WO2018180739A1 - Polymer-particle-containing silicone resin composition - Google Patents

Polymer-particle-containing silicone resin composition Download PDF

Info

Publication number
WO2018180739A1
WO2018180739A1 PCT/JP2018/010928 JP2018010928W WO2018180739A1 WO 2018180739 A1 WO2018180739 A1 WO 2018180739A1 JP 2018010928 W JP2018010928 W JP 2018010928W WO 2018180739 A1 WO2018180739 A1 WO 2018180739A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer particles
silicone resin
polymer
particle
composition
Prior art date
Application number
PCT/JP2018/010928
Other languages
French (fr)
Japanese (ja)
Inventor
原田 良祐
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to JP2019509366A priority Critical patent/JP6934513B2/en
Publication of WO2018180739A1 publication Critical patent/WO2018180739A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical

Definitions

  • the present invention relates to a polymer particle-containing silicone resin composition.
  • Organic electroluminescence has advantages in terms of visibility and viewing angle compared to conventional liquid crystal display (LCD), and also exhibits excellent features such as light weight, thin layer, and flexibility. Yes.
  • the organic layer including the light emitting layer has a high refractive index, there is a problem that total reflection and interference are likely to occur at the interface of the emitted light and the light extraction efficiency is low.
  • a method for solving the problem a method of increasing efficiency by providing a light scattering layer or the like in the light emitting layer has been proposed.
  • the light scattering layer a material in which organic particles such as silica or acrylic are dispersed in a binder resin such as acrylic is used.
  • the light emitting medium layer of the organic EL element is composed of an organic substance, and is easily deteriorated by the influence of moisture, oxygen, heat, etc. in the atmosphere. Therefore, a material having low hygroscopicity is desired as a material used around the organic EL element.
  • Patent Document 1 discloses a composition for sealing an organic light emitting device, which is a liquid composition at room temperature, has a curing temperature of 100 ° C. or less, and has an moisture content of 600 ppm or less.
  • An organic light-emitting device sealing composition characterized by containing a product is disclosed.
  • a silicone resin or the like has been proposed as in Patent Document 1, but the particles dispersed in the base material are useful as a light scattering agent and are easily dispersed in the silicone resin. None has been proposed so far.
  • An object of the present invention is to provide a polymer particle-containing silicone resin composition that is suitably used as an organic EL member having excellent light scattering properties and has low hygroscopicity.
  • the present invention [1] A polymer particle-containing silicone resin composition comprising polymer particles and an addition reaction curable silicone resin, wherein the polymer particles have an alkyl group or a cycloalkyl group having 4 or more carbon atoms (meta ) Polymer particles comprising cross-linked polymer particles of a polymerizable composition comprising at least one ester compound selected from the group consisting of acrylic acid esters and vinyl carboxylates, styrenic compounds, and cross-linking agents Containing silicone resin composition, and [2] Polymerization containing one or more ester compounds selected from the group consisting of (meth) acrylic acid esters having 4 or more carbon atoms or cycloalkyl groups and vinyl carboxylates, styrene compounds, and crosslinking agents
  • the present invention relates to polymer particles including crosslinked polymer particles of the composition.
  • a polymer particle-containing silicone resin composition that is suitably used as an organic EL member having excellent light scattering properties and has low hygroscopicity.
  • the polymer particle-containing silicone resin composition of the present invention (hereinafter sometimes simply referred to as “the composition of the present invention”) contains polymer particles and an addition reaction curable silicone resin.
  • composition of the present invention has excellent light scattering properties and low hygroscopicity
  • the polymer particles contained in the composition of the present invention are highly hydrophobic and difficult to adsorb moisture. Presumed.
  • the polymer particles contained in the composition of the present invention are excellent in dispersibility in the silicone resin, it is presumed that they are excellent in light diffusibility.
  • the polymer particles include cross-linked polymer particles of a polymerizable composition.
  • the polymerizable composition contains a specific ester compound, a styrenic compound, and a crosslinking agent.
  • the ester compound is a (meth) acrylic acid ester and / or vinyl carboxylate having an alkyl group or a cycloalkyl group having 4 or more carbon atoms.
  • the carbon number of the alkyl group or cycloalkyl group in the (meth) acrylic acid ester is 4 or more, preferably 5 or more, more preferably 6 from the viewpoint of obtaining particles having excellent light scattering properties and low hygroscopicity. From the viewpoint of obtaining particles with high efficiency, it is preferably 10 or less, more preferably 8 or less.
  • (meth) acrylic acid ester having an alkyl group having 4 or more carbon atoms or a cycloalkyl group examples include butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, (meth ) Pentyl acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, isobornyl (meth) acrylate, etc.
  • it is cyclohexyl methacrylate.
  • (meth) acrylic acid refers to acrylic acid or methacrylic acid.
  • vinyl carboxylate examples include vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl neodecanoate.
  • the content of the ester compound is not particularly limited, but is preferably 5 to 90% by mass, more preferably 10 to 80% by mass in the polymerizable composition. Content in the case of using 2 or more types of ester compounds refers to the total amount.
  • styrene compound examples include styrene, vinyl toluene, t-butyl styrene, ethyl vinyl benzene and the like, and styrene is preferable.
  • the content of the styrene-based compound is not particularly limited, but is preferably 5 to 90% by mass, more preferably 10 to 80% by mass in the polymerizable composition.
  • the mass ratio of the ester compound to the styrene compound is not particularly limited, but is preferably 1/45 to 45/1, more preferably 1 / 8 to 8/1.
  • the crosslinking agent is not particularly limited, but ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di Multifunctional (meth) acrylates such as (meth) acrylates, 1,9-nonanediol di (meth) acrylates, allyl (meth) acrylates; aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene, and derivatives thereof From the viewpoint of dispersibility, ethylene glycol dimethacrylate and divinylbenzene are preferable.
  • the content of the crosslinking agent is not particularly limited, but is preferably 1 to 50 parts by mass, more preferably 3 to 30 parts by mass with respect to 100 parts by mass of the total amount of the ester compound and the styrene compound. It is.
  • the volume average particle diameter of the crosslinked polymer particles is preferably 0.5 to 30 ⁇ m, more preferably 0.5 to 10 ⁇ m, and further preferably 0.5 to 5.0 ⁇ m, from the viewpoint of light diffusibility. is there.
  • the variation coefficient of the crosslinked polymer particles is preferably 5 to 30%, more preferably 5 to 25%, and further preferably 5 to 20% from the viewpoint of light diffusibility.
  • the volume average particle diameter and the coefficient of variation are measured by the following methods.
  • the volume average particle diameter and coefficient of variation of the crosslinked polymer particles are measured by Coulter Multisizer TM 3 (measurement device manufactured by Beckman Coulter, Inc.). Measurement shall be performed using an aperture calibrated according to the Multisizer TM 3 User's Manual published by Beckman Coulter.
  • the aperture used for measurement is appropriately selected depending on the size of the crosslinked polymer particles to be measured.
  • Current (aperture current) and Gain (gain) are appropriately set according to the size of the selected aperture. For example, when an aperture having a size of 50 ⁇ m is selected, the current (aperture current) is set to ⁇ 800 and the gain (gain) is set to 4.
  • a crosslinked polymer particle As a sample for measurement, 0.1 g of a crosslinked polymer particle was added to 10 ml of a 0.1% by weight nonionic surfactant aqueous solution with a touch mixer (manufactured by Yamato Kagaku Co., Ltd., “TOUCHMIXER MT-31”) and an ultrasonic cleaner (VEL). Dispersed using “ULTRASONICCLEANER VS-150” manufactured by Vocrea Co., Ltd., and used as a dispersion. During the measurement, the beaker is stirred gently to the extent that bubbles do not enter, and the measurement is terminated when 100,000 crosslinked polymer particles are measured.
  • the volume average particle diameter of the crosslinked polymer particles is an arithmetic average in a volume-based particle size distribution of 100,000 particles.
  • the polymer particles preferably further contain a silicone resin from the viewpoint of dispersibility in the silicone resin, and more preferably have a silicone resin layer on the surface of the crosslinked polymer particles.
  • a silicone resin from the viewpoint of dispersibility in the silicone resin, and more preferably have a silicone resin layer on the surface of the crosslinked polymer particles.
  • the silicone resin contained in the polymer particles the same silicone resin as described later can be used.
  • the content of the silicone resin is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, based on the polymer particles.
  • the polymer particles having a silicone resin layer on the surface of the crosslinked polymer particles can be obtained by applying a surface treatment by a known method such as drying after applying a silicone resin to the crosslinked polymer particles.
  • the hydrophobicity index of the polymer particles is preferably 66 or more, more preferably 75 or more, from the viewpoint of dispersibility in the silicone resin.
  • the hydrophobicity index is measured by the following method.
  • a 200 ml glass beaker with a stirrer placed at the bottom 50 ml of ion-exchanged water is added and 0.2 g of polymer particles are floated on the water surface, and then the stirrer is gently rotated. Thereafter, the tip of the burette is submerged in the water in the beaker, and methanol is gradually introduced from the buret 5 minutes after the addition of the polymer particles while gently rotating the stirring bar. Methanol was introduced 1 ml at a time, and every 1 ml of methanol was stirred for 3 minutes, and 1 ml was then introduced.
  • Hydrophobicity index (%) 100 ⁇ methanol introduction amount (ml) / (amount of ion exchange water (ml) + methanol introduction amount (ml))
  • the hydrophobicity index is determined to be zero.
  • the water content of the polymer particles is preferably 0.5% or less, more preferably 0.3% or less, and even more preferably 0.1% or less.
  • the water content of the polymer particles is measured with a Karl Fischer moisture meter.
  • the refractive index of the polymer particles is preferably 1.500 to 1.570, more preferably 1.510 to 1.565, and still more preferably 1.520 to 1.560, from the viewpoint of light diffusibility. It is.
