WO2018062435A1 - Positioning system, positioning device, and computer program - Google Patents

Positioning system, positioning device, and computer program Download PDF

Info

Publication number
WO2018062435A1
WO2018062435A1 PCT/JP2017/035345 JP2017035345W WO2018062435A1 WO 2018062435 A1 WO2018062435 A1 WO 2018062435A1 JP 2017035345 W JP2017035345 W JP 2017035345W WO 2018062435 A1 WO2018062435 A1 WO 2018062435A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
wave source
wave
receivers
positioning system
Prior art date
Application number
PCT/JP2017/035345
Other languages
French (fr)
Japanese (ja)
Inventor
修一 吉川
正俊 鎌ヶ迫
悠一 福井
正盛 徳田
Original Assignee
日本電産株式会社
Kpnetworks株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社, Kpnetworks株式会社 filed Critical 日本電産株式会社
Priority to JP2018542889A priority Critical patent/JPWO2018062435A1/en
Publication of WO2018062435A1 publication Critical patent/WO2018062435A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/30Determining absolute distances from a plurality of spaced points of known location

Definitions

  • the present disclosure relates to a positioning system, a positioning device, and a computer program.
  • Patent Documents 1 and 2 Conventionally, a positioning system for positioning an object has been developed (for example, Patent Documents 1 and 2).
  • BLE Bluetooth Low Energy
  • the BLE positioning systems employ measurement processing using a three-point positioning algorithm.
  • the measurement process by the three-point positioning algorithm uses coordinate information indicating the installation positions of the three receivers and information on the distances between the signal generator and each receiver.
  • the positioning system performs a predetermined calculation and outputs the absolute position coordinates of the signal generator as a solution of the ternary simultaneous nonlinear equation.
  • the three-point positioning algorithm needs to calculate the solution of the ternary nonlinear equation. However, it is difficult to solve the ternary nonlinear equations. For this reason, the Newton method is generally used that uses an inverse matrix operation of a partial differential matrix and its repeated operation.
  • One non-limiting exemplary embodiment of the present application provides a positioning system that can suppress an increase in the number of receivers.
  • the positioning system includes a plurality of receivers (N is an integer of 4 or more) each receiving a signal wave output from a wave source, each of which includes: A plurality of receivers that receive the signal wave output from the wave source and output data indicating the reception intensity of the signal wave, and receive and receive data indicating the reception intensity of the signal wave from each of the plurality of receivers A calculation circuit for estimating the position of the wave source using N data, wherein the calculation circuit includes K sets of data each including three or more data selected from the received N data.
  • the position of the wave source is provisionally estimated for each set using three or more data of each set, and the position of the wave source based on the two or more provisionally estimated positions is Estimate the position of the wave source, and At least one Chino include redundantly in a plurality of groups.
  • the arithmetic circuit temporarily estimates the position of the wave source for each set using three or more data included in the K sets of data groups (K: an integer equal to or greater than 2). Then, the position of the tsunami source is estimated based on the positions of the two or more tentatively estimated wave sources.
  • Each of the K sets of data groups includes three or more data selected from the N data received from the N receivers. At least one of the N pieces of data is included in a plurality of sets. Since at least one piece of data is included in a plurality of sets, the provisional estimation result of the position of the wave source can be increased while suppressing an increase in the number of receivers as compared with the conventional method that does not allow duplication. For example, when the average value of the temporary estimation results is estimated as the position of the wave source, the parameter of the temporary estimation results can be increased, and the accuracy can be improved.
  • FIG. 1 is a diagram schematically illustrating a configuration of a positioning system 1 according to an exemplary embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a first example of an environment in which the positioning system 1 is introduced.
  • FIG. 3 is a diagram illustrating a second example of the environment in which the positioning system 1 is introduced.
  • FIG. 4 is a diagram showing four shelves including shelves 22 and 23 in FIGS. 2 and 3.
  • FIG. 5 is a view showing the signal generator 10 attached to the product 24 a placed on the shelf 25.
  • FIG. 6 is a diagram showing the signal generator 10 mounted on a self-propelled vehicle 24 b that travels between the shelves 22 and 23.
  • FIG. 7 is a diagram showing the signal generator 10 mounted on a smartphone 24c of a shopper walking between shelves 22 and 23.
  • FIG. 8 is a diagram illustrating a hardware configuration of the signal generator 10.
  • FIG. 9 is a diagram illustrating a hardware configuration of the positioning device 30.
  • FIG. 10 is a diagram illustrating an example of three receivers that output three reception intensity data used for three-point positioning.
  • FIG. 11 is a diagram illustrating an example of three receivers that output three reception intensity data used for three-point positioning.
  • FIG. 12 is a diagram illustrating an example of three receivers that output three reception intensity data used for three-point positioning.
  • FIG. 13 shows three receivers 20-A, 20-B and 20-C located at different distances from the wave source P.
  • FIG. 14 is a diagram mainly illustrating a configuration of a processing block of the CPU 31.
  • FIG. 15 is a diagram illustrating a configuration of the three-point positioning processing block 42 that performs temporary estimation.
  • FIG. 16 is a flowchart showing a processing procedure of the positioning device 30.
  • FIG. 17 is a diagram illustrating a positional relationship between the wave source position P and each receiver.
  • FIG. 18 is a diagram showing a configuration of the five-point positioning block 50.
  • FIG. 19 is a flowchart showing a processing procedure of the CPU 31 functioning as the five-point positioning block 50.
  • the inventor of the present application has repeatedly studied a positioning algorithm that can reduce a positioning error while reducing a load of calculation processing. As a result, a new positioning algorithm was constructed, and a positioning system that implemented the positioning algorithm was completed.
  • a plurality of receivers of N units receive signal waves output from the wave source.
  • the wave source is a signal generator that outputs signal waves such as electromagnetic waves and sound waves.
  • Each receiver receives the signal wave output from the wave source and outputs data (reception intensity data) indicating the reception intensity of the signal wave.
  • the arithmetic circuit receives the reception intensity data of the signal wave from each of the plurality of receivers, and estimates the position of the wave source using the received N pieces of data. More specifically, the arithmetic circuit, for each of K sets of data groups (K: an integer of 2 or more), each including three or more data selected from the received N data, Using the above data, the position of the wave source is temporarily estimated for each set. Further, the arithmetic circuit estimates the position of the wave source based on the temporarily estimated positions of the two or more wave sources. In the present specification, estimating the position of the wave source for each set is referred to as “temporary estimation”, and determining the position of one wave source from a plurality of temporarily estimated positions is referred to as “ This is called “estimation”.
  • the arithmetic circuit may estimate an average value of the coordinates of the two or more wave source positions temporarily estimated as the wave source position, or may estimate the median value or the mode value of the coordinate values as the wave source position. Good.
  • At least one of the N pieces of data is included in a plurality of sets.
  • the reception intensity data output from the receiver 20-A is included in the first set and the second set.
  • the conventional Newton method when N pieces of received intensity data are divided into K sets of data groups, certain received intensity data belongs to one of the sets, but belongs to a plurality of sets. It never happened. According to the method of this embodiment, the accuracy of the position of the wave source can be ensured even if the number of receivers is reduced. Alternatively, if the number of receivers is the same as the conventional one, the accuracy of the position of the wave source can be improved.
  • provisional estimation is performed using three pieces of received intensity data per set, and the position of one wave source is estimated from the twenty provisional estimated positions.
  • 60 receivers are required.
  • six receivers may be provided. According to the present embodiment, the cost of installing the receiver and the installation range can be greatly reduced.
  • FIG. 1 schematically shows a configuration of a positioning system 1 according to an exemplary embodiment of the present invention.
  • the positioning system 1 includes a signal generator 10, a plurality of receivers 20-A, 20-B,..., 20-N (N: 4 or an integer greater than or equal to 5), and a positioning device 30. .
  • the positioning device 30 of the positioning system 1 estimates the position of the signal generator 10 using the signal wave output from the signal generator 10.
  • the signal generator 10 is an electronic circuit that generates a signal using electric power supplied from an internal battery or externally and outputs it as a signal wave.
  • the signal generator 10 emits electromagnetic waves or sound waves as signal waves.
  • the signal generator 10 may be referred to as a “wave source”.
  • the signal generator 10 is described as outputting an electromagnetic wave in the 2.4 GHz band conforming to the BLE standard.
  • the signal generator 10 can be built in an electronic device owned by a person when the positioning target is a person. Alternatively, when the positioning target is an object, the signal generator 10 may be attached to the object, or may be incorporated in the object.
  • the positioning system 1 estimates the position of the signal generator 10 in the space where the positioning system 1 is installed.
  • the “space” mainly assumes a three-dimensional space in the present embodiment. In the figure, an X axis, a Y axis, and a Z axis are shown. However, the “space” may be a two-dimensional space.
  • the positioning system 1 may estimate the position of the signal generator 10 on a two-dimensional space that is the floor. As will be described later, when the positioning system 1 estimates the position of the two-dimensional space, it is sufficient that at least four receivers exist. When the positioning system 1 estimates the position in the three-dimensional space, it is sufficient that there are at least five receivers.
  • Each of the plurality of receivers 20-A, 20-B,..., 20-N includes an antenna device (not shown), and receives a signal wave output from a wave source using the antenna device. To do.
  • the antenna device can receive electromagnetic waves that conform to the BLE standard described above.
  • Each receiver outputs signal wave reception intensity data.
  • description of a specific structure is abbreviate
  • each receiver can be a device having a microphone.
  • the positioning device 30 has an arithmetic circuit 31.
  • the arithmetic circuit 31 receives the reception intensity data of the signal wave from each of the plurality of receivers 20-A, 20-B,..., 20-N, performs a predetermined calculation, and each coordinate component indicating the position of the wave source Is calculated. Details of the calculation will be described later.
  • FIG. 2 shows a first example of an environment where the positioning system 1 is introduced.
  • the positioning system 1 is constructed in a factory, a bookstore, or the like having shelves 22 and 23 on which objects are placed.
  • the position of each of the plurality of receivers is indicated by “ ⁇ ”.
  • the plurality of receivers are generally distributed. Note that FIG. 2 is an XY plan view, and the relationship in the z-axis direction is not shown.
  • the plurality of receivers are installed at predetermined positions.
  • a certain reference position O is set as the origin and three axes (X axis, Y axis and Z axis) as shown in the figure are defined, the position of each receiver is determined by each value of the X axis, Y axis and Z axis.
  • coordinates A receiver 20-A (x a, y a, z a) is expressed as such, x a, and each y a and z a "x-coordinate", "y coordinate,”"zcoordinates" Sometimes called.
  • the x coordinate is x J
  • the y coordinate is y J
  • the z coordinate is z J.
  • the positioning device 30 performs calculation using a plurality of receivers having at least one different x coordinate.
  • the y coordinate and the z coordinate Therefore, for example, for the z coordinate, a plurality of receivers having different heights are used.
  • FIG. 3 shows a second example of the environment where the positioning system 1 is introduced.
  • a plurality of receivers are provided together in some compartments R in the environment.
  • FIG. 3 is also an XY plan view, and the relationship in the z-axis direction is not shown.
  • a plurality of receiver units whose positions are adjusted and integrated so as to satisfy the above-described position conditions are manufactured in advance and fixed to a ceiling portion of the introduction environment of the positioning system 1. Is easily realized.
  • the positioning process according to the present embodiment can be used in any of the modes shown in FIGS.
  • the signal generator 10 may be provided in an object installed at a fixed position, or may be provided in an object whose position can change, for example, a self-propelled vehicle or a portable electronic device.
  • Portable electronic devices are, for example, mobile phones, smartphones, and electronic tag devices.
  • FIG. 4 shows four shelves including shelves 22 and 23 in FIGS. Each shelf has a plurality of shelves 25 for placing objects. In the present embodiment, it is assumed that a plurality of shelves 25 may exist in the Y-axis direction and the Z-axis direction.
  • FIG. 5 shows the signal generator 10 attached to the product 24 a placed on the shelf 25.
  • the signal wave output from the signal generator 10 is received by four or five or more receivers.
  • FIG. 5 shows a state where the receivers 20-S and 20-T receive the signal waves output from the signal generator 10, respectively.
  • the positioning system 1 can estimate the position where the product 24a is placed.
  • FIG. 6 shows the signal generator 10 mounted on a self-propelled vehicle 24b traveling between the shelves 22 and 23. This example also shows a state in which the receivers 20-S and 20-T are receiving signal waves output from the signal generator 10, respectively.
  • the positioning system 1 can estimate the position of the self-propelled vehicle 24b in real time.
  • FIG. 7 shows the signal generator 10 mounted on a smartphone 24c of a shopper walking between shelves 22 and 23. This example also shows a state in which the receivers 20-S and 20-T are receiving signal waves output from the signal generator 10, respectively.
  • the positioning system 1 can estimate the position of the shopper in real time.
  • the positioning system 1 can estimate the position of each signal generator 10 from identification information that uniquely identifies each signal generator 10 included in the received signal wave by performing processing in parallel.
  • FIG. 8 shows the hardware of the signal generator 10.
  • the signal generator 10 includes an IC 11 for generating a high frequency signal, a storage device 12, and an antenna 14.
  • the storage device 12 is a flash ROM, for example, and stores unique identification information 13 for each signal generator 10.
  • the IC 11 periodically transmits identification information using the antenna 14.
  • FIG. 9 shows the hardware configuration of the positioning device 30.
  • the positioning device 30 includes a CPU 31, a memory 32, and a communication circuit 33, which are connected by an internal bus.
  • the CPU 31 is an arithmetic circuit that estimates the position of each signal generator 10 and generates position information indicating the estimated position by processing described later.
  • the memory 32 is a DRAM, for example, and is a work memory used in connection with the processing of the CPU 31.
  • the communication circuit 33 is a communication circuit having one or more communication connectors, for example.
  • the communication connector includes an input interface 34a and an output interface 34b that outputs data of wave source coordinates.
  • the input interface 34a and the output interface 34b may be integrated and mounted as one communication connector.
  • the input interface 34a is a so-called signal input terminal, and receives a high-frequency electric signal from each of the receivers 20-A to 20-N.
  • the high-frequency electrical signal is a signal generated by converting electromagnetic waves (signal waves) received by each receiver.
  • the output interface 34b is a communication terminal that performs, for example, Ethernet (registered trademark) standard wired communication, and outputs data of the coordinates of the wave source. Instead of the data on the coordinates of the wave source, the output interface 34b may output a video signal obtained by imaging the coordinates of the wave source. At this time, the output interface 34b may be an image signal output terminal such as a DVI terminal.
  • FIG. 9 shows an output interface 34 b connected to the display device 35.
  • FIG. 10, FIG. 11 and FIG. 12 each show three receivers that output three received intensity data used for three-point positioning.
  • the CPU 31 temporarily estimates the position of the wave source P using the three received intensity data output from the three receivers shown as a set.
  • FIG. 10 shows the receivers 20-A, 20-B, and 20-C.
  • FIG. 11 shows the receivers 20-A, 20-D and 20-G.
  • the position A of the receiver 20-A is represented as (x a , y a , z a ) or the like.
  • the distance from the wave source position P to the receiver 20-A represents the like r a.
  • the position P of the wave source (signal generator 10) to be measured is represented as (x, y, z).
  • FIGS. 10 and 11 show different sets. However, the receiver 20-A is redundantly included in both sets. As described at the beginning, in this embodiment, a certain receiver (more precisely, reception intensity data output by the receiver) is allowed to be included in a plurality of sets. In the present embodiment, it is allowed that a receiver set that does not overlap with the receiver combinations shown in FIGS. 10 and 11 exists.
  • FIG. 11 shows receivers 20-E, 20-F, and 20-I that are not included in any of the sets shown in FIGS.
  • FIG. 13 is a generalized view of FIG.
  • FIG. 13 shows three receivers 20-A, 20-B and 20-C located at different distances from the wave source P. From these positional relationships, three functions f a , f b, and f c satisfying Equation 1 below are established.
  • ternary simultaneous nonlinear equations can be solved using the Newton method of the following formula 2.
  • X k is a coordinate matrix indicating the position of the wave source (signal generator 10) after the calculation is repeated k times, and is specifically expressed by the following equation (3).
  • Equation 2 J (x k ) in Equation 2 is a Jacobian matrix, and is specifically shown in Equation 4 below.
  • Equation 5 X k + 1
  • Equation 3 column vector F (x k ) in Equation 3
  • each element f a , f b and f c constituting the column vector F has a square of the distance from the wave source position P to each receiver 20-A, 20-B and 20-C.
  • Terms (r a 2 , r b 2 , r c 2 ) are included. Since the position of the wave source P is not obtained, these values cannot be obtained directly.
  • the received signal level of the signal from the signal generator 10 received by each receiver is used.
  • the signal generator 10 and the receivers 20-A, 20-B and 20-C are placed at a distance of 1 m in advance, and the reception power value Po at that time is acquired in advance.
  • the reception power value Po at that time is acquired in advance.
  • distance information between the signal generator and the receiver at the time of measurement is obtained using the received signal level Pi at that time.
  • the distance information r i 2 at the time of measurement can be obtained by Po / Pi.
  • reference signal power information Po which is reception intensity data at a distance of 1 m, is held in advance.
  • the signal generator 10 And one receiver may be placed at a distance of 1 m, and the received power value P_o at that time may be acquired in advance.
  • Equation 5 the left side of Equation 5, that is, the position (x, y, z) of the wave source can be estimated.
