WO2018180417A1 - Scribing method and scribing device - Google Patents

Scribing method and scribing device Download PDF

Info

Publication number
WO2018180417A1
WO2018180417A1 PCT/JP2018/009450 JP2018009450W WO2018180417A1 WO 2018180417 A1 WO2018180417 A1 WO 2018180417A1 JP 2018009450 W JP2018009450 W JP 2018009450W WO 2018180417 A1 WO2018180417 A1 WO 2018180417A1
Authority
WO
WIPO (PCT)
Prior art keywords
scribe line
glass substrate
line
laser
forming step
Prior art date
Application number
PCT/JP2018/009450
Other languages
French (fr)
Japanese (ja)
Inventor
弘義 林
郁祥 中谷
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Priority to CN201880022170.6A priority Critical patent/CN110475754B/en
Priority to JP2019509179A priority patent/JP7456604B2/en
Priority to KR1020197029366A priority patent/KR20190129914A/en
Publication of WO2018180417A1 publication Critical patent/WO2018180417A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam

Definitions

  • the present invention relates to a scribing method and a scribing apparatus, and more particularly, to a method and apparatus for forming a scribe line by intermittently performing internal processing of a glass substrate by a pulse using a laser device in a plane direction.
  • Laser processing is known as a method for scribing a glass substrate.
  • laser processing for example, an infrared picosecond laser is used.
  • a method of forming a scribe line by forming a plurality of laser filaments by intermittently performing internal processing with a pulse in a plane direction by a laser is known (see, for example, Patent Document 1).
  • the focused laser beam is composed of pulses having energy and pulse duration selected to create a filament in the substrate.
  • a scribe line for cleaving the substrate is formed by the plurality of filaments.
  • An object of the present invention is to form a scribe line on a glass substrate by laser processing so as to facilitate later separation.
  • a scribing method is a method of scribing a glass substrate, and includes the following steps. ⁇ Scribe line formation process to form scribe lines by intermittently processing the glass substrate by pulses using a laser device in the plane direction ⁇ After the scribe line formation process, the inside of the glass substrate by pulses using a laser device Break line forming step of forming a break line along the scribe line by intermittently performing processing in the plane direction.
  • the break line when the break line is formed, inside the glass substrate, the processed portion The structure collapses and an impact acts on the scribe line. Due to this impact, a crack is generated or propagates in the scribe line. As a result, the scribe line can be easily separated.
  • the break line may be formed at a position different from the scribe line in plan view. In this method, by setting so that the collapse of the structure does not reach the scribe line, the impact on the scribe line can be sufficiently increased.
  • the break line may be formed substantially parallel to the scribe line. In this method, it is possible to apply an impact to the scribe line as a whole.
  • the condensing state may be different between the scribe line forming step and the break line forming step.
  • the break line can be formed in a light-collecting state that can give a sufficient impact to the scribe line in the break line forming step.
  • the light collection state may be changed by lens operation.
  • the manufacturing cost is reduced.
  • the light collection state may be changed by spatial light modulation.
  • the scribe line and the break line can be processed with one laser device, the manufacturing cost is reduced.
  • a scribing apparatus includes a laser apparatus and a control unit that causes the laser apparatus to execute the scribing method.
  • a scribe line when a scribe line is formed on a glass substrate by laser processing, it can be processed so as to facilitate later separation.
  • the schematic diagram of the laser processing apparatus of 1st Embodiment of this invention The top view of the glass substrate of 1st Embodiment.
  • the cross-sectional photograph along the scribe line of the Example The cross-sectional photograph along the scribe line of the Example.
  • FIG. 1 shows an overall configuration of a laser processing apparatus 1 for cutting a glass substrate according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a laser processing apparatus according to a first embodiment of the present invention.
  • the laser processing apparatus 1 is an apparatus for fully cutting the glass substrate G.
  • the glass substrate G is soda glass and has a thickness of, for example, 1.8 mm and is in a range of 1.1 to 3 mm.
  • the laser processing apparatus 1 includes a laser apparatus 3.
  • the laser device 3 includes a laser oscillator 15 for irradiating the glass substrate G with laser light, and a laser control unit 17.
  • the laser oscillator 15 is, for example, a picosecond laser having a wavelength of 340 to 1100 nm.
  • the laser control unit 17 can control the driving of the laser oscillator 15 and the laser power.
  • the laser device 3 includes a transmission optical system 5 that transmits laser light to a mechanical drive system described later.
  • the transmission optical system 5 includes, for example, a condenser lens 19, a plurality of mirrors (not shown), a prism (not shown), and the like.
  • the laser processing apparatus 1 has a drive mechanism 11 that changes the condensing angle of laser light by moving the position of the lens in the optical axis direction.
  • the laser processing apparatus 1 has a processing table 7 on which a glass substrate G is placed.
  • the processing table 7 is moved by the table driving unit 13.
  • the table driving unit 13 has a moving device (not shown) that moves the processing table 7 in the horizontal direction with respect to the bed (not shown).
  • the moving device is a known mechanism having a guide rail, a motor, and the like.
  • the laser processing apparatus 1 includes a control unit 9.
  • the control unit 9 includes a processor (for example, CPU), a storage device (for example, ROM, RAM, HDD, SSD, etc.) and various interfaces (for example, an A / D converter, a D / A converter, a communication interface, etc.). It is a computer system.
  • the control unit 9 performs various control operations by executing a program stored in the storage unit (corresponding to a part or all of the storage area of the storage device).
  • the control unit 9 may be composed of a single processor, but may be composed of a plurality of independent processors for each control.
  • the control unit 9 can control the laser control unit 17.
  • the control unit 9 can control the drive mechanism 11.
  • the control unit 9 can control the table driving unit 13.
  • the control unit 9 is connected to a sensor (not shown) for detecting the size, shape and position of the glass substrate G, sensors and switches for detecting the state of each device, and an information input device.
  • FIG. 2 is a plan view of the glass substrate of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of a glass substrate.
  • FIG. 4 is a plan view of a glass substrate for explaining the state of pulse processing.
  • FIG. 5 is a schematic plan view of the glass substrate in the scribe line forming step.
  • FIG. 6 is a schematic cross-sectional view of the glass substrate in the break line forming step.
  • the scribing method includes the following steps.
  • a scribe line forming step for forming the scribe line 31 by intermittently performing internal processing of the glass substrate G by the pulse L1 using the laser device 3 in the plane direction (particularly, refer to FIGS. 3 to 5).
  • the break line formation step (forms the break line 33 along the scribe line 31 by intermittently performing internal processing of the glass substrate G with the pulse L2 using the laser device 3 in the plane direction)
  • a processing trace extending along the optical axis is formed inside the glass substrate G in the laser irradiation portion.
  • the processing trace extends between the surfaces of the glass substrate G.
  • a partial processing mark is formed inside the glass substrate G in the laser irradiation portion.
  • the scribe line 31 is formed in an annular shape
  • the break line 33 is formed in an annular shape outside the scribe line 31.
  • the break line may be formed inside the scribe line.
  • the scribe line and the break line may have a shape other than the annular shape.
  • the pitch D1 of the pulse irradiation position S1 constituting the scribe line 31 is in the range of 1 to 6 ⁇ m.
  • the pitch D2 of the pulse irradiation position S2 constituting the break line 33 is shorter than the pitch D1.
