WO2018180349A1 - 冷媒循環装置および冷媒循環方法 - Google Patents

冷媒循環装置および冷媒循環方法 Download PDF

Info

Publication number
WO2018180349A1
WO2018180349A1 PCT/JP2018/009072 JP2018009072W WO2018180349A1 WO 2018180349 A1 WO2018180349 A1 WO 2018180349A1 JP 2018009072 W JP2018009072 W JP 2018009072W WO 2018180349 A1 WO2018180349 A1 WO 2018180349A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigerant circulation
condenser
main pipe
evaporator
Prior art date
Application number
PCT/JP2018/009072
Other languages
English (en)
French (fr)
Inventor
亮介 末光
上田 憲治
和島 一喜
小林 直樹
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to CN201880018192.5A priority Critical patent/CN110418926A/zh
Priority to US16/493,176 priority patent/US20200011578A1/en
Publication of WO2018180349A1 publication Critical patent/WO2018180349A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/358Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by isomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2300/00Special arrangements or features for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the present invention relates to a refrigerant circulation device and a refrigerant circulation method.
  • HFC refrigerant Conventionally, a hydrofluorocarbon (HFC) refrigerant is used for a turbo heat pump.
  • HFC refrigerant the global warming potential (Global Warming Potential, GWP) of HFC refrigerant is very high, from several hundred to several thousand.
  • GWP Global Warming Potential
  • Hydrofluoroolefin (HFO) or hydrochlorofluoroolefin (HCFO) refrigerants are known as refrigerants with low GWP (see Patent Documents 1 and 2).
  • HFO and HCFO have a carbon-carbon double bond in the molecular structure.
  • Some HFOs and HCFOs have stereoisomers (cis-trans isomers).
  • HFO and HCFO refrigerants are less stable than HFC and isomerize when exposed to high temperature environments.
  • Cis-trans isomers have the same composition but differ in physical properties such as boiling point, heat transfer, and flow characteristics. Therefore, when isomerization proceeds, the heat transfer characteristics and flow characteristics of the refrigerant change, and the pressure of the refrigerant changes. For example, when the isomer with a higher boiling point (low pressure stereoisomer) is isomerized and the isomer with a lower boiling point (high pressure stereoisomer) increases, the saturation pressure of the refrigerant increases.
  • the configuration of the equipment such as the heat pump device is designed with the saturation pressure of the refrigerant filled in the initial stage. However, if the refrigerant isomerizes with the operation time of the heat pump, the pressure inside the machine rises and further damages the equipment.
  • the present invention has been made in view of such circumstances, and even when an HFO or HCFO refrigerant is used, a change in the in-machine pressure is avoided, and the performance of the refrigerant is stabilized. It is an object to provide a refrigerant circulation device and a refrigerant circulation method that can be operated.
  • the refrigerant circulation device and the refrigerant circulation method of the present invention employ the following means.
  • the present invention comprises a refrigerant circulation circuit in which a compressor, a condenser, an expansion valve and an evaporator are connected by a main pipe to circulate a refrigerant, and a hydrofluoroolefin (HFO) having a carbon-carbon double bond in its molecular structure.
  • a refrigerant containing hydrochlorofluoroolefin (HCFO) is filled in the refrigerant circuit, and is arranged in the refrigerant circuit so as to be in contact with the refrigerant.
  • a refrigerant circulation device provided with a recovery catalyst for returning an isomer formed by isomerization of hydrofluoroolefin or hydrochlorofluoroolefin contained in an initial refrigerant initially charged to the state before isomerization.
  • Refrigerant circulating in the refrigerant circulation circuit comes into contact with the recovery catalyst during circulation. Even if the hydrofluoroolefin or hydrochlorofluoroolefin contained in the initial refrigerant initially charged in the refrigerant circuit is isomerized during circulation in the refrigerant circuit, the state before isomerization is brought into contact with the recovery catalyst. Can be returned to. Thereby, the thermophysical property change of a refrigerant
  • coolant can be suppressed and a stable thermal cycle can be maintained.
  • the recovery catalyst may be disposed between the compressor and the condenser.
  • the recovery catalyst may be disposed between the condenser and the evaporator.
  • the refrigerant circulation device connects the drive unit that drives the compressor via a speed increaser, the condenser, and the drive unit, and guides the condensed refrigerant to the drive unit.
  • the refrigerant may be arranged around the return path or the driver.
  • high temperature region Between the compressor and the condenser, between the condenser and the evaporator, the return path, and the periphery of the drive unit are regions where the operating temperature of the refrigerant is high (high temperature region).
  • high temperature refers to 150 ° C. or higher.
  • the refrigerant tends to isomerize easily.
  • the present invention provides a refrigerant circulation circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected by a main pipe to circulate a refrigerant, and a hydrofluoroolefin or hydrocarbon having a carbon-carbon double bond in a molecular structure.
  • a recovery catalyst is placed to return the isomer obtained by isomerizing the hydrofluoroolefin or hydrochlorofluoroolefin contained in the initial refrigerant initially charged in the circuit to the state before isomerization, and circulates in the refrigerant circuit.
  • a refrigerant circulation method in which the refrigerant to be brought into contact with the recovery catalyst.
  • the operating catalyst of the refrigerant may be 150 ° C. or higher between the compressor and the condenser.
  • the operating catalyst of the refrigerant may be 150 ° C. or higher between the condenser and the evaporator.
  • coolant circulation apparatus connects the drive device which drives the said compressor via a gearbox, the said condenser, and the said drive device, and uses the condensed refrigerant
  • the refrigerant circulation device and the refrigerant circulation method of the present invention even if a refrigerant containing HFO or HCFO is used, a change in the in-machine pressure is avoided, the refrigerant performance is stabilized, and stable operation is possible. Is possible.
  • the refrigerant circulation circuit is filled with a refrigerant containing hydrofluoroolefin (HFO) or hydrochlorofluoroolefin (HCFO) (hereinafter referred to as HFO refrigerant or HCFO refrigerant).
  • HFO or HCFO is a refrigerant having a carbon-carbon double bond in the molecular structure.
  • the refrigerant is preferably mainly composed of HFO or HCFO.
  • HFO or HCFO is contained in the refrigerant in an amount of more than 50% by mass, preferably more than 75% by mass, and more preferably more than 90% by mass.
