WO2018180271A1 - Optical element and optical device - Google Patents

Optical element and optical device Download PDF

Info

Publication number
WO2018180271A1
WO2018180271A1 PCT/JP2018/008496 JP2018008496W WO2018180271A1 WO 2018180271 A1 WO2018180271 A1 WO 2018180271A1 JP 2018008496 W JP2018008496 W JP 2018008496W WO 2018180271 A1 WO2018180271 A1 WO 2018180271A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
layer
layers
pair
openings
Prior art date
Application number
PCT/JP2018/008496
Other languages
French (fr)
Japanese (ja)
Inventor
橋川 広和
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2019509100A priority Critical patent/JP6806880B2/en
Publication of WO2018180271A1 publication Critical patent/WO2018180271A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the present invention relates to an optical element and an optical device including a microlens array using a liquid crystal layer.
  • microlens arrays using liquid crystal lenses are known.
  • the microlens array functions as, for example, a screen that scatters and emits light from a projector.
  • Patent Document 1 discloses a transmission screen for a rear projection type projection television using a liquid crystal microlens array.
  • an optical element using a microlens array it is required to accurately and efficiently perform optical processing on input (incident) light.
  • the optical processing is performed with high resolution, the utilization efficiency of incident light is high, and noise is not superimposed on the processed light.
  • the optical element when used for display purposes, for example, when used as a screen, it is preferable to display a high-luminance image (video) with high resolution and little noise.
  • the present invention has been made in view of the above points, and it is an object of the present invention to provide an optical element and an optical device capable of performing optical processing of incident light while suppressing generation of noise with high utilization efficiency.
  • an optical element and an optical device capable of performing optical processing of incident light while suppressing generation of noise with high utilization efficiency.
  • the invention described in claim 1 includes a plurality of optical layers each including a liquid crystal layer, a pair of alignment films sandwiching the liquid crystal layer, and a pair of light-transmitting electrode layers formed on the pair of alignment films.
  • One of the pair of transparent electrode layers in one of the optical layers has a plurality of openings arranged in a matrix, and the pair of transparent electrodes in the other optical layer of the plurality of optical layers.
  • One of the photoelectrode layers has a plurality of openings arranged so as to overlap with a region between the openings of one light-transmitting electrode layer in one optical layer when viewed from a direction perpendicular to the one optical layer. It is characterized by.
  • the invention according to claim 5 includes a liquid crystal layer, a pair of alignment films sandwiching the liquid crystal layer, and a pair of transparent electrode layers formed on the pair of alignment films, and one of the pair of transparent electrode layers is in a matrix form
  • a first optical layer having a plurality of openings arranged in a pair, a liquid crystal layer, a pair of alignment films sandwiching the liquid crystal layer, and a pair of transparent electrode layers formed on the pair of alignment films.
  • the invention according to claim 6 has a plurality of optical elements that are separated from each other in the direction along the optical axis of incident light from the outside, and a drive circuit that selectively drives each of the plurality of optical elements.
  • Each of the optical elements has a plurality of optical layers each including a liquid crystal layer, a pair of alignment films sandwiching the liquid crystal layer, and a pair of transparent electrode layers formed on the pair of alignment films.
  • One of the pair of transparent electrode layers in one of the optical layers has a plurality of openings spaced apart from each other and arranged in a matrix, and the pair of transparent electrodes in the other optical layer of the plurality of optical layers.
  • One of the photoelectrode layers has a plurality of openings arranged so as to overlap with a region between the openings of one light-transmitting electrode layer in one optical layer when viewed from a direction perpendicular to the one optical layer. It is characterized by.
  • FIG. 1 is a diagram schematically illustrating a configuration of a display device according to Example 1.
  • FIG. 1 is a plan view of an optical element according to Example 1.
  • FIG. 1 is a cross-sectional view of an optical element according to Example 1.
  • FIG. 3 is a diagram schematically showing an electrode configuration of each optical layer in the optical element according to Example 1.
  • FIG. 3 is a diagram schematically showing an electrode configuration of each optical layer in the optical element according to Example 1.
  • FIG. 6 is a plan view of an optical element according to Example 2.
  • FIG. 6 is a cross-sectional view of an optical element according to Example 2.
  • FIG. FIG. 6 is a diagram schematically illustrating a configuration of an optical device according to a third embodiment.
  • FIG. 1 is a diagram schematically illustrating the configuration of the display device 10 according to the first embodiment.
  • the display device 10 can be installed in the dashboard DB of the vehicle.
  • the display device 10 is, for example, a head-up display that displays a virtual image VI on a vehicle windshield FG.
  • the virtual image VI displayed by the display device 10 is indicated by a broken line.
  • FIG. 1 also shows the position of the eyes of an observer who observes the virtual image VI, for example, the driver of the vehicle, as the viewpoint EY.
  • the direction along the observation direction of the observer observing the virtual image VI is defined as the z-axis direction, and the directions perpendicular to the z direction and perpendicular to each other are defined as the x-axis direction and the y-axis direction, respectively.
  • the x-axis direction may be referred to as the width direction (left-right direction)
  • the y-axis direction may be referred to as the height direction (up-down direction)
  • the z-axis direction may be referred to as the depth direction (front-rear direction).
  • the direction from the viewpoint EY toward the virtual image VI is assumed to be the front. That is, the virtual image VI is displayed in front of the observer.
  • the display device 10 includes a light source 11 that generates and emits emitted light L1 (in this embodiment, light for projecting the virtual image VI).
  • the light source 11 is a projector that projects an image (video).
  • the light source 11 generates light for performing color expression and gradation expression of an image as the emitted light L1.
  • the light source 11 is a laser light source that generates laser light as the emitted light L1.
  • the light source 11 is a scanning laser projector that emits laser light that scans the laser light and displays an image in a predetermined area.
  • the light source 11 includes a laser element (not shown) that generates laser light as the emitted light L1, and a scanning element (not shown) that scans the laser light.
  • a laser light source as the light source 11 uses a predetermined area as a scanning area and scans the laser light by raster scanning.
  • the display device 10 includes an optical element 12 that scatters the emitted light L1 from the light source 11 to generate the scattered light L2 and outputs the scattered light L2.
  • Outgoing light L ⁇ b> 1 from the light source 11 is incident on the optical element 12.
  • the optical element 12 functions as a display screen (projection screen) that outputs the scattered light L2 as display light (projection light).
  • the display device 10 also includes a concave mirror 13 that reflects the scattered light L2 from the optical element 12 toward the windshield FG.
  • the light reflected by the concave mirror 13 is projected onto the windshield FG as projection light L3.
  • the observer When the observer observes the windshield FG from the viewpoint EY, the observer can visually recognize the virtual image VI on the back side (front in the z-axis direction) of the windshield FG. Specifically, the observer visually recognizes the virtual image VI formed at a position corresponding to the distance between the screen (optical element 12) and the windshield FG and the curvature of the concave mirror 13 through the windshield FG. It becomes.
  • the display device 10 includes an image data generation unit (not shown) that generates image data to be incident on the optical element 12 in order to display the virtual image VI.
  • the image data generation unit obtains, for example, vehicle information indicating the state of the vehicle, peripheral information indicating information around the vehicle, navigation information for guiding driving of the vehicle, and the like from the outside, and displays the information. Generate image data.
  • the display device 10 has a drive circuit (not shown) for driving the light source 11.
  • the drive circuit generates a light source drive signal for driving the light source 11 based on the image data generated by the image data generation unit.
  • the drive circuit supplies the light source drive signal to the light source 11.
  • the light source 11 generates and emits emitted light L1 based on the light source drive signal.
  • FIG. 2A is a schematic plan view of the optical element 12.
  • FIG. 2A is a diagram schematically showing the incident surface S1 of the emitted light L1 from the light source 11 in the optical element 12.
  • FIG. 2B is a schematic cross-sectional view of the optical element 12.
  • FIG. 2B is a cross-sectional view taken along line VV in FIG. 2A, but shows only a part thereof.
  • the configuration of the optical element 12 will be described with reference to FIGS. 2A and 2B.
  • the emitted light L1 from the light source 11 may be referred to as incident light of the optical element 12.
  • the optical element 12 has an incident surface S1 on which incident light L1 from the light source 11 is incident, and an exit surface S2 from which scattered light L2 generated by the optical element 12 is emitted.
  • the optical element 12 has an incident region R1 for incident light L1 on the incident surface S1 and an exit region R2 for scattered light L2 on the exit surface S2.
  • the incident surface S1 is a laser light irradiated surface
  • the incident region R1 corresponds to a laser light scanning region.
  • the optical element 12 includes three optical layers (first, second, and third optical layers) 20, 30, and 40, which are stacked along the optical axis AX of the incident light L1.
  • the optical element 12 includes a light transmitting plate 12A having one of the main surfaces as the incident surface S1 for the incident light L1, and a light transmitting plate 12B having one of the main surfaces as the emitting surface S2 for the scattered light L2.
  • Each of the optical layers 20 to 40 is formed so as to be sandwiched between the other main surfaces of the light transmitting plates 12A and 12B.
  • the light transmitting plate 12C formed between the optical layers 20 and 30 and the light transmitting plate 12D formed between the optical layers 30 and 40 are provided.
  • the optical layer 20 is formed on the translucent plate 12A
  • the optical layer 40 is formed on the translucent plate 12D. That is, in this embodiment, the optical element 12 has a structure in which the optical layers 20 to 40 are integrally formed.
  • Each of the translucent plates 12A to 12D is made of a material having translucency with respect to the incident light L1, such as a glass material or a resin material.
  • each of the optical layers 20 to 40 has a plurality of lenses 20L, 30L, and 40L, respectively. That is, each of the optical layers 20 to 40 constitutes a microlens array. Each of the plurality of lenses 20L to 30L in each of the optical layers 20 to 40 is formed on the incident region R1 of the incident light L1.
  • the optical layer 20 has a structure in which a plurality of lenses 20L are arranged in a regular triangular lattice shape (hexagonal lattice shape).
  • the optical layers 30 and 40 each have a structure in which a plurality of lenses 30L and 40L are arranged in a regular triangular lattice.
  • the optical element 12 includes the lens 30L of the optical layer 30 or the lens 40L of the optical layer 40 in a region between adjacent lenses of the plurality of lenses 20L of the optical layer 20 in the direction along the optical axis AX of the incident light L1. It is configured to be arranged.
  • the optical layer 20 is formed on the liquid crystal layer 21 containing liquid crystal molecules, the pair of alignment films 22 and 23 sandwiching the liquid crystal layer 21, and the alignment films 22 and 23, respectively.
  • Transparent electrode layers hereinafter simply referred to as electrode layers
  • the electrode layer 25 has a plurality of openings 25A each having a circular shape and arranged in a regular triangular lattice.
  • the liquid crystal layer 21 includes liquid crystal molecules constituting a nematic liquid crystal.
  • the alignment films 22 and 23 include, for example, grooves that align the liquid crystal molecules in the liquid crystal layer 21 in a predetermined direction.
  • the electrode layers 24 and 25 adjust (change) the orientation of the liquid crystal molecules of the liquid crystal layer 21 by applying a voltage.
  • the electrode layers 24 and 25 are made of a conductive material having translucency with respect to the incident light L1, for example, ITO or IZO.
  • the optical layer 30 includes a liquid crystal layer 31 containing liquid crystal molecules, a pair of alignment films 32 and 33 sandwiching the liquid crystal layer 31, and a transparent electrode layer (hereinafter simply referred to as “alignment film 32”). 34 and 35).
  • the electrode layer 35 has a plurality of openings 35A each having a circular shape and arranged in a regular triangular lattice.
  • the optical layer 40 includes a liquid crystal layer 41 containing liquid crystal molecules, a pair of alignment films 42 and 43 sandwiching the liquid crystal layer 41, and a transparent electrode layer (hereinafter simply referred to as an electrode) formed on the alignment films 42 and 43, respectively. 44 and 45).
  • the electrode layer 45 has a plurality of openings 45A each having a circular shape and arranged in a regular triangular lattice.
  • each of the electrode layers 24, 34 and 44 is formed so as to cover the entire surface of the liquid crystal layers 21, 31 and 41.
  • the optical layer 20 includes a pair of electrode layers 24 and 25 sandwiching the liquid crystal layer 21, one electrode layer 24 being a full surface electrode, and the other electrode layer 25 being a pattern electrode.
  • the electrode layers 34 and 44 are full surface electrodes, and the electrode layers 35 and 45 are pattern electrodes.
  • the optical element 12 applies (supplies) a drive voltage (drive signal) between the electrode layers 24 and 25, between the electrode layers 34 and 35, and between the electrode layers 44 and 45 in each of the optical layers 20 to 40, and optically.
  • a driving circuit (not shown) for driving each of the layers 20 to 40 is included.
  • the refractive index is not uniform in the region in the liquid crystal layer 21 sandwiched between the opening 25A of the electrode layer 25 and the electrode layer 24.
  • the region corresponding to the opening 25A of the electrode layer 25 in the liquid crystal layer 21 functions as the lens 20L.
  • the lens 20 ⁇ / b> L of the optical layer 20 is formed in the region of the liquid crystal layer 21 sandwiched between the opening 25 ⁇ / b> A of the electrode layer 25 and the electrode layer 24.
  • the lens 30 ⁇ / b> L of the optical layer 30 is provided in the region of the liquid crystal layer 31 sandwiched between the opening 35 ⁇ / b> A of the electrode layer 35 and the electrode layer 34.
  • the lens 40 ⁇ / b> L of the optical layer 40 is provided in the region of the liquid crystal layer 41 sandwiched between the opening 45 ⁇ / b> A of the electrode layer 45 and the electrode layer 44.
  • the electrode layer 25 of the optical layer 20 has an opening region A1 that is a region where the opening 25A is provided and a region between adjacent openings 25A.
  • a certain inter-opening region A2 is provided.
  • the opening region A1 of the electrode layer 25 corresponds to a region in the optical layer 20 where the lens 20L is provided, that is, a lens region.
