JP5522957B2 - Polymer particle aggregate, method for producing the same, light diffusing agent, and light diffusing resin composition - Google Patents

Polymer particle aggregate, method for producing the same, light diffusing agent, and light diffusing resin composition Download PDF

Info

Publication number
JP5522957B2
JP5522957B2 JP2009042737A JP2009042737A JP5522957B2 JP 5522957 B2 JP5522957 B2 JP 5522957B2 JP 2009042737 A JP2009042737 A JP 2009042737A JP 2009042737 A JP2009042737 A JP 2009042737A JP 5522957 B2 JP5522957 B2 JP 5522957B2
Authority
JP
Japan
Prior art keywords
polymer
aggregate
polymer particle
particles
polymer particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009042737A
Other languages
Japanese (ja)
Other versions
JP2010138365A (en
Inventor
博信 久保田
健三 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2009042737A priority Critical patent/JP5522957B2/en
Publication of JP2010138365A publication Critical patent/JP2010138365A/en
Application granted granted Critical
Publication of JP5522957B2 publication Critical patent/JP5522957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、重合体粒子集合体、その製造方法、光拡散剤及び光拡散性樹脂組成物に関する。本発明の重合体粒子集合体は、例えば、照明カバー用の光拡散剤、液晶表示装置の光拡散板の光拡散剤として好適に使用できる。   The present invention relates to a polymer particle aggregate, a method for producing the same, a light diffusing agent, and a light diffusing resin composition. The polymer particle aggregate of the present invention can be suitably used as, for example, a light diffusing agent for a lighting cover or a light diffusing agent for a light diffusing plate of a liquid crystal display device.

従来、照明カバー、液晶表示装置の光拡散板において、照明の光源、液晶パネルのバックライトから発せられる光を均一に拡散させることが望まれている。光を拡散させる方法としては、仕上げ加工の際に加熱・加圧によって表面に凹凸をつける、いわゆるエンボス加工を施した光拡散シートを用いる方法や、酸化チタン、ガラスビーズ、シリカ等の無機粉体を含有した光拡散層を備えた光拡散板を用いる方法や、(メタ)アクリル系重合体粒子を含む光拡散層を備えた光拡散板を用いる方法等がある。
この中でも重合体粒子を用いた光拡散板は、透明性と光拡散性が両立しており、優れた光拡散板であることが知られている(例えば、特開平6−32973号公報:特許文献1)。
Conventionally, it has been desired to uniformly diffuse light emitted from a light source of illumination and a backlight of a liquid crystal panel in a light diffusing plate of a lighting cover and a liquid crystal display device. As a method of diffusing light, a method using a so-called embossed light diffusing sheet that gives unevenness to the surface by heating and pressing during finishing processing, or inorganic powder such as titanium oxide, glass beads, silica, etc. There are a method using a light diffusing plate provided with a light diffusing layer containing, a method using a light diffusing plate provided with a light diffusing layer containing (meth) acrylic polymer particles, and the like.
Among these, light diffusion plates using polymer particles are known to be both excellent in transparency and light diffusion and to be excellent light diffusion plates (for example, JP-A-6-32973: Patent Reference 1).

光拡散層は、重合体粒子と透明性樹脂とからなり、光拡散剤として用いられる重合体粒子には、光拡散性に加えて、透明性樹脂への分散性も求められる。更に、樹脂のような分散媒体へ混合して押出成形で成形体を形成する場合には、加工時に成形体にメヤニが発生しないことが求められる。
分散性の観点から重合体粒子を検討した技術として、例えば、特開昭58−74724号公報(特許文献2)がある。この公報では、重合体粒子を水に分散させた分散液を噴霧乾燥させることで、重合体粒子の集合体を形成する技術が記載されており、この集合体は水への再分散性が良好であるとされている。
また、特開2000−53720号公報(特許文献3)にも、噴霧乾燥により、重合体粒子の集合体を形成する技術が記載されている。
The light diffusion layer is composed of polymer particles and a transparent resin, and the polymer particles used as the light diffusing agent are required to have dispersibility in the transparent resin in addition to the light diffusibility. Furthermore, when a molded body is formed by extrusion molding after mixing with a dispersion medium such as a resin, it is required that no molding occurs on the molded body during processing.
As a technique for examining polymer particles from the viewpoint of dispersibility, for example, there is JP-A-58-74724 (Patent Document 2). This publication describes a technique for forming an aggregate of polymer particles by spray-drying a dispersion in which polymer particles are dispersed in water, and this aggregate has good redispersibility in water. It is said that.
Japanese Patent Laid-Open No. 2000-53720 (Patent Document 3) also describes a technique for forming an aggregate of polymer particles by spray drying.

特開平6−32973号公報JP-A-6-32973 特開昭58−74724号公報JP 58-74724 A 特開2000−53720号公報JP 2000-53720 A

特開昭58−74724号公報に記載の集合体は、それを構成する重合体粒子が架橋構造を持たないため、重合体粒子の耐熱性が低く、集合体作製時に重合体粒子間の融着が起こりやすいという課題があった。融着の発生は、透明性樹脂への分散性を低下させることになる。
更に、特開2000−53720号公報の技術は、比表面積を大きくするために、強度の高い重合体粒子が分散し難い集合体を得ることを目的としており、重合体粒子の分散性を向上させるために重合体粒子の集合体を形成するという技術的な思想は記載されていない。
In the aggregate described in JP-A-58-74724, since the polymer particles constituting the aggregate do not have a cross-linked structure, the heat resistance of the polymer particles is low, and the fusion between the polymer particles during the production of the aggregate There was a problem that is likely to occur. Generation | occurrence | production of melt | fusion will reduce the dispersibility to transparent resin.
Furthermore, the technique disclosed in Japanese Patent Application Laid-Open No. 2000-53720 aims to obtain an aggregate in which high-strength polymer particles are difficult to disperse in order to increase the specific surface area, thereby improving dispersibility of the polymer particles. Therefore, the technical idea of forming an aggregate of polymer particles is not described.

本発明の発明者等は、鋭意検討を重ねた結果、重合体粒子、界面活性剤及び無機粉末を含む分散液を、特定の温度条件の噴霧式乾燥方法により乾燥させることで得られた重合体

粒子集合体が、上記課題を解決できることを見出し本発明に至った。
かくして本発明によれば、スチレン系単量体及び(メタ)アクリル系単量体から選択される単官能単量体と、スチレン系単量体及び(メタ)アクリル系単量体から選択される多官能単量体とを含む単量体混合物からなる重合体粒子と、界面活性剤と、無機粉末と、水性媒体とを含むスラリーを噴霧乾燥させることで前記重合体粒子の集合体を得ることからなり、
前記多官能単量体が、前記単官能単量体100重量に対して、1〜100重量部使用され、
前記界面活性剤が、前記単官能単量体と多官能単量体との合計100重量部に対して、1〜10重量部使用され、
前記無機粉末が、前記単官能単量体と多官能単量体との合計100重量部に対して、1〜40重量部使用され、
前記噴霧乾燥が、80〜220℃の噴霧乾燥機のスラリー入口温度、50〜100℃の噴霧乾燥機の集合体出口温度の条件で行われ
前記重合体粒子の集合体は、水50gに対して前記重合体粒子の集合体を0.50g含む分散液に10分間超音波を照射した後の分散液中の粒子が、前記重合体粒子の集合体を構成する重合体粒子の平均粒子径の±1μmの粒子を90%以上含む粒度分布を有する集合体であることを特徴とする重合体粒子集合体の製造方法が提供される。

As a result of intensive studies, the inventors of the present invention have obtained a polymer obtained by drying a dispersion containing polymer particles, a surfactant and an inorganic powder by a spray drying method under specific temperature conditions.

The present inventors have found that a particle aggregate can solve the above-mentioned problems and have reached the present invention.
Thus, according to the present invention, a monofunctional monomer selected from styrene monomers and (meth) acrylic monomers, and styrene monomers and (meth) acrylic monomers are selected. Obtaining an aggregate of the polymer particles by spray drying a slurry containing a polymer mixture comprising a monomer mixture containing a polyfunctional monomer, a surfactant, an inorganic powder, and an aqueous medium. Consists of
The polyfunctional monomer is used in an amount of 1 to 100 parts by weight based on 100 weights of the monofunctional monomer,
The surfactant is used in an amount of 1 to 10 parts by weight with respect to 100 parts by weight in total of the monofunctional monomer and the polyfunctional monomer,
The inorganic powder is used in an amount of 1 to 40 parts by weight with respect to a total of 100 parts by weight of the monofunctional monomer and polyfunctional monomer,
The spray drying, the slurry inlet temperature of 80 to 220 ° C. in a spray dryer, conducted under the conditions of collection outlet temperature of 50 to 100 ° C. in a spray drier,
The aggregate of the polymer particles is obtained by irradiating the dispersion containing 0.50 g of the aggregate of polymer particles with 50 g of water for 10 minutes with ultrasonic waves. polymer production method of particle aggregates, wherein the aggregate der Rukoto having a particle size distribution containing particles of more than 90% ± 1 [mu] m of the average particle size of the polymer particles constituting the aggregate is provided.

また、本発明によれば、上記方法により得られた重合体粒子集合体であり、前記重合体粒子集合体は、水50gに対して前記重合体粒子集合体を0.50g含む分散液に10分間超音波を照射した後の分散液中の粒子が、前記重合体粒子集合体を構成する重合体粒子の平均粒子径の±1μmの粒子を90%以上含む粒度分布を有する集合体であることを特徴とする重合体粒子集合体が提供される。
更に、本発明によれば、上記重合体粒子集合体からなる光拡散剤が提供される。
また更に、透明基材樹脂100重量部と、上記光拡散剤0.01〜40重量部とを含む光拡散性樹脂組成物が提供される。
Further, according to the present invention, there is provided a polymer particle aggregate obtained by the above method, wherein the polymer particle aggregate is 10 in a dispersion containing 0.50 g of the polymer particle aggregate with respect to 50 g of water. The particles in the dispersion after being irradiated with ultrasonic waves for a minute are aggregates having a particle size distribution containing 90% or more of particles having an average particle diameter of ± 1 μm of the polymer particles constituting the polymer particle aggregate. A polymer particle aggregate is provided.
Furthermore, according to this invention, the light-diffusion agent which consists of said polymer particle aggregate is provided.
Furthermore, a light diffusing resin composition comprising 100 parts by weight of a transparent base resin and 0.01 to 40 parts by weight of the light diffusing agent is provided.

本発明の製造方法によれば、相互の連結が抑制された重合体粒子の集合体を得ることができる。得られた集合体は、樹脂のような分散媒体への重合体粒子の分散性が優れている。また、別途、集合体の重合体粒子への粉砕工程を別途設ける必要がないので、重合体粒子を含む成形体の生産性を向上でき、成形体の性能のばらつきも抑制できる。
多官能単量体が、エチレングリコールジメタクリレート又はジビニルベンゼンである場合、より相互の連結が抑制された重合体粒子の集合体を得ることができる。
無機粉末が、炭酸カルシウム、コロイダルシリカ、硫酸バリウム、酸化チタンから選択される場合、より相互の連結が抑制された重合体粒子の集合体を得ることができる。
また、無機粉末が、疎水化処理された無機粉末であることで、得られた集合体を樹脂のような分散媒体へ分散させる際に、重合体粒子の分散媒体への分散性をより改善できる。また、無機粉末が疎水化処理された無機粉末である場合、疎水性表面と樹脂とのなじみがよいために高い密着性が得られる。その結果、温度、湿度等といった環境変化による成形体の機能劣化を抑制できる。
更に、疎水化処理された無機粉末が、疎水化処理された、コロイダルシリカ又は酸化チタンであることで、重合体粒子の分散媒体への分散性を更に改善できる。
また、本発明の光拡散剤は、光拡散性が良好である。加えて、樹脂のような分散媒体との加工性が優れている。
According to the production method of the present invention, it is possible to obtain an aggregate of polymer particles whose mutual connection is suppressed. The obtained aggregate is excellent in the dispersibility of the polymer particles in a dispersion medium such as a resin. In addition, since it is not necessary to separately provide a step of crushing the aggregates into the polymer particles, the productivity of the molded body including the polymer particles can be improved, and variations in the performance of the molded body can be suppressed.
When the polyfunctional monomer is ethylene glycol dimethacrylate or divinylbenzene, an aggregate of polymer particles in which mutual coupling is further suppressed can be obtained.
When the inorganic powder is selected from calcium carbonate, colloidal silica, barium sulfate, and titanium oxide, an aggregate of polymer particles in which the mutual connection is further suppressed can be obtained.
Further, since the inorganic powder is a hydrophobic treated inorganic powder, the dispersibility of the polymer particles in the dispersion medium can be further improved when the obtained aggregate is dispersed in a dispersion medium such as a resin. . Further, when the inorganic powder is an inorganic powder that has been subjected to a hydrophobic treatment, high adhesion can be obtained because of the familiarity between the hydrophobic surface and the resin. As a result, it is possible to suppress functional deterioration of the molded body due to environmental changes such as temperature and humidity.
Furthermore, the dispersibility of the polymer particles in the dispersion medium can be further improved by the hydrophobic treated inorganic powder being colloidal silica or titanium oxide subjected to the hydrophobic treatment.
The light diffusing agent of the present invention has good light diffusibility. In addition, processability with a dispersion medium such as a resin is excellent.

