WO2018180629A1 - Antenna, wireless communication device, biometric signal measurement device, and garment - Google Patents

Antenna, wireless communication device, biometric signal measurement device, and garment Download PDF

Info

Publication number
WO2018180629A1
WO2018180629A1 PCT/JP2018/010556 JP2018010556W WO2018180629A1 WO 2018180629 A1 WO2018180629 A1 WO 2018180629A1 JP 2018010556 W JP2018010556 W JP 2018010556W WO 2018180629 A1 WO2018180629 A1 WO 2018180629A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
antenna
fiber structure
resin
fiber
Prior art date
Application number
PCT/JP2018/010556
Other languages
French (fr)
Japanese (ja)
Inventor
典子 長井
潤史 脇田
応明 高橋
Original Assignee
東レ株式会社
国立大学法人千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社, 国立大学法人千葉大学 filed Critical 東レ株式会社
Priority to JP2019509302A priority Critical patent/JP6999139B2/en
Publication of WO2018180629A1 publication Critical patent/WO2018180629A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/02Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons
    • D06M13/03Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons with unsaturated hydrocarbons, e.g. alkenes, or alkynes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/63Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing sulfur in the main chain, e.g. polysulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material

Definitions

  • the present invention relates to an antenna, a wireless communication device using the antenna, a biological signal measuring device, and clothes. Specifically, the present invention relates to an antenna having a conductive fiber structure in which a conductive polymer containing at least a carbon atom is supported on a fiber.
  • the wireless communication device is provided with an antenna for transmitting and receiving radio waves, and the structure of a conventional antenna is that a conductive material such as a metal foil or conductive ink is formed on an insulating substrate such as a plastic film. The thing in which the formed conductive pattern was formed is mentioned.
  • Patent Document 1 proposes an RFID (Radio Frequency IDentification) tag for an antenna in which a metal pattern is formed on an insulating cloth by vapor deposition or the like.
  • Patent Document 2 proposes an RFID including an antenna (hereinafter referred to as a cloth antenna) using a conductive cloth made of a conductive fiber such as a metal-plated fiber.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an antenna, a wireless communication device, a biological signal measurement device, and clothes that have flexibility and do not deteriorate in performance after bending or repeated washing. To do.
  • the present inventor has considered that the above problem can be solved by supporting a conductive resin containing carbon atoms on a fiber having a specific diameter, and has reached the present invention.
  • the present invention is an antenna having a conductive fiber structure in which at least a conductive resin containing a carbon atom is supported on the surface of a fiber having a diameter of 100 nm to 1000 nm and / or a single fiber gap.
  • an antenna, a wireless communication device, a biological signal measuring device, and clothes that have flexibility and whose performance does not deteriorate after bending or repeated washing.
  • FIG. 1A is a diagram illustrating an example of an antenna of the present invention.
  • FIG. 1B is a diagram illustrating an example of the antenna of the present invention.
  • FIG. 1C is a diagram illustrating an example of the antenna of the present invention.
  • FIG. 1D is an AA cross-sectional view of the antenna of FIG. 1C.
  • FIG. 2 is a diagram illustrating an example of the antenna of the present invention.
  • FIG. 3 is a diagram illustrating an example of the antenna of the present invention.
  • FIG. 4 is a diagram for explaining an example of the antenna of the present invention.
  • FIG. 5 is a cross-sectional view showing an embodiment of the antenna of the present invention.
  • FIG. 6 is a schematic view showing a measurement system for the XZ plane radiation pattern of the antenna of the present invention.
  • FIG. 1A is a diagram illustrating an example of an antenna of the present invention.
  • FIG. 1B is a diagram illustrating an example of the antenna of the present invention.
  • FIG. 7 is a diagram showing the measurement result of the XZ plane radiation pattern of the antenna of the present invention.
  • FIG. 8 is a diagram showing a human phantom used for measurement of the antenna of the present invention.
  • FIG. 9 is a diagram showing the measurement result of the XZ plane radiation pattern of the antenna of the present invention.
  • FIG. 10 is a scanning probe microscope observation photograph of the conductive fiber structure used in the antenna of the present invention.
  • the antenna of the present invention is an antenna having a conductive fiber structure in which at least a conductive resin containing a carbon atom is supported on the surface of a fiber having a diameter of 100 nm to 1000 nm and / or a single fiber gap.
  • the fibers constituting the conductive fiber structure of the present invention include natural fibers, synthetic or semi-synthetic fibers, or mixtures thereof.
  • natural fibers include cotton and silk.
  • synthetic fibers include polyester fibers, acrylic fibers, and nylon fibers.
  • semisynthetic fibers include rayon, but are not limited thereto.
  • the fiber which comprises the electroconductive fiber structure of this invention 100 nm or more and 1000 nm or less are preferable. By setting it to 1000 nm or less, the surface area of the single fiber in the fiber structure is increased, so that the adhesion between the conductive resin and the fiber is improved. As a result, peeling of the conductive resin when the antenna is bent and performance deterioration after repeated washing can be suppressed. From the viewpoint of supporting the conductive resin on the surface and / or the single fiber gap, it is more preferably 300 nm or more and 1000 nm or less, and further preferably 500 nm or more and 1000 nm or less. The upper limit is preferably 1000 nm or less as described above, but more preferably 900 nm or less.
  • the conductive resin is supported in the gap between the single fibers constituting the fiber structure and the thickness of the fiber structure.
  • the washing durability is more excellent when the area ratio of the conductive resin existing in the region of 15 to 30 ⁇ m from the surface layer is 15% or more.
  • the area ratio is 20% or more, which makes the repeated washing durability extremely excellent.
  • the area ratio is preferably 30% from the viewpoint of flexibility.
  • the fibers constituting the conductive fiber structure of the present invention are multifilament yarns made of a thermoplastic polymer from the viewpoints of uniformity and fineness of the fineness of the fibers and the adhesion between the fibers and the conductive resin. Preferably there is.
  • the thermoplastic polymer is not particularly limited as long as it is a polymer that can be made into a fiber.
  • Polyolefin fiber mainly composed of polyethylene, polypropylene, etc., fiber for chemical fiber such as acetate imparted with thermoplasticity, and polyester, Examples thereof include, but are not limited to, polymers for synthetic fibers such as nylon.
  • it is important from the point of the moldability that it is a thermoplastic polymer represented by polyester and polyamide. Many polyesters and polyamides have a high melting point, and are more preferable.
  • the melting point of the polymer is preferably 165 ° C. or higher because the heat resistance is good.
  • PET polyethylene terephthalate
  • nylon 6 (N 6) is 220 ° C.
  • other components may be copolymerized as long as the properties of the polymer are not impaired.
  • polyester refers to terephthalic acid as the main acid component, and alkylene glycol having 2 to 6 carbon atoms, that is, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, preferably Examples include polyesters having at least one glycol selected from ethylene glycol and tetramethylene glycol as a main glycol component, particularly preferably ethylene glycol.
  • it may be a polyester in which a part of the terephthalic acid component is replaced with another bifunctional carboxylic acid component, and / or a polyester in which a part of the glycol component is replaced with a diol component other than the glycol component. May be.
  • bifunctional carboxylic acid other than terephthalic acid used here examples include isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, adipic acid, sebacic acid, and 1,4-cyclohexanedicarboxylic acid.
  • examples thereof include aromatic, aliphatic and alicyclic bifunctional carboxylic acids.
  • the diol compound other than the glycol include aromatic, aliphatic and alicyclic diol compounds such as cyclohexane-1,4-dimethanol, neopentyl glycol, bisphenol A and bisphenol S. .
  • the polyester may be synthesized by any method.
  • terephthalic acid and ethylene glycol are usually esterified directly, or a lower alkyl ester of terephthalic acid such as dimethyl terephthalate is transesterified with ethylene glycol, or
  • a first stage reaction in which terephthalic acid and ethylene oxide are reacted to form a glycol ester of terephthalic acid and / or a low polymer thereof, and the reaction product of the first stage is heated under reduced pressure. It can be produced by a second stage reaction in which a polycondensation reaction is performed until a desired degree of polymerization is achieved.
  • a multifilament it can be produced by, for example, an assembly of monofilament yarns produced by a known electrospinning method, a composite spinning method, or the like.
  • a composite spinning method as a nanofiber with a large number of single fibers, sea-island type composite fiber yarns consisting of two types of polymers with different solubility are prepared, and the sea components of the sea-island type composite fiber are removed with a solvent. , Ultrafine fiber.
  • the thickness and distribution of each of the island components are not limited, a multifilament made of nanofibers can be formed by reducing the diameter of the island components by a method such as increasing the number of island components. In this invention, it is preferable that a nanofiber is included.
  • the number of island components is 5 or more, preferably 24 or more, and more preferably 50 or more, although there is a relationship with the single fiber fineness or the presence or absence of twisted yarns on single fibers.
  • voids composed of a plurality of single fibers, that is, portions where the conductive resin is supported are re-differentiated so that the conductive resin is supported on the fiber structure.
  • the continuity of the conductive resin is maintained even if the fiber diameter is reduced to be finely divided.
  • the cross-sectional shape of the single fiber is not particularly limited even if it is a round cross-section, a triangular cross-section, or any other irregular cross-section having a high degree of deformity.
  • the cross-sectional form of the entire multicomponent fiber is not limited to a round hole, but includes cross-sections of all known fibers such as a trilobal type, a tetralobal type, a T type, and a hollow type.
  • Examples of the fiber structure using the multifilament yarn of the present invention include those having forms such as mesh, papermaking, woven fabric, knitted fabric, nonwoven fabric, ribbon, and string. Used in various forms according to the purpose of use.
  • fiber structures are not limited to implementation unless the performance as an antenna such as dyeing and functional processing is impaired by ordinary methods and means.
  • the surface physical processing such as raising of the antenna surface shape, calendering, embossing, water jet punching is not limited in the same manner.
  • the conductive resin containing at least carbon atoms is supported on the fiber surface and / or on the single fiber gap, and preferably on the single fiber gap. Furthermore, it is preferable that the conductive resin is in a form that is substantially continuously present in the fiber axis direction in the gap between the single fibers constituting the multifilament yarn. In the case of this aspect, the adhesion between the conductive resin and the single fiber is even higher, and the conductivity is even higher, so the gain is extremely higher than the antenna using the conventional conductive cloth, and as a result, The communication distance is further increased.
  • the conductive resin has a structure wrapped in fibers, the wavelength is shortened according to the dielectric constant of the fibers, and the antenna becomes small. Whether or not the conductive resin exists substantially continuously in the fiber axis direction in the gap between the single fibers is determined by examining the fracture surface in the fiber axis direction of the conductive fiber structure with a scanning electron microscope (SEM). ), And the overlapping of the conductive resin existing in the gap between the five single fibers randomly selected from the obtained cross-sectional photograph is observed, and if there is an overlap, it is determined that there is continuity.
  • SEM scanning electron microscope
  • the fracture surface in the fiber axis direction is the warp direction
  • the fracture surface in the fiber axis direction is a direction in which the loop is split at the apex of the loop when a loop exists in the stitch
  • the nonwoven fabric or the like breaks in any direction along the fiber axis direction.
  • other materials are also attached to the conductive fiber structure along with the conductive resin, perform analysis that allows elemental analysis of the elements that make up the conductive resin, and identify the presence of the conductive resin. To do.
  • the fracture surface in the fiber axis direction of the conductive fiber structure is observed with an energy dispersive X-ray (EDX) analyzer, which is an accessory device of a scanning electron microscope (SEM) device, and the surface and There is a method for obtaining the amount of carbon atoms contained in the conductive resin carried in the single fiber gap, but this is not a limitation.
  • EDX energy dispersive X-ray
  • SEM scanning electron microscope
  • Examples of the conductive resin containing carbon atoms used in the present invention include carbon black, carbon nanotubes, graphene, metal particles, etc., in a resin having a relatively low conductivity (hereinafter sometimes referred to as a low conductive resin).
  • Examples thereof include, but are not limited to, a conductive resin such as a conductive resin imparted with conductivity and a conductive polymer in which the resin itself has conductivity.
  • These conductive resins have higher flexibility than metal materials, and deformation due to bending of the antenna does not remain after bending, and are excellent in resistance to bending and characteristics after repeated washing. Furthermore, since the flexibility is high, there is also an effect that the comfort is good when wearing the clothes equipped with the antenna of the present invention.
  • a conductive polymer is preferable from the viewpoint of stability of antenna characteristics during expansion and contraction and bending.
  • the conductivity of the conductive resin changes due to the deformation of the conductive resin caused by expansion / contraction or bending of the antenna. As a result, the antenna characteristics may change. It is.
  • the conductive polymer is not particularly limited as long as it is a polymer exhibiting conductivity.
  • acetylene-based, 5-membered heterocyclic ring as monomer, pyrrole, 3-methylpyrrole, 3-ethylpyrrole
  • 3-alkylpyrrole such as 3-dodecylpyrrole
  • 3,4-dialkylpyrrole such as 3,4-dimethylpyrrole and 3-methyl-4-dodecylpyrrole
  • N-alkyl such as N-methylpyrrole and N-dodecylpyrrole Pyrrole
  • N-alkyl-3-alkylpyrrole such as N-methyl-3-methylpyrrole and N-ethyl-3-dodecylpyrrole
  • dopants have an effect on the conductivity.
  • the dopants used here include halide ions such as chloride ions and bromide ions, perchlorate ions, tetrafluoroborate ions, hexafluoride ions and hexafluoride ions.
  • the conductive polymer examples include polypyrrole, PEDOT (poly3,4-ethylenedioxythiophene), and the like, and poly-4-styrene sulfonate (PSS), polyaniline, and polyparaphenylene vinylene.
  • An embodiment in which a dopant selected from (PPV) is used in combination is easy to resinize and is preferably used as a conductive polymer.
  • a dopant selected from (PPV) is used in combination is easy to resinize and is preferably used as a conductive polymer.
  • the case of using in combination in this manner may be represented by “/”, for example, PEDOT / PSS.
  • PEDOT / PSS (Denatron (registered trademark) manufactured by Nagase ChemteX Corporation) in which PEDOT of thiophene-based conductive polymer is doped with poly 4-styrenesulfonate PSS is particularly suitable from the viewpoint of safety and workability.
  • the conductive resin contains a binder resin.
  • the binder resin is preferably at least one selected from the group consisting of an olefin resin, a polyester resin, polyurethane, an epoxy resin, and an acrylic resin.
  • an olefin resin is most preferable from the viewpoint of bringing the compound constituting the conductive resin in the conductive fiber structure into close contact with each other and more reliably imparting conductivity to the fiber structure.
  • an olefin resin to the conductive polymer.
  • a conductive resin having an average particle diameter of 20 nm or less in dynamic light scattering measurement as the conductive resin to be carried on the fiber structure.
  • a conductive resin having an average particle diameter of 20 nm or less when using a conductive resin whose main component is a mixture of a conductive polymer and an olefin resin, it is preferable to use a conductive resin having an average particle diameter of 20 nm or less.
  • the “main component” means to occupy a mass ratio of 50% or more of the constituent materials other than the fibers of the conductive fiber structure.
  • the olefin resin is preferably a nonpolar olefin resin from the viewpoint of flexibility and washing durability of the obtained conductive fiber structure.
  • non-polar means that the solubility parameter (SP) value is 6 to less than 10, preferably 7 to 9. This SP value is a value determined by solubility.
  • the non-polar olefin resin preferably has an SP value of 6 to less than 10.
  • a nonpolar olefin resin may be used independently and may use 2 or more types together.
  • the olefin resin examples include polyethylene, polypropylene, cycloolefin polymer (cyclic polyolefin), and polymers obtained by modifying them. In the fiber structure having conductivity, these may be used as an olefin resin, or those obtained by modifying polyvinyl chloride, polystyrene or the like with an olefin may be used as the olefin resin. These may be used alone or in combination of two or more.
  • a solvent may be added to form a treatment liquid, which may be used for processing.
  • the solvent is not particularly limited.
  • water alcohols such as methanol, ethanol, 2-propanol, 1-propanol, and glycerin
  • ethylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol
  • ethylene Glycol ethers such as glycol monomethyl ether, diethylene glycol monomethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether
  • glycol ether acetates such as ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate
  • propylene glycol, dipropylene Glycol tripropylene Propylene glycols such as coal; propylene glycol monomethyl ether, propylene glycol monoe
  • glycerol As the conductive fiber structure of the present invention, those provided with glycerol, physiological saline, or the like can be suitably used from the viewpoint of improving and stabilizing the conductivity, but are not limited thereto.
  • the conductive fiber structure of the present invention uses a precursor of the exemplified conductive resin or a treatment liquid such as a conductive resin solution, emulsion, or dispersion obtained by adding the above solvent to the conductive resin.
  • the fiber structure can be supported by a known method such as dipping, coating, or spraying.
  • the method for supporting the fiber structure is not particularly limited, but in order to support the conductive resin on the surface of the fiber and the gap between the single fiber and the single fiber, a conductive resin solution (emulsion, It is desirable to repeat immersion or spraying a plurality of times (including the dispersion).
  • a conductive resin solution emulsion, It is desirable to repeat immersion or spraying a plurality of times (including the dispersion).
  • the treatment agent containing the conductive resin is supported on the fiber structure and then heated.
  • heating giving a thermal history not lower than the softening point of the component contained in the conductive resin and not higher than the decomposition temperature causes the component to melt and penetrate more into the single fiber gap and firmly adhere to it. It is preferable at the point which can provide the further washing resistance.
  • the heating temperature is preferably 180 ° C. or lower, more preferably 80 ° C. to 180 ° C., and still more preferably 100 ° C. to 150 ° C. When the heating temperature is within the above range, the adhesion between the compounds constituting the conductive resin is good, and the fiber structure can be more reliably imparted with conductivity.
  • the antenna of the present invention preferably has a resin layer laminated on one side of a conductive fiber structure containing a conductive resin.
  • a resin layer laminated on one side of a conductive fiber structure containing a conductive resin.
  • waterproof and moisture-permeable layers examples include PTFE (polytetrafluoroethylene) porous membranes, non-porous membranes made of hydrophilic elastomers such as hydrophilic polyester resins and polyurethane resins, polyurethane resin microporous membranes, and other known membranes, films and laminates.
  • PTFE polytetrafluoroethylene
  • non-porous membranes made of hydrophilic elastomers such as hydrophilic polyester resins and polyurethane resins, polyurethane resin microporous membranes, and other known membranes, films and laminates.
  • a form in which a resin or the like is laminated by a coating or laminating method is exemplified, but the invention is not limited thereto.
  • the waterproof / moisture permeable layer is preferably one in which a polyurethane resin microporous film having stretchability is laminated and adhered by lamination from the viewpoint of followability to a conductive fiber structure as a
  • the performance of the antenna is related to the surface resistivity of the conductive fiber structure with respect to an alternating current having the same frequency as that used for communication, and the surface resistivity is preferably 0.01 to 0.1 ⁇ / ⁇ .
  • the frequency used for communication 100 MHz to 5 GHz is preferable from the viewpoint of communication performance such as communication distance, and 920 MHz and 2.45 GHz are particularly preferable from the viewpoint of easy availability of communication equipment.
  • the surface resistivity is greater than 0.1 ⁇ / ⁇ , the current value flowing through the antenna is small, and stable communication is difficult.
  • the configuration of the antenna of the present invention includes a laminate of a conductor and a dielectric made of the conductive fiber structure processed into the shape of the antenna.
  • a dielectric material Fiber structures, such as a mesh, papermaking, a textile fabric, a knitted fabric, a nonwoven fabric, polymer films, such as a polyethylene terephthalate, and ceramic substrates, such as an alumina, can be used.
  • the dielectric constant of the dielectric is preferably low.
  • an insulating base material is preferably used as the dielectric.
  • the fiber structure contains air in the gap between the fibers and has a low relative dielectric constant and a high flexibility, it can be suitably used for an antenna for smart textiles.
  • the relative dielectric constant of a polyethylene terephthalate film which is a typical polymer film
  • the relative dielectric constant of polytetrafluoroethylene which is a surface low dielectric polymer
  • the relative dielectric constant of the nonwoven fabric is as low as 1.4.
  • the number of laminated layers is not particularly limited, and a two-layer structure composed of a conductive fiber structure and a conductor, a first conductor composed of a conductive fiber structure, a dielectric, and a conductive fiber.
  • a three-layer structure composed of a second conductor composed of a structure, a first conductor composed of a conductive fiber structure, a first dielectric, a second conductor composed of a conductive fiber structure, a second Examples include, but are not limited to, a dielectric, a third conductor made of a conductive fiber structure, a six-layer structure made of a third dielectric, and the like.
  • a loop antenna used for communication in the HF (High Frequency) band, a spiral antenna, or communication in the UHF (Ultra High Frequency) band.
  • a dipole antenna see FIG. 1B
  • a patch antenna see FIGS. 1C and 1D
  • a microstrip antenna a dipole array antenna
  • a ring antenna a ring antenna.
  • an antenna 2 made of a conductive fiber structure is formed in a loop shape on a dielectric 2 made of an insulating fiber structure.
  • the dipole antenna shown in FIG. 1B is a laminate of a dielectric 2 made of an insulating fiber structure and a conductor 1 made of the conductive fiber structure processed into a specific pattern.
  • 1B illustrates a meander-shaped antenna, but the shape is not limited as long as it has antenna performance, and a linear structure as shown in FIG. 2 may be used.
  • the width of the pattern is not particularly limited, and is designed from the viewpoint of antenna performance, pattern processability, and the like.
  • the patch antenna shown in FIGS. 1C and 1D is a laminate of a first conductor 3A made of a conductive fiber structure, a dielectric 2 made of an insulating fiber structure, and a second conductor 3B made of a conductive fiber structure. And the first and second conductors are electrically connected.
  • the first conductor 3A plays a role of transmitting and receiving radio waves, and needs to be processed into a specific pattern shape.
  • An example of the shape is the shape shown in FIG. 1C, but is not limited thereto.
  • the structure shown in FIG. 3, the square shown in FIG. 1C, or the circle shown in FIG. A replacement structure may be used.
  • the second conductor 3B absorbs radio waves radiated from the first conductor 3A and prevents radio waves from being radiated to the back surface of the antenna. Note that the second conductor 3B does not need to be processed into a specific pattern shape.
  • the method of electrically connecting the first conductor 3A and the second conductor 3B there is no particular limitation on the method of electrically connecting the first conductor 3A and the second conductor 3B.
  • a method of disposing a conductive fiber structure in the dielectric 2 a method of piercing a metal pin
  • Examples include a method using a metal button.
  • a metal button As the metal button, a male button or a female button of a dot button is used.
  • the male button disposed on the first conductor 3A and the second conductor 3B By engaging the male button disposed on the first conductor 3A and the second conductor 3B with the female button disposed on the dielectric 2, the first conductor 3A and the second conductor 3B are engaged.
  • a structure in which a female button is disposed on the first conductor 3A and the second conductor 3B and a male button is disposed on the dielectric 2 may be employed.
  • the method for processing the conductive fiber structure into a predetermined pattern is not particularly limited, and known techniques such as laser cutting, heat cutting, and die cutting can be used. Moreover, there is no restriction
  • the antenna with the conductive fiber structure attached to the insulating fiber structure may be attached to the clothes, or the conductive fiber structure may be directly attached to the clothes. From the viewpoints of comfort, design, etc., it is preferable to apply the conductive fiber structure directly to the clothes.
  • the antenna of the present invention By combining the antenna of the present invention and a semiconductor circuit having a communication function, it can be used as a wireless communication device.
  • a wireless communication apparatus An RFID tag, a beacon, a BlueTooth (trademark) communication apparatus etc. are mentioned.
  • a wireless communication apparatus An RFID tag, a beacon, a BlueTooth (trademark) communication apparatus etc. are mentioned.
  • By attaching these wireless communication devices to uniforms it can be used for individual tracking of students, confirmation of attendance, etc. at school.
  • it by attaching these wireless communication devices to hospitalized patients' inpatients, it can be used for inpatient individual tracking, individual authentication, and the like.
  • the number of antennas and semiconductor circuits is not limited, and one antenna and one semiconductor circuit may be connected to each other, or two or more antennas may be connected to one semiconductor circuit.
  • a blind spot of communication can be reduced by attaching a wireless communication device having two or more antennas to clothes. For example, by attaching the antenna of the present invention to the chest and back, stable communication is possible regardless of the body orientation with respect to the radio wave transmitter / receiver.
  • connection method between the antenna and the semiconductor circuit There are no particular restrictions on the connection method between the antenna and the semiconductor circuit.
  • metal wires, conductive yarns woven with metal wires, and the like are connected as wires, and connection using the conductive fiber structure according to the present invention can be mentioned.
  • the conductive fiber structure of the present invention is preferably used as the wiring.
  • the first conductor 3A made of a conductive fiber structure functioning as an antenna and the conductive fiber structure used as the wiring 4 are integrated.
  • the type of sensor is not particularly limited. Sensors for acquiring environmental information such as temperature, humidity, illuminance, impact, and position, such as heart rate, electrocardiogram waveform, respiratory rate, blood pressure, brain potential, and myoelectric potential Examples include a bioelectrode for acquiring a biosignal, a biosensor for acquiring a blood glucose level, a cholesterol level, a hormone level, and the like.
  • the wireless communication device and the sensor may be connected using wiring or may be connected by wireless communication.
  • the wireless communication device combining the antenna of the present invention and a semiconductor circuit can be used as a reader / writer antenna for an RFID tag.
  • a reader / writer antenna for an RFID tag.
  • the reader / writer antenna is required to have bending resistance. Since the antenna of the present invention is rich in flexibility and excellent in bending resistance, it can be suitably used as a reader / writer antenna for hospitalized beds.
  • Method for producing conductive fiber structure 75T- of an alkali hot water soluble polyester comprising an island component of polyethylene terephthalate and a sea component of polyester as a polyester acid component of terephthalic acid and 5-sodium sulfoisophthalic acid.
  • 100T-136F which is a mixture of 112F (sea-island ratio 30%: 70%, 127 islands / F) nanofibers with a single fiber diameter of 700 nm and 22T-24F single-fiber diameter 22.85 ⁇ m polyethylene terephthalate high shrink yarn
  • a circular knitted fabric was knitted with a smooth structure using the polyester nanofiber mixed yarn.
  • the fabric was dipped in a 3% by weight aqueous solution of sodium hydroxide (75 ° C., bath ratio 1:30) to remove easily soluble components, and a knitted fabric using mixed fibers of nanofibers and high shrinkage yarns was obtained.
  • the density of the knitted fabric is 58 ⁇ 78 (lines / in), and the basis weight is 118 (g / cm 2 ).
  • "Denatron FB408B" manufactured by Nagase ChemteX Corporation as a dispersion containing a conductive polymer and an olefin resin is applied to the knitted fabric as the obtained fiber structure, and the conductive polymer is applied by a known knife coating method.
  • FIG. 10 is a cross-sectional photograph using the conductive resin impregnated area ratio of the conductive fiber structure for evaluation.
  • FIG. 10 shows that the surface layer is impregnated with a low resistance, that is, a conductive resin from 30 ⁇ m.
  • the surface resistivity of the manufactured conductive fiber structure was 0.045 ⁇ / ⁇ .
  • a 30 ⁇ m ⁇ 30 ⁇ m square region is set so that the highest portion of the surface layer portion of the fiber structure is in contact with the upper part of the visual field, as shown in the cross-sectional image of FIG.
  • a 15 ⁇ m ⁇ 30 ⁇ m area 15 ⁇ m lower than the highest position of the surface layer part is set using an image processing software (GIMP 2.8 portable), a threshold value is set to 60, and 15 to 15 ⁇ m from the surface layer in the thickness direction of the conductive fiber structure.
  • the area ratio impregnated with the conductive resin in the 30 ⁇ m region was determined. At this time, the number of cross sections obtained by random sampling was measured at 20 locations.
  • Average particle diameter of conductive polymer (dynamic light scattering method) The average particle diameter of a 50-fold diluted conductive polymer obtained by adding 1 g of a conductive polymer to 49 g of water while stirring was measured using a Nanotrac Wave series manufactured by Microtrac. Specifically, the volume resistance diameter was measured to obtain the particle diameter distribution, and the hydrodynamic diameter median diameter was calculated as the average particle diameter.
  • the average particle diameter of the conductive polymer in “Denatron FB408B” used in (1) was 20 nm or less.
  • the conductive fiber structure produced by the method described in (1) as a strip conductor is made of polytetrafluoroethylene having a thickness of 2 mm as a substrate.
  • a half-wavelength microstrip line resonator A having an impedance of 50 ⁇ was prepared.
  • the length of the strip conductor was 42 mm, the width was 3 mm or 6 mm, both ends were open, and the resonance frequency was about 2.4 GHz.
  • Excitation was performed from one coaxial cable of the half-wavelength microstrip line resonator A, a network analyzer was connected to the other coaxial cable, and an unloaded Q value (Q A ) was measured.
  • a half-wavelength microstrip line resonator B was prepared in the same manner as the half-wavelength microstrip line resonator A except that copper foil was used as the strip conductor, and the unloaded Q value (Q B ) was measured.
  • Q Sample is a Q value resulting from the loss of the conductive fiber structure strip
  • Q Cu is a Q value resulting from the loss of the copper foil strip
  • 1 / Q A ⁇ 1 / Q B 1 / Q Sample ⁇ 1 / Q Cu relation holds.
  • Q Cu was calculated from the surface resistivity of the copper foil
  • Q Sample was calculated by applying the value to the above formula, and the surface resistivity and conductivity of the conductive fiber structure were calculated using the results. .
  • the measurement antenna prepared in (7) was installed on a turntable, and a network analyzer (N5230C, manufactured by Agilent Technologies) was used.
  • the turntable was rotated by 7.5 degrees, and at each rotational position, a radio wave was transmitted from the transmitting antenna connected to the network analyzer to the measuring antenna, and the gain was measured.
  • the radiation pattern was measured in an anechoic chamber using two types of horizontal polarization and vertical polarization.
  • Example 1 About the conductive fiber structure created by the method described in (1), when the surface resistivity and conductivity were measured by the method described in (6), the surface resistivity was 0.045 ⁇ / ⁇ , and the conductivity was It was 4.76 ⁇ S / m. The reflection coefficient measured by the method described in (7) was ⁇ 17.2 dB. Moreover, the XZ plane radiation pattern measured by the method described in (8) is indicated by a broken line in FIG.
  • Comparative Example 1 Circular knitted fabrics were knitted using nickel / copper-plated fibers (manufactured by Tanimura Co., Ltd., MK-KTN260).
  • the surface resistivity and conductivity measured by the method described in (6) are 0.050 ⁇ / ⁇ and 3.84 ⁇ S / m, respectively, and the reflection coefficient measured by the method described in (7) is ⁇ 15.2 dB. there were.
  • the XZ plane radiation pattern measured by the method described in (8) is shown by the solid line in FIG. From the XZ plane radiation pattern of FIG. 7, the gain of the antenna of Example 1 was 0.4 dB higher than that of Comparative Example 1, and the communication distance was increased by 6%.
  • Example 2 The reflection coefficient and XZ plane radiation pattern were measured in the same manner as in Example 1 except that the measurement antenna produced in (7) was attached to the human phantom shown in FIG.
  • the reflection coefficient is ⁇ 17.3 dB
  • the XZ plane radiation pattern is indicated by a broken line in FIG.
  • the human phantom is designed with a human body having a relative dielectric constant of 53.6 and a conductivity of 1.81 S / m.
  • Comparative Example 2 The reflection coefficient and the XZ plane radiation pattern were measured in the same manner as in Example 2 except that the antenna manufactured in Comparative Example 1 was used. The reflection coefficient is -15.0 dB, and the XZ plane radiation pattern is shown by the solid line in FIG. From the XZ plane radiation pattern of FIG. 9, the gain of the antenna of Example 2 was 0.4 dB higher than that of Comparative Example 2, and the communication distance increased by 6%.

