WO2018180461A1 - Positioning system, positioning device, and computer program - Google Patents

Positioning system, positioning device, and computer program Download PDF

Info

Publication number
WO2018180461A1
WO2018180461A1 PCT/JP2018/009702 JP2018009702W WO2018180461A1 WO 2018180461 A1 WO2018180461 A1 WO 2018180461A1 JP 2018009702 W JP2018009702 W JP 2018009702W WO 2018180461 A1 WO2018180461 A1 WO 2018180461A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
distance
wave source
vector
square
Prior art date
Application number
PCT/JP2018/009702
Other languages
French (fr)
Japanese (ja)
Inventor
修一 吉川
Original Assignee
日本電産株式会社
Kpnetworks株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社, Kpnetworks株式会社 filed Critical 日本電産株式会社
Priority to JP2019509207A priority Critical patent/JPWO2018180461A1/en
Publication of WO2018180461A1 publication Critical patent/WO2018180461A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/22Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements

Definitions

  • the present disclosure relates to a positioning system, a positioning device, and a computer program.
  • Japanese Patent Application Laid-Open No. 2012-198066 and Japanese Patent Application Laid-Open No. 11-160409 disclose position detection devices that detect the position of an object.
  • BLE Bluetooth Low Energy
  • the BLE positioning systems employ measurement processing using a three-point positioning algorithm.
  • the measurement process by the three-point positioning algorithm uses coordinate information indicating the installation positions of the three receivers and information on the distances between the signal generator and each receiver.
  • the positioning system performs a predetermined calculation and outputs the absolute position coordinates of the signal generator as a solution of the ternary simultaneous nonlinear equation.
  • the three-point positioning algorithm needs to calculate the solution of the ternary nonlinear equation. However, it is difficult to solve the ternary nonlinear equations. For this reason, the Newton method is generally used that uses an inverse matrix operation of a partial differential matrix and its repeated operation.
  • One non-limiting exemplary embodiment of the present application provides a positioning system that uses a positioning algorithm different from the Newton method.
  • the positioning system is a plurality of five or more receivers, each receiving and receiving an incident signal wave including a signal wave output from a wave source.
  • the inverse matrix Q ⁇ 1 of at least a five-dimensional regular square matrix Q that satisfies the relational expression (vector) is calculated, and the calculated inverse matrix Q ⁇ 1 is applied to the vector s to be included in the vector p.
  • the wave source An arithmetic circuit for calculating each coordinate component; and a distance parameter of each receiver; a distance from a position of the wave source to a reference receiver of the plurality of receivers; and a plurality of receptions from the position of the wave source. And the sum of the squares of the difference between each coordinate component of each receiver position and each coordinate component of the wave source position is the difference between each receiver and the wave source.
  • the first relational expression that is equal to the square of the distance is given by the sum of the squares of the differences between the coordinate components at the positions of the receivers and the coordinate components at the positions of the wave sources.
  • the vector p is defined to further include a component obtained by replacing the difference between the quadratic term and the square term of the reference distance with a linear component, and a component of the reference distance term
  • the arithmetic circuit shifts the time waveform data output from each receiver along the time axis for each receiver, and correlates with the time waveform data output from the reference receiver. Calculating a time shift amount that maximizes the correlation, and calculating a product of the determined time shift amount and the propagation speed of the signal wave output from the wave source as a distance parameter of each receiver; Distance of each receiver An inverse matrix Q ⁇ 1 of the matrix Q is obtained that includes the separation parameter term as a row or column component to be multiplied by the component of the reference distance term.
  • the nonlinear term included in the calculation is linearized.
  • multiple solutions can be avoided, and it is not necessary to perform repeated calculations. Therefore, the load on hardware and software processing can be reduced.
  • FIG. 1 is a diagram schematically illustrating a configuration of a positioning system 1 according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a first example of an environment in which the positioning system 1 is introduced.
  • FIG. 3 is a diagram illustrating a second example of the environment in which the positioning system 1 is introduced.
  • FIG. 4 is a diagram showing four shelves including shelves 22 and 23 in FIGS. 2 and 3.
  • FIG. 5 is a view showing the signal generator 10 attached to the product 24 a placed on the shelf 25.
  • FIG. 6 is a diagram showing the signal generator 10 mounted on a self-propelled vehicle 24 b that travels between the shelves 22 and 23.
  • FIG. 7 is a diagram showing the signal generator 10 mounted on a smartphone 24c of a shopper walking between shelves 22 and 23.
  • FIG. 8 is a diagram illustrating a hardware configuration of the signal generator 10.
  • FIG. 9 is a diagram illustrating a hardware configuration of the positioning device 30.
  • FIG. 10 is a diagram illustrating a positional relationship between the wave source position P and each receiver.
  • FIG. 11 shows the time t k (k: a, b, c, d, when the signal wave output from the wave source position P reaches each receiver 20-K (K: A, B, C, D, E). It is a wave form diagram which shows e) typically.
  • FIG. 12 is a diagram schematically illustrating an example of a time waveform of a signal (output signal) output from each receiver 20-K.
  • FIG. 13 is a diagram illustrating a configuration of a processing block of the CPU 31.
  • FIG. 14 is a flowchart showing the processing procedure of the CPU 31.
  • a positioning system that uses Newton's method for a three-point positioning algorithm may not converge to an appropriate solution, and may have another problem. That is, it is a method for acquiring information on each distance between the signal generator and each receiver.
  • reception power value P_o it may be difficult in practice to obtain the reception power value P_o in advance.
  • a positioning system is used to estimate the position of a shopper who moves within a facility.
  • an electronic device for example, a smartphone
  • the received power value at the 1 m position described above can be obtained in advance.
  • the transmission output of the signal generator at the time of preliminary measurement may be different from the transmission output of the signal generator at the time of positioning due to the remaining amount of the battery.
  • the measurement status differs between prior measurement and positioning.
  • the inventor of the present application has repeatedly studied a positioning algorithm that can reduce a positioning error while reducing a load of calculation processing. As a result, a new positioning algorithm was constructed, and a positioning system that implemented the positioning algorithm was completed.
  • the signal wave output from the wave source is received by each of five or more receivers.
  • the wave source is a signal generator that outputs signal waves such as electromagnetic waves and sound waves.
  • FIG. 1 schematically illustrates a configuration of a positioning system 1 according to an exemplary embodiment of the present disclosure.
  • the positioning system 1 includes a signal generator 10, a plurality of receivers 20-A, 20-B,..., 20-N (N: 4 or an integer greater than or equal to 5), and a positioning device 30. .
  • the positioning device 30 of the positioning system 1 estimates the position of the signal generator 10 using the signal wave output from the signal generator 10.
  • the signal generator 10 is an electronic circuit that generates a signal using electric power supplied from an internal battery or externally and outputs it as a signal wave.
  • the signal generator 10 emits electromagnetic waves or sound waves as signal waves.
  • the signal generator 10 may be referred to as a “wave source”.
  • the signal generator 10 is described as outputting an electromagnetic wave in the 2.4 GHz band conforming to the BLE standard.
  • the signal generator 10 can be built in an electronic device owned by a person when the positioning target is a person. Alternatively, when the positioning target is an object, the signal generator 10 may be attached to the object, or may be incorporated in the object.
  • the positioning system 1 estimates the position of the signal generator 10 in the space where the positioning system 1 is installed.
  • the “space” mainly assumes a three-dimensional space in the present embodiment. In the figure, an X axis, a Y axis, and a Z axis are shown. However, the “space” may be a two-dimensional space. For example, when positioning a self-propelled vehicle traveling on the floor, the positioning system 1 may estimate the position of the signal generator 10 on a two-dimensional space that is the floor.
  • Each of the plurality of receivers 20-A, 20-B,..., 20-N includes an antenna device (not shown), and receives a signal wave output from a wave source using the antenna device. To do.
  • the antenna device can receive electromagnetic waves that conform to the BLE standard described above.
  • Each receiver outputs waveform data of the received signal wave.
  • the waveform data indicates the magnitude of the received intensity of the signal wave.
  • each receiver can be a device having a microphone.
  • the positioning device 30 has an arithmetic circuit (CPU) 31.
  • the arithmetic circuit 31 receives the waveform data of the signal wave from each of the plurality of receivers 20-A, 20-B,..., 20-N, performs a predetermined calculation, and obtains each coordinate component indicating the position of the wave source. calculate. Details of the calculation will be described later.
  • FIG. 2 shows a first example of an environment where the positioning system 1 is introduced.
  • the positioning system 1 is constructed in a factory, a bookstore, or the like having shelves 22 and 23 on which objects are placed.
  • the position of each of the plurality of receivers is indicated by “ ⁇ ”.
  • the plurality of receivers are generally distributed. Note that FIG. 2 is an XY plan view, and the relationship in the z-axis direction is not shown. However, in actuality, the position of each receiver can be expressed using coordinates in the height direction (z-axis direction).
  • the plurality of receivers are installed at predetermined positions.
  • a certain reference position O is set as an origin and three axes (X axis, Y axis, and Z axis) are defined
  • the position of each receiver can be represented by each value of the X axis, Y axis, and Z axis.
  • coordinates A receiver 20-A (x a, y a, z a) is expressed as such, x a, and each y a and z a "x-coordinate", "y coordinate,”"zcoordinates" Sometimes called.
  • the x coordinate is x J
  • the y coordinate is y J
  • the z coordinate is z J.
  • the positioning device 30 performs calculation using a plurality of receivers having at least one different x coordinate.
  • the y coordinate and the z coordinate are different, and at least one z coordinate of the plurality of receivers is also different.
  • FIG. 3 shows a second example of the environment where the positioning system 1 is introduced.
  • a plurality of receivers are provided together in some compartments R in the environment.
  • FIG. 3 is also an XY plan view, and the relationship in the z-axis direction is not shown, but in practice, the position of each receiver can be expressed using coordinates in the height direction (z-axis direction).
  • a plurality of receiver units whose positions are adjusted and integrated so as to satisfy the above-described position conditions are manufactured in advance and fixed to a ceiling portion of the introduction environment of the positioning system 1. Is easily realized.
  • the positioning process according to the present embodiment can be used in any of the modes shown in FIGS.
  • the signal generator 10 may be provided in an object installed at a fixed position, or may be provided in an object whose position can change, for example, a self-propelled vehicle or a portable electronic device.
  • Portable electronic devices are, for example, mobile phones, smartphones, and electronic tag devices.
  • FIG. 4 shows four shelves including shelves 22 and 23 in FIGS. Each shelf has a plurality of shelves 25 for placing objects. In the present embodiment, it is assumed that a plurality of shelves 25 may exist in the Y-axis direction and the Z-axis direction.
  • FIG. 5 shows the signal generator 10 attached to the product 24 a placed on the shelf 25.
  • the signal wave output from the signal generator 10 is received by five or more receivers.
  • FIG. 5 shows a state where the receivers 20-S and 20-T receive the signal waves output from the signal generator 10, respectively. According to the calculation described later, the positioning system 1 can estimate the position where the product 24a is placed.
  • FIG. 6 shows the signal generator 10 mounted on a self-propelled vehicle 24b traveling between the shelves 22 and 23. This example also shows a state in which the receivers 20-S and 20-T are receiving signal waves output from the signal generator 10, respectively.
  • the positioning system 1 can estimate the position of the self-propelled vehicle 24b in real time.
  • FIG. 7 shows the signal generator 10 mounted on a smartphone 24c of a shopper walking between shelves 22 and 23. This example also shows a state in which the receivers 20-S and 20-T are receiving signal waves output from the signal generator 10, respectively.
  • the positioning system 1 can estimate the position of the shopper in real time.
  • each signal generator 10 needs to radiate signal waves having different waveforms.