  • the refractive index is measured by a liquid immersion method. Specifically, first, polymer particles are placed on a glass slide, and a refractive liquid (cargill standard refractive liquid, Cargill standard refractive liquid, refractive index nD25 1.496 to 1.592 refractive index difference 0.002 Add several preparations in steps). Then, after thoroughly mixing the polymer particles and the refractive liquid, the outline of the particles is observed from above with an optical microscope while irradiating light from a high pressure sodium lamp NX35 (center wavelength 589 nm) manufactured by Iwasaki Electric Co., Ltd. from below. And when the outline is not visible, it is determined that the refractive index of the refractive liquid and the polymer particles are equal.
  • a refractive liquid carbgill standard refractive liquid, Cargill standard refractive liquid, refractive index nD25 1.496 to 1.592 refractive index difference 0.002 Add several preparations in steps. Then, after thoroughly mixing the polymer particles and the ref
  • the observation with an optical microscope is not particularly problematic as long as it is an observation at a magnification at which the outline of the polymer particles can be confirmed, but an observation magnification of about 500 times is appropriate for particles having a particle diameter of 5 ⁇ m.
  • the intermediate value between the two types of refractive liquid is set as the refractive index of the polymer particles. to decide. For example, when a test is performed with refractive liquids having a refractive index of 1.554 and a refractive index of 1.556, if there is no difference in the appearance of polymer particles between the two refractive liquids, an intermediate value of 1.555 between these refractive liquids is overlapped. The refractive index of the coalesced particles is determined. In the above measurement, the measurement is carried out in an environment with a test room temperature of 22 ° C. to 24 ° C.
  • the content of the polymer particles in the composition of the present invention is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and still more preferably from the viewpoint of light diffusibility. 1 to 5% by mass.
  • the method for producing the polymer particles is not particularly limited, but can be produced by methods such as seed polymerization, suspension polymerization, emulsion polymerization, and dispersion polymerization.
  • seed particles are prepared by a known method using a vinyl monomer such as methyl methacrylate, a molecular weight adjusting agent such as n-octyl mercaptan, a polymerization initiator such as potassium persulfate, and the like. be able to.
  • the seed particles are not particularly limited, but a volume average particle diameter of 0.1 to 3.0 ⁇ m is preferable, a weight average molecular weight of 5,000 to 100,000 is preferable, and a true spherical particle is preferable.
  • a silicone resin having a functional group used for an addition reaction is used.
  • the functional group include a vinyl group, an allyl group, a butenyl group, a petenyl group, and a hexenyl group, which are introduced into both ends, one end, and side chains of the molecular chain of the silicone resin.
  • the silicone resin include polydimethylsiloxane and polydiphenylsiloxane.
  • the content of the addition reaction curable silicone resin in the composition of the present invention is preferably 30 to 99% by mass, more preferably 60 to 90% by mass, and still more preferably 50% from the viewpoint of light diffusibility. ⁇ 80% by mass.
  • composition of the present invention may contain a silicone resin other than the addition reaction curable type, and examples thereof include methyl hydrogen polysiloxane and methyl hydrogen group-blocked dimethyl polysiloxane.
  • composition of the present invention can optionally contain other components.
  • other components include fillers, reaction inhibitors, flame retardants, heat resistance improvers, adhesion promoters, thixotropic agents, pigments, and plasticizers.
  • the composition of the present invention does not contain an organic solvent.
  • an organic solvent By not containing an organic solvent, the dimensional change upon curing due to volatilization of the organic solvent is small, and there is little concern about bleeding out of the remaining organic solvent even after curing.
  • the hygroscopicity of the composition of the present invention is evaluated by curing the composition of the present invention.
  • the moisture value after this cured product is allowed to stand for 24 hours in an environment of 24 ° C. and a relative humidity of 60% can be determined by measuring with a Karl Fischer moisture meter.
  • the moisture value after moisture absorption of the composition of the present invention is preferably 500 ppm or less, more preferably 450 ppm or less, and still more preferably 400 ppm or less, from the viewpoint of reducing hygroscopicity.
  • composition of the present invention can be cured under a platinum catalyst such as a complex salt of chloroplatinic acid and vinyl siloxane.
  • the optical properties of the composition of the present invention are evaluated by curing the composition of the present invention.
  • the cured product is applied in a transparent glass plate shape with a thickness of 30 ⁇ m, a glass cover is bonded thereto, and the coating layer is cured at 80 ° C., and the haze and total light transmittance of the glass plate are measured.
  • haze and total light transmittance are measured according to JIS K 7361-1 using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., trade name “NDH4000”). ,taking measurement.
  • the haze of the composition of the present invention is preferably 80% or more, more preferably 90% or more, and further preferably 99% or more from the viewpoint of light diffusibility.
  • the total light transmittance of the composition of the present invention is preferably 75% or more, more preferably 85% or more, and further preferably 99% or more from the viewpoint of light diffusibility.
  • composition of the present invention is suitably used as an organic EL member because of its low hygroscopicity and excellent optical characteristics.
  • composition of the present invention can be produced by dispersing polymer particles in an addition reaction curable silicone resin.
  • Production Example 1 (Production of seed particles)
  • a separable flask equipped with a stirrer, a thermometer and a reflux condenser 3000 g of water as an aqueous medium, 500 g of methyl methacrylate as a monofunctional (meth) acrylic monomer, and n-octyl mercaptan as a molecular weight regulator
  • the inside of the separable flask was purged with nitrogen while stirring the contents of the separable flask, and the internal temperature of the separable flask was raised to 70 ° C.
  • Production Example 2 (Production of polymer particles)
  • 300 g of styrene, 500 g of cyclohexyl methacrylate, 200 g of ethylene glycol dimethacrylate as a crosslinking agent, and 8 g of 2,2′-azobisisobutyronitrile as a polymerization initiator Were dissolved in each other to obtain a monomer mixture.
  • the obtained monomer mixture was mixed with 1000 g of a surfactant aqueous solution obtained by dissolving 10 g of polyoxyethylene octylphenyl ether as a nonionic surfactant in 990 g of ion-exchanged water in advance, and high-speed emulsification / dispersion
  • An emulsion (trade name “Homomixer MARK II 2.5 type”, manufactured by Primix Co., Ltd.) was processed at 10000 rpm for 10 minutes to obtain an emulsion.
  • To this emulsion was added 24 g of the seed particle dispersion obtained in Production Example 1 (solid content: 3.4 g), and the mixture was stirred at 30 ° C. for 3 hours to obtain a dispersion.
  • Production Example 3 (Surface coating of polymer particles)
  • the polymer particles A obtained in Production Example 2 were surface-coated with methyl hydrogen polysiloxane.
  • 30 g of methyl hydrogen polysiloxane was dissolved in 1000 g of isopropyl alcohol.
  • the solution was uniformly applied to 500 g of polymer particles A by spraying.
  • the applied polymer particles were vacuum-dried at 70 ° C. for 24 hours to remove isopropyl alcohol, thereby obtaining polymer particles A-2 whose surface was coated with methyl hydrogen polysiloxane.
  • the obtained polymer particle A-2 had a hydrophobicity index of 81 and a water content of 0.03%.
  • Production Example 4 Polymer particles B were obtained in the same manner as in Production Example 2, except that 300 g of cyclohexyl methacrylate, 600 g of styrene, and 100 g of ethylene glycol dimethacrylate were used. The obtained polymer particles B had a volume average particle diameter of 1.5 ⁇ m and a refractive index of 1.555. Thereafter, the surface treatment was performed in the same manner as in Production Example 3 to obtain polymer particles B-2 surface-treated with methyl hydrogen polysiloxane. The obtained polymer particle C-2 had a hydrophobicity index of 82 and a moisture content of 0.05%.
  • Production Example 5 Polymer particles C were obtained in the same manner as in Production Example 2, except that 500 g of methyl methacrylate was used instead of cyclohexyl methacrylate. The obtained polymer particles C had a volume average particle diameter of 1.5 ⁇ m and a refractive index of 1.525. Thereafter, the surface treatment was performed in the same manner as in Production Example 3 to obtain polymer particles C-2 surface-treated with methyl hydrogen polysiloxane. The obtained polymer particle C-2 had a hydrophobicity index of 45 and a water content of 0.7%.
  • Polymer particles D were obtained in the same manner as in Production Example 2, except that 450 g of isobutyl methacrylate, 450 g of styrene, and 100 g of ethylene glycol dimethacrylate were used instead of cyclohexyl methacrylate.
  • the obtained polymer particles D had a volume average particle diameter of 1.5 ⁇ m and a refractive index of 1.535.
  • the surface treatment was performed in the same manner as in Production Example 3 to obtain polymer particles D-2 surface-treated with methyl hydrogen polysiloxane.
  • the obtained polymer particle D-2 had a hydrophobicity index of 72 and a water content of 0.04%.
  • Examples 1 to 3 and Comparative Examples 1 to 2 100 parts by mass of polydimethylsiloxane dried under reduced pressure at 150 ° C. for 2 hours (viscosity at 23 ° C. is 3000 mPa ⁇ s, both ends of the molecular chain blocked with dimethylvinylsiloxy groups) and 10 parts by mass of methyl hydrogen polysiloxane And 5 parts by mass of the polymer particles described in Table 1 were mixed and cured uniformly at room temperature in the presence of a complex salt of chloroplatinic acid and vinylsiloxane (about 10 ppm as platinum atoms) as a catalyst. Thus, the polymer particle-containing silicone resin compositions of Examples 1 to 3 and Comparative Examples 1 to 2 were obtained.
  • Examples 1 to 3 using polymer particles containing a (meth) acrylic acid ester having a C 4 or more alkyl group or a cycloalkyl group, a styrene compound, and a crosslinking agent as the polymerizable composition are as follows: Hygroscopicity and optical properties were good. On the other hand, Comparative Example 1 using polymer particles that do not contain a specific ester compound as the polymerizable composition has poor hygroscopicity, and Comparative Example 2 using silicone resin particles has poor optical properties. .
  • the polymer particle-containing silicone resin composition of the present invention can provide a composition suitable as an organic EL member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A polymer-particle-containing silicone resin composition containing polymer particles and addition-reaction-curable silicone resin, wherein the polymer-particle-containing silicone resin composition is characterized in that the polymer particles include: one or more ester compounds selected from the group consisting of (meth)acrylic acid esters having a C4 or higher alkyl group or cycloalkyl group, and vinyl carboxylate; a styrene compound; and crosslinked polymer particles of a polymerizable composition including a crosslinking agent. This polymer-particle-containing silicone resin composition makes it possible to provide a composition suitable as an organic EL member.