Abstract

The purpose of the present invention is to provide an antenna which is flexible and of which performance is not decreased after bending or repeated washing, a wireless communication device, a biometric signal measurement device, and a garment. The antenna of the present invention comprises, at least, an electrically conductive fiber structure in which an electrically conductive polymer including carbon atoms is carried on a surface and/or in a monofilament gap of fibers with a diameter of not less than 100 nm and not more than 1000 nm. The antenna is characterized in that a mixture of the electrically conductive polymer and an olefin-based resin is used as a primary component, and that a conductive resin observed in a region of 15 to 30 μm from an upper layer is impregnated with an area ratio of not less than 15%.

Description

アンテナ、無線通信装置、生体信号測定装置、および衣服Antenna, wireless communication device, biological signal measuring device, and clothes
 本発明は、アンテナ、それを用いた無線通信装置、生体信号測定装置、および衣服に関するものである。詳しくは、本発明は、少なくとも、炭素原子を含む導電性高分子が繊維に担持された導電性繊維構造物を有するアンテナに関するものである。 The present invention relates to an antenna, a wireless communication device using the antenna, a biological signal measuring device, and clothes. Specifically, the present invention relates to an antenna having a conductive fiber structure in which a conductive polymer containing at least a carbon atom is supported on a fiber.
 近年、衣服にセンサデバイス(生体信号センサ、環境センサ、加速度センサ等)、信号処理装置、無線通信装置などの電子デバイスを組み込んだスマートテキスタイルの開発が進められており、ヘルスケア、スポーツ、作業者や家族などの見守りシステム、エンターテイメント等、多岐に渡る展開が期待されている。 In recent years, the development of smart textiles that incorporate electronic devices such as sensor devices (biological signal sensors, environmental sensors, acceleration sensors, etc.), signal processing devices, and wireless communication devices into clothing has been promoted. A wide range of development is expected, such as watching systems for family members and family members, and entertainment.
 前記電子デバイスの中でも、近年、データの送受信に用いられる無線通信装置が注目されている。無線通信装置には、電波の送受信を行うためのアンテナが設けられており、従来のアンテナの構造としては、プラスチックフィルム等の絶縁性基材上に金属箔や導電性インクなどの導電性材料から形成した導電パターンが形成されたものが挙げられる。 Among the electronic devices, in recent years, wireless communication devices used for data transmission / reception have attracted attention. The wireless communication device is provided with an antenna for transmitting and receiving radio waves, and the structure of a conventional antenna is that a conductive material such as a metal foil or conductive ink is formed on an insulating substrate such as a plastic film. The thing in which the formed conductive pattern was formed is mentioned.
 近年、スマートテキスタイル向けのアンテナとしては、衣服の伸縮への追随性などの観点から、導電パターンや基材には柔軟性が求められており、導電布を用いたアンテナが検討されている。例えば、特許文献1では、絶縁性の布に蒸着等で金属パターンを形成したアンテナのRFID(Radio Frequency IDentification)タグが提案されている。また、特許文献2では金属メッキを施した繊維などの導電繊維からなる導電布を用いたアンテナ(以降、布製アンテナと記す)を備えたRFIDが提案されている。 In recent years, as an antenna for smart textiles, flexibility is required for conductive patterns and base materials from the viewpoint of conformity to the expansion and contraction of clothes, and antennas using conductive cloth have been studied. For example, Patent Document 1 proposes an RFID (Radio Frequency IDentification) tag for an antenna in which a metal pattern is formed on an insulating cloth by vapor deposition or the like. Patent Document 2 proposes an RFID including an antenna (hereinafter referred to as a cloth antenna) using a conductive cloth made of a conductive fiber such as a metal-plated fiber.
特開2013―171430号公報JP 2013-171430 A 特表2011―523820号公報Special table 2011-523820
 しかしながら、特許文献1、2に記載された技術では、繊維と金属の密着力が弱く、金属が硬い材料であるため、折り曲げ時に導電材料の剥離や破壊が起こり、アンテナ性能が変化するという課題があった。さらに、繰り返し洗濯後に性能が低下するという問題があった。 However, in the techniques described in Patent Documents 1 and 2, since the adhesion between the fiber and the metal is weak and the metal is a hard material, there is a problem that the antenna material changes when the conductive material is peeled or broken during bending. there were. Furthermore, there has been a problem that the performance decreases after repeated washing.
 本発明は、上記課題に鑑みてなされたものであって、柔軟性を備え、折り曲げや繰り返し洗濯後に性能が低下しないアンテナ、無線通信装置、生体信号測定装置、および衣服を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an antenna, a wireless communication device, a biological signal measurement device, and clothes that have flexibility and do not deteriorate in performance after bending or repeated washing. To do.
 本発明者は、特定の径を有する繊維に炭素原子を含む導電性樹脂を担持させることで、上記課題が解決できるものと推測して検討を行い、本発明に至った。 The present inventor has considered that the above problem can be solved by supporting a conductive resin containing carbon atoms on a fiber having a specific diameter, and has reached the present invention.
 すなわち本発明は、少なくとも、炭素原子を含む導電性樹脂が、直径が100nm以上1000nm以下である繊維の表面及び/又は単繊維間隙に担持されている導電性繊維構造物を有するアンテナである。 That is, the present invention is an antenna having a conductive fiber structure in which at least a conductive resin containing a carbon atom is supported on the surface of a fiber having a diameter of 100 nm to 1000 nm and / or a single fiber gap.
 本発明によれば、柔軟性を備え、折り曲げや繰り返し洗濯後に性能が低下しないアンテナ、無線通信装置、生体信号測定装置、および衣服を提供することができる。 According to the present invention, it is possible to provide an antenna, a wireless communication device, a biological signal measuring device, and clothes that have flexibility and whose performance does not deteriorate after bending or repeated washing.
図1Aは、本発明のアンテナの一例を説明する図である。FIG. 1A is a diagram illustrating an example of an antenna of the present invention. 図1Bは、本発明のアンテナの一例を説明する図である。FIG. 1B is a diagram illustrating an example of the antenna of the present invention. 図1Cは、本発明のアンテナの一例を説明する図である。FIG. 1C is a diagram illustrating an example of the antenna of the present invention. 図1Dは、図1CのアンテナのAA断面図である。FIG. 1D is an AA cross-sectional view of the antenna of FIG. 1C. 図2は、本発明のアンテナの一例を説明する図である。FIG. 2 is a diagram illustrating an example of the antenna of the present invention. 図3は、本発明のアンテナの一例を説明する図である。FIG. 3 is a diagram illustrating an example of the antenna of the present invention. 図4は、本発明のアンテナの一例を説明する図である。FIG. 4 is a diagram for explaining an example of the antenna of the present invention. 図5は、本発明のアンテナの実施の形態を示す断面図である。FIG. 5 is a cross-sectional view showing an embodiment of the antenna of the present invention. 図6は、本発明のアンテナのXZ面放射パターンの測定系を示す概略図である。FIG. 6 is a schematic view showing a measurement system for the XZ plane radiation pattern of the antenna of the present invention. 図7は、本発明のアンテナのXZ面放射パターンの測定結果を示す図である。FIG. 7 is a diagram showing the measurement result of the XZ plane radiation pattern of the antenna of the present invention. 図8は、本発明のアンテナの測定に用いた人体ファントムを示す図である。FIG. 8 is a diagram showing a human phantom used for measurement of the antenna of the present invention. 図9は、本発明のアンテナのXZ面放射パターンの測定結果を示す図である。FIG. 9 is a diagram showing the measurement result of the XZ plane radiation pattern of the antenna of the present invention. 図10は、本発明のアンテナに使用する導電性繊維構造物の走査プローブ顕微鏡観察写真である。FIG. 10 is a scanning probe microscope observation photograph of the conductive fiber structure used in the antenna of the present invention.
 次に、本発明のアンテナについて詳細に説明する。
 本発明のアンテナは、少なくとも、炭素原子を含む導電性樹脂が、直径が100nm以上1000nm以下である繊維の表面及び/又は単繊維間隙に担持されている導電性繊維構造物を有するアンテナである。
Next, the antenna of the present invention will be described in detail.
The antenna of the present invention is an antenna having a conductive fiber structure in which at least a conductive resin containing a carbon atom is supported on the surface of a fiber having a diameter of 100 nm to 1000 nm and / or a single fiber gap.
 本発明の導電性繊維構造物を構成する繊維としては、天然繊維、合成又は半合成繊維、若しくはそれらの混合物が挙げられる。天然繊維としては、綿、絹などが挙げられ、合成繊維としては、ポリエステル繊維、アクリル繊維、ナイロン繊維など、半合成繊維としては、レーヨンなどが挙げられるが、これらに限定されるものではない。 The fibers constituting the conductive fiber structure of the present invention include natural fibers, synthetic or semi-synthetic fibers, or mixtures thereof. Examples of natural fibers include cotton and silk. Examples of synthetic fibers include polyester fibers, acrylic fibers, and nylon fibers. Examples of semisynthetic fibers include rayon, but are not limited thereto.
 本発明の導電性繊維構造物を構成する繊維の直径としては、100nm以上1000nm以下が好ましい。1000nm以下にすることで、繊維構造物中での単繊維の表面積が増大するため、導電性樹脂と繊維の密着性が向上する。その結果、アンテナ折り曲げ時の導電性樹脂の剥離や、繰り返し洗濯後の性能低下を抑制することができる。
 表面及び/又は単繊維間隙に導電性樹脂を担持させる観点から、より好ましくは300nm以上1000nm以下であり、さらに好ましくは500nm以上1000nm以下である。上限としては前記のとおり1000nm以下であることが好ましいが、900nm以下であることがより好ましい。
As a diameter of the fiber which comprises the electroconductive fiber structure of this invention, 100 nm or more and 1000 nm or less are preferable. By setting it to 1000 nm or less, the surface area of the single fiber in the fiber structure is increased, so that the adhesion between the conductive resin and the fiber is improved. As a result, peeling of the conductive resin when the antenna is bent and performance deterioration after repeated washing can be suppressed.
From the viewpoint of supporting the conductive resin on the surface and / or the single fiber gap, it is more preferably 300 nm or more and 1000 nm or less, and further preferably 500 nm or more and 1000 nm or less. The upper limit is preferably 1000 nm or less as described above, but more preferably 900 nm or less.
 本発明の導電性繊維構造物は、導電性、柔軟性及び高洗濯耐久性の観点から、導電性樹脂が繊維構造物を構成する単繊維と単繊維の間隙に担持され、繊維構造物の厚み方向の断面を観察したときに、表層から15~30μmの領域に存在する導電性樹脂の面積比率が15%以上である場合によりいっそう洗濯耐久性が優れる点で好ましい。導電性樹脂が単繊維と単繊維の間隙に担持される際に、深部にまで含浸させることにより、よりいっそう高性能な導電性と、洗濯耐久性に優れた導電性繊維構造物が得られるものである。より好ましいのは上記面積比率が20%以上であり、これにより繰り返しの洗濯耐久性に極めて優れる。上限としては、柔軟性の点から上記面積比率が30%で有ることが好ましい。 In the conductive fiber structure of the present invention, from the viewpoint of conductivity, flexibility, and high washing durability, the conductive resin is supported in the gap between the single fibers constituting the fiber structure and the thickness of the fiber structure. When the cross section in the direction is observed, it is preferable in that the washing durability is more excellent when the area ratio of the conductive resin existing in the region of 15 to 30 μm from the surface layer is 15% or more. When conductive resin is carried in the gap between single fibers, it can be impregnated deeply to obtain a conductive fiber structure with even higher performance and excellent washing durability. It is. More preferably, the area ratio is 20% or more, which makes the repeated washing durability extremely excellent. As an upper limit, the area ratio is preferably 30% from the viewpoint of flexibility.
 本発明の導電性繊維構造物を構成する繊維は、繊維の繊度の均一性と細繊度性の観点、及び繊維と導電性樹脂との密着性の観点から、熱可塑性ポリマーからなるマルチフィラメント糸であることが好ましい。 The fibers constituting the conductive fiber structure of the present invention are multifilament yarns made of a thermoplastic polymer from the viewpoints of uniformity and fineness of the fineness of the fibers and the adhesion between the fibers and the conductive resin. Preferably there is.
 上記熱可塑性ポリマーとしては、繊維化できるポリマーであれば特に限定されず、ポリエチレン、ポリプロピレンなどを主成分とするポリオレフィン系繊維、熱可塑性を付与したアセテート等の化学繊維用繊維素、および、ポリエステル、ナイロン等の合成繊維用ポリマー等が挙げられるがこれらに限定されるものではない。なかでも、ポリエステルやポリアミドに代表される熱可塑性ポリマーであることが、その成形性の点から重要である。ポリエステルやポリアミドは融点が高いものが多く、より好ましい。ポリマーの融点は165℃以上であると耐熱性が良好であり好ましい。例えば、ポリエチレンテレフタレート(PET)は255℃、ナイロン6(N6)は220℃であり、ポリマーの性質を損なわない範囲で他の成分が共重合されていても良い。 The thermoplastic polymer is not particularly limited as long as it is a polymer that can be made into a fiber. Polyolefin fiber mainly composed of polyethylene, polypropylene, etc., fiber for chemical fiber such as acetate imparted with thermoplasticity, and polyester, Examples thereof include, but are not limited to, polymers for synthetic fibers such as nylon. Especially, it is important from the point of the moldability that it is a thermoplastic polymer represented by polyester and polyamide. Many polyesters and polyamides have a high melting point, and are more preferable. The melting point of the polymer is preferably 165 ° C. or higher because the heat resistance is good. For example, polyethylene terephthalate (PET) is 255 ° C., nylon 6 (N 6) is 220 ° C., and other components may be copolymerized as long as the properties of the polymer are not impaired.
 熱可塑性ポリマーの中でも、加工性の観点からポリエステルからなる繊維が特に好ましい。ここで言うポリエステルとは、テレフタル酸を主たる酸成分とし、炭素原子数2~6のアルキレングリコール、即ち、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコールから、好ましくは、エチレングリコール及びテトラメチレングリコールから選ばれた少なくとも一種のグリコールを、特に好ましくはエチレングリコールを主たるグリコール成分とするポリエステルが例示される。 Among thermoplastic polymers, fibers made of polyester are particularly preferable from the viewpoint of processability. The polyester here refers to terephthalic acid as the main acid component, and alkylene glycol having 2 to 6 carbon atoms, that is, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, preferably Examples include polyesters having at least one glycol selected from ethylene glycol and tetramethylene glycol as a main glycol component, particularly preferably ethylene glycol.
 また、該テレフタル酸成分の一部を他の二官能性カルボン酸成分で置き換えたポリエステルであってもよく、及び/又はグリコール成分の一部を前記グリコール成分以外のジオール成分で置き換えたポリエステルであってもよい。 Further, it may be a polyester in which a part of the terephthalic acid component is replaced with another bifunctional carboxylic acid component, and / or a polyester in which a part of the glycol component is replaced with a diol component other than the glycol component. May be.
