WO2018180210A1 - Film regeneration method - Google Patents

Film regeneration method Download PDF

Info

Publication number
WO2018180210A1
WO2018180210A1 PCT/JP2018/008118 JP2018008118W WO2018180210A1 WO 2018180210 A1 WO2018180210 A1 WO 2018180210A1 JP 2018008118 W JP2018008118 W JP 2018008118W WO 2018180210 A1 WO2018180210 A1 WO 2018180210A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
zeolite membrane
separation
inert gas
zeolite
Prior art date
Application number
PCT/JP2018/008118
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 貴博
詩織 大森
貴 笹沼
英了 三木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019509063A priority Critical patent/JPWO2018180210A1/en
Publication of WO2018180210A1 publication Critical patent/WO2018180210A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material

Definitions

  • the present invention relates to a membrane regeneration method, and more particularly to a membrane regeneration method for regenerating a membrane that can be suitably used when separating some hydrocarbons from a hydrocarbon mixture.
  • a membrane separation method has been used as a method for separating a specific component from a multi-component mixture with low energy.
  • the separation membrane for example, a zeolite membrane formed by forming a zeolite on a support in the form of a membrane is used.
  • the performance of the zeolite membrane used for membrane separation is expressed by the permeation flux of the permeate and the separation factor. And the zeolite membrane used for membrane separation is calculated
  • an object of the present invention is to provide a membrane regeneration method that can sufficiently increase the separation factor of a separation membrane for membrane separation of a hydrocarbon mixture.
  • the present inventors have intensively studied to achieve the above object.
  • the present inventors have found that if the zeolite membrane used for membrane separation of the hydrocarbon mixture is regenerated using a specific regeneration gas, the separation factor of the zeolite membrane can be sufficiently increased, and the present invention has been completed. I let you.
  • the present invention aims to advantageously solve the above problems, and the membrane separation method of the present invention comprises a step (A) of bringing a hydrocarbon mixture into contact with a zeolite membrane, and an inert gas. And (B) exposing the zeolite membrane to an atmosphere to raise the temperature of the inert gas atmosphere. In this way, the zeolite membrane brought into contact with the hydrocarbon mixture is exposed to an inert gas atmosphere, and the atmosphere is regenerated while raising the temperature, so that the separation factor of the zeolite membrane obtained through the step (B) is sufficient. Can be increased.
  • the maximum temperature of the inert gas atmosphere in the step (B) is 100 ° C. or higher and 450 ° C. or lower. If the maximum temperature of the inert gas atmosphere to which the zeolite membrane is exposed during the step (B) is 100 ° C. or higher and 450 ° C. or lower, the separation factor of the zeolite membrane is more sufficiently suppressed while suppressing the loss of the zeolite membrane due to heat. Can be increased.
  • the inert gas is preferably nitrogen gas. If the atmosphere to which the zeolite membrane is exposed is nitrogen gas, the separation coefficient of the zeolite membrane can be further sufficiently increased by effectively regenerating the porosity of the zeolite membrane.
  • the zeolite membrane in the step (B), is exposed to the inert gas atmosphere before the temperature of the inert gas atmosphere is increased. It is preferable to further include a film pressurizing operation for pressurization. By performing such a membrane pressurizing step, the separation factor of the zeolite membrane can be further sufficiently increased.
  • the membrane regeneration method of the present invention can be used for regeneration of a zeolite membrane that can be suitably used for membrane separation of a hydrocarbon mixture.
  • the membrane regeneration method of the present invention can remarkably improve the separation factor of a zeolite membrane when a new zeolite membrane brought into contact with a hydrocarbon mixture is treated for the first time.
  • the membrane regeneration method of the present invention is a method for regenerating a zeolite membrane that can be used for membrane separation of a hydrocarbon mixture.
  • a membrane regeneration method includes a step (A) of bringing a hydrocarbon mixture into contact with a zeolite membrane, and a step (B) of exposing the zeolite membrane to an inert gas atmosphere to raise the temperature of the inert gas atmosphere.
  • the membrane regeneration method of the present invention after bringing the hydrocarbon mixture into contact with the zeolite membrane, the zeolite membrane is exposed to an inert gas atmosphere, and the membrane is regenerated while raising the temperature of the inert gas atmosphere. Therefore, the separation factor of the zeolite membrane can be sufficiently increased. As a result, it is possible to achieve good separation performance when the regenerated zeolite membrane is used for separation of a hydrocarbon mixture.
  • the reason why it is possible to sufficiently increase the separation factor of the zeolite membrane by regenerating the zeolite membrane while raising the temperature in an inert gas atmosphere is not clear, but it is assumed that it is as follows.
  • the zeolite membrane brought into contact with the hydrocarbon mixture retains the hydrocarbon component adsorbed or adhered to the membrane.
  • Such a component can block or narrow the innumerable pores of a zeolite membrane that is originally porous.
  • the permeation flux and the separation factor are reduced in the zeolite membrane after the operation of bringing the hydrocarbon mixture into contact, such as separating the hydrocarbon mixture.
  • the zeolite membrane is a membrane formed by growing zeolite crystals on a support.
  • zeolite crystals include micropores having a pore diameter of 2 nm or less, and mesopores having a pore diameter of more than 2 nm and not more than 50 nm are formed at a crystal grain boundary formed between the plurality of crystals.
  • the plural types of hydrocarbon compounds contained in the hydrocarbon mixture to be separated include those that are relatively easy to pass through the pores and those that are difficult to pass depending on their structure.
  • the separation factor is obtained due to the difference in pore permeability of each hydrocarbon compound.
  • the pores may be blocked or narrowed with the passage of the separation time. For this reason, a separation factor falls by operation which makes a hydrocarbon mixture contact.
  • the zeolite membrane is regenerated while raising the temperature in an inert gas atmosphere. Since it can be created well during regeneration, it is presumed that the separation factor of the zeolite membrane can be sufficiently increased compared to the zeolite membrane before the regeneration treatment.
  • the hydrocarbon mixture that is the separation target of the zeolite membrane that can be regenerated by the membrane regeneration method of the present invention is a plurality of types of carbonized compounds that can separate some hydrocarbon compounds using the zeolite membrane.
  • the hydrocarbon mixture include a mixture containing a straight-chain hydrocarbon having the same number of carbon atoms, a branched hydrocarbon and / or a cyclic hydrocarbon.
  • the hydrocarbon mixture is preferably a mixture containing as a main component a linear hydrocarbon having 4 carbon atoms and a branched hydrocarbon having 4 carbon atoms and / or a cyclic hydrocarbon having 4 carbon atoms, Alternatively, it is a mixture containing as a main component a linear hydrocarbon having 5 carbon atoms and a branched hydrocarbon having 5 carbon atoms and / or a cyclic hydrocarbon having 5 carbon atoms, and more preferably a carbon number Is a mixture containing as a main component a linear hydrocarbon having 5 and a branched hydrocarbon having 5 carbon atoms and / or a cyclic hydrocarbon having 5 carbon atoms.
  • linear hydrocarbons and branched hydrocarbons and / or cyclic hydrocarbons as main components means linear hydrocarbons and branched hydrocarbons in a hydrocarbon mixture. It refers to containing 50 mol% or more of hydrogen and / or cyclic hydrocarbons in total.
  • a mixture containing a linear hydrocarbon having 4 carbon atoms and a branched hydrocarbon and / or a cyclic hydrocarbon having 4 carbon atoms as main components (hereinafter referred to as “a hydrocarbon mixture having 4 carbon atoms”)
  • a hydrocarbon mixture having 4 carbon atoms As a straight chain hydrocarbon having 4 carbon atoms such as n-butane, 1-butene, 2-butene and butadiene, and a branched hydrocarbon having 4 carbon atoms such as isobutane and isobutene.
  • a mixture containing a cyclic hydrocarbon having 4 carbon atoms such as cyclobutane and cyclobutene.
  • the hydrocarbon mixture having 4 carbon atoms includes, for example, a C4 fraction produced as a by-product when pyrolyzing naphtha to produce ethylene, or after recovering at least a part of butadiene from the C4 fraction. Examples include remaining fractions.
  • a mixture containing as a main component a linear hydrocarbon having 5 carbon atoms and a branched hydrocarbon and / or cyclic hydrocarbon having 5 carbon atoms (hereinafter referred to as “a hydrocarbon mixture having 5 carbon atoms”) And a linear hydrocarbon having 5 carbon atoms such as n-pentane, 1-pentene, 2-pentene, 1,3-pentadiene, isopentane, 2-methyl-1-butene, A mixture containing a branched hydrocarbon having 5 carbon atoms such as 2-methyl-2-butene, 3-methyl-1-butene and isoprene and / or a cyclic hydrocarbon having 5 carbon atoms such as cyclopentane and cyclopentene.
  • the hydrocarbon mixture having 5 carbon atoms includes, for example, a C5 fraction produced as a by-product when pyrolyzing naphtha to produce ethylene, or after recovering at least a portion of isoprene from the C5 fraction. Examples include remaining fractions.
  • examples of the zeolite membrane regenerated by the membrane regeneration method of the present invention include any zeolite membrane capable of separating a desired hydrocarbon compound from a hydrocarbon mixture.