  • the inventor of the present application has confirmed by simulation that when the calculation is repeated about six times from an appropriately set initial value (x 0 , y 0 , z 0 ), the calculation converges to an expected position.
  • the CPU 31 of the positioning device 30 performs a calculation according to the above-described principle, and performs a temporary estimation of the position of the wave source P using each set of received intensity data. Then, one position is estimated as the position of the wave source P from a plurality of temporary estimation results.
  • FIG. 14 mainly shows the configuration of the processing block of the CPU 31.
  • the CPU 31 functions as a combination pattern generator 41, three-point positioning processing blocks 42-1 to 42-K, and an average value calculator 43.
  • a plurality of components are shown to exist, but these merely mean a unit of processing. The number of components shown need not be included.
  • the CPU 31 operates in accordance with a computer program that performs processing according to the flowchart shown in FIG.
  • the CPU 31 operates as a combination pattern generator 41 depending on time according to instructions of the computer program, operates as each of the three-point positioning processing blocks 42-1 to 42-K, and operates as an average value calculator 43.
  • An arrow from the processing block to the processing block means that the data is used for the next calculation.
  • At least one of the combination pattern generator 41, the three-point positioning processing blocks 42-1 to 42-K, and the average value calculator 43 may be realized by hardware.
  • the combination pattern generator 41, the three-point positioning processing blocks 42-1 to 42-K, and the average value calculator 43 are mounted on one integrated circuit.
  • the processing cores corresponding to each of the three-point positioning processing blocks 42-1 to 42-K are implemented as hardware, and parallel processing is performed, so that calculation can be performed at a very high speed.
  • the received intensity data output from each of the N receivers is received via the communication circuit 33 (FIG. 9) and stored in the memory 32.
  • the combination pattern generator 41 of the CPU 31 extracts K sets of three sets of data from the received N pieces of data.
  • the combination pattern generator 41 reads out a data group for each combination and inputs it to each of the three-point positioning blocks 42-1 to 42-K.
  • the three-point positioning blocks 42-1 to 42-K are collectively referred to as “three-point positioning block 42”.
  • Each of the three-point positioning blocks 42 provisionally estimates the position of the wave source P for each set using the received three data.
  • Each position of the temporarily estimated wave source P is sent to the average value calculator 43.
  • the output (provisional estimated value) from the three-point positioning block includes each of the x coordinate value, the y coordinate value, and the z coordinate value.
  • the average value calculator 43 calculates an average value for each x coordinate, each y coordinate, and each z coordinate using each temporary estimated value output from the three-point positioning block. Each obtained average value is output as the estimated position of the wave source P.
  • the average value calculator 43 may estimate the median value or mode value of each coordinate value as the position of the wave source instead of the average value of each coordinate value.
  • the above-described processing of the average value calculator 43 can be said to be processing for obtaining an estimated position of the wave source P by spatial average calculation using a plurality of receivers existing at different positions.
  • the average value calculator 43 may output the estimated position of the wave source P by time average calculation. Specifically, the average value calculator 43 calculates the average value for each x-coordinate, y-coordinate, and z-coordinate, and then performs the same processing using the next received intensity data obtained from each receiver. The average value for each x coordinate, y coordinate, and z coordinate at the next time is calculated.
  • the plurality of estimated positions of the wave source P obtained based on the received intensity data at different times are further averaged, and the obtained result is output as the estimated position of the wave source P. This makes it possible to estimate the position of the wave source P based on the time average.
  • FIG. 15 shows a configuration of a three-point positioning processing block 42 that performs temporary estimation.
  • the three-point positioning processing block 42 includes a power / distance converter 45, a function calculator 46, an inverse matrix calculator 47, a vector multiplier 48, and a convergence determiner 49.
  • the CPU 31 may be operated as each of these components, or a part or all of the CPU 31 may be provided and operated as hardware using an FPGA or the like.
  • the power / distance converter 45 receives, from the memory 32, a set of three pieces of received intensity data and reference signal power information Po that is received intensity data at a distance of 1 m. As an example, in FIG. 15, the power / distance converter 45 receives the received intensity data Pa, Pb and Pc of the receivers 20-A, 20-B and 20-C.
  • the power / distance converter 45 calculates Po / Pi for each of the three reception intensity data Pi.
  • the obtained value corresponds to the square of the distance between each receiver and the wave source P (r i 2 ).
  • the power / distance converter 45 represents the square of the distance (r a 2 , r b 2 , r c 2 ) between the wave source P and each of the receivers 20 -A, 20 -B, and 20 -C.
  • the value is output.
  • the function calculator 46 obtains each function shown in Equation 1.
  • the inverse matrix calculator 47 obtains the inverse matrix shown in Equation 5. Inverse matrix computation methods are known and can be calculated using, for example, a sweep out method. A library of computer programs that outputs the inverse matrix Q -1 when the matrix Q is input is also known and easily available. The CPU 31 may be operated as the inverse matrix calculator 47 using such a library program.
  • the vector multiplier 48 performs the operation of the second term on the right side of Equation 5 and outputs the result to the convergence determiner 49.
  • the convergence determiner 49 determines whether the result output from the vector multiplier 48 satisfies a predetermined convergence condition. For example, the convergence determination unit 49 may determine that the convergence has occurred when the amount of change in each of the x coordinate, the y coordinate, and the z coordinate is less than a predetermined value. This process corresponds to the process of the following formula 6 obtained by modifying the formula 5 described above.
  • the convergence determination unit 49 performs the calculation of the number of repetitions 5 until convergence using the obtained values (x k , y k , z k ).
  • the convergence determination unit 49 When it is determined that the convergence condition is satisfied, the convergence determination unit 49 outputs the temporary estimated position (x, y, z) of the wave source P. Note that the convergence determination unit 49 may determine that the convergence has occurred when a predetermined number of operations have been performed.
  • FIG. 16 is a flowchart showing a processing procedure of the positioning device 30. Of the processing in FIG. 16, step S2 and subsequent steps correspond to the processing of the CPU 31.
  • the positioning device 30 receives a value of reception intensity (reception intensity data) from each of the receivers 20-A to 20-N (step S1).
  • the combination pattern generator 41 extracts K sets of three data sets selected from the N received intensity data (step S2).
  • Each of the three-point positioning processing blocks 42-1 to 42-K performs provisional estimation of the position of the wave source P using the extracted data group of each set (step S3). As a result, K temporary estimation results are obtained.
  • the average value calculator 43 averages the K preliminary estimation results to estimate the position of the wave source P (step S4), and outputs the obtained result as the position of the wave source P.
  • the position of the signal generator 10 that is a wave source can be estimated.
  • reception power value Po it may be difficult in practice to obtain the reception power value Po in advance.
  • a positioning system is used to estimate the position of a shopper who moves within a facility.
  • an electronic device for example, a smartphone
  • the received power value at the 1 m position described above can be obtained in advance.
  • the transmission output of the signal generator at the time of preliminary measurement may be different from the transmission output of the signal generator at the time of positioning due to the remaining amount of the battery.
  • the measurement status differs between prior measurement and positioning.
  • the inventor of the present application has constructed an algorithm that enables positioning without obtaining a reception power value at a position of 1 m in advance.
  • the positioning algorithm described below can be used in place of the above-described three-point positioning algorithm using the Newton method. That is, the configuration of FIG. 18 to be described next can be used in place of the configuration of each three-point positioning block 42 of FIGS. 13 and 14.
  • the signal wave output from the wave source is received by each of four or five or more receivers.
  • the wave source is a signal generator that outputs signal waves such as electromagnetic waves and sound waves.
  • Each receiver receives the signal wave output from the wave source and outputs data indicating the received intensity of the signal wave.
  • the arithmetic circuit receives data indicating the reception intensity of the signal wave from each of the plurality of receivers, performs a predetermined calculation, and calculates each coordinate component of the position of the wave source. This calculation includes a calculation for obtaining a predetermined inverse matrix, but is different from the inverse matrix calculation of the partial differential matrix used in the Newton method.
  • Vector p a vector including each coordinate component of the position of the wave source from a predetermined reference position as each component vector s: a vector in which the squares of the distances from the predetermined reference position to each receiver are arranged
  • the predetermined reference position is an arbitrary position in the space where the positioning system is installed, and can be defined as the position of the origin.
  • the “position” may be a position in a two-dimensional space or a position in a three-dimensional space.
  • the arithmetic circuit Matrix Q vector p vector s
  • the inverse matrix Q ⁇ 1 of the four-dimensional or five-dimensional regular square matrix Q satisfying the relational expression is calculated, the calculated inverse matrix Q ⁇ 1 is applied to the vector s, and each position of the wave source included in the vector p is calculated.
  • a coordinate component is calculated.
  • the calculated coordinate component is output to the average value calculator 43 as one temporary estimated value shown in FIG.
  • the condition that the matrix Q is a regular square matrix can be easily satisfied by adjusting the position of each receiver, as will be described in detail later.
  • the position A of the receiver 20-A is represented as (x a , y a , z a ) or the like. Further, the distance from the wave source position P to the receiver 20-A represents the like r a.
  • the position P of the wave source (signal generator 10) to be measured is represented as (x, y, z).
  • FIG. 17 shows the positional relationship between the wave source position P and each receiver.
  • FIG. 17 shows the wave source position P and the positions A to D of each receiver.
  • the origin O is shown as the reference position.
  • the origin O can be arbitrarily determined.
  • the position of each receiver is determined based on the position (0, 0, 0) of the origin O.
  • ⁇ b (r b / r a ) 2
  • beta c (r c / r a ) 2
  • d (r d / r a ) 2
  • e (r e / r a ) 2
  • Equation 8 and 11 are transformed using Equations 12 and 13
  • Equation 14 is obtained.
  • Equation 15 the unknown number included in Equation 15 is replaced as follows.
  • variable replacement is an operation of changing a second-order term (nonlinear term or nonlinear component) to a first-order term (linear term or linear component). That is, it corresponds to linearizing a nonlinear equation.
  • Formula 15 can be expressed as follows using a matrix.
  • Equation 19 is specifically expressed as follows.
  • Equations 19 and 20 it is necessary that an inverse matrix of the matrix Q exists, in other words, the matrix Q is a regular square matrix.
  • the condition is that the determinant is not zero.
  • (i) there is no integer multiple relationship between one row of the matrix Q and another row, and (ii) between one column of the matrix Q and another column It is necessary that there is no integer multiple relationship.
  • Expression 20 when attention is paid to the row of the matrix Q, the above relationship (i) is clearly not satisfied. If the above relationship is satisfied, the positions of the five receivers need to be at least the same, but such an arrangement is not possible.
  • the parameters ⁇ b to ⁇ e can be obtained from the reception intensity of the receivers 20-A to 20-E.
  • Pr is the received power
  • is a constant
  • r is the distance between the transmitter and the receiver
  • Pt is the transmitted power of the signal generator
  • Gt is the gain of the transmitting antenna 14 (FIG. 8) of the signal generator
  • Gr Is the gain of the receiving antenna.
  • Pt and Gt have the same value because they are a common wave source.
  • the gain Gr of the receiving antenna can be assumed to be the same value by making it common to all the receivers 20-A to 20-E.
  • each of the receivers 20-A to 20-E and the wave source can be expressed as follows.
  • the reception strengths of the receivers 20-A to 20-E are represented as Pa to Pe.
  • Pa ( ⁇ / 4 ⁇ r a ) 2 ⁇ Pt ⁇ Gt ⁇ Gr
  • Pb ( ⁇ / 4 ⁇ r b ) 2 ⁇ Pt ⁇ Gt ⁇ Gr
  • Pc ( ⁇ / 4 ⁇ r c ) 2 ⁇ Pt ⁇ Gt ⁇ Gr
  • ⁇ b to ⁇ e can be specifically obtained using the reception strengths of the receivers 20-A to 20-E.
  • Equation 17 is the square of the distance from the origin O, which is the reference position, to each receiver.
  • the position of each receiver is predetermined. Therefore, the square of the distance from the origin O can also be acquired in advance.
  • the vector on the right side of Expression 17 is included in Expression 20.
  • the inverse matrix Q ⁇ 1 of the matrix Q shown on the right side of Equation 20 can be obtained by calculation. Further, each component of the vector s in which the squares of the distances from the origin position to the respective receivers are arranged can be obtained in advance. Thereby, the components x, y, and z on the left side of Equation 20, that is, the position (x, y, z) of the wave source can be estimated. The obtained position (x, y, z) can be used as one temporary estimated value in the example shown in FIG.
  • the CPU 31 of the positioning device 30 executes a calculation according to the above principle. Hereinafter, the operation of the CPU 31 will be described with reference to FIGS. 18 and 19.
  • FIG. 18 shows the configuration of the 5-point positioning block 50.
  • FIG. 19 is a flowchart showing a processing procedure of the CPU 31 functioning as the five-point positioning block 50.
  • the 5-point positioning block 50 functions as a parameter calculator 51, an inverse matrix calculator 52, and a vector multiplier 53.
  • the CPU 31 functioning as the five-point positioning block 50 operates according to a computer program that performs processing according to the flowchart shown in FIG.
  • the CPU 31 operates as a parameter calculator 51, operates as an inverse matrix calculator 52, and operates as a vector multiplier 53 depending on time according to instructions of the computer program.
  • An arrow from the processing block to the processing block means that the data is used for the next calculation.
  • At least one of the parameter calculator 51, the inverse matrix calculator 52, and the vector multiplier 53 may be realized by hardware.
  • the parameter calculator 51, the inverse matrix calculator 52, and the vector multiplier 53 can be mounted on one integrated circuit.
  • the parameter calculator 51 the inverse matrix calculator 52, and the vector multiplier 53 will be described as independent components.
  • the parameter calculator 51 receives the value of the reception intensity from each of the receivers 20-A to 20-E, and calculates the parameters ⁇ b to ⁇ e by performing the calculation shown in Equation 23 (step S11). Each calculated parameter is sent to the inverse matrix calculator 52.
  • the inverse matrix calculator 52 receives the parameters ⁇ b to ⁇ e from the parameter calculator 51.
  • the inverse matrix calculator 52 reads data indicating the position coordinates of each receiver stored in the memory 32 (step S12). Then, the inverse matrix calculator 52 calculates an inverse matrix of the matrix Q using the parameters ⁇ b to ⁇ e and data indicating the position coordinates of each receiver (step S13).
  • Inverse matrix computation methods are known and can be calculated using, for example, a sweep out method.
  • a library of computer programs that outputs the inverse matrix Q -1 when the matrix Q is input is also known and easily available.
  • the CPU 31 may be operated as the inverse matrix calculator 52 using such a library program.
  • the vector multiplier 53 receives the inverse matrix Q ⁇ 1 calculated by the inverse matrix calculator 52 and data indicating the position coordinates of each receiver stored in the memory 32. The latter is used to obtain a vector s in which the squares of the distances from the origin position to each receiver are arranged. Based on the received data, the vector multiplier 53 performs an operation Q ⁇ 1 ⁇ s (step S14). Thereby, the vector p on the left side of Equation 20 can be obtained. The vector multiplier 53 outputs x, y, z, which are the components of the obtained vector p, as the position of the wave source (step S15).
  • the position of the signal generator 10 that is a wave source can be estimated.
  • Equation 16 the number of linear terms increased as a result. That is, by linearizing two nonlinear terms, the unknowns increased by two in addition to x, y, and z indicating the position of the wave source. In order to obtain five unknowns, five simultaneous equations are required. This is the reason why a matrix Q of 5 rows and 5 columns is required using signals from five receivers. In order to obtain the inverse matrix, the present inventor increased the number of receivers to compensate for the decrease in the rank of the matrix.
  • the BLE positioning system can be introduced relatively easily. Due to such characteristics, it is required to reduce the cost of introduction. Since the linear measurement process determines the output uniquely with respect to the input, it can be tabulated and contributes to the cost reduction of the system.
  • “Tableization” refers to preparing a table in which a set of ⁇ b , ⁇ c , ⁇ d , and ⁇ e measured in advance is associated with a set of x, y, and z estimated from them. .
  • a matching set is searched with reference to a table. If there is a matching set in the table, the associated x, y, z set is read and output. Since a matrix operation or the like is not necessary, the result can be output at a very high speed. Furthermore, the load on the CPU 31 can be greatly suppressed. As the number of entries in the table increases, there is a higher possibility that a pair that matches the actually measured pair of ⁇ b , ⁇ c , ⁇ d , and ⁇ e exists on the table.
  • each receiver receives a signal wave and obtains a set of ⁇ b , ⁇ c , ⁇ d , and ⁇ e while changing the position of the signal generator 10 as a wave source. This is because the set of wave source positions x, y, and z should be estimated. If a table having a sufficiently high search hit rate is provided, information indicating the position of the wave source can be output at a sufficiently high speed even if a CPU having a relatively low processing capability is employed.
  • the positioning system 1 may guide the self-propelled vehicle 24b and / or the smartphone 24c to a predetermined position using, for example, a guidance device (not shown).
  • the guidance device can notify the position of the destination and guide the person who owns the self-propelled vehicle 24b or the smartphone 24c to the position.
  • the process of estimating the position of the signal generator 10 can be performed in real time or intermittently to perform appropriate guidance.
  • reception intensity data from four receivers is used to estimate the position in the two-dimensional space.
  • reception intensity data from five or more receivers is used. Also good.
  • reception intensity data from six or more receivers may be used.
  • the guidance system of the present disclosure can be used for estimating the position of a moving body that moves indoors or outdoors. Moreover, it can be used for control of the position of the moving body using the positioning result.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