Description

重合体粒子含有シリコーン樹脂組成物Polymer particle-containing silicone resin composition
 本発明は、重合体粒子含有シリコーン樹脂組成物に関する。 The present invention relates to a polymer particle-containing silicone resin composition.
 有機エレクトロルミネッセンス(有機EL)は、従来の液晶ディスプレー(LCD)と比較して、視認性および視野角の面で利点を有するとともに、軽量化、薄層化およびフレキシブル性といった優れた特徴を示している。しかしながら発光層を含む有機層の屈折率が高いため、発光した光の界面での全反射、干渉が起こりやすく、光取出し効率が低い課題がある。その課題を解決する方法として、発光層に光散乱層等を設けることで効率を上げる方法等が提案されている。光散乱層はアクリル等のバインダー樹脂にシリカ、あるいはアクリル等の有機粒子が分散されたものが用いられる。一方、有機EL素子の発光媒体層は有機物で構成されており、大気中の水分や酸素あるいは熱等の影響によって劣化しやすい。よって有機EL素子周辺に用いられる材料は吸湿性の低い材料が望まれている。 Organic electroluminescence (organic EL) has advantages in terms of visibility and viewing angle compared to conventional liquid crystal display (LCD), and also exhibits excellent features such as light weight, thin layer, and flexibility. Yes. However, since the organic layer including the light emitting layer has a high refractive index, there is a problem that total reflection and interference are likely to occur at the interface of the emitted light and the light extraction efficiency is low. As a method for solving the problem, a method of increasing efficiency by providing a light scattering layer or the like in the light emitting layer has been proposed. As the light scattering layer, a material in which organic particles such as silica or acrylic are dispersed in a binder resin such as acrylic is used. On the other hand, the light emitting medium layer of the organic EL element is composed of an organic substance, and is easily deteriorated by the influence of moisture, oxygen, heat, etc. in the atmosphere. Therefore, a material having low hygroscopicity is desired as a material used around the organic EL element.
 例えば、特許文献1には、有機発光素子を封止するための組成物であり、常温で液状で100℃以下の硬化温度を有し、かつ水分含有量が600ppm以下の付加反応硬化型シリコーン組成物を含むことを特徴とする有機発光素子封止用組成物が開示されている。 For example, Patent Document 1 discloses a composition for sealing an organic light emitting device, which is a liquid composition at room temperature, has a curing temperature of 100 ° C. or less, and has an moisture content of 600 ppm or less. An organic light-emitting device sealing composition characterized by containing a product is disclosed.
特開2011-16965号公報JP 2011-16965 A
 しかしながら、有機EL部材の基材としては、特許文献1のように、シリコーン樹脂等が提案されているものの、基材に分散させる粒子については、光散乱剤として有用で且つシリコーン樹脂に易分散なものはこれまでに提案されていない。 However, as a base material of the organic EL member, a silicone resin or the like has been proposed as in Patent Document 1, but the particles dispersed in the base material are useful as a light scattering agent and are easily dispersed in the silicone resin. Nothing has been proposed so far.
 本発明の課題は、光散乱性に優れた有機EL部材として好適に用いられ、吸湿性の低い、重合体粒子含有シリコーン樹脂組成物を提供することである。 An object of the present invention is to provide a polymer particle-containing silicone resin composition that is suitably used as an organic EL member having excellent light scattering properties and has low hygroscopicity.
 本発明は、
[1]重合体粒子と付加反応硬化型シリコーン樹脂を含有する、重合体粒子含有シリコーン樹脂組成物であって、前記重合体粒子が、炭素数4以上のアルキル基又はシクロアルキル基を有する(メタ)アクリル酸エステル及びカルボン酸ビニルからなる群より選択される一種以上のエステル化合物、スチレン系化合物、並びに架橋剤を含む重合性組成物の架橋重合体粒子を含むことを特徴とする、重合体粒子含有シリコーン樹脂組成物、並びに
[2]炭素数4以上のアルキル基又はシクロアルキル基を有する(メタ)アクリル酸エステル及びカルボン酸ビニルからなる群より選択される一種以上のエステル化合物、スチレン系化合物、並びに架橋剤を含む重合性組成物の架橋重合体粒子を含む、重合体粒子に関する。
The present invention
[1] A polymer particle-containing silicone resin composition comprising polymer particles and an addition reaction curable silicone resin, wherein the polymer particles have an alkyl group or a cycloalkyl group having 4 or more carbon atoms (meta ) Polymer particles comprising cross-linked polymer particles of a polymerizable composition comprising at least one ester compound selected from the group consisting of acrylic acid esters and vinyl carboxylates, styrenic compounds, and cross-linking agents Containing silicone resin composition, and
[2] Polymerization containing one or more ester compounds selected from the group consisting of (meth) acrylic acid esters having 4 or more carbon atoms or cycloalkyl groups and vinyl carboxylates, styrene compounds, and crosslinking agents The present invention relates to polymer particles including crosslinked polymer particles of the composition.
 本発明によれば、光散乱性に優れた有機EL部材として好適に用いられ、吸湿性の低い、重合体粒子含有シリコーン樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a polymer particle-containing silicone resin composition that is suitably used as an organic EL member having excellent light scattering properties and has low hygroscopicity.
 本発明の重合体粒子含有シリコーン樹脂組成物(以下、単に「本発明の組成物」と記載することもある)は、重合体粒子と付加反応硬化型シリコーン樹脂を含有する。 The polymer particle-containing silicone resin composition of the present invention (hereinafter sometimes simply referred to as “the composition of the present invention”) contains polymer particles and an addition reaction curable silicone resin.
 本発明の組成物が光散乱性に優れ、吸湿性の低いものとなるメカニズムは定かではないが、本発明の組成物に含まれる重合体粒子は疎水性が高く、水分を吸着しにくいためと推定される。さらに本発明の組成物に含まれる重合体粒子はシリコーン樹脂への分散性に優れることから、光拡散性に優れると推定される。 The mechanism by which the composition of the present invention has excellent light scattering properties and low hygroscopicity is not clear, but the polymer particles contained in the composition of the present invention are highly hydrophobic and difficult to adsorb moisture. Presumed. Furthermore, since the polymer particles contained in the composition of the present invention are excellent in dispersibility in the silicone resin, it is presumed that they are excellent in light diffusibility.
 本発明において、重合体粒子は、重合性組成物の架橋重合体粒子を含む。本発明において、重合性組成物は、特定のエステル化合物、スチレン系化合物、及び架橋剤を含む。 In the present invention, the polymer particles include cross-linked polymer particles of a polymerizable composition. In the present invention, the polymerizable composition contains a specific ester compound, a styrenic compound, and a crosslinking agent.
 エステル化合物としては、炭素数4以上のアルキル基又はシクロアルキル基を有する(メタ)アクリル酸エステル及び/又はカルボン酸ビニルである。 The ester compound is a (meth) acrylic acid ester and / or vinyl carboxylate having an alkyl group or a cycloalkyl group having 4 or more carbon atoms.
 (メタ)アクリル酸エステルにおけるアルキル基又はシクロアルキル基の炭素数は、光散乱性に優れ、低吸湿性の粒子を得る観点から、4以上であり、好ましくは5以上であり、より好ましくは6以上であり、高効率に粒子を得る観点から、好ましくは10以下であり、より好ましくは8以下である。炭素数4以上のアルキル基又はシクロアルキル基を有する(メタ)アクリル酸エステルの具体例としては、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロヘプチル、(メタ)アクリル酸イソボルニルなどが挙げられ、好ましくはメタクリル酸シクロヘキシルである。なお、本明細書において(メタ)アクリル酸とは、アクリル酸又はメタクリル酸を指す。 The carbon number of the alkyl group or cycloalkyl group in the (meth) acrylic acid ester is 4 or more, preferably 5 or more, more preferably 6 from the viewpoint of obtaining particles having excellent light scattering properties and low hygroscopicity. From the viewpoint of obtaining particles with high efficiency, it is preferably 10 or less, more preferably 8 or less. Specific examples of the (meth) acrylic acid ester having an alkyl group having 4 or more carbon atoms or a cycloalkyl group include butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, (meth ) Pentyl acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, isobornyl (meth) acrylate, etc. Preferably, it is cyclohexyl methacrylate. In this specification, (meth) acrylic acid refers to acrylic acid or methacrylic acid.
 カルボン酸ビニルとしては、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ネオデカン酸ビニル等が挙げられる。 Examples of the vinyl carboxylate include vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl neodecanoate.
 エステル化合物の含有量は、特に限定されるものではないが、重合性組成物中、好ましくは5~90質量%であり、より好ましくは10~80質量%である。エステル化合物を2種以上使用する場合における含有量は、その合計量を指す。 The content of the ester compound is not particularly limited, but is preferably 5 to 90% by mass, more preferably 10 to 80% by mass in the polymerizable composition. Content in the case of using 2 or more types of ester compounds refers to the total amount.
 スチレン系化合物としては、スチレン、ビニルトルエン、t-ブチルスチレン、エチルビニルベンゼンなどが挙げられ、好ましくはスチレンである。 Examples of the styrene compound include styrene, vinyl toluene, t-butyl styrene, ethyl vinyl benzene and the like, and styrene is preferable.
 スチレン系化合物の含有量は、特に限定されるものではないが、重合性組成物中、好ましくは5~90質量%であり、より好ましくは10~80質量%である。 The content of the styrene-based compound is not particularly limited, but is preferably 5 to 90% by mass, more preferably 10 to 80% by mass in the polymerizable composition.
 重合性組成物中、エステル化合物とスチレン系化合物の質量比(エステル化合物/スチレン系化合物)は、特に限定されるものではないが、好ましくは1/45~45/1であり、より好ましくは1/8~8/1である。 In the polymerizable composition, the mass ratio of the ester compound to the styrene compound (ester compound / styrene compound) is not particularly limited, but is preferably 1/45 to 45/1, more preferably 1 / 8 to 8/1.
 架橋剤としては、特に限定されるものではないが、エチレングリコールジ(メタ)クリレート、トリメチロールプロパントリ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、アリル(メタ)アクリレート、などの多官能(メタ)アクリレート;ジビニルベンゼン、ジビニルナフタレン、および、これらの誘導体などの芳香族ジビニル化合物などが挙げられ、分散性の観点から、好ましくはエチレングリコールジメタクリレート、ジビニルベンゼンである。 The crosslinking agent is not particularly limited, but ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di Multifunctional (meth) acrylates such as (meth) acrylates, 1,9-nonanediol di (meth) acrylates, allyl (meth) acrylates; aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene, and derivatives thereof From the viewpoint of dispersibility, ethylene glycol dimethacrylate and divinylbenzene are preferable.