  • the zeolite membrane includes a porous support and a porous separation layer provided on the porous support, and a porous separation layer is desired.
  • a porous support that is a zeolite membrane that can be suitably used for membrane separation of a hydrocarbon mixture having 4 carbon atoms or a hydrocarbon mixture having 5 carbon atoms, and a porous support on the porous support.
  • a separation membrane comprising an MFI-type zeolite (aluminosilicate having a MFI structure and / or silicalite).
  • porous support a porous body made of any material can be used as long as it is a porous body capable of supporting the porous separation layer.
  • porous bodies made of porous ceramics such as alumina, mullite, zirconia, cordierite, etc .; glass such as shirasu porous glass; and porous sintered metals such as stainless steel are preferable. This is because a porous body made of porous ceramics or porous sintered metal is excellent in mechanical strength.
  • the shape of the porous support is not particularly limited, and can be any shape such as a flat film shape, a flat plate shape, a tube shape, and a honeycomb shape.
  • the porous separation layer can be formed, for example, by synthesizing zeolite having a desired structure such as MFI-type zeolite on a porous support or a porous support to which a zeolite seed crystal is attached.
  • the porous separation layer is obtained by immersing a porous support optionally attached with a zeolite seed crystal in an aqueous sol containing a silica source and a structure-directing agent, and synthesizing the zeolite by hydrothermal synthesis.
  • the zeolite membrane obtained by forming the porous separation layer on the porous support is subjected to a calcination treatment for removing the structure-directing agent and a boiling washing treatment, followed by oxygen-containing conditions such as in an air atmosphere. It may have been subjected to a baking treatment in an atmosphere.
  • step (A) the hydrocarbon mixture is brought into contact with the zeolite membrane.
  • step (A) can be a separation step for performing membrane separation or an exposure step for exposing the zeolite membrane to a hydrocarbon mixture gas. That is, the step (A) is a step that can be carried out by any specific operation without particular limitation as long as the hydrocarbon mixture can be brought into contact with the zeolite membrane.
  • the hydrocarbon component can be adsorbed or adhered to the zeolite membrane by bringing the hydrocarbon mixture into contact with the zeolite membrane.
  • step (A) is a separation step
  • a part of the hydrocarbon compound contained in the hydrocarbon mixture is separated by the zeolite membrane.
  • the step (A) that is the separation step for example, carbonization including linear hydrocarbons, branched hydrocarbons and / or cyclic hydrocarbons having the same number of carbon atoms.
  • linear hydrocarbons can be efficiently separated and removed from the hydrogen mixture, thereby increasing the content of branched hydrocarbons and / or cyclic hydrocarbons in the hydrocarbon mixture.
  • step (A) which is a separation step
  • a part of the components can be separated and removed from the hydrocarbon mixture by passing the hydrocarbon mixture through a zeolite membrane. it can.
  • the separation step using a zeolite membrane can be performed under any conditions, but is preferably performed under heating conditions. Specifically, the separation step is preferably performed under conditions of 20 ° C. or higher and 300 ° C. or lower, more preferably 25 ° C. or higher and 250 ° C. or lower, and further preferably 50 ° C. or higher and 200 ° C. or lower.
  • the pressure conditions for performing the separation step are not particularly limited, but it is preferable that the differential pressure between the non-permeation side and the permeation side (pressure on the non-permeation side ⁇ pressure on the permeation side) be 10 kPa or more and 600 kPa or less, More preferably, it is 50 kPa or more and 300 kPa or less. In the present specification, the pressure is a gauge pressure.
  • step (A) is an exposure step
  • a hydrocarbon mixture containing linear hydrocarbons having the same number of carbon atoms and branched hydrocarbons and / or cyclic hydrocarbons is used as the zeolite membrane. It can be introduced on the non-permeable side and / or on the transmissive side.
  • the pressure of the hydrocarbon mixture-containing atmosphere to which the zeolite membrane is exposed is preferably, for example, 0 kPa or more and 600 kPa or less.
  • the place where the zeolite membrane is exposed to the hydrocarbon mixture is, for example, the case where the zeolite membrane is accommodated in the housing as in the case where the present step (A) is a separation step as described above. It may be in a place where the separation operation can be carried out, such as in the membrane separation module, or in a storage container for storing the zeolite membrane outside the membrane separation module.
  • the zeolite membrane is exposed to an inert gas atmosphere to raise the temperature of the inert gas atmosphere.
  • the inert gas atmosphere to which the zeolite membrane is exposed in the step (B) is heated, the temperature of the atmosphere may be lowered during the execution of the step (B) or may not be lowered. May be.
  • the zeolite membrane is exposed from the viewpoint of suppressing the destruction of the zeolite membrane due to a rapid temperature drop when the hydrocarbon mixture is subjected to membrane separation using the regenerated zeolite membrane that has undergone the step (B). It is preferable to lower the temperature of the inert gas atmosphere during the implementation of the step (B).
  • the inert gas atmosphere to which the zeolite membrane is exposed in the step (B) includes an atmosphere made of an inert gas such as nitrogen gas, argon gas, and helium gas. These inert gases can be used singly or in combination. Among these, nitrogen gas is preferable as the inert gas. If the inert gas atmosphere to which the zeolite membrane is exposed is a nitrogen gas atmosphere, the separation factor of the zeolite membrane can be further sufficiently increased by effectively regenerating the porosity of the zeolite membrane.
  • the regenerated zeolite membrane obtained by performing the step (B) using a nitrogen gas atmosphere increases the permeability coefficient of the hydrocarbon compound that easily permeates the micropores, and the hydrocarbon compound that permeates the mesopores. The transmission coefficient can be reduced.
  • the inert gas used for constituting the inert gas atmosphere to which the zeolite membrane can be exposed in the step (B) it is preferable to use an inert gas having a very low content of components other than the inert gas, It is more preferable that it is an inert gas consisting essentially of an inert gas, and it is even more preferable that no gas other than the inert gas is contained.
  • “consisting essentially of an inert gas” means that 99.9% by volume or more of the inert gas is the inert gas.
  • the inert gas atmosphere can contain water vapor as a component other than the inert gas.
  • the dew point of the inert gas atmosphere is ⁇ 20 ° C. or lower. Is preferably ⁇ 30 ° C. or less, more preferably ⁇ 40 ° C. or less, and particularly preferably ⁇ 50 ° C. or less.
  • the “dew point” refers to a dew point under atmospheric pressure determined from the amount of water measured using Fourier transform infrared spectroscopy (FT-IR).
  • the maximum temperature of the inert gas atmosphere to which the zeolite membrane is exposed during the step (B) is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, and further preferably 200 ° C. or higher.
  • the temperature is 450 ° C. or lower, and more preferably 400 ° C. or lower.
  • the temperature of the inert gas atmosphere to which the zeolite membrane is exposed during the step (B) is preferably in the range of 10 ° C. or higher and 450 ° C. or lower, and preferably in the range of 20 ° C. or higher and 450 ° C. or lower. More preferred.
  • the pressure (gauge pressure) of the inert gas atmosphere to which the zeolite membrane is exposed is preferably 1 MPa or less, for example. This is because if the pressure is too high, the zeolite membrane may be damaged.
  • the pressure (gauge pressure) of the inert gas atmosphere to which the zeolite membrane is exposed is usually 10 kPa or more.
  • the time for which the dew point is exposed to the inert gas atmosphere in the step (B) is not particularly limited and is preferably 5 hours or more, more preferably 10 hours or more, and 15 hours. More preferably, it is usually 500 hours or less. This is because the separation factor of the regenerated zeolite membrane obtained through the step (B) can be further sufficiently increased if the time for exposing the zeolite membrane to the inert gas atmosphere is equal to or more than the above lower limit value.
  • the time for exposing the zeolite membrane to the inert gas atmosphere at the highest temperature during the step (B) is not particularly limited, but is preferably 5 hours or longer, for example, 10 hours or longer.
  • the separation coefficient of the regenerated zeolite membrane obtained through the step (B) can be further sufficiently increased. Because. Further, if the time during which the atmosphere to which the zeolite membrane is exposed is kept at the maximum temperature is set to the upper limit value or less, the loss of the zeolite membrane due to heat can be efficiently suppressed.
  • any method for exposing the zeolite membrane to an inert gas atmosphere any method can be used as long as the atmosphere around the zeolite membrane can be changed to an inert gas atmosphere.
  • the zeolite membrane may be exposed to an inert gas atmosphere by flowing an inert gas continuously or intermittently in a space in which the zeolite membrane is accommodated, or the zeolite membrane After the space in which the membrane is accommodated is replaced with an inert gas, the zeolite membrane may be exposed to an inert gas atmosphere by keeping the space airtight.
  • the place which exposes a zeolite membrane to inert gas atmosphere may be in a housing or a storage container similarly to the said process (A).
  • the temperature rise may be started from the beginning of the step (B) or in the middle of the step (B). May be.
  • the initial stage may correspond to a ⁇ membrane pressing operation> described later.