A positioning system 1 includes: at least an N quantity (where, N is an integer of 4 or more) of receivers 20-A, 20-B, etc., which respectively receive signal waves output from a wave source, wherein each of said receivers receives signal waves output from the wave source and outputs data indicating the reception strength of said signal waves; and a computation circuit 31 that receives the data indicating the reception strength of signal waves from each of the receivers, and utilizes the received N items of data to estimate the wave source position. The computation circuit 31 provisionally estimates, for each of K sets (where, K is an integer of 2 or more) of data groups that respectively include three or more items of data selected from the received N items of data, wave source positions utilizing the three or more items of data in each set, and then estimates the wave source position on the basis of two or more provisionally estimated wave source positions. At least one among the N items of data is duplicated and included in a plurality of sets.

Description

測位システム、測位装置およびコンピュータプログラムPositioning system, positioning device and computer program
 本開示は、測位システム、測位装置およびコンピュータプログラムに関する。 The present disclosure relates to a positioning system, a positioning device, and a computer program.
 従来、対象物を測位する測位システムの開発が行われてきた(たとえば特許文献1および2)。 Conventionally, a positioning system for positioning an object has been developed (for example, Patent Documents 1 and 2).
 近年、Bluetooth(登録商標。以下同じ。)規格を利用した測位システムが普及しつつある。より具体的には、Bluetooth規格のうち、Bluetooth Low Energy(以下「BLE」と略記する。)規格の信号を発生させる信号発生器を利用して、当該信号発生器の位置を推定するBLE測位システムが普及しつつある。 In recent years, positioning systems using the Bluetooth (registered trademark, the same applies hereinafter) standard is becoming popular. More specifically, among the Bluetooth standards, a BLE positioning system that estimates the position of a signal generator using a signal generator that generates a signal of Bluetooth Low Energy (hereinafter abbreviated as “BLE”) standard. Is spreading.
 BLE測位システムの多くは3点測位アルゴリズムによる計測処理を採用している。3点測位アルゴリズムによる計測処理は、3つの受信機の各々の設置位置を示す座標情報、および、信号発生器と各受信機との各距離の情報を用いる。測位システムは、所定の演算を行い、3元連立非線形方程式の解として信号発生器の絶対位置座標を出力する。 Many of the BLE positioning systems employ measurement processing using a three-point positioning algorithm. The measurement process by the three-point positioning algorithm uses coordinate information indicating the installation positions of the three receivers and information on the distances between the signal generator and each receiver. The positioning system performs a predetermined calculation and outputs the absolute position coordinates of the signal generator as a solution of the ternary simultaneous nonlinear equation.
特開2012-198066号公報JP 2012-198066 A 特開平11-160409号公報JP-A-11-160409
 3点測位アルゴリズムでは3元連立非線形方程式の解を算出することが必要となる。しかしながら3元連立非線形方程式を解くことには困難が伴う。そのため、通常は偏微分行列の逆行列演算とその繰り返し演算を利用するニュートン法が用いられる。 The three-point positioning algorithm needs to calculate the solution of the ternary nonlinear equation. However, it is difficult to solve the ternary nonlinear equations. For this reason, the Newton method is generally used that uses an inverse matrix operation of a partial differential matrix and its repeated operation.
 従来のニュートン法では、演算に利用する受信強度データを十分に取得するためには、受信機の数を増やす必要があった。そのため、コストおよび設置する範囲の増加を抑えることが求められていた。 In the conventional Newton method, it was necessary to increase the number of receivers in order to sufficiently acquire the received intensity data used for the calculation. Therefore, it has been demanded to suppress an increase in cost and installation range.
 本願の、限定的ではない例示的なある実施形態は、受信機の数の増加を抑制できる測位システムを提供する。 One non-limiting exemplary embodiment of the present application provides a positioning system that can suppress an increase in the number of receivers.
 本発明の例示的な実施形態によれば、測位システムは、波源から出力された信号波をそれぞれ受信するN台(Nは4以上の整数)以上の複数の受信機であって、各々が、波源から出力された信号波を受信して前記信号波の受信強度を示すデータを出力する複数の受信機と、前記複数の受信機の各々から前記信号波の受信強度を示すデータを受け取り、受け取ったN個のデータを利用して前記波源の位置を推定する演算回路とを備え、前記演算回路は、受け取ったN個のデータから選択された3個以上のデータを各々が含む、K組のデータ群(K:2以上の整数)について、各組の3個以上のデータを利用して前記波源の位置を組ごとに仮推定し、仮推定した2以上の前記波源の位置に基づいて前記波源の位置を推定し、前記N個のデータのうちの少なくとも1個は、複数の組に重複して含まれる。 According to an exemplary embodiment of the present invention, the positioning system includes a plurality of receivers (N is an integer of 4 or more) each receiving a signal wave output from a wave source, each of which includes: A plurality of receivers that receive the signal wave output from the wave source and output data indicating the reception intensity of the signal wave, and receive and receive data indicating the reception intensity of the signal wave from each of the plurality of receivers A calculation circuit for estimating the position of the wave source using N data, wherein the calculation circuit includes K sets of data each including three or more data selected from the received N data. For the data group (K: integer of 2 or more), the position of the wave source is provisionally estimated for each set using three or more data of each set, and the position of the wave source based on the two or more provisionally estimated positions is Estimate the position of the wave source, and At least one Chino include redundantly in a plurality of groups.
 本発明の例示的な実施形態によれば、演算回路は、K組のデータ群(K:2以上の整数)に含まれる3個以上のデータを利用して波源の位置を組ごとに仮推定し、仮推定した2以上の波源の位置に基づいて 波源の位置を推定する。K組のデータ群の各々は、N台の受信機から受け取ったN個のデータから選択された3個以上のデータを含む。N個のデータのうちの少なくとも1個は、複数の組に重複して含まれる。少なくとも1個のデータが複数の組に重複して含まれるため、重複を許さない従来の方法と比較すると、受信機の数の増加を抑えながら波源の位置の仮推定結果を増やすことができる。たとえば、仮推定結果の平均値を波源の位置として推定する場合には、仮推定結果の母数を増やすことができ、精度を向上させることができる。 According to the exemplary embodiment of the present invention, the arithmetic circuit temporarily estimates the position of the wave source for each set using three or more data included in the K sets of data groups (K: an integer equal to or greater than 2). Then, the position of the tsunami source is estimated based on the positions of the two or more tentatively estimated wave sources. Each of the K sets of data groups includes three or more data selected from the N data received from the N receivers. At least one of the N pieces of data is included in a plurality of sets. Since at least one piece of data is included in a plurality of sets, the provisional estimation result of the position of the wave source can be increased while suppressing an increase in the number of receivers as compared with the conventional method that does not allow duplication. For example, when the average value of the temporary estimation results is estimated as the position of the wave source, the parameter of the temporary estimation results can be increased, and the accuracy can be improved.
図1は、本発明の例示的な実施形態にかかる測位システム1の構成を模式的に示す図である。FIG. 1 is a diagram schematically illustrating a configuration of a positioning system 1 according to an exemplary embodiment of the present invention. 図2は、測位システム1が導入された環境の第一の例を示す図である。FIG. 2 is a diagram illustrating a first example of an environment in which the positioning system 1 is introduced. 図3は、測位システム1が導入された環境の第二の例を示す図である。FIG. 3 is a diagram illustrating a second example of the environment in which the positioning system 1 is introduced. 図4は、図2および図3における、棚22および23を含む4つの棚を示す図である。FIG. 4 is a diagram showing four shelves including shelves 22 and 23 in FIGS. 2 and 3. 図5は、棚25に載置された商品24aに貼り付けられた信号発生器10を示す図である。FIG. 5 is a view showing the signal generator 10 attached to the product 24 a placed on the shelf 25. 図6は、棚22および23の間を走行する自走車両24bに実装された信号発生器10を示す図である。FIG. 6 is a diagram showing the signal generator 10 mounted on a self-propelled vehicle 24 b that travels between the shelves 22 and 23. 図7は、棚22および23の間を歩行する買い物客のスマートフォン24cに実装された信号発生器10を示す図である。FIG. 7 is a diagram showing the signal generator 10 mounted on a smartphone 24c of a shopper walking between shelves 22 and 23. As shown in FIG. 図8は、信号発生器10のハードウェアの構成を示す図である。FIG. 8 is a diagram illustrating a hardware configuration of the signal generator 10. 図9は、測位装置30のハードウェアの構成を示す図である。FIG. 9 is a diagram illustrating a hardware configuration of the positioning device 30. 図10は、3点測位に利用される3つの受信強度データを出力する3台の受信機の例を示す図である。FIG. 10 is a diagram illustrating an example of three receivers that output three reception intensity data used for three-point positioning. 図11は、3点測位に利用される3つの受信強度データを出力する3台の受信機の例を示す図である。FIG. 11 is a diagram illustrating an example of three receivers that output three reception intensity data used for three-point positioning. 図12は、3点測位に利用される3つの受信強度データを出力する3台の受信機の例を示す図である。FIG. 12 is a diagram illustrating an example of three receivers that output three reception intensity data used for three-point positioning. 図13は、波源Pから異なる距離に位置する3つの受信機20-A、20-Bおよび20-Cを示す図である。FIG. 13 shows three receivers 20-A, 20-B and 20-C located at different distances from the wave source P. FIG. 図14は、主としてCPU31の処理ブロックの構成を示す図である。FIG. 14 is a diagram mainly illustrating a configuration of a processing block of the CPU 31. 図15は、仮推定を行う3点測位処理ブロック42の構成を示す図である。FIG. 15 is a diagram illustrating a configuration of the three-point positioning processing block 42 that performs temporary estimation. 図16は、測位装置30の処理手順を示すフローチャートである。FIG. 16 is a flowchart showing a processing procedure of the positioning device 30. 図17は、波源位置Pと各受信機との位置関係を示す図である。FIG. 17 is a diagram illustrating a positional relationship between the wave source position P and each receiver. 図18は、5点測位ブロック50の構成を示す図である。FIG. 18 is a diagram showing a configuration of the five-point positioning block 50. As shown in FIG. 図19は、5点測位ブロック50として機能するCPU31の処理手順を示すフローチャートである。FIG. 19 is a flowchart showing a processing procedure of the CPU 31 functioning as the five-point positioning block 50.
 本願発明者は、演算処理の負荷を軽減しつつ、測位誤差を抑え得る測位アルゴリズムについて検討を重ねた。その結果、新たな測位アルゴリズムを構築し、当該測位アルゴリズムを実装した測位システムを完成させるに至った。 The inventor of the present application has repeatedly studied a positioning algorithm that can reduce a positioning error while reducing a load of calculation processing. As a result, a new positioning algorithm was constructed, and a positioning system that implemented the positioning algorithm was completed.
 本開示による測位システムでは、N台(Nは4以上の整数)以上の複数の受信機で、波源から出力された信号波をそれぞれ受信する。波源は、電磁波、音波等の信号波を出力する信号発生器である。 In the positioning system according to the present disclosure, a plurality of receivers of N units (N is an integer of 4 or more) receive signal waves output from the wave source. The wave source is a signal generator that outputs signal waves such as electromagnetic waves and sound waves.
 各受信機は、波源から出力された信号波を受信して信号波の受信強度を示すデータ(受信強度データ)を出力する。演算回路は、複数の受信機の各々から信号波の受信強度データを受け取り、受け取ったN個のデータを利用して波源の位置を推定する。より具体的には、演算回路は、受け取ったN個のデータから選択された3個以上のデータを各々が含む、K組のデータ群(K:2以上の整数)について、各組の3個以上のデータを利用して波源の位置を組ごとに仮推定する。さらに演算回路は、仮推定した2以上の波源の位置に基づいて波源の位置を推定する。なお、本明細書では、組毎に波源の位置を推定することを「仮推定」と呼び、仮推定された複数の位置から、1つの波源の位置を決定することを、波源の位置の「推定」と呼ぶ。 Each receiver receives the signal wave output from the wave source and outputs data (reception intensity data) indicating the reception intensity of the signal wave. The arithmetic circuit receives the reception intensity data of the signal wave from each of the plurality of receivers, and estimates the position of the wave source using the received N pieces of data. More specifically, the arithmetic circuit, for each of K sets of data groups (K: an integer of 2 or more), each including three or more data selected from the received N data, Using the above data, the position of the wave source is temporarily estimated for each set. Further, the arithmetic circuit estimates the position of the wave source based on the temporarily estimated positions of the two or more wave sources. In the present specification, estimating the position of the wave source for each set is referred to as “temporary estimation”, and determining the position of one wave source from a plurality of temporarily estimated positions is referred to as “ This is called “estimation”.
 演算回路は、仮推定した2以上の波源の位置の各座標の平均値を波源の位置として推定してもよいし、各座標値の中央値または最頻値を波源の位置として推定してもよい。 The arithmetic circuit may estimate an average value of the coordinates of the two or more wave source positions temporarily estimated as the wave source position, or may estimate the median value or the mode value of the coordinate values as the wave source position. Good.
 本実施形態では、N個のデータのうちの少なくとも1個は、複数の組に重複して含まれる。たとえば、受信機20-Aが出力した受信強度データは、第1組、および、第2組に重複して含まれる。一方、従来のニュートン法では、N個の受信強度データがK組のデータ群に分けられたとき、ある受信強度データは、いずれか1つの組には属するが、複数の組に重複して属することはなかった。本実施形態の方法によれば、受信機の数を減らしたとしても波源の位置の精度を確保できる。または、従来と同じ受信機の数であれば、波源の位置の精度を向上できる。 In the present embodiment, at least one of the N pieces of data is included in a plurality of sets. For example, the reception intensity data output from the receiver 20-A is included in the first set and the second set. On the other hand, in the conventional Newton method, when N pieces of received intensity data are divided into K sets of data groups, certain received intensity data belongs to one of the sets, but belongs to a plurality of sets. It never happened. According to the method of this embodiment, the accuracy of the position of the wave source can be ensured even if the number of receivers is reduced. Alternatively, if the number of receivers is the same as the conventional one, the accuracy of the position of the wave source can be improved.
 たとえば、1組あたり3個の受信強度データを利用して仮推定を行い、20個の仮推定位置から1つの波源の位置を推定するとする。従来の方法によれば、60台の受信機が必要であった。しかしながら本実施形態の方法によれば、6台の受信機を設ければよい。本実施形態によれば、受信機を設けるコストおよび設置する範囲を大幅に低減することができる。 For example, assume that provisional estimation is performed using three pieces of received intensity data per set, and the position of one wave source is estimated from the twenty provisional estimated positions. According to the conventional method, 60 receivers are required. However, according to the method of this embodiment, six receivers may be provided. According to the present embodiment, the cost of installing the receiver and the installation range can be greatly reduced.
 以下、添付の図面を参照しながら、測位システム、測位装置およびコンピュータプログラムの構成例を説明する。ただし、必要以上に詳細な説明は省略する場合がある。たとえば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明においては、同一または類似する構成要素には、同一の参照符号を付している。 Hereinafter, configuration examples of the positioning system, the positioning device, and the computer program will be described with reference to the accompanying drawings. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art. The inventor provides the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and is not intended to limit the subject matter described in the claims. Absent. In the following description, the same or similar components are denoted by the same reference numerals.
 図1は、本発明の例示的な実施形態にかかる測位システム1の構成を模式的に示す。測位システム1は、信号発生器10と、複数の受信機20-A、20-B、・・・、20-N(N:4または5以上の整数)と、測位装置30とを備えている。 FIG. 1 schematically shows a configuration of a positioning system 1 according to an exemplary embodiment of the present invention. The positioning system 1 includes a signal generator 10, a plurality of receivers 20-A, 20-B,..., 20-N (N: 4 or an integer greater than or equal to 5), and a positioning device 30. .
 測位システム1の測位装置30は、信号発生器10から出力された信号波を利用して、信号発生器10の位置を推定する。 The positioning device 30 of the positioning system 1 estimates the position of the signal generator 10 using the signal wave output from the signal generator 10.
 信号発生器10は、内蔵電池または外部から供給される電力を利用して信号を生成し、信号波として出力する電子回路である。信号発生器10は、信号波として電磁波または音波を放射する。本明細書では、信号発生器10を「波源」と呼ぶこともある。本明細書では、信号発生器10は、BLE規格に準拠する2.4GHz帯域の電磁波を出力するとして説明する。 The signal generator 10 is an electronic circuit that generates a signal using electric power supplied from an internal battery or externally and outputs it as a signal wave. The signal generator 10 emits electromagnetic waves or sound waves as signal waves. In this specification, the signal generator 10 may be referred to as a “wave source”. In the present specification, the signal generator 10 is described as outputting an electromagnetic wave in the 2.4 GHz band conforming to the BLE standard.
 信号発生器10は、測位対象が人である場合には、人が所有する電子機器に内蔵され得る。または、信号発生器10は、測位対象が物である場合には当該物に貼り付けられてもよいし、当該物に内蔵されてもよい。 The signal generator 10 can be built in an electronic device owned by a person when the positioning target is a person. Alternatively, when the positioning target is an object, the signal generator 10 may be attached to the object, or may be incorporated in the object.
 測位システム1は、測位システム1が設置された空間内で、信号発生器10の位置を推定する。「空間」とは、本実施形態では主として三次元空間を想定している。図には、X軸、Y軸およびZ軸が示されている。ただし、「空間」は二次元空間であってもよい。たとえば、床面を走行する自走車両を測位する場合には、測位システム1は、床面である二次元空間上において、信号発生器10の位置を推定してもよい。後述のように、測位システム1が二次元空間の位置を推定する場合には、受信機は少なくとも4台存在すればよい。測位システム1が三次元空間の位置を推定する場合には、受信機は少なくとも5台存在すればよい。 The positioning system 1 estimates the position of the signal generator 10 in the space where the positioning system 1 is installed. The “space” mainly assumes a three-dimensional space in the present embodiment. In the figure, an X axis, a Y axis, and a Z axis are shown. However, the “space” may be a two-dimensional space. For example, when positioning a self-propelled vehicle traveling on the floor, the positioning system 1 may estimate the position of the signal generator 10 on a two-dimensional space that is the floor. As will be described later, when the positioning system 1 estimates the position of the two-dimensional space, it is sufficient that at least four receivers exist. When the positioning system 1 estimates the position in the three-dimensional space, it is sufficient that there are at least five receivers.
 複数の受信機20-A、20-B、・・・、20-Nは、各々が、アンテナ装置(図示せず)を内蔵し、当該アンテナ装置を用いて波源から出力された信号波を受信する。アンテナ装置は、上述のBLE規格に準拠する電磁波を受信可能である。各受信機は、信号波の受信強度データを出力する。なお、アンテナ装置の構成は公知であるため、具体的な構成の説明は省略する。なお、信号発生器10が音波を発生させる場合には、各受信機はマイクを有する装置であり得る。 Each of the plurality of receivers 20-A, 20-B,..., 20-N includes an antenna device (not shown), and receives a signal wave output from a wave source using the antenna device. To do. The antenna device can receive electromagnetic waves that conform to the BLE standard described above. Each receiver outputs signal wave reception intensity data. In addition, since the structure of an antenna apparatus is well-known, description of a specific structure is abbreviate | omitted. When the signal generator 10 generates sound waves, each receiver can be a device having a microphone.