 架橋剤の含有量は、特に限定されるものではないが、エステル化合物とスチレン系化合物の合計量100質量部に対して、好ましくは1~50質量部であり、より好ましくは3~30質量部である。 The content of the crosslinking agent is not particularly limited, but is preferably 1 to 50 parts by mass, more preferably 3 to 30 parts by mass with respect to 100 parts by mass of the total amount of the ester compound and the styrene compound. It is.
 架橋重合体粒子の体積平均粒子径は、光拡散性の観点から、好ましくは0.5~30μmであり、より好ましくは0.5~10μmであり、さらに好ましくは0.5~5.0μmである。 The volume average particle diameter of the crosslinked polymer particles is preferably 0.5 to 30 μm, more preferably 0.5 to 10 μm, and further preferably 0.5 to 5.0 μm, from the viewpoint of light diffusibility. is there.
 架橋重合体粒子の変動係数は、光拡散性の観点から、好ましくは5~30%であり、より好ましくは、5~25%、さらに好ましくは5~20%である。 The variation coefficient of the crosslinked polymer particles is preferably 5 to 30%, more preferably 5 to 25%, and further preferably 5 to 20% from the viewpoint of light diffusibility.
 本明細書において、体積平均粒子径、変動係数は、以下の方法により測定される。
架橋重合体粒子の体積平均粒子径、変動係数は、コールターMultisizerTM3(ベックマン・コールター社製測定装置)により測定する。測定は、ベックマン・コールター社発行のMultisizerTM3ユーザーズマニュアルに従って校正されたアパチャーを用いて実施するものとする。
 なお、測定に用いるアパチャーは、測定する架橋重合体粒子の大きさによって、適宜選択する。Current(アパチャー電流)及びGain(ゲイン)は、選択したアパチャーのサイズによって、適宜設定する。例えば、50μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は-800、Gain(ゲイン)は4と設定する。
 測定用試料としては、架橋重合体粒子0.1gを0.1質量%ノニオン性界面活性剤水溶液10ml中にタッチミキサー(ヤマト科学社製、「TOUCHMIXER MT-31」)及び超音波洗浄器(ヴェルヴォクリーア社製、「ULTRASONICCLEANER VS-150」)を用いて分散させ、分散液としたものを使用する。測定中はビーカー内を気泡が入らない程度に緩く撹拌しておき、架橋重合体粒子を10万個測定した時点で測定を終了する。架橋重合体粒子の体積平均粒子径は、10万個の粒子の体積基準の粒度分布における算術平均である。
 架橋重合体粒子の粒子径の変動係数(CV値)を、以下の数式によって算出する。
架橋重合体粒子の粒子径の変動係数=(架橋重合体粒子の体積基準の粒度分布の標準偏差÷架橋重合体粒子の体積平均粒子径)×100
In the present specification, the volume average particle diameter and the coefficient of variation are measured by the following methods.
The volume average particle diameter and coefficient of variation of the crosslinked polymer particles are measured by Coulter Multisizer 3 (measurement device manufactured by Beckman Coulter, Inc.). Measurement shall be performed using an aperture calibrated according to the Multisizer 3 User's Manual published by Beckman Coulter.
The aperture used for measurement is appropriately selected depending on the size of the crosslinked polymer particles to be measured. Current (aperture current) and Gain (gain) are appropriately set according to the size of the selected aperture. For example, when an aperture having a size of 50 μm is selected, the current (aperture current) is set to −800 and the gain (gain) is set to 4.
As a sample for measurement, 0.1 g of a crosslinked polymer particle was added to 10 ml of a 0.1% by weight nonionic surfactant aqueous solution with a touch mixer (manufactured by Yamato Kagaku Co., Ltd., “TOUCHMIXER MT-31”) and an ultrasonic cleaner (VEL). Dispersed using “ULTRASONICCLEANER VS-150” manufactured by Vocrea Co., Ltd., and used as a dispersion. During the measurement, the beaker is stirred gently to the extent that bubbles do not enter, and the measurement is terminated when 100,000 crosslinked polymer particles are measured. The volume average particle diameter of the crosslinked polymer particles is an arithmetic average in a volume-based particle size distribution of 100,000 particles.
The coefficient of variation (CV value) of the particle diameter of the crosslinked polymer particles is calculated by the following formula.
Variation coefficient of particle diameter of crosslinked polymer particles = (standard deviation of volume distribution of crosslinked polymer particles / volume average particle diameter of crosslinked polymer particles) × 100
 重合体粒子は、シリコーン樹脂への分散性の観点から、さらにシリコーン樹脂を含むことが好ましく、架橋重合体粒子の表面にシリコーン樹脂層を有することがより好ましい。重合体粒子に含まれるシリコーン樹脂としては、後述するシリコーン樹脂と同じものを使用することができる。シリコーン樹脂の含有量は重合体粒子に対し、好ましくは0.1~15質量%、より好ましくは0.5~10質量%である。なお、架橋重合体粒子の表面にシリコーン樹脂層を有する重合体粒子は、架橋重合体粒子にシリコーン樹脂を塗布した後に乾燥するなど、公知の方法で表面処理をすることなどにより得られる。 The polymer particles preferably further contain a silicone resin from the viewpoint of dispersibility in the silicone resin, and more preferably have a silicone resin layer on the surface of the crosslinked polymer particles. As the silicone resin contained in the polymer particles, the same silicone resin as described later can be used. The content of the silicone resin is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, based on the polymer particles. The polymer particles having a silicone resin layer on the surface of the crosslinked polymer particles can be obtained by applying a surface treatment by a known method such as drying after applying a silicone resin to the crosslinked polymer particles.
 重合体粒子の疎水性指数は、シリコーン樹脂への分散性の観点から、好ましくは66以上であり、より好ましくは、75以上である。 The hydrophobicity index of the polymer particles is preferably 66 or more, more preferably 75 or more, from the viewpoint of dispersibility in the silicone resin.
 本明細書において、疎水性指数は、以下の方法により測定される。
 底部に撹拌子を置いた200mlのガラスビーカーに、イオン交換水50mlを投入し、水面に重合体粒子0.2gを浮かべた後、撹拌子を緩やかに回転させる。その後、ビーカー内の水中にビュレットの先端を沈め、撹拌子を緩やかに回転させながら、前記重合体粒子添加から5分後に、ビュレットからメタノールを徐々に導入する。メタノールは1mlずつ導入し、1ml導入する度に3分撹拌を行い、また1mlずつ導入した。水面の重合体粒子の全量が完全に水中に沈むまで(水面に浮いている重合体粒子がなくなった状態)メタノールの導入を続け、水中に重合体粒子が完全に沈んだときのメタノール導入量(ml)を測定し、下式に基づき疎水性指数を求める。
疎水性指数(%)=100×メタノール導入量(ml)/(イオン交換水の量(ml)+メタノール導入量(ml))
 なお、ビュレットからメタノールを添加する前に、水面に浮かべた重合体粒子が水中に完全に沈んだ場合は、疎水性指数を0と判定する。
In the present specification, the hydrophobicity index is measured by the following method.
In a 200 ml glass beaker with a stirrer placed at the bottom, 50 ml of ion-exchanged water is added and 0.2 g of polymer particles are floated on the water surface, and then the stirrer is gently rotated. Thereafter, the tip of the burette is submerged in the water in the beaker, and methanol is gradually introduced from the buret 5 minutes after the addition of the polymer particles while gently rotating the stirring bar. Methanol was introduced 1 ml at a time, and every 1 ml of methanol was stirred for 3 minutes, and 1 ml was then introduced. Continue introduction of methanol until the total amount of polymer particles on the water surface is completely submerged in the water (the state where the polymer particles floating on the water surface are gone), and the amount of methanol introduced when the polymer particles are completely submerged in water ( ml) and determine the hydrophobicity index based on the following formula.
Hydrophobicity index (%) = 100 × methanol introduction amount (ml) / (amount of ion exchange water (ml) + methanol introduction amount (ml))
In addition, before adding methanol from a burette, when the polymer particle floated on the water surface completely sinks in water, the hydrophobicity index is determined to be zero.
 重合体粒子の水分含有量は、低吸湿性のシリコーン樹脂組成物を得る観点から、好ましくは0.5%以下、より好ましくは0.3%以下、さらに好ましくは0.1%以下である。重合体粒子の水分含有量は、カールフィッシャー水分計にて測定される。 From the viewpoint of obtaining a low hygroscopic silicone resin composition, the water content of the polymer particles is preferably 0.5% or less, more preferably 0.3% or less, and even more preferably 0.1% or less. The water content of the polymer particles is measured with a Karl Fischer moisture meter.
 重合体粒子の屈折率は、光拡散性の観点から、好ましくは1.500~1.570であり、より好ましくは1.510~1.565であり、さらに好ましくは1.520~1.560である。 The refractive index of the polymer particles is preferably 1.500 to 1.570, more preferably 1.510 to 1.565, and still more preferably 1.520 to 1.560, from the viewpoint of light diffusibility. It is.
 本明細書において、屈折率は、液浸法により測定される。
 具体的には、まず、スライドガラス上に重合体粒子を載せ、屈折液(CARGILLE社製:カーギル標準屈折液、屈折率 nD25 1.496~1.592の屈折液を、屈折率差0.002刻みで複数準備)を滴下する。そして、重合体粒子と屈折液をよく混ぜた後、下から岩崎電気社製高圧ナトリウムランプ NX35(中心波長589nm)の光を照射しながら、上部から光学顕微鏡により粒子の輪郭を観察する。そして、輪郭が見えない場合を、屈折液と重合体粒子の屈折率が等しいと判断する。
 なお、光学顕微鏡による観察は、重合体粒子の輪郭が確認できる倍率での観察であれば特に問題ないが、粒子径5μmの粒子であれば500倍程度の観察倍率が適当である。上記操作により、重合体粒子と屈折液の屈折率が近いほど重合体粒子の輪郭が見えにくくなることから、重合体粒子の輪郭が判りにくい屈折液の屈折率をその重合体粒子の屈折率と等しいと判断する。
 また、屈折率差が0.002の2種類の屈折液の間で重合体粒子の見え方に違いがない場合は、これら2種類の屈折液の中間の値を当該重合体粒子の屈折率と判断する。例えば、屈折率1.554と1.556の屈折液それぞれで試験をしたときに、両屈折液で重合体粒子の見え方に違いがない場合は、これら屈折液の中間値1.555を重合体粒子の屈折率と判定する。
 なお、上記の測定においては試験室気温22℃~24℃の環境下で測定を実施する。
In this specification, the refractive index is measured by a liquid immersion method.
Specifically, first, polymer particles are placed on a glass slide, and a refractive liquid (cargill standard refractive liquid, Cargill standard refractive liquid, refractive index nD25 1.496 to 1.592 refractive index difference 0.002 Add several preparations in steps). Then, after thoroughly mixing the polymer particles and the refractive liquid, the outline of the particles is observed from above with an optical microscope while irradiating light from a high pressure sodium lamp NX35 (center wavelength 589 nm) manufactured by Iwasaki Electric Co., Ltd. from below. And when the outline is not visible, it is determined that the refractive index of the refractive liquid and the polymer particles are equal.