  • the pitch D2 is in the range of 0.5 to 3 ⁇ m.
  • the break line 33 is formed at a position different from the scribe line 31 in plan view. Therefore, by setting so that the collapse of the structure does not reach the scribe line 31, the impact on the scribe line 31 can be sufficiently increased by forming the break line 33.
  • the break line 33 is formed substantially parallel to the scribe line 31. Therefore, it is possible to give an impact to the scribe line 31 as a whole by forming the break line. However, a part or all of them may not necessarily be parallel. Moreover, the break line does not need to correspond to all of the scribe lines, and may be formed corresponding to only the necessary portions of the scribe lines.
  • the reason why the scribe line 31 can be easily separated by processing the break line 33 is as follows. That is, when the break line 33 is formed beside the scribe line 31, the structure of the processed part is collapsed and an impact is applied to the scribe part inside the glass substrate G. The impact causes a crack in the scribe portion, and the scribe line 31 can be easily separated.
  • a distance D3 between the scribe line 31 and the break line 33 is, for example, 45 ⁇ m.
  • the distance D3 is preferably in the range of 5 to 70 ⁇ m, more preferably 30 to 60 ⁇ m.
  • the distances D3 may not all be the same, that is, break lines may be formed at a plurality of different distance positions with respect to the scribe line. If the distance is too short, the range to which the impact is applied becomes narrow, and the collapse of the structure reaches the scribe line 31, so that a part of the scribe is collapsed and the impact applied to the scribe line 31 is reduced. Therefore, the separation of the scribe line 31 becomes hard. If the distance is too long, the range of impact is too wide and the impact applied to the scribe line 31 is reduced.
  • the condensing state is different between the scribe line forming step and the break line forming step.
  • the break line 33 can be formed in a condensing state that can give a sufficient impact to the scribe line 31 in the break line forming step.
  • the processing conditions of the scribe line 31 are as follows. 1) Pulse energy: 400 ⁇ J (preferably 200 ⁇ J or more) 2) Processing pitch: 4 ⁇ m (preferably in the range of 1 to 6 ⁇ m)
  • the beam waist of the pulse L1 is inside the glass substrate G.
  • a processing mark extending from the upper surface to the lower surface of the glass substrate G is formed.
  • the processing conditions of the break line 33 are as follows. 1) Pulse energy: 150 ⁇ J (preferably 100 ⁇ J or more) 2) Processing pitch: 1 ⁇ m (preferably in the range of 0.5 to 3 ⁇ m)
  • Pulse energy 150 ⁇ J (preferably 100 ⁇ J or more)
  • Processing pitch 1 ⁇ m (preferably in the range of 0.5 to 3 ⁇ m)
  • the focal point of the pulse L2 is in the middle in the thickness direction of the glass substrate G, and compared with the processing conditions of the scribe line 31, the pulse energy is small and the condensing angle is large.
  • a partial processing mark is formed in the middle of the glass substrate G in the thickness direction.
  • the condensing state is changed by lens operation by the drive mechanism 11 in the scribe line forming step and the break line forming step. Therefore, since the scribe line 31 and the break line 33 can be processed by one laser device 3, the manufacturing cost is reduced.
  • FIG. 7 is a cross-sectional photograph taken along the scribe line of the reference example.
  • 8 and 11 are cross-sectional views along the scribe line of the comparative example.
  • 9 to 11 are cross-sectional photographs taken along the scribe line of the example.
  • FIG. 7 shows a reference example, in which only a scribe line is formed. That is, the break line is not formed, and therefore, the processing trace resulting from the break line is not seen.
  • FIG. 8 shows a comparative example, in which the distance D3 is 0 ⁇ m. In this case, the collapse of the structure has reached the scribe line, and a part of the scribe line has collapsed. As a result, it is difficult to divide the scribe line.
  • FIG. 9 shows the first embodiment, and the distance D3 is 35 ⁇ m. A processing mark generated by the break line formation appears on the cut surface. The plurality of processing marks extend long in the vertical direction.
  • FIG. 10 shows a second embodiment, in which the distance D3 is 45 ⁇ m. A processing mark generated by the break line formation appears on the cut surface. The plurality of processing marks are shorter in the vertical direction than in the first embodiment.
  • FIG. 11 shows a third embodiment, and the distance D3 is 50 ⁇ m. In this case, the processing trace generated by the break line formation does not appear on the cut surface.
  • FIG. 12 is a schematic diagram of a laser processing apparatus according to the second embodiment.
  • the laser processing apparatus 1 ⁇ / b> A has a spatial light modulator 21 that modulates the laser light emitted from the laser apparatus 3.
  • the spatial light modulator 21 is, for example, a reflection type, and may be a reflection type liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator).
  • LCOS Liquid Crystal on Silicon
  • SLM Spatial Light Modulator
  • the laser processing apparatus 1 ⁇ / b> A has a drive unit 23.
  • the drive unit 23 applies a predetermined voltage to each pixel electrode in the spatial light modulator 21 to display a predetermined modulation pattern on the liquid crystal layer, thereby causing the spatial light modulator 21 to modulate the laser light as desired.
  • the modulation pattern displayed on the liquid crystal layer includes, for example, the position where the processing mark is to be formed, the wavelength of the laser beam to be irradiated, the material of the processing target, and the refractive index of the transmission optical system 5 and the processing target. Is derived in advance based on the above and stored in the control unit 9. In this method, since the scribe line and the break line can be processed with one laser device 3, the manufacturing cost is reduced.
  • the pitch D1 of the pulse irradiation position S1 constituting the scribe line 31 is in the range of 1 to 6 ⁇ m.
  • the pitch D2 of the pulse irradiation position S2 which comprises the break line 33 is the same grade as the pitch D1. Specifically, the pitch D2 is in the range of 1 to 6 ⁇ m.
  • the distance D3 between the scribe line 31 and the break line 33 is in the range of 5 to 300 ⁇ m.
  • the above range is preferably, for example, 30 to 60 ⁇ m or 100 to 190 ⁇ m.
  • the distances D3 may not all be the same, that is, break lines may be formed at a plurality of different distance positions with respect to the scribe line.
  • the processing conditions of the scribe line 31 are as follows. 1) Pulse energy: 667 ⁇ J 2) Processing pitch: 4 ⁇ m (processing speed is 600 mm / s, repetition frequency is 150 kHz) In this case, the beam waist of the pulse L1 is inside the glass substrate G. As a result, a processing mark extending from the upper surface to the lower surface of the glass substrate G is formed.
  • the processing conditions of the break line 33 are as follows. 1) Pulse energy: 667200 ⁇ J 2) Processing pitch: 4 ⁇ m (processing speed is 600 mm / s, repetition frequency is 150 kHz)
  • Pulse energy 667200 ⁇ J 2
  • Processing pitch 4 ⁇ m (processing speed is 600 mm / s, repetition frequency is 150 kHz)
  • the focal point of the pulse L2 is in the middle in the thickness direction of the glass substrate G, and compared with the processing conditions of the scribe line 31, the pulse energy is small and the condensing angle is large.
  • a partial processing mark is formed in the middle of the glass substrate G in the thickness direction.
  • the same effect as that of the first embodiment can be obtained.
  • the scribe line and the break line are formed using the common laser device 3, but a dedicated laser device may be used.
  • a picosecond laser can be used for forming a scribe line
  • a picosecond or nanosecond laser can be used for forming a break line.
  • the scribe line and the break line are formed by irradiating the pulse laser.
  • the pulse laser group oscillated in the burst mode may be irradiated.
  • the present invention can be widely applied to a method and an apparatus for forming a scribe line by intermittently performing internal processing of a glass substrate by a pulse using a laser device in a plane direction.
  • Laser processing device 3 Laser device 5: Transmission optical system 7: Processing table 9: Control unit 11: Drive mechanism 13: Table drive unit 15: Laser oscillator 17: Laser control unit 19: Condensing lens 21: Spatial light modulation Device 23: Drive unit 31: Scribe line 33: Break line