 測位装置30は演算回路31を有している。演算回路31は、複数の受信機20-A、20-B、・・・、20-Nの各々から信号波の受信強度データを受け取って所定の演算を行い、波源の位置を示す各座標成分を算出する。演算の詳細は後に詳述する。 The positioning device 30 has an arithmetic circuit 31. The arithmetic circuit 31 receives the reception intensity data of the signal wave from each of the plurality of receivers 20-A, 20-B,..., 20-N, performs a predetermined calculation, and each coordinate component indicating the position of the wave source Is calculated. Details of the calculation will be described later.
 図2は、測位システム1が導入された環境の第一の例を示す。図2の例では、測位システム1は、物が載置される棚22および23等を有する工場、書店等に構築されている。複数の受信機の各々の位置が、「●」によって示されている。複数の受信機は、概ね分散して配置されている。なお、図2はXY平面図であり、z軸方向の関係は示されていない。 FIG. 2 shows a first example of an environment where the positioning system 1 is introduced. In the example of FIG. 2, the positioning system 1 is constructed in a factory, a bookstore, or the like having shelves 22 and 23 on which objects are placed. The position of each of the plurality of receivers is indicated by “●”. The plurality of receivers are generally distributed. Note that FIG. 2 is an XY plan view, and the relationship in the z-axis direction is not shown.
 本実施形態では、複数の受信機は、予め定められた位置に設置されているとする。ある基準位置Oを原点とし、図示されるような3つの軸(X軸、Y軸およびZ軸)を定めたとき、各受信機の位置は、X軸、Y軸およびZ軸の各値によって表すことができる。以下では、受信機20-Aの座標をA(xa,ya,za)などと表記し、xa,yaおよびzaをそれぞれ「x座標」「y座標」「z座標」と呼ぶことがある。図面上に例示された受信機20-Jのx座標はxJ、y座標はyJ、z座標はzJである。 In this embodiment, it is assumed that the plurality of receivers are installed at predetermined positions. When a certain reference position O is set as the origin and three axes (X axis, Y axis and Z axis) as shown in the figure are defined, the position of each receiver is determined by each value of the X axis, Y axis and Z axis. Can be represented. In the following, coordinates A receiver 20-A (x a, y a, z a) is expressed as such, x a, and each y a and z a "x-coordinate", "y coordinate,""zcoordinates" Sometimes called. In the receiver 20 -J illustrated on the drawing, the x coordinate is x J , the y coordinate is y J , and the z coordinate is z J.
 なお、後述の理由から、本実施形態では演算に利用する複数の受信機の各x座標が全て同じ値になることはないとする。換言すると、測位装置30は、x座標が少なくとも1つ異なる複数の受信機を利用して演算を行う。y座標、および、z座標についても同様である。そのため、たとえばz座標については、高さが少なくとも1つ異なる複数の受信機を利用することになる。 For the reasons described later, in this embodiment, it is assumed that the x coordinates of a plurality of receivers used for calculation do not all have the same value. In other words, the positioning device 30 performs calculation using a plurality of receivers having at least one different x coordinate. The same applies to the y coordinate and the z coordinate. Therefore, for example, for the z coordinate, a plurality of receivers having different heights are used.
 図3は、測位システム1が導入された環境の第二の例を示す。図面から理解されるように、図3では、複数の受信機が環境内の一部の区画Rにまとまって設けられている。なお図3もまたXY平面図であり、z軸方向の関係は示されていない。図3の構成は、上述した位置の条件を満たすように位置が調整されて一体化された複数の受信機のユニットを予め製造しておき、測位システム1の導入環境の天井部分に固定することによって容易に実現される。 FIG. 3 shows a second example of the environment where the positioning system 1 is introduced. As can be seen from the drawing, in FIG. 3, a plurality of receivers are provided together in some compartments R in the environment. Note that FIG. 3 is also an XY plan view, and the relationship in the z-axis direction is not shown. In the configuration of FIG. 3, a plurality of receiver units whose positions are adjusted and integrated so as to satisfy the above-described position conditions are manufactured in advance and fixed to a ceiling portion of the introduction environment of the positioning system 1. Is easily realized.
 本実施形態にかかる測位処理は、図2および図3のいずれの態様でも利用可能である。 The positioning process according to the present embodiment can be used in any of the modes shown in FIGS.
 次に、図4から図7を参照しながら、測位システム1における測位の対象を説明する。 Next, the positioning target in the positioning system 1 will be described with reference to FIGS.
 信号発生器10は、固定された位置に設置された物に設けられてもよいし、位置が変化し得る物、たとえば自走車両、持ち運び可能な電子機器に設けられてもよい。持ち運び可能な電子機器は、たとえば、携帯電話、スマートフォン、電子タグ装置である。 The signal generator 10 may be provided in an object installed at a fixed position, or may be provided in an object whose position can change, for example, a self-propelled vehicle or a portable electronic device. Portable electronic devices are, for example, mobile phones, smartphones, and electronic tag devices.
 図4は、図2および図3における、棚22および23を含む4つの棚を示す。それぞれの棚は、物を載置するための複数の棚25を有している。本実施形態では、複数の棚25はY軸方向およびZ軸方向に複数存在し得るとする。 FIG. 4 shows four shelves including shelves 22 and 23 in FIGS. Each shelf has a plurality of shelves 25 for placing objects. In the present embodiment, it is assumed that a plurality of shelves 25 may exist in the Y-axis direction and the Z-axis direction.
 図5は、棚25に載置された商品24aに貼り付けられた信号発生器10を示す。信号発生器10から出力された信号波は、4または5台以上の受信機によって受信される。図5では、受信機20-Sおよび20-Tが、信号発生器10から出力された信号波をそれぞれ受信している状態が示されている。測位システム1は、商品24aが載置された位置を推定し得る。 FIG. 5 shows the signal generator 10 attached to the product 24 a placed on the shelf 25. The signal wave output from the signal generator 10 is received by four or five or more receivers. FIG. 5 shows a state where the receivers 20-S and 20-T receive the signal waves output from the signal generator 10, respectively. The positioning system 1 can estimate the position where the product 24a is placed.
 図6は、棚22および23の間を走行する自走車両24bに実装された信号発生器10を示す。本例でも、受信機20-Sおよび20-Tが、信号発生器10から出力された信号波をそれぞれ受信している状態が示されている。測位システム1は、自走車両24bの位置をリアルタイムで推定し得る。 FIG. 6 shows the signal generator 10 mounted on a self-propelled vehicle 24b traveling between the shelves 22 and 23. This example also shows a state in which the receivers 20-S and 20-T are receiving signal waves output from the signal generator 10, respectively. The positioning system 1 can estimate the position of the self-propelled vehicle 24b in real time.
 図7は、棚22および23の間を歩行する買い物客のスマートフォン24cに実装された信号発生器10を示す。本例でも、受信機20-Sおよび20-Tが、信号発生器10から出力された信号波をそれぞれ受信している状態が示されている。測位システム1は、買い物客の位置をリアルタイムで推定し得る。 FIG. 7 shows the signal generator 10 mounted on a smartphone 24c of a shopper walking between shelves 22 and 23. This example also shows a state in which the receivers 20-S and 20-T are receiving signal waves output from the signal generator 10, respectively. The positioning system 1 can estimate the position of the shopper in real time.
 図5~図7の例では、信号発生器10は1つだけ示されているが、複数存在してもよい。測位システム1は、並列的に処理を行うことにより、受信した信号波に含まれる、各信号発生器10を一意に特定する識別情報から各信号発生器10の位置を推定することができる。 5 to 7, only one signal generator 10 is shown, but a plurality of signal generators 10 may exist. The positioning system 1 can estimate the position of each signal generator 10 from identification information that uniquely identifies each signal generator 10 included in the received signal wave by performing processing in parallel.
 次に、信号発生器10および測位装置30の構成を説明する。 Next, the configuration of the signal generator 10 and the positioning device 30 will be described.
 図8は、信号発生器10のハードウェアを示す。信号発生器10は、高周波信号を生成するためのIC11と、記憶装置12と、アンテナ14とを有する。記憶装置12はたとえばフラッシュROMであり、信号発生器10毎に一意の識別情報13が格納されている。IC11は、アンテナ14を利用して識別情報を周期的に送信する。 FIG. 8 shows the hardware of the signal generator 10. The signal generator 10 includes an IC 11 for generating a high frequency signal, a storage device 12, and an antenna 14. The storage device 12 is a flash ROM, for example, and stores unique identification information 13 for each signal generator 10. The IC 11 periodically transmits identification information using the antenna 14.
 図9は、測位装置30のハードウェアの構成を示す。 FIG. 9 shows the hardware configuration of the positioning device 30.
 測位装置30は、CPU31と、メモリ32と、通信回路33とを有しており、これらは内部バスで接続されている。CPU31は、後述の処理により、個々の信号発生器10の位置を推定し、推定した位置を示す位置情報を生成する演算回路である。メモリ32は、たとえばDRAMであり、CPU31の処理に関連して利用されるワークメモリである。 The positioning device 30 includes a CPU 31, a memory 32, and a communication circuit 33, which are connected by an internal bus. The CPU 31 is an arithmetic circuit that estimates the position of each signal generator 10 and generates position information indicating the estimated position by processing described later. The memory 32 is a DRAM, for example, and is a work memory used in connection with the processing of the CPU 31.
 通信回路33は、たとえば、1または複数の通信コネクタを有する通信回路である。通信コネクタは、入力インタフェース34a、および、波源の座標のデータを出力する出力インタフェース34bを含む。入力インタフェース34aおよび出力インタフェース34bは一体化され1つの通信コネクタとして実装されてもよい。 The communication circuit 33 is a communication circuit having one or more communication connectors, for example. The communication connector includes an input interface 34a and an output interface 34b that outputs data of wave source coordinates. The input interface 34a and the output interface 34b may be integrated and mounted as one communication connector.
 入力インタフェース34aは、いわゆる信号入力端子であり、受信機20-A~20-Nの各々から高周波電気信号を受信する。高周波電気信号は、各受信機が受信した電磁波(信号波)を変換して生成された信号である。 The input interface 34a is a so-called signal input terminal, and receives a high-frequency electric signal from each of the receivers 20-A to 20-N. The high-frequency electrical signal is a signal generated by converting electromagnetic waves (signal waves) received by each receiver.
 出力インタフェース34bは、たとえばイーサネット(登録商標)規格の有線通信を行う通信端子であり、波源の座標のデータを出力する。波源の座標のデータに代えて、出力インタフェース34bは、波源の座標を画像化した映像信号を出力してもよい。このとき、出力インタフェース34bは、DVI端子等の画像信号の出力端子であり得る。図9には、表示装置35と接続された出力インタフェース34bが示されている。 The output interface 34b is a communication terminal that performs, for example, Ethernet (registered trademark) standard wired communication, and outputs data of the coordinates of the wave source. Instead of the data on the coordinates of the wave source, the output interface 34b may output a video signal obtained by imaging the coordinates of the wave source. At this time, the output interface 34b may be an image signal output terminal such as a DVI terminal. FIG. 9 shows an output interface 34 b connected to the display device 35.
 次に、本実施形態による測位アルゴリズムを説明する。以下では、図3に示された、9台の受信機を利用する例を説明する。 Next, the positioning algorithm according to this embodiment will be described. In the following, an example in which nine receivers shown in FIG. 3 are used will be described.
 図10、図11および図12は、それぞれ、3点測位に利用される3つの受信強度データを出力する3台の受信機を示す。図示された3台の受信機から出力される3つの受信強度データを1組として利用して、CPU31は波源Pの位置を仮推定する。 FIG. 10, FIG. 11 and FIG. 12 each show three receivers that output three received intensity data used for three-point positioning. The CPU 31 temporarily estimates the position of the wave source P using the three received intensity data output from the three receivers shown as a set.
 図10には、受信機20-A、20-Bおよび20-Cが示されている。図11には、受信機20-A、20-Dおよび20-Gが示されている。図では、受信機20-Aの位置Aを(xa,ya,za)などと表す。また、波源位置Pから受信機20-Aまでの距離をraなどと表す。測位すべき波源(信号発生器10)の位置Pを(x,y,z)と表す。 FIG. 10 shows the receivers 20-A, 20-B, and 20-C. FIG. 11 shows the receivers 20-A, 20-D and 20-G. In the figure, the position A of the receiver 20-A is represented as (x a , y a , z a ) or the like. Further, the distance from the wave source position P to the receiver 20-A represents the like r a. The position P of the wave source (signal generator 10) to be measured is represented as (x, y, z).
 図10および図11は互いに異なる組を示している。ただし、受信機20-Aは両方の組に重複して含まれている。冒頭で説明したとおり、本実施形態では、ある受信機(より正確には、受信機が出力する受信強度データ)が複数の組に重複して含まれることを許容している。なお、本実施形態では、図10および図11に示す受信機の組み合わせと全く重複しない受信機の組が存在することも許容される。図11には、図10および図11に示すいずれ組にも含まれない受信機20-E、20-Fおよび20-Iが示されている。 10 and 11 show different sets. However, the receiver 20-A is redundantly included in both sets. As described at the beginning, in this embodiment, a certain receiver (more precisely, reception intensity data output by the receiver) is allowed to be included in a plurality of sets. In the present embodiment, it is allowed that a receiver set that does not overlap with the receiver combinations shown in FIGS. 10 and 11 exists. FIG. 11 shows receivers 20-E, 20-F, and 20-I that are not included in any of the sets shown in FIGS.
 以下、図13を参照しながら3点測位の原理を説明する。なお図13は、図10を一般化して示している。 Hereinafter, the principle of three-point positioning will be described with reference to FIG. FIG. 13 is a generalized view of FIG.
 図13は、波源Pから異なる距離に位置する3つの受信機20-A、20-Bおよび20-Cを示す。これらの位置関係から、下記の数1を満たす3つの関数fa、fbおよびfcが成り立つ。
Figure JPOXMLDOC01-appb-M000001
FIG. 13 shows three receivers 20-A, 20-B and 20-C located at different distances from the wave source P. From these positional relationships, three functions f a , f b, and f c satisfying Equation 1 below are established.
Figure JPOXMLDOC01-appb-M000001
 これらは3元連立非線形方程式である。3元連立非線形方程式は下記数2のニュートン法を用いて解くことができる。
Figure JPOXMLDOC01-appb-M000002
These are ternary simultaneous nonlinear equations. The ternary simultaneous nonlinear equations can be solved using the Newton method of the following formula 2.
Figure JPOXMLDOC01-appb-M000002
ここで、Xkは、k回繰り返して演算を行った後の波源(信号発生器10)の位置を示す座標行列であり、具体的には下記数3に示される。
Figure JPOXMLDOC01-appb-M000003
Here, X k is a coordinate matrix indicating the position of the wave source (signal generator 10) after the calculation is repeated k times, and is specifically expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 また、数2におけるJ(xk)はヤコビ行列であり、具体的には下記数4に示される。
Figure JPOXMLDOC01-appb-M000004
Further, J (x k ) in Equation 2 is a Jacobian matrix, and is specifically shown in Equation 4 below.
Figure JPOXMLDOC01-appb-M000004
 上述の各式に基づけば、Xk+1は以下の数5のように求めることができる。
Figure JPOXMLDOC01-appb-M000005
Based on the above equations, X k + 1 can be obtained as shown in Equation 5 below.
Figure JPOXMLDOC01-appb-M000005
 いま、数5の右辺第2項の列ベクトル(数3における列ベクトルF(xk))に注目する。数1に示される通り、列ベクトルFを構成する各要素fa、fbおよびfcには、波源位置Pから各受信機20-A、20-Bおよび20-Cまでの距離の二乗の項(ra 2、rb 2、rc 2)を含む。波源Pの位置が求められていないため、直接、これらの値を得ることはできない。 Now, pay attention to the column vector of the second term on the right side of Equation 5 (column vector F (x k ) in Equation 3). As shown in Equation 1, each element f a , f b and f c constituting the column vector F has a square of the distance from the wave source position P to each receiver 20-A, 20-B and 20-C. Terms (r a 2 , r b 2 , r c 2 ) are included. Since the position of the wave source P is not obtained, these values cannot be obtained directly.
 そこで、BLE規格を利用する測位システムでは、各受信機が受信した信号発生器10からの信号の受信信号レベルを利用する。具体的には、事前に信号発生器10と受信機20-A、20-Bおよび20-Cとを1m離れた距離に置き、その時の受信パワー値Poを予め取得しておく。その後、信号発生器10から信号を受信すると、その時の受信信号レベルPiを利用して計測時の信号発生器と受信機との距離情報を得る。具体的には、計測時の距離情報ri 2=Po/Piにより、求めることができる。メモリ32には、1m離れた距離の受信強度データである、基準信号パワー情報Poが予め保持されている。なお、受信機20-A、20-Bおよび20-Cの各受信アンテナの実効面積、および、各受信アンテナの利得が互いに等しい、つまり同じ受信性能を有する場合には、事前に信号発生器10と1つの受信機とを1m離れた距離に置き、その時の受信パワー値 P_o を予め取得しておけばよい。 Therefore, in a positioning system using the BLE standard, the received signal level of the signal from the signal generator 10 received by each receiver is used. Specifically, the signal generator 10 and the receivers 20-A, 20-B and 20-C are placed at a distance of 1 m in advance, and the reception power value Po at that time is acquired in advance. Thereafter, when a signal is received from the signal generator 10, distance information between the signal generator and the receiver at the time of measurement is obtained using the received signal level Pi at that time. Specifically, the distance information r i 2 at the time of measurement can be obtained by Po / Pi. In the memory 32, reference signal power information Po, which is reception intensity data at a distance of 1 m, is held in advance. If the effective area of each receiving antenna of the receivers 20-A, 20-B and 20-C and the gain of each receiving antenna are equal to each other, that is, have the same reception performance, the signal generator 10 And one receiver may be placed at a distance of 1 m, and the received power value P_o at that time may be acquired in advance.
 上述の処理を収束するまで繰り返すことにより、数5の左辺、つまり波源の位置(x,y,z)を推定することができる。本願発明者は、適切に設定された初期値(x0,y0,z0)から6回程度演算を繰り返すと、期待する位置に収束することをシミュレーションによって確認している。 By repeating the above processing until convergence, the left side of Equation 5, that is, the position (x, y, z) of the wave source can be estimated. The inventor of the present application has confirmed by simulation that when the calculation is repeated about six times from an appropriately set initial value (x 0 , y 0 , z 0 ), the calculation converges to an expected position.
 測位装置30のCPU31は、上述の原理に従った演算を実行して、各組の受信強度データを用いて波源Pの位置の仮推定を行う。そして、複数の仮推定結果から、1つの位置を波源Pの位置として推定する。 The CPU 31 of the positioning device 30 performs a calculation according to the above-described principle, and performs a temporary estimation of the position of the wave source P using each set of received intensity data. Then, one position is estimated as the position of the wave source P from a plurality of temporary estimation results.
 以下、図14、図15および図16を参照しながら、CPU31の動作を説明する。 Hereinafter, the operation of the CPU 31 will be described with reference to FIG. 14, FIG. 15 and FIG.
 図14は、主としてCPU31の処理ブロックの構成を示す。 FIG. 14 mainly shows the configuration of the processing block of the CPU 31.
 CPU31は、組合せパターン発生器41と、3点測位処理ブロック42-1~42-K、および平均値演算器43として機能する。図14では、複数の構成要素が存在するように示されているが、これらは処理の単位を意味しているに過ぎない。図示された数の構成要素が含まれている必要はない。本実施形態では、CPU31は、図16に示すフローチャートによる処理を行うコンピュータプログラムにしたがって動作する。CPU31は、コンピュータプログラムの命令に従い、時間によって、組合せパターン発生器41として動作し、各3点測位処理ブロック42-1~42-Kとして動作し、平均値演算器43として動作する。処理ブロックから処理ブロックへの矢印は、データが次の演算に利用されることを意味している。 The CPU 31 functions as a combination pattern generator 41, three-point positioning processing blocks 42-1 to 42-K, and an average value calculator 43. In FIG. 14, a plurality of components are shown to exist, but these merely mean a unit of processing. The number of components shown need not be included. In the present embodiment, the CPU 31 operates in accordance with a computer program that performs processing according to the flowchart shown in FIG. The CPU 31 operates as a combination pattern generator 41 depending on time according to instructions of the computer program, operates as each of the three-point positioning processing blocks 42-1 to 42-K, and operates as an average value calculator 43. An arrow from the processing block to the processing block means that the data is used for the next calculation.