The observation with an optical microscope is not particularly problematic as long as it is an observation at a magnification at which the outline of the polymer particles can be confirmed, but an observation magnification of about 500 times is appropriate for particles having a particle diameter of 5 μm. By the above operation, the closer the refractive index of the polymer particle to the refractive liquid, the more difficult it is to see the outline of the polymer particle. Therefore, the refractive index of the refractive liquid, which is difficult to understand the outline of the polymer particle, is referred to as the refractive index of the polymer particle. Judge that they are equal.
In addition, when there is no difference in the appearance of the polymer particles between the two types of refractive liquid having a refractive index difference of 0.002, the intermediate value between the two types of refractive liquid is set as the refractive index of the polymer particles. to decide. For example, when a test is performed with refractive liquids having a refractive index of 1.554 and a refractive index of 1.556, if there is no difference in the appearance of polymer particles between the two refractive liquids, an intermediate value of 1.555 between these refractive liquids is overlapped. The refractive index of the coalesced particles is determined.
In the above measurement, the measurement is carried out in an environment with a test room temperature of 22 ° C. to 24 ° C.
 本発明の組成物中の重合体粒子の含有量は、光拡散性の観点から、好ましくは0.1~10質量%であり、より好ましくは0.5~8質量%であり、さらに好ましくは1~5質量%である。 The content of the polymer particles in the composition of the present invention is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and still more preferably from the viewpoint of light diffusibility. 1 to 5% by mass.
 重合体粒子の製造方法は、特に限定されるものではないが、シード重合、懸濁重合、乳化重合、分散重合などの方法により製造することができる。 The method for producing the polymer particles is not particularly limited, but can be produced by methods such as seed polymerization, suspension polymerization, emulsion polymerization, and dispersion polymerization.
 シード重合法で製造する場合において、シード粒子は、メタクリル酸メチルなどのビニル系モノマー、n-オクチルメルカプタンなどの分子量調整剤、過硫酸カリウムなどの重合開始剤などを用いて公知の方法で調製することができる。シード粒子としては、特に限定されるものではないが、体積平均粒子径0.1~3.0μmが好ましく、重量平均分子量が5,000~100,000が好ましく、真球状のものが好ましい。 In the case of producing by a seed polymerization method, seed particles are prepared by a known method using a vinyl monomer such as methyl methacrylate, a molecular weight adjusting agent such as n-octyl mercaptan, a polymerization initiator such as potassium persulfate, and the like. be able to. The seed particles are not particularly limited, but a volume average particle diameter of 0.1 to 3.0 μm is preferable, a weight average molecular weight of 5,000 to 100,000 is preferable, and a true spherical particle is preferable.
 付加反応硬化型シリコーン樹脂は、シリコーン樹脂に付加反応に供される官能基を導入したものが使用される。官能基としては、ビニル基、アリル基、ブテニル基、ペテニル基、ヘキセニル基などが挙げられ、シリコーン樹脂の分子鎖の両末端、片末端、側鎖などに導入される。シリコーン樹脂としては、ポリジメチルシロキサン、ポリジフェニルシロキサンなどが挙げられる。 As the addition reaction curable silicone resin, a silicone resin having a functional group used for an addition reaction is used. Examples of the functional group include a vinyl group, an allyl group, a butenyl group, a petenyl group, and a hexenyl group, which are introduced into both ends, one end, and side chains of the molecular chain of the silicone resin. Examples of the silicone resin include polydimethylsiloxane and polydiphenylsiloxane.
 本発明の組成物中の付加反応硬化型シリコーン樹脂の含有量は、光拡散性の観点から、好ましくは30~99質量%であり、より好ましくは60~90質量%であり、さらに好ましくは50~80質量%である。 The content of the addition reaction curable silicone resin in the composition of the present invention is preferably 30 to 99% by mass, more preferably 60 to 90% by mass, and still more preferably 50% from the viewpoint of light diffusibility. ~ 80% by mass.
 本発明の組成物においては、付加反応硬化型以外のシリコーン樹脂を含有してもよく、例えば、メチルハイドロジェンポリシロキサン、メチルハイドロジェン基封鎖ジメチルポリシロキサンなどが挙げられる。 The composition of the present invention may contain a silicone resin other than the addition reaction curable type, and examples thereof include methyl hydrogen polysiloxane and methyl hydrogen group-blocked dimethyl polysiloxane.
 本発明の組成物は、任意に他の成分を含有することができる。他の成分としては、充填剤、反応抑制剤、難燃性付与剤、耐熱性向上剤、接着性付与剤、チキソ性付与剤、顔料、可塑剤などが挙げられる。 The composition of the present invention can optionally contain other components. Examples of other components include fillers, reaction inhibitors, flame retardants, heat resistance improvers, adhesion promoters, thixotropic agents, pigments, and plasticizers.
 本発明の組成物は、有機溶剤を含まない方が好ましい。有機溶剤を含まないことで、有機溶剤の揮発による硬化時の寸法変化は少なく、また硬化後も残存有機溶剤のブリードアウトの懸念が低く好ましい。 It is preferable that the composition of the present invention does not contain an organic solvent. By not containing an organic solvent, the dimensional change upon curing due to volatilization of the organic solvent is small, and there is little concern about bleeding out of the remaining organic solvent even after curing.
 本発明の組成物の吸湿性は、本発明の組成物を硬化させたもので評価する。この硬化物を24℃、相対湿度60%の環境下に24時間放置した後の水分値をカールフィッシャー水分計で測定して判定することができる。本発明の組成物の吸湿後の水分値は、吸湿性を低くする観点から、好ましくは500ppm以下であり、より好ましくは、450ppm以下であり、さらに好ましくは400ppm以下である。 The hygroscopicity of the composition of the present invention is evaluated by curing the composition of the present invention. The moisture value after this cured product is allowed to stand for 24 hours in an environment of 24 ° C. and a relative humidity of 60% can be determined by measuring with a Karl Fischer moisture meter. The moisture value after moisture absorption of the composition of the present invention is preferably 500 ppm or less, more preferably 450 ppm or less, and still more preferably 400 ppm or less, from the viewpoint of reducing hygroscopicity.
 なお、本発明の組成物は、塩化白金酸とビニルシロキサンの錯塩などの白金触媒下で硬化させることができる。 The composition of the present invention can be cured under a platinum catalyst such as a complex salt of chloroplatinic acid and vinyl siloxane.
 本発明の組成物の光学特性は、本発明の組成物を硬化させたもので評価する。この硬化物を透明ガラスプレート状に30μm厚で塗布し、その上にガラスカバーを貼りあわせ、塗布層を80℃で硬化させて作製されたガラスプレートのヘイズ及び全光線透過率を測定する。ここで、ヘイズは及び全光線透過率は、ヘイズ及び全光線透過率の測定は、ヘイズメーター(日本電色工業株式会社製、商品名「NDH4000」)を使用して、JIS K 7361-1に従って、測定する。 The optical properties of the composition of the present invention are evaluated by curing the composition of the present invention. The cured product is applied in a transparent glass plate shape with a thickness of 30 μm, a glass cover is bonded thereto, and the coating layer is cured at 80 ° C., and the haze and total light transmittance of the glass plate are measured. Here, haze and total light transmittance are measured according to JIS K 7361-1 using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., trade name “NDH4000”). ,taking measurement.
 本発明の組成物のヘイズは、光拡散性の観点から、好ましくは80%以上であり、より好ましくは90%以上であり、さらに好ましくは99%以上である。 The haze of the composition of the present invention is preferably 80% or more, more preferably 90% or more, and further preferably 99% or more from the viewpoint of light diffusibility.
 本発明の組成物の全光線透過率は、光拡散性の観点から、好ましくは75%以上であり、より好ましくは85%以上であり、さらに好ましくは99%以上である。 The total light transmittance of the composition of the present invention is preferably 75% or more, more preferably 85% or more, and further preferably 99% or more from the viewpoint of light diffusibility.
 本発明の組成物は、吸湿性が低く、光学特性にも優れることから、有機EL部材として好適に用いられる。 The composition of the present invention is suitably used as an organic EL member because of its low hygroscopicity and excellent optical characteristics.
 本発明の組成物は、付加反応硬化型シリコーン樹脂中に重合体粒子を分散させることにより製造することができる。 The composition of the present invention can be produced by dispersing polymer particles in an addition reaction curable silicone resin.
 以下、実施例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
製造例1(シード粒子の製造)
 攪拌機、温度計及び還流コンデンサーを備えたセパラブルフラスコに、水性媒体としての水3000gと、単官能(メタ)アクリル系単量体としてのメタクリル酸メチル500gと、分子量調整剤としてのn-オクチルメルカプタン5gとを仕込み、セパラブルフラスコの内容物を攪拌しながらセパラブルフラスコの内部を窒素置換し、セパラブルフラスコの内温を70℃に昇温した。さらに、セパラブルフラスコの内温を70℃に保ちながら、重合開始剤としての過硫酸カリウム2.5gをセパラブルフラスコの内容物に添加した後、12時間重合反応させ、エマルジョンを得た。得られたエマルジョンは、固形分(ポリメタクリル酸メチル粒子)を14質量%含有し、その固形分は、体積平均粒子径が0.45μmであり、重量平均分子量が15000である真球状粒子(シード粒子)であった。この真球状粒子を含むエマルジョンをシード粒子分散体として、後述する重合体粒子の製造に用いた。
Production Example 1 (Production of seed particles)
In a separable flask equipped with a stirrer, a thermometer and a reflux condenser, 3000 g of water as an aqueous medium, 500 g of methyl methacrylate as a monofunctional (meth) acrylic monomer, and n-octyl mercaptan as a molecular weight regulator The inside of the separable flask was purged with nitrogen while stirring the contents of the separable flask, and the internal temperature of the separable flask was raised to 70 ° C. Furthermore, 2.5 g of potassium persulfate as a polymerization initiator was added to the contents of the separable flask while maintaining the internal temperature of the separable flask at 70 ° C., and then the polymerization reaction was performed for 12 hours to obtain an emulsion. The obtained emulsion contains 14% by mass of solid content (polymethyl methacrylate particles), and the solid content is a true spherical particle (seed) having a volume average particle diameter of 0.45 μm and a weight average molecular weight of 15,000. Particles). This emulsion containing true spherical particles was used as a seed particle dispersion for the production of polymer particles described later.
製造例2(重合体粒子の製造)