  • the inter-opening region A2 of the electrode layer 25 corresponds to an inter-lens region that is a region between adjacent lenses 20L.
  • the opening of the electrode layer 35 of the optical layer 30 is located on the region A2 between the openings of the electrode layer 25 of the optical layer 20.
  • An opening 45A of the electrode layer 45 of the part 35A or the optical layer 40 is provided. Accordingly, when viewed from the direction along the optical axis AX of the incident light L1, the lens 30L or 40L of the other optical layer 30 or 40 is formed on the inter-lens region A2 in the optical layer 20.
  • the incident light L1 when viewed from the direction along the optical axis AX of the incident light L1, that is, from the direction perpendicular to the incident surface S1 of the incident light L1 in the optical element 12, it is within the incident region R1 of the incident light L1.
  • the incident light L1 is scattered L2 by the optical element 12. That is, the incident light L1 is prevented from being transmitted (passing through) each of the optical layers 20 to 40 as it is. Therefore, the incident light L1 can be used as the scattered light L2 (display light in this embodiment) with high efficiency.
  • each of the openings 25A of the electrode layer 25 in the optical layer 20 has a circular shape with a diameter D and is arranged in a regular triangular lattice with a pitch P.
  • Each of the openings 35A of the electrode layer 35 in the optical layer 30 and each of the openings 45A of the electrode layer 45 in the optical layer 40 has a circular shape with a diameter D, like the opening 25A of the electrode layer 25, and They are arranged in a regular triangular lattice at a pitch P.
  • each of the openings 35A of the electrode layer 35 of the optical layer 30 extends from each of the openings 25A of the electrode layer 25 of the optical layer 20 in a direction perpendicular to one side of the equilateral triangular lattice. They are arranged at positions offset by a distance L.
  • Each of the openings 45A of the electrode layer 45 of the optical layer 40 is disposed at a position offset from each of the openings 35A of the electrode layer 35 of the optical layer 30 by a distance L.
  • Each of the openings 25A of the electrode layer 25 of the optical layer 20 is disposed at a position offset by a distance L from each of the openings 45A of the electrode layer 45 of the optical layer 40.
  • the diameter D and the arrangement pitch P satisfy the relationship of D ⁇ (2/3) P.
  • the diameter D is about 75 ⁇ m and the pitch P is about 150 ⁇ m.
  • FIG. 3B when viewed from the direction along the optical axis AX of the incident light L1, only an area where only one opening (for example, the opening 25A) is provided, that is, only one lens is provided.
  • a single lens area AA and a plurality of lens areas AB provided around the single lens area AA and overlapped with a plurality of lenses are formed.
  • the single lens area AA is provided by the number of all the lenses 20L to 40L.
  • the electrode layers 25 to 45 in each of the optical layers 20 to 40 have a plurality of openings 25A to 45A that are spaced apart from each other and arranged in a matrix. Further, when viewed from the direction perpendicular to the optical layer 20, the region AA in which only the opening of the electrode layer in any one of the optical layers 20 to 40 is disposed, and the optical layers 20 to 40 And an area AB where the openings of the electrode layers of at least two optical layers overlap.
  • the scattered light L2 output from the optical element 12 includes light that has passed through the single lens area AA and light that has passed through the plurality of lens areas AB. Thereby, a decrease in resolution in the scattered light L2 scattered by the optical element 12 is suppressed, and noise is suppressed.
  • the number of single lens areas AA corresponds to the resolution of the scattered light L2 output as display light. Accordingly, the same number of single lens areas AA as the number of lenses 20L to 40L are formed in the entire optical layers 20 to 40, so that the resolution of the scattered light L2 is maintained.
  • the noise of the scattered light L2 is significantly reduced by providing the plurality of lens areas AB around the single lens area AA.
  • the light transmitted through the plurality of lens areas AB is light that has passed through at least two of the lenses 20L, 30L, and 40L, and has a more complicated optical path than light that has passed through the single lens area AA.
  • the light that has passed through the plurality of lens areas AB is greatly scattered compared to the light that has passed through the single lens area AA. Therefore, the noise of the scattered light L2 is greatly reduced. For example, when laser light is used as the incident light L1, speckle noise is greatly reduced.
  • the optical layers 20 to 40 and the light transmitting plates 12A to 12D are all made of a member having a light transmitting property between the incident region R1 and the emitting region R2. Therefore, when the optical element 12 is used as a transmission screen, a bright image can be visually recognized over the entire display area of the screen.
  • the display device 10 has a laser light source that scans and emits laser light as the light source 11. That is, the incident light L1 incident on the optical element 12 is a laser beam.
  • the incident region R1 of the optical element 12 is provided with a region where no lens is provided, that is, a transmission region (non-scattering region) of the incident light L1, the laser light is transmitted as it is and emitted toward the observer. May be. This may cause the observer's eyes to fatigue early.
  • any lens is arranged in the entire incident region R1. Therefore, only the scattered light L2 can be reliably emitted to the observer, and an image that does not cause fatigue to the eyes of the observer can be displayed.
  • the optical element 12 has a structure in which the three optical layers 20 to 40 are laminated has been described.
  • the configuration of the optical element 12 is not limited to this.
  • the optical element 12 may be composed of a plurality (at least two) of optical layers, for example, the optical layers 20 and 30 only.
  • the electrode layer 25 of the optical layer 20 has a plurality of openings 25A arranged in a matrix, and the electrode layer 35 of the optical layer 30 is in the direction along the optical axis AX of the incident light L1.
  • the electrode layer 25 may be disposed so as to overlap the inter-opening region A2.
  • the shape of the opening 35A of the electrode layer 35 is not limited to a circular shape.
  • each of the electrode layers 25, 35 and 45 has circular openings 25A, 35A and 45A having the same diameter D and the same pitch P has been described.
  • each of the openings 35A and 45A in the electrode layers 35 and 45 as a whole fills the inter-opening region A2 of the electrode layer 25 and partially overlaps the opening region A1 of the electrode layer 25. It only has to be arranged. Accordingly, the openings 25A, 35A, and 45A may have different sizes and arrangement configurations.
  • each of the openings 25A may be arranged in a square lattice pattern. That is, the optical layer 20 only needs to have a plurality of openings 25A in which the electrode layer 25 (one of the pair of electrode layers 24 and 25) is arranged in a matrix.
  • each of the optical layers 20 to 40 has a structure in which full-surface electrodes (electrode layers 24, 34 and 44) and pattern electrodes (electrode layers 25, 35 and 45) are alternately stacked.
  • full-surface electrodes electrode layers 24, 34 and 44
  • pattern electrodes electrode layers 25, 35 and 45
  • Electrode layers 35 pattern electrodes
  • the entire surface electrode is interposed between the pattern electrodes.
  • the liquid crystal layer 21 in the optical layer 20 is suppressed from being affected by the potential applied by the pattern electrode of the other optical layer (for example, the electrode layer 35 of the optical layer 30). Therefore, it is possible to accurately control the alignment of the liquid crystal molecules in the liquid crystal layer 21 and to configure a desired lens.
  • each of the optical elements 12 includes a liquid crystal layer (liquid crystal layers 21 to 41), a pair of alignment films (alignment films 22 and 23, 32 and 33, and 42 and 43) sandwiching the liquid crystal layer, and the pair.
  • one of the pair of transparent electrode layers (electrode layer 25) in one optical layer 20 has a plurality of openings 25A arranged in a matrix, and the optical layers 20 to One of the pair of translucent electrode layers (the electrode layer 35 or 45) in the other optical layer 30 or 40 of the 40 when viewed from a direction perpendicular to the one optical layer 20, the one optical layer 20
  • the plurality of openings 35 ⁇ / b> A or 45 ⁇ / b> A are arranged so as to overlap with the area A ⁇ b> 2 between the openings of the one transparent electrode layer 25.
  • the optical element 12 capable of performing the optical processing of the incident light L1 with high utilization efficiency and suppressing generation of noise.
  • FIG. 4A is a plan view of the optical element 14 according to the second embodiment.
  • 4A is a plan view schematically showing an incident surface S1 of the incident light L1 in the optical element 14.
  • FIG. 4B is a schematic cross-sectional view of the optical element 14.
  • 4B is a cross-sectional view taken along line WW in FIG. 4A. The configuration of the optical element 14 will be described with reference to FIGS. 4A and 4B.
  • the optical element 14 has two optical layers (first and second optical layers) 20 and 30.
  • each of the optical layers 20 and 30 has a plurality of lens portions 20L and 30L arranged in a matrix, similarly to the optical element 12.
  • the optical layer 20 has an electrode layer 25 that forms a lens portion 20L by application of a voltage, and the electrode layer 25 has a plurality of openings 25A arranged in a matrix.
  • the optical layer 30 includes an electrode layer 35 having a plurality of openings 35A arranged in a matrix.
  • the opening 35A of the electrode layer 35 in the optical layer 30 is a region A21 between the openings of the opening 25A of the electrode layer 25 in the optical layer 20 when viewed from the direction perpendicular to the optical layer 20. Is arranged.
  • the optical element 14 includes a region (overlapping aperture) where an inter-opening region A21 of the optical layer 20 and an inter-opening region A22 provided between the openings 35 of the electrode layer 35 in the optical layer 30 overlap.
  • the light shielding layer 50 is provided in the inter-region A3.
  • the light shielding layer 50 is made of a material that absorbs the incident light L1, for example, a resin material.
  • the optical element 14 is provided with a light shielding layer 50 in a region of the two optical layers 20 and 30 that does not overlap any of the lenses 20L and 30L. Accordingly, the two optical layers 20 and 30, that is, the portions where the inter-lens regions of the two microlens arrays overlap are shielded from light.
  • the light shielding layer 50 is provided in the overlapping inter-opening region A3 where the inter-opening regions A22 and A23 in the optical layers 20 and 30 overlap. Therefore, it is suppressed that the incident light L1 is emitted from the optical element 14 as it is. Therefore, when the optical layers 20 and 30 scatter the incident light L1 to obtain the desired scattered light L2, the light shielding layer 50 suppresses the transmission of the incident light L1, thereby generating high noise and generating noise. It is possible to perform the optical processing of the incident light L1 while suppressing the above.
  • each of the optical elements 14 includes a liquid crystal layer (liquid crystal layers 21 and 31), a pair of alignment films (alignment films 22 and 23 and 32 and 33) sandwiching the liquid crystal layer, and
  • the light-shielding layer 50 includes first and second optical layers 20 and 30 including a pair of transparent electrode layers (electrode layers 24 and 25 and 34 and 35) formed on the pair of alignment films.
  • one of the pair of transparent electrode layers (electrode layer 25) in the first optical layer 20 has a plurality of openings 25A arranged in a matrix, and the pair of transparent electrodes in the second optical layer 30.
  • One of the electrode layers (electrode layer 35) overlaps the inter-opening region A21 of the one transparent electrode layer 25 in the first optical layer 20 when viewed from the direction perpendicular to the first optical layer 20. It has a plurality of openings 35A arranged.
  • the light shielding layer 50 is a region where the regions A21 and A22 between the openings of the electrode layers 25 and 35 in the first and second optical layers 20 and 30 overlap when viewed from the direction perpendicular to the first optical layer 20. Arranged at A3. Therefore, it is possible to provide the optical element 14 that can perform the optical processing of the incident light L1 with high utilization efficiency and suppressing generation of noise.
  • FIG. 5 is a diagram schematically illustrating the configuration of the optical device 15 according to the third embodiment.
  • the optical device 15 has a structure in which a plurality (three in the present embodiment) of the optical elements 12 according to the first embodiment are spaced apart from each other.
  • the optical device 15 includes a drive circuit 15A that selectively drives each of the plurality of optical elements 12.
  • the optical device 15 includes a plurality of optical elements 12 and a plurality of optical elements 12 that are selectively spaced apart from each other in the direction along the optical axis AX of the incident light L1 and a drive circuit 15A that selectively drives the plurality of optical elements 12.
  • the drive circuit 15A is connected to each electrode layer in each of the optical elements 12.
  • the drive circuit 15 ⁇ / b> A supplies a drive signal (drive voltage) to each of the optical elements 12.
  • the drive circuit 15A is configured to drive any one of the three optical elements 12 (perform lens operation).
  • the optical device 15 can be mounted in place of the optical element 12 in the display device 10 according to the first embodiment.
  • the optical device 15 can display the virtual image VI corresponding to the driven element by switching the driven optical element 12 (driven element).
  • the light source 11 emits image light as the incident light L1 to the optical device 15
  • a plurality of images formed at positions corresponding to the driven elements in the depth direction are selectively displayed (projected). Can do. Therefore, the optical device 15 can display an image and a video at an arbitrary position.
  • the virtual image VI is formed so that a plurality of images overlap in the depth direction. Can be displayed. Therefore, the observer can visually recognize images and videos with depth.
  • the optical device 15 selectively selects each of the plurality of optical elements 12 and the plurality of optical elements 12 that are separated from each other in the direction along the optical axis AX of the incident light L1 from the outside. And a drive circuit 15A for driving.
  • Each of the optical elements 12 includes a liquid crystal layer (liquid crystal layers 21 to 41), a pair of alignment films (alignment films 22 and 23, 32 and 33, and 42 and 43) sandwiching the liquid crystal layer, and the pair of alignment films.
  • a plurality of optical layers 20 to 40 each including a pair of transparent electrode layers (electrode layers 24 and 25, 34 and 35, and 44 and 45).
  • one of the pair of transparent electrode layers (electrode layer 25) in one of the optical layers 20 to 40 has a plurality of openings 25A arranged in a matrix, and the optical layers 20 to One of the pair of translucent electrode layers (the electrode layer 35 or 45) in the other optical layer 30 or 40 of the 40 when viewed from a direction perpendicular to the one optical layer 20, the one optical layer 20
  • the plurality of openings 35 ⁇ / b> A or 45 ⁇ / b> A are arranged so as to overlap with the area A ⁇ b> 2 between the openings of the one transparent electrode layer 25.
  • the optical device 15 capable of performing the optical processing of the incident light L1 with high utilization efficiency and suppressing generation of noise.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Mathematical Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Instrument Panels (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