  • the hydrofluoroolefin includes (Z) -1,3,3,3-tetrafluoro-1-propene (HFO1234ze (Z)), (Z) -1,1,1,4,4. , 4-hexafluoro-2-butene (HFO1336mzz (Z)), (E) -1,1,1,4,4,5,5,5-octafluoropent-2-ene (HFO1438mzz (E)) or (Z) -1,1,1,4,4,5,5,5-octafluoropent-2-ene (HFO1438mzz (Z)).
  • hydrochlorofluoroolefin includes (E) -1-chloro-3,3,3-trifluoropropene (HCFO1233zd (E)), (Z) -1-chloro-3,3,3 -Trifluoropropene (HCFO1233zd (Z)), (Z) -1,2-dichloro-3,3,3-trifluoropropene (HCFO1223xd (Z)) and the like.
  • the purity of HFO or HCFO is preferably 97% by mass or more, more preferably 99% by mass or more, and further preferably 99.9% by mass or more.
  • the refrigerant may contain an additive.
  • the additive include halocarbons, other hydrofluorocarbons (HFC), alcohols, and saturated hydrocarbons.
  • Halocarbons and other hydrofluorocarbons include methylene chloride containing halogen atoms, trichloroethylene, tetrachloroethylene, and the like.
  • Hydrofluorocarbons include difluoromethane (HFC-32), 1,1,1,2,2-pentafluoroethane (HFC-125), fluoroethane (HFC-161), 1,1,2,2-tetra Fluoroethane (HFC-134), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), difluoroethane (HFC-152a), 1,1 1,1,2,3,3,3-heptafluoropropane (HFC-227ea), 1,1,1,2,3-pentafluoropropane (HFC-236ea), 1,1,1,3,3,3 -Hexafluoropropane (HFC-236fa), 1,
  • Alcohols include alcohols having 1 to 4 carbon atoms, specifically, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, 2,2,2-triol.
  • examples include fluoroethanol, pentafluoropropanol, tetrafluoropropanol, 1,1,1,3,3,3-hexafluoro-2-propanol, and the like.
  • saturated hydrocarbons include saturated hydrocarbons having 3 to 8 carbon atoms, and specifically include propane, n-butane, i-butane, neopentane, n-pentane, i-pentane, and cyclopentane. , Methylcyclopentane, n-hexane, and at least one compound selected from the group comprising cyclohexane can be mixed.
  • particularly preferable substances include neopentane, n-pentane, i-pentane, cyclopentane, methylcyclopentane, n-hexane and cyclohexane.
  • FIG. 1 is a schematic configuration diagram showing an example of a heat pump device (refrigerant circulation device) filled with the refrigerant.
  • the heat pump device 1 is expanded by a compressor 3 that compresses refrigerant, a condenser 5 that condenses the refrigerant compressed by the compressor 3, an expansion valve 7 that expands liquid refrigerant from the condenser 5, and an expansion valve 7.
  • the evaporator 9 for evaporating the generated refrigerant and the recovery catalyst for returning the refrigerant containing isomerized HFO or HCFO to the initial state are provided.
  • the compressor 3, the condenser 5, the expansion valve 7 and the evaporator 9 are connected by a main pipe (11a, 11b, 11c, 11d) to constitute a closed system (heat pump cycle / refrigerant circulation circuit) for circulating the refrigerant. ing.
  • Each component of the heat pump device 1 is designed to withstand the pressure from the refrigerant.
  • the heat pump device 1 can output hot water of 200 ° C.
  • the compressor 3 is a centrifugal compressor capable of obtaining a high pressure ratio.
  • the compressor 3 can raise the temperature of a refrigerant to about 230 degreeC.
  • the compressor 3 includes an impeller 3b provided in the casing 3a, an inlet vane 3c for adjusting the suction refrigerant flow rate, a speed increaser 3d, and a drive unit 3e.
  • the impeller 3b is rotated by the drive unit 3e through the speed increaser 3d.
  • the drive machine 3e is an electric motor.
  • the electric motor may be operated with a variable rotation frequency by an inverter device.
  • the rotational frequency of the drive unit 3e is controlled by a control unit (not shown).
  • One end of the main pipe 11 a is connected to the outlet side of the compressor 3.
  • the other end of the main pipe 11 a is connected to the inlet side of the condenser 5.
  • the condenser 5 has a structure in which the latent heat of condensation of the refrigerant is taken away by the cooling water.
  • a shell and tube heat exchanger is preferably used, but a plate heat exchanger may be used.
  • the liquid refrigerant condensed in the condenser 5 is guided to the expansion valve 7 through the main pipe 11b.
  • One end of the main pipe 11b is connected to the outlet side of the condenser 5. The other end of the main pipe 11b is connected to the expansion valve 7.
  • the expansion valve 7 is an electronic expansion valve or an electric ball valve, and its opening degree is controlled by a control unit (not shown).
  • the expansion valve 7 expands the liquid refrigerant flowing through the main pipe under reduced pressure.
  • the expansion valve 7 is connected to one end of the main pipe 11c.
  • the other end of the main pipe 11 c is connected to the inlet side of the evaporator 9.
  • the evaporator 9 includes a heat transfer tube inside the container (not shown).
  • a chilled water pipe (not shown) is connected in the heat transfer tube so that chilled water can be supplied to an external heat load.
  • the cold water when flowing through the heat transfer tube, the cold water is cooled by the latent heat of evaporation of the liquid refrigerant in the evaporator.
  • the evaporator 9 is, for example, a shell and tube heat exchanger.
  • One end of the main pipe 11d is connected to the outlet side of the evaporator 9.
  • the other end of the main pipe 11 d is connected to the inlet vane 3 c of the compressor 3.
  • the control unit (not shown) of the heat pump apparatus 1 is provided on a control board in the control panel of the heat pump apparatus 1 and includes a CPU and a memory.
  • the control unit calculates each control amount by digital calculation for each control period based on the coolant temperature, the refrigerant pressure, the coolant inlet / outlet temperature, and the like.
  • the heat pump device 1 has an introduction path 13 that leads a part of the liquid refrigerant condensed in the condenser 5 from the main pipe 11b to the drive unit 3e, and a return path 14 that returns the refrigerant that has passed through the drive unit 3e to the main pipe 11c. And.
  • the phrase “via the drive unit 3e” includes that which has contacted the drive unit 3e and passed through the periphery of the drive unit 3e (in the range of the casing 3a).
  • the introduction path 13 has one end connected to the main pipe 11b on the outlet side of the condenser 5 and the other end connected to the drive unit 3e.
  • the other end of the introduction path 13 does not need to be directly connected to the drive unit 3e, and can be cooled between the main pipe 11b and the drive unit 3e in a state where the drive unit 3e can be cooled using condensed liquid refrigerant.
  • the introduction path 13 may be connected to the casing 3a in the vicinity of the driving machine 3e.
  • a throttle valve 15 is provided in the middle of the introduction path 13.
  • the opening degree of the throttle valve 15 is controlled by a control unit (not shown) so that the driving machine 3e is appropriately cooled.
  • the return path 14 has one end connected to the drive unit 3e and the other end connected to the main pipe 11c on the inlet side of the evaporator 9.
  • One end of the return path 14 does not need to be directly connected to the driving machine 3e, and connects the driving machine 3e and the main piping 11c in a state where the refrigerant passing through the driving machine 3e can be returned to the main piping 11c.