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

The purpose of the present invention is to, when forming a scribe line on a glass substrate by laser processing, perform the processing so as to facilitate subsequent separation. The scribing method is a method for scribing a glass substrate G and includes the following steps. A scribe line forming step for forming a scribe line 31 by intermittently performing pulsed internal processing on the glass substrate G in the planar direction using a laser device 3. A break line forming step for forming a break line 33 along the scribe line 31 by intermittently performing pulsed internal processing on the glass substrate G in the planar direction using the laser device 3.

Description

スクライブ加工方法及びスクライブ加工装置Scribing method and scribing apparatus
 本発明は、スクライブ加工方法及びスクライブ加工装置、特に、レーザ装置を用いたパルスによるガラス基板の内部加工を平面方向に断続的に行うことでスクライブラインを形成する方法及び装置に関する。 The present invention relates to a scribing method and a scribing apparatus, and more particularly, to a method and apparatus for forming a scribe line by intermittently performing internal processing of a glass substrate by a pulse using a laser device in a plane direction.
 ガラス基板をスクライブ加工する方法として、レーザ加工が知られている。レーザ加工では、例えば、赤外線ピコ秒レーザが用いられている。この場合、レーザがパルスによる内部加工を平面方向に断続的に行って複数のレーザフィラメントを形成することで、スクライブラインを形成する方法が知られている(例えば、特許文献1を参照)。
 特許文献1に示す技術では、収束レーザビームは、基板内にフィラメントを作り出すように選択されたエネルギー及びパルス持続時間を有するパルスで構成される。そして、複数のフィラメントによって、基板を劈開するためのスクライブラインが形成される。
Laser processing is known as a method for scribing a glass substrate. In laser processing, for example, an infrared picosecond laser is used. In this case, a method of forming a scribe line by forming a plurality of laser filaments by intermittently performing internal processing with a pulse in a plane direction by a laser is known (see, for example, Patent Document 1).
In the technique disclosed in US Pat. No. 6,099,089, the focused laser beam is composed of pulses having energy and pulse duration selected to create a filament in the substrate. A scribe line for cleaving the substrate is formed by the plurality of filaments.
特表2013-536081号公報Special table 2013-536081 gazette
 レーザ加工のフィラメント形成によるスクライブライン加工を行った場合は、スクライブラインに沿ったガラス基板の分離に大きな力が必要になる。そのため、スクライブラインに沿った分離の際に、欠け、チッピング、割れなどが発生しやすく、そのため歩留まりが低下する。 When performing scribe line processing by forming a filament by laser processing, a large force is required to separate the glass substrate along the scribe line. For this reason, chipping, chipping, cracking and the like are likely to occur during separation along the scribe line, thereby reducing the yield.
 本発明の目的は、レーザ加工によってガラス基板にスクライブラインを形成する際に、後の分離が容易になるように加工することにある。 An object of the present invention is to form a scribe line on a glass substrate by laser processing so as to facilitate later separation.
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。 Hereinafter, a plurality of modes will be described as means for solving the problem. These aspects can be arbitrarily combined as necessary.
 本発明の一見地に係るスクライブ加工方法は、ガラス基板をスクライブ加工する方法であって、下記の工程を備えている。
 ◎レーザ装置を用いたパルスによるガラス基板の内部加工を平面方向に断続的に行うことでスクライブラインを形成するスクライブライン形成工程
 ◎スクライブライン形成工程後に、レーザ装置を用いたパルスによるガラス基板の内部加工を平面方向に断続的に行うことで、スクライブラインに沿ってブレイクラインを形成するブレイクライン形成工程
 この方法では、ブレイクラインが形成されるときに、ガラス基板の内部では、加工された部分の構造が崩壊し、さらにスクライブラインに対して衝撃が作用する。この衝撃によって、スクライブラインに亀裂が生じ又は進展する。この結果、スクライブラインの分離が容易になる。
A scribing method according to an aspect of the present invention is a method of scribing a glass substrate, and includes the following steps.
◎ Scribe line formation process to form scribe lines by intermittently processing the glass substrate by pulses using a laser device in the plane direction ◎ After the scribe line formation process, the inside of the glass substrate by pulses using a laser device Break line forming step of forming a break line along the scribe line by intermittently performing processing in the plane direction. In this method, when the break line is formed, inside the glass substrate, the processed portion The structure collapses and an impact acts on the scribe line. Due to this impact, a crack is generated or propagates in the scribe line. As a result, the scribe line can be easily separated.
 ブレイクライン形成工程では、ブレイクラインはスクライブラインとは平面視で異なる位置に形成されてもよい。
 この方法では、構造の崩壊がスクライブラインまで到達しないように設定することで、スクライブラインへの衝撃を十分に大きくできる。
In the break line forming step, the break line may be formed at a position different from the scribe line in plan view.
In this method, by setting so that the collapse of the structure does not reach the scribe line, the impact on the scribe line can be sufficiently increased.
 ブレイクラインはスクライブラインと実質的に平行に形成されてもよい。
 この方法では、スクライブラインに対して全体的に衝撃を与えることができる。
The break line may be formed substantially parallel to the scribe line.
In this method, it is possible to apply an impact to the scribe line as a whole.
 スクライブライン形成工程とブレイクライン形成工程とでは、集光状態が異なってもよい。
 この方法では、ブレイクライン形成工程においてスクライブラインに十分な衝撃を与えることができるような集光状態でブレイクラインを形成できる。
The condensing state may be different between the scribe line forming step and the break line forming step.
In this method, the break line can be formed in a light-collecting state that can give a sufficient impact to the scribe line in the break line forming step.
 スクライブライン形成工程とブレイクライン形成工程とでは、レンズ操作で集光状態を変更してもよい。
 この方法では、1台のレーザ装置でスクライブラインとブレイクラインを加工できるので、製造コストが低くなる。
In the scribe line forming step and the break line forming step, the light collection state may be changed by lens operation.
In this method, since the scribe line and the break line can be processed with one laser device, the manufacturing cost is reduced.
 スクライブライン形成工程とブレイクライン形成工程とでは、空間光変調で集光状態を変更してもよい。
 この方法では、1台のレーザ装置でスクライブラインとブレイクラインを加工できるので、製造コストが低くなる。
In the scribe line forming step and the break line forming step, the light collection state may be changed by spatial light modulation.
In this method, since the scribe line and the break line can be processed with one laser device, the manufacturing cost is reduced.
 本発明の他の見地に係るスクライブ加工装置は、レーザ装置と、上記のスクライブ加工方法をレーザ装置に実行させる制御部と、を備えている。 A scribing apparatus according to another aspect of the present invention includes a laser apparatus and a control unit that causes the laser apparatus to execute the scribing method.
 本発明に係るスクライブ加工方法及びスクライブ加工装置では、レーザ加工によってガラス基板にスクライブラインを形成する際に、後の分離が容易になるように加工できる。 In the scribe processing method and the scribe processing apparatus according to the present invention, when a scribe line is formed on a glass substrate by laser processing, it can be processed so as to facilitate later separation.
本発明の第1実施形態のレーザ加工装置の模式図。The schematic diagram of the laser processing apparatus of 1st Embodiment of this invention. 第1実施形態のガラス基板の平面図。The top view of the glass substrate of 1st Embodiment. ガラス基板の模式的断面図。The typical sectional view of a glass substrate. パルス加工の状態を説明するためのガラス基板の平面図。The top view of the glass substrate for demonstrating the state of pulse processing. スクライブライン形成工程におけるガラス基板の模式的平面図。The typical top view of the glass substrate in a scribe line formation process. ブレイクライン形成工程におけるガラス基板の模式的断面図。The typical sectional view of the glass substrate in a break line formation process. 参考例のスクライブラインに沿った断面写真。Cross-sectional photograph along the scribe line of the reference example. 比較例のスクライブラインに沿った断面写真。Sectional photograph along the scribe line of the comparative example. 実施例のスクライブラインに沿った断面写真。The cross-sectional photograph along the scribe line of the Example. 実施例のスクライブラインに沿った断面写真。The cross-sectional photograph along the scribe line of the Example. 実施例のスクライブラインに沿った断面図。Sectional drawing along the scribe line of an Example. 第2実施形態のレーザ加工装置の模式図。The schematic diagram of the laser processing apparatus of 2nd Embodiment.