This optical element has a plurality of optical layers (20, 30, 40) each including a liquid crystal layer (21, 31, 41), a pair of alignment films (22, 23, 32, 33, 42, 43) sandwiching the liquid crystal layer, and a pair of translucent electrode layers (24, 25, 34, 35, 44, 45) formed on the pair of alignment films, one (25, 35, 45) of the pair of translucent electrode layers in a single optical layer from among the plurality of optical layers having a plurality of openings (25A, 35A, 45A) arranged in a matrix, and one of the pair of translucent electrode layers in the other optical layers from among the plurality of optical layers having a plurality of openings disposed so as to be superposed on a region between the openings of the one translucent electrode layer in the single optical layer when viewed from the direction perpendicular to the single optical layer.

Description

光学素子及び光学装置Optical element and optical device
 本発明は、液晶層を用いたマイクロレンズアレイを含む光学素子及び光学装置に関する。 The present invention relates to an optical element and an optical device including a microlens array using a liquid crystal layer.
 従来から、液晶レンズを用いたマイクロレンズアレイが知られている。当該マイクロレンズアレイは、例えば、プロジェクタからの光を散乱させて出射するスクリーンとして機能する。例えば、特許文献1には、液晶マイクロレンズアレイを用いた背面投射型プロジェクションテレビ用の透過型スクリーンが開示されている。 Conventionally, microlens arrays using liquid crystal lenses are known. The microlens array functions as, for example, a screen that scatters and emits light from a projector. For example, Patent Document 1 discloses a transmission screen for a rear projection type projection television using a liquid crystal microlens array.
特開2006-153982号公報JP 2006-153982 A
 マイクロレンズアレイを用いた光学素子においては、入力(入射)された光に対して正確にかつ高効率で光学処理を行うことが求められる。例えば、当該光学素子においては、高い解像度で光学処理が行われること、入射光の利用効率が高いこと、また、処理後の光にノイズが重畳されないことが好ましい。例えば、当該光学素子は、表示用途に用いられる場合、例えばスクリーンとして用いられる場合、高い解像度でかつノイズが少なく、高輝度な画像(映像)が表示されることが好ましい。 In an optical element using a microlens array, it is required to accurately and efficiently perform optical processing on input (incident) light. For example, in the optical element, it is preferable that the optical processing is performed with high resolution, the utilization efficiency of incident light is high, and noise is not superimposed on the processed light. For example, when the optical element is used for display purposes, for example, when used as a screen, it is preferable to display a high-luminance image (video) with high resolution and little noise.
 本発明は上記した点に鑑みてなされたものであり、高い利用効率でかつノイズの発生を抑制しつつ入射光の光学処理を行うことが可能な光学素子及び光学装置を提供することを課題の1つとしている。 The present invention has been made in view of the above points, and it is an object of the present invention to provide an optical element and an optical device capable of performing optical processing of incident light while suppressing generation of noise with high utilization efficiency. One.
 請求項1に記載の発明は、各々が、液晶層、液晶層を挟む一対の配向膜及び一対の配向膜上に形成された一対の透光電極層を含む複数の光学層を有し、複数の光学層のうちの1の光学層における一対の透光電極層の一方は、マトリクス状に配列された複数の開口部を有し、複数の光学層のうちの他の光学層における一対の透光電極層の一方は、1の光学層に垂直な方向から見たとき、1の光学層における一方の透光電極層の開口部間領域に重なるように配置された複数の開口部を有することを特徴とする。 The invention described in claim 1 includes a plurality of optical layers each including a liquid crystal layer, a pair of alignment films sandwiching the liquid crystal layer, and a pair of light-transmitting electrode layers formed on the pair of alignment films. One of the pair of transparent electrode layers in one of the optical layers has a plurality of openings arranged in a matrix, and the pair of transparent electrodes in the other optical layer of the plurality of optical layers. One of the photoelectrode layers has a plurality of openings arranged so as to overlap with a region between the openings of one light-transmitting electrode layer in one optical layer when viewed from a direction perpendicular to the one optical layer. It is characterized by.
 請求項5に記載の発明は、液晶層、液晶層を挟む一対の配向膜及び一対の配向膜上に形成された一対の透光電極層を含み、一対の透光電極層の一方がマトリクス状に配列された複数の開口部を有する第1の光学層と、液晶層、液晶層を挟む一対の配向膜及び一対の配向膜上に形成された一対の透光電極層を含み、一対の透光電極層の一方が第1の光学層に垂直な方向から見たときに第1の光学層における一方の透光電極層の開口部間領域に重なるように配置された複数の開口部を有する第2の光学層と、第1の光学層に垂直な方向から見たとき、第1及び第2の光学層の各々における一方の透光電極層の開口部間領域に重なる位置に配置された遮光層と、を有することを特徴とする。 The invention according to claim 5 includes a liquid crystal layer, a pair of alignment films sandwiching the liquid crystal layer, and a pair of transparent electrode layers formed on the pair of alignment films, and one of the pair of transparent electrode layers is in a matrix form A first optical layer having a plurality of openings arranged in a pair, a liquid crystal layer, a pair of alignment films sandwiching the liquid crystal layer, and a pair of transparent electrode layers formed on the pair of alignment films. When one of the photoelectrode layers is viewed from a direction perpendicular to the first optical layer, the photoelectrode layer has a plurality of openings arranged so as to overlap a region between the openings of the one transparent electrode layer in the first optical layer. When viewed from the direction perpendicular to the second optical layer and the first optical layer, each of the first and second optical layers is disposed at a position overlapping with the region between the openings of the one transparent electrode layer. And a light shielding layer.
 請求項6に記載の発明は、外部からの入射光の光軸に沿った方向において互いに離間する複数の光学素子及び複数の光学素子の各々を選択的に駆動する駆動回路を有し、複数の光学素子の各々は、液晶層、液晶層を挟む一対の配向膜及び一対の配向膜上に形成された一対の透光電極層を各々が含む複数の光学層を有し、複数の光学層のうちの1の光学層における一対の透光電極層の一方は、互いに離間してマトリクス状に配列された複数の開口部を有し、複数の光学層のうちの他の光学層における一対の透光電極層の一方は、1の光学層に垂直な方向から見たとき、1の光学層における一方の透光電極層の開口部間領域に重なるように配置された複数の開口部を有することを特徴とする。 The invention according to claim 6 has a plurality of optical elements that are separated from each other in the direction along the optical axis of incident light from the outside, and a drive circuit that selectively drives each of the plurality of optical elements. Each of the optical elements has a plurality of optical layers each including a liquid crystal layer, a pair of alignment films sandwiching the liquid crystal layer, and a pair of transparent electrode layers formed on the pair of alignment films. One of the pair of transparent electrode layers in one of the optical layers has a plurality of openings spaced apart from each other and arranged in a matrix, and the pair of transparent electrodes in the other optical layer of the plurality of optical layers. One of the photoelectrode layers has a plurality of openings arranged so as to overlap with a region between the openings of one light-transmitting electrode layer in one optical layer when viewed from a direction perpendicular to the one optical layer. It is characterized by.
実施例1に係る表示装置の構成を模式的に示す図である。1 is a diagram schematically illustrating a configuration of a display device according to Example 1. FIG. 実施例1に係る光学素子の平面図である。1 is a plan view of an optical element according to Example 1. FIG. 実施例1に係る光学素子の断面図である。1 is a cross-sectional view of an optical element according to Example 1. FIG. 実施例1に係る光学素子における各光学層の電極構成を模式的に示す図である。3 is a diagram schematically showing an electrode configuration of each optical layer in the optical element according to Example 1. FIG. 実施例1に係る光学素子における各光学層の電極構成を模式的に示す図である。3 is a diagram schematically showing an electrode configuration of each optical layer in the optical element according to Example 1. FIG. 実施例2に係る光学素子の平面図である。6 is a plan view of an optical element according to Example 2. FIG. 実施例2に係る光学素子の断面図である。6 is a cross-sectional view of an optical element according to Example 2. FIG. 実施例3に係る光学装置の構成を模式的に示す図である。FIG. 6 is a diagram schematically illustrating a configuration of an optical device according to a third embodiment.
 以下に本発明の実施例について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 図1は、実施例1に係る表示装置10の構成を模式的に示す図である。本実施例においては、表示装置10は、車両のダッシュボードDB内に設置されることができる。表示装置10は、例えば、車両のフロントガラスFGに虚像VIを表示するヘッドアップディスプレイである。なお、図1には、表示装置10が表示する虚像VIを破線で示している。また、図1には、虚像VIを観察する観察者、例えば車両の運転者の目の位置を視点EYとして示している。 FIG. 1 is a diagram schematically illustrating the configuration of the display device 10 according to the first embodiment. In the present embodiment, the display device 10 can be installed in the dashboard DB of the vehicle. The display device 10 is, for example, a head-up display that displays a virtual image VI on a vehicle windshield FG. In FIG. 1, the virtual image VI displayed by the display device 10 is indicated by a broken line. FIG. 1 also shows the position of the eyes of an observer who observes the virtual image VI, for example, the driver of the vehicle, as the viewpoint EY.
 なお、本明細書においては、虚像VIを観察する観察者の観察方向に沿った方向をz軸方向とし、このz方向に垂直でかつ互いに垂直な方向をそれぞれx軸方向及びy軸方向とする。また、x軸方向を幅方向(左右方向)、y軸方向を高さ方向(上下方向)、z軸方向を奥行方向(前後方向)と称する場合がある。また、視点EYから虚像VIに向かう方向を前方とする。すなわち、虚像VIは、観察者の前方に表示される。 In this specification, the direction along the observation direction of the observer observing the virtual image VI is defined as the z-axis direction, and the directions perpendicular to the z direction and perpendicular to each other are defined as the x-axis direction and the y-axis direction, respectively. . The x-axis direction may be referred to as the width direction (left-right direction), the y-axis direction may be referred to as the height direction (up-down direction), and the z-axis direction may be referred to as the depth direction (front-rear direction). Further, the direction from the viewpoint EY toward the virtual image VI is assumed to be the front. That is, the virtual image VI is displayed in front of the observer.
 表示装置10は、出射光L1(本実施例においては虚像VIを投影するための光)を生成及び出射する光源11を有する。例えば、光源11は、画像(映像)を投影するプロジェクタである。光源11は、画像の色表現及び階調表現を行う光を出射光L1として生成する。 The display device 10 includes a light source 11 that generates and emits emitted light L1 (in this embodiment, light for projecting the virtual image VI). For example, the light source 11 is a projector that projects an image (video). The light source 11 generates light for performing color expression and gradation expression of an image as the emitted light L1.
 本実施例においては、光源11は、出射光L1としてレーザ光を生成するレーザ光源である。また、光源11は、当該レーザ光を走査して所定領域に画像表示を行うレーザ光を出射する走査型のレーザプロジェクタである。例えば、光源11は、出射光L1としてレーザ光を生成するレーザ素子(図示せず)と、当該レーザ光を走査する走査素子(図示せず)とを有する。例えば、光源11としてのレーザ光源は、所定領域を走査領域とし、レーザ光をラスタースキャンによって走査する。 In the present embodiment, the light source 11 is a laser light source that generates laser light as the emitted light L1. The light source 11 is a scanning laser projector that emits laser light that scans the laser light and displays an image in a predetermined area. For example, the light source 11 includes a laser element (not shown) that generates laser light as the emitted light L1, and a scanning element (not shown) that scans the laser light. For example, a laser light source as the light source 11 uses a predetermined area as a scanning area and scans the laser light by raster scanning.
 表示装置10は、光源11からの出射光L1を散乱させて散乱光L2を生成し、散乱光L2を出力する光学素子12を有する。光学素子12には、光源11からの出射光L1が入射される。また、本実施例においては、光学素子12は、散乱光L2を表示光(投影光)として出力する表示スクリーン(投影スクリーン)として機能する。 The display device 10 includes an optical element 12 that scatters the emitted light L1 from the light source 11 to generate the scattered light L2 and outputs the scattered light L2. Outgoing light L <b> 1 from the light source 11 is incident on the optical element 12. In this embodiment, the optical element 12 functions as a display screen (projection screen) that outputs the scattered light L2 as display light (projection light).
 また、表示装置10は、光学素子12からの散乱光L2をフロントガラスFGに向けて反射させる凹面鏡13を有する。凹面鏡13によって反射された光は、投影光L3としてフロントガラスFGに投影される。 The display device 10 also includes a concave mirror 13 that reflects the scattered light L2 from the optical element 12 toward the windshield FG. The light reflected by the concave mirror 13 is projected onto the windshield FG as projection light L3.
 観察者は、視点EYからフロントガラスFGを観察すると、フロントガラスFGの奥側(z軸方向における前方)に虚像VIを視認することができる。具体的には、観察者は、スクリーン(光学素子12)とフロントガラスFGとの間の距離や凹面鏡13の曲率に応じた位置に結像された虚像VIを、フロントガラスFG越しに視認することとなる。 When the observer observes the windshield FG from the viewpoint EY, the observer can visually recognize the virtual image VI on the back side (front in the z-axis direction) of the windshield FG. Specifically, the observer visually recognizes the virtual image VI formed at a position corresponding to the distance between the screen (optical element 12) and the windshield FG and the curvature of the concave mirror 13 through the windshield FG. It becomes.
 なお、表示装置10は、虚像VIを表示するために光学素子12に入射させる画像データを生成する画像データ生成部(図示せず)を有する。当該画像データ生成部は、例えば、外部から、車両の状態などを示す車両情報、車両周辺の情報を示す周辺情報、及び車両の走行を案内するナビゲーション情報などを取得し、これらの情報を表示させる画像データを生成する。 The display device 10 includes an image data generation unit (not shown) that generates image data to be incident on the optical element 12 in order to display the virtual image VI. The image data generation unit obtains, for example, vehicle information indicating the state of the vehicle, peripheral information indicating information around the vehicle, navigation information for guiding driving of the vehicle, and the like from the outside, and displays the information. Generate image data.