 ただし、組合せパターン発生器41と、3点測位処理ブロック42-1~42-K、および平均値演算器43の少なくとも1つをハードウェアによって実現してもよい。たとえばFPGA(Field-programmable gate array)を用いることにより、組合せパターン発生器41と、3点測位処理ブロック42-1~42-K、および平均値演算器43を1つの集積回路上に実装することが可能である。好適には、3点測位処理ブロック42-1~42-Kの各々に対応する処理コアをハードウェア化して、並列化処理を行うことにより、非常に高速に演算を行うことができる。 However, at least one of the combination pattern generator 41, the three-point positioning processing blocks 42-1 to 42-K, and the average value calculator 43 may be realized by hardware. For example, by using an FPGA (Field-programmable gate array), the combination pattern generator 41, the three-point positioning processing blocks 42-1 to 42-K, and the average value calculator 43 are mounted on one integrated circuit. Is possible. Preferably, the processing cores corresponding to each of the three-point positioning processing blocks 42-1 to 42-K are implemented as hardware, and parallel processing is performed, so that calculation can be performed at a very high speed.
 N台の受信機の各々から出力された受信強度データは、通信回路33(図9)を介して受信され、メモリ32に格納される。 The received intensity data output from each of the N receivers is received via the communication circuit 33 (FIG. 9) and stored in the memory 32.
 CPU31の組合せパターン発生器41は、受け取ったN個のデータから3個1組のデータ群をK組抽出する。組数Kは組み合わせの数であり、N3通りである。たとえばN=9の場合には84通りのデータの組が得られる。組合せパターン発生器41は、組み合わせごとにデータ群を読み出して3点測位ブロック42-1~42-Kの各々に入力する。なお、以下では3点測位ブロック42-1~42-Kを総称して「3点測位ブロック42」と記述する。 The combination pattern generator 41 of the CPU 31 extracts K sets of three sets of data from the received N pieces of data. The number of sets K is the number of combinations, and there are N C 3 ways. For example, when N = 9, 84 data sets are obtained. The combination pattern generator 41 reads out a data group for each combination and inputs it to each of the three-point positioning blocks 42-1 to 42-K. Hereinafter, the three-point positioning blocks 42-1 to 42-K are collectively referred to as “three-point positioning block 42”.
 3点測位ブロック42の各々は、受け取った3個のデータを利用して波源Pの位置を組ごとに仮推定する。仮推定された波源Pの各位置は平均値演算器43に送られる。なお、3点測位ブロックからの出力(仮推定値)は、x座標値、y座標値およびz座標値の各々を含む。 Each of the three-point positioning blocks 42 provisionally estimates the position of the wave source P for each set using the received three data. Each position of the temporarily estimated wave source P is sent to the average value calculator 43. The output (provisional estimated value) from the three-point positioning block includes each of the x coordinate value, the y coordinate value, and the z coordinate value.
 平均値演算器43は、3点測位ブロックから出力された各仮推定値を利用して、x座標毎、y座標毎、z座標毎の平均値を算出する。そして得られた各平均値を、波源Pの推定位置として出力する。 The average value calculator 43 calculates an average value for each x coordinate, each y coordinate, and each z coordinate using each temporary estimated value output from the three-point positioning block. Each obtained average value is output as the estimated position of the wave source P.
 なお、平均値演算器43は、各座標値の平均値に代えて、各座標値の中央値または最頻値を波源の位置として推定してもよい。 The average value calculator 43 may estimate the median value or mode value of each coordinate value as the position of the wave source instead of the average value of each coordinate value.
 上述の平均値演算器43の処理は、異なる位置に存在する複数の受信機を利用した、空間平均演算による波源Pの推定位置を求める処理と言うことができる。平均値演算器43は、時間平均演算により、波源Pの推定位置として出力してもよい。具体的には平均値演算器43は、x座標毎、y座標毎、z座標毎の平均値を算出した後、各受信機から次に得られた受信強度データを用いて同様の処理を行い、次の時刻におけるx座標毎、y座標毎、z座標毎の平均値を算出する。異なる時刻の受信強度データに基づいて得られた波源Pの複数の推定位置を、さらに平均して、得られた結果を波源Pの推定位置として出力する。これにより、時間平均に基づく波源Pの位置の推定が可能になる。 The above-described processing of the average value calculator 43 can be said to be processing for obtaining an estimated position of the wave source P by spatial average calculation using a plurality of receivers existing at different positions. The average value calculator 43 may output the estimated position of the wave source P by time average calculation. Specifically, the average value calculator 43 calculates the average value for each x-coordinate, y-coordinate, and z-coordinate, and then performs the same processing using the next received intensity data obtained from each receiver. The average value for each x coordinate, y coordinate, and z coordinate at the next time is calculated. The plurality of estimated positions of the wave source P obtained based on the received intensity data at different times are further averaged, and the obtained result is output as the estimated position of the wave source P. This makes it possible to estimate the position of the wave source P based on the time average.
 図15は、仮推定を行う3点測位処理ブロック42の構成を示す。 FIG. 15 shows a configuration of a three-point positioning processing block 42 that performs temporary estimation.
 3点測位処理ブロック42は、パワー・距離変換器45と、関数演算器46と、逆行列演算器47と、ベクトル乗算器48と、収束判定器49とを有する。図14と同様、CPU31をこれらの各構成要素として動作させてもよいし、一部または全部を、FPGA等を利用したハ―ドウェアとして設けて動作させてもよい。 The three-point positioning processing block 42 includes a power / distance converter 45, a function calculator 46, an inverse matrix calculator 47, a vector multiplier 48, and a convergence determiner 49. Similarly to FIG. 14, the CPU 31 may be operated as each of these components, or a part or all of the CPU 31 may be provided and operated as hardware using an FPGA or the like.
 パワー・距離変換器45は、メモリ32から、3個1組の受信強度データ、および、1m離れた距離の受信強度データである基準信号パワー情報Poを受け取る。例として、図15では、パワー・距離変換器45は、受信機20-A、20-Bおよび20-Cの各受信強度データPa、PbおよびPcを受け取っている。 The power / distance converter 45 receives, from the memory 32, a set of three pieces of received intensity data and reference signal power information Po that is received intensity data at a distance of 1 m. As an example, in FIG. 15, the power / distance converter 45 receives the received intensity data Pa, Pb and Pc of the receivers 20-A, 20-B and 20-C.
 パワー・距離変換器45は、3つの受信強度データPiの各々について、Po/Piを求める。得られた値は、各受信機と波源Pとの距離の二乗(ri 2)に対応する。図15では、パワー・距離変換器45は、波源Pと、受信機20-A、20-Bおよび20-Cの各々との距離の二乗(ra 2、rb 2、rc 2)の値を出力している。 The power / distance converter 45 calculates Po / Pi for each of the three reception intensity data Pi. The obtained value corresponds to the square of the distance between each receiver and the wave source P (r i 2 ). In FIG. 15, the power / distance converter 45 represents the square of the distance (r a 2 , r b 2 , r c 2 ) between the wave source P and each of the receivers 20 -A, 20 -B, and 20 -C. The value is output.
 関数演算器46は、数1に示す各関数を求める。 The function calculator 46 obtains each function shown in Equation 1.
 逆行列演算器47は、数5に示す逆行列を求める。逆行列の演算方法は公知であり、たとえば掃き出し法(sweep out method)を用いて計算することができる。なお、行列Qを入力すると逆行列Q-1を出力するコンピュータプログラムのライブラリもまた公知であり容易に入手可能である。そのようなライブラリプログラムを用いてCPU31を逆行列演算器47として動作させてもよい。 The inverse matrix calculator 47 obtains the inverse matrix shown in Equation 5. Inverse matrix computation methods are known and can be calculated using, for example, a sweep out method. A library of computer programs that outputs the inverse matrix Q -1 when the matrix Q is input is also known and easily available. The CPU 31 may be operated as the inverse matrix calculator 47 using such a library program.
 ベクトル乗算器48は、数5の右辺第2項の演算を行い、その結果を収束判定器49に出力する。 The vector multiplier 48 performs the operation of the second term on the right side of Equation 5 and outputs the result to the convergence determiner 49.
 収束判定器49は、ベクトル乗算器48から出力された結果が所定の収束条件を満たすか否かを判定する。たとえば収束判定器49は、x座標、y座標およびz座標の各々の変化量が予め定められた値未満になったときは収束したと判定してもよい。この処理は、上述した数5を変形した下記数6の処理に対応する。
Figure JPOXMLDOC01-appb-M000006
The convergence determiner 49 determines whether the result output from the vector multiplier 48 satisfies a predetermined convergence condition. For example, the convergence determination unit 49 may determine that the convergence has occurred when the amount of change in each of the x coordinate, the y coordinate, and the z coordinate is less than a predetermined value. This process corresponds to the process of the following formula 6 obtained by modifying the formula 5 described above.
Figure JPOXMLDOC01-appb-M000006
 収束条件が満たされていないと判定したときは、収束判定器49は、得られた値(xk,yk,zk)を用いて、収束するまで繰り返し数5の演算を行う。 When it is determined that the convergence condition is not satisfied, the convergence determination unit 49 performs the calculation of the number of repetitions 5 until convergence using the obtained values (x k , y k , z k ).
 収束条件が満たされたと判定したときは、収束判定器49は、波源Pの仮推定位置(x,y,z)を出力する。なお、収束判定器49は、予め定められた回数の演算を行った場合には収束したと判定してもよい。 When it is determined that the convergence condition is satisfied, the convergence determination unit 49 outputs the temporary estimated position (x, y, z) of the wave source P. Note that the convergence determination unit 49 may determine that the convergence has occurred when a predetermined number of operations have been performed.
 図16は、測位装置30の処理手順を示すフローチャートである。図16の処理のうち、ステップS2以降がCPU31の処理に相当する。 FIG. 16 is a flowchart showing a processing procedure of the positioning device 30. Of the processing in FIG. 16, step S2 and subsequent steps correspond to the processing of the CPU 31.
 測位装置30は、受信機20-A~20-Nの各々から受信強度の値(受信強度データ)を受け取る(ステップS1)。 The positioning device 30 receives a value of reception intensity (reception intensity data) from each of the receivers 20-A to 20-N (step S1).
 組合せパターン発生器41は、N個の受信強度データから選択された3個1組のデータ群をK組抽出する(ステップS2)。3点測位処理ブロック42-1~42-Kの各々は、抽出された各組のデータ群を用いて波源Pの位置の仮推定を行う(ステップS3)。この結果、K個の仮推定結果が得られる。 The combination pattern generator 41 extracts K sets of three data sets selected from the N received intensity data (step S2). Each of the three-point positioning processing blocks 42-1 to 42-K performs provisional estimation of the position of the wave source P using the extracted data group of each set (step S3). As a result, K temporary estimation results are obtained.
 平均値演算器43は、K個の仮推定の結果を平均して波源Pの位置を推定し(ステップS4)、得られた結果を波源Pの位置として出力する。 The average value calculator 43 averages the K preliminary estimation results to estimate the position of the wave source P (step S4), and outputs the obtained result as the position of the wave source P.
 以上の処理により、波源である信号発生器10の位置を推定することができる。 By the above processing, the position of the signal generator 10 that is a wave source can be estimated.
 (変形例)
 上述の説明では、事前に信号発生器と受信機とを1m離れた距離に置き、その時の受信パワー値Poを予め取得した。その理由は、信号発生器と各受信機との各距離の情報は通常は既知ではないからである。
(Modification)
In the above description, the signal generator and the receiver are placed at a distance of 1 m in advance, and the received power value Po at that time is acquired in advance. This is because the information on the distance between the signal generator and each receiver is usually not known.
 しかしながら、受信パワー値Poを予め取得しておくことが現実的には困難である場合がある。たとえば、施設内を移動する買い物客の位置を推定するために測位システムが用いられる場合を想定する。買い物客が所有する電子機器(たとえばスマートフォン)を信号発生器とすると、すべての電子機器を受信機の1mの位置に設置して受信パワー値を事前に求めることは現実的には困難である。 However, it may be difficult in practice to obtain the reception power value Po in advance. For example, assume that a positioning system is used to estimate the position of a shopper who moves within a facility. When an electronic device (for example, a smartphone) owned by a shopper is used as a signal generator, it is practically difficult to obtain all the electronic devices at a position of 1 m of the receiver and obtain a reception power value in advance.
 利用される信号発生器の種類や数が予め決まっている施設(たとえば工場)内に設置された測位システムの場合には、上述した1mの位置の受信パワー値を事前に求めることが可能な場合はある。しかしながら、バッテリの残量等に起因して、事前計測時の信号発生器の送信出力と、測位時の信号発生器の送信出力とが異なる場合があり得る。受信機についても、事前計測時と測位時とで計測状況が異なる場合があり得る。 In the case of a positioning system installed in a facility (for example, a factory) where the type and number of signal generators to be used are determined in advance, the received power value at the 1 m position described above can be obtained in advance. There is. However, the transmission output of the signal generator at the time of preliminary measurement may be different from the transmission output of the signal generator at the time of positioning due to the remaining amount of the battery. For the receiver as well, there may be a case where the measurement status differs between prior measurement and positioning.
 そこで本願発明者は、鋭意検討の結果、1mの位置の受信パワー値を事前に求めることなく、測位を可能にするアルゴリズムを構築した。 Therefore, as a result of diligent study, the inventor of the present application has constructed an algorithm that enables positioning without obtaining a reception power value at a position of 1 m in advance.
 以下で説明する測位アルゴリズムは、上述したニュートン法を用いた3点測位アルゴリズムに代えて利用可能である。すなわち、次に説明する図18の構成は、図13および図14の各3点測位ブロック42の構成に代えて利用可能である。 The positioning algorithm described below can be used in place of the above-described three-point positioning algorithm using the Newton method. That is, the configuration of FIG. 18 to be described next can be used in place of the configuration of each three-point positioning block 42 of FIGS. 13 and 14.
 本変形例では、4台または5台以上の複数の受信機で、波源から出力された信号波をそれぞれ受信する。波源は、電磁波、音波等の信号波を出力する信号発生器である。 In this modification, the signal wave output from the wave source is received by each of four or five or more receivers. The wave source is a signal generator that outputs signal waves such as electromagnetic waves and sound waves.
 各受信機は、波源から出力された信号波を受信して信号波の受信強度を示すデータを出力する。演算回路は、複数の受信機の各々から信号波の受信強度を示すデータを受け取って、所定の演算を行い、波源の位置の各座標成分を算出する。この演算は、所定の逆行列を求める演算を含むが、ニュートン法で利用される偏微分行列の逆行列演算とは異なる。 Each receiver receives the signal wave output from the wave source and outputs data indicating the received intensity of the signal wave. The arithmetic circuit receives data indicating the reception intensity of the signal wave from each of the plurality of receivers, performs a predetermined calculation, and calculates each coordinate component of the position of the wave source. This calculation includes a calculation for obtaining a predetermined inverse matrix, but is different from the inverse matrix calculation of the partial differential matrix used in the Newton method.
 いま、2つのベクトルpおよびsを以下のように定義する。 Now, two vectors p and s are defined as follows.
 ベクトルp:所定の基準位置からの波源の位置の各座標成分を各成分として含むベクトル
 ベクトルs:所定の基準位置から各受信機までの距離の二乗を並べたベクトル
Vector p: a vector including each coordinate component of the position of the wave source from a predetermined reference position as each component vector s: a vector in which the squares of the distances from the predetermined reference position to each receiver are arranged
 所定の基準位置は、測位システムが設置される空間における任意の位置であり、原点の位置として定義され得る。「位置」は、二次元空間内の位置であってもよいし、三次元空間内の位置であってもよい。 The predetermined reference position is an arbitrary position in the space where the positioning system is installed, and can be defined as the position of the origin. The “position” may be a position in a two-dimensional space or a position in a three-dimensional space.
 演算回路は、
  行列Q・ベクトルp=ベクトルs
の関係式を満たす四次元または五次元の正則正方行列Qの逆行列Q-1を算出し、算出した逆行列Q-1をベクトルsに作用させて、ベクトルpに含まれる波源の位置の各座標成分を算出する。算出された座標成分は、図13に示される1つの仮推定値として平均値演算器43に出力される。
The arithmetic circuit
Matrix Q vector p = vector s
The inverse matrix Q −1 of the four-dimensional or five-dimensional regular square matrix Q satisfying the relational expression is calculated, the calculated inverse matrix Q −1 is applied to the vector s, and each position of the wave source included in the vector p is calculated. A coordinate component is calculated. The calculated coordinate component is output to the average value calculator 43 as one temporary estimated value shown in FIG.
 なお、行列Qが正則正方行列である、という条件は、後に詳述するように、各受信機の位置を調整することにより容易に満足され得る。 Note that the condition that the matrix Q is a regular square matrix can be easily satisfied by adjusting the position of each receiver, as will be described in detail later.
 以下、本願発明者が完成させた、本実施形態による測位アルゴリズムを説明する。 Hereinafter, the positioning algorithm according to this embodiment completed by the present inventor will be described.
 三次元空間での測位のため、以下では5台の受信機を利用する。二次元空間での測位の場合には、4台の受信機があればよい。上述のとおり、受信機20-Aの位置Aを(xa,ya,za)などと表す。また、波源位置Pから受信機20-Aまでの距離をraなどと表す。測位すべき波源(信号発生器10)の位置Pを(x,y,z)と表す。 In the following, five receivers are used for positioning in a three-dimensional space. In the case of positioning in a two-dimensional space, there may be four receivers. As described above, the position A of the receiver 20-A is represented as (x a , y a , z a ) or the like. Further, the distance from the wave source position P to the receiver 20-A represents the like r a. The position P of the wave source (signal generator 10) to be measured is represented as (x, y, z).
 図17は、波源位置Pと各受信機との位置関係を示す。図17には、波源位置P、各受信機の位置A~Dが示されている。また、図17には基準位置として原点Oが示されている。原点Oは任意に定め得る。各受信機の位置は、原点Oの位置(0,0,0)を基準として決定されている。 FIG. 17 shows the positional relationship between the wave source position P and each receiver. FIG. 17 shows the wave source position P and the positions A to D of each receiver. In FIG. 17, the origin O is shown as the reference position. The origin O can be arbitrarily determined. The position of each receiver is determined based on the position (0, 0, 0) of the origin O.
 波源位置Pと受信機20-Aの位置Aとの間には以下の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000007
The following relationship is established between the wave source position P and the position A of the receiver 20-A.
Figure JPOXMLDOC01-appb-M000007
 同様に、波源位置Pと他の各受信機の位置との間にも以下の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Similarly, the following relationship holds between the wave source position P and the positions of other receivers.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 ここでパラメータβb~βeを導入する。パラメータβbは、波源位置Pから受信機20-Aまでの距離raに対する、波源位置Pから受信機20-Bまでの距離rbの大きさの二乗である。よって以下のように表記される。
(数12)
 βb=(rb/ra2
Here, parameters β b to β e are introduced. The parameter β b is the square of the magnitude of the distance r b from the wave source position P to the receiver 20-B with respect to the distance r a from the wave source position P to the receiver 20-A. Therefore, it is expressed as follows.
(Equation 12)
β b = (r b / r a ) 2
 同様に、βc、βdおよびβeも、波源位置Pから受信機20-Aまでの距離raと、波源位置Pから各受信機までの距離を用いて、まとめて以下のように表すことができる。
(数13)
 βc=(rc/ra2
 βd=(rd/ra2
 βe=(re/ra2
Similarly, beta c, also beta d and beta e, by using the distance r a from the wave source position P to the receiver 20-A, the distance from the wave source position P to each receiver, collectively represented as follows be able to.
(Equation 13)