1.第1実施形態
(1)全体構成
 図1に、本発明の一実施形態によるガラス基板切断用のレーザ加工装置1の全体構成を示す。図1は、本発明の第1実施形態のレーザ加工装置の模式図である。
 レーザ加工装置1は、ガラス基板Gをフルカット加工するための装置である。
 ガラス基板Gは、ソーダガラスであり、厚みが例えば1.8mmであり、1.1~3mmの範囲にある。
1. First Embodiment (1) Overall Configuration FIG. 1 shows an overall configuration of a laser processing apparatus 1 for cutting a glass substrate according to an embodiment of the present invention. FIG. 1 is a schematic diagram of a laser processing apparatus according to a first embodiment of the present invention.
The laser processing apparatus 1 is an apparatus for fully cutting the glass substrate G.
The glass substrate G is soda glass and has a thickness of, for example, 1.8 mm and is in a range of 1.1 to 3 mm.
 レーザ加工装置1は、レーザ装置3を備えている。レーザ装置3は、ガラス基板Gにレーザ光を照射するためのレーザ発振器15と、レーザ制御部17とを有している。レーザ発振器15は、例えば、波長340~1100nmのピコ秒レーザである。レーザ制御部17はレーザ発振器15の駆動及びレーザパワーを制御できる。
 レーザ装置3は、レーザ光を後述する機械駆動系に伝送する伝送光学系5を有している。伝送光学系5は、例えば、集光レンズ19、複数のミラー(図示せず)、プリズム(図示せず)等を有する。
 レーザ加工装置1は、レンズの位置を光軸方向に移動させることによって、レーザ光の集光角を変更する駆動機構11を有している。
The laser processing apparatus 1 includes a laser apparatus 3. The laser device 3 includes a laser oscillator 15 for irradiating the glass substrate G with laser light, and a laser control unit 17. The laser oscillator 15 is, for example, a picosecond laser having a wavelength of 340 to 1100 nm. The laser control unit 17 can control the driving of the laser oscillator 15 and the laser power.
The laser device 3 includes a transmission optical system 5 that transmits laser light to a mechanical drive system described later. The transmission optical system 5 includes, for example, a condenser lens 19, a plurality of mirrors (not shown), a prism (not shown), and the like.
The laser processing apparatus 1 has a drive mechanism 11 that changes the condensing angle of laser light by moving the position of the lens in the optical axis direction.
 レーザ加工装置1は、ガラス基板Gが載置される加工テーブル7を有している。加工テーブル7は、テーブル駆動部13によって移動される。テーブル駆動部13は、加工テーブル7をベッド(図示せず)に対して水平方向に移動させる移動装置(図示せず)を有している。移動装置は、ガイドレール、モータ等を有する公知の機構である。 The laser processing apparatus 1 has a processing table 7 on which a glass substrate G is placed. The processing table 7 is moved by the table driving unit 13. The table driving unit 13 has a moving device (not shown) that moves the processing table 7 in the horizontal direction with respect to the bed (not shown). The moving device is a known mechanism having a guide rail, a motor, and the like.
 レーザ加工装置1は、制御部9を備えている。制御部9は、プロセッサ(例えば、CPU)と、記憶装置(例えば、ROM、RAM、HDD、SSDなど)と、各種インターフェース(例えば、A/Dコンバータ、D/Aコンバータ、通信インターフェースなど)を有するコンピュータシステムである。制御部9は、記憶部(記憶装置の記憶領域の一部又は全部に対応)に保存されたプログラムを実行することで、各種制御動作を行う。
 制御部9は、単一のプロセッサで構成されていてもよいが、各制御のために独立した複数のプロセッサから構成されていてもよい。
The laser processing apparatus 1 includes a control unit 9. The control unit 9 includes a processor (for example, CPU), a storage device (for example, ROM, RAM, HDD, SSD, etc.) and various interfaces (for example, an A / D converter, a D / A converter, a communication interface, etc.). It is a computer system. The control unit 9 performs various control operations by executing a program stored in the storage unit (corresponding to a part or all of the storage area of the storage device).
The control unit 9 may be composed of a single processor, but may be composed of a plurality of independent processors for each control.
 制御部9は、レーザ制御部17を制御できる。制御部9は、駆動機構11を制御できる。制御部9は、テーブル駆動部13を制御できる。 The control unit 9 can control the laser control unit 17. The control unit 9 can control the drive mechanism 11. The control unit 9 can control the table driving unit 13.
 制御部9には、図示しないが、ガラス基板Gの大きさ、形状及び位置を検出するセンサ、各装置の状態を検出するためのセンサ及びスイッチ、並びに情報入力装置が接続されている。 The control unit 9 is connected to a sensor (not shown) for detecting the size, shape and position of the glass substrate G, sensors and switches for detecting the state of each device, and an information input device.
(2)スクライブ加工方法
 図2~図6を用いて、レーザ加工装置1によるスクライブ加工方法を説明する。図2は、第1実施形態のガラス基板の平面図である。図3は、ガラス基板の模式的断面図である。図4は、パルス加工の状態を説明するためのガラス基板の平面図である。図5は、スクライブライン形成工程におけるガラス基板の模式的平面図である。図6は、ブレイクライン形成工程におけるガラス基板の模式的断面図である。
(2) Scribing Method A scribing method by the laser processing apparatus 1 will be described with reference to FIGS. FIG. 2 is a plan view of the glass substrate of the first embodiment. FIG. 3 is a schematic cross-sectional view of a glass substrate. FIG. 4 is a plan view of a glass substrate for explaining the state of pulse processing. FIG. 5 is a schematic plan view of the glass substrate in the scribe line forming step. FIG. 6 is a schematic cross-sectional view of the glass substrate in the break line forming step.
 (2-1)概略説明
 スクライブ加工方法は、下記の工程を備えている。
 ◎レーザ装置3を用いたパルスL1によるガラス基板Gの内部加工を平面方向に断続的に行うことでスクライブライン31を形成するスクライブライン形成工程(特に、図3~図5を参照)。
 ◎スクライブライン形成工程後に、レーザ装置3を用いたパルスL2によるガラス基板Gの内部加工を平面方向に断続的に行うことで、スクライブライン31に沿ってブレイクライン33を形成するブレイクライン形成工程(特に、図3~4及び図6を参照)。
(2-1) General Description The scribing method includes the following steps.
A scribe line forming step for forming the scribe line 31 by intermittently performing internal processing of the glass substrate G by the pulse L1 using the laser device 3 in the plane direction (particularly, refer to FIGS. 3 to 5).
After the scribe line formation step, the break line formation step (forms the break line 33 along the scribe line 31 by intermittently performing internal processing of the glass substrate G with the pulse L2 using the laser device 3 in the plane direction) In particular, see FIGS. 3-4 and FIG.
 上記のスクライブライン形成工程では、レーザ照射部分にはガラス基板G内部に光軸に沿って長く延びる加工痕が形成される。なお、加工痕は、ガラス基板Gの表面間に延びている。
 上記のブレイクライン形成工程では、レーザ照射部分にはガラス基板G内部に部分的な加工痕が形成される。
 この方法では、ブレイクライン33が形成されるときに、ガラス基板G内部では、加工された部分の構造が崩壊し、さらにスクライブライン31に対して衝撃が作用する。この衝撃によって、スクライブライン31に亀裂が生じ又は進展する。この結果、スクライブライン31の分離が容易になる。
In the scribe line forming step, a processing trace extending along the optical axis is formed inside the glass substrate G in the laser irradiation portion. The processing trace extends between the surfaces of the glass substrate G.
In the break line forming step, a partial processing mark is formed inside the glass substrate G in the laser irradiation portion.
In this method, when the break line 33 is formed, the structure of the processed part is collapsed inside the glass substrate G, and an impact acts on the scribe line 31. Due to this impact, the scribe line 31 is cracked or developed. As a result, the scribe line 31 can be easily separated.
 (2-2)詳細説明
 図2では、ガラス基板Gにおいて、スクライブライン31は環状に形成され、ブレイクライン33はスクライブライン31の外側に環状に形成されている。ただし、ブレイクラインはスクライブラインの内側に形成されていてもよい。また、スクライブライン及びブレイクラインは環状以外の形状でもよい。