 また、表示装置10は、光源11を駆動する駆動回路(図示せず)を有する。当該駆動回路は、当該画像データ生成部によって生成された画像データに基づいて光源11を駆動する光源駆動信号を生成する。また駆動回路は、当該光源駆動信号を光源11に供給する。光源11は、当該光源駆動信号に基づいて出射光L1を生成して出射する。 Further, the display device 10 has a drive circuit (not shown) for driving the light source 11. The drive circuit generates a light source drive signal for driving the light source 11 based on the image data generated by the image data generation unit. The drive circuit supplies the light source drive signal to the light source 11. The light source 11 generates and emits emitted light L1 based on the light source drive signal.
 図2Aは、光学素子12の模式的な平面図である。図2Aは、光学素子12における光源11からの出射光L1の入射面S1を模式的に示す図である。また、図2Bは、光学素子12の模式的な断面図である。図2Bは、図2AのV-V線に沿った断面図であるが、その一部のみを示している。図2A及び図2Bを用いて、光学素子12の構成について説明する。なお、以下においては、光源11による出射光L1を光学素子12の入射光と称する場合がある。 FIG. 2A is a schematic plan view of the optical element 12. FIG. 2A is a diagram schematically showing the incident surface S1 of the emitted light L1 from the light source 11 in the optical element 12. FIG. FIG. 2B is a schematic cross-sectional view of the optical element 12. FIG. 2B is a cross-sectional view taken along line VV in FIG. 2A, but shows only a part thereof. The configuration of the optical element 12 will be described with reference to FIGS. 2A and 2B. In the following, the emitted light L1 from the light source 11 may be referred to as incident light of the optical element 12.
 まず、光学素子12は、光源11からの入射光L1が入射する入射面S1と、光学素子12によって生成された散乱光L2が出射する出射面S2とを有する。また、光学素子12は、入射面S1における入射光L1の入射領域R1と、出射面S2における散乱光L2の出射領域R2とを有する。例えば、光源11がレーザ光源からなる場合、入射面S1はレーザ光の被照射面であり、入射領域R1はレーザ光の走査領域に対応する。 First, the optical element 12 has an incident surface S1 on which incident light L1 from the light source 11 is incident, and an exit surface S2 from which scattered light L2 generated by the optical element 12 is emitted. The optical element 12 has an incident region R1 for incident light L1 on the incident surface S1 and an exit region R2 for scattered light L2 on the exit surface S2. For example, when the light source 11 is a laser light source, the incident surface S1 is a laser light irradiated surface, and the incident region R1 corresponds to a laser light scanning region.
 また、光学素子12は、入射光L1の光軸AXに沿って積層された3つの光学層(それぞれ、第1、第2及び第3の光学層)20、30及び40を有する。本実施例においては、光学素子12は、主面の一方を入射光L1の入射面S1として有する透光板12Aと、主面の一方を散乱光L2の出射面S2として有する透光板12Bとを有する。光学層20~40の各々は、透光板12A及び12Bにおける他方の主面間に挟まれるように形成されている。 The optical element 12 includes three optical layers (first, second, and third optical layers) 20, 30, and 40, which are stacked along the optical axis AX of the incident light L1. In this embodiment, the optical element 12 includes a light transmitting plate 12A having one of the main surfaces as the incident surface S1 for the incident light L1, and a light transmitting plate 12B having one of the main surfaces as the emitting surface S2 for the scattered light L2. Have Each of the optical layers 20 to 40 is formed so as to be sandwiched between the other main surfaces of the light transmitting plates 12A and 12B.
 また、本実施例においては、光学層20及び30間に形成された透光板12Cと、光学層30及び40間に形成された透光板12Dとを有する。なお、本実施例においては、光学層20は透光板12A上に形成され、光学層40は透光板12D上に形成されている。すなわち、本実施例においては、光学素子12は、光学層20~40が一体的に形成された構造を有する。透光板12A~12Dの各々は、入射光L1に対して透光性を有する材料、例えばガラス材料や樹脂材料からなる。 In the present embodiment, the light transmitting plate 12C formed between the optical layers 20 and 30 and the light transmitting plate 12D formed between the optical layers 30 and 40 are provided. In this embodiment, the optical layer 20 is formed on the translucent plate 12A, and the optical layer 40 is formed on the translucent plate 12D. That is, in this embodiment, the optical element 12 has a structure in which the optical layers 20 to 40 are integrally formed. Each of the translucent plates 12A to 12D is made of a material having translucency with respect to the incident light L1, such as a glass material or a resin material.
 また、本実施例においては、光学層20~40の各々は、それぞれ複数のレンズ20L、30L及び40Lを有する。すなわち、光学層20~40の各々は、マイクロレンズアレイを構成する。光学層20~40の各々における複数のレンズ20L~30Lの各々は、入射光L1の入射領域R1上に形成されている。 In the present embodiment, each of the optical layers 20 to 40 has a plurality of lenses 20L, 30L, and 40L, respectively. That is, each of the optical layers 20 to 40 constitutes a microlens array. Each of the plurality of lenses 20L to 30L in each of the optical layers 20 to 40 is formed on the incident region R1 of the incident light L1.
 本実施例においては、光学層20は、複数のレンズ20Lが正三角格子状(六角格子状)に配列された構造を有する。また、光学層30及び40は、それぞれ複数のレンズ30L及び40Lが正三角格子状に配列された構造を有する。また、光学素子12は、入射光L1の光軸AXに沿った方向において、光学層20の複数のレンズ20Lの隣接するレンズ間の領域に光学層30のレンズ30L又は光学層40のレンズ40Lが配置されるように構成されている。 In this embodiment, the optical layer 20 has a structure in which a plurality of lenses 20L are arranged in a regular triangular lattice shape (hexagonal lattice shape). The optical layers 30 and 40 each have a structure in which a plurality of lenses 30L and 40L are arranged in a regular triangular lattice. Further, the optical element 12 includes the lens 30L of the optical layer 30 or the lens 40L of the optical layer 40 in a region between adjacent lenses of the plurality of lenses 20L of the optical layer 20 in the direction along the optical axis AX of the incident light L1. It is configured to be arranged.
 より具体的には、図2Bに示すように、光学層20は、液晶分子を含む液晶層21と、液晶層21を挟む一対の配向膜22及び23と、配向膜22及び23上にそれぞれ形成された透光電極層(以下、単に電極層と称する)24及び25と、を有する。また、本実施例においては、電極層25は、各々が円形状を有しかつ正三角格子状に配列された複数の開口部25Aを有する。 More specifically, as shown in FIG. 2B, the optical layer 20 is formed on the liquid crystal layer 21 containing liquid crystal molecules, the pair of alignment films 22 and 23 sandwiching the liquid crystal layer 21, and the alignment films 22 and 23, respectively. Transparent electrode layers (hereinafter simply referred to as electrode layers) 24 and 25. In the present embodiment, the electrode layer 25 has a plurality of openings 25A each having a circular shape and arranged in a regular triangular lattice.
 例えば、液晶層21は、ネマティック液晶を構成する液晶分子を含む。配向膜22及び23は、例えば液晶層21内の液晶分子を所定方向に整列して配向させる溝を含む。電極層24及び25は、電圧の印加により液晶層21の液晶分子の配向を調節する(変化させる)。また、電極層24及び25は、入射光L1に対して透光性を有する導電材料、例えばITOやIZOなどからなる。 For example, the liquid crystal layer 21 includes liquid crystal molecules constituting a nematic liquid crystal. The alignment films 22 and 23 include, for example, grooves that align the liquid crystal molecules in the liquid crystal layer 21 in a predetermined direction. The electrode layers 24 and 25 adjust (change) the orientation of the liquid crystal molecules of the liquid crystal layer 21 by applying a voltage. The electrode layers 24 and 25 are made of a conductive material having translucency with respect to the incident light L1, for example, ITO or IZO.
 同様に、光学層30は、液晶分子を含む液晶層31と、液晶層31を挟む一対の配向膜32及び33と、配向膜32及び33上にそれぞれ形成された透光電極層(以下、単に電極層と称する)34及び35と、を有する。また、本実施例においては、電極層35は、各々が円形状を有しかつ正三角格子状に配列された複数の開口部35Aを有する。 Similarly, the optical layer 30 includes a liquid crystal layer 31 containing liquid crystal molecules, a pair of alignment films 32 and 33 sandwiching the liquid crystal layer 31, and a transparent electrode layer (hereinafter simply referred to as “alignment film 32”). 34 and 35). In the present embodiment, the electrode layer 35 has a plurality of openings 35A each having a circular shape and arranged in a regular triangular lattice.
 また、光学層40は、液晶分子を含む液晶層41と、液晶層41を挟む一対の配向膜42及び43と、配向膜42及び43上にそれぞれ形成された透光電極層(以下、単に電極層と称する)44及び45と、を有する。また、本実施例においては、電極層45は、各々が円形状を有しかつ正三角格子状に配列された複数の開口部45Aを有する。 The optical layer 40 includes a liquid crystal layer 41 containing liquid crystal molecules, a pair of alignment films 42 and 43 sandwiching the liquid crystal layer 41, and a transparent electrode layer (hereinafter simply referred to as an electrode) formed on the alignment films 42 and 43, respectively. 44 and 45). In the present embodiment, the electrode layer 45 has a plurality of openings 45A each having a circular shape and arranged in a regular triangular lattice.
 なお、本実施例においては、電極層24、34及び44の各々は、液晶層21、31及び41の全面を覆うように形成されている。すなわち、本実施例においては、光学層20は、液晶層21を挟む一対の電極層24及び25のうち、一方の電極層24が全面電極であり、他方の電極層25がパターン電極である。同様に、光学層30及び40においても、電極層34及び44が全面電極であり、電極層35及び45がパターン電極である。 In the present embodiment, each of the electrode layers 24, 34 and 44 is formed so as to cover the entire surface of the liquid crystal layers 21, 31 and 41. In other words, in the present embodiment, the optical layer 20 includes a pair of electrode layers 24 and 25 sandwiching the liquid crystal layer 21, one electrode layer 24 being a full surface electrode, and the other electrode layer 25 being a pattern electrode. Similarly, in the optical layers 30 and 40, the electrode layers 34 and 44 are full surface electrodes, and the electrode layers 35 and 45 are pattern electrodes.
 なお、光学素子12は、光学層20~40の各々における電極層24及び25間、電極層34及び35間並びに電極層44及び45間に駆動電圧(駆動信号)を印加(供給)して光学層20~40の各々を駆動する駆動回路(図示せず)を有する。 The optical element 12 applies (supplies) a drive voltage (drive signal) between the electrode layers 24 and 25, between the electrode layers 34 and 35, and between the electrode layers 44 and 45 in each of the optical layers 20 to 40, and optically. A driving circuit (not shown) for driving each of the layers 20 to 40 is included.
 まず、光学層20の電極層24及び25間に駆動電圧が印加されると、液晶層21における液晶分子の配向が変化する。また、電極層25の開口部25Aと電極層24とに挟まれた液晶層21の領域においては液晶分子の配向が一様ではなくなる。 First, when a driving voltage is applied between the electrode layers 24 and 25 of the optical layer 20, the orientation of liquid crystal molecules in the liquid crystal layer 21 changes. Further, in the region of the liquid crystal layer 21 sandwiched between the opening 25A of the electrode layer 25 and the electrode layer 24, the alignment of liquid crystal molecules is not uniform.
 従って、この電極層25の開口部25Aと電極層24とに挟まれた液晶層21内の領域では屈折率が一様ではなくなる。これによって、液晶層21における電極層25の開口部25Aに対応する領域は、レンズ20Lとして機能する。なお、電極層24及び25間に印加する電圧値を調節することで、液晶層21内の屈折率分布、すなわちレンズ20Lのレンズ形状を調節することができる。これによって、レンズ20Lに入射した入射光L1の散乱角度分布を調節することができる。 Therefore, the refractive index is not uniform in the region in the liquid crystal layer 21 sandwiched between the opening 25A of the electrode layer 25 and the electrode layer 24. Thereby, the region corresponding to the opening 25A of the electrode layer 25 in the liquid crystal layer 21 functions as the lens 20L. By adjusting the voltage value applied between the electrode layers 24 and 25, the refractive index distribution in the liquid crystal layer 21, that is, the lens shape of the lens 20L can be adjusted. Thereby, the scattering angle distribution of the incident light L1 incident on the lens 20L can be adjusted.
 換言すれば、光学層20のレンズ20Lは、電極層25の開口部25Aと電極層24に挟まれた液晶層21の領域内に形成される。同様に、光学層30のレンズ30Lは、電極層35の開口部35Aと電極層34とに挟まれた液晶層31の領域内に設けられる。また、光学層40のレンズ40Lは、電極層45の開口部45Aと電極層44とに挟まれた液晶層41の領域内に設けられる。 In other words, the lens 20 </ b> L of the optical layer 20 is formed in the region of the liquid crystal layer 21 sandwiched between the opening 25 </ b> A of the electrode layer 25 and the electrode layer 24. Similarly, the lens 30 </ b> L of the optical layer 30 is provided in the region of the liquid crystal layer 31 sandwiched between the opening 35 </ b> A of the electrode layer 35 and the electrode layer 34. The lens 40 </ b> L of the optical layer 40 is provided in the region of the liquid crystal layer 41 sandwiched between the opening 45 </ b> A of the electrode layer 45 and the electrode layer 44.
 また、図2Bに示すように、本実施例においては、光学層20の電極層25には、開口部25Aが設けられた領域である開口部領域A1と、隣接する開口部25A間の領域である開口部間領域A2とが設けられる。なお、この電極層25の開口部領域A1は、光学層20におけるレンズ20Lが設けられた領域、すなわちレンズ領域に対応する。また、電極層25の開口部間領域A2は、隣接するレンズ20L間の領域であるレンズ間領域に対応する。 As shown in FIG. 2B, in this embodiment, the electrode layer 25 of the optical layer 20 has an opening region A1 that is a region where the opening 25A is provided and a region between adjacent openings 25A. A certain inter-opening region A2 is provided. The opening region A1 of the electrode layer 25 corresponds to a region in the optical layer 20 where the lens 20L is provided, that is, a lens region. The inter-opening region A2 of the electrode layer 25 corresponds to an inter-lens region that is a region between adjacent lenses 20L.
 また、本実施例においては、入射光L1の光軸AXに沿った方向から見たとき、光学層20の電極層25の開口部間領域A2上には、光学層30の電極層35の開口部35A又は光学層40の電極層45の開口部45Aが設けられている。従って、入射光L1の光軸AXに沿った方向から見たとき、光学層20におけるレンズ間領域A2上には、他の光学層30又は40のレンズ30L又は40Lが形成されている。 Further, in this embodiment, when viewed from the direction along the optical axis AX of the incident light L1, the opening of the electrode layer 35 of the optical layer 30 is located on the region A2 between the openings of the electrode layer 25 of the optical layer 20. An opening 45A of the electrode layer 45 of the part 35A or the optical layer 40 is provided. Accordingly, when viewed from the direction along the optical axis AX of the incident light L1, the lens 30L or 40L of the other optical layer 30 or 40 is formed on the inter-lens region A2 in the optical layer 20.