  • the positioning system 1 can estimate the position of each signal generator 10 from identification information that uniquely identifies each signal generator 10 included in the received signal wave by performing processing in parallel.
  • FIG. 8 shows a hardware configuration of the signal generator 10.
  • the signal generator 10 includes an IC 11 for generating a high frequency signal, a storage device 12, and an antenna 14.
  • the storage device 12 is a flash ROM, for example, and stores unique identification information 13 for each signal generator 10.
  • the IC 11 periodically transmits identification information using the antenna 14.
  • FIG. 9 shows the hardware configuration of the positioning device 30.
  • the positioning device 30 includes a CPU 31, a memory 32, and a communication circuit 33, which are connected by an internal bus.
  • the CPU 31 is an arithmetic circuit that estimates the position of each signal generator 10 and generates position information indicating the estimated position by processing described later.
  • the memory 32 is a DRAM, for example, and is a work memory used in connection with the processing of the CPU 31.
  • the communication circuit 33 is a communication circuit having one or more communication connectors, for example.
  • the communication connector includes an input interface 34a and an output interface 34b that outputs data of wave source coordinates.
  • the input interface 34a and the output interface 34b may be integrated and mounted as one communication connector.
  • the input interface 34a is an input terminal that receives high-frequency electrical signals from each of the receivers 20-A to 20-N.
  • the high-frequency electrical signal is a signal generated by converting electromagnetic waves (signal waves) received by each receiver.
  • the output interface 34b is a communication terminal that performs, for example, Ethernet (registered trademark) standard wired communication, and outputs data of the coordinates of the wave source. Instead of the data on the coordinates of the wave source, the output interface 34b may output a video signal obtained by imaging the coordinates of the wave source. At this time, the output interface 34b may be an image signal output terminal such as a DVI terminal.
  • FIG. 9 shows an output interface 34 b connected to the display device 35.
  • the position A of the receiver 20-A is represented as (x a , y a , z a ) or the like. Further, the distance from the wave source position P to the receiver 20-A represents the like r a.
  • the position P of the wave source (signal generator 10) to be measured is represented as (x, y, z).
  • FIG. 10 shows the positional relationship between the wave source position P and each receiver.
  • FIG. 10 shows a wave source position P and positions AE of each receiver.
  • the origin O is shown as the reference position.
  • the origin O can be arbitrarily determined.
  • the position of each receiver is determined based on the position (0, 0, 0) of the origin O.
  • parameters ⁇ b to ⁇ e are introduced.
  • Parameter ⁇ b represents the difference between the distance r a distance from r b and the wave source position P from the wave source position P to the receiver 20-B to a receiver 20-A. Therefore, it is expressed as follows.
  • the parameters ⁇ b to ⁇ e may be referred to as “distance parameters”. (Equation 6)
  • ⁇ b r b -r a
  • Equation 9 the unknown number included in Equation 9 is replaced as follows.
  • variable replacement is an operation for changing the second-order term (nonlinear term) to the first-order term (linear term). That is, it corresponds to linearizing a nonlinear equation.
  • Equation 9 can be expressed as follows using a matrix.
  • the vector s is obtained by subtracting the squares of the parameters ⁇ b to ⁇ e from the square of the distance from the reference point origin O to each receiver.
  • the difference parameters .beta.a a distance r a from the wave source position P to the receiver 20-A
  • the distance r a from the wave source position P to the receiver 20-A Define the parameter ⁇ a.
  • ⁇ a 0. That is, it can be said that the first row of the vector s is obtained by subtracting the parameter ⁇ a 2 from the square of the distance from the origin O which is the reference position to the receiver A.
  • the vector s is obtained by subtracting the squares of the parameters ⁇ a to ⁇ e from the square of the distance from the origin O, which is the reference position, to each receiver.
  • the (1, 5) component of the matrix Q can be considered to be “2 ⁇ ⁇ a”.
  • Equation 13 is specifically expressed as follows.
  • each parameter is the difference between the distance r a from the wave source position P distance and from the wave source position P to the receiver 20-A to each receiver.
  • the difference in the distance is proportional to the difference in arrival time of the signal wave output from the wave source position P. Therefore, a method for obtaining the difference in arrival time will be described below.
  • FIG. 11 shows the time t k (k: a, b, c, d, when the signal wave output from the wave source position P reaches each receiver 20-K (K: A, B, C, D, E). It is a wave form diagram which shows e) typically.
  • the signal wave radiated in all directions from the wave source reaches each receiver 20-K while being attenuated according to the propagation distance.
  • Each receiver 20-K continuously receives a signal wave after each time t k .
  • the inventor of the present application paid attention to the fact that the waveform of the signal wave received after each time t k by each receiver 20-K has a strong correlation with each other.
  • the time waveform A of the signal wave received by the receiver 20-A after the time t a and the time waveform B of the signal wave received by the receiver 20-B after the time t b must consider the amplitude. For example, it can be said that they have substantially the same shape or the same phase.
  • each receiver 20-K can output a waveform as shown in FIG. 11, it is easy to specify each time t k .
  • each receiver 20-K cannot practically output the time waveform of the signal wave in the manner shown in FIG. The reason is that each receiver 20-K continuously receives signal waves (incident signal waves) radiated from various wave sources in addition to the signal waves from the signal generator 10, and time waveform data of the incident signal waves. Is output. Further, various noises can be superimposed on the finally obtained time waveform data.
  • FIG. 12 schematically shows an example of a time waveform of a signal (output signal) output from each receiver 20-K. It is difficult to extract the time waveform of the signal wave received from the signal generator 10 from each time waveform shown.
  • the inventors of the present application determine the time shift amount U at which the similarity between the two is strongest while shifting the other acquired time waveforms along the time axis with respect to the acquired one time waveform. Thought.
  • the time waveform B is shifted along the time axis with respect to the time waveform A will be described.
  • Equation 15 g a is a time function representing the output signal from the receiver 20-A
  • g b is a time function representing the output signal from the receiver 20-B.
  • the determined shift amount U represents the time difference (t b ⁇ t a ) between the time t a when the receiver 20-A receives the signal wave and the time t b when the receiver 20-A receives the signal wave.
  • f c (U) to f e (U) are g b , a time function g c representing the output signal from the receiver 20-C, and a time representing the output signal from the receiver 20-D.
  • the function g d is a correlation function obtained by replacing the function g d with the time function g e representing the output signal from the receiver 20-E.
  • the propagation velocity v is about 300,000 kilometers / second when the signal wave propagates through the atmosphere of 1 atm with electromagnetic waves. Alternatively, the propagation velocity v is about 331.5 meters / second when the signal wave is a sound wave and propagates through one atmosphere of dry air.
  • Equation 14 X k , y k , z k (k: a, b, c, d, e) included in the right side of Equation 14 are the receivers 20-K (K: A, B, C, D, E). Each coordinate value of the position is known. Therefore, the inverse matrix Q ⁇ 1 and the vector s on the right side of Equation 14 can all be obtained by calculation. Thereby, the components x, y, and z on the left side of Equation 14, that is, the position (x, y, z) of the wave source can be estimated.
  • the CPU 31 (FIG. 9) of the positioning device 30 executes a calculation according to the above-described principle. Hereinafter, the operation of the CPU 31 will be described with reference to FIGS. 13 and 14.
  • FIG. 13 shows the configuration of the processing block of the CPU 31.
  • FIG. 14 is a flowchart showing the processing procedure of the CPU 31.
  • the CPU 31 functions as a parameter calculator 51, an inverse matrix calculator 52, and a vector multiplier 53.
  • FIG. 13 it is shown as if there are three components, but it actually means a unit of processing.
  • the CPU 31 operates according to a computer program that performs processing according to the flowchart shown in FIG.
  • the CPU 31 operates as a parameter calculator 51, operates as an inverse matrix calculator 52, and operates as a vector multiplier 53 depending on time according to instructions of the computer program.
  • An arrow from the processing block to the processing block means that the data is used for the next calculation.
  • At least one of the parameter calculator 51, the inverse matrix calculator 52, and the vector multiplier 53 may be realized by hardware.
  • the parameter calculator 51, the inverse matrix calculator 52, and the vector multiplier 53 can be mounted on one integrated circuit.
  • the parameter calculator 51 the inverse matrix calculator 52, and the vector multiplier 53 will be described as independent components.
  • the parameter calculator 51 receives the output signal data from each of the receivers 20-A to 20-E, and calculates the parameters ⁇ b to ⁇ e by performing the calculation shown in Equation 17 (step S1). Each calculated parameter is sent to the inverse matrix calculator 52.
  • the inverse matrix calculator 52 receives the parameters ⁇ b to ⁇ e from the parameter calculator 51. Further, the inverse matrix calculator 52 reads data indicating the position coordinates of each receiver stored in the memory 32 (step S2). Then, the inverse matrix calculator 52 calculates an inverse matrix of the matrix Q using the parameters ⁇ b to ⁇ e and data indicating the position coordinates of each receiver (step S3). Inverse matrix computation methods are known and can be calculated using, for example, a sweep out method. A library of computer programs that outputs the inverse matrix Q -1 when the matrix Q is input is also known and easily available. The CPU 31 may be operated as the inverse matrix calculator 52 using such a library program.
  • the vector multiplier 53 receives parameters ⁇ b to ⁇ e from the parameter calculator 51.
  • the vector multiplier 53 receives the inverse matrix Q ⁇ 1 calculated by the inverse matrix calculator 52 and data indicating the position coordinates of each receiver stored in the memory 32. The latter is used to obtain a vector s in which the squares of the distances from the origin position to each receiver are arranged.
  • the vector multiplier 53 Based on the received data, the vector multiplier 53 performs an operation Q ⁇ 1 ⁇ s (step S4). As a result, the vector p on the left side of Equation 14 can be obtained.
  • the vector multiplier 53 outputs x, y, z, which are the components of the obtained vector p, as the position of the wave source (step S5).
  • the position of the signal generator 10 that is a wave source can be estimated.
  • Equation 10 By the operation shown in Equation 10 above, the nonlinear terms were linearized and the unknowns increased. In addition, the introduction of unknowns r a to the elements of the vector p. As a result, the number of unknowns increased by two in addition to x, y, and z indicating the position of the wave source. In order to obtain five unknowns, five simultaneous equations are required. This is the reason why a matrix Q of 5 rows and 5 columns is required using signals from five receivers. In order to obtain the inverse matrix, the present inventor increased the number of receivers to compensate for the decrease in the rank of the matrix.
  • the BLE positioning system can be introduced relatively easily. Due to such characteristics, it is required to reduce the cost of introduction. Since the linear measurement process determines the output uniquely with respect to the input, it can be tabulated and contributes to the cost reduction of the system.
  • “Tableization” refers to preparing a table in which a set of ⁇ b, ⁇ c, ⁇ d, and ⁇ e measured in advance and a set of x, y, and z estimated from them are associated with each other.
  • the matching set is searched with reference to the table. If there is a matching set in the table, the associated x, y, z set is read and output. Since a matrix operation or the like is not necessary, the result can be output at a very high speed. Furthermore, the load on the CPU 31 can be greatly suppressed. As the number of entries in the table increases, there is a higher possibility that a set that matches the actually measured set of ⁇ b, ⁇ c, ⁇ d, ⁇ e exists on the table.
  • time waveform data of the output signals from the five receivers is used to estimate the position of the signal generator 10, but the output signals from the six or more receivers are used. Time waveform data may be used.
  • the matrix Q when the vectors p and s are column vectors has been described.
  • the matrix Q may be constructed using the vectors p and s as row vectors. It is clear that the transposition relation is mathematically the same.
  • the guidance system of the present disclosure can be used for estimating the position of a moving body that moves indoors or outdoors. Moreover, it can be used for control of the position of the moving body using the positioning result.
  • 1 positioning system 10 signal generator, 20-A, 20-B, ..., 20-N receiver, 30 positioning device, 31 CPU (arithmetic circuit), 32 memory, 33 communication circuit, 34a input interface, 34b Output interface, 51 parameter calculator, 52 inverse matrix calculator, 53 vector multiplier