(2-2) Detailed Description In FIG. 2, in the glass substrate G, the scribe line 31 is formed in an annular shape, and the break line 33 is formed in an annular shape outside the scribe line 31. However, the break line may be formed inside the scribe line. Further, the scribe line and the break line may have a shape other than the annular shape.
 図4に示すように、スクライブライン31を構成するパルス照射位置S1のピッチD1は、1~6μmの範囲である。また、ブレイクライン33を構成するパルス照射位置S2のピッチD2は、ピッチD1より短い。具体的には、ピッチD2は、0.5~3μmの範囲である。
 具体的には、ブレイクライン形成工程では、ブレイクライン33はスクライブライン31とは平面視で異なる位置に形成される。そのため、構造の崩壊がスクライブライン31まで到達しないように設定することで、ブレイクライン33の形成によってスクライブライン31への衝撃を十分に大きくできる。
As shown in FIG. 4, the pitch D1 of the pulse irradiation position S1 constituting the scribe line 31 is in the range of 1 to 6 μm. Further, the pitch D2 of the pulse irradiation position S2 constituting the break line 33 is shorter than the pitch D1. Specifically, the pitch D2 is in the range of 0.5 to 3 μm.
Specifically, in the break line formation step, the break line 33 is formed at a position different from the scribe line 31 in plan view. Therefore, by setting so that the collapse of the structure does not reach the scribe line 31, the impact on the scribe line 31 can be sufficiently increased by forming the break line 33.
 さらに具体的には、ブレイクライン33はスクライブライン31と実質的に平行に形成される。そのため、ブレイクライン形成によってスクライブライン31に対して全体的に衝撃を与えることができる。ただし、必ずしも両者は一部又は全てが平行でなくてもよい。また、ブレイクラインは、スクライブラインの全てに対応している必要がなく、スクライブラインの必要な箇所のみに対応して形成されてもよい。
 ブレイクライン33の加工によってスクライブライン31の分離が容易になる理由は、下記の通りである。つまり、スクライブライン31の横にブレイクライン33を形成すると、ガラス基板G内部では、加工を行った部分の構造の崩壊とスクライブ部分への衝撃が加わる。その衝撃によって、スクライブ部分に亀裂が生じて、スクライブライン31の分離が容易になる。
More specifically, the break line 33 is formed substantially parallel to the scribe line 31. Therefore, it is possible to give an impact to the scribe line 31 as a whole by forming the break line. However, a part or all of them may not necessarily be parallel. Moreover, the break line does not need to correspond to all of the scribe lines, and may be formed corresponding to only the necessary portions of the scribe lines.
The reason why the scribe line 31 can be easily separated by processing the break line 33 is as follows. That is, when the break line 33 is formed beside the scribe line 31, the structure of the processed part is collapsed and an impact is applied to the scribe part inside the glass substrate G. The impact causes a crack in the scribe portion, and the scribe line 31 can be easily separated.
 スクライブライン31とブレイクライン33の距離D3は、例えば、45μmである。距離D3は、5~70μmの範囲であることが好ましく、30~60μmであることがさらに好ましい。距離D3は全て同じでなくてよく、つまりスクライブラインに対して複数の異なる距離の位置にブレイクラインが形成されてもよい。
 上記距離が短くなりすぎると、衝撃が加わる範囲が狭くなり、構造の崩壊がスクライブライン31まで到達するので、スクライブの一部が崩れてしまい、スクライブライン31へ与える衝撃が小さくなる。そのため、スクライブライン31の分離が固くなる。
 上記距離が長くなりすぎると、衝撃が加わる範囲が広くなりすぎて、スクライブライン31へ与える衝撃が小さくなる。
A distance D3 between the scribe line 31 and the break line 33 is, for example, 45 μm. The distance D3 is preferably in the range of 5 to 70 μm, more preferably 30 to 60 μm. The distances D3 may not all be the same, that is, break lines may be formed at a plurality of different distance positions with respect to the scribe line.
If the distance is too short, the range to which the impact is applied becomes narrow, and the collapse of the structure reaches the scribe line 31, so that a part of the scribe is collapsed and the impact applied to the scribe line 31 is reduced. Therefore, the separation of the scribe line 31 becomes hard.
If the distance is too long, the range of impact is too wide and the impact applied to the scribe line 31 is reduced.
 さらに具体的には、スクライブライン形成工程とブレイクライン形成工程とでは、集光状態が異なっている。この結果、ブレイクライン形成工程においてスクライブライン31に十分な衝撃を与えることができるような集光状態でブレイクライン33を形成できる。
 例えば、スクライブライン31の加工条件は下記の通りである。
  1)パルスエネルギー:400μJ(200μJ以上が好ましい)
  2)加工ピッチ:4μm(1~6μmの範囲が好ましい)
 この場合、パルスL1のビームウェストはガラス基板Gの内部にある。以上の結果、ガラス基板Gの上面から下面に延びる加工痕が形成される。
More specifically, the condensing state is different between the scribe line forming step and the break line forming step. As a result, the break line 33 can be formed in a condensing state that can give a sufficient impact to the scribe line 31 in the break line forming step.
For example, the processing conditions of the scribe line 31 are as follows.
1) Pulse energy: 400 μJ (preferably 200 μJ or more)
2) Processing pitch: 4 μm (preferably in the range of 1 to 6 μm)
In this case, the beam waist of the pulse L1 is inside the glass substrate G. As a result, a processing mark extending from the upper surface to the lower surface of the glass substrate G is formed.
 ブレイクライン33の加工条件は下記の通りである。
  1)パルスエネルギー:150μJ(100μJ以上が好ましい)
  2)加工ピッチ:1μm(0.5~3μmの範囲が好ましい)
 この場合、パルスL2の焦点はガラス基板Gの厚み方向中間になっており、スクライブライン31の加工条件に比較すれば、パルスエネルギーは小さく、集光角は大きい。以上の結果、ガラス基板Gの厚み方向中間に部分的な加工痕が形成される。
The processing conditions of the break line 33 are as follows.
1) Pulse energy: 150 μJ (preferably 100 μJ or more)
2) Processing pitch: 1 μm (preferably in the range of 0.5 to 3 μm)
In this case, the focal point of the pulse L2 is in the middle in the thickness direction of the glass substrate G, and compared with the processing conditions of the scribe line 31, the pulse energy is small and the condensing angle is large. As a result, a partial processing mark is formed in the middle of the glass substrate G in the thickness direction.
 上記の集光角の変更のために、スクライブライン形成工程とブレイクライン形成工程とでは、駆動機構11によるレンズ操作によって集光状態を変更する。そのため、1台のレーザ装置3でスクライブライン31とブレイクライン33を加工することが可能なので、製造コストが低くなる。 In order to change the converging angle, the condensing state is changed by lens operation by the drive mechanism 11 in the scribe line forming step and the break line forming step. Therefore, since the scribe line 31 and the break line 33 can be processed by one laser device 3, the manufacturing cost is reduced.
(3)実施例
 図7~図11用いて、複数実験例を説明する。図7は、参考例のスクライブラインに沿った断面写真である。図8及び図11は、比較例のスクライブラインに沿った断面図である。図9~図11は、実施例のスクライブラインに沿った断面写真である。
 図7は、参考例を示しており、スクライブラインのみを形成している例である。つまり、ブレイクラインは形成されておらず、したがって、ブレイクラインに起因する加工痕は見られない。
 図8は、比較例を示しており、距離D3が0μmである。この場合、構造の崩壊がスクライブラインまで到達しており、スクライブラインの一部が崩れてしまっている。この結果、スクライブラインの分断が難しくなっている。
(3) Examples A plurality of experimental examples will be described with reference to FIGS. FIG. 7 is a cross-sectional photograph taken along the scribe line of the reference example. 8 and 11 are cross-sectional views along the scribe line of the comparative example. 9 to 11 are cross-sectional photographs taken along the scribe line of the example.
FIG. 7 shows a reference example, in which only a scribe line is formed. That is, the break line is not formed, and therefore, the processing trace resulting from the break line is not seen.
FIG. 8 shows a comparative example, in which the distance D3 is 0 μm. In this case, the collapse of the structure has reached the scribe line, and a part of the scribe line has collapsed. As a result, it is difficult to divide the scribe line.
 図9は、第1実施例を示しており、距離D3が35μmである。ブレイクライン形成で生じた加工痕が切断面に表れている。複数の加工痕は、上下方向に長く延びている。
 図10は、第2実施例を示しており、距離D3が45μmである。ブレイクライン形成で生じた加工痕が切断面に表れている。複数の加工痕は、第1実施例に比べて、上下方向に短くなっている。
 図11は、第3実施例を示しており、距離D3が50μmである。この場合は、ブレイクライン形成で生じた加工痕が切断面に表れていない。
FIG. 9 shows the first embodiment, and the distance D3 is 35 μm. A processing mark generated by the break line formation appears on the cut surface. The plurality of processing marks extend long in the vertical direction.