  • the temperature of the inert gas atmosphere is preferably raised to 100 ° C. or higher, more preferably raised to 150 ° C. or higher, further preferably raised to 200 ° C. or higher, and raised to 450 ° C. or lower. It is preferable to raise the temperature, and it is more preferable to raise the temperature to 400 ° C. or lower. This is because the separation factor of the regenerated zeolite membrane obtained through the step (B) can be further sufficiently increased by setting the temperature of the atmosphere after the temperature increase (temperature after the temperature increase) to the above lower limit value or more. Further, if the temperature of the atmosphere after the temperature rise (temperature after the temperature rise) is not more than the above upper limit value, it is possible to efficiently suppress the loss of the zeolite membrane due to heat.
  • the time for maintaining the temperature of the atmosphere at the temperature after the temperature rise after the temperature rise is not particularly limited, but is preferably, for example, 5 hours or more, more preferably 10 hours or more, and 12 hours. More preferably, the time is 50 hours or less, and more preferably 30 hours or less.
  • the separation coefficient of the regenerated zeolite membrane obtained through the step (B) can be further sufficiently increased by setting the time for maintaining the temperature at the temperature after raising the temperature to the above lower limit value or more.
  • the temperature of the heated atmosphere can be arbitrarily lowered to, for example, 30 ° C. or lower, preferably 25 ° C. or lower. If the temperature of the atmosphere to which the zeolite membrane is exposed is lowered to the above upper limit value or less, when the hydrocarbon mixture is subjected to membrane separation using the regenerated zeolite membrane obtained through the step (B), a rapid temperature drop occurs. This is because the destruction of the zeolite membrane can be suppressed. Note that when the temperature of the atmosphere is lowered, the timing of ending the step (B) may be the same as the end of the temperature drop, or may be after an arbitrary time has elapsed after the temperature drop is ended.
  • the membrane regeneration method of the present invention further includes a membrane pressurizing operation for pressurizing the zeolite membrane in a state where the zeolite membrane is exposed to an inert gas atmosphere in the initial stage of the step (B).
  • a membrane pressurizing operation for pressurizing the zeolite membrane in a state where the zeolite membrane is exposed to an inert gas atmosphere in the initial stage of the step (B).
  • the separation factor of the zeolite membrane obtained through the step (B) can be further sufficiently increased. The reason for this is not clear, but by pressing the zeolite membrane with the hydrocarbon mixture adsorbed or adhered, the hydrocarbon mixture can be "indented" closer to the inside of the porous structure of the zeolite membrane. It is guessed.
  • the membrane pressurizing operation is not particularly limited as long as the zeolite membrane can be pressurized, and can be realized by any method.
  • the zeolite membrane in the membrane pressurizing operation, can be pressurized by filling the space containing the zeolite membrane with an inert gas and further increasing the pressure in the space.
  • the place where the film pressurizing operation which is a part of the step (B) is performed may be in the housing or in the storage container.
  • the zeolite membrane in pressurizing the zeolite membrane in the membrane separation module, can be pressurized by applying a so-called “back pressure” to the zeolite membrane from the downstream side of the non-permeate side of the zeolite membrane.
  • the zeolite membrane in the membrane separation module when the zeolite membrane in the membrane separation module is pressurized, the zeolite membrane can be pressurized by applying pressure to the zeolite membrane from the upstream side of the non-permeate side of the zeolite membrane.
  • the differential pressure is preferably 1 MPa or less, and 700 kPa More preferably, it is more preferably 400 kPa or less, usually 10 kPa or more, and preferably 100 kPa or more.
  • the pressure on the non-permeation side is preferably made higher than the pressure on the permeation side.
  • the pressure of the atmosphere to which the zeolite membrane is exposed during the membrane pressurizing operation is preferably 1 MPa or less, and 700 kPa or less. More preferably, it is more preferably 400 kPa or less, and usually 10 kPa or more.
  • a discharge operation for discharging the hydrocarbon mixture and the like from the space in which the zeolite membrane is accommodated is performed. It is preferable to do.
  • the discharge operation is not particularly limited, and can be realized by any specific operation as long as the atmosphere around the zeolite membrane can be replaced with the inert gas that can be used in the step (B), for example. .
  • any hydrocarbon discharging operation, membrane pressurizing operation, or the like can be interposed.
  • the step of exposing to an atmosphere other than the hydrocarbon mixture or inert gas, such as the atmosphere or carbon dioxide atmosphere, and raising the temperature is not included.
  • the membrane separation apparatus 100 includes a membrane separation module 30 having a zeolite membrane therein, a raw material supply mechanism 20 for supplying a hydrocarbon mixture to the membrane separation module 30, and an inert gas (N 2 in the illustrated example) as a membrane separation module.
  • a gas supply mechanism 40 is provided for supplying a space containing 30 zeolite membranes. Then, the membrane separation apparatus 100 supplies the hydrocarbon mixture to the membrane separation module 30 using the raw material supply mechanism 20 and performs membrane separation, and then raises the temperature in an inert gas atmosphere supplied using the gas supply mechanism 40. However, the membrane separation module can be regenerated.
  • the membrane separation module 30 includes a housing 31 and a zeolite membrane 32 that is accommodated in the housing 31 and defines a non-permeation side region 33 and a permeation side region 34 in the housing 31.
  • a non-permeate component outflow mechanism 60 that allows non-permeate components to flow out is provided on the downstream side of the non-permeate side region 33 of the membrane separation module 30.
  • the non-permeable component outflow mechanism 60 includes a non-permeable component line 61, a back pressure valve 62, and a non-permeable component line valve 63.
  • the non-permeable component line 61 is connected to a non-permeable component recovery device (not shown). Or may be connected to a hydrocarbon mixture reservoir 10 to form a circulation channel.
  • a gas outflow line 71 for branching out the gas supplied from the gas supply mechanism branches and extends from the non-permeating component line 61, and a gas outflow line valve 72 is provided in the gas outflow line 71.
  • the gas outflow line 71 and the gas outflow line valve 72 constitute a gas outflow mechanism 70 that outflows the gas (N 2 in the illustrated example) supplied from the gas supply mechanism 40 and in contact with the zeolite membrane.
  • a permeate component outflow mechanism 50 including a permeate component line for allowing permeate components to flow out is provided on the downstream side of the permeate side region 34 of the membrane separation module 30.
  • the transmission component line is provided with a transmission component line valve (not shown).
  • the permeation component line is connected to a permeation component recovery device (not shown) such as a cold trap.
  • the raw material supply mechanism 20 is provided with a raw material line 21 that connects the hydrocarbon mixture storage tank 10 and the non-permeate side region 33 of the membrane separation module 30, and the raw material line 21 is configured to remove the hydrocarbon mixture in the storage tank 10.
  • a transfer device 22 for feeding to the permeate side region 33, a heater 23 provided in the raw material line 21 for heating the hydrocarbon mixture, and a raw material line valve 24 are provided.
  • the hydrocarbon mixture fed through the transfer device 22 is heated by the heater 23 by operating the transfer device 22 and the heater 23 with the raw material line valve 24 opened. Then, it can be vaporized and supplied to the non-permeate side region 33 of the membrane separation module 30. Further, according to the raw material supply mechanism 20, the supply of the hydrocarbon mixture to the non-permeate side region 33 of the membrane separation module 30 can be stopped by closing the raw material line valve 24.
  • the gas supply mechanism 40 is connected to the raw material line 21 between the raw material line valve 24 and the membrane separation module 30 to connect an inert gas supply source (not shown) and the non-permeate side region 33 of the membrane separation module 30.
  • the gas line 41 to connect, the gas line valve 42, and the heater 43 which is provided in the gas line 41 and heats inert gas is provided.
  • the gas supply mechanism 40 by operating the heater 43 with the gas line valve 42 open, the gas is heated by the heater 43 and supplied to the non-permeate side region 33 of the membrane separation module 30. can do. Further, according to the gas supply mechanism 40, the gas supply to the non-permeate side region 33 of the membrane separation module 30 can be stopped by closing the gas line valve 42.
  • the raw material line valve 24, the non-permeate component line valve 63, and the permeate component line valve (not shown) are opened, the gas line valve 42 and the gas outflow line valve 72 are closed, and the raw material The hydrocarbon mixture can be flowed from the supply mechanism 20 to the membrane separation module 30 to separate the hydrocarbon mixture.
  • the vaporized hydrocarbon mixture is sent to the non-permeate side region 33 of the membrane separation module 30 through the transfer device 22 and the heater 23, and the permeated component permeated through the zeolite membrane 32 is transmitted to the permeated component outflow mechanism 50.
  • the non-permeate component that has not permeated the zeolite membrane 32 can be recovered or circulated through the non-permeate component outflow mechanism 60.
  • the raw material line valve 24, the non-permeating component line valve 63 and the permeating component line valve (not shown) are closed, and the gas line valve 42 and the gas outflow line valve 72 are opened.
  • the inert gas can flow from the gas supply mechanism 40 to the membrane separation module 30.
  • the inert gas heated by the heater 43 can be caused to flow into the housing 31 of the membrane separation module 30 so that the heated inert gas and the zeolite membrane 32 can be brought into contact with each other.
  • the inert gas after coming into contact with the zeolite membrane 32 can be discharged to an arbitrary processing apparatus via the gas outflow line 71.