  • the return path 14 may be connected to the casing 3a at a position facing the other end of the introduction path 13 with the drive unit 3e interposed therebetween.
  • the recovery catalyst is disposed in the refrigerant circuit so as to be in contact with the refrigerant.
  • ⁇ 1 to ⁇ 5 exemplify positions suitable for the arrangement of the recovery catalyst.
  • the recovery catalyst may be disposed in a region where the operating temperature of the refrigerant is 150 ° C. or higher, preferably 175 ° C. or higher, more preferably 200 ° C. or higher.
  • the recovery catalyst can be arranged at one or more places in the refrigerant circuit.
  • the region where the operating temperature of the refrigerant is 150 ° C. or higher is, for example, between the compressor 3 and the condenser 5, between the condenser 5 and the expansion valve 7, the return path (( 4 ), or around the drive ( ⁇ 5 ) Etc.
  • the space between the compressor 3 and the condenser 5 includes a compressor outlet ( 1 ), a condenser inlet ( ⁇ 2 ), and a main pipe 11a.
  • a space between the condenser 5 and the expansion valve 7 includes a condenser outlet ( 3 ) and a main pipe 11b.
  • the periphery of the drive machine includes the outer periphery and end face of the drive machine 3e and the range of the casing that houses the drive machine 3e (particularly in the vicinity of the drive machine 3e).
  • the region where the operating temperature of the refrigerant is 175 ° C. or higher is between the condenser 5 and the expansion valve 7, the return path ( ⁇ 4 ), or around the drive machine ( ⁇ 5 ).
  • the region where the refrigerant operating temperature is 200 ° C. or higher is between the condenser 5 and the expansion valve 7.
  • the recovery catalyst has the property that the isomer formed by isomerizing the hydrofluoroolefin or hydrochlorofluoroolefin contained in the refrigerant initially charged in the refrigerant circuit (initial refrigerant) can be returned to the state before isomerization. It has.
  • a suitable recovery catalyst can be selected according to the type of the initial refrigerant.
  • the recovery catalyst is, for example, a metal fluoride, a metal oxide, or a fluorinated metal oxide.
  • the metal fluoride is, for example, aluminum fluoride, chromium fluoride, titanium fluoride, manganese fluoride, iron fluoride, nickel fluoride, cobalt fluoride, magnesium fluoride, zirconium fluoride, and antimony fluoride.
  • the metal oxide is, for example, an oxide composed of one or two or more metals in which 50% or more of metal atoms are aluminum.
  • Other metals of aluminum include chromium, titanium, manganese, iron, nickel, cobalt, magnesium, zirconium and antimony.
  • the metal oxide may be a composite oxide such as alumina and chromium, alumina and zirconia, alumina and titania, alumina and magnesia.
  • the fluorinated metal oxide is a metal oxide that has been treated by contacting with a fluorinating agent and dried.
  • fluorinated metal oxides include fluorinated alumina, fluorinated titanium oxide, fluorinated manganese oxide, fluorinated iron oxide, fluorinated nickel oxide, fluorinated cobalt oxide, fluorinated magnesia, fluorinated zirconia, and fluorine.
  • Antimony oxide or fluorinated chromia include fluorinated alumina, fluorinated titanium oxide, fluorinated manganese oxide, fluorinated iron oxide, fluorinated nickel oxide, fluorinated cobalt oxide, fluorinated magnesia, fluorinated zirconia, and fluorine.
  • Antimony oxide or fluorinated chromia include fluorinated alumina, fluorinated titanium oxide, fluorinated manganese oxide, fluorinated iron oxide, fluorinated nickel oxide, fluorinated
  • the recovery catalyst may have a shape that increases the contact area with the refrigerant.
  • the recovery catalyst is in the form of a perforated plate or a wire mesh.
  • a recovery catalyst having a perforated plate shape may be disposed.
  • a wire mesh-shaped recovery catalyst may be disposed.
  • the recovery catalyst may be arranged in a direction crossing the refrigerant flow direction so that the refrigerant passes through the hole (or mesh) of the recovery catalyst.
  • the compressor may be a two-stage compressor including two impellers.
  • the heat pump device 1 includes a lubricating oil circulation unit (not shown) that circulates lubricating oil in the casing 3a in which the speed increaser 3d is accommodated, an extraction device (not shown) that extracts the refrigerant circulation circuit, and the refrigerant circulation circuit.
  • a refrigerant supply pipe (not shown) for supplying the refrigerant may be provided.
  • the low-pressure gas refrigerant sucked from the evaporator 9 is compressed by the impeller 3b of the compressor 3 and becomes high-pressure gas refrigerant.
  • the high-pressure gas refrigerant discharged from the compressor 3 is guided to the condenser 5 through the main pipe 11a.
  • the high-pressure gas refrigerant is cooled at a substantially equal pressure to become a high-pressure liquid refrigerant.
  • Most of the high-pressure liquid refrigerant is led to the expansion valve 7 through the main pipe 11b, and a part of the high-pressure liquid refrigerant is led to the drive unit 3e through the introduction path 13.
  • the high-pressure liquid refrigerant led to the expansion valve 7 is expanded by an enthalpy to a low pressure and led to the evaporator 9 through the main pipe 11c.
  • the liquid refrigerant led to the evaporator 9 is evaporated by heat exchange with cold water passing through the heat transfer tube to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flows into the inlet vane 3c of the compressor 3 through the main pipe 11d and is compressed again by the impeller 3b.
  • the high-pressure liquid refrigerant guided to the introduction path 13 is guided to the return path 14 after cooling the drive unit 3e.
  • the opening degree of the throttle valve 15 is adjusted by a control unit (not shown) or the like so that the refrigerant has a desired temperature.
  • the drive unit 3 e can be cooled by the liquid refrigerant condensed by the condenser 5 even in the heat pump device 1 having a region where the refrigerant reaches a high temperature of about 200 ° C.
  • the refrigerant filled in the refrigerant circulation circuit comes into contact with the recovery catalyst in the circulation process.
  • an isomer formed by isomerization of hydrofluoroolefin or hydrochlorofluoroolefin contained in the initial refrigerant is contained in the refrigerant, the refrigerant contacts the recovery catalyst to return to the state before isomerization.
  • a refrigerant mainly composed of HCFO1233zd (E) is filled as an initial refrigerant and fluorinated alumina is disposed as a recovery catalyst.
  • HCFO1233zd (E) contained in the refrigerant can be isomerized to HCFO1233zd (Z) by being exposed to a high temperature of 150 ° C. or higher in the refrigerant circuit.
  • the recovery catalyst is arranged in a region where the operating temperature of the refrigerant is 150 ° C. or higher, and when the refrigerant containing the isomer HCFO1233zd (Z) comes into contact with the recovery catalyst, HCFO1233zd ( Z) returns to HCFO1233zd (E).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