β c = (r c / r a ) 2
β d = (r d / r a ) 2
β e = (r e / r a ) 2
 数12および13を利用して数8~11を変形すると、以下の数14が得られる。
Figure JPOXMLDOC01-appb-M000012
When Equations 8 and 11 are transformed using Equations 12 and 13, the following Equation 14 is obtained.
Figure JPOXMLDOC01-appb-M000012
 数7および数14の各式を展開して変形すると、以下の式が得られる。
Figure JPOXMLDOC01-appb-M000013
When the formulas 7 and 14 are expanded and transformed, the following formula is obtained.
Figure JPOXMLDOC01-appb-M000013
 いま、数15に含まれる未知数を、以下のように置き換える。
Figure JPOXMLDOC01-appb-M000014
Now, the unknown number included in Equation 15 is replaced as follows.
Figure JPOXMLDOC01-appb-M000014
 上述の変数の置き換えは、二次の項(非線形項または非線形成分)を一次の項(線形項または線形成分)に変更する操作である。つまり非線形方程式を線形化することに相当する。 The above-described variable replacement is an operation of changing a second-order term (nonlinear term or nonlinear component) to a first-order term (linear term or linear component). That is, it corresponds to linearizing a nonlinear equation.
 すると、数15は行列を用いて以下のように表現することができる。
Figure JPOXMLDOC01-appb-M000015
Then, Formula 15 can be expressed as follows using a matrix.
Figure JPOXMLDOC01-appb-M000015
 数17は行列Q、列ベクトルpおよびsを用いて以下のように表現できる。
(数18)
 Q・p=s
Expression 17 can be expressed as follows using the matrix Q and the column vectors p and s.
(Equation 18)
Q ・ p = s
 ベクトルpに含まれる要素のうち、x、yおよびzが、波源Pの位置を表す未知数である。行列Qの逆行列をQ-1と表すと、ベクトルpは以下の式により求めることができる。
(数19)
 p=Q-1・s
Among the elements included in the vector p, x, y, and z are unknown numbers representing the position of the wave source P. When the inverse matrix of the matrix Q is expressed as Q −1 , the vector p can be obtained by the following equation.
(Equation 19)
p = Q -1 · s
 数19は具体的には以下のように表現される。
Figure JPOXMLDOC01-appb-M000016
Equation 19 is specifically expressed as follows.
Figure JPOXMLDOC01-appb-M000016
 数19および数20が成立する条件として、行列Qの逆行列が存在すること、換言すれば、行列Qが正則正方行列であることが必要である。行列式が0でないことが条件となる。当該条件を満たすためには、(i)行列Qのある行と他の行との間には整数倍の関係がないこと、および、(ii)行列Qのある列と他の列との間には整数倍の関係がないこと、が必要である。数20に示されるように、行列Qの行に注目すると、上記関係(i)は明らかに満たさない。上記関係を満たす場合には、5つの受信機の位置が少なくとも同じになる必要があるが、そのような配置はありえないからである。 As a condition for satisfying Equations 19 and 20, it is necessary that an inverse matrix of the matrix Q exists, in other words, the matrix Q is a regular square matrix. The condition is that the determinant is not zero. In order to satisfy the condition, (i) there is no integer multiple relationship between one row of the matrix Q and another row, and (ii) between one column of the matrix Q and another column It is necessary that there is no integer multiple relationship. As shown in Expression 20, when attention is paid to the row of the matrix Q, the above relationship (i) is clearly not satisfied. If the above relationship is satisfied, the positions of the five receivers need to be at least the same, but such an arrangement is not possible.
 そこで行列Qの列の関係を検討する。5つの受信機のすべてのx座標、y座標またはz座標が一致する場合には、上記関係(ii)を満たす。そのため、5つの受信機を選択する際に、そのような条件を満たさない受信機の組を採用しなければよい。たとえば、z座標については、高さが少なくとも1つ異なる5台の受信機を選択する。x座標の関係およびy座標の関係も同様である。 Therefore, consider the relationship of the columns of the matrix Q. If all the x, y, or z coordinates of the five receivers match, the above relationship (ii) is satisfied. Therefore, when selecting five receivers, a set of receivers that do not satisfy such a condition may not be adopted. For example, for the z coordinate, five receivers with different heights are selected. The relationship between the x coordinate and the y coordinate is the same.
 次に、行列Qの逆行列を求める際の、パラメータβb~βeの取り扱いを説明する。パラメータβb~βeは、受信機20-A~20-Eの受信強度から求めることができる。 Next, the handling of the parameters β b to β e when obtaining the inverse matrix of the matrix Q will be described. The parameters β b to β e can be obtained from the reception intensity of the receivers 20-A to 20-E.
 まず、フリスの伝達公式によれば、下記の式が成り立つことが知られている。
(数21)
 Pr=(λ/4πr)2・Pt・Gt・Gr
First, according to Friis' transmission formula, the following equation is known to hold.
(Equation 21)
Pr = (λ / 4πr) 2 · Pt · Gt · Gr
 ここでPrは受信電力、λは定数、rは送信機と受信機との距離、Ptは信号発生器10の送信電力、Gtは信号発生器10の送信アンテナ14(図8)の利得、Grは受信アンテナの利得である。ここで、PtおよびGtは、共通の波源であるから同じ値である。また、受信アンテナの利得Grは、すべての受信機20-A~20-Eで共通化しておくことにより、同じ値であると仮定することができる。 Here, Pr is the received power, λ is a constant, r is the distance between the transmitter and the receiver, Pt is the transmitted power of the signal generator 10, Gt is the gain of the transmitting antenna 14 (FIG. 8) of the signal generator 10, Gr Is the gain of the receiving antenna. Here, Pt and Gt have the same value because they are a common wave source. The gain Gr of the receiving antenna can be assumed to be the same value by making it common to all the receivers 20-A to 20-E.
 受信機20-A~20-Eの各々波源との関係は以下のように表現できる。なお、受信機20-A~20-Eの受信強度をPa~Peと表す。
(数22)
 Pa=(λ/4πra2・Pt・Gt・Gr
 Pb=(λ/4πrb2・Pt・Gt・Gr
 Pc=(λ/4πrc2・Pt・Gt・Gr
 Pd=(λ/4πrd2・Pt・Gt・Gr
 Pe=(λ/4πre2・Pt・Gt・Gr
The relationship between each of the receivers 20-A to 20-E and the wave source can be expressed as follows. The reception strengths of the receivers 20-A to 20-E are represented as Pa to Pe.
(Equation 22)
Pa = (λ / 4πr a ) 2 · Pt · Gt · Gr
Pb = (λ / 4πr b ) 2 · Pt · Gt · Gr
Pc = (λ / 4πr c ) 2 · Pt · Gt · Gr
Pd = (λ / 4πr d ) 2 · Pt · Gt · Gr
Pe = (λ / 4πr e ) 2 · Pt · Gt · Gr
 この数式と、パラメータβb~βeの定義式とを用いると、以下の数23が得られる。
(数23)
 βb=Pa/Pb
 βc=Pa/Pc
 βd=Pa/Pd
 βe=Pa/Pe
Using this formula and the definition formulas of the parameters β b to β e , the following Expression 23 is obtained.
(Equation 23)
β b = Pa / Pb
β c = Pa / Pc
β d = Pa / Pd
β e = Pa / P e
 数23から明らかなように、βb~βeは、受信機20-A~20-Eの各受信強度を用いて具体的に求めることができる。 As is clear from Equation 23, β b to β e can be specifically obtained using the reception strengths of the receivers 20-A to 20-E.
 また、数17の右辺は、基準位置である原点Oから、各受信機までの距離の二乗である。各受信機の位置は予め定められている。よって、原点Oからの距離の二乗もまた予め取得しておくことができる。数17の右辺のベクトルは、および数20に含まれる。 The right side of Equation 17 is the square of the distance from the origin O, which is the reference position, to each receiver. The position of each receiver is predetermined. Therefore, the square of the distance from the origin O can also be acquired in advance. The vector on the right side of Expression 17 is included in Expression 20.
 以上のとおり、数20の右辺に示される、行列Qの逆行列Q-1は演算によって求めることができる。また、原点位置から各受信機までの距離の二乗を並べたベクトルsの各成分も予め求めることができる。これにより、数20の左辺の成分x、y、z、つまり波源の位置(x,y,z)を推定することができる。得られた位置(x,y,z)は、図13に示す例において、1つの仮推定値として利用され得る。 As described above, the inverse matrix Q −1 of the matrix Q shown on the right side of Equation 20 can be obtained by calculation. Further, each component of the vector s in which the squares of the distances from the origin position to the respective receivers are arranged can be obtained in advance. Thereby, the components x, y, and z on the left side of Equation 20, that is, the position (x, y, z) of the wave source can be estimated. The obtained position (x, y, z) can be used as one temporary estimated value in the example shown in FIG.
 測位装置30のCPU31は、上述の原理に従った演算を実行する。以下、図18および図19を参照しながら、CPU31の動作を説明する。 The CPU 31 of the positioning device 30 executes a calculation according to the above principle. Hereinafter, the operation of the CPU 31 will be described with reference to FIGS. 18 and 19.
 図18は、5点測位ブロック50の構成を示す。また図19は、5点測位ブロック50として機能するCPU31の処理手順を示すフローチャートである。 FIG. 18 shows the configuration of the 5-point positioning block 50. FIG. 19 is a flowchart showing a processing procedure of the CPU 31 functioning as the five-point positioning block 50.
 5点測位ブロック50は、パラメータ演算器51と、逆行列演算器52と、ベクトル乗算器53として機能する。図18では、あたかも3つの構成要素が存在するように示されているが、実際には処理の単位を意味している。本実施形態では、5点測位ブロック50として機能するCPU31は、図19に示すフローチャートによる処理を行うコンピュータプログラムにしたがって動作する。CPU31は、コンピュータプログラムの命令に従い、時間によって、パラメータ演算器51として動作し、逆行列演算器52として動作し、ベクトル乗算器53として動作する。処理ブロックから処理ブロックへの矢印は、データが次の演算に利用されることを意味している。 The 5-point positioning block 50 functions as a parameter calculator 51, an inverse matrix calculator 52, and a vector multiplier 53. In FIG. 18, it is shown as if there are three components, but it actually means a unit of processing. In the present embodiment, the CPU 31 functioning as the five-point positioning block 50 operates according to a computer program that performs processing according to the flowchart shown in FIG. The CPU 31 operates as a parameter calculator 51, operates as an inverse matrix calculator 52, and operates as a vector multiplier 53 depending on time according to instructions of the computer program. An arrow from the processing block to the processing block means that the data is used for the next calculation.
 ただし、パラメータ演算器51、逆行列演算器52およびベクトル乗算器53の少なくとも1つをハードウェアによって実現してもよい。たとえばFPGA(Field-programmable gate array)を用いることにより、パラメータ演算器51、逆行列演算器52およびベクトル乗算器53を1つの集積回路上に実装することが可能である。 However, at least one of the parameter calculator 51, the inverse matrix calculator 52, and the vector multiplier 53 may be realized by hardware. For example, by using an FPGA (Field-programmable gate array), the parameter calculator 51, the inverse matrix calculator 52, and the vector multiplier 53 can be mounted on one integrated circuit.
 以下では説明の便宜のため、パラメータ演算器51、逆行列演算器52およびベクトル乗算器53が独立に設けられた構成要素であるとして説明する。 Hereinafter, for convenience of explanation, the parameter calculator 51, the inverse matrix calculator 52, and the vector multiplier 53 will be described as independent components.
 パラメータ演算器51は、受信機20-A~20-Eの各々から受信強度の値を受け取り、数23に示す演算を行うことにより、パラメータβb~βeを算出する(ステップS11)。算出した各パラメータは逆行列演算器52に送られる。 The parameter calculator 51 receives the value of the reception intensity from each of the receivers 20-A to 20-E, and calculates the parameters β b to β e by performing the calculation shown in Equation 23 (step S11). Each calculated parameter is sent to the inverse matrix calculator 52.
 逆行列演算器52は、パラメータ演算器51からパラメータβb~βeを受け取る。また逆行列演算器52は、メモリ32に格納されている各受信機の位置座標を示すデータを読み出す(ステップS12)。そして逆行列演算器52は、パラメータβb~βeおよび各受信機の位置座標を示すデータを用いて行列Qの逆行列を計算する(ステップS13)。逆行列の演算方法は公知であり、たとえば掃き出し法(sweep out method)を用いて計算することができる。なお、行列Qを入力すると逆行列Q-1を出力するコンピュータプログラムのライブラリもまた公知であり容易に入手可能である。そのようなライブラリプログラムを用いてCPU31を逆行列演算器52として動作させてもよい。 The inverse matrix calculator 52 receives the parameters β b to β e from the parameter calculator 51. The inverse matrix calculator 52 reads data indicating the position coordinates of each receiver stored in the memory 32 (step S12). Then, the inverse matrix calculator 52 calculates an inverse matrix of the matrix Q using the parameters β b to β e and data indicating the position coordinates of each receiver (step S13). Inverse matrix computation methods are known and can be calculated using, for example, a sweep out method. A library of computer programs that outputs the inverse matrix Q -1 when the matrix Q is input is also known and easily available. The CPU 31 may be operated as the inverse matrix calculator 52 using such a library program.
 ベクトル乗算器53は、逆行列演算器52によって計算された逆行列Q-1およびメモリ32に格納されている各受信機の位置座標を示すデータを受け取る。後者は、原点位置から各受信機までの距離の二乗を並べたベクトルsを求めるために利用される。受け取ったデータに基づいて、ベクトル乗算器53は、演算Q-1・sを行う(ステップS14)。これにより、数20左辺のベクトルpを求めることができる。ベクトル乗算器53は、求めたベクトルpの成分であるx,y,zを、波源の位置として出力する(ステップS15)。 The vector multiplier 53 receives the inverse matrix Q −1 calculated by the inverse matrix calculator 52 and data indicating the position coordinates of each receiver stored in the memory 32. The latter is used to obtain a vector s in which the squares of the distances from the origin position to each receiver are arranged. Based on the received data, the vector multiplier 53 performs an operation Q −1 · s (step S14). Thereby, the vector p on the left side of Equation 20 can be obtained. The vector multiplier 53 outputs x, y, z, which are the components of the obtained vector p, as the position of the wave source (step S15).
 以上の処理により、波源である信号発生器10の位置を推定することができる。 By the above processing, the position of the signal generator 10 that is a wave source can be estimated.
 上述の数16に示す操作により、結果的に線形項が増えた。つまり、2つの非線形項を線形化したことにより、波源の位置を示すx、y、zに加えて未知数が2つ増加した。5つの未知数を求めるためには、5つの連立方程式が必要となる。これが、5台の受信機からの信号を利用して、5行5列の行列Qが必要になった理由である。逆行列を求めるために、本願発明者は受信機の数を増やして行列のランクの減少を補った。 As a result of the operation shown in Equation 16 above, the number of linear terms increased as a result. That is, by linearizing two nonlinear terms, the unknowns increased by two in addition to x, y, and z indicating the position of the wave source. In order to obtain five unknowns, five simultaneous equations are required. This is the reason why a matrix Q of 5 rows and 5 columns is required using signals from five receivers. In order to obtain the inverse matrix, the present inventor increased the number of receivers to compensate for the decrease in the rank of the matrix.
 アルゴリズムを線形化することにより、ニュートン法を利用する場合と比較して、多重解を回避でき、繰り返し演算を行う必要もないため、ハードウェアへの負荷やソフトウェアの処理を軽減することができる。BLE測位システムの導入は比較的手軽に行うことができる。そのような性格上、導入のコストを抑えることが求められる。線形計測処理は、入力に対して出力が一意的に決定するためテーブル化も可能でありシステムの低コスト化に貢献する。 By linearizing the algorithm, multiple solutions can be avoided and it is not necessary to perform repetitive computations compared to the case of using the Newton method, so that the load on hardware and software processing can be reduced. The BLE positioning system can be introduced relatively easily. Due to such characteristics, it is required to reduce the cost of introduction. Since the linear measurement process determines the output uniquely with respect to the input, it can be tabulated and contributes to the cost reduction of the system.
 「テーブル化」とは、予め測定されたβb、βc、βd、βeの組と、それらから推定されるx、y、zの組とを対応付けたテーブルを用意することを言う。実際に受信強度データが得られ、βb、βc、βd、βeの組が決定されたとき、テーブルを参照して一致する組を検索する。一致する組がテーブルに存在した場合には、対応付けられたx、y、zの組を読み出して出力する。行列演算等が不要になるため、非常に高速に結果を出力することができる。さらにCPU31の負荷を大きく抑制できる。テーブルのエントリ数が増えるほど、実測したβb、βc、βd、βeの組に一致する組がテーブル上に存在する可能性が高くなる。 “Tableization” refers to preparing a table in which a set of β b , β c , β d , and β e measured in advance is associated with a set of x, y, and z estimated from them. . When reception intensity data is actually obtained and a set of β b , β c , β d , and β e is determined, a matching set is searched with reference to a table. If there is a matching set in the table, the associated x, y, z set is read and output. Since a matrix operation or the like is not necessary, the result can be output at a very high speed. Furthermore, the load on the CPU 31 can be greatly suppressed. As the number of entries in the table increases, there is a higher possibility that a pair that matches the actually measured pair of β b , β c , β d , and β e exists on the table.
 なお、テーブルのエントリ数を増加させることは極めて容易である。測位システム1が導入された環境で、波源となる信号発生器10の位置を変えながら、都度、各受信機で信号波を受信してβb、βc、βd、βeの組を取得し、波源の位置x、y、zの組を推定しておけばよいからである。検索のヒット率が十分高いテーブルを設けておけば、比較的処理能力が低いCPUを採用しても、十分高速に波源の位置を示す情報を出力することができる。 It is very easy to increase the number of entries in the table. In the environment where the positioning system 1 is introduced, each receiver receives a signal wave and obtains a set of β b , β c , β d , and β e while changing the position of the signal generator 10 as a wave source. This is because the set of wave source positions x, y, and z should be estimated. If a table having a sufficiently high search hit rate is provided, information indicating the position of the wave source can be output at a sufficiently high speed even if a CPU having a relatively low processing capability is employed.
 上述の説明から類推されるように、二次元空間の位置を推定する場合には、4台の受信機から受信強度のデータを所得できればよい。二次元空間の位置を推定するために必要な行列Q、ベクトルpおよびsは以下のとおりである。 As can be inferred from the above explanation, when estimating the position of the two-dimensional space, it is only necessary to obtain the received intensity data from the four receivers. The matrix Q and vectors p and s necessary for estimating the position in the two-dimensional space are as follows.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 なお、行列Qの逆行列が存在するための受信機の位置に関する条件は同じである。 Note that the conditions regarding the position of the receiver for the existence of the inverse matrix of the matrix Q are the same.
 信号発生器10の位置を推定した後は、測位システム1は、たとえば図示されない誘導装置を利用して、自走車両24bおよび/またはスマートフォン24cを所定の位置まで誘導してもよい。誘導装置は移動先の位置を通知して、当該位置まで自走車両24bまたはスマートフォン24cを所有する人を誘導することができる。このとき、リアルタイムに、または間欠的に信号発生器10の位置の推定処理を行い、適切に誘導を行うことができる。 After estimating the position of the signal generator 10, the positioning system 1 may guide the self-propelled vehicle 24b and / or the smartphone 24c to a predetermined position using, for example, a guidance device (not shown). The guidance device can notify the position of the destination and guide the person who owns the self-propelled vehicle 24b or the smartphone 24c to the position. At this time, the process of estimating the position of the signal generator 10 can be performed in real time or intermittently to perform appropriate guidance.
 なお、上述の説明では、二次元空間の位置を推定するためには4台の受信機からの受信強度データを利用すると説明したが、5台以上の受信機からの受信強度データを利用してもよい。また、三次元空間の位置を推定するためには5台の受信機からの受信強度データを利用すると説明したが、6台以上の受信機からの受信強度データを利用してもよい。 In the above description, the reception intensity data from four receivers is used to estimate the position in the two-dimensional space. However, the reception intensity data from five or more receivers is used. Also good. In addition, although it has been described that reception intensity data from five receivers is used to estimate a position in a three-dimensional space, reception intensity data from six or more receivers may be used.
 本開示の誘導システムは、屋内または屋外を移動する移動体の位置の推定に用いられ得る。また測位した結果を利用する移動体の位置の制御に用いられ得る。 The guidance system of the present disclosure can be used for estimating the position of a moving body that moves indoors or outdoors. Moreover, it can be used for control of the position of the moving body using the positioning result.
 1 測位システム
 10 信号発生器
 20-A、20-B、・・・、20-N 受信機
 30 測位装置
 31 CPU(演算回路)
 32 メモリ
 33 通信回路
 34a 入力インタフェース
 34b 出力インタフェース
 41 組合せパターン発生器
 42-1~42-K 3点測位処理ブロック
 43 平均値演算器
DESCRIPTION OF SYMBOLS 1 Positioning system 10 Signal generator 20-A, 20-B, ..., 20-N Receiver 30 Positioning device 31 CPU (arithmetic circuit)
32 memory 33 communication circuit 34a input interface 34b output interface 41 combination pattern generator 42-1 to 42-K 3-point positioning processing block 43 average value calculator