 従って、図2Aに示すように、入射光L1の光軸AXに沿った方向、すなわち光学素子12における入射光L1の入射面S1に垂直な方向から見たとき、入射光L1の入射領域R1内には、少なくとも1つのレンズ20L、30L又は40Lが設けられている。従って、入射光L1は、必ずレンズ20L~40Lのいずれかに入射することとなる。 Therefore, as shown in FIG. 2A, when viewed from the direction along the optical axis AX of the incident light L1, that is, from the direction perpendicular to the incident surface S1 of the incident light L1 in the optical element 12, it is within the incident region R1 of the incident light L1. Is provided with at least one lens 20L, 30L or 40L. Therefore, the incident light L1 is necessarily incident on any of the lenses 20L to 40L.
 従って、入射光L1は、その全てが光学素子12によって散乱L2となる。すなわち、入射光L1が光学層20~40の各々をそのまま透過する(素通りする)ことが抑制される。従って、入射光L1を、高効率で、散乱光L2(本実施例においては表示光)として利用することができる。 Therefore, all of the incident light L1 is scattered L2 by the optical element 12. That is, the incident light L1 is prevented from being transmitted (passing through) each of the optical layers 20 to 40 as it is. Therefore, the incident light L1 can be used as the scattered light L2 (display light in this embodiment) with high efficiency.
 図3A及び図3Bを用いて、光学層20、30及び40の各々における電極層25、35及び45の構成について詳細に説明する。まず、図3Aに示すように、光学層20における電極層25の開口部25Aの各々は、直径Dの円形状を有し、ピッチPで正三角格子状に配列されている。光学層30における電極層35の開口部35Aの各々、及び光学層40における電極層45の開口部45Aの各々は、電極層25の開口部25Aと同様に、直径Dの円形状を有しかつピッチPで正三角格子状に配列されている。 3A and 3B, the structure of the electrode layers 25, 35, and 45 in each of the optical layers 20, 30, and 40 will be described in detail. First, as shown in FIG. 3A, each of the openings 25A of the electrode layer 25 in the optical layer 20 has a circular shape with a diameter D and is arranged in a regular triangular lattice with a pitch P. Each of the openings 35A of the electrode layer 35 in the optical layer 30 and each of the openings 45A of the electrode layer 45 in the optical layer 40 has a circular shape with a diameter D, like the opening 25A of the electrode layer 25, and They are arranged in a regular triangular lattice at a pitch P.
 また、図3Bに示すように、光学層30の電極層35の開口部35Aの各々は、光学層20の電極層25の開口部25Aの各々から、当該正三角格子の一辺に垂直な方向に距離Lだけオフセットされた位置に配置されている。また、光学層40の電極層45の開口部45Aの各々は、光学層30の電極層35の開口部35Aの各々から、距離Lだけオフセットされた位置に配置されている。また、光学層20の電極層25の開口部25Aの各々は、光学層40の電極層45の開口部45Aの各々から、距離Lだけオフセットされた位置に配置されている。 Further, as shown in FIG. 3B, each of the openings 35A of the electrode layer 35 of the optical layer 30 extends from each of the openings 25A of the electrode layer 25 of the optical layer 20 in a direction perpendicular to one side of the equilateral triangular lattice. They are arranged at positions offset by a distance L. Each of the openings 45A of the electrode layer 45 of the optical layer 40 is disposed at a position offset from each of the openings 35A of the electrode layer 35 of the optical layer 30 by a distance L. Each of the openings 25A of the electrode layer 25 of the optical layer 20 is disposed at a position offset by a distance L from each of the openings 45A of the electrode layer 45 of the optical layer 40.
 ここで、各開口部25A、35A及び45Aの各々において、その直径D及び配列ピッチPは、D≧(2/3)Pの関係を満たす。また、光学層20及び30の開口部25A及び35A間の距離L並びに光学層30及び40の開口部35A及び45A間の距離Lは、L=(1/31/2)Pの関係を満たす。例えば、直径Dは約75μm、ピッチPは約150μmである。 Here, in each of the openings 25A, 35A, and 45A, the diameter D and the arrangement pitch P satisfy the relationship of D ≧ (2/3) P. The distance L between the openings 25A and 35A of the optical layers 20 and 30 and the distance L between the openings 35A and 45A of the optical layers 30 and 40 satisfy the relationship L = (1/3 1/2 ) P. . For example, the diameter D is about 75 μm and the pitch P is about 150 μm.
 これによって、図3Bに示すように、入射光L1の光軸AXに沿った方向から見たとき、1つの開口部(例えば開口部25A)のみが設けられた領域すなわち1つのレンズのみが設けられた単一レンズ領域AAと、当該単一レンズ領域AAの周囲に設けられかつ複数のレンズが重なる複数レンズ領域ABとが形成される。また、単一レンズ領域AAは、全レンズ20L~40Lの個数だけ設けられる。 As a result, as shown in FIG. 3B, when viewed from the direction along the optical axis AX of the incident light L1, only an area where only one opening (for example, the opening 25A) is provided, that is, only one lens is provided. In addition, a single lens area AA and a plurality of lens areas AB provided around the single lens area AA and overlapped with a plurality of lenses are formed. Further, the single lens area AA is provided by the number of all the lenses 20L to 40L.
 換言すれば、光学素子12においては、光学層20~40の各々における電極層25~45は、互いに離間してマトリクス状に配列された複数の開口部25A~45Aを有する。また、光学層20に垂直な方向から見たとき、光学層20~40のうちのいずれか1つの光学層における電極層の開口部のみが配置された領域AAと、光学層20~40のうちの少なくとも2つの光学層における電極層の開口部が重なる領域ABとが設けられている。 In other words, in the optical element 12, the electrode layers 25 to 45 in each of the optical layers 20 to 40 have a plurality of openings 25A to 45A that are spaced apart from each other and arranged in a matrix. Further, when viewed from the direction perpendicular to the optical layer 20, the region AA in which only the opening of the electrode layer in any one of the optical layers 20 to 40 is disposed, and the optical layers 20 to 40 And an area AB where the openings of the electrode layers of at least two optical layers overlap.
 従って、光学素子12から出力される散乱光L2は、単一レンズ領域AAを通過した光と、複数レンズ領域ABを通過した光とを含む。これによって、光学素子12によって散乱された散乱光L2における解像度の低下が抑制され、かつノイズが抑制される。 Therefore, the scattered light L2 output from the optical element 12 includes light that has passed through the single lens area AA and light that has passed through the plurality of lens areas AB. Thereby, a decrease in resolution in the scattered light L2 scattered by the optical element 12 is suppressed, and noise is suppressed.
 具体的には、単一レンズ領域AAの個数は、表示光として出力される散乱光L2の解像度に対応する。従って、光学層20~40の全体で単一レンズ領域AAが各レンズ20L~40Lの個数と同一個数だけ形成されることで、散乱光L2の解像度が保たれる。 Specifically, the number of single lens areas AA corresponds to the resolution of the scattered light L2 output as display light. Accordingly, the same number of single lens areas AA as the number of lenses 20L to 40L are formed in the entire optical layers 20 to 40, so that the resolution of the scattered light L2 is maintained.
 また、単一レンズ領域AAの周囲に複数レンズ領域ABが設けられることで、散乱光L2のノイズが大幅に低減される。具体的には、複数レンズ領域ABを透過する光は、レンズ20L、30L及び40Lのうちの少なくとも2つのレンズを通過した光であり、単一レンズ領域AAを通過した光に比べて複雑な光路を進む。従って、複数レンズ領域ABを通過した光は、単一レンズ領域AAを通過した光に比べて大きく散乱する。従って、散乱光L2のノイズが大幅に低減される。例えばレーザ光を入射光L1として用いる場合、スペックルノイズが大幅に低減される。 Moreover, the noise of the scattered light L2 is significantly reduced by providing the plurality of lens areas AB around the single lens area AA. Specifically, the light transmitted through the plurality of lens areas AB is light that has passed through at least two of the lenses 20L, 30L, and 40L, and has a more complicated optical path than light that has passed through the single lens area AA. Continue on. Therefore, the light that has passed through the plurality of lens areas AB is greatly scattered compared to the light that has passed through the single lens area AA. Therefore, the noise of the scattered light L2 is greatly reduced. For example, when laser light is used as the incident light L1, speckle noise is greatly reduced.
 また、上記したように、光学層20~40及び透光板12A~12Dは、その入射領域R1及び出射領域R2の各々間では全て透光性を有する部材からなる。従って、光学素子12を透過型スクリーンとして用いた場合、スクリーンの表示領域の全域で明るい画像を視認することができる。 Further, as described above, the optical layers 20 to 40 and the light transmitting plates 12A to 12D are all made of a member having a light transmitting property between the incident region R1 and the emitting region R2. Therefore, when the optical element 12 is used as a transmission screen, a bright image can be visually recognized over the entire display area of the screen.
 また、本実施例においては、表示装置10が光源11としてレーザ光を走査して出射するレーザ光源を有する。すなわち、光学素子12に入射される入射光L1は、レーザ光である。 In the present embodiment, the display device 10 has a laser light source that scans and emits laser light as the light source 11. That is, the incident light L1 incident on the optical element 12 is a laser beam.
 仮に、光学素子12の入射領域R1に、レンズが設けられない領域、すなわち入射光L1の透過領域(非散乱領域)が設けられている場合、レーザ光がそのまま透過して観察者に向けて出射される場合がある。これによって、観察者の目が早期に疲労する場合がある。 If the incident region R1 of the optical element 12 is provided with a region where no lens is provided, that is, a transmission region (non-scattering region) of the incident light L1, the laser light is transmitted as it is and emitted toward the observer. May be. This may cause the observer's eyes to fatigue early.
 これに対し、本実施例においては、光学素子12は、入射領域R1の全域にいずれかのレンズが配置される。従って、確実に散乱光L2のみを観察者に出射させることができ、観察者の目に疲労を与えにくい画像を表示させることができる。 On the other hand, in the present embodiment, in the optical element 12, any lens is arranged in the entire incident region R1. Therefore, only the scattered light L2 can be reliably emitted to the observer, and an image that does not cause fatigue to the eyes of the observer can be displayed.
 なお、本実施例においては、光学素子12が3つの光学層20~40が積層された構造を有する場合について説明した。しかし、光学素子12の構成はこれに限定されない。例えば、光学素子12は複数(少なくとも2つ)の光学層、例えば光学層20及び30のみから構成されていてもよい。 In this embodiment, the case where the optical element 12 has a structure in which the three optical layers 20 to 40 are laminated has been described. However, the configuration of the optical element 12 is not limited to this. For example, the optical element 12 may be composed of a plurality (at least two) of optical layers, for example, the optical layers 20 and 30 only.
 この場合、例えば光学層20の電極層25がマトリクス状に配列された複数の開口部25Aを有し、光学層30の電極層35は入射光L1の光軸AXに沿った方向において光学層20における電極層25の開口部間領域A2に重なるように配置されていればよい。この場合、電極層35の開口部35Aの形状は円形状に限定されない。 In this case, for example, the electrode layer 25 of the optical layer 20 has a plurality of openings 25A arranged in a matrix, and the electrode layer 35 of the optical layer 30 is in the direction along the optical axis AX of the incident light L1. The electrode layer 25 may be disposed so as to overlap the inter-opening region A2. In this case, the shape of the opening 35A of the electrode layer 35 is not limited to a circular shape.
 また、本実施例においては、電極層25、35及び45の各々が同一直径Dかつ同一ピッチPの円形状の開口部25A、35A及び45Aを有する場合について説明した。しかし、電極層35及び45における開口部35A及び45Aの各々は、全体として、電極層25の開口部間領域A2を埋めるように、また電極層25の開口部領域A1に部分的に重なるように配置されていればよい。従って、開口部25A、35A及び45Aは互いに異なるサイズ及び配置構成を有していてもよい。 In the present embodiment, the case where each of the electrode layers 25, 35 and 45 has circular openings 25A, 35A and 45A having the same diameter D and the same pitch P has been described. However, each of the openings 35A and 45A in the electrode layers 35 and 45 as a whole fills the inter-opening region A2 of the electrode layer 25 and partially overlaps the opening region A1 of the electrode layer 25. It only has to be arranged. Accordingly, the openings 25A, 35A, and 45A may have different sizes and arrangement configurations.
 また、本実施例においては、開口部25Aの各々が正三角格子状に配列される場合について説明した。しかし、開口部25Aの配置構成はこれに限定されない。例えば、開口部25Aの各々は、正方格子状に配列されていてもよい。すなわち、光学層20は、電極層25(一対の電極層24及び25の一方)がマトリクス状に配列された複数の開口部25Aを有していればよい。 Further, in the present embodiment, the case where the openings 25A are arranged in a regular triangular lattice shape has been described. However, the arrangement of the opening 25A is not limited to this. For example, each of the openings 25A may be arranged in a square lattice pattern. That is, the optical layer 20 only needs to have a plurality of openings 25A in which the electrode layer 25 (one of the pair of electrode layers 24 and 25) is arranged in a matrix.
 なお、本実施例においては、光学層20~40の各々においては、全面電極(電極層24、34及び44)と、パターン電極(電極層25、35及び45)とが交互に積層された構造を有する。具体的には、例えば、光学層20及び30間においては、入射光L1の入射面S1側から、電極層24(全面電極)、電極層25(パターン電極)、電極層34(全面電極)及び電極層35(パターン電極)が交互に形成されている。 In this embodiment, each of the optical layers 20 to 40 has a structure in which full-surface electrodes (electrode layers 24, 34 and 44) and pattern electrodes (electrode layers 25, 35 and 45) are alternately stacked. Have Specifically, for example, between the optical layers 20 and 30, from the incident surface S1 side of the incident light L1, the electrode layer 24 (entire electrode), the electrode layer 25 (pattern electrode), the electrode layer 34 (full electrode), and Electrode layers 35 (pattern electrodes) are alternately formed.
 すなわち、本実施例においては、パターン電極間の各々に全面電極が介在している。これによって、光学層20における液晶層21が、他の光学層のパターン電極(例えば光学層30の電極層35)によって印加された電位の影響を受けることが抑制される。従って、正確に液晶層21の液晶分子の配向制御を行うことができ、所望のレンズを構成することができる。 That is, in this embodiment, the entire surface electrode is interposed between the pattern electrodes. Thereby, the liquid crystal layer 21 in the optical layer 20 is suppressed from being affected by the potential applied by the pattern electrode of the other optical layer (for example, the electrode layer 35 of the optical layer 30). Therefore, it is possible to accurately control the alignment of the liquid crystal molecules in the liquid crystal layer 21 and to configure a desired lens.
 上記したように、光学素子12は、各々が、液晶層(液晶層21~41)、当該液晶層を挟む一対の配向膜(配向膜22及び23、32及び33並びに42及び43)及び当該一対の配向膜上に形成された一対の透光電極層(電極層24及び25、34及び35並びに44及び45)を含む複数の光学層20~40を有する。 As described above, each of the optical elements 12 includes a liquid crystal layer (liquid crystal layers 21 to 41), a pair of alignment films ( alignment films 22 and 23, 32 and 33, and 42 and 43) sandwiching the liquid crystal layer, and the pair. A plurality of optical layers 20 to 40 including a pair of transparent electrode layers (electrode layers 24 and 25, 34 and 35, and 44 and 45) formed on the alignment film.