更に、本発明の光拡散性樹脂組成物は、重合体粒子の分散性が高く、この組成物から得られる成形体への押出成形加工時におけるメヤニの発生を抑制する効果を持っている。その結果、成形体の外観が不良となる課題を抑制できる。加えて、光拡散性樹脂組成物中の重合体粒子には、光拡散性を向上させるために、粒子径を小さくすることが望まれる。しかし、粒子径の小さな重合体粒子は、組成物作製工程で、粉塵として舞いやすいことや流動性が悪いこと等の原因により取り扱いにくかった。本発明では、重合体粒子の集合体を使用しているため、取り扱いが容易であり、かつ、分散性が優れているため、容易に一次粒子である重合体粒子として、透明樹脂基材に分散可能である。   Furthermore, the light diffusing resin composition of the present invention has a high dispersibility of the polymer particles, and has an effect of suppressing the occurrence of scum at the time of extrusion molding to a molded body obtained from this composition. As a result, it is possible to suppress the problem that the appearance of the molded body becomes defective. In addition, the polymer particles in the light diffusing resin composition are desired to have a small particle diameter in order to improve light diffusibility. However, the polymer particles having a small particle size are difficult to handle due to the fact that they are likely to act as dust or have poor fluidity in the composition preparation process. In the present invention, since an aggregate of polymer particles is used, since it is easy to handle and has excellent dispersibility, it is easily dispersed as a primary particle in the transparent resin substrate. Is possible.

拡散率の測定方法の概略説明図である。It is a schematic explanatory drawing of the measuring method of a spreading | diffusion rate. 実施例1の重合体粒子集合体の電子顕微鏡写真である。2 is an electron micrograph of a polymer particle aggregate of Example 1. FIG.

本発明によれば、スチレン系単量体及び(メタ)アクリル系単量体から選択される単官能単量体と、スチレン系単量体及び(メタ)アクリル系単量体から選択される多官能単量体とを含む単量体混合物からなる重合体粒子と、界面活性剤と、無機粉末と、水性媒体とを含むスラリーを噴霧乾燥させることで重合体粒子(架橋粒子)の集合体(重合体粒子集合体)を得ることができる。
(1)重合体粒子の製造
(単官能単量体)
単官能単量体は、スチレン系単量体及び(メタ)アクリル系単量体から選択される。スチレン系単量体としては、スチレン、α−メチルスチレン等が挙げられ、(メタ)アクリル系単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等が挙げられる。(メタ)アクリルとは、アクリル又はメタクリルを意味する。
According to the present invention, a monofunctional monomer selected from styrene monomers and (meth) acrylic monomers, and a polyfunctional monomer selected from styrene monomers and (meth) acrylic monomers. An aggregate of polymer particles (crosslinked particles) by spray-drying a slurry containing polymer particles comprising a monomer mixture containing a functional monomer, a surfactant, an inorganic powder, and an aqueous medium ( Polymer particle aggregate) can be obtained.
(1) Production of polymer particles (Monofunctional monomer)
The monofunctional monomer is selected from styrene monomers and (meth) acrylic monomers. Examples of the styrene monomer include styrene and α-methylstyrene, and examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate. Etc. (Meth) acryl means acryl or methacryl.

(多官能単量体)
また、多官能単量体は、スチレン系単量体及び(メタ)アクリル系単量体から選択される。スチレン系単量体としては、ジビニルベンゼンが挙げられ、(メタ)アクリル系単量体としては、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリアクリレート等が挙げられる。
多官能単量体の使用量は、単官能単量体100重量部に対して、1〜100重量部の範囲である。1重量部未満では耐熱性が不十分で乾燥時に重合体粒子が融着することがある。100重量部を超えると重合中に重合体粒子が凝集し目的とする重合体粒子集合体が得られないことがある。好ましい多官能単量体の使用量は、2〜60重量部である。
(他の単量体)
単量体混合物には、ハロゲン化ビニル単量体、ビニルシアン系単量体等の他の単量体を加えてもよい。
(Polyfunctional monomer)
The polyfunctional monomer is selected from styrene monomers and (meth) acrylic monomers. Examples of the styrene monomer include divinylbenzene, and examples of the (meth) acrylic monomer include ethylene glycol di (meth) acrylate and trimethylolpropane triacrylate.
The usage-amount of a polyfunctional monomer is the range of 1-100 weight part with respect to 100 weight part of monofunctional monomers. If it is less than 1 part by weight, the heat resistance is insufficient and the polymer particles may be fused during drying. If it exceeds 100 parts by weight, the polymer particles may aggregate during the polymerization and the target polymer particle aggregate may not be obtained. A preferable amount of the polyfunctional monomer is 2 to 60 parts by weight.
(Other monomers)
Other monomers such as vinyl halide monomers and vinylcyan monomers may be added to the monomer mixture.

(界面活性剤)
界面活性剤としては、アニオン性、ノニオン性、カチオン性、両性イオン性のいずれの界面活性剤も使用できる。
アニオン性界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。
(Surfactant)
As the surfactant, any of anionic, nonionic, cationic and zwitterionic surfactants can be used.
Examples of the anionic surfactant include fatty acid oils such as sodium oleate and castor oil potassium, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfone. Acid salts, alkane sulfonates, dialkyl sulfosuccinates, alkyl phosphate esters, naphthalene sulfonate formalin condensates, polyoxyethylene alkyl phenyl ether sulfates, polyoxyethylene alkyl sulfates and the like.

ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン−オキシプロピレンブロックポリマー等が挙げられる。
カチオン性界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等が挙げられる。
両性イオン界面活性剤としては、ラウリルジメチルアミンオキサイドや、リン酸エステル系又は亜リン酸エステル系界面活性剤が挙げられる。
上記界面活性剤は、単独で又は2種以上を組み合わせて用いてもよい。
Nonionic surfactants include, for example, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, oxy Examples include ethylene-oxypropylene block polymers.
Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
Examples of the zwitterionic surfactant include lauryl dimethylamine oxide and phosphate ester or phosphite ester surfactants.
You may use the said surfactant individually or in combination of 2 or more types.

界面活性剤の使用量は、単官能単量体と多官能単量体との合計100重量部に対して1〜10重量部である。1重量部未満では重合体粒子間における融着を抑制する効果が不十分で好ましくなく、10重量部を超える場合、目的とする重合体粒子以外の新粒子が発生するので好ましくない。新粒子の発生は、光拡散剤としての機能を低下させる。より好ましい界面活性剤の使用量は、1.5〜8重量部である。   The usage-amount of surfactant is 1-10 weight part with respect to a total of 100 weight part of a monofunctional monomer and a polyfunctional monomer. If the amount is less than 1 part by weight, the effect of suppressing fusion between the polymer particles is insufficient, which is not preferable. If the amount exceeds 10 parts by weight, new particles other than the intended polymer particles are generated, which is not preferable. Generation | occurrence | production of a new particle reduces the function as a light-diffusion agent. A more preferable amount of the surfactant used is 1.5 to 8 parts by weight.

(重合体粒子の製造方法)
重合体粒子は、乳化重合、懸濁重合、分散重合、シード重合等の公知の方法により製造できる。この内、水性媒体下でのシード重合、乳化重合が好ましく、これら重合では特に粒子径が揃った重合体粒子を得ることができる。
重合体粒子の製造方法としては、例えば、
・単量体混合物を水性媒体に分散させた後、重合させる1段重合法、
・単量体を水性媒体中で重合させることで種粒子を得、次いで単量体混合物を種粒子に吸収させた後、重合させる2段重合法、
・2段重合法の種粒子を製造する工程を繰り返す多段重合法
等が挙げられる。これら重合法は、重合体粒子の所望する平均粒子径に応じて適宜選択できる。
種粒子製造用の単量体としては、特に限定されず、上記重合体粒子用の単量体をいずれも使用できる。
(Method for producing polymer particles)
The polymer particles can be produced by a known method such as emulsion polymerization, suspension polymerization, dispersion polymerization or seed polymerization. Among these, seed polymerization and emulsion polymerization in an aqueous medium are preferable, and polymer particles having particularly uniform particle diameters can be obtained by these polymerizations.
As a method for producing polymer particles, for example,
A one-stage polymerization method in which a monomer mixture is dispersed in an aqueous medium and then polymerized;
A two-stage polymerization method in which a monomer is polymerized in an aqueous medium to obtain seed particles, and then the monomer mixture is absorbed by the seed particles and then polymerized.
-The multistage polymerization method etc. which repeat the process of manufacturing the seed particle of a two-stage polymerization method are mentioned. These polymerization methods can be appropriately selected according to the desired average particle diameter of the polymer particles.
The monomer for producing seed particles is not particularly limited, and any of the above monomer for polymer particles can be used.

水性媒体としては、特に限定されず、例えば、水、水と水溶性有機媒体(メタノール、エタノール等の低級アルコール)との混合媒体が挙げられる。種粒子を製造する工程では、水性媒体は、種粒子製造用単量体100重量部に対して、通常、100〜1000重量部使用される。
また、種粒子の製造には重合開始剤を使用してもよく、使用できる重合開始剤としては、特に限定されず、公知の重合開始剤をいずれも使用できる。例えば、過硫酸カリウム、過酸化ベンゾイル、過酸化ラウロイル、ビス−3,5,5−トリメチルヘキサノイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエイト、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、t−ブチルパーオキシイソブチレート等の過酸化物類、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル、2,2−アゾビス−(2−メチルプロピオネート)、2,2−アゾビス−(2,4−ジメチルバレロニトリル)等のアゾ類が挙げられる。重合開始剤は、通常、種粒子製造用単量体100重量部に対して、0.1〜5重量部使用される。また、種粒子を製造する際の重合は、50〜80℃で、2〜20時間加熱することにより実施できる。
The aqueous medium is not particularly limited, and examples thereof include water and a mixed medium of water and a water-soluble organic medium (lower alcohol such as methanol and ethanol). In the step of producing seed particles, the aqueous medium is usually used in an amount of 100 to 1000 parts by weight with respect to 100 parts by weight of the monomer for producing seed particles.
Moreover, a polymerization initiator may be used for manufacture of seed particles, and the polymerization initiator that can be used is not particularly limited, and any known polymerization initiator can be used. For example, potassium persulfate, benzoyl peroxide, lauroyl peroxide, bis-3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2-ethylhexanoate, di-t-butylperoxyhexahydro Peroxides such as terephthalate, t-butylperoxyisobutyrate, azobisisobutyronitrile, azobisisovaleronitrile, 2,2-azobis- (2-methylpropionate), 2,2-azobis An azo such as-(2,4-dimethylvaleronitrile) can be mentioned. The polymerization initiator is usually used in an amount of 0.1 to 5 parts by weight with respect to 100 parts by weight of the monomer for producing seed particles. Moreover, superposition | polymerization at the time of manufacturing a seed particle can be implemented by heating at 50-80 degreeC for 2 to 20 hours.

単量体混合物の重合には、重合開始剤が使用できる。重合開始剤としては、通常、水系懸濁重合に用いられる油溶性の過酸化物系重合開始剤又はアゾ系重合開始剤が挙げられる。具体的には、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、キュメンハイドロパーオキサイド、シクロヘキサノンパーオキサイド、t−ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等の過酸化物系重合開始剤、
アソビスバレロニトリル、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,3−ジメチルブチロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビス(2,3,3−トリメチルブチロニトリル)、2,2’−アゾビス(2−イソプロピルブチロニトリル)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル、(2−カルバモイルアゾ)イソブチロニトリル、4,4’−アゾビス(4−シアノバレリン酸)、ジメチル−2,2’−アゾビスイソブチレート等のアゾ系開始剤、過硫酸カリウム等の過酸化塩開始剤が挙げられる。
A polymerization initiator can be used for the polymerization of the monomer mixture. Examples of the polymerization initiator include oil-soluble peroxide polymerization initiators and azo polymerization initiators that are usually used in aqueous suspension polymerization. Specific examples include benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl. Peroxide polymerization initiators such as hydroperoxide, diisopropylbenzene hydroperoxide,
Asobisvaleronitrile, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2,3-dimethylbutyronitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,3,3-trimethylbutyronitrile), 2,2′-azobis (2-isopropylbutyronitrile), 1 , 1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile, (2-carbamoylazo) isobutyronitrile, 4,4′-azobis Examples thereof include azo initiators such as (4-cyanovaleric acid) and dimethyl-2,2′-azobisisobutyrate, and peroxide salt initiators such as potassium persulfate.