Claims (12)

  1.  波源から出力された信号波をそれぞれ受信するN台(Nは4以上の整数)以上の複数の受信機であって、各々が、波源から出力された信号波を受信して前記信号波の受信強度を示すデータを出力する複数の受信機と、
     前記複数の受信機の各々から前記信号波の受信強度を示すデータを受け取り、受け取ったN個のデータを利用して前記波源の位置を推定する演算回路と
     を備え、
     前記演算回路は、
      受け取ったN個のデータから選択された3個以上のデータを各々が含む、K組のデータ群(K:2以上の整数)について、各組の3個以上のデータを利用して前記波源の位置を組ごとに仮推定し、
      仮推定した2以上の前記波源の位置に基づいて前記波源の位置を推定し、
     前記N個のデータのうちの少なくとも1個は、複数の組に重複して含まれる、測位システム。
    A plurality of receivers (N is an integer of 4 or more) each receiving a signal wave output from a wave source, each receiving a signal wave output from the wave source and receiving the signal wave A plurality of receivers that output data indicating the intensity;
    An arithmetic circuit that receives data indicating the reception intensity of the signal wave from each of the plurality of receivers and estimates the position of the wave source using the received N pieces of data; and
    The arithmetic circuit is:
    For K sets of data groups (K: an integer of 2 or more) each including 3 or more data selected from the received N data, each set of 3 or more data is used to Temporarily estimate the position for each pair,
    Estimating the position of the wave source based on the position of two or more of the temporarily estimated wave sources;
    The positioning system, wherein at least one of the N pieces of data is included in a plurality of sets.
  2.  前記演算回路は、各々が3個のデータを含むK組のデータ群を生成し、3点測位法によって前記波源の位置を組ごとに仮推定する、請求項1に記載の測位システム。 The positioning system according to claim 1, wherein the arithmetic circuit generates K sets of data groups each including three pieces of data, and temporarily estimates the position of the wave source for each set by a three-point positioning method.
  3.  前記演算回路は、N3組以下のデータ群を生成する、請求項2に記載の測位システム。 The positioning system according to claim 2, wherein the arithmetic circuit generates a data group of N C 3 or less.
  4.  前記演算回路は、ニュートン法によって各組の3個のデータから前記波源の位置を組ごとに仮推定する、請求項1から3のいずれかに記載の測位システム。 The positioning system according to any one of claims 1 to 3, wherein the arithmetic circuit tentatively estimates the position of the wave source for each set from three sets of data by Newton's method.
  5.  前記演算回路は、
     受け取ったN個のデータから、各々が4個または5個以上のデータを含むK組のデータ群(K:2以上の整数)を生成し、
     行列Q・ベクトルp=ベクトルs
    (ただし、ベクトルp:所定の基準位置からの前記波源の位置の各座標成分を各成分として含むベクトル、ベクトルs:前記所定の基準位置から前記各受信機までの距離の二乗を並べたベクトル)
    の関係式を満たす4次元または5次元の正則正方行列Qの逆行列Q-1を算出し、算出した前記逆行列Q-1を前記ベクトルsに作用させて、前記ベクトルpに含まれる前記波源の位置の各座標成分を算出し、
      各受信機の位置の各座標成分と前記波源の位置の各座標成分との差の二乗の和が、前記各受信機と前記波源との距離の二乗に等しいという第1の関係式 を、
      前記波源の位置の各座標成分を含む二次の項、一次の項、および、前記各受信機と前記波源との距離の二乗の項、の和が、所定の基準位置から前記各受信機までの距離の二乗に等しいという第2の関係式 に変形し、かつ、
      前記ベクトルpが、前記二次の項を第1線形成分に置換した成分、および、所定の受信機と前記波源との距離の二乗の項を第2線形成分に置換した成分をさらに含むよう定義したときにおいて、
     前記演算回路は、前記所定の受信機の受信強度と他の受信機の各受信強度との比の値を、前記第2線形成分と乗算される行または列の成分として含む前記行列Qの逆行列Q-1を求める、請求項1に記載の測位システム。
    The arithmetic circuit is:
    From the received N pieces of data, generate K sets of data groups (K: an integer of 2 or more) each including 4 or 5 or more data,
    Matrix Q vector p = vector s
    (However, vector p: a vector including each coordinate component of the position of the wave source from a predetermined reference position as a component, vector s: a vector in which squares of distances from the predetermined reference position to the respective receivers are arranged)
    The inverse matrix Q −1 of the four-dimensional or five-dimensional regular square matrix Q that satisfies the relational expression is calculated, and the calculated inverse matrix Q −1 is applied to the vector s, so that the wave source included in the vector p Each coordinate component of the position of
    The first relational expression that the sum of the squares of the difference between each coordinate component of each receiver position and each coordinate component of the wave source position is equal to the square of the distance between each receiver and the wave source:
    The sum of the quadratic term including each coordinate component of the position of the wave source, the primary term, and the term of the square of the distance between each receiver and the wave source is from a predetermined reference position to each receiver. Transformed into a second relational expression equal to the square of the distance of
    The vector p is defined to further include a component obtained by replacing the quadratic term with a first linear component, and a component obtained by replacing a square term of a distance between a predetermined receiver and the wave source with a second linear component. When
    The arithmetic circuit includes a value of a ratio between a reception intensity of the predetermined receiver and each reception intensity of other receivers as a row or column component multiplied by the second linear component, and the inverse of the matrix Q The positioning system according to claim 1, wherein the positioning system calculates a matrix Q −1 .
  6.  前記演算回路は、仮推定した結果を平均化する演算を行って、前記波源の位置を推定する、請求項1から5のいずれかに記載の測位システム。 The positioning system according to any one of claims 1 to 5, wherein the arithmetic circuit performs an arithmetic operation for averaging the temporarily estimated results to estimate the position of the wave source.
  7.  前記演算回路は、仮推定した2以上の波源の位置の空間平均演算を行って、前記波源の位置を推定する、請求項6に記載の測位システム。 The positioning system according to claim 6, wherein the arithmetic circuit estimates a position of the wave source by performing a spatial average calculation of the positions of the two or more wave sources temporarily estimated.
  8.  前記演算回路は、仮推定した2以上の前記波源の位置の中央値および最頻値の一方を、前記波源の位置として推定する、請求項1から5のいずれかに記載の測位システム。 The positioning system according to any one of claims 1 to 5, wherein the arithmetic circuit estimates one of a median value and a mode value of two or more temporarily estimated wave source positions as the wave source position.
  9.  前記波源は、前記信号波として電磁波または音波を放射する、請求項1から8のいずれかに記載の測位システム。 The positioning system according to any one of claims 1 to 8, wherein the wave source emits an electromagnetic wave or a sound wave as the signal wave.
  10.  前記演算回路が算出した前記波源の座標を出力するインタフェースをさらに備えた、請求項1から9のいずれかに記載の測位システム。 10. The positioning system according to claim 1, further comprising an interface that outputs coordinates of the wave source calculated by the arithmetic circuit.
  11.  測位システムに用いられる測位装置であって、
     前記測位システムは、波源から出力された信号波をそれぞれ受信するN台(Nは4以上の整数)以上の複数の受信機であって、各々が、波源から出力された信号波を受信して前記信号波の受信強度を示すデータを出力する複数の受信機を有し、
     前記測位装置は、
     前記複数の受信機の各々から前記信号波の受信強度を示すデータを受け取る入力端子と、
     前記複数の受信機の各々から前記信号波の受信強度を示すデータを受け取り、受け取ったN個のデータを利用して前記波源の位置を推定する演算回路と
     前記演算回路が算出した前記波源の位置の各座標成分のデータを出力する出力端子と
    を備え、
     前記演算回路は、
      受け取ったN個のデータから選択された3個以上のデータを各々が含む、K組のデータ群(K:2以上の整数)について、各組の3個以上のデータを利用して前記波源の位置を組ごとに仮推定し、
      仮推定した2以上の前記波源の位置に基づいて前記波源の位置を推定し、
     前記N個のデータのうちの少なくとも1個は、複数の組に重複して含まれる、測位装置。
    A positioning device used in a positioning system,
    The positioning system includes a plurality of receivers (N is an integer of 4 or more) that respectively receive signal waves output from a wave source, each receiving a signal wave output from a wave source. A plurality of receivers for outputting data indicating the reception intensity of the signal wave;
    The positioning device is
    An input terminal for receiving data indicating the reception intensity of the signal wave from each of the plurality of receivers;
    An arithmetic circuit that receives data indicating the reception intensity of the signal wave from each of the plurality of receivers and estimates the position of the wave source using the received N pieces of data, and the position of the wave source calculated by the arithmetic circuit An output terminal for outputting data of each coordinate component of
    The arithmetic circuit is:
    For K sets of data groups (K: an integer of 2 or more) each including 3 or more data selected from the received N data, each set of 3 or more data is used to Temporarily estimate the position for each pair,
    Estimating the position of the wave source based on the position of two or more of the temporarily estimated wave sources;
    A positioning device, wherein at least one of the N pieces of data is included in a plurality of sets.
  12.  測位システムの測位装置に設けられたコンピュータによって実行されるコンピュータプログラムであって、
     前記測位システムは、波源から出力された信号波をそれぞれ受信するN台(Nは4以上の整数)以上の複数の受信機であって、各々が、波源から出力された信号波を受信して前記信号波の受信強度を示すデータを出力する複数の受信機を有し、
     前記コンピュータプログラムは、前記コンピュータに対し、
     前記複数の受信機の各々から取得された前記信号波の受信強度を示すデータを読み出すステップと、
     読み出したN個のデータを利用して前記波源の位置を推定するステップと、
     前記演算回路が算出した前記波源の位置の各座標成分のデータを出力するステップと
     を実行させ、
     前記推定するステップは、
      受け取ったN個のデータから選択された3個以上のデータを各々が含む、K組のデータ群(K:2以上の整数)について、各組の3個以上のデータを利用して前記波源の位置を組ごとに仮推定し、
      仮推定した2以上の前記波源の位置に基づいて前記波源の位置を推定し、
     前記N個のデータのうちの少なくとも1個は、複数の組に重複して含まれる、コンピュータプログラム。
    A computer program executed by a computer provided in a positioning device of a positioning system,
    The positioning system includes a plurality of receivers (N is an integer of 4 or more) that respectively receive signal waves output from a wave source, each receiving a signal wave output from a wave source. A plurality of receivers for outputting data indicating the reception intensity of the signal wave;
    The computer program is for the computer.
    Reading data indicating the received intensity of the signal wave obtained from each of the plurality of receivers;
    Estimating the position of the wave source using the read N pieces of data;
    Outputting the data of each coordinate component of the position of the wave source calculated by the arithmetic circuit; and
    The estimating step includes:
    For K sets of data groups (K: an integer of 2 or more) each including 3 or more data selected from the received N data, each set of 3 or more data is used to Temporarily estimate the position for each pair,
    Estimating the position of the wave source based on the position of two or more of the temporarily estimated wave sources;
    A computer program, wherein at least one of the N pieces of data is redundantly included in a plurality of sets.
PCT/JP2017/035345 2016-09-30 2017-09-28 Positioning system, positioning device, and computer program WO2018062435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018542889A JPWO2018062435A1 (en) 2016-09-30 2017-09-28 Positioning system, positioning device and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016194586 2016-09-30
JP2016-194586 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062435A1 true WO2018062435A1 (en) 2018-04-05