 ここで使用されるテレフタル酸以外の二官能性カルボン酸としては、例えば、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸、アジピン酸、セバシン酸、1,4-シクロヘキサンジカルボン酸の如き芳香族、脂肪族、脂環族の二官能性カルボン酸をあげることができる。また、前記グリコール以外のジオール化合物としては、例えば、シクロヘキサン-1,4-ジメタノール,ネオペンチルグリコール、ビスフェノールA、ビスフェノールSの如き芳香族、脂肪族、脂環族のジオール化合物をあげることができる。 Examples of the bifunctional carboxylic acid other than terephthalic acid used here include isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, adipic acid, sebacic acid, and 1,4-cyclohexanedicarboxylic acid. Examples thereof include aromatic, aliphatic and alicyclic bifunctional carboxylic acids. Examples of the diol compound other than the glycol include aromatic, aliphatic and alicyclic diol compounds such as cyclohexane-1,4-dimethanol, neopentyl glycol, bisphenol A and bisphenol S. .
 前記ポリエステルは、任意の方法によって合成したものでよい。例えば、ポリエチレンテレフタレートについて説明すれば、通常、テレフタル酸とエチレングリコールとを、直接、エステル化反応させるか、テレフタル酸ジメチルなどのテレフタル酸の低級アルキルエステルとエチレングリコールとをエステル交換反応させるか、またはテレフタル酸とエチレンオキサイドとを反応させるかして、テレフタル酸のグリコールエステルおよび/またはその低重合体を生成させる第1段階の反応と、該第1段階の反応生成物を減圧下に加熱して所望の重合度となるまで重縮合反応させる第2段階の反応によって製造することができる。 The polyester may be synthesized by any method. For example, when describing polyethylene terephthalate, terephthalic acid and ethylene glycol are usually esterified directly, or a lower alkyl ester of terephthalic acid such as dimethyl terephthalate is transesterified with ethylene glycol, or A first stage reaction in which terephthalic acid and ethylene oxide are reacted to form a glycol ester of terephthalic acid and / or a low polymer thereof, and the reaction product of the first stage is heated under reduced pressure. It can be produced by a second stage reaction in which a polycondensation reaction is performed until a desired degree of polymerization is achieved.
 マルチフィラメントの製造方法としては、例えば、既知のエレクトロスピニング方式などにより作製されるモノフィラメント糸の集合体、複合紡糸方式などにより作製できる。複合紡糸方式の一例としては、単繊維本数が多いナノファイバーとして、溶解性の異なる2種のポリマーからなる海島型複合繊維糸を用意し、海島型複合繊維の海成分を溶媒で除去することで、極細繊維化する。島成分の各々の太さや分布は限定されないが、島成分の構成本数を増やす等の方法により、島成分の直径を小さくすることでナノファイバーからなるマルチフィラメントが形成できる。本発明においてはナノファイバーを含むことが好ましい。 As a method for producing a multifilament, it can be produced by, for example, an assembly of monofilament yarns produced by a known electrospinning method, a composite spinning method, or the like. As an example of the composite spinning method, as a nanofiber with a large number of single fibers, sea-island type composite fiber yarns consisting of two types of polymers with different solubility are prepared, and the sea components of the sea-island type composite fiber are removed with a solvent. , Ultrafine fiber. Although the thickness and distribution of each of the island components are not limited, a multifilament made of nanofibers can be formed by reducing the diameter of the island components by a method such as increasing the number of island components. In this invention, it is preferable that a nanofiber is included.
 島成分の構成本数としては、単繊維繊度または単繊維への撚糸の有無などとの関係もあるが5本以上、好ましくは24本以上、さらに好ましくは50本以上であることが好ましい。単繊維の本数が多いほど複数の単繊維から構成される空隙、すなわち導電性樹脂が担持される部位が再分化されることで導電性樹脂の繊維構造物への担持性が高くなる。また、繊維径が細くなることで細分化されても導電性樹脂の連続性が保持されるようになる。 The number of island components is 5 or more, preferably 24 or more, and more preferably 50 or more, although there is a relationship with the single fiber fineness or the presence or absence of twisted yarns on single fibers. As the number of single fibers increases, voids composed of a plurality of single fibers, that is, portions where the conductive resin is supported are re-differentiated so that the conductive resin is supported on the fiber structure. In addition, the continuity of the conductive resin is maintained even if the fiber diameter is reduced to be finely divided.
 単繊維の断面形状については、丸断面、三角断面、その他、異形度が高い異形断面の形状でも特に限定されるものではない。 The cross-sectional shape of the single fiber is not particularly limited even if it is a round cross-section, a triangular cross-section, or any other irregular cross-section having a high degree of deformity.
 さらに、本発明においては、異なる繊度を有する単繊維を混合することも好ましい。また多成分系繊維全体の断面形態も、丸孔に限らず、トライローバル型、テトラローバル型、T型、中空型等あらゆる公知の繊維の断面のものも含まれる。 Furthermore, in the present invention, it is also preferable to mix single fibers having different finenesses. The cross-sectional form of the entire multicomponent fiber is not limited to a round hole, but includes cross-sections of all known fibers such as a trilobal type, a tetralobal type, a T type, and a hollow type.
 本発明のマルチフィラメント糸を用いた繊維構造物としては、メッシュ、抄紙、織物、編物、不織布、リボン、紐などの形態を有するものが挙げられる。使用目的に応じた種々の形態を有するものに用いられる。 Examples of the fiber structure using the multifilament yarn of the present invention include those having forms such as mesh, papermaking, woven fabric, knitted fabric, nonwoven fabric, ribbon, and string. Used in various forms according to the purpose of use.
 これら繊維構造物は、通常の方法、手段により、染色、機能加工など、アンテナとしての性能を損なわない限り、実施を制限するものではない。アンテナの表面形態の起毛、カレンダー、エンボス、ウォータージェットパンチ加工など表面物理加工においても同様に限定されるものではない。 These fiber structures are not limited to implementation unless the performance as an antenna such as dyeing and functional processing is impaired by ordinary methods and means. The surface physical processing such as raising of the antenna surface shape, calendering, embossing, water jet punching is not limited in the same manner.
 本発明の導電性繊維構造物において、少なくとも炭素原子を含む導電性樹脂は、繊維の表面及び/又は単繊維間隙に担持されており、単繊維間隙に担持されていることが好ましい。さらに、導電性樹脂は、マルチフィラメント糸を構成する単繊維と単繊維の間隙において、実質的に繊維軸方向に連続して存在する態様であることが好ましい。この態様とする場合には、導電性樹脂と単繊維の密着性がよりいっそう高く、さらに導電性もいっそう高くなるため、従来の導電布を用いたアンテナよりも利得が極めて高くなり、その結果、通信距離がよりいっそう延びる。また、導電性樹脂が繊維に包まれた構造であるため、繊維の誘電率に応じて波長短縮が生じアンテナが小形になる。なお、導電性樹脂が単繊維と単繊維の間隙において、実質的に繊維軸方向に連続して存在するかは、前記導電性繊維構造物の繊維軸方向の破断面を走査型電子顕微鏡(SEM)にて撮影し、得られた断面写真から無作為に選定した5カ所の単繊維間隙に存在する導電性樹脂の重なりを観察し、重なりが存在すれば連続性ありと判断する。なお、導電性繊維構造物が織物の場合における繊維軸方向の破断面は経糸方向、編み物の場合における繊維軸方向の破断面は編み目にループが存在する場合はループの頂点部分で分断する方向(ループの立ち上がりの繊維軸方向に沿う方向)、編物でループが存在しない場合、不織布等の場合は繊維軸方向に沿えば任意の方向で破断するものとする。また、導電性繊維構造物に導電性樹脂とともにそれ以外の物質も付着している場合は、適宜、導電性樹脂を構成する元素の元素分析等可能な分析を行い、導電性樹脂の存在を特定する。元素分析の方法としては、前記導電性繊維構造物の繊維軸方向の破断面を走査型電子顕微鏡(SEM)装置の付帯装置であるエネルギー分散型X線(EDX)分析装置で観察し、表面および単繊維間隙に担持されている導電性樹脂にふくまれる炭素原子の量を取得する方法があるがその限りではない。 In the conductive fiber structure of the present invention, the conductive resin containing at least carbon atoms is supported on the fiber surface and / or on the single fiber gap, and preferably on the single fiber gap. Furthermore, it is preferable that the conductive resin is in a form that is substantially continuously present in the fiber axis direction in the gap between the single fibers constituting the multifilament yarn. In the case of this aspect, the adhesion between the conductive resin and the single fiber is even higher, and the conductivity is even higher, so the gain is extremely higher than the antenna using the conventional conductive cloth, and as a result, The communication distance is further increased. In addition, since the conductive resin has a structure wrapped in fibers, the wavelength is shortened according to the dielectric constant of the fibers, and the antenna becomes small. Whether or not the conductive resin exists substantially continuously in the fiber axis direction in the gap between the single fibers is determined by examining the fracture surface in the fiber axis direction of the conductive fiber structure with a scanning electron microscope (SEM). ), And the overlapping of the conductive resin existing in the gap between the five single fibers randomly selected from the obtained cross-sectional photograph is observed, and if there is an overlap, it is determined that there is continuity. When the conductive fiber structure is a woven fabric, the fracture surface in the fiber axis direction is the warp direction, and when the conductive fiber structure is a knitted fabric, the fracture surface in the fiber axis direction is a direction in which the loop is split at the apex of the loop when a loop exists in the stitch ( When the loop does not exist in the knitted fabric, the nonwoven fabric or the like breaks in any direction along the fiber axis direction. In addition, if other materials are also attached to the conductive fiber structure along with the conductive resin, perform analysis that allows elemental analysis of the elements that make up the conductive resin, and identify the presence of the conductive resin. To do. As a method of elemental analysis, the fracture surface in the fiber axis direction of the conductive fiber structure is observed with an energy dispersive X-ray (EDX) analyzer, which is an accessory device of a scanning electron microscope (SEM) device, and the surface and There is a method for obtaining the amount of carbon atoms contained in the conductive resin carried in the single fiber gap, but this is not a limitation.
 本発明で用いる炭素原子を含む導電性樹脂としては、例えば、導電性が比較的低い樹脂(以下、低導電性樹脂と称する場合がある)にカーボンブラック、カーボンナノチューブ、グラフェン、金属粒子などを含有せしめることにより導電性を付与した導電性樹脂や、樹脂そのものが導電性を有する導電性高分子などの導電性樹脂が挙げられるが、これらに限定されるものではない。これらの導電性樹脂は金属材料よりも柔軟性が高く、アンテナの折り曲げによる変形が折り曲げ後に残存することがなく、折り曲げた耐性や繰り返し洗濯後の特性に優れる。さらに、柔軟性が高いため、本発明のアンテナを装着した衣服を着た際の、着心地が良いという効果も得られる。 Examples of the conductive resin containing carbon atoms used in the present invention include carbon black, carbon nanotubes, graphene, metal particles, etc., in a resin having a relatively low conductivity (hereinafter sometimes referred to as a low conductive resin). Examples thereof include, but are not limited to, a conductive resin such as a conductive resin imparted with conductivity and a conductive polymer in which the resin itself has conductivity. These conductive resins have higher flexibility than metal materials, and deformation due to bending of the antenna does not remain after bending, and are excellent in resistance to bending and characteristics after repeated washing. Furthermore, since the flexibility is high, there is also an effect that the comfort is good when wearing the clothes equipped with the antenna of the present invention.
 なお、伸縮時や折り曲げ時のアンテナ特性の安定性の観点からは、導電性高分子が好ましい。導電性樹脂として導電性高分子を使用する場合、アンテナの伸縮や折り曲げによって導電性樹脂の変形が起こることで導電性樹脂の導電率が変化し、その結果、アンテナ特性が変化するおそれがあるためである。 Note that a conductive polymer is preferable from the viewpoint of stability of antenna characteristics during expansion and contraction and bending. When a conductive polymer is used as the conductive resin, the conductivity of the conductive resin changes due to the deformation of the conductive resin caused by expansion / contraction or bending of the antenna. As a result, the antenna characteristics may change. It is.
 導電性高分子は、導電性を示す高分子であれば特に制限されることはないが、例えば、アセチレン系、複素5員環(モノマーとして、ピロールの他、3-メチルピロール、3-エチルピロール、3-ドデシルピロールなどの3-アルキルピロール;3,4-ジメチルピロール、3-メチル-4-ドデシルピロールなどの3,4-ジアルキルピロール;N-メチルピロール、N-ドデシルピロールなどのN-アルキルピロール;N-メチル-3-メチルピロール、N-エチル-3-ドデシルピロールなどのN-アルキル-3-アルキルピロール;3-カルボキシピロールなどを重合して得られたピロール系高分子、チオフェン系高分子、イソチアナフテン系高分子など)、フェニレン系、アニリン系の各導電性高分子やこれらの共重合体、イオン液体などが挙げられる。 The conductive polymer is not particularly limited as long as it is a polymer exhibiting conductivity. For example, acetylene-based, 5-membered heterocyclic ring (as monomer, pyrrole, 3-methylpyrrole, 3-ethylpyrrole) 3-alkylpyrrole such as 3-dodecylpyrrole; 3,4-dialkylpyrrole such as 3,4-dimethylpyrrole and 3-methyl-4-dodecylpyrrole; N-alkyl such as N-methylpyrrole and N-dodecylpyrrole Pyrrole; N-alkyl-3-alkylpyrrole such as N-methyl-3-methylpyrrole and N-ethyl-3-dodecylpyrrole; pyrrole polymer obtained by polymerizing 3-carboxypyrrole, etc. Molecules, isothianaphthene-based polymers, etc.), phenylene-based and aniline-based conductive polymers and their copolymers, Such as emissions liquid, and the like.
 さらに導電性高分子において、その導電性にドーパントが効果をもたらすが、ここで用いられるドーパントとしては、塩化物イオン、臭化物イオンなどのハロゲン化物イオン、過塩素酸イオン、テトラフルオロ硼酸イオン、六フッ化ヒ酸イオン、硫酸イオン、硝酸イオン、チオシアン酸イオン、六フッ化ケイ酸イオン、燐酸イオン、フェニル燐酸イオン、六フッ化燐酸イオンなどの燐酸系イオン、トリフルオロ酢酸イオン、トシレートイオン、エチルベンゼンスルホン酸イオン、ドデシルベンゼンスルホン酸イオンなどのアルキルベンゼンスルホン酸イオン、メチルスルホン酸イオン、エチルスルホン酸イオンなどのアルキルスルホン酸イオン、ポリアクリル酸イオン、ポリビニルスルホン酸イオン、ポリスチレンスルホン酸イオン、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)イオンなどの高分子イオンのうち、少なくとも一種のイオンが使用される、ドーパントの添加量は、導電性に効果を与える量であれば特に制限はされるものではない。 Furthermore, in conductive polymers, dopants have an effect on the conductivity. The dopants used here include halide ions such as chloride ions and bromide ions, perchlorate ions, tetrafluoroborate ions, hexafluoride ions and hexafluoride ions. Arsenate ion, sulfate ion, nitrate ion, thiocyanate ion, hexafluorosilicate ion, phosphate ion, phenylphosphate ion, hexafluorophosphate ion, trifluoroacetate ion, tosylate ion, ethylbenzene Alkyl benzene sulfonate ion such as sulfonate ion, dodecylbenzene sulfonate ion, alkyl sulfonate ion such as methyl sulfonate ion, ethyl sulfonate ion, polyacrylate ion, polyvinyl sulfonate ion, polystyrene sulfonate ion, poly Among polymer ions such as (2-acrylamido-2-methylpropanesulfonic acid) ion, at least one ion is used. The amount of dopant added is particularly limited as long as it is an amount that has an effect on conductivity. It is not a thing.
 導電性高分子としては、ポリピロール、PEDOT(ポリ3,4-エチレンジオキシチオフェン)等から選択される導電性高分子に、ポリ4-スチレンサルフォネート(PSS)、ポリアニリン、およびポリパラフェニレンビニレン(PPV)から選択されるドーパントを併用する態様などが樹脂化させやすく、導電性高分子として好ましく用いられる。以下このような態様で併用をする場合について、例えばPEDOT/PSSのように“/”で表すことがある。 Examples of the conductive polymer include polypyrrole, PEDOT (poly3,4-ethylenedioxythiophene), and the like, and poly-4-styrene sulfonate (PSS), polyaniline, and polyparaphenylene vinylene. An embodiment in which a dopant selected from (PPV) is used in combination is easy to resinize and is preferably used as a conductive polymer. Hereinafter, the case of using in combination in this manner may be represented by “/”, for example, PEDOT / PSS.