  • the zeolite membrane 32 provided in such a membrane separation apparatus 100 can be regenerated by the membrane regeneration method of the present invention described above.
  • Such a membrane separation device 100 can membrane-separate the hydrocarbon mixture using the obtained regenerated zeolite membrane 32.
  • ⁇ Separation factor improvement rate> new zeolite membranes were used. Then, each of the examples, as comparative examples step (A), performs a separation process to obtain a permeate side samples S 1. Further, by using the reproduction completion zeolite membrane after a step (B), subjected to a separation step under the same conditions as step (A), to obtain a permeate side samples S 2. Then, using the permeation side samples S 1 and S 2 , a new product separation coefficient ⁇ n and a regenerated membrane separation coefficient ⁇ r were calculated according to the following formula (I). Furthermore, the separation factor improvement rate before and after the regeneration was calculated according to the following formula (II).
  • X n is the content ratio [mol%] of n-pentane in the raw material
  • X iso is the content ratio [mol%] of isopentane in the raw material
  • Y n is a content of the permeate side samples S 1 or in S 2 of n- pentane [mol%]
  • Y iso are content of isopentane in the permeate side sample S 1 or S 2 [mol%].
  • Example 1 ⁇ Process (A)> A structure separating agent is formed by forming a porous separation layer made of MFI-type zeolite on the outer surface of a cylindrical mullite porous support, followed by firing in an air atmosphere having a dew point of 2 ° C. at a temperature of 500 ° C. for 20 hours.
  • a separation step as step (A) was performed using a membrane separation apparatus 100 as shown in FIG.
  • the permeation component line of the membrane separation apparatus 100 was connected to a sampling cold trap, and the non-permeation component line 61 was connected to the storage tank 10 via a heat exchanger as a cooler.
  • the storage tank 10 is filled with a hydrocarbon mixture of 5 carbon atoms composed of a mixed liquid of n-pentane and isopentane (a mixed liquid of n-pentane: 50 mol% and isopentane: 50 mol%).
  • the deaeration operation was performed three times.
  • the raw material line valve 24, the non-permeate component line valve 63, and the permeate component line valve (not shown) are closed, and the gas line valve 42 and the gas outflow line valve 72 are opened.
  • Nitrogen gas (dew point: ⁇ 50 ° C., introduced nitrogen gas purity: 99.99% by volume) was passed through 30 to bring the nitrogen gas into contact with the zeolite membrane 32.
  • nitrogen gas heated by the heater 43 is caused to flow into the housing 31 of the membrane separation module 30 and the temperature in the housing 31 is raised to 500 ° C. (maximum temperature), and then the maximum temperature 500 is reached.
  • Nitrogen gas and the zeolite membrane 32 were contacted at 15 ° C. for 15 hours. Thereafter, the temperature in the housing 31 was lowered to 20 ° C., and the nitrogen gas and the zeolite membrane 32 were contacted at a temperature of 20 ° C. for 19 hours. Thereafter, the raw material line valve 24 and the non-permeate component line valve 63 were opened, and the gas line valve 42 and the gas outflow line valve 72 were closed. Then, the hydrocarbon mixture was heated to 70 ° C.
  • the system is operated until the temperature in the system reaches a steady state.
  • the back pressure valve 62 pressurizes the non-permeate side to 150 kPa (gauge pressure).
  • the permeation side cold trap
  • the permeation component line valve (not shown) was opened, and membrane separation was started.
  • membrane separation was performed under the conditions of a temperature of 70 ° C. and a differential pressure of 250 kPa between the non-permeable side and the permeable side.
  • discharge operation which discharges a raw material from the system as follows was performed.
  • the discharging operation first, the raw material line valve 24 was closed and the gas line valve 42 was opened, and the hydrocarbon mixture in the line was pushed out to the storage tank 10 through the non-permeating component line valve 63. Then, nitrogen gas was supplied by the gas supply mechanism 40 until the pressure in 100 became 150 kPa, the pressure inside the system was increased, and a pressure release valve (not shown) was opened to release pressure from the storage tank 10. After the operation from the pressure increase to the pressure release was repeated four times, the non-permeate component line valve 63 was closed, the gas outflow line valve 72 was opened again, and supply of nitrogen gas (that is, nitrogen purge) was started.
  • nitrogen gas that is, nitrogen purge
  • a membrane pressurizing step was performed as follows. First, after starting the nitrogen purge, the back pressure valve 62 was opened and a back pressure of 100 kPa (gauge pressure) was applied to the non-permeating side. At this time, the pressure on the permeation side (cold trap) was kept at ⁇ 100 kPa (gauge pressure). That is, in the film pressurizing step, the differential pressure between the non-permeable side and the permeable side was set to 200 kPa. This state was maintained for 10 minutes.
  • step (B) the nitrogen gas was heated while exposing the zeolite membrane 32 to nitrogen gas as an inert gas. Specifically, nitrogen gas (dew point: ⁇ 50 ° C., introduced nitrogen gas purity: 99.99 vol%) from the gas supply mechanism 40 to the membrane separation module 30 with the gas line valve 42 and the gas outflow line valve 72 opened. ) And nitrogen gas and the zeolite membrane 32 were brought into contact with each other. Specifically, nitrogen gas heated by the heater 43 is caused to flow into the housing 31 of the membrane separation module 30 and the temperature in the housing 31 is raised to 250 ° C. (maximum temperature), and then the maximum temperature 250 is reached. Nitrogen gas and the zeolite membrane 32 were contacted at 15 ° C.
  • Example 2 A regenerated zeolite membrane was obtained in the same manner as in Example 1 except that the maximum temperature in the housing 31 in the step (B) was changed to 300 ° C. Using the obtained regenerated zeolite membrane, the separation factor and the improvement factor of the separation factor were evaluated according to the above method. The results are shown in Table 1.
  • step (B) of Example 1 the atmosphere to which the zeolite membrane was exposed was raised using air having a dew point of 20 ° C. instead of nitrogen gas, and the zeolite membrane was held at a maximum temperature of 250 ° C. for 10 hours.
  • the temperature lowering operation was performed after interposing a drying operation in which the atmosphere exposed to was maintained at 250 ° C. as a nitrogen gas atmosphere for 5 hours. Except for these points, a regenerated zeolite membrane was obtained in the same manner as in Example 1.
  • the separation factor and the improvement factor of the separation factor were evaluated according to the above method. The results are shown in Table 1.

Abstract

A film regeneration method for regenerating a film that is suitable for use in separation of some hydrocarbons from a hydrocarbon mixture. More specifically, a film regeneration method which comprises: a step (A) wherein a hydrocarbon mixture is brought into contact with a zeolite film; and a step (B) wherein the zeolite film is exposed to an inert gas atmosphere and the temperature of the inert gas atmosphere is increased.

Description

膜再生方法Membrane regeneration method
 本発明は、膜再生方法に関し、特には、炭化水素混合物から一部の炭化水素を分離する際に好適に使用し得る膜を再生するための膜再生方法に関するものである。 The present invention relates to a membrane regeneration method, and more particularly to a membrane regeneration method for regenerating a membrane that can be suitably used when separating some hydrocarbons from a hydrocarbon mixture.
 従来、多成分の混合物から特定の成分を低エネルギーで分離する方法として、膜分離法が用いられている。そして、分離膜としては、例えば、支持体上にゼオライトを膜状に形成してなるゼオライト膜が用いられている。 Conventionally, a membrane separation method has been used as a method for separating a specific component from a multi-component mixture with low energy. As the separation membrane, for example, a zeolite membrane formed by forming a zeolite on a support in the form of a membrane is used.
 ここで、一般に、膜分離に使用されるゼオライト膜の性能は、透過物質の透過流束と、分離係数とにより表される。そして、膜分離に使用されるゼオライト膜には、透過流束や分離係数を高めることが求められている。 Here, generally, the performance of the zeolite membrane used for membrane separation is expressed by the permeation flux of the permeate and the separation factor. And the zeolite membrane used for membrane separation is calculated | required to raise a permeation | transmission flux and a separation factor.
 そこで、従来、二酸化炭素および炭化水素系可燃性ガスを含有する処理対象ガスを透過ガスと非透過ガスとに膜分離するために用いられるゼオライト膜に対して、加熱空気を含む再生用ガスを供給して再生する膜再生方法が提案されてきた(例えば、特許文献1参照)。 Therefore, supply of regeneration gas containing heated air to zeolite membranes conventionally used for membrane separation of gas to be treated containing carbon dioxide and hydrocarbon combustible gas into permeate gas and non-permeate gas Thus, a film regeneration method for regeneration has been proposed (see, for example, Patent Document 1).
国際公開第2016/027713号International Publication No. 2016/027713
 しかし、加熱空気を含む再生用ガスを用いた上記従来の膜再生方法では、炭化水素混合物を膜分離するためのゼオライト膜の分離係数を十分に高めることができなかった。 However, in the above conventional membrane regeneration method using a regeneration gas containing heated air, the separation factor of the zeolite membrane for membrane separation of the hydrocarbon mixture could not be sufficiently increased.