FIG. 10 shows a second embodiment, in which the distance D3 is 45 μm. A processing mark generated by the break line formation appears on the cut surface. The plurality of processing marks are shorter in the vertical direction than in the first embodiment.
FIG. 11 shows a third embodiment, and the distance D3 is 50 μm. In this case, the processing trace generated by the break line formation does not appear on the cut surface.
2.第2実施形態
 スクライブライン形成工程とブレイクライン形成工程とでは、空間光変調で集光状態を変更してもよい。
 そのような実施形態を図12を用いて説明する。図12は、第2実施形態のレーザ加工装置の模式図である。
2. Second Embodiment In the scribe line forming step and the break line forming step, the light collection state may be changed by spatial light modulation.
Such an embodiment will be described with reference to FIG. FIG. 12 is a schematic diagram of a laser processing apparatus according to the second embodiment.
 レーザ加工装置1Aは、レーザ装置3から出射されたレーザ光を変調する空間光変調器21を有している。空間光変調器21は、例えば反射型であり、反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)であってもよい。空間光変調器21は、水平方向から入射するレーザ光を変調すると共に、下方に反射する。 The laser processing apparatus 1 </ b> A has a spatial light modulator 21 that modulates the laser light emitted from the laser apparatus 3. The spatial light modulator 21 is, for example, a reflection type, and may be a reflection type liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator). The spatial light modulator 21 modulates laser light incident from the horizontal direction and reflects it downward.
 レーザ加工装置1Aは、駆動部23を有している。駆動部23は、空間光変調器21における各画素電極に所定電圧を印加し、液晶層に所定の変調パターンを表示させ、これにより、レーザ光を空間光変調器21で所望に変調させる。ここで、液晶層に表示される変調パターンは、例えば、加工痕を形成しようとする位置、照射するレーザ光の波長、加工対象物の材料、及び伝送光学系5や加工対象物の屈折率等に基づいて予め導出され、制御部9に記憶されている。
 この方法では、1台のレーザ装置3でスクライブラインとブレイクラインを加工することが可能なので、製造コストが低くなる。
The laser processing apparatus 1 </ b> A has a drive unit 23. The drive unit 23 applies a predetermined voltage to each pixel electrode in the spatial light modulator 21 to display a predetermined modulation pattern on the liquid crystal layer, thereby causing the spatial light modulator 21 to modulate the laser light as desired. Here, the modulation pattern displayed on the liquid crystal layer includes, for example, the position where the processing mark is to be formed, the wavelength of the laser beam to be irradiated, the material of the processing target, and the refractive index of the transmission optical system 5 and the processing target. Is derived in advance based on the above and stored in the control unit 9.
In this method, since the scribe line and the break line can be processed with one laser device 3, the manufacturing cost is reduced.
3.第3実施形態
 第1実施形態の変形例として、ブレイクラインのピッチを変更した第3実施形態を説明する。それ以外の条件は第1実施形態と同じである。
 この実施形態では、スクライブライン31を構成するパルス照射位置S1のピッチD1は、1~6μmの範囲である。そして、第1実施形態とは異なり、ブレイクライン33を構成するパルス照射位置S2のピッチD2は、ピッチD1と同じ程度である。具体的には、ピッチD2は、1~6μmの範囲である。
3. Third Embodiment As a modification of the first embodiment, a third embodiment in which the breakline pitch is changed will be described. Other conditions are the same as in the first embodiment.
In this embodiment, the pitch D1 of the pulse irradiation position S1 constituting the scribe line 31 is in the range of 1 to 6 μm. And unlike 1st Embodiment, the pitch D2 of the pulse irradiation position S2 which comprises the break line 33 is the same grade as the pitch D1. Specifically, the pitch D2 is in the range of 1 to 6 μm.
 この実施形態では、スクライブライン31とブレイクライン33の距離D3は、5~300μmの範囲である。上記の範囲は、例えば、30~60μmであることや、100~190μmであることが好ましい。距離D3は全て同じでなくてよく、つまりスクライブラインに対して複数の異なる距離の位置にブレイクラインが形成されてもよい。
 例えば、スクライブライン31の加工条件は下記の通りである。
  1)パルスエネルギー:667μJ
  2)加工ピッチ:4μm(加工速度が600mm/s、繰返し周波数が150kHz)
 この場合、パルスL1のビームウェストはガラス基板Gの内部にある。以上の結果、ガラス基板Gの上面から下面に延びる加工痕が形成される。
In this embodiment, the distance D3 between the scribe line 31 and the break line 33 is in the range of 5 to 300 μm. The above range is preferably, for example, 30 to 60 μm or 100 to 190 μm. The distances D3 may not all be the same, that is, break lines may be formed at a plurality of different distance positions with respect to the scribe line.
For example, the processing conditions of the scribe line 31 are as follows.
1) Pulse energy: 667 μJ
2) Processing pitch: 4 μm (processing speed is 600 mm / s, repetition frequency is 150 kHz)
In this case, the beam waist of the pulse L1 is inside the glass substrate G. As a result, a processing mark extending from the upper surface to the lower surface of the glass substrate G is formed.
 ブレイクライン33の加工条件は下記の通りである。
  1)パルスエネルギー:667200μJ
  2)加工ピッチ:4μm(加工速度が600mm/s、繰り返し周波数が150kHz)
 この場合、パルスL2の焦点はガラス基板Gの厚み方向中間になっており、スクライブライン31の加工条件に比較すれば、パルスエネルギーは小さく、集光角は大きい。以上の結果、ガラス基板Gの厚み方向中間に部分的な加工痕が形成される。
 上記の実施形態でも、第1実施形態と同じ効果が得られる。
The processing conditions of the break line 33 are as follows.
1) Pulse energy: 667200 μJ
2) Processing pitch: 4 μm (processing speed is 600 mm / s, repetition frequency is 150 kHz)
In this case, the focal point of the pulse L2 is in the middle in the thickness direction of the glass substrate G, and compared with the processing conditions of the scribe line 31, the pulse energy is small and the condensing angle is large. As a result, a partial processing mark is formed in the middle of the glass substrate G in the thickness direction.
In the above embodiment, the same effect as that of the first embodiment can be obtained.
4.他の実施形態
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施例及び変形例は必要に応じて任意に組み合せ可能である。
4). Other Embodiments Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. In particular, a plurality of embodiments and modifications described in this specification can be arbitrarily combined as necessary.
 なお、上記の第1実施形態及び第2実施形態では、共通のレーザ装置3を用いてスクライブラインとブレイクラインを形成することとしたが、それぞれ専用のレーザ装置を用いることとしてもよい。この場合、スクライブライン形成用にピコ秒レーザを、ブレイクライン形成用にピコ秒またはナノ秒レーザを用いることができる。
 上記実施形態では、パルスレーザを照射することによりスクライブライン及びブレイクラインを形成することとしたが、これに代えて、バーストモードで発振したパルスレーザ群を照射することとしてもよい。
In the first embodiment and the second embodiment described above, the scribe line and the break line are formed using the common laser device 3, but a dedicated laser device may be used. In this case, a picosecond laser can be used for forming a scribe line, and a picosecond or nanosecond laser can be used for forming a break line.
In the above embodiment, the scribe line and the break line are formed by irradiating the pulse laser. However, instead of this, the pulse laser group oscillated in the burst mode may be irradiated.
 本発明は、レーザ装置を用いたパルスによるガラス基板の内部加工を平面方向に断続的に行うことでスクライブラインを形成する方法及び装置に広く適用できる。 The present invention can be widely applied to a method and an apparatus for forming a scribe line by intermittently performing internal processing of a glass substrate by a pulse using a laser device in a plane direction.
1   :レーザ加工装置
3   :レーザ装置
5   :伝送光学系
7   :加工テーブル
9   :制御部
11  :駆動機構
13  :テーブル駆動部
15  :レーザ発振器
17  :レーザ制御部
19  :集光レンズ
21  :空間光変調器
23  :駆動部
31  :スクライブライン
33  :ブレイクライン
1: Laser processing device 3: Laser device 5: Transmission optical system 7: Processing table 9: Control unit 11: Drive mechanism 13: Table drive unit 15: Laser oscillator 17: Laser control unit 19: Condensing lens 21: Spatial light modulation Device 23: Drive unit 31: Scribe line 33: Break line

