2012-09-11 2012-11-21 深圳市金宏威技术股份有限公司 Digital insulation monitoring sensor and method for testing leakage current
JP2013088284A (en) * 2011-10-18 2013-05-13 Gs Yuasa Corp Fault diagnosis device of current sensor, sensor system, and fault diagnosis method of current sensor
JP2013213725A (en) * 2012-04-02 2013-10-17 Fuji Electric Fa Components & Systems Co Ltd Current detection device
JP2014202512A (en) * 2013-04-02 2014-10-27 富士電機機器制御株式会社 Current detection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114205A (en) * 2013-12-11 2015-06-22 株式会社フジクラ Magnetic field detector and control method of magnetic field detector
JP2018169303A (en) * 2017-03-30 2018-11-01 Tdk株式会社 Current sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314200A (en) * 1977-09-01 1982-02-02 Bbc Brown, Boveri & Company Limited Method and apparatus for detection of magnetization
JP2012526981A (en) * 2009-05-11 2012-11-01 リエゾン、エレクトロニク−メカニク、エルウエム、ソシエテ、アノニム Closed loop fluxgate current sensor
JP2013088284A (en) * 2011-10-18 2013-05-13 Gs Yuasa Corp Fault diagnosis device of current sensor, sensor system, and fault diagnosis method of current sensor
JP2013213725A (en) * 2012-04-02 2013-10-17 Fuji Electric Fa Components & Systems Co Ltd Current detection device
CN102788930A (en) * 2012-09-11 2012-11-21 深圳市金宏威技术股份有限公司 Digital insulation monitoring sensor and method for testing leakage current
JP2014202512A (en) * 2013-04-02 2014-10-27 富士電機機器制御株式会社 Current detection device

Also Published As

Publication number Publication date
JP2018169302A (en) 2018-11-01
JP6551448B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP2011017618A (en) Electric current sensor
WO2018181089A1 (en) Electric current sensor
CN104977453A (en) No-null-shift magnetic modulation current sensor
US9989562B2 (en) Sensor and method for electric current measurement
WO2018181090A1 (en) Electric current sensor
JP2019074337A (en) Magnetic sensor and current sensor provided with the same
KR102470135B1 (en) fluxgate current transformer
JP2018200242A (en) Current sensor
JP2021170041A (en) Current sensor
WO2015104776A1 (en) Current detection device
JP2015232489A (en) Current measuring device
JP4731633B1 (en) Magnetic sensor
JP2019152473A (en) Current sensor
JP2011169833A (en) Current sensor
US20220260613A1 (en) Method of reducing noise in a fluxgate current transducer
JP2020056654A (en) Excitation circuit and electromagnetic flowmeter
WO2023189593A1 (en) Electric current sensor device
JP2007104020A (en) Pulse counter
JP6043606B2 (en) Magnetic element control device, magnetic element control method, and magnetic detection device
JP4228765B2 (en) Electromagnetic flow meter
CN106643928B (en) excitation circuit for electromagnetic flowmeter
CN112230035A (en) Current transformer
SU1728853A1 (en) Regulated direct current stabilizer
CN118011078A (en) Circuit arrangement and method for galvanically separated AC/DC-sensitive residual current measurement
JP2018163143A (en) Current sensor and overcurrent shut-off apparatus having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776934

Country of ref document: EP

Kind code of ref document: A1