 そこで、本発明は、炭化水素混合物を膜分離するための分離膜の分離係数を十分に高めることができる、膜再生方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a membrane regeneration method that can sufficiently increase the separation factor of a separation membrane for membrane separation of a hydrocarbon mixture.
 本発明者らは、上記目的を達成するために鋭意検討を行った。そして、本発明者らは、特定の再生用ガスを用いて炭化水素混合物の膜分離に用いたゼオライト膜を再生すれば、ゼオライト膜の分離係数を十分に高め得ることを見出し、本発明を完成させた。 The present inventors have intensively studied to achieve the above object. The present inventors have found that if the zeolite membrane used for membrane separation of the hydrocarbon mixture is regenerated using a specific regeneration gas, the separation factor of the zeolite membrane can be sufficiently increased, and the present invention has been completed. I let you.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の膜分離方法は、ゼオライト膜に対して炭化水素混合物を接触させる工程(A)と、不活性ガス雰囲気下に前記ゼオライト膜を曝して、前記不活性ガス雰囲気を昇温させる工程(B)と、を含むことを特徴とする。このように、炭化水素混合物を接触させたゼオライト膜を、不活性ガス雰囲気に曝して、該雰囲気を昇温させつつ再生することで、工程(B)を経て得られるゼオライト膜の分離係数を十分に高めることができる。 That is, the present invention aims to advantageously solve the above problems, and the membrane separation method of the present invention comprises a step (A) of bringing a hydrocarbon mixture into contact with a zeolite membrane, and an inert gas. And (B) exposing the zeolite membrane to an atmosphere to raise the temperature of the inert gas atmosphere. In this way, the zeolite membrane brought into contact with the hydrocarbon mixture is exposed to an inert gas atmosphere, and the atmosphere is regenerated while raising the temperature, so that the separation factor of the zeolite membrane obtained through the step (B) is sufficient. Can be increased.
 ここで、本発明の膜分離方法では、前記工程(B)中の前記不活性ガス雰囲気の最高温度が、100℃以上450℃以下であることが好ましい。工程(B)中にゼオライト膜が曝される不活性ガス雰囲気の最高温度を100℃以上450℃以下とすれば、熱によるゼオライト膜の欠損を抑制しつつ、ゼオライト膜の分離係数を一層十分に高めることができる。 Here, in the membrane separation method of the present invention, it is preferable that the maximum temperature of the inert gas atmosphere in the step (B) is 100 ° C. or higher and 450 ° C. or lower. If the maximum temperature of the inert gas atmosphere to which the zeolite membrane is exposed during the step (B) is 100 ° C. or higher and 450 ° C. or lower, the separation factor of the zeolite membrane is more sufficiently suppressed while suppressing the loss of the zeolite membrane due to heat. Can be increased.
 また、本発明の膜分離方法では、前記不活性ガスが窒素ガスであることが好ましい。ゼオライト膜が曝される雰囲気が窒素ガスであれば、ゼオライト膜の多孔性を効果的に再生することで、ゼオライト膜の分離係数を一層十分に高めることができる。 In the membrane separation method of the present invention, the inert gas is preferably nitrogen gas. If the atmosphere to which the zeolite membrane is exposed is nitrogen gas, the separation coefficient of the zeolite membrane can be further sufficiently increased by effectively regenerating the porosity of the zeolite membrane.
 そして、本発明の膜分離方法では、前記工程(B)が、前記不活性ガス雰囲気を昇温させる前に、前記ゼオライト膜を前記不活性ガス雰囲気下に曝した状態にて、前記ゼオライト膜を加圧する膜加圧操作を更に含むことが好ましい。かかる膜加圧工程を実施することで、ゼオライト膜の分離係数を一層十分に高めることができる。 In the membrane separation method of the present invention, in the step (B), the zeolite membrane is exposed to the inert gas atmosphere before the temperature of the inert gas atmosphere is increased. It is preferable to further include a film pressurizing operation for pressurization. By performing such a membrane pressurizing step, the separation factor of the zeolite membrane can be further sufficiently increased.
 本発明によれば、炭化水素混合物を膜分離するための分離膜の分離係数を十分に高めることが可能な、膜再生方法を提供することができる。 According to the present invention, it is possible to provide a membrane regeneration method capable of sufficiently increasing the separation factor of a separation membrane for membrane separation of a hydrocarbon mixture.
本発明の膜再生方法により再生可能なゼオライト膜を備える膜分離装置の概略構成の一例を示す図である。It is a figure which shows an example of schematic structure of a membrane separator provided with the zeolite membrane reproducible by the membrane reproduction | regeneration method of this invention.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の膜再生方法は、炭化水素混合物を膜分離する際に好適に用いられうるゼオライト膜を再生する際に用いることができる。特に、本発明の膜再生方法は、炭化水素混合物と接触させた新品のゼオライト膜を、初めて処理した際に、ゼオライト膜の分離係数を顕著に向上させることができる。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the membrane regeneration method of the present invention can be used for regeneration of a zeolite membrane that can be suitably used for membrane separation of a hydrocarbon mixture. In particular, the membrane regeneration method of the present invention can remarkably improve the separation factor of a zeolite membrane when a new zeolite membrane brought into contact with a hydrocarbon mixture is treated for the first time.
(膜再生方法)
 本発明の膜再生方法は、炭化水素混合物を膜分離するために用い得るゼオライト膜を再生する方法である。かかる膜再生方法は、ゼオライト膜に対して炭化水素混合物を接触させる工程(A)と、不活性ガス雰囲気下にゼオライト膜を曝して、不活性ガス雰囲気を昇温させる工程(B)と、を含む。そして、本発明の膜再生方法では、ゼオライト膜に炭化水素混合物を接触させた後に、かかるゼオライト膜を、不活性ガス雰囲気に曝し、且つ、かかる不活性ガス雰囲気を昇温させつつ膜を再生するので、ゼオライト膜の分離係数を十分に高めることができる。その結果、再生済ゼオライト膜を炭化水素混合物の分離に用いた場合に、良好な分離性能を達成することが可能になる。
(Membrane regeneration method)
The membrane regeneration method of the present invention is a method for regenerating a zeolite membrane that can be used for membrane separation of a hydrocarbon mixture. Such a membrane regeneration method includes a step (A) of bringing a hydrocarbon mixture into contact with a zeolite membrane, and a step (B) of exposing the zeolite membrane to an inert gas atmosphere to raise the temperature of the inert gas atmosphere. Including. In the membrane regeneration method of the present invention, after bringing the hydrocarbon mixture into contact with the zeolite membrane, the zeolite membrane is exposed to an inert gas atmosphere, and the membrane is regenerated while raising the temperature of the inert gas atmosphere. Therefore, the separation factor of the zeolite membrane can be sufficiently increased. As a result, it is possible to achieve good separation performance when the regenerated zeolite membrane is used for separation of a hydrocarbon mixture.
 ここで、不活性ガス雰囲気下で昇温しつつゼオライト膜を再生することで、ゼオライト膜の分離係数を十分に高めることが可能である理由は明らかではないが、以下の通りであると推察される。即ち、炭化水素混合物と接触させたゼオライト膜は、膜に対して吸着または付着した炭化水素系成分を保持している。かかる成分が本来は多孔性であるゼオライト膜が有していた無数の細孔を閉塞または狭径化させうる。これにより、炭化水素混合物を分離する等、炭化水素混合物を接触させる操作を経た後のゼオライト膜では、透過流束および分離係数が低下した状態となっている。ここで、ゼオライト膜は、支持体上にゼオライト結晶を成長させて成る膜である。概して、ゼオライト結晶は孔径が2nm以下であるマイクロ孔を含んでなり、複数の結晶間にて形成される結晶粒界には、孔径2nm超50nm以下であるメソ孔が形成されている。分離対象である炭化水素混合物に含有される複数種の炭化水素化合物には、それらの構造に応じて、細孔を比較的通り易いものと、通りにくいものとがある。そして、各炭化水素化合物の細孔の透過性の違いに起因して分離係数が得られる。ここで、炭化水素混合物の分離にゼオライト膜を用いると分離時間の経過に伴い、細孔が閉塞または狭径化しうる。このため、炭化水素混合物を接触させる操作により、分離係数が低下する。しかし、本発明の膜再生方法では、不活性ガス雰囲気下で昇温しつつゼオライト膜を再生するので、ゼオライト膜の多孔性を良好に回復しつつ、特に、孔径の比較的小さい細孔を、再生時に良好に創出することができるため、ゼオライト膜の分離係数を、再生処理前のゼオライト膜と比較して十分に高めることができると推察される。 Here, the reason why it is possible to sufficiently increase the separation factor of the zeolite membrane by regenerating the zeolite membrane while raising the temperature in an inert gas atmosphere is not clear, but it is assumed that it is as follows. The That is, the zeolite membrane brought into contact with the hydrocarbon mixture retains the hydrocarbon component adsorbed or adhered to the membrane. Such a component can block or narrow the innumerable pores of a zeolite membrane that is originally porous. As a result, the permeation flux and the separation factor are reduced in the zeolite membrane after the operation of bringing the hydrocarbon mixture into contact, such as separating the hydrocarbon mixture. Here, the zeolite membrane is a membrane formed by growing zeolite crystals on a support. Generally, zeolite crystals include micropores having a pore diameter of 2 nm or less, and mesopores having a pore diameter of more than 2 nm and not more than 50 nm are formed at a crystal grain boundary formed between the plurality of crystals. The plural types of hydrocarbon compounds contained in the hydrocarbon mixture to be separated include those that are relatively easy to pass through the pores and those that are difficult to pass depending on their structure. And the separation factor is obtained due to the difference in pore permeability of each hydrocarbon compound. Here, when a zeolite membrane is used for separation of the hydrocarbon mixture, the pores may be blocked or narrowed with the passage of the separation time. For this reason, a separation factor falls by operation which makes a hydrocarbon mixture contact. However, in the membrane regeneration method of the present invention, the zeolite membrane is regenerated while raising the temperature in an inert gas atmosphere. Since it can be created well during regeneration, it is presumed that the separation factor of the zeolite membrane can be sufficiently increased compared to the zeolite membrane before the regeneration treatment.