 また、光学層20~40のうち、1の光学層20における一対の透光電極層の一方(電極層25)は、マトリクス状に配列された複数の開口部25Aを有し、光学層20~40のうちの他の光学層30又は40における一対の透光電極層の一方(電極層35又は45)は、当該1の光学層20に垂直な方向から見たとき、当該1の光学層20における一方の透光電極層25の開口部間領域A2に重なるように配置された複数の開口部35A又は45Aを有する。 Of the optical layers 20 to 40, one of the pair of transparent electrode layers (electrode layer 25) in one optical layer 20 has a plurality of openings 25A arranged in a matrix, and the optical layers 20 to One of the pair of translucent electrode layers (the electrode layer 35 or 45) in the other optical layer 30 or 40 of the 40 when viewed from a direction perpendicular to the one optical layer 20, the one optical layer 20 The plurality of openings 35 </ b> A or 45 </ b> A are arranged so as to overlap with the area A <b> 2 between the openings of the one transparent electrode layer 25.
 従って、高い利用効率でかつノイズの発生を抑制しつつ入射光L1の光学処理を行うことが可能な光学素子12を提供することができる。 Therefore, it is possible to provide the optical element 12 capable of performing the optical processing of the incident light L1 with high utilization efficiency and suppressing generation of noise.
 図4Aは、実施例2に係る光学素子14の平面図である。図4Aは、光学素子14における入射光L1の入射面S1を模式的に示す平面図である。また、図4Bは、光学素子14の模式的な断面図である。図4Bは、図4AのW-W線に沿った断面図である。図4A及び図4Bを用いて、光学素子14の構成について説明する。 FIG. 4A is a plan view of the optical element 14 according to the second embodiment. 4A is a plan view schematically showing an incident surface S1 of the incident light L1 in the optical element 14. FIG. FIG. 4B is a schematic cross-sectional view of the optical element 14. 4B is a cross-sectional view taken along line WW in FIG. 4A. The configuration of the optical element 14 will be described with reference to FIGS. 4A and 4B.
 光学素子14は、2つの光学層(第1及び第2の光学層)20及び30を有する。本実施例においては、光学層20及び30の各々は、光学素子12と同様に、それぞれ、マトリクス状に配列された複数のレンズ部20L及び30Lを有する。 The optical element 14 has two optical layers (first and second optical layers) 20 and 30. In the present embodiment, each of the optical layers 20 and 30 has a plurality of lens portions 20L and 30L arranged in a matrix, similarly to the optical element 12.
 具体的には、図4Bに示すように、光学層20は、電圧の印加によりレンズ部20Lを形成する電極層25を有し、当該電極層25はマトリクス状に配列された複数の開口部25Aを有する。また、光学層30は、マトリクス状に配列された複数の開口部35Aを有する電極層35を有する。また、本実施例においては、光学層30における電極層35の開口部35Aは、光学層20に垂直な方向から見たとき、光学層20における電極層25の開口部25Aの開口部間領域A21に配置されている。 Specifically, as shown in FIG. 4B, the optical layer 20 has an electrode layer 25 that forms a lens portion 20L by application of a voltage, and the electrode layer 25 has a plurality of openings 25A arranged in a matrix. Have The optical layer 30 includes an electrode layer 35 having a plurality of openings 35A arranged in a matrix. In the present embodiment, the opening 35A of the electrode layer 35 in the optical layer 30 is a region A21 between the openings of the opening 25A of the electrode layer 25 in the optical layer 20 when viewed from the direction perpendicular to the optical layer 20. Is arranged.
 本実施例においては、光学素子14は、光学層20の開口部間領域A21と、光学層30における電極層35の開口部35間に設けられた開口部間領域A22とが重なる領域(重複開口部間領域)A3に設けられた遮光層50を有する。例えば、遮光層50は、入射光L1を吸収する材料、例えば樹脂材料からなる。 In this embodiment, the optical element 14 includes a region (overlapping aperture) where an inter-opening region A21 of the optical layer 20 and an inter-opening region A22 provided between the openings 35 of the electrode layer 35 in the optical layer 30 overlap. The light shielding layer 50 is provided in the inter-region A3. For example, the light shielding layer 50 is made of a material that absorbs the incident light L1, for example, a resin material.
 すなわち、図4Aに示すように、光学素子14は、2つの光学層20及び30におけるレンズ20L及び30Lのどちらにも重ならない領域に遮光層50が設けられている。従って、2つの光学層20及び30、すなわち2つのマイクロレンズアレイのレンズ間領域が重複する部分は遮光されている。 That is, as shown in FIG. 4A, the optical element 14 is provided with a light shielding layer 50 in a region of the two optical layers 20 and 30 that does not overlap any of the lenses 20L and 30L. Accordingly, the two optical layers 20 and 30, that is, the portions where the inter-lens regions of the two microlens arrays overlap are shielded from light.
 本実施例のように、例えば円形状のレンズ20L及び30Lをマトリクス状に配置して積層した場合、光学層20及び30のレンズ間領域が重なる部分(開口部間重複領域A3)が生じ得る。従って、このレンズ間領域においては、入射光L1が素通りする。従って、純粋な散乱光L2を得られない場合がある。 As in this embodiment, for example, when the circular lenses 20L and 30L are arranged in a matrix and stacked, a portion where the inter-lens regions of the optical layers 20 and 30 overlap (inter-opening overlap region A3) may occur. Accordingly, the incident light L1 passes through in this inter-lens region. Therefore, pure scattered light L2 may not be obtained.
 これに対し、本実施例においては、この光学層20及び30における開口部間領域A22及びA23が重複した重複開口部間領域A3に遮光層50が設けられている。従って、入射光L1がそのまま光学素子14から出射されることが抑制される。従って、光学層20及び30が入射光L1を散乱させて所望の散乱光L2を得られる場合には、遮光層50によって入射光L1の透過を抑制することで、高い利用効率でかつノイズの発生を抑制しつつ入射光L1の光学処理を行うことが可能となる。 On the other hand, in this embodiment, the light shielding layer 50 is provided in the overlapping inter-opening region A3 where the inter-opening regions A22 and A23 in the optical layers 20 and 30 overlap. Therefore, it is suppressed that the incident light L1 is emitted from the optical element 14 as it is. Therefore, when the optical layers 20 and 30 scatter the incident light L1 to obtain the desired scattered light L2, the light shielding layer 50 suppresses the transmission of the incident light L1, thereby generating high noise and generating noise. It is possible to perform the optical processing of the incident light L1 while suppressing the above.
 上記したように、本実施例においては、光学素子14は、各々が、液晶層(液晶層21及び31)、当該液晶層を挟む一対の配向膜(配向膜22及び23並びに32及び33)及び当該一対の配向膜上に形成された一対の透光電極層(電極層24及び25並びに34及び35)を含む第1及び第2の光学層20及び30と、遮光層50とを有する。 As described above, in this embodiment, each of the optical elements 14 includes a liquid crystal layer (liquid crystal layers 21 and 31), a pair of alignment films ( alignment films 22 and 23 and 32 and 33) sandwiching the liquid crystal layer, and The light-shielding layer 50 includes first and second optical layers 20 and 30 including a pair of transparent electrode layers (electrode layers 24 and 25 and 34 and 35) formed on the pair of alignment films.
 また、第1の光学層20における一対の透光電極層の一方(電極層25)は、マトリクス状に配列された複数の開口部25Aを有し、第2の光学層30における一対の透光電極層の一方(電極層35)は、第1の光学層20に垂直な方向から見たとき、第1の光学層20における一方の透光電極層25の開口部間領域A21に重なるように配置された複数の開口部35Aを有する。 In addition, one of the pair of transparent electrode layers (electrode layer 25) in the first optical layer 20 has a plurality of openings 25A arranged in a matrix, and the pair of transparent electrodes in the second optical layer 30. One of the electrode layers (electrode layer 35) overlaps the inter-opening region A21 of the one transparent electrode layer 25 in the first optical layer 20 when viewed from the direction perpendicular to the first optical layer 20. It has a plurality of openings 35A arranged.
 また、遮光層50は、第1の光学層20に垂直な方向から見たとき、第1及び第2の光学層20及び30における電極層25及び35の開口部間領域A21及びA22が重なる領域A3に配置されている。従って、高い利用効率でかつノイズの発生を抑制しつつ入射光L1の光学処理を行うことが可能な光学素子14を提供することができる。 The light shielding layer 50 is a region where the regions A21 and A22 between the openings of the electrode layers 25 and 35 in the first and second optical layers 20 and 30 overlap when viewed from the direction perpendicular to the first optical layer 20. Arranged at A3. Therefore, it is possible to provide the optical element 14 that can perform the optical processing of the incident light L1 with high utilization efficiency and suppressing generation of noise.
 図5は、実施例3に係る光学装置15の構成を模式的に示す図である。光学装置15は、上記した実施例1に係る光学素子12が互いに離間して複数個(本実施例においては3つ)配置された構造を有する。また、光学装置15は、複数の光学素子12の各々を選択的に駆動する駆動回路15Aを有する。 FIG. 5 is a diagram schematically illustrating the configuration of the optical device 15 according to the third embodiment. The optical device 15 has a structure in which a plurality (three in the present embodiment) of the optical elements 12 according to the first embodiment are spaced apart from each other. In addition, the optical device 15 includes a drive circuit 15A that selectively drives each of the plurality of optical elements 12.
 すなわち、光学装置15は、入射光L1の光軸AXに沿った方向において互いに離間して配置された複数の光学素子12及び複数の光学素子12を選択的に駆動する駆動回路15Aを有する。 That is, the optical device 15 includes a plurality of optical elements 12 and a plurality of optical elements 12 that are selectively spaced apart from each other in the direction along the optical axis AX of the incident light L1 and a drive circuit 15A that selectively drives the plurality of optical elements 12.
 本実施例においては、駆動回路15Aは、光学素子12の各々における各電極層に接続されている。また、駆動回路15Aは、光学素子12の各々に駆動信号(駆動電圧)を供給する。また、駆動回路15Aは、本実施例においては、3つの光学素子12のうちのいずれか1つを駆動させる(レンズ動作を行わせる)ように構成されている。 In this embodiment, the drive circuit 15A is connected to each electrode layer in each of the optical elements 12. The drive circuit 15 </ b> A supplies a drive signal (drive voltage) to each of the optical elements 12. In the present embodiment, the drive circuit 15A is configured to drive any one of the three optical elements 12 (perform lens operation).
 例えば、光学装置15は、実施例1に係る表示装置10において光学素子12に代えて搭載されることができる。この場合、光学装置15は、駆動される光学素子12(被駆動素子)を切替えることで、当該被駆動素子に対応する虚像VIを表示することができる。例えば、光源11が光学装置15への入射光L1として映像光を出射した場合、奥行き方向において当該被駆動素子に対応する位置に結像された複数の画像を選択的に表示(投影)させることができる。従って、光学装置15は、任意の位置に画像及び映像を表示させることができる。 For example, the optical device 15 can be mounted in place of the optical element 12 in the display device 10 according to the first embodiment. In this case, the optical device 15 can display the virtual image VI corresponding to the driven element by switching the driven optical element 12 (driven element). For example, when the light source 11 emits image light as the incident light L1 to the optical device 15, a plurality of images formed at positions corresponding to the driven elements in the depth direction are selectively displayed (projected). Can do. Therefore, the optical device 15 can display an image and a video at an arbitrary position.
 また、例えば、3つの光学素子12を順次駆動し、また、入射光L1を被駆動素子に合わせて切替えるように光源11を駆動することで、奥行き方向において複数の画像が重なり合うように虚像VIを表示させることができる。従って、観察者は、奥行きのある画像及び映像を視認することができる。 Further, for example, by driving the three optical elements 12 sequentially and by driving the light source 11 so as to switch the incident light L1 in accordance with the driven element, the virtual image VI is formed so that a plurality of images overlap in the depth direction. Can be displayed. Therefore, the observer can visually recognize images and videos with depth.
 このように、本実施例においては、光学装置15は、外部からの入射光L1の光軸AXに沿った方向において互いに離間する複数の光学素子12と、複数の光学素子12の各々を選択的に駆動する駆動回路15Aとを有する。 Thus, in this embodiment, the optical device 15 selectively selects each of the plurality of optical elements 12 and the plurality of optical elements 12 that are separated from each other in the direction along the optical axis AX of the incident light L1 from the outside. And a drive circuit 15A for driving.
 また、光学素子12の各々は、液晶層(液晶層21~41)、当該液晶層を挟む一対の配向膜(配向膜22及び23、32及び33並びに42及び43)及び当該一対の配向膜上に形成された一対の透光電極層(電極層24及び25、34及び35並びに44及び45)を各々が含む複数の光学層20~40を有する。 Each of the optical elements 12 includes a liquid crystal layer (liquid crystal layers 21 to 41), a pair of alignment films ( alignment films 22 and 23, 32 and 33, and 42 and 43) sandwiching the liquid crystal layer, and the pair of alignment films. A plurality of optical layers 20 to 40 each including a pair of transparent electrode layers (electrode layers 24 and 25, 34 and 35, and 44 and 45).
 また、光学層20~40のうちの1の光学層20における一対の透光電極層の一方(電極層25)は、マトリクス状に配列された複数の開口部25Aを有し、光学層20~40のうちの他の光学層30又は40における一対の透光電極層の一方(電極層35又は45)は、当該1の光学層20に垂直な方向から見たとき、当該1の光学層20における一方の透光電極層25の開口部間領域A2に重なるように配置された複数の開口部35A又は45Aを有する。 Also, one of the pair of transparent electrode layers (electrode layer 25) in one of the optical layers 20 to 40 has a plurality of openings 25A arranged in a matrix, and the optical layers 20 to One of the pair of translucent electrode layers (the electrode layer 35 or 45) in the other optical layer 30 or 40 of the 40 when viewed from a direction perpendicular to the one optical layer 20, the one optical layer 20 The plurality of openings 35 </ b> A or 45 </ b> A are arranged so as to overlap with the area A <b> 2 between the openings of the one transparent electrode layer 25.
 従って、高い利用効率でかつノイズの発生を抑制しつつ入射光L1の光学処理を行うことが可能な光学装置15を提供することができる。 Therefore, it is possible to provide the optical device 15 capable of performing the optical processing of the incident light L1 with high utilization efficiency and suppressing generation of noise.
10 表示装置
11 光源
12、14 光学素子
21、31、41 液晶層
25、35、45 透光電極層
25A、35A、45A 開口部
A2、A21、A22 開口部間領域
A3 重複開口部間領域
50 遮光層
15A 駆動回路
DESCRIPTION OF SYMBOLS 10 Display apparatus 11 Light source 12, 14 Optical element 21, 31, 41 Liquid crystal layer 25, 35, 45 Transparent electrode layer 25A, 35A, 45A Aperture part A2, A21, A22 Area between opening part A3 Area between overlapping opening part 50 Light shielding Layer 15A drive circuit