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

This positioning system (1) is provided with a plurality of receivers (20-A to 20-N, where N is 4 or an integer greater than or equal to 5) and a computation circuit (31). The computation circuit calculates the inverse matrix of a regular square matrix Q satisfying the relational expression Q∙p = s (where p is a vector including, as components, each coordinate component of a wave source position from a reference position and s is a vector arrived at by listing the differences between the squares of the distances from the reference position to each receiver and the squares of distance parameters for the receivers) from data indicating the time waveforms of the incident signal waves from the receivers and calculates each wave source coordinate component in vector p by causing the reverse matrix to act on the vector s. Q and p include variables arrived at by replacing a nonlinear term with a linear term. The computation circuit determines the inverse matrix of the matrix Q, which includes, as a row or column component to be multiplied by a reference distance term component, distance parameter terms for each receiver that are the products of the signal wave propagation speed and the time shift amounts for each receiver that maximize the correlation of the output time waveforms of each receiver and a reference receiver (20-A).

Description

測位システム、測位装置およびコンピュータプログラムPositioning system, positioning device and computer program
 本開示は、測位システム、測位装置およびコンピュータプログラムに関する。 The present disclosure relates to a positioning system, a positioning device, and a computer program.
 特開2012-198066号公報および特開平11-160409号公報は、対象物の位置を検出する位置検出装置を開示する。 Japanese Patent Application Laid-Open No. 2012-198066 and Japanese Patent Application Laid-Open No. 11-160409 disclose position detection devices that detect the position of an object.
 近年、Bluetooth(登録商標。以下同じ。)規格を利用した測位システムが普及しつつある。より具体的には、Bluetooth規格のうち、Bluetooth Low Energy(以下「BLE」と略記する。)規格の信号を発生させる信号発生器を利用して、当該信号発生器の位置を推定するBLE測位システムが普及しつつある。 In recent years, positioning systems using the Bluetooth (registered trademark, the same applies hereinafter) standard is becoming popular. More specifically, among the Bluetooth standards, a BLE positioning system that estimates the position of a signal generator using a signal generator that generates a signal of Bluetooth Low Energy (hereinafter abbreviated as “BLE”) standard. Is spreading.
 BLE測位システムの多くは3点測位アルゴリズムによる計測処理を採用している。3点測位アルゴリズムによる計測処理は、3つの受信機の各々の設置位置を示す座標情報、および、信号発生器と各受信機との各距離の情報を用いる。測位システムは、所定の演算を行い、3元連立非線形方程式の解として信号発生器の絶対位置座標を出力する。 Many of the BLE positioning systems employ measurement processing using a three-point positioning algorithm. The measurement process by the three-point positioning algorithm uses coordinate information indicating the installation positions of the three receivers and information on the distances between the signal generator and each receiver. The positioning system performs a predetermined calculation and outputs the absolute position coordinates of the signal generator as a solution of the ternary simultaneous nonlinear equation.
特開2012-198066号公報JP 2012-198066 A 特開平11-160409号公報JP-A-11-160409
 3点測位アルゴリズムでは3元連立非線形方程式の解を算出することが必要となる。しかしながら3元連立非線形方程式を解くことには困難が伴う。そのため、通常は偏微分行列の逆行列演算とその繰り返し演算を利用するニュートン法が用いられる。 The three-point positioning algorithm needs to calculate the solution of the ternary nonlinear equation. However, it is difficult to solve the ternary nonlinear equations. For this reason, the Newton method is generally used that uses an inverse matrix operation of a partial differential matrix and its repeated operation.
 ニュートン法では適性値への収束判定が必要であり、期待しない別解へ収束することがあり得る。また、ハードウェアやソフトウェアの負担が大きい等の問題がある。 In Newton's method, it is necessary to judge convergence to an appropriate value, and it may converge to another solution that is not expected. In addition, there are problems such as a heavy burden on hardware and software.
 本願の、限定的ではない例示的なある実施形態は、ニュートン法とは異なる測位アルゴリズムを利用した測位システムを提供する。 One non-limiting exemplary embodiment of the present application provides a positioning system that uses a positioning algorithm different from the Newton method.
 本開示の例示的な実施形態によれば、測位システムは、5台以上の複数の受信機であって、各々が、波源から出力された信号波を含む入射信号波を受信して、受信した前記入射信号波の時間波形のデータを出力する、複数の受信機と、前記複数の受信機の各々から前記時間波形のデータを受け取って、行列Q・ベクトルp=ベクトルs(ただし、ベクトルp:基準位置からの前記波源の位置の各座標成分を各成分として含むベクトル、ベクトルs:前記基準位置から前記各受信機までの距離の二乗と、各受信機の距離パラメータの二乗との差を並べたベクトル)の関係式を満たす、少なくとも五次元の正則正方行列Qの逆行列Q-1を算出し、算出した前記逆行列Q-1を前記ベクトルsに作用させて、前記ベクトルpに含まれる前記波源の位置の各座標成分を算出する演算回路を備え、前記各受信機の距離パラメータを、前記波源の位置から前記複数の受信機のうちの基準受信機までの距離と、前記波源の位置から前記複数の受信機の各々までの距離との差として定義し、前記各受信機の位置の各座標成分と前記波源の位置の各座標成分との差の二乗の和が、前記各受信機と前記波源との距離の二乗に等しいという第1の関係式を、前記各受信機の位置の各座標成分と前記波源の位置の各座標成分との差の二乗の和が、前記波源と前記基準受信機との距離である基準距離と前記各受信機の距離パラメータとの和の二乗に等しいという第2の関係式に変形し、さらに、前記波源の位置の各座標成分を含む二次の項、一次の項、前記基準距離の二乗の項、および、前記基準距離と前記各受信機の距離パラメータとの積の項、の和が、前記基準位置から前記各受信機までの距離の二乗と前記各受信機の距離パラメータの二乗との差、に等しいという第3の関係式に変形し、前記ベクトルpが、前記二次の項と前記基準距離の二乗の項との差を線形成分に置換した成分、および、前記基準距離の項の成分をさらに含むよう定義したときにおいて、前記演算回路は、受信機ごとに、前記各受信機から出力された前記時間波形のデータを時間軸に沿ってシフトさせながら、前記基準受信機から出力された前記時間波形のデータとの相関を演算し、前記相関を最大にする時間シフト量を決定し、決定した前記時間シフト量と前記波源から出力された信号波の伝搬速度との積を、前記各受信機の距離パラメータとして算出し、前記各受信機の距離パラメータの項を、前記基準距離の項の成分と乗算される行または列の成分として含む前記行列Qの逆行列Q-1を求める。 According to an exemplary embodiment of the present disclosure, the positioning system is a plurality of five or more receivers, each receiving and receiving an incident signal wave including a signal wave output from a wave source. A plurality of receivers that output time waveform data of the incident signal wave, and the time waveform data received from each of the plurality of receivers, matrix Q · vector p = vector s (where vector p: A vector including each coordinate component of the position of the wave source from the reference position as a component, vector s: the difference between the square of the distance from the reference position to each receiver and the square of the distance parameter of each receiver is arranged The inverse matrix Q −1 of at least a five-dimensional regular square matrix Q that satisfies the relational expression (vector) is calculated, and the calculated inverse matrix Q −1 is applied to the vector s to be included in the vector p. Location of the wave source An arithmetic circuit for calculating each coordinate component; and a distance parameter of each receiver; a distance from a position of the wave source to a reference receiver of the plurality of receivers; and a plurality of receptions from the position of the wave source. And the sum of the squares of the difference between each coordinate component of each receiver position and each coordinate component of the wave source position is the difference between each receiver and the wave source. The first relational expression that is equal to the square of the distance is given by the sum of the squares of the differences between the coordinate components at the positions of the receivers and the coordinate components at the positions of the wave sources. It is transformed into a second relational expression that is equal to the square of the sum of the reference distance that is the distance and the distance parameter of each receiver, and further includes a second-order term and a first-order term including each coordinate component of the position of the wave source. , The square of the reference distance, and the reference distance and each receiving The sum of the product term and the distance parameter of the machine is equal to the difference between the square of the distance from the reference position to each receiver and the square of the distance parameter of each receiver. When the vector p is defined to further include a component obtained by replacing the difference between the quadratic term and the square term of the reference distance with a linear component, and a component of the reference distance term, The arithmetic circuit shifts the time waveform data output from each receiver along the time axis for each receiver, and correlates with the time waveform data output from the reference receiver. Calculating a time shift amount that maximizes the correlation, and calculating a product of the determined time shift amount and the propagation speed of the signal wave output from the wave source as a distance parameter of each receiver; Distance of each receiver An inverse matrix Q −1 of the matrix Q is obtained that includes the separation parameter term as a row or column component to be multiplied by the component of the reference distance term.
 本開示の例示的な実施形態によれば、波源の位置を推定するためのアルゴリズムにおいて、演算に含まれる非線形項を線形化する。これにより、ニュートン法を利用する場合と比較して、多重解を回避でき、繰り返し演算を行う必要がなくなる。よってハードウェアへの負荷やソフトウェアの処理を軽減することができる。 According to an exemplary embodiment of the present disclosure, in the algorithm for estimating the position of the wave source, the nonlinear term included in the calculation is linearized. As a result, compared to the case of using the Newton method, multiple solutions can be avoided, and it is not necessary to perform repeated calculations. Therefore, the load on hardware and software processing can be reduced.
図1は、本開示の例示的な実施形態にかかる測位システム1の構成を模式的に示す図である。FIG. 1 is a diagram schematically illustrating a configuration of a positioning system 1 according to an exemplary embodiment of the present disclosure. 図2は、測位システム1が導入された環境の第一の例を示す図である。FIG. 2 is a diagram illustrating a first example of an environment in which the positioning system 1 is introduced. 図3は、測位システム1が導入された環境の第二の例を示す図である。FIG. 3 is a diagram illustrating a second example of the environment in which the positioning system 1 is introduced. 図4は、図2および図3における、棚22および23を含む4つの棚を示す図である。FIG. 4 is a diagram showing four shelves including shelves 22 and 23 in FIGS. 2 and 3. 図5は、棚25に載置された商品24aに貼り付けられた信号発生器10を示す図である。FIG. 5 is a view showing the signal generator 10 attached to the product 24 a placed on the shelf 25. 図6は、棚22および23の間を走行する自走車両24bに実装された信号発生器10を示す図である。FIG. 6 is a diagram showing the signal generator 10 mounted on a self-propelled vehicle 24 b that travels between the shelves 22 and 23. 図7は、棚22および23の間を歩行する買い物客のスマートフォン24cに実装された信号発生器10を示す図である。FIG. 7 is a diagram showing the signal generator 10 mounted on a smartphone 24c of a shopper walking between shelves 22 and 23. As shown in FIG. 図8は、信号発生器10のハードウェアの構成を示す図である。FIG. 8 is a diagram illustrating a hardware configuration of the signal generator 10. 図9は、測位装置30のハードウェアの構成を示す図である。FIG. 9 is a diagram illustrating a hardware configuration of the positioning device 30. 図10は、波源位置Pと各受信機との位置関係を示す図である。FIG. 10 is a diagram illustrating a positional relationship between the wave source position P and each receiver. 図11は、波源位置Pから出力された信号波が各受信機20-K(K:A,B,C,D,E)に到達した時刻tk(k:a,b,c,d,e)を模式的に示す波形図である。FIG. 11 shows the time t k (k: a, b, c, d, when the signal wave output from the wave source position P reaches each receiver 20-K (K: A, B, C, D, E). It is a wave form diagram which shows e) typically. 図12は、各受信機20-Kからの出力された信号(出力信号)の時間波形の例を模式的に示す図である。FIG. 12 is a diagram schematically illustrating an example of a time waveform of a signal (output signal) output from each receiver 20-K. 図13は、CPU31の処理ブロックの構成を示す図である。FIG. 13 is a diagram illustrating a configuration of a processing block of the CPU 31. 図14は、CPU31の処理手順を示すフローチャートである。FIG. 14 is a flowchart showing the processing procedure of the CPU 31.
 上述した通り、3点測位アルゴリズムにニュートン法を利用した測位システムでは、適正な解に収束しないことがあるほか、さらに、別の問題も存在し得る。すなわち、信号発生器と各受信機との各距離の情報の取得方法である。 As described above, a positioning system that uses Newton's method for a three-point positioning algorithm may not converge to an appropriate solution, and may have another problem. That is, it is a method for acquiring information on each distance between the signal generator and each receiver.
 信号発生器と各受信機との各距離の情報は通常は既知ではない。直接、距離情報を得ることはできないため、BLE測位システムでは、各受信機が受信した信号発生器からの信号の受信信号レベルを利用する。具体的には、事前に信号発生器と受信機とを1m離れた距離に置き、その時の受信パワー値 P_o を予め取得しておく。その後、信号発生器から信号を受信すると、その時の受信信号レベルP_iを利用して計測時の信号発生器と受信機との距離情報を得る。具体的には、計測時の距離情報(r_i)2=P_o/P_iにより、求めることができる。 Information on each distance between the signal generator and each receiver is usually not known. Since distance information cannot be obtained directly, the BLE positioning system uses the received signal level of the signal from the signal generator received by each receiver. Specifically, the signal generator and the receiver are placed at a distance of 1 m in advance, and the received power value P_o at that time is acquired in advance. Thereafter, when a signal is received from the signal generator, distance information between the signal generator and the receiver at the time of measurement is obtained using the received signal level P_i at that time. Specifically, the distance information (r_i) 2 = P_o / P_i at the time of measurement can be obtained.
 しかしながら、上述の処理には複数の問題が内包されている。まず、受信パワー値 P_o を予め取得しておくことが現実的には困難である場合がある。たとえば、施設内を移動する買い物客の位置を推定するために測位システムが用いられる場合を想定する。買い物客が所有する電子機器(たとえばスマートフォン)を信号発生器とすると、すべての電子機器を受信機の1mの位置に設置して受信パワー値を事前に求めることは現実的ではない。 However, a plurality of problems are included in the above processing. First, it may be difficult in practice to obtain the reception power value P_o in advance. For example, assume that a positioning system is used to estimate the position of a shopper who moves within a facility. If an electronic device (for example, a smartphone) owned by a shopper is used as a signal generator, it is not realistic to obtain all the electronic devices at a position of 1 m of the receiver and obtain a reception power value in advance.