 特に、チオフェン系導電性高分子のPEDOTにポリ4-スチレンサルフォネートPSSをドープしたPEDOT/PSS(ナガセケムテックス社製 Denatron(登録商標))が安全性、加工性の観点から特に好適である。 In particular, PEDOT / PSS (Denatron (registered trademark) manufactured by Nagase ChemteX Corporation) in which PEDOT of thiophene-based conductive polymer is doped with poly 4-styrenesulfonate PSS is particularly suitable from the viewpoint of safety and workability. .
 導電性樹脂は、バインダ樹脂を含むことが耐久性の点から好ましい。バインダ樹脂としては、オレフィン系樹脂、ポリエステル系樹脂、ポリウレタン、エポキシ樹脂およびアクリル樹脂からなる群より選択される少なくとも1つであることが好ましい。上記バインダ樹脂としては、導電性繊維構造物中の導電性樹脂を構成する配合物同士を密着させ、より確実に繊維構造物に導電性を付与する点から中でもオレフィン系樹脂がもっとも好ましい。 It is preferable from the viewpoint of durability that the conductive resin contains a binder resin. The binder resin is preferably at least one selected from the group consisting of an olefin resin, a polyester resin, polyurethane, an epoxy resin, and an acrylic resin. As the binder resin, an olefin resin is most preferable from the viewpoint of bringing the compound constituting the conductive resin in the conductive fiber structure into close contact with each other and more reliably imparting conductivity to the fiber structure.
 例えば、繰り返し洗濯耐性の観点からは、導電性高分子に、オレフィン系樹脂を添加することが好ましい。特に、繊維構造物に担持するための導電性樹脂として、動的光散乱測定の平均粒子径が20nm以下の導電性樹脂を用いることが好ましい。なかでも導電性高分子とオレフィン系樹脂との混合物を主成分とする導電性樹脂を用いる際に、前記平均粒子径が20nm以下の導電性樹脂とすることが好ましい。導電性高分子の平均粒子径が大きすぎると、繊維構造物を構成する繊維の単繊維と単繊維の間隙に担持されにくく、単繊維の表面に多く担持され、物理衝撃で簡単に剥離し、繰り返し洗濯後の高い導電性が保持できない。導電性高分子の平均粒子径が20nm以下であれば、単繊維の表面および単繊維と単繊維の間隙に多く担持され、物理衝撃で剥離することは少なく、繰り返し洗濯後の高い導電性が保持できる。なお、ここで「主成分」とは、導電性繊維構造物の繊維以外の構成材料の内50%以上の質量比率を占めることである。 For example, from the viewpoint of repeated washing resistance, it is preferable to add an olefin resin to the conductive polymer. In particular, it is preferable to use a conductive resin having an average particle diameter of 20 nm or less in dynamic light scattering measurement as the conductive resin to be carried on the fiber structure. Among these, when using a conductive resin whose main component is a mixture of a conductive polymer and an olefin resin, it is preferable to use a conductive resin having an average particle diameter of 20 nm or less. If the average particle diameter of the conductive polymer is too large, it is difficult to be supported in the gap between the single fibers of the fibers constituting the fiber structure, and is supported on the surface of the single fibers, and easily peeled off by physical impact, High conductivity after repeated washing cannot be maintained. If the average particle size of the conductive polymer is 20 nm or less, it is supported on the surface of the single fiber and on the gap between the single fiber and the single fiber, hardly peels off by physical impact, and maintains high conductivity after repeated washing. it can. Here, the “main component” means to occupy a mass ratio of 50% or more of the constituent materials other than the fibers of the conductive fiber structure.
 導電性高分子とオレフィン系樹脂を併用することで、導電性繊維構造物中の配合物同士を密着させ、より確実に導電性繊維構造物を形成することができる。なお、オレフィン系樹脂としては、得られる導電性繊維構造物の柔軟性及び洗濯耐久性の観点から、非極性のオレフィン系樹脂であることが好ましい。ここで、本発明において、「非極性」とは、ソルビリテイパラメータ(SP)値が6~10未満、好ましくは7~9であることをいう。このSP値は、溶解度によって決定される値である。 By using the conductive polymer and the olefin resin in combination, the compound in the conductive fiber structure can be brought into close contact with each other, and the conductive fiber structure can be formed more reliably. The olefin resin is preferably a nonpolar olefin resin from the viewpoint of flexibility and washing durability of the obtained conductive fiber structure. Here, in the present invention, “non-polar” means that the solubility parameter (SP) value is 6 to less than 10, preferably 7 to 9. This SP value is a value determined by solubility.
 非極性のオレフィン系樹脂としては、SP値が6~10未満であることが好ましい。非極性のオレフィン系樹脂は、単独で用いても良いし、2種以上を併用しても良い。 The non-polar olefin resin preferably has an SP value of 6 to less than 10. A nonpolar olefin resin may be used independently and may use 2 or more types together.
 オレフィン系樹脂としては、ポリエチレン、ポリプロピレン、シクロオレフィンポリマー(環状ポリオレフィン)、それらを変性したポリマー等が挙げられる。導電性を有する繊維構造物では、これらをオレフィン系樹脂として使用しても良く、ポリ塩化ビニル、ポリスチレン等をオレフィン変性したものをオレフィン系樹脂として使用しても良い。これらは単独で用いても良いし、2種以上を併用しても良い。 Examples of the olefin resin include polyethylene, polypropylene, cycloolefin polymer (cyclic polyolefin), and polymers obtained by modifying them. In the fiber structure having conductivity, these may be used as an olefin resin, or those obtained by modifying polyvinyl chloride, polystyrene or the like with an olefin may be used as the olefin resin. These may be used alone or in combination of two or more.
 本発明において繊維構造物に導電性樹脂を担持する際、溶媒を添加して処理液とし、加工に供しても良い。溶媒としては、特に限定されず、例えば、水;メタノール、エタノール、2-プロパノール、1-プロパノール、グリセリン等のアルコール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等のエチレングリコール類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル等のグリコールエーテル類;エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のグリコールエーテルアセテート類;プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール等のプロピレングリコール類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテル等のプロピレングリコールエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート等のプロピレングリコールエーテルアセテート類;テトラヒドロフラン;アセトン;アセトニトリル等が挙げられる。これらの溶媒は単独で用いても良いし、2種類以上を併用しても良い。 In the present invention, when the conductive resin is supported on the fiber structure, a solvent may be added to form a treatment liquid, which may be used for processing. The solvent is not particularly limited. For example, water; alcohols such as methanol, ethanol, 2-propanol, 1-propanol, and glycerin; ethylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol; ethylene Glycol ethers such as glycol monomethyl ether, diethylene glycol monomethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether; glycol ether acetates such as ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate; propylene glycol, dipropylene Glycol, tripropylene Propylene glycols such as coal; propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, propylene glycol diethyl ether, dipropylene glycol diethyl ether Propylene glycol ethers such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, etc .; tetrahydrofuran; acetone Acetonitrile. These solvents may be used alone or in combination of two or more.
 本発明の導電性繊維構造物は、導電性の向上、安定化の観点から、さらにグリセロール、生理食塩水などを付与したものも好適に利用できるが、これらに限定されるものではない。 As the conductive fiber structure of the present invention, those provided with glycerol, physiological saline, or the like can be suitably used from the viewpoint of improving and stabilizing the conductivity, but are not limited thereto.
 本発明の導電性繊維構造物は、例示した導電性樹脂の前駆体や、導電性樹脂に上記のような溶媒を加えた導電性樹脂の溶液、乳化物、分散物などの処理液を使用し、浸漬法、コーティング法、スプレー法など既知の方法により繊維構造物に担持させることができる。繊維構造物への担持の方法としては、特に限定されるものではないが、導電性樹脂を繊維の表面および単繊維と単繊維の間隙に担持させるためには、導電性樹脂溶液(乳化物、分散物を含む)への浸漬、または、スプレー回数を複数回繰り返し行うことが望ましい。ナノファイバーに、導電性樹脂を繰り返し接触させることにより、単繊維と単繊維の間に導電性樹脂を軸方向に連続するように充填することができる。本発明においては、さらに上記のように導電性樹脂を含む処理剤を繊維構造物に担持した後加熱することが好ましい。加熱する際に、導電性樹脂に含まれる成分の軟化点以上、分解温度以下の熱履歴を与えることは、成分が溶融し、よりいっそう単繊維間隙に侵入するすると共に、強固に固着するようになり、いっそうの耐洗濯性を付与することができる点で好ましい。加熱温度としては、180℃以下が好ましく、80℃~180℃がより好ましく、100℃~150℃が更に好ましい。加熱温度が、上記範囲であると、導電性樹脂を構成する配合物同士の密着性がよく、より確実に繊維構造物に導電性を付与することができる。 The conductive fiber structure of the present invention uses a precursor of the exemplified conductive resin or a treatment liquid such as a conductive resin solution, emulsion, or dispersion obtained by adding the above solvent to the conductive resin. The fiber structure can be supported by a known method such as dipping, coating, or spraying. The method for supporting the fiber structure is not particularly limited, but in order to support the conductive resin on the surface of the fiber and the gap between the single fiber and the single fiber, a conductive resin solution (emulsion, It is desirable to repeat immersion or spraying a plurality of times (including the dispersion). By repeatedly contacting the nanofiber with the conductive resin, the conductive resin can be filled between the single fibers so as to be continuous in the axial direction. In the present invention, as described above, it is preferable that the treatment agent containing the conductive resin is supported on the fiber structure and then heated. When heating, giving a thermal history not lower than the softening point of the component contained in the conductive resin and not higher than the decomposition temperature causes the component to melt and penetrate more into the single fiber gap and firmly adhere to it. It is preferable at the point which can provide the further washing resistance. The heating temperature is preferably 180 ° C. or lower, more preferably 80 ° C. to 180 ° C., and still more preferably 100 ° C. to 150 ° C. When the heating temperature is within the above range, the adhesion between the compounds constituting the conductive resin is good, and the fiber structure can be more reliably imparted with conductivity.
 本発明のアンテナは、導電性樹脂を含む導電性繊維構造物の片面に、樹脂層が積層されていることが好ましい。導電性繊維構造物の片面が樹脂層で覆われることにより、アンテナの耐久性、特に洗濯による導電性樹脂の脱落による導電性低下を大幅に抑制できるようになる。樹脂層を構成するポリマーの種類および形状は、限定されないが、アンテナとしての要求特性上、絶縁性を有する防水透湿層であることが好ましい。 The antenna of the present invention preferably has a resin layer laminated on one side of a conductive fiber structure containing a conductive resin. By covering one surface of the conductive fiber structure with the resin layer, it is possible to greatly suppress the durability of the antenna, particularly the decrease in conductivity due to the dropping of the conductive resin due to washing. The type and shape of the polymer constituting the resin layer are not limited, but a waterproof and moisture-permeable layer having insulating properties is preferable in terms of required characteristics as an antenna.
 防水透湿層としては、PTFE(ポリテトラフルオロエチレン)多孔膜、親水性のポリエステル樹脂、ポリウレタン樹脂など親水性エラストマーからなる無孔膜、ポリウレタン樹脂微多孔膜など、既知の膜、フィルム、積層物、樹脂などをコーティング、ラミネート方式で積層した形態が挙げられるがこれらに限るものではない。防水透湿層は、基材である導電性繊維構造物への追随性の観点から、伸縮性を有するポリウレタン樹脂微多孔膜をラミネートにより積層接着したものが好ましい。 Examples of waterproof and moisture-permeable layers include PTFE (polytetrafluoroethylene) porous membranes, non-porous membranes made of hydrophilic elastomers such as hydrophilic polyester resins and polyurethane resins, polyurethane resin microporous membranes, and other known membranes, films and laminates. In addition, a form in which a resin or the like is laminated by a coating or laminating method is exemplified, but the invention is not limited thereto. The waterproof / moisture permeable layer is preferably one in which a polyurethane resin microporous film having stretchability is laminated and adhered by lamination from the viewpoint of followability to a conductive fiber structure as a base material.
 アンテナの性能は、通信に用いる周波数と同じ周波数を持つ交流電流に対する導電性繊維構造物の表面抵抗率と関係があり、表面抵抗率が0.01~0.1Ω/□であることが好ましい。なお、通信に用いる周波数に制限はないが、通信距離等の通信性能の観点から100MHz~5GHzが好ましく、特に、通信機器の入手のしやすさから、920MHzや2.45GHzが好ましい。表面抵抗率が0.1Ω/□より大きい場合は、アンテナを流れる電流値が小さく、安定な通信が難しい。 The performance of the antenna is related to the surface resistivity of the conductive fiber structure with respect to an alternating current having the same frequency as that used for communication, and the surface resistivity is preferably 0.01 to 0.1Ω / □. Although there is no restriction on the frequency used for communication, 100 MHz to 5 GHz is preferable from the viewpoint of communication performance such as communication distance, and 920 MHz and 2.45 GHz are particularly preferable from the viewpoint of easy availability of communication equipment. When the surface resistivity is greater than 0.1Ω / □, the current value flowing through the antenna is small, and stable communication is difficult.
 本発明のアンテナの構成としては、アンテナの形状に加工した前記導電性繊維構造物からなる導電体と誘電体との積層体が挙げられる。前記誘電体としては、特に制限はなく、メッシュ、抄紙、織物、編物、不織布等の繊維構造物、ポリエチレンテレフタレート等の高分子フィルム、アルミナ等のセラミック基板を用いることができる。ただし、一般的に誘電体の比誘電率が高いと、アンテナに交流電流が流れた時の損失が大きくなると共に、周波数帯域が狭くなり、安定した通信が困難になる。したがって、誘電体の比誘電率は低いことが好ましい。誘電体は、絶縁性基材を用いることが好ましい。前記絶縁性基材の中でも、繊維構造物は、繊維の間隙に空気を含むため比誘電率が低く、さらに柔軟性に富むため、スマートテキスタイル用のアンテナに好適に用いることができる。例えば、代表的な高分子フィルムであるポリエチレンテレフタレートフィルムの比誘電率は約3.0、体表的な低誘電高分子であるポリテトラフルオロエチレンの比誘電率は約2.0であるが、不織布の比誘電率は1.4と非常に低い値を示す。以下では、誘電体に絶縁性繊維構造物を用いる場合について、主に説明する。なお、積層体の積層数は特に限定されず、導電性繊維構造物からなる導電体と誘電体から成る2層構造、導電性繊維構造物からなる第1の導電体と誘電体と導電性繊維構造物からなる第2の導電体からなる3層構造、導電性繊維構造物からなる第1の導電体、第1の誘電体、導電性繊維構造物からなる第2の導電体、第2の誘電体、導電性繊維構造物からなる第3の導電体、第3の誘電体からなる6層構造などが挙げられるが、これらに限定されるものではない。 The configuration of the antenna of the present invention includes a laminate of a conductor and a dielectric made of the conductive fiber structure processed into the shape of the antenna. There is no restriction | limiting in particular as said dielectric material, Fiber structures, such as a mesh, papermaking, a textile fabric, a knitted fabric, a nonwoven fabric, polymer films, such as a polyethylene terephthalate, and ceramic substrates, such as an alumina, can be used. However, generally, when the relative permittivity of the dielectric is high, loss when an alternating current flows through the antenna becomes large, and the frequency band becomes narrow, and stable communication becomes difficult. Therefore, the dielectric constant of the dielectric is preferably low. As the dielectric, an insulating base material is preferably used. Among the insulating base materials, since the fiber structure contains air in the gap between the fibers and has a low relative dielectric constant and a high flexibility, it can be suitably used for an antenna for smart textiles. For example, the relative dielectric constant of a polyethylene terephthalate film, which is a typical polymer film, is about 3.0, and the relative dielectric constant of polytetrafluoroethylene, which is a surface low dielectric polymer, is about 2.0. The relative dielectric constant of the nonwoven fabric is as low as 1.4. Below, the case where an insulating fiber structure is used for a dielectric material is mainly demonstrated. Note that the number of laminated layers is not particularly limited, and a two-layer structure composed of a conductive fiber structure and a conductor, a first conductor composed of a conductive fiber structure, a dielectric, and a conductive fiber. A three-layer structure composed of a second conductor composed of a structure, a first conductor composed of a conductive fiber structure, a first dielectric, a second conductor composed of a conductive fiber structure, a second Examples include, but are not limited to, a dielectric, a third conductor made of a conductive fiber structure, a six-layer structure made of a third dielectric, and the like.