<炭化水素混合物>
 ここで、本発明の膜再生方法によって再生されうるゼオライト膜が膜分離する分離対象である炭化水素混合物は、ゼオライト膜を用いて一部の炭化水素化合物を分離することが可能な複数種の炭化水素化合物の混合物であれば特に限定されるものではない。具体的には、炭化水素混合物としては、例えば、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを含む混合物が挙げられる。中でも、炭化水素混合物は、好ましくは、炭素数が4の直鎖状炭化水素と、炭素数が4の分岐状炭化水素および/または炭素数が4の環状炭化水素とを主成分として含む混合物、或いは、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または炭素数が5の環状炭化水素とを主成分として含む混合物であり、より好ましくは、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または炭素数が5の環状炭化水素とを主成分として含む混合物である。
 なお、本発明において、「直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを主成分として含む」とは、炭化水素混合物中に、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを合計で50モル%以上含有することを指す。
<Hydrocarbon mixture>
Here, the hydrocarbon mixture that is the separation target of the zeolite membrane that can be regenerated by the membrane regeneration method of the present invention is a plurality of types of carbonized compounds that can separate some hydrocarbon compounds using the zeolite membrane. There is no particular limitation as long as it is a mixture of hydrogen compounds. Specifically, examples of the hydrocarbon mixture include a mixture containing a straight-chain hydrocarbon having the same number of carbon atoms, a branched hydrocarbon and / or a cyclic hydrocarbon. Among them, the hydrocarbon mixture is preferably a mixture containing as a main component a linear hydrocarbon having 4 carbon atoms and a branched hydrocarbon having 4 carbon atoms and / or a cyclic hydrocarbon having 4 carbon atoms, Alternatively, it is a mixture containing as a main component a linear hydrocarbon having 5 carbon atoms and a branched hydrocarbon having 5 carbon atoms and / or a cyclic hydrocarbon having 5 carbon atoms, and more preferably a carbon number Is a mixture containing as a main component a linear hydrocarbon having 5 and a branched hydrocarbon having 5 carbon atoms and / or a cyclic hydrocarbon having 5 carbon atoms.
In the present invention, “contains linear hydrocarbons and branched hydrocarbons and / or cyclic hydrocarbons as main components” means linear hydrocarbons and branched hydrocarbons in a hydrocarbon mixture. It refers to containing 50 mol% or more of hydrogen and / or cyclic hydrocarbons in total.
 そして、炭素数が4の直鎖状炭化水素と、炭素数が4の分岐状炭化水素および/または環状炭化水素とを主成分として含む混合物(以下、「炭素数が4の炭化水素混合物」と称することがある。)としては、n-ブタン、1-ブテン、2-ブテン、ブタジエンなどの炭素数が4の直鎖状炭化水素と、イソブタン、イソブテンなどの炭素数が4の分岐状炭化水素および/またはシクロブタン、シクロブテンなどの炭素数が4の環状炭化水素とを含む混合物が挙げられる。具体的には、炭素数が4の炭化水素混合物としては、例えば、ナフサを熱分解してエチレンを生産する際に副生するC4留分や、C4留分から少なくともブタジエンの一部を回収した後に残る留分などが挙げられる。 A mixture containing a linear hydrocarbon having 4 carbon atoms and a branched hydrocarbon and / or a cyclic hydrocarbon having 4 carbon atoms as main components (hereinafter referred to as “a hydrocarbon mixture having 4 carbon atoms”) As a straight chain hydrocarbon having 4 carbon atoms such as n-butane, 1-butene, 2-butene and butadiene, and a branched hydrocarbon having 4 carbon atoms such as isobutane and isobutene. And / or a mixture containing a cyclic hydrocarbon having 4 carbon atoms such as cyclobutane and cyclobutene. Specifically, the hydrocarbon mixture having 4 carbon atoms includes, for example, a C4 fraction produced as a by-product when pyrolyzing naphtha to produce ethylene, or after recovering at least a part of butadiene from the C4 fraction. Examples include remaining fractions.
 また、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または環状炭化水素とを主成分として含む混合物(以下、「炭素数が5の炭化水素混合物」と称することがある。)としては、n-ペンタン、1-ペンテン、2-ペンテン、1,3-ペンタジエンなどの炭素数が5の直鎖状炭化水素と、イソペンタン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチル-1-ブテン、イソプレンなどの炭素数が5の分岐状炭化水素および/またはシクロペンタン、シクロペンテンなどの炭素数が5の環状炭化水素とを含む混合物が挙げられる。具体的には、炭素数が5の炭化水素混合物としては、例えば、ナフサを熱分解してエチレンを生産する際に副生するC5留分や、C5留分から少なくともイソプレンの一部を回収した後に残る留分などが挙げられる。 Also, a mixture containing as a main component a linear hydrocarbon having 5 carbon atoms and a branched hydrocarbon and / or cyclic hydrocarbon having 5 carbon atoms (hereinafter referred to as “a hydrocarbon mixture having 5 carbon atoms”) And a linear hydrocarbon having 5 carbon atoms such as n-pentane, 1-pentene, 2-pentene, 1,3-pentadiene, isopentane, 2-methyl-1-butene, A mixture containing a branched hydrocarbon having 5 carbon atoms such as 2-methyl-2-butene, 3-methyl-1-butene and isoprene and / or a cyclic hydrocarbon having 5 carbon atoms such as cyclopentane and cyclopentene. Can be mentioned. Specifically, the hydrocarbon mixture having 5 carbon atoms includes, for example, a C5 fraction produced as a by-product when pyrolyzing naphtha to produce ethylene, or after recovering at least a portion of isoprene from the C5 fraction. Examples include remaining fractions.
<ゼオライト膜>
 また、本発明の膜再生方法で再生するゼオライト膜としては、炭化水素混合物から所望の炭化水素化合物を分離可能な任意のゼオライト膜が挙げられる。具体的には、特に限定されるものではないが、ゼオライト膜としては、多孔性支持体と、多孔性支持体上に設けられた多孔性分離層とを備え、且つ、多孔性分離層が所望の炭化水素化合物を分離可能なゼオライト(アルミノケイ酸塩および/またはシリカライト)を含んでいる分離膜が挙げられる。より具体的には、例えば、炭素数が4の炭化水素混合物または炭素数が5の炭化水素混合物の膜分離に好適に用いられうるゼオライト膜である、多孔性支持体と、多孔性支持体上に設けられた多孔性分離層とを備え、且つ、多孔性分離層がMFI型ゼオライト(MFI構造を有するアルミノケイ酸塩および/またはシリカライト)を含んでなる分離膜が挙げられる。
<Zeolite membrane>
Further, examples of the zeolite membrane regenerated by the membrane regeneration method of the present invention include any zeolite membrane capable of separating a desired hydrocarbon compound from a hydrocarbon mixture. Specifically, although not particularly limited, the zeolite membrane includes a porous support and a porous separation layer provided on the porous support, and a porous separation layer is desired. And a separation membrane containing zeolite (aluminosilicate and / or silicalite) capable of separating the hydrocarbon compound. More specifically, for example, a porous support that is a zeolite membrane that can be suitably used for membrane separation of a hydrocarbon mixture having 4 carbon atoms or a hydrocarbon mixture having 5 carbon atoms, and a porous support on the porous support. And a separation membrane comprising an MFI-type zeolite (aluminosilicate having a MFI structure and / or silicalite).
 ここで、多孔性支持体としては、多孔性分離層を担持することが可能な多孔質体であれば任意の材質の多孔質体を用いることができる。中でも、アルミナ、ムライト、ジルコニア、コージライト等の多孔質セラミックス;シラスポーラスガラス等のガラス;およびステンレス鋼等の多孔質焼結金属からなる多孔質体が好ましい。多孔質セラミックスや多孔質焼結金属からなる多孔質体は、機械的強度に優れているからである。
 なお、多孔性支持体の形状は、特に限定されることなく、例えば、平膜状、平板状、チューブ状、ハニカム状などの任意の形状とすることができる。
Here, as the porous support, a porous body made of any material can be used as long as it is a porous body capable of supporting the porous separation layer. Among these, porous bodies made of porous ceramics such as alumina, mullite, zirconia, cordierite, etc .; glass such as shirasu porous glass; and porous sintered metals such as stainless steel are preferable. This is because a porous body made of porous ceramics or porous sintered metal is excellent in mechanical strength.