 攪拌機及び温度計を備えた5Lの反応器に、スチレン300gと、メタクリル酸シクロヘキシル500gと、架橋剤としてのエチレングリコールジメタクリレート200gと重合開始剤としての2,2’-アゾビスイソブチロニトリル8gとを互いに溶解させて単量体混合物を得た。得られた単量体混合物を、予めノニオン性界面活性剤としてのポリオキシエチレンオクチルフェニルエーテル10gをイオン交換水990gに溶解させることにより得られた界面活性剤水溶液1000gと混合し、高速乳化・分散機(商品名「ホモミクサーMARK II 2.5型」、プライミクス株式会社製)に入れて10000rpmで10分間処理して、乳化液を得た。この乳化液に、製造例1で得られたシード粒子分散体24g(固形分3.4g)を加え、30℃で3時間攪拌し、分散体を得た。この分散体に、高分子分散安定剤としてのポリビニルアルコール(日本合成化学工業株式会社製、商品名「ゴーセノール(登録商標)GH-17」)の4質量%水溶液2000gと、重合禁止剤としての亜硝酸ナトリウム0.6gとを加え、その後、70℃で5時間攪拌し次いで105℃で2.5時間攪拌することにより重合反応を行った。重合後の分散体を加圧濾過機にて脱水し、温水を用いて洗浄した後、70℃で24時間真空乾燥することで、重合体粒子Aを得た。得られた重合体粒子Aの体積平均粒子径は1.5μm、屈折率は1.525であった。
Production Example 2 (Production of polymer particles)
In a 5 L reactor equipped with a stirrer and a thermometer, 300 g of styrene, 500 g of cyclohexyl methacrylate, 200 g of ethylene glycol dimethacrylate as a crosslinking agent, and 8 g of 2,2′-azobisisobutyronitrile as a polymerization initiator. Were dissolved in each other to obtain a monomer mixture. The obtained monomer mixture was mixed with 1000 g of a surfactant aqueous solution obtained by dissolving 10 g of polyoxyethylene octylphenyl ether as a nonionic surfactant in 990 g of ion-exchanged water in advance, and high-speed emulsification / dispersion An emulsion (trade name “Homomixer MARK II 2.5 type”, manufactured by Primix Co., Ltd.) was processed at 10000 rpm for 10 minutes to obtain an emulsion. To this emulsion was added 24 g of the seed particle dispersion obtained in Production Example 1 (solid content: 3.4 g), and the mixture was stirred at 30 ° C. for 3 hours to obtain a dispersion. To this dispersion, 2000 g of a 4% by mass aqueous solution of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry, trade name “GOHSENOL (registered trademark) GH-17”) as a polymer dispersion stabilizer, and a polymerization inhibitor 0.6 g of sodium nitrate was added, and then the polymerization reaction was carried out by stirring at 70 ° C. for 5 hours and then stirring at 105 ° C. for 2.5 hours. The dispersion after polymerization was dehydrated with a pressure filter, washed with warm water, and then vacuum dried at 70 ° C. for 24 hours to obtain polymer particles A. The obtained polymer particles A had a volume average particle diameter of 1.5 μm and a refractive index of 1.525.
製造例3(重合体粒子の表面被覆)
 製造例2で得られた重合体粒子Aにメチルハイドロジェンポリシロキサンにて表面被覆を実施した。メチルハイドロジェンポリシロキサン30gをイソプロピルアルコール1000gに溶解させた。続いて溶液を重合体粒子A500gに対し、スプレーでまんべんなく塗布した。その後、塗布された重合体粒子を70℃で24時間真空乾燥することでイソプロピルアルコールを除去することで、メチルハイドロジェンポリシロキサンで表面被覆された重合体粒子A-2を得た。得られた重合体粒子A-2の疎水性指数は81、水分含有量は0.03%であった。
Production Example 3 (Surface coating of polymer particles)
The polymer particles A obtained in Production Example 2 were surface-coated with methyl hydrogen polysiloxane. 30 g of methyl hydrogen polysiloxane was dissolved in 1000 g of isopropyl alcohol. Subsequently, the solution was uniformly applied to 500 g of polymer particles A by spraying. Thereafter, the applied polymer particles were vacuum-dried at 70 ° C. for 24 hours to remove isopropyl alcohol, thereby obtaining polymer particles A-2 whose surface was coated with methyl hydrogen polysiloxane. The obtained polymer particle A-2 had a hydrophobicity index of 81 and a water content of 0.03%.
製造例4
 メタクリル酸シクロヘキシルを300g、スチレンを600g、エチレングリコールジメタクリレートを100gとしたこと以外は製造例2と同様にして重合体粒子Bを得た。得られた重合体粒子Bの体積平均粒子径は1.5μm、屈折率は1.555であった。その後、製造例3と同様にして表面処理を実施し、メチルハイドロジェンポリシロキサンで表面処理された重合体粒子B-2を得た。得られた重合体粒子C-2の疎水性指数は82、水分含有量は0.05%であった。
Production Example 4
Polymer particles B were obtained in the same manner as in Production Example 2, except that 300 g of cyclohexyl methacrylate, 600 g of styrene, and 100 g of ethylene glycol dimethacrylate were used. The obtained polymer particles B had a volume average particle diameter of 1.5 μm and a refractive index of 1.555. Thereafter, the surface treatment was performed in the same manner as in Production Example 3 to obtain polymer particles B-2 surface-treated with methyl hydrogen polysiloxane. The obtained polymer particle C-2 had a hydrophobicity index of 82 and a moisture content of 0.05%.
製造例5
 メタクリル酸シクロヘキシルの代わりにメタクリル酸メチル500gを用いたこと以外は、製造例2と同様にして重合体粒子Cを得た。得られた重合体粒子Cの体積平均粒子径は1.5μm、屈折率は1.525であった。その後、製造例3と同様にして表面処理を実施し、メチルハイドロジェンポリシロキサンで表面処理された重合体粒子C-2を得た。得られた重合体粒子C-2の疎水性指数は45、水分含有量は0.7%であった。
Production Example 5
Polymer particles C were obtained in the same manner as in Production Example 2, except that 500 g of methyl methacrylate was used instead of cyclohexyl methacrylate. The obtained polymer particles C had a volume average particle diameter of 1.5 μm and a refractive index of 1.525. Thereafter, the surface treatment was performed in the same manner as in Production Example 3 to obtain polymer particles C-2 surface-treated with methyl hydrogen polysiloxane. The obtained polymer particle C-2 had a hydrophobicity index of 45 and a water content of 0.7%.
製造例6
 メタクリル酸シクロヘキシルの代わりにメタクリル酸イソブチルを450g、スチレンを450g、エチレングリコールジメタクリレートを100gとしたこと以外は製造例2と同様にして重合体粒子Dを得た。得られた重合体粒子Dの体積平均粒子径は1.5μm、屈折率は1.535であった。その後、製造例3と同様にして表面処理を実施し、メチルハイドロジェンポリシロキサンで表面処理された重合体粒子D-2を得た。得られた重合体粒子D-2の疎水性指数は72、水分含有量は0.04%であった。
Production Example 6
Polymer particles D were obtained in the same manner as in Production Example 2, except that 450 g of isobutyl methacrylate, 450 g of styrene, and 100 g of ethylene glycol dimethacrylate were used instead of cyclohexyl methacrylate. The obtained polymer particles D had a volume average particle diameter of 1.5 μm and a refractive index of 1.535. Thereafter, the surface treatment was performed in the same manner as in Production Example 3 to obtain polymer particles D-2 surface-treated with methyl hydrogen polysiloxane. The obtained polymer particle D-2 had a hydrophobicity index of 72 and a water content of 0.04%.
実施例1~3、比較例1~2
 150℃で2時間減圧乾燥したポリジメチルシロキサン(23℃における粘度が3000mPa・sであり、分子鎖両末端がジメチルビニルシロキシ基で封鎖されたもの)100質量部とメチルハイドロジェンポリシロキサン10質量部、及び表1に記載した重合体粒子5質量部を混合し、触媒として塩化白金酸とビニルシロキサンの錯塩(白金原子として約10ppm)の存在下、室温で均一に硬化させた。こうして実施例1~3、比較例1~2の重合体粒子含有シリコーン樹脂組成物を得た。
Examples 1 to 3 and Comparative Examples 1 to 2
100 parts by mass of polydimethylsiloxane dried under reduced pressure at 150 ° C. for 2 hours (viscosity at 23 ° C. is 3000 mPa · s, both ends of the molecular chain blocked with dimethylvinylsiloxy groups) and 10 parts by mass of methyl hydrogen polysiloxane And 5 parts by mass of the polymer particles described in Table 1 were mixed and cured uniformly at room temperature in the presence of a complex salt of chloroplatinic acid and vinylsiloxane (about 10 ppm as platinum atoms) as a catalyst. Thus, the polymer particle-containing silicone resin compositions of Examples 1 to 3 and Comparative Examples 1 to 2 were obtained.
<吸湿性>
 各実施例、比較例で得られた重合体粒子含有シリコーン樹脂組成物の水分値、及び当該組成物を24℃、相対湿度60%の環境下に24時間放置した後の水分値をカールフィッシャー水分計で測定し、以下の基準で評価した。結果を表1に示す。
 ○:吸湿後の水分値500ppm以下
 ×:吸湿後の水分値500ppm以上
<Hygroscopicity>
The water content of the polymer particle-containing silicone resin compositions obtained in each Example and Comparative Example, and the water value after leaving the composition in an environment of 24 ° C. and 60% relative humidity for 24 hours are Karl Fischer moisture values. Measured with a total, and evaluated according to the following criteria. The results are shown in Table 1.
○: Moisture value after moisture absorption 500 ppm or less ×: Moisture value after moisture absorption 500 ppm or more
<光学特性>
 各実施例、比較例で得られた重合体粒子含有シリコーン樹脂組成物を透明ガラスプレート状に30μm厚で塗布し、その上にガラスカバーを貼りあわせた。塗布層を80℃で硬化させた。こうして作製されたガラスプレートの光学特性(全光線透過率、ヘイズ)を以下の基準で評価した。結果を表1に示す。なお、全光線透過率は80%以上であれば有機EL部材として好適に使用することができる。
 ○:ヘイズ80%以上
 ×:ヘイズ80%以下
<Optical characteristics>
The polymer particle-containing silicone resin composition obtained in each Example and Comparative Example was applied in a transparent glass plate shape with a thickness of 30 μm, and a glass cover was bonded thereto. The coating layer was cured at 80 ° C. The optical properties (total light transmittance, haze) of the glass plate thus prepared were evaluated according to the following criteria. The results are shown in Table 1. In addition, if a total light transmittance is 80% or more, it can be used conveniently as an organic EL member.
○: Haze 80% or more ×: Haze 80% or less
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、重合性組成物として炭素数4以上のアルキル基又はシクロアルキル基を有する(メタ)アクリル酸エステル、スチレン系化合物、及び架橋剤を含む重合体粒子を使用した実施例1~3は、吸湿性、光学特性が良好であった。一方、重合性組成物として特定のエステル化合物を含まない重合体粒子を使用した比較例1では吸湿性が劣るものであり、シリコーン樹脂粒子を使用した比較例2では光学特性が劣るものであった。 From Table 1, Examples 1 to 3 using polymer particles containing a (meth) acrylic acid ester having a C 4 or more alkyl group or a cycloalkyl group, a styrene compound, and a crosslinking agent as the polymerizable composition are as follows: Hygroscopicity and optical properties were good. On the other hand, Comparative Example 1 using polymer particles that do not contain a specific ester compound as the polymerizable composition has poor hygroscopicity, and Comparative Example 2 using silicone resin particles has poor optical properties. .
 本発明の重合体粒子含有シリコーン樹脂組成物は、有機EL部材として好適な組成物を提供できる。 The polymer particle-containing silicone resin composition of the present invention can provide a composition suitable as an organic EL member.