Claims (7)

  1.  ガラス基板をスクライブ加工する方法であって、
     レーザ装置を用いたパルスによるガラス基板の内部加工を平面方向に断続的に行うことでスクライブラインを形成するスクライブライン形成工程と、
     前記スクライブライン形成工程後に、前記レーザ装置を用いたパルスによるガラス基板の内部加工を平面方向に断続的に行うことで、前記スクライブラインに沿ってブレイクラインを形成するブレイクライン形成工程と、
    を備えたスクライブ加工方法。
    A method of scribing a glass substrate,
    A scribe line forming step for forming a scribe line by intermittently performing internal processing of a glass substrate by a pulse using a laser device in a plane direction;
    After the scribe line formation step, the break line formation step of forming a break line along the scribe line by intermittently performing internal processing of the glass substrate by a pulse using the laser device in the plane direction;
    A scribing method comprising
  2.  前記ブレイクライン形成工程では、前記ブレイクラインは前記スクライブラインとは平面視で異なる位置に形成される、請求項1に記載のスクライブ加工方法。 The scribing method according to claim 1, wherein in the break line forming step, the break line is formed at a position different from the scribe line in plan view.
  3.  前記ブレイクラインは前記スクライブラインと実質的に平行に形成される、請求項2に記載のスクライブ加工方法。 The scribing method according to claim 2, wherein the break line is formed substantially parallel to the scribe line.
  4.  前記スクライブライン形成工程と前記ブレイクライン形成工程とでは、集光状態が異なる、請求項1~3のいずれかに記載のスクライブ加工方法。 The scribing method according to any one of claims 1 to 3, wherein a condensing state is different between the scribe line forming step and the break line forming step.
  5.  前記スクライブライン形成工程と前記ブレイクライン形成工程とでは、レンズ操作で集光状態を変更する、請求項4に記載のスクライブ加工方法。 The scribing method according to claim 4, wherein the condensing state is changed by lens operation in the scribe line forming step and the break line forming step.
  6.  前記スクライブライン形成工程と前記ブレイクライン形成工程とでは、空間光変調で集光状態を変更する、請求項4に記載のスクライブ加工方法。 The scribing method according to claim 4, wherein the condensing state is changed by spatial light modulation in the scribe line forming step and the break line forming step.
  7.  レーザ装置と、
     請求項1~6のいずれかに記載のスクライブ加工方法を前記レーザ装置に実行させる制御部と、
    を備えたスクライブ加工装置。
    A laser device;
    A controller that causes the laser apparatus to execute the scribing method according to any one of claims 1 to 6,
    A scribing machine equipped with
PCT/JP2018/009450 2017-03-31 2018-03-12 Scribing method and scribing device WO2018180417A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880022170.6A CN110475754B (en) 2017-03-31 2018-03-12 Scribing method and scribing apparatus
JP2019509179A JP7456604B2 (en) 2017-03-31 2018-03-12 Scribing method and scribing device
KR1020197029366A KR20190129914A (en) 2017-03-31 2018-03-12 Scribe processing method and scribe processing equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-071342 2017-03-31
JP2017072757 2017-03-31
JP2017-072757 2017-03-31
JP2017071342 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180417A1 true WO2018180417A1 (en) 2018-10-04