 本発明のアンテナの種類には特に制限はなく、例えば、HF(High Frequency)帯での通信に用いられるループアンテナ(図1A参照)、スパイラルアンテナや、UHF(Ultra High Frequency)帯での通信に用いられるダイポールアンテナ(図1B参照)、パッチアンテナ(図1C、1D参照)、マイクロストリップアンテナ、ダイポールアレーアンテナ、リングアンテナなどが挙げられる。 There are no particular restrictions on the type of antenna of the present invention. For example, a loop antenna (see FIG. 1A) used for communication in the HF (High Frequency) band, a spiral antenna, or communication in the UHF (Ultra High Frequency) band. Examples thereof include a dipole antenna (see FIG. 1B), a patch antenna (see FIGS. 1C and 1D), a microstrip antenna, a dipole array antenna, and a ring antenna.
 図1Aに示すループアンテナは、絶縁性繊維構造物からなる誘電体2上に導電性繊維構造物からなるアンテナ2をループ状に形成している。図1Bに示すダイポールアンテナは、絶縁性繊維構造物からなる誘電体2と特定のパターンに加工された前記導電性繊維構造物からなる導電体1との積層体である。なお、図1Bではメアンダー形状のアンテナを例示したが、アンテナ性能を有すれば形状に制限はなく、図2に示すような直線構造でも構わない。また、パターンの幅についても特に制限はなく、アンテナの性能、パターン加工性などの観点から、設計されるものである。 In the loop antenna shown in FIG. 1A, an antenna 2 made of a conductive fiber structure is formed in a loop shape on a dielectric 2 made of an insulating fiber structure. The dipole antenna shown in FIG. 1B is a laminate of a dielectric 2 made of an insulating fiber structure and a conductor 1 made of the conductive fiber structure processed into a specific pattern. 1B illustrates a meander-shaped antenna, but the shape is not limited as long as it has antenna performance, and a linear structure as shown in FIG. 2 may be used. Also, the width of the pattern is not particularly limited, and is designed from the viewpoint of antenna performance, pattern processability, and the like.
 図1C、1Dに示すパッチアンテナは、導電性繊維構造物からなる第1の導電体3A、絶縁性繊維構造物からなる誘電体2、導電性繊維構造物からなる第2の導電体3Bの積層体であり、第1及び第2の導電体は電気的に接続されている。第1の導電体3Aは、電波を送受信する役割を果たすものであり、特定のパターン形状に加工されている必要がある。その形状の一例としては図1Cの形状が挙げられるが、これに制限されるものではなく、例えば、図3に示す構造や、図1Cの四角や、図3の丸を、三角形や五角形などで置き換えた構造でも構わない。一方、第2の導電体3Bは第1の導電体3Aから放射された電波を吸収し、アンテナ背面への電波の放射を防ぐものである。なお、第2の導電体3Bについては、特定のパターン形状に加工する必要はない。 The patch antenna shown in FIGS. 1C and 1D is a laminate of a first conductor 3A made of a conductive fiber structure, a dielectric 2 made of an insulating fiber structure, and a second conductor 3B made of a conductive fiber structure. And the first and second conductors are electrically connected. The first conductor 3A plays a role of transmitting and receiving radio waves, and needs to be processed into a specific pattern shape. An example of the shape is the shape shown in FIG. 1C, but is not limited thereto. For example, the structure shown in FIG. 3, the square shown in FIG. 1C, or the circle shown in FIG. A replacement structure may be used. On the other hand, the second conductor 3B absorbs radio waves radiated from the first conductor 3A and prevents radio waves from being radiated to the back surface of the antenna. Note that the second conductor 3B does not need to be processed into a specific pattern shape.
 第1の導電体3A、及び第2の導電体3Bを電気的に接続する方法に特に制限はなく、例えば、誘電体2中に導電性繊維構造物を配置する方法、金属ピンを突き刺す方法、金属製のボタンを用いる方法などが挙げられる。金属製のボタンとしては、ドットボタンの雄ボタン又は雌ボタンを用いる。第1の導電体3A、及び第2の導電体3Bに配置した雄ボタンと、誘電体2に配置した雌ボタンを係合することにより、第1の導電体3A、及び第2の導電体3Bを電気的に接続する。なお、第1の導電体3A、及び第2の導電体3Bに雌ボタンを、誘電体2に雄ボタンを配置した構造でも構わない。 There is no particular limitation on the method of electrically connecting the first conductor 3A and the second conductor 3B. For example, a method of disposing a conductive fiber structure in the dielectric 2, a method of piercing a metal pin, Examples include a method using a metal button. As the metal button, a male button or a female button of a dot button is used. By engaging the male button disposed on the first conductor 3A and the second conductor 3B with the female button disposed on the dielectric 2, the first conductor 3A and the second conductor 3B are engaged. Are electrically connected. Note that a structure in which a female button is disposed on the first conductor 3A and the second conductor 3B and a male button is disposed on the dielectric 2 may be employed.
 導電性繊維構造物を所定のパターンに加工する方法としては特に制限はなく、レーザーカット、ヒートカット、型抜き加工など公知の技術を用いることができる。また、絶縁性繊維構造物に導電性繊維構造物を貼り合わせる方法としては特に制限はなく、縫製、接着シートを用いたヒートシール、ボタンを用いるなど公知の技術を用いることができる。なお、本発明のアンテナを衣服に取り付ける場合、絶縁性繊維構造物に導電性繊維構造物を貼り付けたアンテナを衣服に取り付けても、導電性繊維構造物を衣服に直接貼り付けてもよいが、着心地、デザイン性等の観点からは導電性繊維構造物を衣服へ直接貼り付けることが好ましい。 The method for processing the conductive fiber structure into a predetermined pattern is not particularly limited, and known techniques such as laser cutting, heat cutting, and die cutting can be used. Moreover, there is no restriction | limiting in particular as a method of bonding an electroconductive fiber structure to an insulating fiber structure, Well-known techniques, such as using sewing, the heat seal using an adhesive sheet, and a button, can be used. In addition, when attaching the antenna of the present invention to clothes, the antenna with the conductive fiber structure attached to the insulating fiber structure may be attached to the clothes, or the conductive fiber structure may be directly attached to the clothes. From the viewpoints of comfort, design, etc., it is preferable to apply the conductive fiber structure directly to the clothes.
 本発明のアンテナと通信機能を有する半導体回路を組み合わせることで、無線通信装置として用いることができる。無線通信装置としては、特に制限はなく、RFIDタグ、ビーコン、BlueTooth(登録商標)通信装置等が挙げられる。例えば、これらの無線通信装置を制服に取り付けることで、学校での生徒の個別追跡、出席確認等に活用することができる。また、これらの無線通信装置を入院患者の入院着に取り付けることで、入院患者の個別追跡、個別認証等に活用することができる。 By combining the antenna of the present invention and a semiconductor circuit having a communication function, it can be used as a wireless communication device. There is no restriction | limiting in particular as a wireless communication apparatus, An RFID tag, a beacon, a BlueTooth (trademark) communication apparatus etc. are mentioned. For example, by attaching these wireless communication devices to uniforms, it can be used for individual tracking of students, confirmation of attendance, etc. at school. Moreover, by attaching these wireless communication devices to hospitalized patients' inpatients, it can be used for inpatient individual tracking, individual authentication, and the like.
 本発明の無線通信装置において、アンテナと半導体回路の数に制限はなく、アンテナと半導体回路がそれぞれ1つでも、2つ以上のアンテナが1つの半導体回路に接続されていてもよい。特に、2つ以上のアンテナを有する無線通信装置を衣服に取り付けることで、通信の死角を低減することができる。例えば、本発明のアンテナを、胸部と背部に取り付けることで、電波の送受信機に対する身体の向きに関わらず、安定した通信が可能となる。 In the wireless communication apparatus of the present invention, the number of antennas and semiconductor circuits is not limited, and one antenna and one semiconductor circuit may be connected to each other, or two or more antennas may be connected to one semiconductor circuit. In particular, a blind spot of communication can be reduced by attaching a wireless communication device having two or more antennas to clothes. For example, by attaching the antenna of the present invention to the chest and back, stable communication is possible regardless of the body orientation with respect to the radio wave transmitter / receiver.
 アンテナと半導体回路の接続方法に特に制限はなく、例えば、金属配線、金属線を織り込んだ導電糸等を配線として接続するほか、本発明にかかる導電性繊維構造物による接続などが挙げられる。アンテナと半導体回路との配線の接続による接触抵抗低減の観点からは、本発明の導電性繊維構造物を配線として用いることが好ましい。図4に示すように、アンテナとして機能する導電性繊維構造物からなる第1の導電体3Aと配線4として使用する導電性繊維構造物が一体化していることが特に好ましい。接触抵抗の低減により、半導体回路5から高周波信号がアンテナに入力される際の損失を低減することで、通信距離の増大が可能となる。 There are no particular restrictions on the connection method between the antenna and the semiconductor circuit. For example, metal wires, conductive yarns woven with metal wires, and the like are connected as wires, and connection using the conductive fiber structure according to the present invention can be mentioned. From the viewpoint of reducing the contact resistance by connecting the wiring between the antenna and the semiconductor circuit, the conductive fiber structure of the present invention is preferably used as the wiring. As shown in FIG. 4, it is particularly preferable that the first conductor 3A made of a conductive fiber structure functioning as an antenna and the conductive fiber structure used as the wiring 4 are integrated. By reducing the contact resistance, the communication distance can be increased by reducing the loss when a high-frequency signal is input from the semiconductor circuit 5 to the antenna.
 前記無線通信装置と各種センサを組み合わせることで、センシング機器として用いることもできる。センサの種類としては、特に制限はなく、温度・湿度・照度・衝撃・位置等の環境情報を取得するためのセンサ、心拍数・心電波形・呼吸数・血圧・脳電位・筋電位等の生体信号を取得するための生体電極、血糖値・コレステロール値・ホルモン値等を取得するためのバイオセンサ等が挙げられる。なお、前記無線通信装置とセンサは、配線を用いて接続しても、無線通信にて接続しても構わない。これらのセンシング機器を用いることで、日常生活の健康管理、工場等での作業員の見守り、レジャー、運動時の健康管理、心臓疾患・高血圧・睡眠時無呼吸症候群などの遠隔管理等が可能となるが、これらに限定されるものではない。 It can also be used as a sensing device by combining the wireless communication device and various sensors. The type of sensor is not particularly limited. Sensors for acquiring environmental information such as temperature, humidity, illuminance, impact, and position, such as heart rate, electrocardiogram waveform, respiratory rate, blood pressure, brain potential, and myoelectric potential Examples include a bioelectrode for acquiring a biosignal, a biosensor for acquiring a blood glucose level, a cholesterol level, a hormone level, and the like. The wireless communication device and the sensor may be connected using wiring or may be connected by wireless communication. By using these sensing devices, health management in daily life, monitoring of workers in factories, etc., leisure management, health management during exercise, remote management of heart disease, hypertension, sleep apnea syndrome, etc. are possible However, it is not limited to these.
 また、本発明のアンテナと半導体回路を組み合わせた無線通信装置は、RFIDタグのリーダー/ライターアンテナとしても活用することができる。例えば、入院患者の排尿検知にRFIDシステムを用いる場合、ベッドにリーダー/ライターアンテナを設置する必要がある。入院ベッドは、身体を起こすために折り曲げる必要があるため、リーダー/ライターアンテナには折り曲げ耐性が求められる。本発明のアンテナは柔軟性に富み、折り曲げ耐性に優れることから、入院ベッド用のリーダー/ライターアンテナとして好適に用いることができる。 In addition, the wireless communication device combining the antenna of the present invention and a semiconductor circuit can be used as a reader / writer antenna for an RFID tag. For example, when an RFID system is used for detecting urination of hospitalized patients, it is necessary to install a reader / writer antenna on the bed. Since the hospital bed needs to be folded to wake up the body, the reader / writer antenna is required to have bending resistance. Since the antenna of the present invention is rich in flexibility and excellent in bending resistance, it can be suitably used as a reader / writer antenna for hospitalized beds.
 以下、本発明を実施例に基づいてさらに具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. In addition, this invention is not limited to the following Example.
(1)導電性繊維構造物の製造方法
 島成分がポリエチレンテレフタレート、海成分がポリエステルの酸成分としてテレフタル酸と5-ナトリウムスルホイソフタル酸の共重合体からなるアルカリ熱水可溶型ポリエステルの75T-112F(海島比率30%:70%、島数127島/F)の単繊維径700nmのナノファイバーと22T-24Fの単繊維径22.85μmのポリエチレンテレフタレートの高収縮糸を混繊した100T-136Fのポリエステルナノファイバー混繊糸を用いて、スムース組織で丸編物を製編した。次いで、布帛を水酸化ナトリウム3質量%水溶液(75℃、浴比1:30)に浸漬することで易溶解成分を除去し、ナノファイバーと高収縮糸の混繊糸使い編物を得た。編物の密度は58×78(本/in)、目付けは118(g/cm)である。得られた繊維構造物としての編物に、導電性高分子とオレフィン系樹脂を含む分散液として「デナトロンFB408B」(ナガセケムテックス株式会社製)を、既知のナイフコーティング法で導電性高分子を塗布し、120℃~130℃の範囲に制御して加熱した。得られた導電性構造物の導電性樹脂付着量は12.3g/mであった。また導電性樹脂が、マルチフィラメント糸を構成する単繊維と単繊維の間隙において、実質的に繊維軸方向に連続して存在していることを後述する(3)導電性樹脂含有面積比率により確認した。図10は導電性繊維構造物の導電性樹脂含浸面積比率を評価に用いた断面写真である。図10により、表層から30μmまで低抵抗、すなわち導電性樹脂が含浸されていることがわかる。さらに製造した導電性繊維構造物の表面抵抗率は、0.045Ω/□であった。
(1) Method for producing conductive fiber structure 75T- of an alkali hot water soluble polyester comprising an island component of polyethylene terephthalate and a sea component of polyester as a polyester acid component of terephthalic acid and 5-sodium sulfoisophthalic acid. 100T-136F, which is a mixture of 112F (sea-island ratio 30%: 70%, 127 islands / F) nanofibers with a single fiber diameter of 700 nm and 22T-24F single-fiber diameter 22.85 μm polyethylene terephthalate high shrink yarn A circular knitted fabric was knitted with a smooth structure using the polyester nanofiber mixed yarn. Next, the fabric was dipped in a 3% by weight aqueous solution of sodium hydroxide (75 ° C., bath ratio 1:30) to remove easily soluble components, and a knitted fabric using mixed fibers of nanofibers and high shrinkage yarns was obtained. The density of the knitted fabric is 58 × 78 (lines / in), and the basis weight is 118 (g / cm 2 ). "Denatron FB408B" (manufactured by Nagase ChemteX Corporation) as a dispersion containing a conductive polymer and an olefin resin is applied to the knitted fabric as the obtained fiber structure, and the conductive polymer is applied by a known knife coating method. And heated to a temperature in the range of 120 ° C to 130 ° C. The conductive resin adhered amount of the obtained conductive structure was 12.3 g / m 2 . In addition, it will be described later that the conductive resin exists substantially continuously in the fiber axis direction in the gap between the single fibers constituting the multifilament yarn. (3) Confirmed by the conductive resin-containing area ratio did. FIG. 10 is a cross-sectional photograph using the conductive resin impregnated area ratio of the conductive fiber structure for evaluation. FIG. 10 shows that the surface layer is impregnated with a low resistance, that is, a conductive resin from 30 μm. Furthermore, the surface resistivity of the manufactured conductive fiber structure was 0.045Ω / □.