Claims (5)

  1.  重合体粒子と付加反応硬化型シリコーン樹脂を含有する、重合体粒子含有シリコーン樹脂組成物であって、前記重合体粒子が、炭素数4以上のアルキル基又はシクロアルキル基を有する(メタ)アクリル酸エステル及びカルボン酸ビニルからなる群より選択される一種以上のエステル化合物、スチレン系化合物、並びに架橋剤を含む重合性組成物の架橋重合体粒子を含むことを特徴とする、重合体粒子含有シリコーン樹脂組成物。 A polymer particle-containing silicone resin composition comprising polymer particles and an addition reaction curable silicone resin, wherein the polymer particles have an alkyl group or a cycloalkyl group having 4 or more carbon atoms (meth) acrylic acid Polymer particle-containing silicone resin comprising a crosslinked polymer particle of a polymerizable composition comprising at least one ester compound selected from the group consisting of an ester and vinyl carboxylate, a styrene compound, and a crosslinking agent Composition.
  2.  重合体粒子の屈折率が1.500~1.570である、請求項1に記載の重合体粒子含有シリコーン樹脂組成物。 2. The polymer particle-containing silicone resin composition according to claim 1, wherein the polymer particles have a refractive index of 1.500 to 1.570.
  3.  重合体粒子がさらにシリコーン樹脂を含む、請求項1又は2に記載の重合体粒子含有シリコーン樹脂組成物。 The polymer particle-containing silicone resin composition according to claim 1 or 2, wherein the polymer particles further contain a silicone resin.
  4.  炭素数4以上のアルキル基又はシクロアルキル基を有する(メタ)アクリル酸エステル及びカルボン酸ビニルからなる群より選択される一種以上のエステル化合物、スチレン系化合物、並びに架橋剤を含む重合性組成物の架橋重合体粒子を含む、重合体粒子。 A polymerizable composition comprising one or more ester compounds selected from the group consisting of (meth) acrylic acid esters having 4 or more carbon atoms or cycloalkyl groups and vinyl carboxylates, styrenic compounds, and crosslinking agents. Polymer particles, including crosslinked polymer particles.
  5.  重合体粒子がさらにシリコーン樹脂を含む、請求項4に記載の重合体粒子。 The polymer particles according to claim 4, wherein the polymer particles further contain a silicone resin.
PCT/JP2018/010928 2017-03-31 2018-03-20 Polymer-particle-containing silicone resin composition WO2018180739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509366A JP6934513B2 (en) 2017-03-31 2018-03-20 Polymer particle-containing silicone resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-071629 2017-03-31
JP2017071629 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180739A1 true WO2018180739A1 (en) 2018-10-04