なお、使用する重合開始剤は界面活性剤濃度が臨界ミセル濃度以上である場合、過硫酸カリウム等の水溶性重合開始剤を使用すると、目的とする重合体粒子以外の新粒子が発生することがある。そのためこの場合は、過酸化ベンゾイル、アゾビスイソビチロニトリル等の油溶性重合開始剤を使用するのが好ましい。
重合開始剤は、単量体混合物100重量部に対して、0.01〜10重量部用いるのが好ましく、更に好ましくは0.01〜5重量部である。重合開始剤が0.01重量部未満では、重合開始の機能を果たし難く、また、10重量部を超えて用いる場合は、コスト的に不経済であるため好ましくない。
When the surfactant concentration is higher than the critical micelle concentration, if a water-soluble polymerization initiator such as potassium persulfate is used, new particles other than the intended polymer particles may be generated. is there. Therefore, in this case, it is preferable to use an oil-soluble polymerization initiator such as benzoyl peroxide or azobisisovityronitrile.
The polymerization initiator is preferably used in an amount of 0.01 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, with respect to 100 parts by weight of the monomer mixture. When the polymerization initiator is less than 0.01 parts by weight, it is difficult to achieve the function of initiating the polymerization, and when it exceeds 10 parts by weight, it is not preferable because it is not economical.

次に、単量体混合物を重合させるための水性媒体としては、水、又は水とアルコール(例えば、メタノール、エタノール)のような水溶性溶媒との混合媒体が挙げられる。水性媒体の使用量は、重合体粒子の安定化を図るために、通常、単量体混合物100重量部に対して、100〜1000重量部である。
また、水系での乳化粒子の発生を抑えるために、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を用いてもよい。
分子量調節剤(例えば、n−オクチルメルカプタン、t−ドデシルメルカプタン等のメルカプタン類、t−テルピネン、ジペンテン等のテルペン類、クロロホルム、四塩化炭素等のハロゲン化炭化水素等)により分子量を調整してもよい。
Next, examples of the aqueous medium for polymerizing the monomer mixture include water or a mixed medium of water and a water-soluble solvent such as alcohol (for example, methanol, ethanol). The amount of the aqueous medium used is usually 100 to 1000 parts by weight with respect to 100 parts by weight of the monomer mixture in order to stabilize the polymer particles.
In order to suppress the generation of emulsified particles in an aqueous system, water-soluble polymerization inhibitors such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, and polyphenols may be used. Good.
Even if the molecular weight is adjusted by a molecular weight regulator (for example, mercaptans such as n-octyl mercaptan and t-dodecyl mercaptan, terpenes such as t-terpinene and dipentene, and halogenated hydrocarbons such as chloroform and carbon tetrachloride). Good.

更に、重合体粒子作製時に重合安定性を向上及び重合体粒子相互の融着の抑制効果を上げるために、懸濁安定剤を添加してもよい。例えば、リン酸カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛等のリン酸塩、ピロリン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸アルミニウム、ピロリン酸亜鉛等のピロリン酸塩、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム等の難水溶性無機化合物、ポリビニルアルコール等の水溶性高分子等が挙げられる。なお、懸濁安定剤の使用により後に得られる成形体(例えば、光拡散板)の黄変度が高くなり、全光線透過率を低下することがあるので、注意が必要である。
懸濁安定剤の添加量は、通常、単量体混合物100重量部に対して、0.5〜15重量部である。
Furthermore, a suspension stabilizer may be added in order to improve polymerization stability during polymer particle production and to increase the effect of suppressing fusion between polymer particles. For example, phosphates such as calcium phosphate, magnesium phosphate, aluminum phosphate, zinc phosphate, pyrophosphates such as calcium pyrophosphate, magnesium pyrophosphate, aluminum pyrophosphate, zinc pyrophosphate, magnesium carbonate, calcium hydroxide, hydroxide Examples thereof include poorly water-soluble inorganic compounds such as magnesium, aluminum hydroxide, calcium metasilicate, and calcium sulfate, and water-soluble polymers such as polyvinyl alcohol. In addition, since the yellowing degree of the molded object (for example, light diffusing plate) obtained later by use of a suspension stabilizer becomes high and may reduce a total light transmittance, it needs to be careful.
The addition amount of the suspension stabilizer is usually 0.5 to 15 parts by weight with respect to 100 parts by weight of the monomer mixture.

このようにして調整された水性媒体に単量体混合物を添加して、重合を行う。
重合反応中は、単量体混合物が球状滴として分散された水性懸濁液を攪拌することが好ましく、その攪拌は例えば、球状滴の浮上や重合後の粒子の沈降を防止できる程度に緩く行えばよい。
重合温度は30〜100℃程度にするのが好ましく、更に好ましくは、40〜80℃程度である。そしてこの重合温度を保持する時間としては、0.1〜20時間程度が好ましい。
重合により得られた重合体粒子は、0.5〜30μmの範囲の平均粒子径を有していることが光拡散性及び分散性の観点から好ましい。0.5μm未満の場合、光拡散性や全光線透過率が低下することがあり、30μmより大きい場合、光拡散性を得るために多量の重合体粒子を添加する必要があり、製造コストが大きくなることがある。より好ましい平均粒子径は、0.6〜10μmであり、0.7〜5μmが特に好ましい。
Polymerization is carried out by adding the monomer mixture to the aqueous medium thus prepared.
During the polymerization reaction, it is preferable to stir the aqueous suspension in which the monomer mixture is dispersed as spherical droplets, and the stirring is performed gently enough to prevent, for example, floating of spherical droplets and sedimentation of particles after polymerization. Just do it.
The polymerization temperature is preferably about 30 to 100 ° C, more preferably about 40 to 80 ° C. The time for maintaining this polymerization temperature is preferably about 0.1 to 20 hours.
The polymer particles obtained by polymerization preferably have an average particle size in the range of 0.5 to 30 μm from the viewpoint of light diffusibility and dispersibility. If it is less than 0.5 μm, the light diffusibility and the total light transmittance may be reduced. If it is more than 30 μm, it is necessary to add a large amount of polymer particles in order to obtain the light diffusibility, resulting in a large production cost. May be. A more preferable average particle diameter is 0.6 to 10 μm, and 0.7 to 5 μm is particularly preferable.

(無機粉末)
無機粉末の添加の時期は、重合前、重合途中、重合後のいずれも可能である。この内、重合系への無機粉末の添加は、重合安定性を低下させる場合があるので、重合後に添加することが最も好ましい。
無機粉末としては、例えば、硫酸バリウム、酸化チタン、炭酸カルシウム、コロイダルシリカ等を使用できる。
(Inorganic powder)
The inorganic powder can be added before, during or after the polymerization. Of these, the addition of inorganic powder to the polymerization system may reduce the polymerization stability, so it is most preferable to add it after the polymerization.
As the inorganic powder, for example, barium sulfate, titanium oxide, calcium carbonate, colloidal silica and the like can be used.

また、無機粉末は、疎水化処理された無機粉末であってもよい。特に、重合体粒子の相互の連結防止と、樹脂のような分散媒体への重合体粒子の分散性向上及び密着性向上の観点から、疎水化処理された、コロイダルシリカ又は酸化チタンであることがより好ましい。
更に、疎水化処理された無機粉末は、それを光拡散剤として使用した光拡散性樹脂組成物(例えば、光拡散板)に、高温での光線透過率の低下を防止しうる機能を提供できる。
Further, the inorganic powder may be an inorganic powder that has been hydrophobized. In particular, it is colloidal silica or titanium oxide that has been hydrophobized from the viewpoint of preventing mutual connection of polymer particles and improving the dispersibility and adhesion of polymer particles in a dispersion medium such as a resin. More preferred.
Furthermore, the hydrophobized inorganic powder can provide a function capable of preventing a decrease in light transmittance at a high temperature to a light diffusing resin composition (for example, a light diffusing plate) using the inorganic powder as a light diffusing agent. .

コロイダルシリカの疎水化処理に使用できる疎水化剤としては、例えば、ヘキサメチルジシラザンのようなアルキルシラザン系化合物、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、メチルトリメトキシシラン、ブチルトリメトキシシラン等のアルキルアルコキシシラン系化合物、ジメチルジクロロシラン、トリメチルクロロシラン等のクロロシラン系化合物、シリコーンオイル、シリコーンワニス等を用いることができる。
酸化チタンの疎水化処理に使用できる疎水化剤としては、例えば、ジメチルポリシロキサン、メチル水素ポリシロキサン、有機変性シリコーンオイル等のシロキサン類、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、フッ素系カップリング剤等のカップリング剤、高級脂肪酸類、高級アルコール類、高級アルキル基を有するアミン類等が挙げられる。また、酸化チタンを、疎水化処理前に、その表面をアルミニウム、珪素、ジルコニウム、チタン、亜鉛、スズ等の酸化物又は含水酸化物で被覆することで、疎水化剤との親和性を向上させてもよい。
Examples of hydrophobizing agents that can be used for hydrophobizing colloidal silica include alkylsilazane compounds such as hexamethyldisilazane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, methyltrimethoxysilane, and butyltrimethoxy. Alkyl alkoxysilane compounds such as silane, chlorosilane compounds such as dimethyldichlorosilane and trimethylchlorosilane, silicone oil, silicone varnish, and the like can be used.
Examples of hydrophobizing agents that can be used for hydrophobizing titanium oxide include siloxanes such as dimethylpolysiloxane, methylhydrogen polysiloxane, and organically modified silicone oil, silane coupling agents, titanate coupling agents, and aluminum cups. Examples thereof include coupling agents such as ring agents and fluorine-based coupling agents, higher fatty acids, higher alcohols, and amines having a higher alkyl group. In addition, before hydrophobizing the titanium oxide, its surface is coated with an oxide or hydrous oxide such as aluminum, silicon, zirconium, titanium, zinc, tin, etc., thereby improving the affinity with the hydrophobizing agent. May be.

無機粉末の平均粒子径は、0.01〜6μmの範囲であることが好ましい。平均粒子径が0.01μm未満及び6μmを超えた場合、重合体粒子の融着を抑制する効果が低くなることがある。より好ましい平均粒子径は、0.01〜5μmの範囲であり、更に好ましい平均粒子径は、0.02〜2μmの範囲である。   The average particle diameter of the inorganic powder is preferably in the range of 0.01 to 6 μm. When the average particle size is less than 0.01 μm and exceeds 6 μm, the effect of suppressing fusion of the polymer particles may be reduced. A more preferable average particle diameter is in the range of 0.01 to 5 μm, and a further preferable average particle diameter is in the range of 0.02 to 2 μm.

無機粉末の使用量は、単官能単量体と多官能単量体との合計100重量部に対して1〜40重量部である。1重量部未満では重合体粒子間における融着を抑制する効果が不十分となることがある。40重量部を超えると融着を抑制する効果は得られるが光拡散剤としての機能が低下することがある。より好ましい使用量は、1〜30重量部であり、特に好ましい使用量は2〜20重量部である。   The usage-amount of inorganic powder is 1-40 weight part with respect to a total of 100 weight part of a monofunctional monomer and a polyfunctional monomer. If it is less than 1 part by weight, the effect of suppressing fusion between the polymer particles may be insufficient. If it exceeds 40 parts by weight, the effect of suppressing fusion can be obtained, but the function as a light diffusing agent may be lowered. A more preferable usage amount is 1 to 30 parts by weight, and a particularly preferable usage amount is 2 to 20 parts by weight.

また、無機粉末と界面活性剤は、集合体保持性と重合体粒子分散性とを両立する観点から、1:0.1〜2の重量比であることが好ましく、1:0.15〜1.5の重量比であることがより好ましい。
分散液への無機粉末の分散方法として、例えば、プロペラ翼等の攪拌力により分散させる方法、ローターとステーターから構成される高せん断力を利用する分散機であるホモミキサーによる方法、もしくは超音波分散機等を用いて分散させる方法等が挙げられる。
In addition, the inorganic powder and the surfactant are preferably in a weight ratio of 1: 0.1 to 2, from the viewpoint of achieving both aggregate retention and polymer particle dispersibility. More preferably, the weight ratio is .5.
As a dispersion method of the inorganic powder in the dispersion, for example, a method of dispersing by a stirring force such as a propeller blade, a method using a homomixer which is a disperser using a high shear force composed of a rotor and a stator, or ultrasonic dispersion And a method of dispersing using a machine.