Claims (6)

  1.  各々が、液晶層、前記液晶層を挟む一対の配向膜及び前記一対の配向膜上に形成された一対の透光電極層を含む複数の光学層を有し、
     前記複数の光学層のうちの1の光学層における前記一対の透光電極層の一方は、マトリクス状に配列された複数の開口部を有し、
     前記複数の光学層のうちの他の光学層における前記一対の透光電極層の一方は、前記1の光学層に垂直な方向から見たとき、前記1の光学層における前記一方の透光電極層の開口部間領域に重なるように配置された複数の開口部を有することを特徴とする光学素子。
    Each has a plurality of optical layers including a liquid crystal layer, a pair of alignment films sandwiching the liquid crystal layer, and a pair of transparent electrode layers formed on the pair of alignment films,
    One of the pair of transparent electrode layers in one optical layer of the plurality of optical layers has a plurality of openings arranged in a matrix,
    One of the pair of light transmitting electrode layers in the other optical layer of the plurality of optical layers is the one light transmitting electrode in the one optical layer when viewed from a direction perpendicular to the one optical layer. An optical element comprising a plurality of openings arranged so as to overlap a region between openings of a layer.
  2.  前記複数の光学層は、第1、第2及び第3の光学層を有し、
     前記第1、第2及び第3の光学層の各々における前記一対の透光電極層の一方は、マトリクス状に配列された複数の開口部を有し、
     前記第1の光学層に垂直な方向から見たとき、前記第1、第2又は第3の光学層のうちのいずれか1つの光学層における前記一方の透光電極層の前記複数の開口部のみが配置された領域と、前記第1、第2及び第3の光学層のうちの少なくとも2つの光学層における前記一方の透光電極層の前記複数の開口部が重なる領域とが設けられていることを特徴とする請求項1に記載の光学素子。
    The plurality of optical layers have first, second and third optical layers,
    One of the pair of transparent electrode layers in each of the first, second and third optical layers has a plurality of openings arranged in a matrix,
    When viewed from a direction perpendicular to the first optical layer, the plurality of openings of the one transparent electrode layer in any one of the first, second, or third optical layers And a region where the plurality of openings of the one transparent electrode layer overlap in at least two of the first, second and third optical layers. The optical element according to claim 1.
  3.  前記第1、第2及び第3の光学層の各々における前記一方の透光電極層の前記複数の開口部は、直径Dの円形状を有しかつピッチPで正三角格子状に配置され、
     前記第1の光学層における前記複数の開口部の各々は、前記第2及び第3の光学層における前記複数の開口部の各々から、当該正三角格子の一辺に垂直な方向に距離Lだけオフセットされた位置に配置され、
     前記第2の光学層における前記複数の開口部の各々は、前記第3の光学層における前記複数の開口部の各々から、当該正三角格子の一辺に垂直な方向に前記距離Lだけオフセットされた位置に配置されていることを特徴とする請求項2に記載の光学素子。
    The plurality of openings of the one transparent electrode layer in each of the first, second, and third optical layers have a circular shape with a diameter D and are arranged in a regular triangular lattice with a pitch P,
    Each of the plurality of openings in the first optical layer is offset from each of the plurality of openings in the second and third optical layers by a distance L in a direction perpendicular to one side of the equilateral triangular lattice. Placed in the position
    Each of the plurality of openings in the second optical layer is offset from each of the plurality of openings in the third optical layer by the distance L in a direction perpendicular to one side of the equilateral triangular lattice. The optical element according to claim 2, wherein the optical element is disposed at a position.
  4.  前記直径D、ピッチPは、D≧(2/3)Pの関係を満たし、
     前記距離L及びピッチPは、L=(1/31/2)Pの関係を満たすことを特徴とする請求項3に記載の光学素子。
    The diameter D and the pitch P satisfy the relationship of D ≧ (2/3) P,
    The optical element according to claim 3, wherein the distance L and the pitch P satisfy a relationship of L = (1/3 1/2 ) P.
  5.  液晶層、前記液晶層を挟む一対の配向膜及び前記一対の配向膜上に形成された一対の透光電極層を含み、前記一対の透光電極層の一方がマトリクス状に配列された複数の開口部を有する第1の光学層と、
     液晶層、前記液晶層を挟む一対の配向膜及び前記一対の配向膜上に形成された一対の透光電極層を含み、前記一対の透光電極層の一方が前記第1の光学層に垂直な方向から見たときに前記第1の光学層における前記一方の透光電極層の開口部間領域に重なるように配置された複数の開口部を有する第2の光学層と、
     前記第1の光学層に垂直な方向から見たとき、前記第1及び第2の光学層の各々における前記一方の透光電極層の開口部間領域に重なる位置に配置された遮光層と、を有する光学素子。
    A plurality of liquid crystal layers, a pair of alignment films sandwiching the liquid crystal layer, and a pair of transparent electrode layers formed on the pair of alignment films, wherein one of the pair of transparent electrode layers is arranged in a matrix A first optical layer having an opening;
    A liquid crystal layer; a pair of alignment films sandwiching the liquid crystal layer; and a pair of transparent electrode layers formed on the pair of alignment films, wherein one of the pair of transparent electrode layers is perpendicular to the first optical layer A second optical layer having a plurality of openings disposed so as to overlap an area between the openings of the one light-transmissive electrode layer in the first optical layer when viewed from any direction;
    A light-shielding layer disposed at a position overlapping with a region between openings of the one light-transmissive electrode layer in each of the first and second optical layers when viewed from a direction perpendicular to the first optical layer; An optical element.
  6.  外部からの入射光の光軸に沿った方向において互いに離間する複数の光学素子及び前記複数の光学素子の各々を選択的に駆動する駆動回路を有し、
     前記複数の光学素子の各々は、液晶層、前記液晶層を挟む一対の配向膜及び前記一対の配向膜上に形成された一対の透光電極層を各々が含む複数の光学層を有し、
     前記複数の光学層のうちの1の光学層における前記一対の透光電極層の一方は、マトリクス状に配列された複数の開口部を有し、
     前記複数の光学層のうちの他の光学層における前記一対の透光電極層の一方は、前記1の光学層に垂直な方向から見たとき、前記1の光学層における前記一方の透光電極層の開口部間領域に重なるように配置された複数の開口部を有することを特徴とする光学装置。
    A plurality of optical elements spaced apart from each other in a direction along the optical axis of incident light from the outside, and a drive circuit that selectively drives each of the plurality of optical elements;
    Each of the plurality of optical elements has a plurality of optical layers each including a liquid crystal layer, a pair of alignment films sandwiching the liquid crystal layer, and a pair of transparent electrode layers formed on the pair of alignment films,
    One of the pair of transparent electrode layers in one optical layer of the plurality of optical layers has a plurality of openings arranged in a matrix,
    One of the pair of light transmitting electrode layers in the other optical layer of the plurality of optical layers is the one light transmitting electrode in the one optical layer when viewed from a direction perpendicular to the one optical layer. An optical device comprising a plurality of openings arranged so as to overlap a region between openings of a layer.
PCT/JP2018/008496 2017-03-30 2018-03-06 Optical element and optical device WO2018180271A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509100A JP6806880B2 (en) 2017-03-30 2018-03-06 Optical elements and devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-066644 2017-03-30
JP2017066644 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180271A1 true WO2018180271A1 (en) 2018-10-04