Family

ID=61760734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035345 WO2018062435A1 (en) 2016-09-30 2017-09-28 Positioning system, positioning device, and computer program

Country Status (2)

Country Link
JP (1) JPWO2018062435A1 (en)
WO (1) WO2018062435A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180461A1 (en) * 2017-03-28 2018-10-04 日本電産株式会社 Positioning system, positioning device, and computer program
JP2020159705A (en) * 2019-03-25 2020-10-01 株式会社国際電気通信基礎技術研究所 Position estimation device and position estimation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074700A (en) * 2008-09-22 2010-04-02 Brother Ind Ltd Wireless communication system, mobile station and base station
JP2011158459A (en) * 2010-01-29 2011-08-18 Ntt Docomo Inc Estimating whether wireless terminal is indoors using pattern classification
JP2012052922A (en) * 2010-09-01 2012-03-15 Konica Minolta Business Technologies Inc Apparatus arrangement detection system, apparatus arrangement detection method and apparatus
JP2017181166A (en) * 2016-03-29 2017-10-05 西日本電信電話株式会社 Location positioning device, location positioning method, and location positioning program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074700A (en) * 2008-09-22 2010-04-02 Brother Ind Ltd Wireless communication system, mobile station and base station
JP2011158459A (en) * 2010-01-29 2011-08-18 Ntt Docomo Inc Estimating whether wireless terminal is indoors using pattern classification
JP2012052922A (en) * 2010-09-01 2012-03-15 Konica Minolta Business Technologies Inc Apparatus arrangement detection system, apparatus arrangement detection method and apparatus
JP2017181166A (en) * 2016-03-29 2017-10-05 西日本電信電話株式会社 Location positioning device, location positioning method, and location positioning program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180461A1 (en) * 2017-03-28 2018-10-04 日本電産株式会社 Positioning system, positioning device, and computer program
JP2020159705A (en) * 2019-03-25 2020-10-01 株式会社国際電気通信基礎技術研究所 Position estimation device and position estimation method
JP7315349B2 (en) 2019-03-25 2023-07-26 株式会社国際電気通信基礎技術研究所 Position estimation device and position estimation method

Also Published As

Publication number Publication date
JPWO2018062435A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
US8626189B2 (en) Position optimization
Noroozi et al. Algebraic solution for three‐dimensional TDOA/AOA localisation in multiple‐input–multiple‐output passive radar
US9128186B2 (en) Target tracking device and target tracking method
US9995564B2 (en) Terminal and server for modifying magnetic field and method thereof
CN112929817B (en) Terminal positioning method, device, terminal and storage medium
WO2018062435A1 (en) Positioning system, positioning device, and computer program
Zhou A closed-form algorithm for the least-squares trilateration problem
CN115134741A (en) UWB base station anomaly detection method and electronic equipment
JP2011089947A (en) Position detection system and method
CN107318122B (en) Device for obtaining frequency difference amplitude spectrogram, fault positioning system and antenna system
JP2019184407A (en) Positioning system and positioning device
US20140192991A1 (en) Method for self-calibration of a set of sensors, in particular microphones, and corresponding system
WO2018062433A1 (en) Positioning system, positioning device, and computer program
WO2018062434A1 (en) Positioning system, positioning device, and computer program
JP2020051921A (en) Positioning system and positioning device
CN110346757B (en) Anti-multipath time difference positioning method, device and system based on mobile measuring station
WO2018180461A1 (en) Positioning system, positioning device, and computer program
JP6375956B2 (en) Equivalent electric field strength estimation method and radiated disturbance measurement apparatus
CN104459680B (en) Method for rapidly estimating target direction through MIMO radar
CN108445445B (en) Distributed passive positioning method and device
KR20160094286A (en) Mobile terminal, position identification method, position identification program and position identification device
Xiong et al. Robust elliptic localization using worst-case formulation and convex approximation
JP6286182B2 (en) Estimation method and estimation apparatus using the same
JP2019184408A (en) Positioning system and positioning device
Golihaghighi et al. Using frame theory for optimal placement of new added anchors in location estimation wireless networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856384

Country of ref document: EP

Kind code of ref document: A1