(2)重合体粒子の集合体の製造
重合体粒子の集合体は、スラリーを噴霧乾燥させることで得ることができる。
(噴霧式乾燥方法)
噴霧式乾燥方法とは、一般的にスプレードライヤーや気流乾燥機を用いて、ガス気流と共にスラリーを噴霧して乾燥した粒子を得る方法である。スラリー及びガス気流の供給速度、乾燥温度、アトマイザー回転数等を適宜に調節することにより、粒子径、粒子形状等を調整することが可能である。噴霧乾燥は、噴霧乾燥機のスラリー入口温度が80〜220℃の範囲、噴霧乾燥機の集合体出口温度が50〜100℃の範囲の条件で行われる。スラリー入口温度が220℃より高い場合、重合体粒子間における融着が促進され、重合体粒子が相互に連結した集合体となる。スラリー入口温度が80℃未満では、乾燥が不十分になりやすく、また乾燥効率が低くなることがある。また、集合体出口温度が50℃未満では、乾燥が不十分になることがある。一方、100℃より高い場合、重合体粒子が融着することがある。より好ましいスラリー入口温度は90〜200℃であり、集合体出口温度は55〜95℃である。
更に、スラリー入口温度は、重合体粒子相互の融着を防ぐ観点から、集合体出口温度より高いことが好ましく、30〜120℃の範囲で集合体出口温度より高いことが好ましい。
(2) Production of aggregate of polymer particles The aggregate of polymer particles can be obtained by spray drying the slurry.
(Spray-type drying method)
The spray-type drying method is a method of obtaining dried particles by spraying a slurry together with a gas stream, generally using a spray dryer or a stream dryer. The particle diameter, particle shape, and the like can be adjusted by appropriately adjusting the supply speed of the slurry and gas flow, the drying temperature, the atomizer rotational speed, and the like. Spray drying is performed under conditions where the slurry inlet temperature of the spray dryer is in the range of 80 to 220 ° C and the assembly outlet temperature of the spray dryer is in the range of 50 to 100 ° C. When the slurry inlet temperature is higher than 220 ° C., fusion between the polymer particles is promoted to form an aggregate in which the polymer particles are connected to each other. When the slurry inlet temperature is less than 80 ° C., drying tends to be insufficient, and drying efficiency may be lowered. Further, when the aggregate outlet temperature is less than 50 ° C., drying may be insufficient. On the other hand, when the temperature is higher than 100 ° C., the polymer particles may be fused. A more preferable slurry inlet temperature is 90 to 200 ° C, and an aggregate outlet temperature is 55 to 95 ° C.
Furthermore, the slurry inlet temperature is preferably higher than the aggregate outlet temperature from the viewpoint of preventing fusion between the polymer particles, and is preferably higher than the aggregate outlet temperature in the range of 30 to 120 ° C.

(集合体)
集合体は、相互の連結(融着)が抑制された複数の重合体粒子からなる。そのため、取り扱い性に優れ、透明性樹脂のような分散媒体へ集合体を分散させれば、容易に重合体粒子に別れるため、重合体粒子の分散性が良好である。
相互の連結の抑制の程度は、次の方法で測定される粒度分布で評価できる。即ち、まず、集合体を形成する前の重合体粒子の平均粒子径を測定する。次に、水50gに対して重合体粒子集合体を0.50g含む分散液を用意する。この分散液に10分間超音波を照射する。照射後の分散液中の粒子の粒度分布を測定する。得られた粒度分布中、上記平均粒子径±1μmの粒子が占める割合を算出する。算出結果が、90%以上であれば、本明細書において重合体粒子の相互の連結が抑制された集合体であるとする。より好ましい割合は、95%以上である。
(Aggregation)
The aggregate is composed of a plurality of polymer particles whose mutual connection (fusion) is suppressed. For this reason, the dispersibility of the polymer particles is excellent because they are easy to handle and are easily separated into polymer particles if the aggregate is dispersed in a dispersion medium such as a transparent resin.
The degree of suppression of mutual connection can be evaluated by the particle size distribution measured by the following method. That is, first, the average particle diameter of the polymer particles before forming the aggregate is measured. Next, a dispersion liquid containing 0.50 g of polymer particle aggregate with respect to 50 g of water is prepared. This dispersion is irradiated with ultrasonic waves for 10 minutes. The particle size distribution of the particles in the dispersion after irradiation is measured. In the obtained particle size distribution, the ratio of the particles having the average particle diameter of ± 1 μm is calculated. If the calculation result is 90% or more, it is assumed in the present specification that the polymer particles are aggregates in which the mutual connection is suppressed. A more desirable ratio is 95% or more.

集合体の形状は、特に限定されず、球状、略球状、不定形状等が挙げられるが、分散媒体への分散性の観点から、球状又は略球状であることが好ましい。
集合体の平均粒子径は2〜250μmが好ましい。2μm未満の集合体を得ることは現実的に困難である。250μmを超えると噴霧乾燥により集合体を得る効率が悪くなることがある。より好ましい集合体の平均粒子径は、5〜100μmである。
(集合体の用途)
集合体は、照明カバー用の光拡散剤、液晶表示装置の光拡散板の光拡散剤、化粧品用の光拡散剤、塗料用の光拡散剤等として使用できる。この内、照明カバー用の光拡散剤、液晶表示装置の光拡散板の光拡散剤に使用することが好ましい。
The shape of the aggregate is not particularly limited, and includes a spherical shape, a substantially spherical shape, an indefinite shape, and the like. From the viewpoint of dispersibility in a dispersion medium, a spherical shape or a substantially spherical shape is preferable.
The average particle diameter of the aggregate is preferably 2 to 250 μm. It is practically difficult to obtain an aggregate of less than 2 μm. If it exceeds 250 μm, the efficiency of obtaining an aggregate by spray drying may deteriorate. A more preferable average particle size of the aggregate is 5 to 100 μm.
(Use of aggregate)
The aggregate can be used as a light diffusing agent for lighting covers, a light diffusing agent for light diffusing plates of liquid crystal display devices, a light diffusing agent for cosmetics, a light diffusing agent for paints, and the like. Among these, it is preferable to use for the light diffusing agent for illumination covers, and the light diffusing agent of the light diffusing plate of a liquid crystal display device.

(3)光拡散性樹脂組成物
本発明の光拡散剤は、透明基材樹脂(透明性樹脂)に分散させることで、照明カバー、液晶表示装置の光拡散板のような光学用部材の原料(光拡散性樹脂組成物)として使用できる。
透明基材樹脂としては、通常、熱可塑性樹脂が使用され、熱可塑性樹脂としては、例えば、(メタ)アクリル樹脂、(メタ)アクリル酸アルキル−スチレン共重合体、ポリカーボネート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン等が挙げられる。これらの中でも、優れた透明性が求められる場合には、(メタ)アクリル樹脂、(メタ)アクリル酸アクリル−スチレン共重合体、ポリカーボネート、ポリエステル、ポリスチレンが好ましい。これらの熱可塑性樹脂は、それぞれ単独で、又は2種以上を組み合わせて使用できる。
(3) Light diffusing resin composition The light diffusing agent of the present invention is dispersed in a transparent base resin (transparent resin), so that it is a raw material for optical members such as lighting covers and light diffusing plates of liquid crystal display devices. It can be used as (light diffusing resin composition).
As the transparent substrate resin, a thermoplastic resin is usually used. Examples of the thermoplastic resin include (meth) acrylic resin, (meth) acrylic acid alkyl-styrene copolymer, polycarbonate, polyester, polyethylene, polypropylene, Examples include polystyrene. Among these, when excellent transparency is required, (meth) acrylic resin, (meth) acrylic acid acrylic-styrene copolymer, polycarbonate, polyester, and polystyrene are preferable. These thermoplastic resins can be used alone or in combination of two or more.

透明基材樹脂への集合体の添加割合は、透明基材樹脂100重量部に対して、0.01〜40重量部であることが好ましい。0.01重量部未満の場合、光拡散性を与えにくくなることがある。40重量部より多い場合、光拡散性は得られるが光透過性が低くなることがある。より好ましい添加割合は、0.1〜10重量部である。
光拡散性樹脂組成物の形成方法は、特に限定されず、光拡散剤と透明基材樹脂とを、機械式粉砕混合方法のような従来の方法、条件で形成でき、例えばヘンシェルミキサー、V型混合機、ターブラミキサー、ハイブリタイザー、ロッキングミキサー等を用いて、光拡散剤と透明基材樹脂とを混合し撹拌することにより形成できる。
The addition ratio of the aggregate to the transparent base resin is preferably 0.01 to 40 parts by weight with respect to 100 parts by weight of the transparent base resin. If it is less than 0.01 parts by weight, it may be difficult to give light diffusibility. When the amount is more than 40 parts by weight, light diffusibility can be obtained, but light transmittance may be lowered. A more preferable addition ratio is 0.1 to 10 parts by weight.
The method for forming the light diffusing resin composition is not particularly limited, and the light diffusing agent and the transparent base resin can be formed by conventional methods and conditions such as a mechanical pulverization and mixing method. For example, a Henschel mixer, V-type It can be formed by mixing and stirring the light diffusing agent and the transparent base resin using a mixer, turbula mixer, hybridizer, rocking mixer, or the like.

光拡散性樹脂組成物を成形することにより、光拡散樹脂成形シートを製造できる。この場合、光拡散剤と透明基材樹脂とを混合機で混合し、押出機等の溶融混練機で混練することで光拡散性樹脂組成物からなるペレットを得、このペレットを押出成形あるいは溶融後射出成形することにより任意の形状の光拡散樹脂成形シート(光学シート)を得ることができる。
光学シートは、例えば、液晶表示装置の光拡散板に使用できる。液晶表示装置の構成は、光学シートを含みさえすれば、特に限定されない。例えば、液晶表示装置は、表示面及び裏面を有する液晶表示パネルと、このパネルの裏面側に配置された導光板と、導光板の側面に光を入射させる光源とを少なくとも備えている。また、導光板の液晶表示パネルの対向面と反対面側に反射シートを備えている。この光源の配置は、一般にエッジライト型バックライト配置と称される。
更に、上記エッジライト型バックライト配置以外に、直下型バックライト配置もある。この配置は、具体的には、液晶表示パネルの裏面側に光源を配置し、液晶表示パネルと光源と間に配置された光拡散板を少なくとも備えた配置である。
A light diffusing resin molded sheet can be produced by molding the light diffusing resin composition. In this case, the light diffusing agent and the transparent base resin are mixed with a mixer and kneaded with a melt kneader such as an extruder to obtain a pellet made of the light diffusing resin composition, and the pellet is extruded or melted. By performing post-injection molding, a light diffusion resin molded sheet (optical sheet) having an arbitrary shape can be obtained.
The optical sheet can be used for, for example, a light diffusion plate of a liquid crystal display device. The configuration of the liquid crystal display device is not particularly limited as long as it includes an optical sheet. For example, the liquid crystal display device includes at least a liquid crystal display panel having a display surface and a back surface, a light guide plate disposed on the back surface side of the panel, and a light source that makes light incident on a side surface of the light guide plate. In addition, a reflection sheet is provided on the side of the light guide plate opposite to the surface facing the liquid crystal display panel. This arrangement of light sources is generally referred to as an edge light type backlight arrangement.
Further, in addition to the edge light type backlight arrangement, there is a direct type backlight arrangement. Specifically, this arrangement is an arrangement in which a light source is arranged on the back side of the liquid crystal display panel and at least a light diffusing plate arranged between the liquid crystal display panel and the light source.

以下、本発明を、実施例を用いて説明するが、これによって本発明は限定されるものではない。なお、平均粒子径の測定方法、融着性の評価、メヤニの発生有無の評価、分散性の評価、全光線透過率、ヘイズ及び拡散率の測定方法を下記する。
(重合体粒子の平均粒子径)
重合体粒子の平均粒子径は、ベックマンコールター社製のLS230型で測定する。具体的には、粒子0.1gと0.1%ノニオン性界面活性剤溶液10mlを試験管に投入し、ヤマト科学社製タッチミキサーTOUCHMIXER MT−31で2秒間混合する。この後、試験管中の混合液を市販の超音波洗浄器であるヴェルボクリーア社製ULTRASONIC CLEANER VS−150を用いて10分間分散させる。分散させたものをベックマンコールター社製のLS230型にて超音波を照射しながら粒子径を測定する。そのときの光学モデルは作製した粒子の屈折率にあわせる。粒子0.1gの粒子径の平均値が平均粒子径である。
EXAMPLES Hereinafter, although this invention is demonstrated using an Example, this invention is not limited by this. In addition, the measuring method of an average particle diameter, evaluation of fusibility, evaluation of the presence or absence of a scum, evaluation of dispersibility, measuring method of total light transmittance, haze, and diffusivity are described below.
(Average particle diameter of polymer particles)
The average particle diameter of the polymer particles is measured with an LS230 type manufactured by Beckman Coulter. Specifically, 0.1 g of particles and 10 ml of a 0.1% nonionic surfactant solution are put into a test tube and mixed for 2 seconds with a touch mixer TOUCHMIXER MT-31 manufactured by Yamato Kagaku. Thereafter, the mixed solution in the test tube is dispersed for 10 minutes using a commercially available ultrasonic cleaner, ULTRASONIC CLEANER VS-150, manufactured by Velvo Crea. The particle size is measured while irradiating ultrasonic waves with the LS230 type manufactured by Beckman Coulter, Inc. The optical model at that time matches the refractive index of the produced particles. The average value of the particle diameter of 0.1 g of particles is the average particle diameter.