(2)繊維径
 繊維から抜き出したマルチフィラメントをエポキシ樹脂で包埋し、Reichert社製FC・4E型クライオセクショニングシステムで凍結し、ダイヤモンドナイフを具備したReichert-Nissei ultracut N(ウルトラミクロトーム)で切削した後、その切削面を(株)キーエンス製VE-7800型走査型電子顕微鏡(SEM)にて、ナノファイバーは5000倍、マイクロファイバーは1000倍、その他は500倍で撮影した。得られた写真から無作為に選定した150本の極細繊維を抽出し、写真について画像処理ソフト(WINROOF)を用いて全ての外接円径(繊維径)を測定した。
(2) Fiber diameter The multifilament extracted from the fiber was embedded with epoxy resin, frozen with a Reichert FC-4E cryosectioning system, and cut with a Reichert-Nissei ultracut N equipped with a diamond knife. Thereafter, the cut surface was photographed with a VE-7800 scanning electron microscope (SEM) manufactured by Keyence Corporation at a magnification of 5000 times for nanofibers, 1000 times for microfibers, and 500 times for others. 150 ultrafine fibers randomly selected from the obtained photographs were extracted, and all circumscribed circle diameters (fiber diameters) were measured for the photographs using image processing software (WINROOF).
(3)導電性樹脂含浸面積比率
 導電性繊維構造物の厚み方向の断面を観察したときに、表層から15~30μmの領域に存在する導電性樹脂の面積比率(導電性樹脂含浸面積比率)は以下のようにして求めた。
 アルゴン(Ar)イオンビーム加工装置を用いて、導電性繊維構造物を厚み方向に切削して、断面の薄膜切片を作製し、測定用試料とした。得られた測定用試料を走査プローブ顕微鏡(Scanning Spreading Resistance Microscopy)(以下SSRMと称する)を用いて、測定用試料の裏側から電圧を印加し、導電性探針を用いて、試料の表層の導通の有無を観察した。観察した画像中、図10の断面画像で示すように、繊維構造物の表層部の最も高い部分が視野上部に接するように30μm×30μmの正方形の領域を設定する。表層部の最も高い位置から15μm下部の15μm×30μmの領域を、画像処理ソフト(GIMP2.8portable)を用い、しきい値を60に設定し、導電性繊維構造物の厚み方向の表層から15~30μmの領域における導電性樹脂が含浸する面積比率を求めた。この時、観察する数は無作為抽出した横断面20箇所を測定した。20箇所で求めたそれぞれの面積比率の平均値を計算し、これを「導電性樹脂含浸面積比率」とした。これにより(1)で製造した導電性繊維構造物の「導電性樹脂含浸面積比率」が、20.7%であることを確認した。
  観察装置 :  Bruker AXS社Digital Instruments製  NanoScope Iva AFM
          Dimension 3100ステージAFMシステム
+SSRMオプション
  SSRM走査モード  : コンタクトモードと拡がり抵抗の同時測定
  SSRM探針(Tip): ダイヤモンドコートシリコンカンチレバー
  探針品番: DDESP-FM(Bruker AXS社製)
  Arイオンビーム加工装置:(株)日立ハイテクノロジーズ製IM-4000、加速電圧3kV
(3) Conductive resin impregnated area ratio When observing a cross section in the thickness direction of the conductive fiber structure, the area ratio of the conductive resin existing in the region of 15 to 30 μm from the surface layer (conductive resin impregnated area ratio) is It was determined as follows.
Using an argon (Ar) ion beam processing apparatus, the conductive fiber structure was cut in the thickness direction to produce a thin film section of a cross section, which was used as a measurement sample. Using the scanning probe microscope (hereinafter referred to as SSRM), voltage was applied to the obtained measurement sample from the back side of the measurement sample, and the surface of the sample was connected using a conductive probe. The presence or absence of was observed. In the observed image, a 30 μm × 30 μm square region is set so that the highest portion of the surface layer portion of the fiber structure is in contact with the upper part of the visual field, as shown in the cross-sectional image of FIG. A 15 μm × 30 μm area 15 μm lower than the highest position of the surface layer part is set using an image processing software (GIMP 2.8 portable), a threshold value is set to 60, and 15 to 15 μm from the surface layer in the thickness direction of the conductive fiber structure. The area ratio impregnated with the conductive resin in the 30 μm region was determined. At this time, the number of cross sections obtained by random sampling was measured at 20 locations. The average value of the respective area ratios obtained at 20 locations was calculated, and this was defined as “conductive resin impregnated area ratio”. This confirmed that the “conductive resin impregnated area ratio” of the conductive fiber structure produced in (1) was 20.7%.
Observation apparatus: NanoScope Iva AFM manufactured by Digital Instruments of Bruker AXS
Dimension 3100 stage AFM system + SSRM option SSRM scanning mode: Simultaneous measurement of contact mode and spread resistance SSRM probe (Tip): Diamond coated silicon cantilever Probe part number: DDESP-FM (manufactured by Bruker AXS)
Ar ion beam processing equipment: IM-4000 manufactured by Hitachi High-Technologies Corporation, acceleration voltage 3 kV
 (4)導電性高分子の分散粒子径
 分散液に分散している導電性高分子をSartorius社製Minisart0.2μmシリンジフィルターでろ過して、導電性高分子の分散粒子径が200nm未満か否かを測定した。(1)で使用する「デナトロンFB408B」中の導電性高分子の分散粒子径は200nm未満であることを確認した。
(4) Conductive polymer dispersed particle diameter Whether the conductive polymer dispersed particle diameter is less than 200 nm by filtering the conductive polymer dispersed in the dispersion with a Miniart 0.2 μm syringe filter manufactured by Sartorius. Was measured. It was confirmed that the dispersed particle diameter of the conductive polymer in “Denatron FB408B” used in (1) was less than 200 nm.
(5)導電性高分子の平均粒子径(動的光散乱法)
 49gの水に1gの導電性高分子を攪拌しながら加えた50倍希釈の導電性高分子をMicrotrac社製NanotracWaveシリーズで平均粒子径を測定した。具体的には体積抵抗径を測定して粒子径分布を求め、流体力学径メジアン径を算出して平均粒子径とした。(1)で使用する「デナトロンFB408B」中の導電性高分子の平均粒子径は、20nm以下であった。
(5) Average particle diameter of conductive polymer (dynamic light scattering method)
The average particle diameter of a 50-fold diluted conductive polymer obtained by adding 1 g of a conductive polymer to 49 g of water while stirring was measured using a Nanotrac Wave series manufactured by Microtrac. Specifically, the volume resistance diameter was measured to obtain the particle diameter distribution, and the hydrodynamic diameter median diameter was calculated as the average particle diameter. The average particle diameter of the conductive polymer in “Denatron FB408B” used in (1) was 20 nm or less.
(6)導電性繊維構造物の導電率の測定方法
 ストリップ導体として(1)で記載した方法で作製した導電性繊維構造物を、基板には厚さ2mmのポリテトラフルオロエチレンを用いて、特性インピーダンス50Ωの半波長マイクロストリップ線路共振器Aを作成した。ストリップ導体の長さは42mm、幅は3mm又は6mmで両端を開放とし、共振周波数は約2.4GHzとした。半波長マイクロストリップ線路共振器Aの一方の同軸ケーブルから励振させ、他方の同軸ケーブルにネットワークアナライザを接続し無負荷Q値(Q)を測定した。また、ストリップ導体として銅箔を用いた以外は半波長マイクロストリップ線路共振器Aと同様に、半波長マイクロストリップ線路共振器Bを作成し、無負荷Q値(Q)を測定した。QSampleを導電性繊維構造物ストリップの損失に起因するQ値、QCuを銅箔ストリップの損失に起因するQ値とすると、1/Q-1/Q=1/QSample-1/QCuの関係が成り立つ。QCuを銅箔の表面抵抗率から算出し、その値を上記の式に適用することでQSampleを計算し、その結果を用いて導電性繊維構造物の表面抵抗率と導電率を算出した。
(6) Method for measuring electrical conductivity of conductive fiber structure The conductive fiber structure produced by the method described in (1) as a strip conductor is made of polytetrafluoroethylene having a thickness of 2 mm as a substrate. A half-wavelength microstrip line resonator A having an impedance of 50Ω was prepared. The length of the strip conductor was 42 mm, the width was 3 mm or 6 mm, both ends were open, and the resonance frequency was about 2.4 GHz. Excitation was performed from one coaxial cable of the half-wavelength microstrip line resonator A, a network analyzer was connected to the other coaxial cable, and an unloaded Q value (Q A ) was measured. A half-wavelength microstrip line resonator B was prepared in the same manner as the half-wavelength microstrip line resonator A except that copper foil was used as the strip conductor, and the unloaded Q value (Q B ) was measured. When Q Sample is a Q value resulting from the loss of the conductive fiber structure strip and Q Cu is a Q value resulting from the loss of the copper foil strip, 1 / Q A −1 / Q B = 1 / Q Sample −1 / Q Cu relation holds. Q Cu was calculated from the surface resistivity of the copper foil, Q Sample was calculated by applying the value to the above formula, and the surface resistivity and conductivity of the conductive fiber structure were calculated using the results. .
(7)反射係数の測定方法
 (1)に記した方法で作製した導電性繊維構造物または銀メッキ繊維からなる導電性繊維構造物と、不織布を用いて、図5に示す、2.4GHzで放射する測定アンテナを作製した。なお、導電性繊維構造物からなる第1の導電体3Aと、第2の導電体3Bの間に不織布からなる誘電体2を配置し、第1の導電体3Aおよび第2の導電体3Bとを、金属製ボタン7を用いて電気的に接続した。同軸ケーブル端子6を用いて、作製したアンテナとネットワークアナライザ(アジレントテクノロジー社製、N5230C)を接続し、反射係数を測定した。
(7) Measuring method of reflection coefficient At 2.4 GHz shown in FIG. 5 using a conductive fiber structure or a conductive fiber structure made of silver-plated fibers and a non-woven fabric produced by the method described in (1). A radiating measurement antenna was produced. In addition, the dielectric 2 made of a nonwoven fabric is disposed between the first conductor 3A made of a conductive fiber structure and the second conductor 3B, and the first conductor 3A and the second conductor 3B Were electrically connected using a metal button 7. Using the coaxial cable terminal 6, the produced antenna was connected to a network analyzer (manufactured by Agilent Technologies, N5230C), and the reflection coefficient was measured.
(8)XZ面放射パターンの測定方法
 図6に示すように、(7)で作製した測定アンテナを回転台に設置し、ネットワークアナライザ(アジレントテクノロジー社製、N5230C)にした。回転台を7.5度ずつ回転させ、各回転位置において、ネットワークアナライザに接続された送信用アンテナから測定アンテナに電波を送信し利得を測定した。なお、放射パターンの測定には電波暗室を用い、水平偏波、垂直偏波の2つについて行った。
(8) XZ plane radiation pattern measurement method As shown in FIG. 6, the measurement antenna prepared in (7) was installed on a turntable, and a network analyzer (N5230C, manufactured by Agilent Technologies) was used. The turntable was rotated by 7.5 degrees, and at each rotational position, a radio wave was transmitted from the transmitting antenna connected to the network analyzer to the measuring antenna, and the gain was measured. The radiation pattern was measured in an anechoic chamber using two types of horizontal polarization and vertical polarization.
(9)導電性樹脂付着量
 標準状態(20℃×65%RH)での導電性樹脂分散液塗布前後の試験布である繊維構造体の質量変化により導電性樹脂付着量を測定した。計算式は下記の通りである。
 導電性樹脂付着量(g/m)=
(加工後の試験布質量(g)-加工前の試験質質量(g))/試験布の分散液を塗布した面積(m
(9) Conductive resin adhesion amount The conductive resin adhesion amount was measured by the mass change of the fiber structure which is the test cloth before and after application of the conductive resin dispersion in the standard state (20 ° C. × 65% RH). The calculation formula is as follows.
Conductive resin adhesion amount (g / m 2 ) =
(Test cloth mass after processing (g) -Test mass before processing (g)) / Area coated with a dispersion of test cloth (m 2 )
 実施例1
 (1)で記した方法で作成した導電性繊維構造物について、(6)に記した方法で、表面抵抗率と導電率を測定したところ、表面抵抗率は0.045Ω/□、導電率は4.76μS/mであった。(7)に記した方法で測定した反射係数は-17.2dBであった。また、(8)に記した方法で測定したXZ面放射パターンを図7の破線で示す。
Example 1
About the conductive fiber structure created by the method described in (1), when the surface resistivity and conductivity were measured by the method described in (6), the surface resistivity was 0.045Ω / □, and the conductivity was It was 4.76 μS / m. The reflection coefficient measured by the method described in (7) was −17.2 dB. Moreover, the XZ plane radiation pattern measured by the method described in (8) is indicated by a broken line in FIG.
 比較例1
 ニッケル/銅メッキ繊維(タニムラ株式会社製、MK-KTN260)を用いて、丸編物を製編した。(6)に記した方法で測定した表面抵抗率と導電率は、それぞれ0.050Ω/□、3.84μS/m、(7)に記した方法にて測定した反射係数は-15.2dBであった。また、(8)に記した方法にて測定したXZ面放射パターンを図7の実線で示す。
 図7のXZ面放射パターンから、実施例1のアンテナの利得は比較例1よりも0.4dB高く、通信距離は6%増大した。
Comparative Example 1
Circular knitted fabrics were knitted using nickel / copper-plated fibers (manufactured by Tanimura Co., Ltd., MK-KTN260). The surface resistivity and conductivity measured by the method described in (6) are 0.050Ω / □ and 3.84 μS / m, respectively, and the reflection coefficient measured by the method described in (7) is −15.2 dB. there were. Moreover, the XZ plane radiation pattern measured by the method described in (8) is shown by the solid line in FIG.
From the XZ plane radiation pattern of FIG. 7, the gain of the antenna of Example 1 was 0.4 dB higher than that of Comparative Example 1, and the communication distance was increased by 6%.
 実施例2
 図8に示した人体ファントムに、(7)で作製した測定アンテナを貼り付けた以外は、実施例1と同様の方法で反射係数、XZ面放射パターンを測定した。反射係数は-17.3dB、XZ面放射パターンを図9の破線で示す。なお、前記人体ファントムは、人体の比誘電率を53.6、導電率を1.81S/mとして設計されたものである。
Example 2
The reflection coefficient and XZ plane radiation pattern were measured in the same manner as in Example 1 except that the measurement antenna produced in (7) was attached to the human phantom shown in FIG. The reflection coefficient is −17.3 dB, and the XZ plane radiation pattern is indicated by a broken line in FIG. The human phantom is designed with a human body having a relative dielectric constant of 53.6 and a conductivity of 1.81 S / m.
 比較例2
 比較例1で作製したアンテナを用いた以外は、実施例2と同様の方法で反射係数、XZ面放射パターンを測定した。反射係数は-15.0dB、XZ面放射パターンを図9の実線で示す。
 図9のXZ面放射パターンから、実施例2のアンテナの利得は比較例2よりも0.4dB高く、通信距離は6%増大した。
Comparative Example 2
The reflection coefficient and the XZ plane radiation pattern were measured in the same manner as in Example 2 except that the antenna manufactured in Comparative Example 1 was used. The reflection coefficient is -15.0 dB, and the XZ plane radiation pattern is shown by the solid line in FIG.
From the XZ plane radiation pattern of FIG. 9, the gain of the antenna of Example 2 was 0.4 dB higher than that of Comparative Example 2, and the communication distance increased by 6%.
1 導電体
2 誘電体
3A 第1の導電体
3B 第2の導電体
4 配線
5 半導体回路
6 同軸ケーブル端子
7 金属製ボタン
DESCRIPTION OF SYMBOLS 1 Conductor 2 Dielectric 3A 1st conductor 3B 2nd conductor 4 Wiring 5 Semiconductor circuit 6 Coaxial cable terminal 7 Metal button