HFO系またはHCFO系の冷媒を用いた場合であっても機内圧力の変化を回避し、性能安定、安定運転が可能な冷媒循環装置および冷媒循環方法を提供することを目的とする。冷媒循環装置(1)は、圧縮機(3)、凝縮器(5)、膨張弁(7)および蒸発器(9)が主配管(11a、11b、11c、11d)によって接続されて冷媒を循環させる冷媒循環回路が構成され、分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンを含む冷媒が冷媒循環回路内に充填されている冷媒循環装置(1)であって、冷媒循環回路内に冷媒と接触可能に配置され、冷媒循環回路内に初期充填された初期冷媒に含まれるハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンが異性化されてなる異性体を、異性化前の状態に戻す回復触媒を備えている。

Description

冷媒循環装置および冷媒循環方法
 本発明は、冷媒循環装置および冷媒循環方法に関するものである。
 従来、ターボヒートポンプにはハイドロフルオロカーボン(HFC)冷媒が使用されている。しかしながら、HFC冷媒の地球温暖化係数(Global Warming Potential、GWP)は、数百から数千と非常に高い。
 GWPの高い冷媒の使用は、地球環境保護の観点から望ましくない。そのため、GWPの低い冷媒への転換が必要である。
 GWPの低い冷媒として、ハイドロフルオロオレフィン(HFO)系またはハイドロクロロフルオロオレフィン(HCFO)系の冷媒が知られている(特許文献1,2参照)。HFOおよびHCFOは、分子構造内に炭素-炭素二重結合を有する。HFOおよびHCFOの中には、立体異性体(シス-トランス異性体)を有するものがある。
特開2015-83899号公報 特開2013-107848号公報
 HFO系およびHCFO系の冷媒は、HFCよりも安定性が低く、高温環境に曝されると異性化する。シス-トランス異性体は、同じ組成ではあるが、沸点、伝熱、流動特性等の物性が異なる。そのため、異性化が進むと、冷媒の伝熱特性、流動特性が変化するとともに、冷媒の圧力が変化する。例えば、沸点の高い方の異性体(低圧立体異性体)が異性化して沸点の低い方の異性体(高圧立体異性体)が増えると、冷媒の飽和圧力が増加する。
 ヒートポンプ装置等の機器の構成は、初期に充填される冷媒の飽和圧力で設計されるが、ヒートポンプの運転時間と共に冷媒が異性化すると、機内の圧力が上昇しさらには機器の破損につながる。
 冷媒充填時の冷媒の物性が運転中に変化する状況では、安定的な熱サイクルが維持できない。
 本発明は、このような事情に鑑みてなされたものであって、HFO系またはHCFO系の冷媒を用いた場合であっても機内圧力の変化を回避し、冷媒の性能を安定化させ、安定運転が可能な冷媒循環装置および冷媒循環方法を提供することを目的とする。
 上記課題を解決するために、本発明の冷媒循環装置および冷媒循環方法は以下の手段を採用する。
 本発明は、圧縮機、凝縮器、膨張弁および蒸発器が主配管によって接続されて冷媒を循環させる冷媒循環回路が構成され、分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィン(HFO)またはハイドロクロロフルオロオレフィン(HCFO)を含む冷媒が前記冷媒循環回路内に充填されている冷媒循環装置であって、前記冷媒循環回路内に前記冷媒と接触可能に配置され、前記冷媒循環回路内に初期充填された初期冷媒に含まれるハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンが異性化されてなる異性体を、異性化前の状態に戻す回復触媒を備えている冷媒循環装置を提供する。
 冷媒循環回路内を循環する冷媒は、循環中に回復触媒と接触する。冷媒循環回路内に初期充填された初期冷媒に含まれるハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンが、冷媒循環回路内を循環中に異性化したとしても、回復触媒と接触させることで異性化前の状態に戻すことができる。それにより、冷媒の熱物性変化を抑えられ、安定的な熱サイクルを維持できる。
 上記発明の一態様において、前記回復触媒は、前記圧縮機と前記凝縮器との間に配置され得る。
 上記発明の一態様において、前記回復触媒は、前記凝縮器と前記蒸発器との間に配置され得る。
 上記発明の一態様において、冷媒循環装置は、増速機を介して前記圧縮機を駆動させる駆動機と、前記凝縮器と前記駆動機とを接続し、凝縮された冷媒を前記駆動機に導く導入経路と、前記膨張弁と前記蒸発器との間の主配管と、前記駆動機との間を繋ぎ、前記駆動機を経由した冷媒を該主配管に戻す戻り経路と、を備え、前記回復冷媒は、前記戻り経路または前記駆動機周囲に配置され得る。
 圧縮機と凝縮器との間、凝縮器と蒸発器との間、戻り経路および駆動機周囲は、冷媒の作動温度が高温となる領域(高温領域)である。ここで高温とは、150℃以上を指す。高温領域では冷媒が異性化しやすい傾向がある。高温領域に回復触媒を配置することで、異性化により増加した異性体を速やかに異性化前の状態へと戻し、冷媒の熱物性変化を抑制できる。