(重合体粒子集合体の平均粒子径)
孔径50〜400μmの細孔に電解質溶液を満たし、電解質溶液を重合体粒子集合体が通過する際の電界質溶液の導電率変化から体積を求め、平均粒子径を計算する。具体的には、測定した平均粒子径は、ベックマンコールター社製のコールターマルチザイザーIIによって測定した体積平均粒子径である。なお、測定に際してはCoulter Electronics Limited発行のREFERENCE MANUAL FOR THE COULTERMULTISIZER(1987)に従って、測定する集合体の粒子径に適合したアパチャーを用いてキャリブレーションを行い測定する。
(Average particle diameter of polymer particle aggregate)
The electrolyte solution is filled in pores having a pore diameter of 50 to 400 μm, the volume is obtained from the change in conductivity of the electrolyte solution when the polymer particle aggregate passes through the electrolyte solution, and the average particle diameter is calculated. Specifically, the measured average particle diameter is a volume average particle diameter measured by a Coulter Multisizer II manufactured by Beckman Coulter. In the measurement, according to REFERENCE MANUAL FOR THE COULTER MULTISIZER (1987) published by Coulter Electronics Limited, calibration is performed using an aperture suitable for the particle size of the aggregate to be measured.

具体的には、市販のガラス製の試験管に粒子0.1gと0.1%ノニオン系界面活性剤溶液10mlを投入し、ヤマト科学社製タッチミキサーTOUCHMIXERMT−31で2秒間混合した後、これを本体備え付けの、ISOTON2(ベックマンコールター社製:測定用電解液)を満たしたビーカー中に、緩く攪拌しながらスポイドで滴下して、本体画面の濃度計の示度を10%前後に合わせる。次にマルチサイザー2本体にアパチャーサイズ、Current,Gain,PolarityをCoulter Electronics Limited発行のREFERENCE MANUAL FOR THE
COULTER MULTISIZER(1987)に従って入力し、manualで測定する。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、集合体を10万個測定した点で測定を終了する。
Specifically, 0.1 g of particles and 10 ml of a 0.1% nonionic surfactant solution are put into a commercially available glass test tube, mixed for 2 seconds with a touch mixer TOUCHMIXERMT-31 manufactured by Yamato Scientific Co., Ltd. In a beaker filled with ISOTON2 (manufactured by Beckman Coulter, Inc .: electrolyte for measurement) equipped with a main body, drop with a dropper while gently stirring to adjust the concentration meter reading on the main body screen to about 10%. Next, aperture size, Current, Gain, Polarity are added to Multisizer 2 body. REFERENCE MANUAL FOR THE issued by Coulter Electronics Limited.
Input according to COULTER MULTISIZER (1987) and measured manually. During the measurement, the beaker is gently stirred to the extent that bubbles do not enter, and the measurement is terminated when 100,000 aggregates are measured.

(非融着性)
上記LS230型を用いる方法で予め平均粒子径を測定しておいた重合体粒子の集合体0.50gを水50gにて分散液を得る。この分散液に、超音波分散機BRANSON SONIFIER 450(BRANSON社製:出力450W、周波数20kHz)にて10分間超音波を照射する。照射後の分散液中の粒子径を上記LS230型を用いる方法で測定し、粒度分布を得る。予め測定した重合体粒子の平均粒子径の±1μmの粒子が、粒度分布中に占める割合(未融着率)を算出する。この割合が90%以上の場合を○(非融着性良)、90%未満の場合を×(非融着性不良)とする。
(Non-fusion)
A dispersion is obtained by using 50 g of water of 0.50 g of an aggregate of polymer particles whose average particle diameter has been measured in advance by the method using the LS230 type. The dispersion is irradiated with ultrasonic waves for 10 minutes using an ultrasonic disperser BRANSON SONIFIER 450 (manufactured by BRANSON: output 450 W, frequency 20 kHz). The particle size in the dispersion after irradiation is measured by the method using the LS230 type to obtain a particle size distribution. The proportion (unfused rate) of particles having a mean particle diameter of ± 1 μm of the polymer particles measured in advance in the particle size distribution is calculated. A case where this ratio is 90% or more is evaluated as ◯ (good non-fusibility), and a case where it is less than 90% is determined as x (non-fusible).

(メヤニの発生有無)
メヤニの発生の有無は、ペレット作製時における押出機のダイ出口部に堆積したメヤニを目視にて判断する。メヤニが発生して垂れ下がる状態が確認される場合をメヤニ有、確認されない場合をメヤニ無とする。
(Mayani occurrence)
The presence or absence of the occurrence of the mean is determined by visual observation of the mean that has accumulated at the die exit of the extruder during pellet production. When there is a mess and the state where it hangs down is confirmed, there is a mess, and when it is not confirmed, there is no mess.

(全光線透過率、ヘイズ、分散性)
全光線透過率はJIS K 7361によって測定される。具体的には、日本電色工業社製NHD−2000を使用して測定する。
ヘイズは、JIS K 7136により測定される。具体的には、日本電色工業社製NHD−2000を使用して測定する。
全光線透過率及びヘイズは、測定サンプル数n=10の平均値を算出した値を示している。更に、測定データの標準偏差(σ)を算出し、ばらつきを評価した。
分散性は間接的に評価している。即ち、重合体粒子集合体が基材樹脂に十分分散していない場合、全光線透過率は高くなり、ヘイズは低くなる(見かけ上、拡散に関与する粒子数が減るため)。よって、この値の変化から分散性の良し悪しを判断する。具体的には、全光線透過率が高くなり、ヘイズが低くなったものを分散性×とし、全光線透過率が低くなり、ヘイズが高くなったものを分散性○としている。
透明基材樹脂100重量部と、作製した重合体粒子集合体1重量部とを、押出機中、230℃で溶融及び混練した後、ペレット化し、これを射出成形機(シリンダー温度230℃、滞留時間10分)で成形することにより、2mm厚、50mm×100mmの成形体を得る。これの全光線透過率、ヘイズ、分散性を下記の方法に従い測定する。
(Total light transmittance, haze, dispersibility)
The total light transmittance is measured according to JIS K 7361. Specifically, the measurement is performed using NHD-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
Haze is measured according to JIS K 7136. Specifically, the measurement is performed using NHD-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
The total light transmittance and haze are values obtained by calculating the average value of the number of measurement samples n = 10. Further, the standard deviation (σ) of the measurement data was calculated and the variation was evaluated.
Dispersibility is indirectly evaluated. That is, when the polymer particle aggregate is not sufficiently dispersed in the base resin, the total light transmittance is high and the haze is low (because the number of particles involved in diffusion is apparently reduced). Therefore, whether the dispersibility is good or bad is judged from the change in this value. Specifically, the case where the total light transmittance is high and the haze is low is designated as dispersibility x, and the case where the total light transmittance is low and the haze is high is designated as dispersibility ○.
100 parts by weight of the transparent base resin and 1 part by weight of the produced polymer particle aggregate were melted and kneaded at 230 ° C. in an extruder, and then pelletized, and this was molded into an injection molding machine (cylinder temperature 230 ° C., residence) The molded product having a thickness of 2 mm and a size of 50 mm × 100 mm is obtained. The total light transmittance, haze, and dispersibility of this are measured according to the following method.

(拡散率)
拡散率は自動変角光度計GONIOPHOTOMETER GP−200型(村上色彩技術研究所社製)を用いて、図1に示すように、成形体(1)に法線方向(a)から光(Li)を入射させたときの透過光(LO)のうち、法線方向(a)に対して5°の角度への透過光(L5)の強度(I5)、20°の角度への透過光(L20)の強度(I20)及び70°の角度への透過光(L70)の強度(I70)をそれぞれ測定し、下記式(1)及び(2)により求める。
Bθ=Iθ/cosθ (1)
(式中、θは法線方向に対する角度である5°、20°又は70°であり、Bθは角度θ方向の輝度であり、Iθは角度θへの透過光の強度である)
拡散率=(B20+B70)×100/(2×B5) (2)
なお、拡散率が低い場合、ランプイメージの隠蔽効果が低いため、輝度ムラを生じる。そのため、光拡散剤として、低添加量で高い拡散率が求められている。
(Diffusion rate)
As shown in FIG. 1, the diffusivity is measured from the normal direction (a) to the light (Li) using the automatic variable angle photometer GONIOPHOTOMETER GP-200 type (manufactured by Murakami Color Research Laboratory Co., Ltd.). Intensity (I5) of transmitted light (L5) at an angle of 5 ° with respect to the normal direction (a) and transmitted light (L20) at an angle of 20 ° ) Intensity (I20) and the intensity (I70) of transmitted light (L70) at an angle of 70 ° are respectively measured and determined by the following equations (1) and (2).
Bθ = Iθ / cos θ (1)
(In the formula, θ is 5 °, 20 ° or 70 ° which is an angle with respect to the normal direction, Bθ is the luminance in the direction of angle θ, and Iθ is the intensity of transmitted light to angle θ)
Diffusion rate = (B20 + B70) × 100 / (2 × B5) (2)
When the diffusivity is low, the effect of concealing the lamp image is low, resulting in uneven brightness. Therefore, a high diffusivity is demanded as a light diffusing agent with a low addition amount.

実施例1
[種粒子の製造]
攪拌機、温度計を備えた重合器に脱イオン水1000gを入れ、そこへメタクリル酸メチル200g、t−ドデシルメルカプタン6gを仕込み、攪拌下に窒素置換しながら70℃まで加温した。内温を70℃に保ち、重合開始剤として過硫酸カリウム1gを溶解した脱イオン水20gを添加した後、10時間重合させた。得られたエマルジョン中の重合体粒子の平均粒子径は0.44μmであった。
Example 1
[Manufacture of seed particles]
A polymerization vessel equipped with a stirrer and a thermometer was charged with 1000 g of deionized water, charged with 200 g of methyl methacrylate and 6 g of t-dodecyl mercaptan, and heated to 70 ° C. while purging with nitrogen under stirring. The internal temperature was kept at 70 ° C., 20 g of deionized water in which 1 g of potassium persulfate was dissolved was added as a polymerization initiator, and then polymerization was performed for 10 hours. The average particle diameter of the polymer particles in the obtained emulsion was 0.44 μm.

[重合体粒子の製造]
攪拌機、温度計を備えた重合器にポリオキシエチレントリデシルエーテル硫酸アンモニウム3gを溶解した脱イオン水800gを入れ、そこへ単量体混合物としてアクリル酸ブチル160g及びエチレングリコールジメタクリレート40gと、重合開始剤としてアゾビスイソブチロニトリル1gとの混合液を入れた。次いで、混合液をT.Kホモミキサー(特殊機化工業社製)にて攪拌することにより、分散液を得た。
[Production of polymer particles]
A polymerization vessel equipped with a stirrer and a thermometer was charged with 800 g of deionized water in which 3 g of polyoxyethylene tridecyl ether ammonium sulfate was dissolved, 160 g of butyl acrylate and 40 g of ethylene glycol dimethacrylate as a monomer mixture, and a polymerization initiator. As a mixture, 1 g of azobisisobutyronitrile was added. Then, the mixed solution was T.P. A dispersion was obtained by stirring with K homomixer (made by Tokushu Kika Kogyo Co., Ltd.).

更に、分散液に種粒子を含む上記エマルジョン60gを加え、30℃で1時間攪拌して、種粒子に単量体混合物を吸収させた。次いで、吸収させた単量体混合物を窒素気流下で50℃、5時間加温することで重合させた後、室温(約25℃)まで冷却することで重合体粒子を含むスラリーを得た。得られた重合体粒子の平均粒子径は1.2μmであった。冷却後、得られたスラリーにスノーテックスO−40(日産化学工業社製:コロイダルシリカ(無機粉末)として固形分40%、粒子径:0.02−0.03μm)50gを加え、T.Kホモミキサー(特殊機化工業社製)にて10分間攪拌した。   Furthermore, 60 g of the above emulsion containing seed particles was added to the dispersion, and the mixture was stirred at 30 ° C. for 1 hour to absorb the monomer mixture in the seed particles. Next, the absorbed monomer mixture was polymerized by heating at 50 ° C. for 5 hours under a nitrogen stream, and then cooled to room temperature (about 25 ° C.) to obtain a slurry containing polymer particles. The average particle diameter of the obtained polymer particles was 1.2 μm. After cooling, 50 g of Snowtex O-40 (manufactured by Nissan Chemical Industries, Ltd .: colloidal silica (inorganic powder), solid content 40%, particle size: 0.02-0.03 μm) was added to the resulting slurry. The mixture was stirred for 10 minutes using a K homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.).