Claims (14)

  1.  少なくとも、炭素原子を含む導電性樹脂が、直径が100nm以上1000nm以下である繊維の表面及び/又は単繊維間隙に担持されている導電性繊維構造物を有するアンテナ。 An antenna having a conductive fiber structure in which at least a conductive resin containing a carbon atom is supported on the surface of a fiber and / or a single fiber gap having a diameter of 100 nm to 1000 nm.
  2.  前記導電性樹脂が繊維構造物を構成する単繊維と単繊維の間隙に担持され、前記繊維構造物の厚み方向の断面を観察したときに、表層から15~30μmの領域に存在する前記導電性樹脂の面積比率が15%以上である導電性繊維構造物を有することを特徴とする請求項1に記載のアンテナ。 The conductive resin is carried in a gap between the single fibers constituting the fiber structure and the single fibers, and when the cross section in the thickness direction of the fiber structure is observed, the conductive resin exists in a region of 15 to 30 μm from the surface layer. The antenna according to claim 1, wherein the antenna has a conductive fiber structure having a resin area ratio of 15% or more.
  3.  前記導電性樹脂が導電性高分子を含む導電性樹脂である請求項2に記載のアンテナ。 The antenna according to claim 2, wherein the conductive resin is a conductive resin containing a conductive polymer.
  4.  導電性樹脂がさらにバインダ樹脂を含む請求項1~3のいずれか1つに記載のアンテナ。 The antenna according to any one of claims 1 to 3, wherein the conductive resin further contains a binder resin.
  5.  前記バインダ樹脂がオレフィン系樹脂である請求項4に記載のアンテナ。 The antenna according to claim 4, wherein the binder resin is an olefin resin.
  6.  前記導電性高分子が、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸であることを特徴とする請求項2に記載のアンテナ。 3. The antenna according to claim 2, wherein the conductive polymer is poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid.
  7.  前記繊維が、熱可塑性ポリマーからなるマルチフィラメント糸であり、前記導電性樹脂が、マルチフィラメント糸を構成する単繊維と単繊維の間隙において、実質的に繊維軸方向に連続して存在していることを特徴とする請求項1~6のいずれか1つに記載のアンテナ。 The fiber is a multifilament yarn made of a thermoplastic polymer, and the conductive resin is substantially continuously present in the fiber axis direction in the gap between the single fiber and the single fiber constituting the multifilament yarn. The antenna according to any one of claims 1 to 6, wherein:
  8.  前記導電性繊維構造物の920MHz~3GHzで測定した表面抵抗率が0.01~0.1Ω/□である請求項1~7のいずれか1つに記載のアンテナ。 The antenna according to any one of claims 1 to 7, wherein the conductive fiber structure has a surface resistivity of 0.01 to 0.1 Ω / □ measured at 920 MHz to 3 GHz.
  9.  前記導電性繊維構造物からなる導電体と誘電体の積層体からなる請求項1~8のいずれか1つに記載のアンテナ。 The antenna according to any one of claims 1 to 8, comprising a laminate of a conductor and a dielectric made of the conductive fiber structure.
  10.  前記導電性繊維構造物からなる第一の導電体、前記誘電体、前記導電性繊維構造物からなる第二の導電体の順に積層してなり、前記第一の導電体と前記第二の導電体が電気的に接続されている請求項9に記載のアンテナ。 The first conductor made of the conductive fiber structure, the dielectric, and the second conductor made of the conductive fiber structure are laminated in this order, and the first conductor and the second conductor are laminated. The antenna of claim 9, wherein the bodies are electrically connected.
  11.  前記導電性繊維構造物からなる配線を有する請求項1~10のいずれか1つに記載のアンテナ。 The antenna according to any one of claims 1 to 10, further comprising a wiring made of the conductive fiber structure.
  12.  少なくとも、請求項1~9のいずれか1つに記載のアンテナと、半導体回路とを有する無線通信装置。 A wireless communication device comprising at least the antenna according to any one of claims 1 to 9 and a semiconductor circuit.
  13.  少なくとも、請求項1~11のいずれか1つに記載のアンテナと、生体電極とを備える生体信号測定装置。 A biological signal measuring device comprising at least the antenna according to any one of claims 1 to 11 and a biological electrode.
  14.  請求項1~11のいずれか1つに記載のアンテナを複数備えた衣服であって、それらの内少なくとも1つが他のアンテナと異なる部位に装着されていることを特徴とする衣服。 A garment comprising a plurality of the antennas according to any one of claims 1 to 11, wherein at least one of them is attached to a different part from the other antennas.
PCT/JP2018/010556 2017-03-30 2018-03-16 Antenna, wireless communication device, biometric signal measurement device, and garment WO2018180629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509302A JP6999139B2 (en) 2017-03-30 2018-03-16 Antennas, wireless communication devices, biological signal measuring devices, and clothing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068087 2017-03-30
JP2017-068087 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180629A1 true WO2018180629A1 (en) 2018-10-04