 利用される信号発生器の種類や数が予め決まっている施設(たとえば工場)内に設置された測位システムの場合には、上述した1mの位置の受信パワー値を事前に求めることが可能な場合はある。しかしながら、バッテリの残量等に起因して、事前計測時の信号発生器の送信出力と、測位時の信号発生器の送信出力とが異なる場合があり得る。受信機についても、事前計測時と測位時とで計測状況が異なる場合があり得る。 In the case of a positioning system installed in a facility (for example, a factory) where the type and number of signal generators to be used are determined in advance, the received power value at the 1 m position described above can be obtained in advance. There is. However, the transmission output of the signal generator at the time of preliminary measurement may be different from the transmission output of the signal generator at the time of positioning due to the remaining amount of the battery. For the receiver as well, there may be a case where the measurement status differs between prior measurement and positioning.
 また、信号発生器から送信された信号が各受信機に到達するまでの時間(Time Of Flight;TOF)を利用して、信号発生器と各受信機との各距離を求める方法も考えられる。しかしながら、TOFを求めるためには信号発生器が信号を送信した時刻を正確に知る必要がある。つまり、信号発生器が信号を送信した時刻を各受信機に正確に伝える仕組みが必要になる。さらに、信号発生器と各受信機とは完全に同期した時計で動作する必要があり、そのための仕組みも必要になる。 Also, a method of obtaining each distance between the signal generator and each receiver using a time (Time Of Flight; TOF) until the signal transmitted from the signal generator reaches each receiver is conceivable. However, in order to obtain the TOF, it is necessary to accurately know the time when the signal generator transmits the signal. In other words, a mechanism for accurately transmitting the time at which the signal generator transmits a signal to each receiver is required. Furthermore, the signal generator and each receiver need to operate with a completely synchronized clock, and a mechanism for that purpose is also required.
 上述した問題は、全て測位誤差の要因になる。 The above problems all cause positioning errors.
 本願発明者は、演算処理の負荷を軽減しつつ、測位誤差を抑え得る測位アルゴリズムについて検討を重ねた。その結果、新たな測位アルゴリズムを構築し、当該測位アルゴリズムを実装した測位システムを完成させるに至った。 The inventor of the present application has repeatedly studied a positioning algorithm that can reduce a positioning error while reducing a load of calculation processing. As a result, a new positioning algorithm was constructed, and a positioning system that implemented the positioning algorithm was completed.
 本開示による測位システムでは、5台以上の複数の受信機で、波源から出力された信号波をそれぞれ受信する。波源は、電磁波、音波等の信号波を出力する信号発生器である。 In the positioning system according to the present disclosure, the signal wave output from the wave source is received by each of five or more receivers. The wave source is a signal generator that outputs signal waves such as electromagnetic waves and sound waves.
 以下、添付の図面を参照しながら、測位システム、測位装置およびコンピュータプログラムプログラムの構成例を説明する。ただし、必要以上に詳細な説明は省略する場合がある。たとえば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明においては、同一または類似する構成要素には、同一の参照符号を付している。 Hereinafter, configuration examples of the positioning system, the positioning device, and the computer program program will be described with reference to the accompanying drawings. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art. The inventor provides the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and is not intended to limit the subject matter described in the claims. Absent. In the following description, the same or similar components are denoted by the same reference numerals.
 図1は、本開示の例示的な実施形態にかかる測位システム1の構成を模式的に示す。 測位システム1は、信号発生器10と、複数の受信機20-A、20-B、・・・、20-N(N:4または5以上の整数)と、測位装置30とを備えている。 FIG. 1 schematically illustrates a configuration of a positioning system 1 according to an exemplary embodiment of the present disclosure. The positioning system 1 includes a signal generator 10, a plurality of receivers 20-A, 20-B,..., 20-N (N: 4 or an integer greater than or equal to 5), and a positioning device 30. .
 測位システム1の測位装置30は、信号発生器10から出力された信号波を利用して、信号発生器10の位置を推定する。 The positioning device 30 of the positioning system 1 estimates the position of the signal generator 10 using the signal wave output from the signal generator 10.
 信号発生器10は、内蔵電池または外部から供給される電力を利用して信号を生成し、信号波として出力する電子回路である。信号発生器10は、信号波として電磁波または音波を放射する。本明細書では、信号発生器10を「波源」と呼ぶこともある。本明細書では、信号発生器10は、BLE規格に準拠する2.4GHz帯域の電磁波を出力するとして説明する。 The signal generator 10 is an electronic circuit that generates a signal using electric power supplied from an internal battery or externally and outputs it as a signal wave. The signal generator 10 emits electromagnetic waves or sound waves as signal waves. In this specification, the signal generator 10 may be referred to as a “wave source”. In the present specification, the signal generator 10 is described as outputting an electromagnetic wave in the 2.4 GHz band conforming to the BLE standard.
 信号発生器10は、測位対象が人である場合には、人が所有する電子機器に内蔵され得る。または、信号発生器10は、測位対象が物である場合には当該物に貼り付けられてもよいし、当該物に内蔵されてもよい。 The signal generator 10 can be built in an electronic device owned by a person when the positioning target is a person. Alternatively, when the positioning target is an object, the signal generator 10 may be attached to the object, or may be incorporated in the object.
 測位システム1は、測位システム1が設置された空間内で、信号発生器10の位置を推定する。「空間」とは、本実施形態では主として三次元空間を想定している。図には、X軸、Y軸およびZ軸が示されている。ただし、「空間」は二次元空間であってもよい。たとえば、床面を走行する自走車両を測位する場合には、測位システム1は、床面である二次元空間上において、信号発生器10の位置を推定してもよい。 The positioning system 1 estimates the position of the signal generator 10 in the space where the positioning system 1 is installed. The “space” mainly assumes a three-dimensional space in the present embodiment. In the figure, an X axis, a Y axis, and a Z axis are shown. However, the “space” may be a two-dimensional space. For example, when positioning a self-propelled vehicle traveling on the floor, the positioning system 1 may estimate the position of the signal generator 10 on a two-dimensional space that is the floor.
 複数の受信機20-A、20-B、・・・、20-Nは、各々が、アンテナ装置(図示せず)を内蔵し、当該アンテナ装置を用いて波源から出力された信号波を受信する。アンテナ装置は、上述のBLE規格に準拠する電磁波を受信可能である。各受信機は、受信した信号波の波形データを出力する。波形データは当該信号波の受信強度の大きさを示す。受信強度データを出力する。なお、アンテナ装置の構成は公知であるため、具体的な構成の説明は省略する。なお、信号発生器10が音波を発生させる場合には、各受信機はマイクを有する装置であり得る。 Each of the plurality of receivers 20-A, 20-B,..., 20-N includes an antenna device (not shown), and receives a signal wave output from a wave source using the antenna device. To do. The antenna device can receive electromagnetic waves that conform to the BLE standard described above. Each receiver outputs waveform data of the received signal wave. The waveform data indicates the magnitude of the received intensity of the signal wave. Output received intensity data. In addition, since the structure of an antenna apparatus is well-known, description of a specific structure is abbreviate | omitted. When the signal generator 10 generates sound waves, each receiver can be a device having a microphone.
 測位装置30は演算回路(CPU)31を有している。演算回路31は、複数の受信機20-A、20-B、・・・、20-Nの各々から信号波の波形データを受け取って所定の演算を行い、波源の位置を示す各座標成分を算出する。演算の詳細は後に詳述する。 The positioning device 30 has an arithmetic circuit (CPU) 31. The arithmetic circuit 31 receives the waveform data of the signal wave from each of the plurality of receivers 20-A, 20-B,..., 20-N, performs a predetermined calculation, and obtains each coordinate component indicating the position of the wave source. calculate. Details of the calculation will be described later.
 図2は、測位システム1が導入された環境の第一の例を示す。図2の例では、測位システム1は、物が載置される棚22および23等を有する工場、書店等に構築されている。複数の受信機の各々の位置が、「●」によって示されている。複数の受信機は、概ね分散して配置されている。なお、図2はXY平面図であり、z軸方向の関係は示されていないが、実際には各受信機の位置は高さ方向(z軸方向)の座標も利用して表され得る。 FIG. 2 shows a first example of an environment where the positioning system 1 is introduced. In the example of FIG. 2, the positioning system 1 is constructed in a factory, a bookstore, or the like having shelves 22 and 23 on which objects are placed. The position of each of the plurality of receivers is indicated by “●”. The plurality of receivers are generally distributed. Note that FIG. 2 is an XY plan view, and the relationship in the z-axis direction is not shown. However, in actuality, the position of each receiver can be expressed using coordinates in the height direction (z-axis direction).
 本実施形態では、複数の受信機は、予め定められた位置に設置されているとする。ある基準位置Oを原点とし、3つの軸(X軸、Y軸およびZ軸)を定めたとき、各受信機の位置は、X軸、Y軸およびZ軸の各値によって表すことができる。以下では、受信機20-Aの座標をA(xa,ya,za)などと表記し、xa,yaおよびzaをそれぞれ「x座標」「y座標」「z座標」と呼ぶことがある。図面上に例示された受信機20-Jのx座標はxJ、y座標はyJ、z座標はzJである。 In this embodiment, it is assumed that the plurality of receivers are installed at predetermined positions. When a certain reference position O is set as an origin and three axes (X axis, Y axis, and Z axis) are defined, the position of each receiver can be represented by each value of the X axis, Y axis, and Z axis. In the following, coordinates A receiver 20-A (x a, y a, z a) is expressed as such, x a, and each y a and z a "x-coordinate", "y coordinate,""zcoordinates" Sometimes called. In the receiver 20 -J illustrated on the drawing, the x coordinate is x J , the y coordinate is y J , and the z coordinate is z J.
 なお、後述の理由から、本実施形態では演算に利用する複数の受信機の各x座標が全て同じ値になることはないとする。換言すると、測位装置30は、x座標が少なくとも1つ異なる複数の受信機を利用して演算を行う。y座標、および、z座標についても同様である。すなわち、複数の受信機の少なくとも1つのy座標は異なっており、複数の受信機の少なくとも1つのz座標も異なっている。 For the reasons described later, in this embodiment, it is assumed that the x coordinates of a plurality of receivers used for calculation do not all have the same value. In other words, the positioning device 30 performs calculation using a plurality of receivers having at least one different x coordinate. The same applies to the y coordinate and the z coordinate. That is, at least one y coordinate of the plurality of receivers is different, and at least one z coordinate of the plurality of receivers is also different.
 図3は、測位システム1が導入された環境の第二の例を示す。図面から理解されるように、図3では、複数の受信機が環境内の一部の区画Rにまとまって設けられている。なお図3もまたXY平面図であり、z軸方向の関係は示されていないが、実際には各受信機の位置は高さ方向(z軸方向)の座標も利用して表され得る。図3の構成は、上述した位置の条件を満たすように位置が調整されて一体化された複数の受信機のユニットを予め製造しておき、測位システム1の導入環境の天井部分に固定することによって容易に実現される。 FIG. 3 shows a second example of the environment where the positioning system 1 is introduced. As can be seen from the drawing, in FIG. 3, a plurality of receivers are provided together in some compartments R in the environment. Note that FIG. 3 is also an XY plan view, and the relationship in the z-axis direction is not shown, but in practice, the position of each receiver can be expressed using coordinates in the height direction (z-axis direction). In the configuration of FIG. 3, a plurality of receiver units whose positions are adjusted and integrated so as to satisfy the above-described position conditions are manufactured in advance and fixed to a ceiling portion of the introduction environment of the positioning system 1. Is easily realized.
 本実施形態にかかる測位処理は、図2および図3のいずれの態様でも利用可能である。 The positioning process according to the present embodiment can be used in any of the modes shown in FIGS.
 次に、図4から図7を参照しながら、測位システム1における測位の対象を説明する。 Next, the positioning target in the positioning system 1 will be described with reference to FIGS.
 信号発生器10は、固定された位置に設置された物に設けられてもよいし、位置が変化し得る物、たとえば自走車両、持ち運び可能な電子機器に設けられてもよい。持ち運び可能な電子機器は、たとえば、携帯電話、スマートフォン、電子タグ装置である。 The signal generator 10 may be provided in an object installed at a fixed position, or may be provided in an object whose position can change, for example, a self-propelled vehicle or a portable electronic device. Portable electronic devices are, for example, mobile phones, smartphones, and electronic tag devices.
 図4は、図2および図3における、棚22および23を含む4つの棚を示す。それぞれの棚は、物を載置するための複数の棚25を有している。本実施形態では、複数の棚25はY軸方向およびZ軸方向に複数存在し得るとする。 FIG. 4 shows four shelves including shelves 22 and 23 in FIGS. Each shelf has a plurality of shelves 25 for placing objects. In the present embodiment, it is assumed that a plurality of shelves 25 may exist in the Y-axis direction and the Z-axis direction.
 図5は、棚25に載置された商品24aに貼り付けられた信号発生器10を示す。信号発生器10から出力された信号波は、5台以上の受信機によって受信される。図5では、受信機20-Sおよび20-Tが信号発生器10から出力された信号波をそれぞれ受信している状態が示されている。後述の演算によれば、測位システム1は、商品24aが載置された位置を推定し得る。 FIG. 5 shows the signal generator 10 attached to the product 24 a placed on the shelf 25. The signal wave output from the signal generator 10 is received by five or more receivers. FIG. 5 shows a state where the receivers 20-S and 20-T receive the signal waves output from the signal generator 10, respectively. According to the calculation described later, the positioning system 1 can estimate the position where the product 24a is placed.
 図6は、棚22および23の間を走行する自走車両24bに実装された信号発生器10を示す。本例でも、受信機20-Sおよび20-Tが、信号発生器10から出力された信号波をそれぞれ受信している状態が示されている。測位システム1は、自走車両24bの位置をリアルタイムで推定し得る。 FIG. 6 shows the signal generator 10 mounted on a self-propelled vehicle 24b traveling between the shelves 22 and 23. This example also shows a state in which the receivers 20-S and 20-T are receiving signal waves output from the signal generator 10, respectively. The positioning system 1 can estimate the position of the self-propelled vehicle 24b in real time.
 図7は、棚22および23の間を歩行する買い物客のスマートフォン24cに実装された信号発生器10を示す。本例でも、受信機20-Sおよび20-Tが、信号発生器10から出力された信号波をそれぞれ受信している状態が示されている。測位システム1は、買い物客の位置をリアルタイムで推定し得る。 FIG. 7 shows the signal generator 10 mounted on a smartphone 24c of a shopper walking between shelves 22 and 23. This example also shows a state in which the receivers 20-S and 20-T are receiving signal waves output from the signal generator 10, respectively. The positioning system 1 can estimate the position of the shopper in real time.
 図5~図7の例では、信号発生器10は1つだけ示されているが、複数存在してもよい。ただし、後に詳述するように、個々の信号発生器10の位置を推定するためには、各信号発生器10から出力された信号波の波形を識別する必要がある。そのため、各信号発生器10は、異なる波形を有する信号波を放射することを要する。測位システム1は、並列的に処理を行うことにより、受信した信号波に含まれる、各信号発生器10を一意に特定する識別情報から各信号発生器10の位置を推定することができる。 5 to 7, only one signal generator 10 is shown, but a plurality of signal generators 10 may exist. However, as will be described in detail later, in order to estimate the position of each signal generator 10, it is necessary to identify the waveform of the signal wave output from each signal generator 10. Therefore, each signal generator 10 needs to radiate signal waves having different waveforms. The positioning system 1 can estimate the position of each signal generator 10 from identification information that uniquely identifies each signal generator 10 included in the received signal wave by performing processing in parallel.
 次に、信号発生器10および測位装置30の構成を説明する。 Next, the configuration of the signal generator 10 and the positioning device 30 will be described.