 本発明は、圧縮機、凝縮器、膨張弁および蒸発器が主配管によって接続されて冷媒を循環させる冷媒循環回路が構成され、分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンを含む冷媒が前記冷媒循環回路内に充填されている冷媒循環装置における冷媒循環方法であって、前記冷媒循環回路内で冷媒の作動温度が150℃以上となるところに、前記冷媒循環回路内に初期充填された初期冷媒に含まれるハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンが異性化されてなる異性体を、異性化前の状態に戻す回復触媒を配置し、前記冷媒循環回路内を循環する前記冷媒を前記回復触媒に接触させる冷媒循環方法を提供する。
 上記発明の一態様において、前記冷媒の作動触媒が150℃以上となるところは、前記圧縮機と前記凝縮器との間であり得る。
 上記発明の一態様において、前記冷媒の作動触媒が150℃以上となるところは、前記凝縮器と前記蒸発器との間であり得る。
 上記発明の一態様において、前記冷媒循環装置が、増速機を介して前記圧縮機を駆動させる駆動機と、前記凝縮器と前記駆動機とを接続し、凝縮された冷媒を前記駆動機に導く導入経路と、前記膨張弁と前記蒸発器との間の主配管と、前記駆動機との間を繋ぎ、前記駆動機を経由した冷媒を該主配管に戻す戻り経路と、を備え、前記冷媒の作動触媒が150℃以上となるところは、前記戻り経路または前記駆動機周囲であり得る。
 本発明の冷媒循環装置および冷媒循環方法によれば、HFOまたはHCFOを含む冷媒を用いた場合であっても機内圧力の変化を回避し、冷媒の性能を安定化させて、安定運転することが可能である。
一実施形態に係るヒートポンプ装置の一例を示す概略構成図である。
 本実施形態に係るヒートポンプ装置は、冷媒循環回路内にハイドロフルオロオレフィン(HFO)またはハイドロクロロフルオロオレフィン(HCFO)を含む冷媒(以降HFO冷媒またはHCFO冷媒)が充填されている。HFOまたはHCFOは、分子構造中に炭素-炭素二重結合を有する冷媒である。
 冷媒は、HFOまたはHCFOを主成分とすることが好ましい。HFOまたはHCFOは、冷媒中に50質量%より多く、好ましくは75質量%より多く、更に好ましくは90質量%より多く含まれている。
 具体的に、ハイドロフルオロオレフィン(HFO)は、(Z)-1,3,3,3-テトラフルオロ-1-プロペン(HFO1234ze(Z))、(Z)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO1336mzz(Z))、(E)-1,1,1,4,4,5,5,5-オクタフルオロペンタ-2-エン(HFO1438mzz(E))または(Z)-1,1,1,4,4,5,5,5-オクタフルオロペンタ-2-エン(HFO1438mzz(Z))などである。
 具体的に、ハイドロクロロフルオロオレフィン(HCFO)は、(E)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO1233zd(E))、(Z)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO1233zd(Z))、(Z)-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO1223xd(Z))などである。
 HFOまたはHCFOの純度は、好ましくは97質量%以上、より好ましくは99質量%以上、さらに好ましくは99.9質量%以上とされる。
 冷媒は、添加物を含んでいてもよい。添加物は、ハロカーボン類、その他のハイドロフルオロカーボン類(HFC)、アルコール類、飽和炭化水素類などが挙げられる。
<ハロカーボン類、および、その他のハイドロフルオロカーボン類>
 ハロカーボン類としては、ハロゲン原子を含む塩化メチレン、トリクロロエチレン、テトラクロロエチレン等を挙げることができる。
 ハイドロフルオロカーボン類としては、ジフルオロメタン(HFC-32)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、フルオロエタン(HFC-161)、1,1,2,2-テトラフルオロエタン(HFC-134)、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1-トリフルオロエタン(HFC-143a)、ジフルオロエタン(HFC-152a)、1,1,1,2,3,3,3-ヘプタフルオロプロパン(HFC-227ea)、1,1,1,2,3-ペンタフルオロプロパン(HFC-236ea)、1,1,1,3,3,3-ヘキサフルオロプロパン(HFC-236fa)、1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)、1,1,1,2,3-ペンタフルオロプロパン(HFC-245eb)、1,1,2,2,3-ペンタフルオロプロパン(HFC-245ca)、1,1,1,3,3-ペンタフルオロブタン(HFC-365mfc)、1,1,1,3,3,3-ヘキサフルオロイソブタン(HFC-356mmz)、1,1,1,2,2,3,4,5,5,5-デカフルオロペンタン(HFC-43-10-mee)等を挙げることができる。
<アルコール類>
 アルコール類としては、炭素数1から4のアルコールを挙げることができ、具体的には、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、2,2,2-トリフルオロエタノール、ペンタフルオロプロパノール、テトラフルオロプロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール等を挙げることができる。