The shape of the porous support is not particularly limited, and can be any shape such as a flat film shape, a flat plate shape, a tube shape, and a honeycomb shape.
 また、多孔性分離層は、例えば多孔性支持体上またはゼオライト種結晶を付着させた多孔性支持体上でMFI型ゼオライト等の所望の構造を有するゼオライトを合成することにより形成することができる。具体的には、多孔性分離層は、任意にゼオライト種結晶を付着させた多孔性支持体を、シリカ源および構造規定剤を含む水性ゾルに浸漬し、水熱合成によりゼオライトを合成することにより、多孔性支持体上に形成することができる。 The porous separation layer can be formed, for example, by synthesizing zeolite having a desired structure such as MFI-type zeolite on a porous support or a porous support to which a zeolite seed crystal is attached. Specifically, the porous separation layer is obtained by immersing a porous support optionally attached with a zeolite seed crystal in an aqueous sol containing a silica source and a structure-directing agent, and synthesizing the zeolite by hydrothermal synthesis. Can be formed on a porous support.
 なお、多孔性支持体上に多孔性分離層を形成して得られたゼオライト膜は、構造規定剤を除去するための焼成処理、および煮沸洗浄処理を施した後に、大気雰囲気下などの酸素含有雰囲気下で焼成処理を施したものでありうる。 In addition, the zeolite membrane obtained by forming the porous separation layer on the porous support is subjected to a calcination treatment for removing the structure-directing agent and a boiling washing treatment, followed by oxygen-containing conditions such as in an air atmosphere. It may have been subjected to a baking treatment in an atmosphere.
<工程(A)>
 ここで、工程(A)では、ゼオライト膜に対して炭化水素混合物を接触させる。より具体的には、工程(A)は、膜分離を行う分離工程や、ゼオライト膜を炭化水素混合物ガスに対して暴露する暴露工程でありうる。すなわち、工程(A)は、ゼオライト膜に対して炭化水素混合物を接触させうる限りにおいて特に限定されることなく、あらゆる具体的操作により実施されうる工程である。工程(A)にて、ゼオライト膜に対して炭化水素混合物を接触させることで、ゼオライト膜に対して炭化水素系成分を吸着または付着させることができる。
<Process (A)>
Here, in the step (A), the hydrocarbon mixture is brought into contact with the zeolite membrane. More specifically, step (A) can be a separation step for performing membrane separation or an exposure step for exposing the zeolite membrane to a hydrocarbon mixture gas. That is, the step (A) is a step that can be carried out by any specific operation without particular limitation as long as the hydrocarbon mixture can be brought into contact with the zeolite membrane. In step (A), the hydrocarbon component can be adsorbed or adhered to the zeolite membrane by bringing the hydrocarbon mixture into contact with the zeolite membrane.
 なお、工程(A)が分離工程である場合には、ゼオライト膜により、炭化水素混合物に含まれている炭化水素化合物の一部を分離する。具体的には、特に限定されることなく、分離工程である工程(A)では、例えば、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを含む炭化水素混合物から例えば直鎖状炭化水素を効率的に分離除去し、これにより、炭化水素混合物中における分岐状炭化水素および/または環状炭化水素の含有割合を高めることができる。より具体的には、分離工程である工程(A)では、炭化水素混合物をゼオライト膜に通すことで、一部の成分(例えば、直鎖状炭化水素)を炭化水素混合物から分離除去することができる。 In addition, when the step (A) is a separation step, a part of the hydrocarbon compound contained in the hydrocarbon mixture is separated by the zeolite membrane. Specifically, without particular limitation, in the step (A) that is the separation step, for example, carbonization including linear hydrocarbons, branched hydrocarbons and / or cyclic hydrocarbons having the same number of carbon atoms. For example, linear hydrocarbons can be efficiently separated and removed from the hydrogen mixture, thereby increasing the content of branched hydrocarbons and / or cyclic hydrocarbons in the hydrocarbon mixture. More specifically, in step (A), which is a separation step, a part of the components (for example, linear hydrocarbons) can be separated and removed from the hydrocarbon mixture by passing the hydrocarbon mixture through a zeolite membrane. it can.
 なお、ゼオライト膜を用いた分離工程は、任意の条件下で行うことができるが、加温条件下で行うことが好ましい。具体的には、分離工程は、好ましくは20℃以上300℃以下、より好ましくは25℃以上250℃以下、さらに好ましくは50℃以上200℃以下の条件下で行うことが好ましい。また、分離工程を行う際の圧力条件は、特に限定されないが、非透過側と透過側との差圧(非透過側の圧力-透過側の圧力)を10kPa以上600kPa以下とすることが好ましく、50kPa以上300kPa以下とすることがより好ましい。なお、本明細書において、圧力はゲージ圧である。 The separation step using a zeolite membrane can be performed under any conditions, but is preferably performed under heating conditions. Specifically, the separation step is preferably performed under conditions of 20 ° C. or higher and 300 ° C. or lower, more preferably 25 ° C. or higher and 250 ° C. or lower, and further preferably 50 ° C. or higher and 200 ° C. or lower. The pressure conditions for performing the separation step are not particularly limited, but it is preferable that the differential pressure between the non-permeation side and the permeation side (pressure on the non-permeation side−pressure on the permeation side) be 10 kPa or more and 600 kPa or less, More preferably, it is 50 kPa or more and 300 kPa or less. In the present specification, the pressure is a gauge pressure.
 一方、工程(A)が暴露工程である場合には、例えば、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを含む炭化水素混合物を、ゼオライト膜の非透過側、および/または透過側に導入することができる。暴露工程である工程(A)では、ゼオライト膜が曝される炭化水素混合物含有雰囲気の圧力を、例えば、0kPa以上600kPa以下とすることが好ましい。 On the other hand, when step (A) is an exposure step, for example, a hydrocarbon mixture containing linear hydrocarbons having the same number of carbon atoms and branched hydrocarbons and / or cyclic hydrocarbons is used as the zeolite membrane. It can be introduced on the non-permeable side and / or on the transmissive side. In step (A), which is the exposure step, the pressure of the hydrocarbon mixture-containing atmosphere to which the zeolite membrane is exposed is preferably, for example, 0 kPa or more and 600 kPa or less.
 なお、工程(A)として、ゼオライト膜を炭化水素混合物に対して暴露する場所は、例えば、本工程(A)が上述したような分離工程である場合のように、ハウジング内にゼオライト膜を収容してなる膜分離モジュール内などの、分離操作を実施し得る場所であっても良いし、膜分離モジュール外でゼオライト膜を保管しておくための保管容器内であってもよい。 In addition, as the step (A), the place where the zeolite membrane is exposed to the hydrocarbon mixture is, for example, the case where the zeolite membrane is accommodated in the housing as in the case where the present step (A) is a separation step as described above. It may be in a place where the separation operation can be carried out, such as in the membrane separation module, or in a storage container for storing the zeolite membrane outside the membrane separation module.
<工程(B)>
 工程(B)では、不活性ガス雰囲気下にゼオライト膜を曝して、不活性ガス雰囲気を昇温させる。ここで、工程(B)においてゼオライト膜が曝されている不活性ガス雰囲気を昇温させた場合、当該雰囲気の温度は、工程(B)の実施中に降温させてもよいし、降温させなくてもよい。中でも、工程(B)を経た再生済ゼオライト膜を用いて炭化水素混合物を膜分離する際に急激な温度降下によってゼオライト膜の破壊が起こるのを抑制する観点からは、ゼオライト膜が曝されている不活性ガス雰囲気は、工程(B)の実施中に降温させることが好ましい。
<Process (B)>
In the step (B), the zeolite membrane is exposed to an inert gas atmosphere to raise the temperature of the inert gas atmosphere. Here, when the inert gas atmosphere to which the zeolite membrane is exposed in the step (B) is heated, the temperature of the atmosphere may be lowered during the execution of the step (B) or may not be lowered. May be. Among them, the zeolite membrane is exposed from the viewpoint of suppressing the destruction of the zeolite membrane due to a rapid temperature drop when the hydrocarbon mixture is subjected to membrane separation using the regenerated zeolite membrane that has undergone the step (B). It is preferable to lower the temperature of the inert gas atmosphere during the implementation of the step (B).