Family

ID=63677079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008496 WO2018180271A1 (en) 2017-03-30 2018-03-06 Optical element and optical device

Country Status (2)

Country Link
JP (2) JP6806880B2 (en)
WO (1) WO2018180271A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219686A (en) * 2020-02-05 2021-08-06 通用汽车环球科技运作有限责任公司 Speckle contrast reduction including high speed generation of images with different speckle patterns

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315139A (en) * 1991-04-15 1992-11-06 Nippon Telegr & Teleph Corp <Ntt> Display and image pickup device
JPH05197023A (en) * 1992-01-17 1993-08-06 Fujitsu General Ltd Video projection screen
JP2003255299A (en) * 2002-03-05 2003-09-10 Ricoh Co Ltd Optical path deflecting element, optical path deflecting element unit and image display device
JP2006153982A (en) * 2004-11-25 2006-06-15 Asahi Glass Co Ltd Transmission type screen and rear projection type projection tv having the same
US20140028933A1 (en) * 2012-07-27 2014-01-30 Superd Co., Ltd. Autostereoscopic display device and method
JP2015034919A (en) * 2013-08-09 2015-02-19 株式会社デンソー Information display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315139A (en) * 1991-04-15 1992-11-06 Nippon Telegr & Teleph Corp <Ntt> Display and image pickup device
JPH05197023A (en) * 1992-01-17 1993-08-06 Fujitsu General Ltd Video projection screen
JP2003255299A (en) * 2002-03-05 2003-09-10 Ricoh Co Ltd Optical path deflecting element, optical path deflecting element unit and image display device
JP2006153982A (en) * 2004-11-25 2006-06-15 Asahi Glass Co Ltd Transmission type screen and rear projection type projection tv having the same
US20140028933A1 (en) * 2012-07-27 2014-01-30 Superd Co., Ltd. Autostereoscopic display device and method
JP2015034919A (en) * 2013-08-09 2015-02-19 株式会社デンソー Information display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219686A (en) * 2020-02-05 2021-08-06 通用汽车环球科技运作有限责任公司 Speckle contrast reduction including high speed generation of images with different speckle patterns
US11243408B2 (en) * 2020-02-05 2022-02-08 GM Global Technology Operations LLC Speckle contrast reduction including high-speed generation of images having different speckle patterns
CN113219686B (en) * 2020-02-05 2024-06-11 通用汽车环球科技运作有限责任公司 Speckle contrast reduction including high speed generation of images with different speckle patterns

Also Published As

Publication number Publication date
JPWO2018180271A1 (en) 2020-05-14
JP6806880B2 (en) 2021-01-06
JP2021056523A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP4967731B2 (en) Image display device and optical member therefor
US11397321B2 (en) Head-up display device and image projection unit
CN108700747B (en) Head-up display device
US10408409B2 (en) Lamp unit, vehicular lamp system
JP7011161B2 (en) Display device
WO2015012138A1 (en) Scanning-type projection device
WO2011068072A1 (en) Light diffusion sheet, display panel, and display device
JP2012002866A (en) Optical device for three-dimensional display and three-dimensional display device
KR20130067223A (en) Liquid crystal display device, electronic apparatus, and optical device
JP2020098270A (en) Virtual image display device
US10295835B2 (en) Stereoscopic display device comprising at least two active scattering panels arranged in different planes each having a scattering function and a transmission function and stereoscopic display method
JP6922655B2 (en) Virtual image display device
CN211719179U (en) Display device and automobile
JP2021056523A (en) Optical element and optical device
JP7172840B2 (en) virtual image display
WO2018150736A1 (en) Head-up display device
JP2009063914A (en) Display device
JP2010197917A (en) Display device
WO2016136060A1 (en) Projection optical system and image projection device having same
WO2017168510A1 (en) Display device
JP7127415B2 (en) virtual image display
JP2024102735A (en) Head-mounted type display device and optical unit
JP2024102491A (en) Virtual image display device and head-mounted type display device
JP4457752B2 (en) Liquid crystal display
JP2024102492A (en) Virtual image display device and head-mounted type display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775062

Country of ref document: EP

Kind code of ref document: A1