 図8は、信号発生器10のハードウェアの構成を示す。信号発生器10は、高周波信号を生成するためのIC11と、記憶装置12と、アンテナ14とを有する。記憶装置12はたとえばフラッシュROMであり、信号発生器10毎に一意の識別情報13が格納されている。IC11は、アンテナ14を利用して識別情報を周期的に送信する。 FIG. 8 shows a hardware configuration of the signal generator 10. The signal generator 10 includes an IC 11 for generating a high frequency signal, a storage device 12, and an antenna 14. The storage device 12 is a flash ROM, for example, and stores unique identification information 13 for each signal generator 10. The IC 11 periodically transmits identification information using the antenna 14.
 図9は、測位装置30のハードウェアの構成を示す。 FIG. 9 shows the hardware configuration of the positioning device 30.
 測位装置30は、CPU31と、メモリ32と、通信回路33とを有しており、これらは内部バスで接続されている。CPU31は、後述の処理により、個々の信号発生器10の位置を推定し、推定した位置を示す位置情報を生成する演算回路である。メモリ32は、たとえばDRAMであり、CPU31の処理に関連して利用されるワークメモリである。 The positioning device 30 includes a CPU 31, a memory 32, and a communication circuit 33, which are connected by an internal bus. The CPU 31 is an arithmetic circuit that estimates the position of each signal generator 10 and generates position information indicating the estimated position by processing described later. The memory 32 is a DRAM, for example, and is a work memory used in connection with the processing of the CPU 31.
 通信回路33は、たとえば、1または複数の通信コネクタを有する通信回路である。通信コネクタは、入力インタフェース34a、および、波源の座標のデータを出力する出力インタフェース34bを含む。入力インタフェース34aおよび出力インタフェース34bは一体化され1つの通信コネクタとして実装されてもよい。 The communication circuit 33 is a communication circuit having one or more communication connectors, for example. The communication connector includes an input interface 34a and an output interface 34b that outputs data of wave source coordinates. The input interface 34a and the output interface 34b may be integrated and mounted as one communication connector.
 入力インタフェース34aは、受信機20-A~20-Nの各々から高周波電気信号を受信する入力端子である。高周波電気信号は、各受信機が受信した電磁波(信号波)を変換して生成された信号である。 The input interface 34a is an input terminal that receives high-frequency electrical signals from each of the receivers 20-A to 20-N. The high-frequency electrical signal is a signal generated by converting electromagnetic waves (signal waves) received by each receiver.
 出力インタフェース34bは、たとえばイーサネット(登録商標)規格の有線通信を行う通信端子であり、波源の座標のデータを出力する。波源の座標のデータに代えて、出力インタフェース34bは、波源の座標を画像化した映像信号を出力してもよい。このとき、出力インタフェース34bは、DVI端子等の画像信号の出力端子であり得る。図9には、表示装置35と接続された出力インタフェース34bが示されている。 The output interface 34b is a communication terminal that performs, for example, Ethernet (registered trademark) standard wired communication, and outputs data of the coordinates of the wave source. Instead of the data on the coordinates of the wave source, the output interface 34b may output a video signal obtained by imaging the coordinates of the wave source. At this time, the output interface 34b may be an image signal output terminal such as a DVI terminal. FIG. 9 shows an output interface 34 b connected to the display device 35.
 次に、本願発明者が完成させた、本実施形態による測位アルゴリズムを説明する。 Next, the positioning algorithm according to this embodiment completed by the present inventors will be described.
 本実施形態では5台の受信機を利用する。上述のとおり、受信機20-Aの位置Aを(xa,ya,za)などと表す。また、波源位置Pから受信機20-Aまでの距離をraなどと表す。測位すべき波源(信号発生器10)の位置Pを(x,y,z)と表す。 In this embodiment, five receivers are used. As described above, the position A of the receiver 20-A is represented as (x a , y a , z a ) or the like. Further, the distance from the wave source position P to the receiver 20-A represents the like r a. The position P of the wave source (signal generator 10) to be measured is represented as (x, y, z).
 図10は、波源位置Pと各受信機との位置関係を示す。図10には、波源位置P、各受信機の位置A~Eが示されている。また、図10には基準位置として原点Oが示されている。原点Oは任意に定め得る。各受信機の位置は、原点Oの位置(0,0,0)を基準として決定されている。 FIG. 10 shows the positional relationship between the wave source position P and each receiver. FIG. 10 shows a wave source position P and positions AE of each receiver. In FIG. 10, the origin O is shown as the reference position. The origin O can be arbitrarily determined. The position of each receiver is determined based on the position (0, 0, 0) of the origin O.
 波源位置Pと受信機20-Aの位置Aとの間には以下の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000002
The following relationship is established between the wave source position P and the position A of the receiver 20-A.
Figure JPOXMLDOC01-appb-M000002
 同様に、波源位置Pと他の各受信機の位置との間にも以下の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Similarly, the following relationship holds between the wave source position P and the positions of other receivers.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 ここでパラメータβb~βeを導入する。パラメータβbは、波源位置Pから受信機20-Bまでの距離rbと波源位置Pから受信機20-Aまでの距離raとの差を表す。よって以下のように表記される。なお本明細書では、パラメータβb~βeを「距離パラメータ」と呼ぶことがある。
(数6)
 βb=rb-ra
Here, parameters βb to βe are introduced. Parameter βb represents the difference between the distance r a distance from r b and the wave source position P from the wave source position P to the receiver 20-B to a receiver 20-A. Therefore, it is expressed as follows. In this specification, the parameters βb to βe may be referred to as “distance parameters”.
(Equation 6)
βb = r b -r a
 同様に、βc、βdおよびβeも、波源位置Pから各受信機までの距離riと波源位置Pから受信機20-Aまでの距離raとの差を表しており、まとめて以下のように表記される。
(数7)
 βc=rc-ra
 βd=rd-ra
 βe=re-ra
Similarly, .beta.c, .beta.d and βe also represents the difference between the distance r a from the wave source position P from the distance r i and the wave source position P to the receiver 20-A to each receiver, collectively as follows It is written in.
(Equation 7)
βc = r c -r a
βd = r d −r a
βe = r e −r a
 数6および7を利用して数2~5を変形すると、以下の数8が得られる。
Figure JPOXMLDOC01-appb-M000007
When Expressions 2 to 5 are transformed using Expressions 6 and 7, the following Expression 8 is obtained.
Figure JPOXMLDOC01-appb-M000007
 数1および数8の各式を展開して変形すると、以下の式が得られる。
Figure JPOXMLDOC01-appb-M000008
When the equations of Equations 1 and 8 are expanded and transformed, the following equations are obtained.
Figure JPOXMLDOC01-appb-M000008
 いま、数9に含まれる未知数を、以下のように置き換える。
Figure JPOXMLDOC01-appb-M000009
Now, the unknown number included in Equation 9 is replaced as follows.
Figure JPOXMLDOC01-appb-M000009
 上述の変数の置き換えは、二次の項(非線形項)を一次の項(線形項)に変更する操作である。つまり非線形方程式を線形化することに相当する。 The above-described variable replacement is an operation for changing the second-order term (nonlinear term) to the first-order term (linear term). That is, it corresponds to linearizing a nonlinear equation.
 すると、数9は行列を用いて以下のように表現することができる。
Figure JPOXMLDOC01-appb-M000010
Then, Equation 9 can be expressed as follows using a matrix.
Figure JPOXMLDOC01-appb-M000010
 数11は行列Q、列ベクトルpおよびsを用いて以下のように表現できる。
(数12)
 Q・p=s
Equation 11 can be expressed as follows using the matrix Q and the column vectors p and s.
(Equation 12)
Q ・ p = s
 なお、ベクトルsは、基準位置である原点Oから各受信機までの距離の二乗から、パラメータβb~βeの二乗を減算して並べて得られている。いま、上述したパラメータの定義に準じて、パラメータβaを、波源位置Pから受信機20-Aまでの距離raと、波源位置Pから受信機20-Aまでの距離raとの差を表すパラメータβaを定義する。すると、βa=0である。つまり、ベクトルsの第1行は、基準位置である原点Oから受信機Aまでの距離の二乗から、パラメータβa2を減算して得られていると言える。ベクトルsは、基準位置である原点Oから各受信機までの距離の二乗から、パラメータβa~βeの二乗を減算して並べて得られている、ということができる。 The vector s is obtained by subtracting the squares of the parameters βb to βe from the square of the distance from the reference point origin O to each receiver. Now, according to the definition of the parameters described above represents the difference parameters .beta.a, a distance r a from the wave source position P to the receiver 20-A, the distance r a from the wave source position P to the receiver 20-A Define the parameter βa. Then, βa = 0. That is, it can be said that the first row of the vector s is obtained by subtracting the parameter βa 2 from the square of the distance from the origin O which is the reference position to the receiver A. It can be said that the vector s is obtained by subtracting the squares of the parameters βa to βe from the square of the distance from the origin O, which is the reference position, to each receiver.
 上述のように定義したパラメータβaを用いると、行列Qの(1,5)成分は「2・βa」であると考えることもできる。 If the parameter βa defined as described above is used, the (1, 5) component of the matrix Q can be considered to be “2 · βa”.
 ベクトルpに含まれる要素のうち、x、yおよびzが、波源Pの位置を表す未知数である。行列Qの逆行列をQ-1と表すと、ベクトルpは以下の式により求めることができる。
(数13)
 p=Q-1・s
Among the elements included in the vector p, x, y, and z are unknown numbers representing the position of the wave source P. When the inverse matrix of the matrix Q is expressed as Q −1 , the vector p can be obtained by the following equation.
(Equation 13)
p = Q -1 · s
 数13は具体的には以下のように表現される。
Figure JPOXMLDOC01-appb-M000011
Equation 13 is specifically expressed as follows.
Figure JPOXMLDOC01-appb-M000011
 数13および数14が成立する条件として、行列Qの逆行列が存在すること、換言すれば、行列Qが正則正方行列であることが必要である。そのためには行列式が0でないことが条件となる。当該条件を満たすためには、(i)行列Qのある行と他の行との間には整数倍の関係がないこと、および、(ii)行列Qのある列と他の列との間には整数倍の関係がないこと、が必要である。数14に示されるように、行列Qの行に注目すると、上記関係(i)は明らかに満たさない。上記関係を満たす場合には、5つの受信機のうちの少なくとも2つの位置が少なくとも同じになる必要があるが、そのような配置はありえないからである。 As a condition for satisfying Expressions 13 and 14, it is necessary that an inverse matrix of the matrix Q exists, in other words, the matrix Q is a regular square matrix. For this purpose, the determinant is not 0. In order to satisfy the condition, (i) there is no integer multiple relationship between one row of the matrix Q and another row, and (ii) between one column of the matrix Q and another column It is necessary that there is no integer multiple relationship. As shown in Expression 14, when attention is paid to the row of the matrix Q, the above relationship (i) is clearly not satisfied. If the above relationship is satisfied, at least two positions of the five receivers need to be at least the same because such an arrangement is not possible.
 そこで行列Qの列の関係を検討する。5つの受信機のすべてのx座標、y座標またはz座標が一致する場合には、上記関係(ii)を満たす。そのため、5つの受信機を選択する際に、そのような条件を満たさない受信機の組を採用しなければよい。たとえば、z座標については、高さが少なくとも1つ異なる5台の受信機を選択する。x座標の関係およびy座標の関係も同様である。 Therefore, consider the relationship of the columns of the matrix Q. If all the x, y, or z coordinates of the five receivers match, the above relationship (ii) is satisfied. Therefore, when selecting five receivers, a set of receivers that do not satisfy such a condition may not be adopted. For example, for the z coordinate, five receivers with different heights are selected. The relationship between the x coordinate and the y coordinate is the same.
 次に、行列Qの逆行列を求める際の、パラメータβb~βeの取り扱いを説明する。数6および7に定義されるように、各パラメータは、波源位置Pから各受信機までの距離と波源位置Pから受信機20-Aまでの距離raとの差である。当該距離の差は、波源位置Pから出力された信号波の到達時間の差に比例する。そこで以下、到達時間の差を求める方法を説明する。 Next, the handling of the parameters βb to βe when obtaining the inverse matrix of the matrix Q will be described. As defined number 6 and 7, each parameter is the difference between the distance r a from the wave source position P distance and from the wave source position P to the receiver 20-A to each receiver. The difference in the distance is proportional to the difference in arrival time of the signal wave output from the wave source position P. Therefore, a method for obtaining the difference in arrival time will be described below.
 図11は、波源位置Pから出力された信号波が各受信機20-K(K:A,B,C,D,E)に到達した時刻tk(k:a,b,c,d,e)を模式的に示す波形図である。波源から全方向に放射された信号波は、伝搬距離に応じて減衰しながら、各受信機20-Kに到達する。各受信機20-Kは各時刻tk以降継続して信号波を受信する。 FIG. 11 shows the time t k (k: a, b, c, d, when the signal wave output from the wave source position P reaches each receiver 20-K (K: A, B, C, D, E). It is a wave form diagram which shows e) typically. The signal wave radiated in all directions from the wave source reaches each receiver 20-K while being attenuated according to the propagation distance. Each receiver 20-K continuously receives a signal wave after each time t k .
 本願発明者は、各受信機20-Kが各時刻tk以降に受信した信号波の波形には相互に強い相関があることに着目した。たとえば、受信機20-Aが時刻ta以降に受信した信号波の時間波形Aと、受信機20-Bが時刻tb以降に受信した信号波の時間波形Bとは、振幅を考慮しなければ、概ね同じ形状または同じ位相を有していると言える。 The inventor of the present application paid attention to the fact that the waveform of the signal wave received after each time t k by each receiver 20-K has a strong correlation with each other. For example, the time waveform A of the signal wave received by the receiver 20-A after the time t a and the time waveform B of the signal wave received by the receiver 20-B after the time t b must consider the amplitude. For example, it can be said that they have substantially the same shape or the same phase.
 各受信機20-Kが、図11に示すような波形を出力することが可能であれば、各時刻tkを特定することは容易である。しかしながら実際には、各受信機20-Kは、図11に示すような態様で信号波の時間波形を出力することは事実上できない。その理由は、各受信機20-Kは、信号発生器10からの信号波以外にも種々の波源から放射された信号波(入射信号波)を絶えず受信し、当該入射信号波の時間波形データを出力しているからである。さらに、種々のノイズが、最終的に得られた時間波形データに重畳され得る。 If each receiver 20-K can output a waveform as shown in FIG. 11, it is easy to specify each time t k . However, in practice, each receiver 20-K cannot practically output the time waveform of the signal wave in the manner shown in FIG. The reason is that each receiver 20-K continuously receives signal waves (incident signal waves) radiated from various wave sources in addition to the signal waves from the signal generator 10, and time waveform data of the incident signal waves. Is output. Further, various noises can be superimposed on the finally obtained time waveform data.
 図12は、各受信機20-Kからの出力された信号(出力信号)の時間波形の例を模式的に示す。図示される各時間波形から、信号発生器10から受信した信号波の時間波形を抽出することは困難である。 FIG. 12 schematically shows an example of a time waveform of a signal (output signal) output from each receiver 20-K. It is difficult to extract the time waveform of the signal wave received from the signal generator 10 from each time waveform shown.
 そこで、本願発明者は、取得した1つの時間波形に対して、取得した他の時間波形をそれぞれ時間軸に沿ってシフトさせながら、両者の類似度が最も強くなる時間シフト量Uを決定することを考えた。以下、時間波形Aに対して、時間波形Bを時間軸に沿ってシフトさせる例を説明する。 Therefore, the inventors of the present application determine the time shift amount U at which the similarity between the two is strongest while shifting the other acquired time waveforms along the time axis with respect to the acquired one time waveform. Thought. Hereinafter, an example in which the time waveform B is shifted along the time axis with respect to the time waveform A will be described.