<飽和炭化水素類>
 飽和炭化水素類としては、炭素数3以上8以下の飽和炭化水素を挙げることができ、具体的には、プロパン、n-ブタン、i-ブタン、ネオペンタン、n-ペンタン、i-ペンタン、シクロペンタン、メチルシクロペンタン、n-ヘキサン、およびシクロヘキサンを含む群から選ばれる少なくとも1以上の化合物を混合することができる。これらのうち、特に好ましい物質としてはネオペンタン、n-ペンタン、i-ペンタン、シクロペンタン、メチルシクロペンタン、n-ヘキサン、シクロヘキサンが挙げられる。
 図1は、上記冷媒が充填されるヒートポンプ装置(冷媒循環装置)の一例を示す概略構成図である。
 ヒートポンプ装置1は、冷媒を圧縮する圧縮機3と、圧縮機3によって圧縮された冷媒を凝縮させる凝縮器5と、凝縮器5からの液冷媒を膨張させる膨張弁7と、膨張弁7によって膨張された冷媒を蒸発させる蒸発器9と、異性化したHFOまたはHCFOを含む冷媒を初期状態に戻す回復触媒とを備えている。
 圧縮機3、凝縮器5、膨張弁7および蒸発器9は、主配管(11a,11b,11c,11d)によって接続されて冷媒を循環させる閉じた系(ヒートポンプサイクル/冷媒循環回路)を構成している。ヒートポンプ装置1の各構成部材は、冷媒からの圧力に耐えうるよう設計されている。ヒートポンプ装置1は、200℃の温水を出力できるものである。
 圧縮機3は、高圧力比が得られる遠心圧縮機である。圧縮機3は、冷媒の温度を230℃程度まで高めることができる。圧縮機3は、ケーシング3a内に設けられた羽根車3b、吸込冷媒流量を調整する入口ベーン3c、増速機3dおよび駆動機3eを備えている。
 羽根車3bは、増速機3dを介して駆動機3eによって回転させられる。駆動機3eは電動モータである。電動モータは、インバータ装置によって回転周波数可変にて動作する場合もある。駆動機3eの回転周波数は、図示しない制御部によって制御される。
 圧縮機3の出口側には、主配管11aの一端が接続されている。主配管11aの他端は凝縮器5の入口側に接続されている。
 凝縮器5は、冷却水によって冷媒の凝縮潜熱が奪われる構造となっている。凝縮器5としては、シェルアンドチューブ式熱交換器が好適に用いられるが、プレート式熱交換器であってもよい。凝縮器5にて凝縮された液冷媒は、主配管11bを通り、膨張弁7に導かれる。
 凝縮器5の出口側には、主配管11bの一端が接続されている。主配管11bの他端は膨張弁7に接続されている。
 膨張弁7は、電子式膨張弁または電動ボール弁とされており、図示しない制御部によって開度が制御される。膨張弁7によって、主配管を流れる液冷媒が減圧膨張されるようになっている。
 膨張弁7には、主配管11cの一端が接続されている。主配管11cの他端は蒸発器9の入口側に接続されている。
 蒸発器9は、容器の内部に伝熱管を備えている(図示略)。伝熱管内には外部の熱負荷に対して冷水を供給できるよう冷水配管(図示略)が接続されている。蒸発器9では、伝熱管内を流れる際に、冷水が蒸発器内の液冷媒の蒸発潜熱によって冷却されるようになっている。蒸発器9は、例えば、シェルアンドチューブ式熱交換器である。
 蒸発器9の出口側には、主配管11dの一端が接続されている。主配管11dの他端は圧縮機3の入口ベーン3cに接続されている。
 ヒートポンプ装置1の制御部(図示略)は、ヒートポンプ装置1の制御盤内の制御基板に設けられており、CPUおよびメモリを備えている。制御部は、冷却水温度、冷媒圧力、冷水出入口温度等に基づき制御周期ごとにデジタル演算により各制御量を算出するようになっている。
 ヒートポンプ装置1は、凝縮器5にて凝縮された液冷媒の一部を主配管11bから駆動機3eへと導く導入経路13と、駆動機3eを経由した冷媒を主配管11cに戻す戻り経路14とを備えている。「駆動機3eを経由した」とは、駆動機3eに接触した、および駆動機3eの周囲(ケーシング3aの範囲内)を通過したものを含む。
 導入経路13は、一端が凝縮器5の出口側にある主配管11bに、他端が駆動機3eに接続されている。導入経路13の他端は、駆動機3eに直接的に接続されている必要はなく、凝縮された液冷媒を用いて駆動機3eを冷却できる状態で、主配管11bと駆動機3eとの間を繋いでいればよい。例えば、導入経路13は、駆動機3e近傍にあるケーシング3aに接続されていてもよい。
 導入経路13の途中には絞り弁15が設けられている。絞り弁15は、適宜駆動機3eが冷却されるよう図示しない制御部によってその開度が制御されるようになっている。
 戻り経路14は、一端が駆動機3eに、他端が蒸発器9の入口側にある主配管11cに接続されている。戻り経路14の一端は、駆動機3eに直接的に接続されている必要はなく、駆動機3eを経由した冷媒を主配管11cに戻せる状態で、駆動機3eと主配管11cとの間を繋いでいればよい。例えば、戻り経路14は、駆動機3eを挟んで導入経路13の他端と対向する位置にあるケーシング3aに接続されていてもよい。
 回復触媒は、冷媒と接触可能に冷媒循環回路内に配置されている。図1の▽から▽は、回復触媒の配置に好適な位置を例示するものである。
 回復触媒は、冷媒の作動温度が150℃以上、好ましくは175℃以上、更に好ましくは200℃以上となる領域に配置されるとよい。回復触媒は、冷媒循環回路内の1か所または複数個所に配置され得る。