Family

ID=63677422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009450 WO2018180417A1 (en) 2017-03-31 2018-03-12 Scribing method and scribing device

Country Status (5)

Country Link
JP (1) JP7456604B2 (en)
KR (1) KR20190129914A (en)
CN (1) CN110475754B (en)
TW (1) TW201841840A (en)
WO (1) WO2018180417A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072829A (en) * 2007-09-21 2009-04-09 Icu Research & Industrial Cooperation Group Apparatus and method for cutting substrate using ultrashort pulsed laser beam
JP2015506902A (en) * 2012-02-01 2015-03-05 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド System and method for separating non-metallic materials

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420678B1 (en) 1998-12-01 2002-07-16 Brian L. Hoekstra Method for separating non-metallic substrates
JP2007185664A (en) * 2006-01-11 2007-07-26 Seiko Epson Corp Laser beam inside-scribing method
WO2010139841A1 (en) * 2009-06-04 2010-12-09 Corelase Oy Method and apparatus for processing substrates
CA2805003C (en) 2010-07-12 2017-05-30 S. Abbas Hosseini Method of material processing by laser filamentation
JP5887928B2 (en) * 2011-12-28 2016-03-16 三星ダイヤモンド工業株式会社 Method for dividing workpiece and method for dividing substrate with optical element pattern
JP5991860B2 (en) * 2012-06-19 2016-09-14 三星ダイヤモンド工業株式会社 Glass substrate processing method
AT13206U1 (en) * 2012-07-17 2013-08-15 Lisec Maschb Gmbh Method and arrangement for dividing flat glass
CN102898013A (en) * 2012-09-07 2013-01-30 东莞光谷茂和激光技术有限公司 Method for cutting glass substrate by using ultraviolet laser
EP2781296B1 (en) * 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Device and method for cutting out contours from flat substrates using a laser
CN103771694B (en) * 2014-01-08 2017-03-08 合肥鑫晟光电科技有限公司 Laser cutting method and laser cutting system
US9776906B2 (en) * 2014-03-28 2017-10-03 Electro Scientific Industries, Inc. Laser machining strengthened glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072829A (en) * 2007-09-21 2009-04-09 Icu Research & Industrial Cooperation Group Apparatus and method for cutting substrate using ultrashort pulsed laser beam
JP2015506902A (en) * 2012-02-01 2015-03-05 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド System and method for separating non-metallic materials

Also Published As

Publication number Publication date
KR20190129914A (en) 2019-11-20
JP7456604B2 (en) 2024-03-27
JPWO2018180417A1 (en) 2020-03-05
TW201841840A (en) 2018-12-01
CN110475754B (en) 2022-07-15
CN110475754A (en) 2019-11-19

Similar Documents

Publication Publication Date Title
KR102380747B1 (en) Laser processing device and laser processing method
JP5632751B2 (en) Processing object cutting method
US10322526B2 (en) Laser processing method
JP6272301B2 (en) Laser processing apparatus and laser processing method
JP4322881B2 (en) Laser processing method and laser processing apparatus
US9821408B2 (en) Laser machining method and laser machining device
JP5905274B2 (en) Manufacturing method of semiconductor device
WO2014156690A1 (en) Laser machining device and laser machining method
JP2009072829A (en) Apparatus and method for cutting substrate using ultrashort pulsed laser beam
CN101844275A (en) Method for dividing substrate
JP2007021514A (en) Scribe forming method, and substrate with division projected line
CN104944756A (en) Laser machining strengthened glass
TW201902607A (en) Breaking method and breaking device for brittle material substrate with resin layer
JP2007021557A (en) Laser beam irradiation apparatus and laser beam scribing method
JP2007015169A (en) Scribing formation method, scribing formation apparatus, and multilayer substrate
JP5536713B2 (en) Processing method of brittle material substrate
JP2007021558A (en) Laser beam irradiation apparatus and laser beam scribing method
WO2018180417A1 (en) Scribing method and scribing device
JP2007014975A (en) Scribe forming method, and substrate with division projected line
KR20130076440A (en) Laser cutting apparatus and laser cutting method
JP5618373B2 (en) Laser processing equipment for glass substrates
JP2020001081A (en) Laser processing method of substrate, and laser processing device
JP2020164358A (en) Partial punching method and partial punching device for laminated substrate
JP6904567B2 (en) Scribe processing method and scribe processing equipment
JP2023079907A (en) Method for cutting substrate and method for manufacturing small piece of substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197029366

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18774826

Country of ref document: EP

Kind code of ref document: A1