 本願発明者は、類似度を評価するために数15に示す相関関数f(U)を導入し、数16に示すように相関関数fb(U)の値を最大化する時間シフト量Uを決定することに想到した。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
数15および16において、gaは受信機20-Aからの出力信号を表す時間関数であり、gbは受信機20-Bからの出力信号を表す時間関数である。
The inventor of the present application introduces the correlation function f (U) shown in Formula 15 in order to evaluate the similarity, and sets the time shift amount U that maximizes the value of the correlation function f b (U) as shown in Formula 16. I came up with a decision.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
In Equations 15 and 16, g a is a time function representing the output signal from the receiver 20-A, and g b is a time function representing the output signal from the receiver 20-B.
 決定されたシフト量Uは、受信機20-Aが信号波を受信した時刻taと受信機20-Aが信号波を受信した時刻tbとの時間差(tb-ta)を表す。 The determined shift amount U represents the time difference (t b −t a ) between the time t a when the receiver 20-A receives the signal wave and the time t b when the receiver 20-A receives the signal wave.
 信号発生器10から出力された信号波の伝搬速度をvとすると、数17に示す演算により、パラメータβb~βeを得ることができる。
(数17)
 βb=v・argmax fb(U)
 βc=v・argmax fc(U)
 βd=v・argmax fd(U)
 βe=v・argmax fe(U)
Assuming that the propagation speed of the signal wave output from the signal generator 10 is v, parameters βb to βe can be obtained by the calculation shown in Equation 17.
(Equation 17)
βb = v · argmax f b (U)
βc = v · argmax f c (U)
βd = v · argmax f d (U)
βe = v · argmax f e (U)
 fc(U)~fe(U)はそれぞれ、数15において、gbを、受信機20-Cからの出力信号を表す時間関数gc、受信機20-Dからの出力信号を表す時間関数gd、受信機20-Eからの出力信号を表す時間関数geに置き換えて得られた相関関数である。 In Equation 15, f c (U) to f e (U) are g b , a time function g c representing the output signal from the receiver 20-C, and a time representing the output signal from the receiver 20-D. The function g d is a correlation function obtained by replacing the function g d with the time function g e representing the output signal from the receiver 20-E.
 伝搬速度vは、信号波が電磁波で1気圧の大気を伝搬する場合、約30万キロメートル/秒である。または、伝搬速度vは、信号波が音波で、1気圧の乾燥空気を伝搬する場合、約331.5メートル/秒である。 The propagation velocity v is about 300,000 kilometers / second when the signal wave propagates through the atmosphere of 1 atm with electromagnetic waves. Alternatively, the propagation velocity v is about 331.5 meters / second when the signal wave is a sound wave and propagates through one atmosphere of dry air.
 数14の右辺に含まれる、xk,yk,zk(k:a,b,c,d,e)は、各受信機20-K(K:A,B,C,D,E)の位置の各座標値であり、既知である。よって数14の右辺の逆行列Q-1およびベクトルsは全て演算によって求めることができる。これにより、数14の左辺の成分x、y、z、つまり波源の位置(x,y,z)を推定することができる。 X k , y k , z k (k: a, b, c, d, e) included in the right side of Equation 14 are the receivers 20-K (K: A, B, C, D, E). Each coordinate value of the position is known. Therefore, the inverse matrix Q −1 and the vector s on the right side of Equation 14 can all be obtained by calculation. Thereby, the components x, y, and z on the left side of Equation 14, that is, the position (x, y, z) of the wave source can be estimated.
 なお、本明細書では、各受信機が、信号発生器10からの信号を受信して信号を出力するまでに要する時間(処理時間)は実質的に等しいとする。等しくない場合であっても、他の各受信機の処理時間から、受信機Aの処理時間を減算した差の情報を予め取得し、得られた値Uに加えればよい。これにより、信号発生器10からの信号が到達した時間差を正しく求めることができる。 In this specification, it is assumed that the time (processing time) required for each receiver to receive a signal from the signal generator 10 and output the signal is substantially equal. Even if they are not equal, information on the difference obtained by subtracting the processing time of the receiver A from the processing time of the other receivers may be acquired in advance and added to the obtained value U. Thereby, the time difference at which the signal from the signal generator 10 arrives can be obtained correctly.
 測位装置30のCPU31(図9)は、上述の原理に従った演算を実行する。以下、図13および図14を参照しながら、CPU31の動作を説明する。 The CPU 31 (FIG. 9) of the positioning device 30 executes a calculation according to the above-described principle. Hereinafter, the operation of the CPU 31 will be described with reference to FIGS. 13 and 14.
 図13は、CPU31の処理ブロックの構成を示す。また図14は、CPU31の処理手順を示すフローチャートである。 FIG. 13 shows the configuration of the processing block of the CPU 31. FIG. 14 is a flowchart showing the processing procedure of the CPU 31.
 CPU31は、パラメータ演算器51と、逆行列演算器52と、ベクトル乗算器53として機能する。図13では、あたかも3つの構成要素が存在するように示されているが、実際には処理の単位を意味している。本実施形態では、CPU31は、図14に示すフローチャートによる処理を行うコンピュータプログラムにしたがって動作する。CPU31は、コンピュータプログラムの命令に従い、時間によって、パラメータ演算器51として動作し、逆行列演算器52として動作し、ベクトル乗算器53として動作する。処理ブロックから処理ブロックへの矢印は、データが次の演算に利用されることを意味している。 The CPU 31 functions as a parameter calculator 51, an inverse matrix calculator 52, and a vector multiplier 53. In FIG. 13, it is shown as if there are three components, but it actually means a unit of processing. In the present embodiment, the CPU 31 operates according to a computer program that performs processing according to the flowchart shown in FIG. The CPU 31 operates as a parameter calculator 51, operates as an inverse matrix calculator 52, and operates as a vector multiplier 53 depending on time according to instructions of the computer program. An arrow from the processing block to the processing block means that the data is used for the next calculation.
 ただし、パラメータ演算器51、逆行列演算器52およびベクトル乗算器53の少なくとも1つをハードウェアによって実現してもよい。たとえばFPGA(Field-programmable gate array)を用いることにより、パラメータ演算器51、逆行列演算器52およびベクトル乗算器53を1つの集積回路上に実装することが可能である。 However, at least one of the parameter calculator 51, the inverse matrix calculator 52, and the vector multiplier 53 may be realized by hardware. For example, by using an FPGA (Field-programmable gate array), the parameter calculator 51, the inverse matrix calculator 52, and the vector multiplier 53 can be mounted on one integrated circuit.
 以下では説明の便宜のため、パラメータ演算器51、逆行列演算器52およびベクトル乗算器53が独立に設けられた構成要素であるとして説明する。 Hereinafter, for convenience of explanation, the parameter calculator 51, the inverse matrix calculator 52, and the vector multiplier 53 will be described as independent components.
 パラメータ演算器51は、受信機20-A~20-Eの各々から出力信号のデータを受け取り、数17に示す演算を行うことにより、パラメータβb~βeを算出する(ステップS1)。算出した各パラメータは逆行列演算器52に送られる。 The parameter calculator 51 receives the output signal data from each of the receivers 20-A to 20-E, and calculates the parameters βb to βe by performing the calculation shown in Equation 17 (step S1). Each calculated parameter is sent to the inverse matrix calculator 52.
 逆行列演算器52は、パラメータ演算器51からパラメータβb~βeを受け取る。また逆行列演算器52は、メモリ32に格納されている各受信機の位置座標を示すデータを読み出す(ステップS2)。そして逆行列演算器52は、パラメータβb~βeおよび各受信機の位置座標を示すデータを用いて行列Qの逆行列を計算する(ステップS3)。逆行列の演算方法は公知であり、たとえば掃き出し法(sweep out method)を用いて計算することができる。なお、行列Qを入力すると逆行列Q-1を出力するコンピュータプログラムのライブラリもまた公知であり容易に入手可能である。そのようなライブラリプログラムを用いてCPU31を逆行列演算器52として動作させてもよい。 The inverse matrix calculator 52 receives the parameters βb to βe from the parameter calculator 51. Further, the inverse matrix calculator 52 reads data indicating the position coordinates of each receiver stored in the memory 32 (step S2). Then, the inverse matrix calculator 52 calculates an inverse matrix of the matrix Q using the parameters βb to βe and data indicating the position coordinates of each receiver (step S3). Inverse matrix computation methods are known and can be calculated using, for example, a sweep out method. A library of computer programs that outputs the inverse matrix Q -1 when the matrix Q is input is also known and easily available. The CPU 31 may be operated as the inverse matrix calculator 52 using such a library program.
 ベクトル乗算器53は、パラメータ演算器51からパラメータβb~βeを受け取る。また、ベクトル乗算器53は、逆行列演算器52によって計算された逆行列Q-1およびメモリ32に格納されている各受信機の位置座標を示すデータを受け取る。後者は、原点位置から各受信機までの距離の二乗を並べたベクトルsを求めるために利用される。受け取ったデータに基づいて、ベクトル乗算器53は、演算Q-1・sを行う(ステップS4)。これにより、数14左辺のベクトルpを求めることができる。ベクトル乗算器53は、求めたベクトルpの成分であるx,y,zを、波源の位置として出力する(ステップS5)。 The vector multiplier 53 receives parameters βb to βe from the parameter calculator 51. The vector multiplier 53 receives the inverse matrix Q −1 calculated by the inverse matrix calculator 52 and data indicating the position coordinates of each receiver stored in the memory 32. The latter is used to obtain a vector s in which the squares of the distances from the origin position to each receiver are arranged. Based on the received data, the vector multiplier 53 performs an operation Q −1 · s (step S4). As a result, the vector p on the left side of Equation 14 can be obtained. The vector multiplier 53 outputs x, y, z, which are the components of the obtained vector p, as the position of the wave source (step S5).
 以上の処理により、波源である信号発生器10の位置を推定することができる。 By the above processing, the position of the signal generator 10 that is a wave source can be estimated.
 上述の数10に示す操作により、非線形項が線形化され、未知数が増えた。さらに、ベクトルpの要素に未知数raを導入した。これらにより、波源の位置を示すx、y、zに加えて未知数が2つ増加した。5つの未知数を求めるためには、5つの連立方程式が必要となる。これが、5台の受信機からの信号を利用して、5行5列の行列Qが必要になった理由である。逆行列を求めるために、本願発明者は受信機の数を増やして行列のランクの減少を補った。 By the operation shown in Equation 10 above, the nonlinear terms were linearized and the unknowns increased. In addition, the introduction of unknowns r a to the elements of the vector p. As a result, the number of unknowns increased by two in addition to x, y, and z indicating the position of the wave source. In order to obtain five unknowns, five simultaneous equations are required. This is the reason why a matrix Q of 5 rows and 5 columns is required using signals from five receivers. In order to obtain the inverse matrix, the present inventor increased the number of receivers to compensate for the decrease in the rank of the matrix.
 アルゴリズムを線形化することにより、ニュートン法を利用する場合と比較して、多重解を回避でき、繰り返し演算を行う必要もないため、ハードウェアへの負荷やソフトウェアの処理を軽減することができる。BLE測位システムの導入は比較的手軽に行うことができる。そのような性格上、導入のコストを抑えることが求められる。線形計測処理は、入力に対して出力が一意的に決定するためテーブル化も可能でありシステムの低コスト化に貢献する。 By linearizing the algorithm, multiple solutions can be avoided and it is not necessary to perform repetitive computations compared to the case of using the Newton method, so that the load on hardware and software processing can be reduced. The BLE positioning system can be introduced relatively easily. Due to such characteristics, it is required to reduce the cost of introduction. Since the linear measurement process determines the output uniquely with respect to the input, it can be tabulated and contributes to the cost reduction of the system.
 「テーブル化」とは、予め測定されたβb、βc、βd、βeの組と、それらから推定されるx、y、zの組とを対応付けたテーブルを用意することを言う。実際に出力信号の時間波形データが得られ、βb、βc、βd、βeの組が決定されたとき、テーブルを参照して一致する組を検索する。一致する組がテーブルに存在した場合には、対応付けられたx、y、zの組を読み出して出力する。行列演算等が不要になるため、非常に高速に結果を出力することができる。さらにCPU31の負荷を大きく抑制できる。テーブルのエントリ数が増えるほど、実測したβb、βc、βd、βeの組に一致する組がテーブル上に存在する可能性が高くなる。 “Tableization” refers to preparing a table in which a set of βb, βc, βd, and βe measured in advance and a set of x, y, and z estimated from them are associated with each other. When the time waveform data of the output signal is actually obtained and the set of βb, βc, βd, and βe is determined, the matching set is searched with reference to the table. If there is a matching set in the table, the associated x, y, z set is read and output. Since a matrix operation or the like is not necessary, the result can be output at a very high speed. Furthermore, the load on the CPU 31 can be greatly suppressed. As the number of entries in the table increases, there is a higher possibility that a set that matches the actually measured set of βb, βc, βd, βe exists on the table.
 なお、テーブルのエントリ数を増加させることは極めて容易である。測位システム1が導入された環境で、波源となる信号発生器10の位置を変えながら、都度、各受信機で信号波を受信してβb、βc、βd、βeの組を取得し、波源の位置x、y、zの組を推定しておけばよいからである。検索のヒット率が十分高いテーブルを設けておけば、比較的処理能力が低いCPUを採用しても、十分高速に波源の位置を示す情報を出力することができる。 Note that it is extremely easy to increase the number of entries in the table. In the environment where the positioning system 1 is introduced, each time a signal wave is received by each receiver while changing the position of the signal generator 10 serving as a wave source, a set of βb, βc, βd, βe is obtained, This is because a set of positions x, y, and z may be estimated. If a table having a sufficiently high search hit rate is provided, information indicating the position of the wave source can be output at a sufficiently high speed even if a CPU having a relatively low processing capability is employed.
 なお、上述の説明では、信号発生器10の位置を推定するためには5台の受信機からの出力信号の時間波形データを利用すると説明したが、6台以上の受信機からの出力信号の時間波形データを利用してもよい。 In the above description, the time waveform data of the output signals from the five receivers is used to estimate the position of the signal generator 10, but the output signals from the six or more receivers are used. Time waveform data may be used.
 上述した実施形態では、ベクトルpおよびsを列ベクトルとしたときの行列Qを説明した。しかしながら、ベクトルpおよびsを行ベクトルとして行列Qを構築してもよい。転置の関係にあれば数学的には同じであることは明らかである。 In the above-described embodiment, the matrix Q when the vectors p and s are column vectors has been described. However, the matrix Q may be constructed using the vectors p and s as row vectors. It is clear that the transposition relation is mathematically the same.
 上述の処理によれば、信号発生器が受信機に信号発生時刻を伝えるシステムが不要となり、TOF方式の欠点が解消される。 According to the above processing, a system in which the signal generator informs the receiver of the signal generation time becomes unnecessary, and the disadvantage of the TOF method is solved.
 本開示の誘導システムは、屋内または屋外を移動する移動体の位置の推定に用いられ得る。また測位した結果を利用する移動体の位置の制御に用いられ得る。 The guidance system of the present disclosure can be used for estimating the position of a moving body that moves indoors or outdoors. Moreover, it can be used for control of the position of the moving body using the positioning result.
 1 測位システム、 10 信号発生器、 20-A、20-B、・・・、20-N 受信機、 30 測位装置、 31 CPU(演算回路)、 32 メモリ、 33 通信回路、 34a 入力インタフェース、 34b 出力インタフェース、 51 パラメータ演算器、 52 逆行列演算器、 53 ベクトル乗算器 1 positioning system, 10 signal generator, 20-A, 20-B, ..., 20-N receiver, 30 positioning device, 31 CPU (arithmetic circuit), 32 memory, 33 communication circuit, 34a input interface, 34b Output interface, 51 parameter calculator, 52 inverse matrix calculator, 53 vector multiplier