[重合体粒子集合体の製造]
上記スラリーを噴霧乾燥機としての坂本技研社製のスプレードライヤー(型式:アトマイザーテイクアップ方式、型番:TRS−3WK)で次の条件下にて噴霧乾燥して重合体粒子集合体を得た。重合体粒子集合体の平均粒子径は30μmであった。
供給速度:25ml/min
アトマイザー回転数:11000rpm
風量:2m3/min
噴霧乾燥機のスラリー入口温度:130℃
重合体粒子集合体出口温度:70℃
得られた重合体粒子集合体の電子顕微鏡(SEM)写真を図2に示す。観察した結果、重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結は確認されなかった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
The slurry was spray-dried under the following conditions with a spray dryer (model: atomizer take-up system, model number: TRS-3WK) manufactured by Sakamoto Giken Co., Ltd. as a spray dryer to obtain polymer particle aggregates. The average particle size of the polymer particle aggregate was 30 μm.
Supply speed: 25 ml / min
Atomizer speed: 11000 rpm
Air volume: 2m 3 / min
Slurry inlet temperature of spray dryer: 130 ° C
Polymer particle assembly outlet temperature: 70 ° C.
An electron microscope (SEM) photograph of the resulting polymer particle assembly is shown in FIG. As a result of observation, the polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was not confirmed. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
透明基材樹脂として、ポリスチレン(トーヨースチロールGP G200C、東洋スチレン社製)100重量部と、上記重合体粒子集合体1重量部とを、押出機中、230℃で溶融及び混練した後、ペレット化した。ペレット化時にメヤニの発生は見られなかった。得られたペレットを射出成形機(シリンダー温度230℃、滞留時間10分)で成形することにより、2mm厚、50mm×100mmの成形体を得た。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
As a transparent base resin, 100 parts by weight of polystyrene (Toyostyrene GP G200C, manufactured by Toyo Styrene Co., Ltd.) and 1 part by weight of the polymer particle aggregate were melted and kneaded at 230 ° C. in an extruder, and then pelletized. did. There was no occurrence of spears during pelletization. The obtained pellets were molded by an injection molding machine (cylinder temperature 230 ° C., residence time 10 minutes) to obtain a molded body of 2 mm thickness and 50 mm × 100 mm.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

実施例2
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
種粒子を含むエマルジョンの使用量を40gに変更し、単量体混合物としてアクリル酸ブチル120g及びエチレングリコールジメタクリレート80gを使用し、無機粉末としてルミナス(丸尾カルシウム社製:炭酸カルシウム、粒子径:0.1μm)20gを使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子の平均粒子径は1.4μmであった。
Example 2
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
The amount of the emulsion containing seed particles was changed to 40 g, 120 g of butyl acrylate and 80 g of ethylene glycol dimethacrylate were used as the monomer mixture, and Luminous (manufactured by Maruo Calcium Co., Ltd .: calcium carbonate, particle size: 0) was used as the inorganic powder. .1 μm) Polymer particles were produced in the same manner as in Example 1 except that 20 g was used. The average particle diameter of the obtained polymer particles was 1.4 μm.

[重合体粒子集合体の製造]
実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結は確認されなかった。重合体粒子集合体の平均粒子径は33μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was not confirmed. The average particle size of the polymer particle aggregate was 33 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle aggregate was used. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

実施例3
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
ポリオキシエチレントリデシルエーテル硫酸アンモニウムの使用量を6gに変更し、単量体混合物としてスチレン190g及びエチレングリコールジメタクリレート10gを使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子の平均粒子径は1.2μmであった。
Example 3
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
Polymer particles were produced in the same manner as in Example 1 except that the amount of polyoxyethylene tridecyl ether ammonium sulfate used was changed to 6 g and 190 g of styrene and 10 g of ethylene glycol dimethacrylate were used as the monomer mixture. The average particle diameter of the obtained polymer particles was 1.2 μm.

[重合体粒子集合体の製造]
実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結は確認されなかった。重合体粒子集合体の平均粒子径は30μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was not confirmed. The average particle size of the polymer particle aggregate was 30 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用し、透明基材樹脂としてポリメタクリル酸メチル(スミペックスEXA、住友化学社製)を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle assembly was used and polymethyl methacrylate (Sumipex EXA, manufactured by Sumitomo Chemical Co., Ltd.) was used as the transparent base resin. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

実施例4
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
界面活性剤としてドデシルベンゼンスルホン酸ナトリウム16gを使用し、単量体混合物としてスチレン190g及びジビニルベンゼン10g、無機粉末としてバリエースB−55(堺化学社製:硫酸バリウム、粒子径:0.6μm)40gを使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子の平均粒子径は1.2μmであった。
Example 4
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
16 g of sodium dodecylbenzenesulfonate was used as a surfactant, 190 g of styrene and 10 g of divinylbenzene as a monomer mixture, and 40 g of Variace B-55 (manufactured by Sakai Chemical Co., Ltd .: barium sulfate, particle size: 0.6 μm) as an inorganic powder. Polymer particles were produced in the same manner as in Example 1 except that was used. The average particle diameter of the obtained polymer particles was 1.2 μm.

[重合体粒子集合体の製造]
実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結は確認されなかった。重合体粒子集合体の平均粒子径は30μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was not confirmed. The average particle size of the polymer particle aggregate was 30 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用し、透明基材樹脂としてポリメタクリル酸メチル(スミペックスEXA、住友化学社製)を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle assembly was used and polymethyl methacrylate (Sumipex EXA, manufactured by Sumitomo Chemical Co., Ltd.) was used as the transparent base resin. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

実施例5
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
界面活性剤としてドデシルベンゼンスルホン酸ナトリウム6gを使用し、単量体混合物としてスチレン190g及びエチレングリコールジメタクリレート10g、無機粉末としてFTR−700(堺化学工業社製:酸化チタン、粒子径:0.2μm)2gを使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子の平均粒子径は1.2μmであった。
Example 5
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
As a surfactant, 6 g of sodium dodecylbenzenesulfonate is used, 190 g of styrene and 10 g of ethylene glycol dimethacrylate as a monomer mixture, FTR-700 as an inorganic powder (manufactured by Sakai Chemical Industry Co., Ltd .: titanium oxide, particle size: 0.2 μm) ) Polymer particles were produced in the same manner as in Example 1 except that 2 g was used. The average particle diameter of the obtained polymer particles was 1.2 μm.

[重合体粒子集合体の製造]
実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結は確認されなかった。重合体粒子集合体の平均粒子径は30μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was not confirmed. The average particle size of the polymer particle aggregate was 30 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用し、透明基材樹脂としてポリメタクリル酸メチル(スミペックスEXA、住友化学社製)を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle assembly was used and polymethyl methacrylate (Sumipex EXA, manufactured by Sumitomo Chemical Co., Ltd.) was used as the transparent base resin. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

実施例6
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
実施例2と同様にして重合体粒子を製造した。
Example 6
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
Polymer particles were produced in the same manner as in Example 2.

[重合体粒子集合体の製造]
噴霧乾燥機のスラリー入口温度を160℃、重合体粒子集合体出口温度を85℃とすること以外は実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結は確認されなかった。重合体粒子集合体の平均粒子径は33μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
A polymer particle aggregate was obtained under the same conditions as in Example 1 except that the slurry inlet temperature of the spray dryer was 160 ° C. and the polymer particle aggregate outlet temperature was 85 ° C. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was not confirmed. The average particle size of the polymer particle aggregate was 33 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle aggregate was used. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

実施例7
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
単量体混合物としてスチレン190g及びエチレングリコールジメタクリレート10gを使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子の平均粒子径は1.1μmであった。
Example 7
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
Polymer particles were produced in the same manner as in Example 1 except that 190 g of styrene and 10 g of ethylene glycol dimethacrylate were used as the monomer mixture. The average particle diameter of the obtained polymer particles was 1.1 μm.

[重合体粒子集合体の製造]
実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結は確認されなかった。重合体粒子集合体の平均粒子径は31μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was not confirmed. The average particle diameter of the polymer particle aggregate was 31 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用し、透明基材樹脂としてポリプロピレン(ノーブレンD101、住友化学社製)を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle aggregate was used and polypropylene (Noblen D101, manufactured by Sumitomo Chemical Co., Ltd.) was used as the transparent base resin. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

実施例8
[種粒子の製造]
攪拌機、温度計を備えた重合器に脱イオン水2000gを入れ、そこへ予め調製しておいたメタクリル酸メチル400g、t−ドデシルメルカプタン12gを仕込み、攪拌下に窒素置換しながら70℃まで加温した。内温を70℃に保ち、重合開始剤として過硫酸カリウム2gを溶解した脱イオン水30gを添加した後、12時間重合させた。得られたエマルジョン中の重合体粒子の平均粒子径は0.45μmであった。
Example 8
[Manufacture of seed particles]
A polymerization vessel equipped with a stirrer and a thermometer was charged with 2000 g of deionized water, charged with 400 g of methyl methacrylate prepared in advance and 12 g of t-dodecyl mercaptan, and heated to 70 ° C. while purging with nitrogen under stirring. did. The internal temperature was kept at 70 ° C., and 30 g of deionized water in which 2 g of potassium persulfate was dissolved was added as a polymerization initiator, and then polymerization was performed for 12 hours. The average particle size of the polymer particles in the obtained emulsion was 0.45 μm.

[重合体粒子の製造]
種粒子を含むエマルジョンを40g、ドデシルベンゼンスルホン酸ナトリウムを4g、アクリル酸ブチルを120g、エチレングリコールジメタクリレートを80g使用し、無機粉末としてTTO−S−2(石原産業社製:高級脂肪酸により疎水化処理された酸化チタン、粒子径:短軸0.01〜0.02μm、長軸0.05〜0.1μm)を15g使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子は平均粒子径1.4μmであった。
[Production of polymer particles]
40 g of emulsion containing seed particles, 4 g of sodium dodecylbenzenesulfonate, 120 g of butyl acrylate, 80 g of ethylene glycol dimethacrylate, and TTO-S-2 (made by Ishihara Sangyo Co., Ltd .: Hydrophobized with higher fatty acids as inorganic powder) Polymer particles were produced in the same manner as in Example 1 except that 15 g of treated titanium oxide, particle diameter: minor axis 0.01 to 0.02 μm, major axis 0.05 to 0.1 μm) were used. . The obtained polymer particles had an average particle size of 1.4 μm.

[重合体粒子集合体の製造]
アトマイザー回転数を13000rpmに変更したこと以外は実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結は確認されなかった。重合体粒子集合体の平均粒子径は28μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1 except that the atomizer speed was changed to 13000 rpm. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was not confirmed. The average particle diameter of the polymer particle aggregate was 28 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle aggregate was used. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

実施例9
[種粒子の製造]
実施例8と同様の条件で種粒子を得た。
[重合体粒子の製造]
種粒子を含むエマルジョンを40g、ドデシルベンゼンスルホン酸ナトリウムを4g、アクリル酸ブチルを140g、エチレングリコールジメタクリレートを60g使用し、無機粉末としてSYLOPHOBIC507(富士シリシア社製:有機ケイ素化合物により疎水化処理されたコロイダルシリカ、粒子径:2.7μm)を30g使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子の平均粒子径は1.4μmであった。
Example 9
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 8.
[Production of polymer particles]
40 g of emulsion containing seed particles, 4 g of sodium dodecylbenzenesulfonate, 140 g of butyl acrylate, and 60 g of ethylene glycol dimethacrylate were used, and SYLOPHOBIC507 (Fuji Silysia Co., Ltd .: hydrophobized with an organosilicon compound as an inorganic powder was used. Polymer particles were produced in the same manner as in Example 1 except that 30 g of colloidal silica (particle diameter: 2.7 μm) was used. The average particle diameter of the obtained polymer particles was 1.4 μm.

[重合体粒子集合体の製造]
アトマイザー回転数を13000rpmに変更したこと以外は実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結は確認されなかった。重合体粒子集合体の平均粒子径は27μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1 except that the atomizer speed was changed to 13000 rpm. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was not confirmed. The average particle size of the polymer particle aggregate was 27 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle aggregate was used. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

実施例10
[種粒子の製造]
実施例8と同様の条件で種粒子を得た。
[重合体粒子の製造]
種粒子を含むエマルジョンを60g、スチレンを190g、エチレングリコールジメタクリレートを10g使用し、無機粉末としてSYLOPHOBIC507(富士シリシア社製:有機ケイ素化合物により疎水化処理されたコロイダルシリカ、粒子径:2.7μm)を16g使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子の平均粒子径は1.2μmであった。
Example 10
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 8.
[Production of polymer particles]
60 g of emulsion containing seed particles, 190 g of styrene and 10 g of ethylene glycol dimethacrylate are used, and SYLOPHOBIC507 as an inorganic powder (manufactured by Fuji Silysia: colloidal silica hydrophobized with an organosilicon compound, particle size: 2.7 μm) Polymer particles were produced in the same manner as in Example 1 except that 16 g of was used. The average particle diameter of the obtained polymer particles was 1.2 μm.