 冷媒の作動温度が150℃以上となる領域は、例えば、圧縮機3と凝縮器5との間、凝縮器5と膨張弁7との間、戻り経路(▽)または駆動機周囲(▽)などである。圧縮機3と凝縮器5との間とは、圧縮機出口(▽)、凝縮器入口(▽)、および主配管11aを含む。凝縮器5と膨張弁7との間とは、凝縮器出口(▽)および主配管11bを含む。駆動機周囲は、駆動機3eの外周、端面および駆動機3eを収容するケーシングの範囲内(特に駆動機3e近傍)を含む。
 冷媒の作動温度が175℃以上となる領域は、凝縮器5と膨張弁7との間、戻り経路(▽)または駆動機周囲(▽)などである。
 冷媒の作動温度が200℃以上となる領域は、凝縮器5と膨張弁7との間である。
 回復触媒は、冷媒循環回路内に初期充填された冷媒(初期冷媒)に含まれるハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンが異性化されてなる異性体を、異性化前の状態に戻すことができる性質を備えている。
 回復触媒は、初期冷媒の種類に応じて、適したものが選択され得る。回復触媒は、例えば、金属フッ化物、金属酸化物またはフッ素化処理された金属酸化物である。
 金属フッ化物は、例えば、フッ化アルミニウム、フッ化クロム、フッ化チタン、フッ化マンガン、フッ化鉄、フッ化ニッケル、フッ化コバルト、フッ化マグネシウム、フッ化ジルコニウム及びフッ化アンチモンである。
 金属酸化物は、例えば、金属原子の50%以上をアルミニウムとする一種または二種以上の金属からなる酸化物である。アルミニウムの他の金属としては、クロム、チタン、マンガン、鉄、ニッケル、コバルト、マグネシウム、ジルコニウムおよびアンチモンなどが挙げられる。より具体的には、金属酸化物は、アルミナとクロム、アルミナとジルコニア、アルミナとチタニア、アルミナとマグネシアなどの複合酸化物であり得る。
 フッ素化処理された金属酸化物は、金属酸化物をフッ素化剤と接触させて処理し乾燥させたものである。フッ素化処理された金属酸化物は、例えば、フッ素化アルミナ、フッ素化酸化チタン、フッ素化酸化マンガン、フッ素化酸化鉄、フッ素化酸化ニッケル、フッ素化酸化コバルト、フッ素化マグネシア、フッ素化ジルコニア、フッ素化酸化アンチモンまたはフッ素化クロミアである。
 回復触媒は、冷媒との接触面積を増やす形状であるとよい。例えば、回復触媒は多孔板またはワイヤーメッシュ等の形状である。冷媒が液状で存在する領域には、多孔板形状の回復触媒を配置するとよい。冷媒がガス状で存在する領域には、ワイヤーメッシュ形状の回復触媒を配置するとよい。回復触媒は、冷媒が回復触媒の孔(またはメッシュ)を通過するよう冷媒流れ方向に交差する方向へ向けて配置するとよい。
 ヒートポンプ装置1において、圧縮機は2つの羽根車を備えた2段圧縮機であってもよい。
 ヒートポンプ装置1は、増速機3dが収容されているケーシング3aに潤滑油を循環させる潤滑油循環部(図示略)、冷媒循環回路内を抽気する抽気装置(図示略)、冷媒循環回路内に冷媒を供給するための冷媒供給配管(図示略)などを備えていてもよい。
 次に、上記構成のヒートポンプ装置の動作および作用効果について説明する。
 蒸発器9から吸い込まれた低圧ガス冷媒は、圧縮機3の羽根車3bによって圧縮され高圧ガス冷媒となる。
 圧縮機3から吐出された高圧ガス冷媒は、主配管11aを通り凝縮器5へと導かれる。凝縮器5において、高圧ガス冷媒は略等圧で冷却され、高圧液冷媒となる。高圧液冷媒の大部分は主配管11bを通って膨張弁7に導かれ、高圧液冷媒の一部は導入経路13を通り駆動機3eへと導かれる。
 膨張弁7に導かれた高圧液冷媒は、低圧まで等エンタルピ膨張させられ、主配管11cを通り蒸発器9に導かれる。
 蒸発器9に導かれた液冷媒は、伝熱管を通る冷水との熱交換により蒸発して低圧ガス冷媒となる。低圧ガス冷媒は、主配管11dを介して圧縮機3の入口ベーン3cに流れ込み、羽根車3bで再び圧縮される。
 導入経路13へと導かれた高圧液冷媒は、駆動機3eを冷却した後、戻り経路14へと導かれる。絞り弁15の開度は、冷媒が所望の温度となるように図示しない制御部などで調整する。絞り弁15を設けることで、冷媒が200℃程度の高温になる領域があるヒートポンプ装置1であっても、凝縮器5で凝縮された液冷媒にて駆動機3eを冷却できる。
 冷媒循環回路内に充填された冷媒は、循環の過程において回復触媒と接触する。初期冷媒に含まれるハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンが異性化してなる異性体が冷媒中に含まれる場合、冷媒が回復触媒に接触することで異性化前の状態に戻る。これにより、初期冷媒で優位に存在していなかった異性体がヒートポンプ内で支配的になることを抑制し、機内圧力の変化を回避し、冷媒性能を安定化させ、ヒートポンプ装置1を安定運転させることが可能となる。
 例えば、初期冷媒としてHCFO1233zd(E)を主成分とする冷媒を充填し、回復触媒としてフッ素化アルミナを配置したとする。冷媒に含まれるHCFO1233zd(E)は、冷媒循環回路内で150℃以上の高温に曝されることで異性化してHCFO1233zd(Z)となり得る。本実施形態のヒートポンプ装置1では、冷媒の作動温度が150℃以上となる領域に回復触媒を配置されており、異性体であるHCFO1233zd(Z)を含んだ冷媒が回復触媒に接触すると、HCFO1233zd(Z)はHCFO1233zd(E)へと戻る。
1 ヒートポンプ装置(冷媒循環装置)
3 圧縮機
3a ケーシング
3b 羽根車
3c 入口ベーン
3d 増速機
3e 駆動機
5 凝縮器
7 膨張弁
9 蒸発器
11a、11b、11c、11d 主配管
13 導入経路
14 戻り経路
15 絞り弁