Claims (7)

  1.  5台以上の複数の受信機であって、各々が、波源から出力された信号波を含む入射信号波を受信して、受信した前記入射信号波の時間波形のデータを出力する、複数の受信機と、
     前記複数の受信機の各々から前記時間波形のデータを受け取って、
     行列Q・ベクトルp=ベクトルs
    (ただし、ベクトルp:基準位置からの前記波源の位置の各座標成分を各成分として含むベクトル、ベクトルs:前記基準位置から前記各受信機までの距離の二乗と、各受信機の距離パラメータの二乗との差を並べたベクトル)
    の関係式を満たす、少なくとも五次元の正則正方行列Qの逆行列Q-1を算出し、算出した前記逆行列Q-1を前記ベクトルsに作用させて、前記ベクトルpに含まれる前記波源の位置の各座標成分を算出する演算回路を備え、
      前記各受信機の距離パラメータを、前記波源の位置から前記複数の受信機のうちの基準受信機までの距離と、前記波源の位置から前記複数の受信機の各々までの距離との差として定義し、
      前記各受信機の位置の各座標成分と前記波源の位置の各座標成分との差の二乗の和が、前記各受信機と前記波源との距離の二乗に等しいという第1の関係式を、
      前記各受信機の位置の各座標成分と前記波源の位置の各座標成分との差の二乗の和が、前記波源と前記基準受信機との距離である基準距離と前記各受信機の距離パラメータとの和の二乗に等しいという第2の関係式に変形し、さらに、
      前記波源の位置の各座標成分を含む二次の項、一次の項、前記基準距離の二乗の項、および、前記基準距離と前記各受信機の距離パラメータとの積の項、の和が、前記基準位置から前記各受信機までの距離の二乗と前記各受信機の距離パラメータの二乗との差、に等しいという第3の関係式に変形し、
      前記ベクトルpが、前記二次の項と前記基準距離の二乗の項との差を線形成分に置換した成分、および、前記基準距離の項の成分をさらに含むよう定義したときにおいて、
     前記演算回路は、受信機ごとに、
      前記各受信機から出力された前記時間波形のデータを時間軸に沿ってシフトさせながら、前記基準受信機から出力された前記時間波形のデータとの相関を演算し、
      前記相関を最大にする時間シフト量を決定し、
      決定した前記時間シフト量と前記波源から出力された信号波の伝搬速度との積を、前記各受信機の距離パラメータとして算出し、
      前記各受信機の距離パラメータの項を、前記基準距離の項の成分と乗算される行または列の成分として含む前記行列Qの逆行列Q-1を求める、測位システム。
    A plurality of receivers each including five or more receivers, each receiving an incident signal wave including a signal wave output from a wave source and outputting time waveform data of the received incident signal wave Machine,
    Receiving the time waveform data from each of the plurality of receivers;
    Matrix Q vector p = vector s
    (However, vector p: a vector including each coordinate component of the position of the wave source from the reference position as each component, vector s: the square of the distance from the reference position to each receiver, and the distance parameter of each receiver Vector with the difference from the square)
    An inverse matrix Q −1 of at least a five-dimensional regular square matrix Q that satisfies the relational expression is calculated, the calculated inverse matrix Q −1 is applied to the vector s, and the wave source included in the vector p is calculated. An arithmetic circuit for calculating each coordinate component of the position is provided,
    The distance parameter of each receiver is defined as a difference between a distance from the position of the wave source to a reference receiver among the plurality of receivers and a distance from the position of the wave source to each of the plurality of receivers. And
    The first relational expression that the sum of the squares of the difference between each coordinate component of each receiver position and each coordinate component of the wave source position is equal to the square of the distance between each receiver and the wave source,
    The sum of the squares of the difference between each coordinate component of the position of each receiver and each coordinate component of the position of the wave source is a reference distance that is a distance between the wave source and the reference receiver, and a distance parameter of each receiver Transformed into the second relational expression equal to the square of the sum of
    The sum of a quadratic term including each coordinate component of the position of the wave source, a first term, a square term of the reference distance, and a product term of the reference distance and the distance parameter of each receiver, Transformed into a third relational expression that is equal to the difference between the square of the distance from the reference position to each receiver and the square of the distance parameter of each receiver;
    When the vector p is defined to further include a component obtained by replacing the difference between the quadratic term and the square term of the reference distance with a linear component, and a component of the reference distance term,
    The arithmetic circuit is provided for each receiver.
    While shifting the time waveform data output from each receiver along the time axis, the correlation with the time waveform data output from the reference receiver is calculated,
    Determining the amount of time shift that maximizes the correlation;
    A product of the determined time shift amount and the propagation speed of the signal wave output from the wave source is calculated as a distance parameter of each receiver,
    A positioning system for obtaining an inverse matrix Q -1 of the matrix Q including a distance parameter term of each receiver as a row or column component to be multiplied with a component of the reference distance term.
  2.  前記行列Qが五次元の正則正方行列であるときにおいて、前記基準位置を(0,0,0)、前記波源の位置を(x,y,z)、前記基準距離をra、前記各受信機の位置を(xi,yi,zi)、前記各受信機の距離パラメータをβiとすると(ただしi=a,b,c,d,e)、
     前記行列Q、前記ベクトルp、および前記ベクトルsは数1のように表現される、請求項1に記載の測位システム。
    Figure JPOXMLDOC01-appb-M000001
    In case the matrix Q is a five-dimensional regular square matrix, the reference position (0, 0, 0), the position of the wave source (x, y, z), the reference distance r a, the respective receiving If the position of the machine is (x i , y i , z i ) and the distance parameter of each receiver is β i (where i = a, b, c, d, e),
    2. The positioning system according to claim 1, wherein the matrix Q, the vector p, and the vector s are expressed as Equation 1 below.
    Figure JPOXMLDOC01-appb-M000001
  3.  前記ベクトルpに含まれる前記ωは、前記基準位置から前記波源までの距離の二乗と前記基準距離の二乗との差を表し、
     前記行列Qおよび前記ベクトルsに含まれる前記βb、βc、βdおよびβeは、受信機ごとに決定した、前記時間シフト量と前記波源から出力された信号波の伝搬速度との積である、請求項2に記載の測位システム。
    The ω included in the vector p represents a difference between the square of the distance from the reference position to the wave source and the square of the reference distance,
    The β b , β c , β d, and β e included in the matrix Q and the vector s are the products of the time shift amount and the propagation speed of the signal wave output from the wave source determined for each receiver. The positioning system according to claim 2, wherein
  4.  前記波源は、前記信号波として電磁波または音波を放射する、請求項1から3のいずれかに記載の測位システム。 The positioning system according to any one of claims 1 to 3, wherein the wave source emits an electromagnetic wave or a sound wave as the signal wave.
  5.  前記演算回路が算出した前記波源の座標を出力するインタフェースをさらに備えた、請求項1から4のいずれかに記載の測位システム。 The positioning system according to any one of claims 1 to 4, further comprising an interface for outputting the coordinates of the wave source calculated by the arithmetic circuit.
  6.  測位システムに用いられる測位装置であって、
     前記測位システムは、5台以上の複数の受信機であって、各々が、波源から出力された信号波を含む入射信号波を受信して、受信した前記入射信号波の時間波形のデータを出力する、複数の受信機を有し、
     前記測位装置は、
     前記複数の受信機の各々から前記時間波形のデータを受け取る入力端子と、
     行列Q・ベクトルp=ベクトルs
    (ただし、ベクトルp:基準位置からの前記波源の位置の各座標成分を各成分として含むベクトル、ベクトルs:前記基準位置から前記各受信機までの距離の二乗と、各受信機の距離パラメータの二乗との差を並べたベクトル)
    の関係式を満たす、少なくとも五次元の正則正方行列Qの逆行列Q-1を算出し、算出した前記逆行列Q-1を前記ベクトルsに作用させて、前記ベクトルpに含まれる前記波源の位置の各座標成分を算出する演算回路と、
     前記演算回路が算出した前記波源の位置の各座標成分のデータを出力する出力端子と
    を備え、
      前記各受信機の距離パラメータを、前記波源の位置から前記複数の受信機のうちの基準受信機までの距離と、前記波源の位置から前記複数の受信機の各々までの距離との差として定義し、
      前記各受信機の位置の各座標成分と前記波源の位置の各座標成分との差の二乗の和が、前記各受信機と前記波源との距離の二乗に等しいという第1の関係式を、
      前記各受信機の位置の各座標成分と前記波源の位置の各座標成分との差の二乗の和が、前記波源と前記基準受信機との距離である基準距離と前記各受信機の距離パラメータとの和の二乗に等しいという第2の関係式に変形し、さらに、
      前記波源の位置の各座標成分を含む二次の項、一次の項、前記基準距離の二乗の項、および、前記基準距離と前記各受信機の距離パラメータとの積の項、の和が、前記基準位置から前記各受信機までの距離の二乗と前記各受信機の距離パラメータの二乗との差、に等しいという第3の関係式に変形し、
      前記ベクトルpが、前記二次の項と前記基準距離の二乗の項との差を線形成分に置換した成分、および、前記基準距離の項の成分をさらに含むよう定義したときにおいて、
     前記演算回路は、受信機ごとに、
      前記各受信機から出力された前記時間波形のデータを時間軸に沿ってシフトさせながら、前記基準受信機から出力された前記時間波形のデータとの相関を演算し、
      前記相関を最大にする時間シフト量を決定し、
      決定した前記時間シフト量と前記波源から出力された信号波の伝搬速度との積を、前記各受信機の距離パラメータとして算出し、
      前記各受信機の距離パラメータの項を、前記基準距離の項の成分と乗算される行または列の成分として含む前記行列Qの逆行列Q-1を求める、測位装置。
    A positioning device used in a positioning system,
    The positioning system is a plurality of five or more receivers, each receiving an incident signal wave including a signal wave output from a wave source, and outputting time waveform data of the received incident signal wave A plurality of receivers,
    The positioning device is
    An input terminal for receiving the time waveform data from each of the plurality of receivers;
    Matrix Q vector p = vector s
    (However, vector p: a vector including each coordinate component of the position of the wave source from the reference position as each component, vector s: the square of the distance from the reference position to each receiver, and the distance parameter of each receiver Vector with the difference from the square)
    An inverse matrix Q −1 of at least a five-dimensional regular square matrix Q that satisfies the relational expression is calculated, the calculated inverse matrix Q −1 is applied to the vector s, and the wave source included in the vector p is calculated. An arithmetic circuit for calculating each coordinate component of the position;
    An output terminal that outputs data of each coordinate component of the position of the wave source calculated by the arithmetic circuit;
    The distance parameter of each receiver is defined as a difference between a distance from the position of the wave source to a reference receiver among the plurality of receivers and a distance from the position of the wave source to each of the plurality of receivers. And
    The first relational expression that the sum of the squares of the difference between each coordinate component of each receiver position and each coordinate component of the wave source position is equal to the square of the distance between each receiver and the wave source,
    The sum of the squares of the difference between each coordinate component of the position of each receiver and each coordinate component of the position of the wave source is a reference distance that is a distance between the wave source and the reference receiver, and a distance parameter of each receiver Transformed into the second relational expression equal to the square of the sum of
    The sum of a quadratic term including each coordinate component of the position of the wave source, a first term, a square term of the reference distance, and a product term of the reference distance and the distance parameter of each receiver, Transformed into a third relational expression that is equal to the difference between the square of the distance from the reference position to each receiver and the square of the distance parameter of each receiver;
    When the vector p is defined to further include a component obtained by replacing the difference between the quadratic term and the square term of the reference distance with a linear component, and a component of the reference distance term,
    The arithmetic circuit is provided for each receiver.
    While shifting the time waveform data output from each receiver along the time axis, the correlation with the time waveform data output from the reference receiver is calculated,
    Determining the amount of time shift that maximizes the correlation;
    A product of the determined time shift amount and the propagation speed of the signal wave output from the wave source is calculated as a distance parameter of each receiver,
    A positioning apparatus that obtains an inverse matrix Q −1 of the matrix Q including a distance parameter term of each receiver as a row or column component to be multiplied by a component of the reference distance term.
  7.  測位システムの測位装置に設けられたコンピュータによって実行されるコンピュータプログラムであって、
     前記測位システムは、5台以上の複数の受信機であって、各々が、波源から出力された信号波を含む入射信号波を受信して、受信した前記入射信号波の時間波形のデータを出力する、複数の受信機を有し、
     前記コンピュータプログラムは、前記コンピュータに対し、
     前記複数の受信機の各々から取得された前記時間波形のデータを示すデータを読み出すステップと、
     行列Q・ベクトルp=ベクトルs
    (ただし、ベクトルp:基準位置からの前記波源の位置の各座標成分を各成分として含むベクトル、ベクトルs:前記基準位置から前記各受信機までの距離の二乗と、各受信機の距離パラメータの二乗との差を並べたベクトル)
    の関係式を満たす、少なくとも五次元の正則正方行列Qの逆行列Q-1を算出するステップと、
     算出した前記逆行列Q-1を前記ベクトルsに作用させて、前記ベクトルpに含まれる前記波源の位置の各座標成分を算出するステップと、
     前記演算回路が算出した前記波源の位置の各座標成分のデータを出力するステップと
     を実行させ、
      前記各受信機の距離パラメータを、前記波源の位置から前記複数の受信機のうちの基準受信機までの距離と、前記波源の位置から前記複数の受信機の各々までの距離との差として定義し、
      前記各受信機の位置の各座標成分と前記波源の位置の各座標成分との差の二乗の和が、前記各受信機と前記波源との距離の二乗に等しいという第1の関係式を、
      前記各受信機の位置の各座標成分と前記波源の位置の各座標成分との差の二乗の和が、前記波源と前記基準受信機との距離である基準距離と前記各受信機の距離パラメータとの和の二乗に等しいという第2の関係式に変形し、さらに、
      前記波源の位置の各座標成分を含む二次の項、一次の項、前記基準距離の二乗の項、および、前記基準距離と前記各受信機の距離パラメータとの積の項、の和が、前記基準位置から前記各受信機までの距離の二乗と前記各受信機の距離パラメータの二乗との差、に等しいという第3の関係式に変形し、
      前記ベクトルpが、前記二次の項と前記基準距離の二乗の項との差を線形成分に置換した成分、および、前記基準距離の項の成分をさらに含むよう定義したときにおいて、
     前記逆行列Q-1を算出するステップは、
    受信機ごとに、
      前記各受信機から出力された前記時間波形のデータを時間軸に沿ってシフトさせながら、前記基準受信機から出力された前記時間波形のデータとの相関を演算し、
      前記相関を最大にする時間シフト量を決定し、
      決定した前記時間シフト量と前記波源から出力された信号波の伝搬速度との積を、前記各受信機の距離パラメータとして算出し、
      前記各受信機の距離パラメータの項を、前記基準距離の項の成分と乗算される行または列の成分として含む前記行列Qの逆行列Q-1を求める、コンピュータプログラム。
    A computer program executed by a computer provided in a positioning device of a positioning system,
    The positioning system is a plurality of five or more receivers, each receiving an incident signal wave including a signal wave output from a wave source, and outputting time waveform data of the received incident signal wave A plurality of receivers,
    The computer program is for the computer.
    Reading data indicating data of the time waveform acquired from each of the plurality of receivers;
    Matrix Q vector p = vector s
    (However, vector p: a vector including each coordinate component of the position of the wave source from the reference position as each component, vector s: the square of the distance from the reference position to each receiver, and the distance parameter of each receiver Vector with the difference from the square)
    Calculating an inverse matrix Q −1 of at least a five-dimensional regular square matrix Q that satisfies the relational expression:
    Applying the calculated inverse matrix Q −1 to the vector s to calculate each coordinate component of the position of the wave source included in the vector p;
    Outputting the data of each coordinate component of the position of the wave source calculated by the arithmetic circuit; and
    The distance parameter of each receiver is defined as a difference between a distance from the position of the wave source to a reference receiver among the plurality of receivers and a distance from the position of the wave source to each of the plurality of receivers. And
    The first relational expression that the sum of the squares of the difference between each coordinate component of each receiver position and each coordinate component of the wave source position is equal to the square of the distance between each receiver and the wave source,
    The sum of the squares of the difference between each coordinate component of the position of each receiver and each coordinate component of the position of the wave source is a reference distance that is a distance between the wave source and the reference receiver, and a distance parameter of each receiver Transformed into the second relational expression equal to the square of the sum of
    The sum of a quadratic term including each coordinate component of the position of the wave source, a first term, a square term of the reference distance, and a product term of the reference distance and the distance parameter of each receiver, Transformed into a third relational expression that is equal to the difference between the square of the distance from the reference position to each receiver and the square of the distance parameter of each receiver;
    When the vector p is defined to further include a component obtained by replacing the difference between the quadratic term and the square term of the reference distance with a linear component, and a component of the reference distance term,
    The step of calculating the inverse matrix Q −1 includes:
    For each receiver,
    While shifting the time waveform data output from each receiver along the time axis, the correlation with the time waveform data output from the reference receiver is calculated,
    Determining the amount of time shift that maximizes the correlation;
    A product of the determined time shift amount and the propagation speed of the signal wave output from the wave source is calculated as a distance parameter of each receiver,
    A computer program for obtaining an inverse matrix Q −1 of the matrix Q including a distance parameter term of each receiver as a row or column component to be multiplied with a component of the reference distance term.
PCT/JP2018/009702 2017-03-28 2018-03-13 Positioning system, positioning device, and computer program WO2018180461A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509207A JPWO2018180461A1 (en) 2017-03-28 2018-03-13 Positioning system, positioning device and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-062259 2017-03-28
JP2017062259 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180461A1 true WO2018180461A1 (en) 2018-10-04