[重合体粒子集合体の製造]
アトマイザー回転数を13000rpmに変更したこと以外は実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結は確認されなかった。重合体粒子集合体の平均粒子径は27μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1 except that the atomizer speed was changed to 13000 rpm. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was not confirmed. The average particle size of the polymer particle aggregate was 27 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用し、透明基材樹脂としてポリプロピレン(ノーブレンD101、住友化学社製)を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle aggregate was used and polypropylene (Noblen D101, manufactured by Sumitomo Chemical Co., Ltd.) was used as the transparent base resin. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

比較例1
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
種粒子を含むエマルジョンの使用量を40gに変更し、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム6gを使用し、単量体混合物としてアクリル酸ブチル160g及びエチレングリコールジメタクリレート40g、無機粉末としてスノーテックスO−40(日産化学工業社製:コロイダルシリカ(純分40%))2.5g使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子の平均粒子径は1.4μmであった。
Comparative Example 1
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
The amount of the emulsion containing the seed particles was changed to 40 g, 6 g of sodium dodecylbenzenesulfonate was used as the surfactant, 160 g of butyl acrylate and 40 g of ethylene glycol dimethacrylate as the monomer mixture, and Snowtex O as the inorganic powder. Polymer particles were produced in the same manner as in Example 1 except that 2.5 g of -40 (manufactured by Nissan Chemical Industries, Ltd .: colloidal silica (pure content 40%)) was used. The average particle diameter of the obtained polymer particles was 1.4 μm.

[重合体粒子集合体の製造]
実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持していたが、重合体粒子の融着による相互の連結が確認された。重合体粒子集合体の平均粒子径は35μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1. Although the obtained polymer particle aggregate had a spherical shape, mutual connection due to fusion of the polymer particles was confirmed. The average particle size of the polymer particle aggregate was 35 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用したこと以外は実施例1と同様の条件で成形体を作製した。しかし、ペレット化時にメヤニの発生が見られた。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle aggregate was used. However, generation of scallions was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

比較例2
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
界面活性剤の使用量を10gに変更し、単量体混合物としてスチレン190g及びジビニルベンゼン10g、無機粉末としてルミナス(丸尾カルシウム社製:炭酸カルシウム)100gを使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子の平均粒子径は1.1μmであった。
Comparative Example 2
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
The same amount as in Example 1 except that the amount of the surfactant used was changed to 10 g, 190 g of styrene and 10 g of divinylbenzene were used as the monomer mixture, and 100 g of Luminous (manufactured by Maruo Calcium Co .: calcium carbonate) was used as the inorganic powder. Thus, polymer particles were produced. The average particle diameter of the obtained polymer particles was 1.1 μm.

[重合体粒子集合体の製造]
実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結は確認されなかった。重合体粒子集合体の平均粒子径は30μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was not confirmed. The average particle size of the polymer particle aggregate was 30 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用し、透明基材樹脂としてポリメタクリル酸メチル(スミペックスEXA、住友化学社製)を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle assembly was used and polymethyl methacrylate (Sumipex EXA, manufactured by Sumitomo Chemical Co., Ltd.) was used as the transparent base resin. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

比較例3
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
界面活性剤の使用量を0.6gに変更し、単量体混合物としてアクリル酸ブチル150g及びエチレングリコールジメタクリレート50g、無機粉末としてルミナス(丸尾カルシウム社製:炭酸カルシウム)20gを使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子は平均粒径1.1μmであり、電子顕微鏡で観察した結果、新粒子の発生が確認された。
Comparative Example 3
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
The amount of the surfactant used was changed to 0.6 g, except that 150 g of butyl acrylate and 50 g of ethylene glycol dimethacrylate were used as the monomer mixture, and 20 g of Luminous (manufactured by Maruo Calcium Co., Ltd .: calcium carbonate) was used as the inorganic powder. In the same manner as in Example 1, polymer particles were produced. The obtained polymer particles had an average particle size of 1.1 μm, and as a result of observation with an electron microscope, generation of new particles was confirmed.

[重合体粒子集合体の製造]
実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結が確認された。重合体粒子集合体の平均粒子径は31μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was confirmed. The average particle diameter of the polymer particle aggregate was 31 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle aggregate was used. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

比較例4
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
界面活性剤の使用量を22gに変更し、単量体混合物としてスチレン190g及びジビニルベンゼン10gを使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子の平均粒子径は1.2μmであった。
[重合体粒子集合体の製造]
実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結は確認されなかった。重合体粒子集合体の平均粒子径は30μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[成形体の製造]
上記重合体粒子集合体を使用し、透明基材樹脂としてポリメタクリル酸メチル(スミペックスEXA、住友化学社製)を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生が見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
Comparative Example 4
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
Polymer particles were produced in the same manner as in Example 1 except that the amount of the surfactant used was changed to 22 g and 190 g of styrene and 10 g of divinylbenzene were used as the monomer mixture. The average particle diameter of the obtained polymer particles was 1.2 μm.
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was not confirmed. The average particle size of the polymer particle aggregate was 30 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle assembly was used and polymethyl methacrylate (Sumipex EXA, manufactured by Sumitomo Chemical Co., Ltd.) was used as the transparent base resin. In addition, no generation of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

比較例5
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
単量体混合物としてスチレン199g及びジビニルベンゼン1g、無機粉末としてルミナス(丸尾カルシウム社製:炭酸カルシウム)20gを使用したこと以外は、実施例1と同様にして重合体粒子を製造した。得られた重合体粒子の平均粒子径は1.2μmであった。
Comparative Example 5
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
Polymer particles were produced in the same manner as in Example 1 except that 199 g of styrene and 1 g of divinylbenzene were used as the monomer mixture, and 20 g of Luminous (manufactured by Maruo Calcium Co., Ltd .: calcium carbonate) was used as the inorganic powder. The average particle diameter of the obtained polymer particles was 1.2 μm.

[重合体粒子集合体の製造]
実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持していたが、重合体粒子の融着による相互の連結が確認された。重合体粒子集合体の平均粒子径は31μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
Polymer particle aggregates were obtained under the same conditions as in Example 1. Although the obtained polymer particle aggregate had a spherical shape, mutual connection due to fusion of the polymer particles was confirmed. The average particle diameter of the polymer particle aggregate was 31 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用し、透明基材樹脂としてポリメタクリル酸メチル(スミペックスEXA、住友化学社製)を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle assembly was used and polymethyl methacrylate (Sumipex EXA, manufactured by Sumitomo Chemical Co., Ltd.) was used as the transparent base resin. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

比較例6
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
界面活性剤としてドデシルベンゼンスルホン酸ナトリウム6gを使用し、単量体混合物としてスチレン80g及びジビニルベンゼン120gを使用し、無機粉末を使用しないこと以外は、実施例1と同様にして重合体粒子を製造した。重合中に凝集がみられ目的とする重合体粒子は得られなかった。
Comparative Example 6
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
Polymer particles are produced in the same manner as in Example 1 except that 6 g of sodium dodecylbenzenesulfonate is used as the surfactant, 80 g of styrene and 120 g of divinylbenzene are used as the monomer mixture, and no inorganic powder is used. did. Aggregation was observed during the polymerization, and the desired polymer particles were not obtained.

比較例7
[種粒子の製造]
実施例1と同様の条件で種粒子を得た。
[重合体粒子の製造]
実施例2と同様にして重合体粒子を製造した。
Comparative Example 7
[Manufacture of seed particles]
Seed particles were obtained under the same conditions as in Example 1.
[Production of polymer particles]
Polymer particles were produced in the same manner as in Example 2.

[重合体粒子集合体の製造]
噴霧乾燥機のスラリー入口温度を230℃、重合体粒子集合体出口温度を110℃とすること以外は実施例1と同様の条件で重合体粒子集合体を得た。得られた重合体粒子集合体は球状を保持しており、重合体粒子の融着による相互の連結が確認された。重合体粒子集合体の平均粒子径は30μmであった。重合体粒子集合体の非融着性を評価し、結果を表1に示す。
[Production of polymer particle aggregate]
A polymer particle aggregate was obtained under the same conditions as in Example 1 except that the slurry inlet temperature of the spray dryer was 230 ° C and the polymer particle aggregate outlet temperature was 110 ° C. The obtained polymer particle aggregate retained a spherical shape, and mutual connection due to fusion of the polymer particles was confirmed. The average particle size of the polymer particle aggregate was 30 μm. The non-fusibility of the polymer particle aggregate was evaluated, and the results are shown in Table 1.

[成形体の製造]
上記重合体粒子集合体を使用したこと以外は実施例1と同様の条件で成形体を作製した。また、ペレット化時にメヤニの発生は見られなかった。
得られた成形体の全光線透過率、ヘイズ及び拡散率を測定し、分散性を評価し、結果を表1に示す。
[Manufacture of molded products]
A molded body was produced under the same conditions as in Example 1 except that the polymer particle aggregate was used. In addition, no occurrence of scum was observed during pelletization.
The total light transmittance, haze, and diffusivity of the obtained molded product were measured, the dispersibility was evaluated, and the results are shown in Table 1.

表1中、
( )は、単官能単量体と多官能単量体との合計100重量部に対する割合(重量部)を
BAは、アクリル酸ブチルを
STは、スチレンを
EGDMAは、エチレングリコールジメタクリレートを
DVBは、ジビニルベンゼンを
AIBNは、アゾビスイソブチロニトリルを
界面活性剤1は、ポリオキシエチレントリデシルエーテル硫酸アンモニウムを
界面活性剤2は、ドデシルベンゼンスルホン酸ナトリウムを
PSは、ポリスチレンを
PMMAは、ポリメタクリル酸メチルを
PPは、ポリプロピレンを
それぞれ意味する。
In Table 1,
() Is the ratio (parts by weight) to 100 parts by weight of the monofunctional monomer and polyfunctional monomer, BA is butyl acrylate, ST is styrene, EGDMA is ethylene glycol dimethacrylate is DVB. , Divinylbenzene AIBN, azobisisobutyronitrile surfactant 1, polyoxyethylene tridecyl ether ammonium sulfate surfactant 2, dodecylbenzene sodium sulfonate PS, polystyrene PMMA, polymethacrylate PP for methyl acid means polypropylene, respectively.

表1から以下のことが分かる。
実施例と比較例5及び6とから、多官能単量体を、単官能単量体100重量に対して、1〜100重量部使用することで、重合体粒子の融着による相互の連結が抑制された集合体を得ることができ、かつその集合体により優れた光学的特性(特に拡散率)を成形体に与えることができることが分かる。
Table 1 shows the following.
From Examples and Comparative Examples 5 and 6, the polyfunctional monomer is used in an amount of 1 to 100 parts by weight based on 100 parts by weight of the monofunctional monomer. It can be seen that a suppressed assembly can be obtained and that the optical properties (particularly the diffusivity) can be imparted to the molded body.

実施例と比較例3及び4とから、界面活性剤を、単官能単量体と多官能単量体との合計100重量部に対して、1〜10重量部使用することで、重合体粒子の集合体により優れた光学的特性(特に拡散率)を成形体に与えることができることが分かる。また、界面活性剤の使用量を1重量部以上とすることで、重合体粒子の融着による相互の連結が抑制された集合体を得ることができる。   By using 1 to 10 parts by weight of the surfactant from Examples and Comparative Examples 3 and 4 with respect to a total of 100 parts by weight of the monofunctional monomer and the polyfunctional monomer, the polymer particles are used. It can be seen that an excellent optical characteristic (particularly, diffusivity) can be imparted to the molded body by the aggregate. Moreover, the aggregate | assembly with which the mutual connection by the fusion | melting of a polymer particle was suppressed can be obtained by making the usage-amount of surfactant into 1 weight part or more.

実施例と比較例1及び2とから、無機粉末を、単官能単量体と多官能単量体との合計100重量部に対して、1〜40重量部使用することで、重合体粒子の集合体により優れた光学的特性(特に拡散率)を成形体に与えることができることが分かる。また、無機粉末の使用量を1重量部以上とすることで、重合体粒子の融着による相互の連結が抑制された集合体を得ることができ、かつ成形体へのメヤニの発生を抑制できる。   From Examples and Comparative Examples 1 and 2, the inorganic powder is used in an amount of 1 to 40 parts by weight based on 100 parts by weight of the total of the monofunctional monomer and the polyfunctional monomer. It can be seen that the aggregate can impart excellent optical properties (particularly diffusivity) to the molded body. In addition, by using the inorganic powder in an amount of 1 part by weight or more, it is possible to obtain an aggregate in which mutual coupling due to fusion of the polymer particles is suppressed, and it is possible to suppress the occurrence of scum on the molded body. .