Family

ID=63675861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010928 WO2018180739A1 (en) 2017-03-31 2018-03-20 Polymer-particle-containing silicone resin composition

Country Status (2)

Country Link
JP (1) JP6934513B2 (en)
WO (1) WO2018180739A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711141A (en) * 1993-06-21 1995-01-13 Nippon Paint Co Ltd Curable resin composition
JP2001114808A (en) * 1999-10-21 2001-04-24 Mitsubishi Rayon Co Ltd Latex of polymer containing acid group and rubber latex having increased particle diameter by the polymer latex
JP2002514250A (en) * 1997-01-15 2002-05-14 イーストマン ケミカル カンパニー Aqueous silicon hydride crosslinkable latex composition and method for producing the same
JP2009242626A (en) * 2008-03-31 2009-10-22 Sekisui Plastics Co Ltd Cross-linked styrene-(meth)acrylic copolymer particle, its production method, composition for artificial marble, and artificial marble
JP2010083987A (en) * 2008-09-30 2010-04-15 Nippon Shokubai Co Ltd Organic particle and organic particle-containing composition using the same
JP2011068724A (en) * 2009-09-24 2011-04-07 Shin-Etsu Chemical Co Ltd Light-diffusible silicone rubber composition and molded form
JP2013100508A (en) * 2012-12-07 2013-05-23 Nippon Shokubai Co Ltd Epoxy resin composition
JP2015155532A (en) * 2014-01-14 2015-08-27 積水化学工業株式会社 Base particle, conductive particle, conductive material and connection structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711141A (en) * 1993-06-21 1995-01-13 Nippon Paint Co Ltd Curable resin composition
JP2002514250A (en) * 1997-01-15 2002-05-14 イーストマン ケミカル カンパニー Aqueous silicon hydride crosslinkable latex composition and method for producing the same
JP2001114808A (en) * 1999-10-21 2001-04-24 Mitsubishi Rayon Co Ltd Latex of polymer containing acid group and rubber latex having increased particle diameter by the polymer latex
JP2009242626A (en) * 2008-03-31 2009-10-22 Sekisui Plastics Co Ltd Cross-linked styrene-(meth)acrylic copolymer particle, its production method, composition for artificial marble, and artificial marble
JP2010083987A (en) * 2008-09-30 2010-04-15 Nippon Shokubai Co Ltd Organic particle and organic particle-containing composition using the same
JP2011068724A (en) * 2009-09-24 2011-04-07 Shin-Etsu Chemical Co Ltd Light-diffusible silicone rubber composition and molded form
JP2013100508A (en) * 2012-12-07 2013-05-23 Nippon Shokubai Co Ltd Epoxy resin composition
JP2015155532A (en) * 2014-01-14 2015-08-27 積水化学工業株式会社 Base particle, conductive particle, conductive material and connection structure

Also Published As

Publication number Publication date
JPWO2018180739A1 (en) 2019-12-26
JP6934513B2 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
JP5345891B2 (en) Anti-glare film and method for producing the same
JP5000613B2 (en) Organic particle-containing composition
JP5643091B2 (en) Method for preparing modified metal oxide nanoparticle dispersion
JP5436833B2 (en) Polymer fine particles and method for producing the same
JP5379130B2 (en) Resin particles with numerous indentations on the surface
JP2016027069A (en) Flame-retardant material and its application
TW200900746A (en) Particles for anti-glare film, and a composition containing the same
JP2010107616A (en) Light diffusing particle and method of manufacturing the same, light diffusing resin composition and application thereof
JP2007308634A (en) Light diffusion polymer particle, method for producing the same, and light diffusion sheet containing the light diffusion polymer particle
JP2013231133A (en) Polymer particle and polymer particle-containing composition
JP2008007666A (en) Optical material composition, method for producing the same, and optical material molded article
JP5500981B2 (en) Resin particles for light diffusion film, method for producing the same, and light diffusion film
JP2021185431A (en) Hard coat film and curable composition
JP2004348000A (en) Light diffusion sheet
WO2018180739A1 (en) Polymer-particle-containing silicone resin composition
JP5860689B2 (en) Organic particles for light diffusion media
JP5450316B2 (en) POLYMER PARTICLE AND POLYMER PARTICLE-CONTAINING COMPOSITION USING THE SAME
JP5522957B2 (en) Polymer particle aggregate, method for producing the same, light diffusing agent, and light diffusing resin composition
JP2019183137A (en) Polymerizable composition containing inorganic oxide particle or siloxane compound, manufacturing method of layer using the polymerizable composition, and layer containing inorganic oxide particle or siloxane compound
JP2007204535A (en) Light-diffusing styrene-based resin composition and molding
KR101422666B1 (en) Acrylic fine particles and diffusing film comprising the same
WO2015050266A1 (en) Polymer microparticle composition and use thereof as light diffusing agent
JP5666487B2 (en) Oval shaped resin particles, production method thereof, and use thereof
TW200844174A (en) Particles for anti-glare film, process for producing the same, and a composition containing particles for anti-glare film
JP2021195521A (en) Molded body and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509366

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774697

Country of ref document: EP

Kind code of ref document: A1