Claims (8)

  1.  圧縮機、凝縮器、膨張弁および蒸発器が主配管によって接続されて冷媒を循環させる冷媒循環回路が構成され、分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンを含む冷媒が前記冷媒循環回路内に充填されている冷媒循環装置であって、
     前記冷媒循環回路内に前記冷媒と接触可能に配置され、前記冷媒循環回路内に初期充填された初期冷媒に含まれるハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンが異性化されてなる異性体を、異性化前の状態に戻す回復触媒を備えている冷媒循環装置。
  2.  前記回復触媒は、前記圧縮機と前記凝縮器との間に配置されている請求項1に記載の冷媒循環装置。
  3.  前記回復触媒は、前記凝縮器と前記蒸発器との間に配置されている請求項1または請求項2に冷媒循環装置。
  4.  増速機を介して前記圧縮機を駆動させる駆動機と、
     前記凝縮器と前記駆動機とを接続し、凝縮された冷媒を前記駆動機に導く導入経路と、
     前記膨張弁と前記蒸発器との間の主配管と、前記駆動機との間を繋ぎ、前記駆動機を経由した冷媒を該主配管に戻す戻り経路と、
    を備え、
     前記回復冷媒は、前記戻り経路または前記駆動機周囲に配置されている請求項1から請求項3のいずれかに記載の冷媒循環装置。
  5.  圧縮機、凝縮器、膨張弁および蒸発器が主配管によって接続されて冷媒を循環させる冷媒循環回路が構成され、分子構造中に炭素-炭素二重結合を有するハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンを含む冷媒が前記冷媒循環回路内に充填されている冷媒循環装置における冷媒循環方法であって、
     前記冷媒循環回路内で冷媒の作動温度が150℃以上となるところに、前記冷媒循環回路内に初期充填された初期冷媒に含まれるハイドロフルオロオレフィンまたはハイドロクロロフルオロオレフィンが異性化されてなる異性体を、異性化前の状態に戻す回復触媒を配置し、
     前記冷媒循環回路内を循環する前記冷媒を前記回復触媒に接触させる冷媒循環方法。
  6.  前記冷媒の作動触媒が150℃以上となるところは、前記圧縮機と前記凝縮器との間である請求項5に記載の冷媒循環方法。
  7.  前記冷媒の作動触媒が150℃以上となるところは、前記凝縮器と前記蒸発器との間である請求項5または請求項6に記載の冷媒循環方法。
  8.  前記冷媒循環装置が、
     増速機を介して前記圧縮機を駆動させる駆動機と、
     前記凝縮器と前記駆動機とを接続し、凝縮された冷媒を前記駆動機に導く導入経路と、
     前記膨張弁と前記蒸発器との間の主配管と、前記駆動機との間を繋ぎ、前記駆動機を経由した冷媒を該主配管に戻す戻り経路と、
    を備え、前記冷媒の作動触媒が150℃以上となるところは、前記戻り経路または前記 駆動機周囲である請求項5から請求項7のいずれかに記載の冷媒循環方法。
PCT/JP2018/009072 2017-03-29 2018-03-08 冷媒循環装置および冷媒循環方法 WO2018180349A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880018192.5A CN110418926A (zh) 2017-03-29 2018-03-08 制冷剂循环装置及制冷剂循环方法
US16/493,176 US20200011578A1 (en) 2017-03-29 2018-03-08 Refrigerant circulation device and refrigerant circulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017064886A JP2018169060A (ja) 2017-03-29 2017-03-29 冷媒循環装置および冷媒循環方法
JP2017-064886 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018180349A1 true WO2018180349A1 (ja) 2018-10-04

Family

ID=63675295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009072 WO2018180349A1 (ja) 2017-03-29 2018-03-08 冷媒循環装置および冷媒循環方法

Country Status (4)

Country Link
US (1) US20200011578A1 (ja)
JP (1) JP2018169060A (ja)
CN (1) CN110418926A (ja)
WO (1) WO2018180349A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928504B (zh) * 2020-08-24 2021-08-20 珠海格力电器股份有限公司 冷媒循环系统及控制方法
CN114196382B (zh) * 2020-09-18 2024-02-23 浙江省化工研究院有限公司 含1,1,1,3,3,3-六氟异丙基甲基醚的组合物及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150096312A1 (en) * 2012-04-04 2015-04-09 Arkema France Compositions based on 2,3,3,4,4,4-hexafluorobut-1-ene
JP2015083899A (ja) * 2013-10-25 2015-04-30 三菱重工業株式会社 冷媒循環装置、冷媒循環方法および異性化抑制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2397377T3 (es) * 2006-08-24 2013-03-06 Honeywell International Inc. Proceso integrado de fabricación de HFC trans1234ze
KR101394583B1 (ko) * 2006-10-03 2014-05-12 멕시켐 아만코 홀딩 에스.에이. 데 씨.브이. 탄소수 3-6의 (하이드로)플루오로알켄의 생성을 위한 탈수소할로겐화 방법
ES2656411T3 (es) * 2008-03-07 2018-02-27 Arkema, Inc. Uso del R-1233 en enfriadores de líquidos
WO2009140584A2 (en) * 2008-05-15 2009-11-19 Xdx Innovative Refrigeration, Llc Surged vapor compression heat transfer system with reduced defrost
JP2011220640A (ja) * 2010-04-13 2011-11-04 Ihi Corp ターボ冷凍機
US8653309B2 (en) * 2011-04-20 2014-02-18 Honeywell International Inc. Process for producing trans-1233zd
CN103534328B (zh) * 2011-05-19 2016-02-24 旭硝子株式会社 工作介质及热循环系统
JP6138957B2 (ja) * 2013-10-25 2017-05-31 三菱重工業株式会社 冷媒循環装置、冷媒循環方法および酸抑制方法
CN204739813U (zh) * 2015-06-29 2015-11-04 特灵空调系统(中国)有限公司 一种空调制冷结构

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150096312A1 (en) * 2012-04-04 2015-04-09 Arkema France Compositions based on 2,3,3,4,4,4-hexafluorobut-1-ene
JP2015083899A (ja) * 2013-10-25 2015-04-30 三菱重工業株式会社 冷媒循環装置、冷媒循環方法および異性化抑制方法

Also Published As

Publication number Publication date
CN110418926A (zh) 2019-11-05
JP2018169060A (ja) 2018-11-01
US20200011578A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
AU2015223326B2 (en) Use of R-1233 in liquid chillers
JP6392272B2 (ja) 熱伝達流体と、その向流熱交換器での使用
US9528039B2 (en) Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene
JP5936605B2 (ja) ジフルオロメタンと、ペンタフルオロエタンと、テトラフルオロプロペンとをベースにした三元熱伝導流体
JP5936604B2 (ja) 熱伝達流体と、その向流熱交換器での使用
BR112016016341B1 (pt) Fluido de operação para ciclo térmico, composição para sistema de ciclo térmico e sistema de ciclo térmico
US10465959B2 (en) Refrigerant circulation device, method for circulating refrigerant and method for suppressing isomerization
JP7060017B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2018180349A1 (ja) 冷媒循環装置および冷媒循環方法
JP2015083899A5 (ja)
JP7081600B2 (ja) 共沸または共沸様組成物、熱サイクル用作動媒体および熱サイクルシステム
WO2017138614A1 (ja) 熱源機およびその運転方法
CN102803429B (zh) 用于高温传热的制冷剂
JP6938273B2 (ja) ヒートポンプおよびその設計方法
WO2023248923A1 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774818

Country of ref document: EP

Kind code of ref document: A1