実施例と比較例7とから、噴霧乾燥を、80〜220℃の噴霧乾燥機のスラリー入口温度、50〜100℃の噴霧乾燥機の集合体出口温度の条件で行うことで、重合体粒子の融着による相互の連結が抑制された集合体を得ることができ、かつその集合体により優れた光学的特性(特に拡散率)を成形体に与えることができることが分かる。   From Example and Comparative Example 7, spray drying is performed under the conditions of the slurry inlet temperature of the spray dryer of 80 to 220 ° C. and the aggregate outlet temperature of the spray dryer of 50 to 100 ° C. It can be seen that an assembly in which mutual connection by fusion is suppressed can be obtained, and that the optical properties (particularly the diffusivity) can be imparted to the molded body by the assembly.

実施例11
実施例1及び7〜10で得られた成形体を、下記試験に付して高温耐久性を評価した。
(高温耐久性試験)
まず、全光線透過率の測定法と同様にして入手した測定サンプル(サンプル数10個)を80℃のオーブン中に500時間放置した後の全光線透過率と、放置前の全光線透過率を測定する。放置後の全光線透過率と放置前の全光線透過率とから、放置による全光線透過率の低下率を算出する。
低下率が3%未満である場合、高温耐久性が良好である○とし、3%以上である場合、高温耐久性が不良である×とする。
得られた結果を表2に示す。
Example 11
The molded bodies obtained in Examples 1 and 7 to 10 were subjected to the following test to evaluate high temperature durability.
(High temperature durability test)
First, the total light transmittance after leaving a measurement sample (10 samples) obtained in the same manner as the total light transmittance measuring method in an oven at 80 ° C. for 500 hours, and the total light transmittance before leaving as it is, taking measurement. From the total light transmittance after being left and the total light transmittance before being left, a reduction rate of the total light transmittance due to being left is calculated.
When the decrease rate is less than 3%, the high temperature durability is good, and when it is 3% or more, the high temperature durability is poor.
The obtained results are shown in Table 2.

表2から、無機粉体として、疎水化処理された無機粉末を使用することで、高温耐久性が向上することが分かる。   From Table 2, it can be seen that high temperature durability is improved by using a hydrophobic treated inorganic powder as the inorganic powder.

1 成形体
a 法線方向
Li 光
0、L5、L20、L70 透過光
1 Molded body a Normal direction Li light L 0 , L 5 , L 20 , L 70 transmitted light

Claims (9)

スチレン系単量体及び(メタ)アクリル系単量体から選択される単官能単量体と、スチレン系単量体及び(メタ)アクリル系単量体から選択される多官能単量体とを含む単量体混合物からなる重合体粒子と、界面活性剤と、無機粉末と、水性媒体とを含むスラリーを噴霧乾燥させることで前記重合体粒子の集合体を得ることからなり、
前記多官能単量体が、前記単官能単量体100重量に対して、1〜100重量部使用され、
前記界面活性剤が、前記単官能単量体と多官能単量体との合計100重量部に対して、1〜10重量部使用され、
前記無機粉末が、前記単官能単量体と多官能単量体との合計100重量部に対して、1〜40重量部使用され、
前記噴霧乾燥が、80〜220℃の噴霧乾燥機のスラリー入口温度、50〜100℃の噴霧乾燥機の集合体出口温度の条件で行われ
前記重合体粒子の集合体は、水50gに対して前記重合体粒子の集合体を0.50g含む分散液に10分間超音波を照射した後の分散液中の粒子が、前記重合体粒子の集合体を構成する重合体粒子の平均粒子径の±1μmの粒子を90%以上含む粒度分布を有する集合体であることを特徴とする重合体粒子集合体の製造方法。
A monofunctional monomer selected from styrene monomers and (meth) acrylic monomers, and a polyfunctional monomer selected from styrene monomers and (meth) acrylic monomers Comprising a polymer particle comprising a monomer mixture, a surfactant, an inorganic powder, and an aggregate of the polymer particles by spray drying a slurry containing an aqueous medium,
The polyfunctional monomer is used in an amount of 1 to 100 parts by weight based on 100 weights of the monofunctional monomer,
The surfactant is used in an amount of 1 to 10 parts by weight with respect to 100 parts by weight in total of the monofunctional monomer and the polyfunctional monomer,
The inorganic powder is used in an amount of 1 to 40 parts by weight with respect to a total of 100 parts by weight of the monofunctional monomer and polyfunctional monomer,
The spray drying, the slurry inlet temperature of 80 to 220 ° C. in a spray dryer, conducted under the conditions of collection outlet temperature of 50 to 100 ° C. in a spray drier,
The aggregate of the polymer particles is obtained by irradiating the dispersion containing 0.50 g of the aggregate of polymer particles with 50 g of water for 10 minutes with ultrasonic waves. polymer production method of particle aggregates, wherein the aggregate der Rukoto having a particle size distribution containing particles of more than 90% ± 1 [mu] m of the average particle size of the polymer particles constituting the aggregate.
前記多官能単量体が、エチレングリコールジメタクリレート又はジビニルベンゼンである請求項1に記載の重合体粒子集合体の製造方法。   The method for producing a polymer particle aggregate according to claim 1, wherein the polyfunctional monomer is ethylene glycol dimethacrylate or divinylbenzene. 前記無機粉末が、炭酸カルシウム、コロイダルシリカ、硫酸バリウム、酸化チタンから選択される請求項1又は2に記載の重合体粒子集合体の製造方法。   The method for producing a polymer particle aggregate according to claim 1 or 2, wherein the inorganic powder is selected from calcium carbonate, colloidal silica, barium sulfate, and titanium oxide. 前記無機粉末が、疎水化処理された無機粉末である請求項1〜3のいずれか1つに記載の重合体粒子集合体の製造方法。   The method for producing a polymer particle aggregate according to any one of claims 1 to 3, wherein the inorganic powder is an inorganic powder that has been subjected to a hydrophobic treatment. 前記疎水化処理された無機粉末が、疎水化処理された、コロイダルシリカ又は酸化チタンである請求項4に記載の重合体粒子集合体の製造方法。   The method for producing a polymer particle aggregate according to claim 4, wherein the hydrophobized inorganic powder is hydrophobized colloidal silica or titanium oxide. 請求項1〜5のいずれか1つに記載の方法により得られた重合体粒子集合体であり、前記重合体粒子集合体は、水50gに対して前記重合体粒子集合体を0.50g含む分散液に10分間超音波を照射した後の分散液中の粒子が、前記重合体粒子集合体を構成する重合体粒子の平均粒子径の±1μmの粒子を90%以上含む粒度分布を有する集合体であることを特徴とする重合体粒子集合体。   It is a polymer particle aggregate obtained by the method according to any one of claims 1 to 5, wherein the polymer particle aggregate includes 0.50 g of the polymer particle aggregate with respect to 50 g of water. Particles in the dispersion after irradiating the dispersion with ultrasonic waves for 10 minutes have a particle size distribution including 90% or more of particles having an average particle diameter of ± 1 μm of the polymer particles constituting the polymer particle aggregate. A polymer particle aggregate characterized by being a body. 前記重合体粒子集合体が、2〜250μmの平均粒子径を有する請求項6に記載の重合体粒子集合体。   The polymer particle aggregate according to claim 6, wherein the polymer particle aggregate has an average particle diameter of 2 to 250 μm. 請求項6又は7の重合体粒子集合体からなる光拡散剤。   A light diffusing agent comprising the polymer particle aggregate according to claim 6. 透明基材樹脂100重量部と、請求項8に記載の光拡散剤0.01〜40重量部とを含む光拡散性樹脂組成物。   A light diffusing resin composition comprising 100 parts by weight of a transparent base resin and 0.01 to 40 parts by weight of the light diffusing agent according to claim 8.
JP2009042737A 2008-11-11 2009-02-25 Polymer particle aggregate, method for producing the same, light diffusing agent, and light diffusing resin composition Active JP5522957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009042737A JP5522957B2 (en) 2008-11-11 2009-02-25 Polymer particle aggregate, method for producing the same, light diffusing agent, and light diffusing resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008288952 2008-11-11
JP2008288952 2008-11-11
JP2009042737A JP5522957B2 (en) 2008-11-11 2009-02-25 Polymer particle aggregate, method for producing the same, light diffusing agent, and light diffusing resin composition

Publications (2)

Publication Number Publication Date
JP2010138365A JP2010138365A (en) 2010-06-24
JP5522957B2 true JP5522957B2 (en) 2014-06-18

Family

ID=42348761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042737A Active JP5522957B2 (en) 2008-11-11 2009-02-25 Polymer particle aggregate, method for producing the same, light diffusing agent, and light diffusing resin composition

Country Status (1)

Country Link
JP (1) JP5522957B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043681A1 (en) 2010-09-28 2012-04-05 積水化成品工業株式会社 Resin particles and process for producing same, antiglare film, light-diffusing resin composition, and external preparation
JP5785261B2 (en) * 2011-08-31 2015-09-24 積水化成品工業株式会社 Resin particle aggregate, method for producing the same, and use thereof
JP2015071655A (en) * 2013-10-01 2015-04-16 Jx日鉱日石エネルギー株式会社 Polymer fine particle composition and method of using the same as light diffusion agent

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219914B2 (en) * 1993-08-18 2001-10-15 クラリアント インターナショナル リミテッド Anti-blocking synthetic resin emulsion powder
JP4026788B2 (en) * 1998-04-07 2007-12-26 日本合成化学工業株式会社 Redispersible acrylic emulsion powder and method for producing the same
JP4727851B2 (en) * 2001-06-27 2011-07-20 株式会社日本触媒 Styrenic fine particle aggregate having excellent light resistance, light diffusing agent using the aggregate, and method for producing the aggregate
DE102004009739A1 (en) * 2004-02-25 2005-09-15 Basf Ag Process for the preparation of polymer powders which are readily redispersible in water
JP2005320380A (en) * 2004-05-06 2005-11-17 Mitsubishi Rayon Co Ltd Well-dispersible powdery optical function imparting agent and resin composition thereof
US20090036607A1 (en) * 2005-03-03 2009-02-05 Mitsubishi Rayon Co., Ltd. Polymer particle, resin composition containing same, and molded body

Also Published As

Publication number Publication date
JP2010138365A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
US9499713B2 (en) Resin particle aggregate, method for manufacturing same and application of same
JP4002320B2 (en) Silica composite resin particles and production method thereof
JP5365048B2 (en) Oval or acicular polymer particles and method for producing the same
JP5487530B2 (en) Amorphous particles, irregularly shaped particle composition and production method thereof, and light diffusion molded article
JP5000613B2 (en) Organic particle-containing composition
JP5419625B2 (en) Core-shell particle, light diffusing agent, and light diffusing medium
KR100668921B1 (en) Polymer particle coated with silica, method for producing the same and use of the same
JP5087303B2 (en) Light diffusion film
WO2016002587A1 (en) Nanoparticle-containing solution and use thereof
JP2008209855A (en) Particle for antiglare film and particle composition for antiglare film
JP5308779B2 (en) Polymer particle aggregate, method for producing the same, light diffusing agent, and light diffusing resin composition
JP5522957B2 (en) Polymer particle aggregate, method for producing the same, light diffusing agent, and light diffusing resin composition
JP2010077243A (en) Optical diffusing particle, method for producing the same, optical diffusing particle composition, and optical diffusing film
JP5492613B2 (en) Optical sheet
JP5304048B2 (en) Atypical particles, compositions, and molded articles for optical materials
JP5827331B2 (en) Oval shaped resin particles, production method thereof, and use thereof
JP5592735B2 (en) Method for producing hydrophilic polymer particles and hydrophilic polymer particles
JP2012057177A (en) Organic particle for light diffusing medium
JP2011094119A (en) Light diffusible composite resin particle, method for producing the same, light diffusible resin composition, and illumination cover
JP2009191236A (en) Crosslinked resin particles and optical sheet produced by using the same
JPWO2008123517A1 (en) Amorphous particles, irregularly shaped particle composition and method for producing the same, and light diffusion molded article
JP2006084927A (en) Light diffusing agent and its manufacturing method
JP5666487B2 (en) Oval shaped resin particles, production method thereof, and use thereof
TWI504617B (en) Resin particles and method for making resin particles, anti-glare film, and optical dispersion resin composition and external agent
JP2009079130A (en) Monodispersed polymer particle, method for producing the same, light diffusive molded product and light-diffusive coating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5522957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150