Family

ID=63675530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010556 WO2018180629A1 (en) 2017-03-30 2018-03-16 Antenna, wireless communication device, biometric signal measurement device, and garment

Country Status (3)

Country Link
JP (1) JP6999139B2 (en)
TW (1) TW201841129A (en)
WO (1) WO2018180629A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021029292A (en) * 2019-08-16 2021-03-01 国立大学法人千葉大学 Bed sore detection device and bed sore detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI707502B (en) * 2019-06-21 2020-10-11 長庚大學 Wearable dual broadband fabric antenna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286055A1 (en) * 2005-11-08 2009-11-19 Behnam Pourdeyhimi Methods and Devices for Providing Flexible Electronics
JP2013159882A (en) * 2012-02-07 2013-08-19 Japan Vilene Co Ltd Fiber sheet
WO2016051574A1 (en) * 2014-10-02 2016-04-07 富士通株式会社 Member, method for manufacturing member, electronic device, and method for manufacturing electronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677917B2 (en) 2002-02-25 2004-01-13 Koninklijke Philips Electronics N.V. Fabric antenna for tags
JP3982404B2 (en) 2002-12-19 2007-09-26 トッパン・フォームズ株式会社 Method for forming conductive circuit
JP4984458B2 (en) 2005-08-29 2012-07-25 ソニー株式会社 Semiconductor device
JP6215637B2 (en) 2013-10-02 2017-10-18 日本電信電話株式会社 Biological information collection device
WO2017007021A1 (en) 2015-07-08 2017-01-12 日本電信電話株式会社 Biomedical electrode and wearable electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286055A1 (en) * 2005-11-08 2009-11-19 Behnam Pourdeyhimi Methods and Devices for Providing Flexible Electronics
JP2013159882A (en) * 2012-02-07 2013-08-19 Japan Vilene Co Ltd Fiber sheet
WO2016051574A1 (en) * 2014-10-02 2016-04-07 富士通株式会社 Member, method for manufacturing member, electronic device, and method for manufacturing electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021029292A (en) * 2019-08-16 2021-03-01 国立大学法人千葉大学 Bed sore detection device and bed sore detection method

Also Published As

Publication number Publication date
JPWO2018180629A1 (en) 2020-02-06
JP6999139B2 (en) 2022-01-18
TW201841129A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
CN105939659B (en) Electrode element and device
US10251266B2 (en) Wearable flexible printed circuit board and method of manufacturing the same
Zhang et al. Textile antennas and sensors for body-worn applications
Xu et al. Washable and flexible screen printed graphene electrode on textiles for wearable healthcare monitoring
EP2084324B1 (en) Flexible printed conductive fabric and method for fabricating the same
US9696393B2 (en) MRI receiver coil providing an enhanced signal-to-noise ratio
JP2010509108A6 (en) Conductive fabric and manufacturing method thereof
WO2018180629A1 (en) Antenna, wireless communication device, biometric signal measurement device, and garment
US11043728B2 (en) Flexible fabric antenna system comprising conductive polymers and method of making same
Maleszka et al. Bandwidth properties of embroidered loop antenna for wearable applications
Zhang et al. Non‐uniform mesh for embroidered microstrip antennas
US20170301979A1 (en) Conformable antenna using conducting polymers
JP2012243993A (en) Noise absorption cloth
KR100889489B1 (en) Flexible circuit board having conductive fiber materials and electronic device having the same
Kiourti et al. Conductive textiles for wearable electronics
Agarwal et al. Analysis of Flexible Textile Antenna Design and Their Application for Wireless Communication: A Survey
JP6236517B2 (en) Noise absorbing fabric
Ghodake et al. A review of wearable antenna
Wagih et al. Screen printing reliable wearable microstrip antennas on rough textile substrates
Chatterjee et al. Advanced electromagnetic interference shielding textiles and clothing
JP5066003B2 (en) Communication sheet structure
Rafiq et al. A review on the manufacturing techniques for textile based antennas
Maity et al. 1Department of Textile Technology, Uttar Pradesh Textile Technology Institute, Kanpur, India, 2Department of Textile Design, National Institute of Fashion Technology, Patna, India
ESSELLE et al. Polydimethylsiloxane-Embedded Conductive Fabric: Characterization and Application for Realization of Robust Passive and Active Flexible Wearable Antennas
CN113508648A (en) Electromagnetic wave shielding material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776370

Country of ref document: EP

Kind code of ref document: A1