Family

ID=63675437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009702 WO2018180461A1 (en) 2017-03-28 2018-03-13 Positioning system, positioning device, and computer program

Country Status (2)

Country Link
JP (1) JPWO2018180461A1 (en)
WO (1) WO2018180461A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826284B1 (en) * 2000-02-04 2004-11-30 Agere Systems Inc. Method and apparatus for passive acoustic source localization for video camera steering applications
JP2007248217A (en) * 2006-02-16 2007-09-27 Mitsubishi Electric Corp Positioning apparatus
US9319787B1 (en) * 2013-12-19 2016-04-19 Amazon Technologies, Inc. Estimation of time delay of arrival for microphone arrays
WO2018062434A1 (en) * 2016-09-30 2018-04-05 日本電産株式会社 Positioning system, positioning device, and computer program
WO2018062433A1 (en) * 2016-09-30 2018-04-05 日本電産株式会社 Positioning system, positioning device, and computer program
WO2018062435A1 (en) * 2016-09-30 2018-04-05 日本電産株式会社 Positioning system, positioning device, and computer program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826284B1 (en) * 2000-02-04 2004-11-30 Agere Systems Inc. Method and apparatus for passive acoustic source localization for video camera steering applications
JP2007248217A (en) * 2006-02-16 2007-09-27 Mitsubishi Electric Corp Positioning apparatus
US9319787B1 (en) * 2013-12-19 2016-04-19 Amazon Technologies, Inc. Estimation of time delay of arrival for microphone arrays
WO2018062434A1 (en) * 2016-09-30 2018-04-05 日本電産株式会社 Positioning system, positioning device, and computer program
WO2018062433A1 (en) * 2016-09-30 2018-04-05 日本電産株式会社 Positioning system, positioning device, and computer program
WO2018062435A1 (en) * 2016-09-30 2018-04-05 日本電産株式会社 Positioning system, positioning device, and computer program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARVIAINEN, M.: "Robust self-localization solution for meeting room environments", THE 13TH IEEE INTERNATIONAL SYMPOSIUM ON CONSUMER ELECTRONICS (ISCE2009, 25 May 2009 (2009-05-25) - 28 May 2009 (2009-05-28), pages 237 - 240, XP055556686, [retrieved on 20180502] *

Also Published As

Publication number Publication date
JPWO2018180461A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
KR102469310B1 (en) Wireless power transmitting device, electronic device for wirelessly receiving power and method of operating thereof
US9660740B2 (en) Signal strength distribution establishing method and wireless positioning system
US10784706B2 (en) Wireless power transmitter and method for controlling the same
CN104007414A (en) Two-dimensional direction of arrival estimating method based on planar array and estimator
US9465096B2 (en) Determining method, computer product, determining apparatus, and determining system
JP2011089947A (en) Position detection system and method
WO2018062435A1 (en) Positioning system, positioning device, and computer program
CN107318122B (en) Device for obtaining frequency difference amplitude spectrogram, fault positioning system and antenna system
US20140225780A1 (en) Using time-difference-of-arrival to detect a position of a target transmitter
US9578433B2 (en) Method for self-calibration of a set of sensors, in particular microphones, and corresponding system
WO2018180461A1 (en) Positioning system, positioning device, and computer program
JP2019184407A (en) Positioning system and positioning device
WO2018062433A1 (en) Positioning system, positioning device, and computer program
JP2020051921A (en) Positioning system and positioning device
WO2018062434A1 (en) Positioning system, positioning device, and computer program
CN114390537B (en) Base station communication coverage method for ultra-high speed moving object and related equipment
JP6375956B2 (en) Equivalent electric field strength estimation method and radiated disturbance measurement apparatus
US9529073B2 (en) Determining method, computer product, determining apparatus, and determining system
CN105182289A (en) Positioning method and device
CN110346757B (en) Anti-multipath time difference positioning method, device and system based on mobile measuring station
JP6819797B2 (en) Position estimation device, position estimation method and program, and position estimation system
JP2009175096A (en) Signal source position estimation device
JP6541800B2 (en) Wireless position detection using magnetic field of single transmitter
JP2019184408A (en) Positioning system and positioning device
JP2020051922A (en) Positioning system and positioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777387

Country of ref document: EP

Kind code of ref document: A1