[不活性ガス雰囲気]
 ここで、工程(B)においてゼオライト膜が曝される不活性ガス雰囲気としては、窒素ガス、アルゴンガス、およびヘリウムガスなどの不活性ガスよりなる雰囲気が挙げられる。これらの不活性ガスは一種単独で、或いは複数種を混合して用いることができる。中でも、不活性ガスとしては、窒素ガスが好ましい。ゼオライト膜が曝される不活性ガス雰囲気を窒素ガス雰囲気とすれば、ゼオライト膜の多孔性を効果的に再生することで、ゼオライト膜の分離係数を一層十分に高めることができる。これは、窒素ガス雰囲気を昇温させつつゼオライト膜を再生した場合に、マイクロ孔が創出されるとともに、ゼオライト膜に付着または吸着した炭化水素化合物が炭化することに起因して、メソ孔が閉塞するためであると考えられる。従って、窒素ガス雰囲気を用いて工程(B)を実施して得られた再生済ゼオライト膜は、マイクロ孔を透過し易い炭化水素化合物の透過係数を高めるとともに、メソ孔を透過し得る炭化水素化合物の透過係数を減少させうる。
[Inert gas atmosphere]
Here, the inert gas atmosphere to which the zeolite membrane is exposed in the step (B) includes an atmosphere made of an inert gas such as nitrogen gas, argon gas, and helium gas. These inert gases can be used singly or in combination. Among these, nitrogen gas is preferable as the inert gas. If the inert gas atmosphere to which the zeolite membrane is exposed is a nitrogen gas atmosphere, the separation factor of the zeolite membrane can be further sufficiently increased by effectively regenerating the porosity of the zeolite membrane. This is because, when the zeolite membrane is regenerated while raising the temperature of the nitrogen gas atmosphere, micropores are created and the hydrocarbon compounds adhering to or adsorbing to the zeolite membrane carbonize, resulting in clogging of the mesopores. It is thought that it is to do. Therefore, the regenerated zeolite membrane obtained by performing the step (B) using a nitrogen gas atmosphere increases the permeability coefficient of the hydrocarbon compound that easily permeates the micropores, and the hydrocarbon compound that permeates the mesopores. The transmission coefficient can be reduced.
 なお、工程(B)においてゼオライト膜が曝されうる不活性ガス雰囲気を構成するために用いる不活性ガスとしては、不活性ガス以外の成分の含有量が極めて低い不活性ガスを用いることが好ましく、実質的に不活性ガスのみからなる不活性ガスであることがより好ましく、不活性ガス以外のガスを含有しないことがさらに好ましい。ここで、「実質的に不活性ガスのみからなる」とは、不活性ガスの99.9体積%以上が不活性ガスであることをいう。なお、不活性ガス雰囲気には、不活性ガス以外の成分として水蒸気が含有されうるが、不活性ガス雰囲気が水蒸気を含有し得る場合において、不活性ガス雰囲気の露点は-20℃以下であることが好ましく、-30℃以下であることがより好ましく、-40℃以下であることがさらに好ましく、-50℃以下であることが特に好ましい。なお、本明細書において、「露点」とは、フーリエ変換赤外分光法(FT-IR)を用いて測定した水分量から求めた大気圧下露点を指す。 In addition, as the inert gas used for constituting the inert gas atmosphere to which the zeolite membrane can be exposed in the step (B), it is preferable to use an inert gas having a very low content of components other than the inert gas, It is more preferable that it is an inert gas consisting essentially of an inert gas, and it is even more preferable that no gas other than the inert gas is contained. Here, “consisting essentially of an inert gas” means that 99.9% by volume or more of the inert gas is the inert gas. The inert gas atmosphere can contain water vapor as a component other than the inert gas. However, when the inert gas atmosphere can contain water vapor, the dew point of the inert gas atmosphere is −20 ° C. or lower. Is preferably −30 ° C. or less, more preferably −40 ° C. or less, and particularly preferably −50 ° C. or less. In the present specification, the “dew point” refers to a dew point under atmospheric pressure determined from the amount of water measured using Fourier transform infrared spectroscopy (FT-IR).
 更に、工程(B)中にゼオライト膜が曝される不活性ガス雰囲気の最高温度は、100℃以上であることが好ましく、150℃以上であることがより好ましく、200℃以上であることがさらに好ましく、450℃以下であることが好ましく、400℃以下であることがより好ましい。工程(B)中にゼオライト膜が曝される不活性ガス雰囲気の最高温度を上記下限値以上とすることで、工程(B)を経て得られる再生済ゼオライト膜の分離係数を十分に高めることができる。また、工程(B)中にゼオライト膜が曝される不活性ガス雰囲気の最高温度を上記上限値以下とすることで、ゼオライト膜に欠損等の劣化が生じることを効果的に抑制することができる。なお、工程(B)中にゼオライト膜が曝される不活性ガス雰囲気の温度は、10℃以上450℃以下の範囲内とすることが好ましく、20℃以上450℃以下の範囲内とすることがより好ましい。
 また、ゼオライト膜が曝される不活性ガス雰囲気の圧力(ゲージ圧)は、例えば1MPa以下とすることが好ましい。圧力が高すぎる場合にはゼオライト膜の欠損が起こる虞があるからである。また、ゼオライト膜が曝される不活性ガス雰囲気の圧力(ゲージ圧)は、通常、10kPa以上である。
Furthermore, the maximum temperature of the inert gas atmosphere to which the zeolite membrane is exposed during the step (B) is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, and further preferably 200 ° C. or higher. Preferably, the temperature is 450 ° C. or lower, and more preferably 400 ° C. or lower. By making the maximum temperature of the inert gas atmosphere to which the zeolite membrane is exposed during the step (B) above the above lower limit, the separation factor of the regenerated zeolite membrane obtained through the step (B) can be sufficiently increased. it can. Moreover, it can suppress effectively that deterioration, such as a defect | deletion, arises in a zeolite membrane by making the maximum temperature of the inert gas atmosphere to which a zeolite membrane is exposed during a process (B) below the said upper limit. . The temperature of the inert gas atmosphere to which the zeolite membrane is exposed during the step (B) is preferably in the range of 10 ° C. or higher and 450 ° C. or lower, and preferably in the range of 20 ° C. or higher and 450 ° C. or lower. More preferred.
The pressure (gauge pressure) of the inert gas atmosphere to which the zeolite membrane is exposed is preferably 1 MPa or less, for example. This is because if the pressure is too high, the zeolite membrane may be damaged. Moreover, the pressure (gauge pressure) of the inert gas atmosphere to which the zeolite membrane is exposed is usually 10 kPa or more.
 ここで、工程(B)において露点が不活性ガス雰囲気にゼオライト膜を曝す時間は、特に限定されることなく、5時間以上とすることが好ましく、10時間以上とすることがより好ましく、15時間以上とすることが更に好ましく、通常、500時間以下とする。不活性ガス雰囲気にゼオライト膜を曝す時間が上記下限値以上であれば、工程(B)を経て得られる再生済ゼオライト膜の分離係数を一層十分に高めることができるからである。
 なお、工程(B)中に上記最高温度の不活性ガス雰囲気にゼオライト膜を曝す時間は、特に限定されるものではないが、例えば5時間以上とすることが好ましく、10時間以上とすることがより好ましく、12時間以上とすることが更に好ましく、50時間以下とすることが好ましく、30時間以下とすることがより好ましい。ゼオライト膜が曝される不活性ガス雰囲気を上記最高温度で保持する時間を上記下限値以上とすれば、工程(B)を経て得られる再生済ゼオライト膜の分離係数を一層十分に高めることができるからである。また、ゼオライト膜が曝される雰囲気を上記最高温度で保持する時間を上記上限値以下とすれば、熱によりゼオライト膜が欠損することを効率的に抑制することができるからである。
Here, the time for which the dew point is exposed to the inert gas atmosphere in the step (B) is not particularly limited and is preferably 5 hours or more, more preferably 10 hours or more, and 15 hours. More preferably, it is usually 500 hours or less. This is because the separation factor of the regenerated zeolite membrane obtained through the step (B) can be further sufficiently increased if the time for exposing the zeolite membrane to the inert gas atmosphere is equal to or more than the above lower limit value.
The time for exposing the zeolite membrane to the inert gas atmosphere at the highest temperature during the step (B) is not particularly limited, but is preferably 5 hours or longer, for example, 10 hours or longer. More preferably, it is more preferably 12 hours or more, more preferably 50 hours or less, and even more preferably 30 hours or less. If the time during which the inert gas atmosphere to which the zeolite membrane is exposed is kept at the maximum temperature is set to the lower limit value or more, the separation coefficient of the regenerated zeolite membrane obtained through the step (B) can be further sufficiently increased. Because. Further, if the time during which the atmosphere to which the zeolite membrane is exposed is kept at the maximum temperature is set to the upper limit value or less, the loss of the zeolite membrane due to heat can be efficiently suppressed.
 また、不活性ガス雰囲気にゼオライト膜を曝す方法としては、ゼオライト膜の周囲の雰囲気を不活性ガス雰囲気にすることができれば、任意の方法を用いることができる。具体的には、工程(B)では、例えば、ゼオライト膜が収容された空間内に不活性ガスを連続的または断続的に流すことによりゼオライト膜を不活性ガス雰囲気に曝してもよいし、ゼオライト膜が収容された空間内を不活性ガスで置換した後、当該空間を気密に保持することによりゼオライト膜を不活性ガス雰囲気に曝してもよい。
 なお、ゼオライト膜を不活性ガス雰囲気に曝す場所は、上記工程(A)と同様に、ハウジング内であっても、保管容器内であってもよい。
As a method for exposing the zeolite membrane to an inert gas atmosphere, any method can be used as long as the atmosphere around the zeolite membrane can be changed to an inert gas atmosphere. Specifically, in the step (B), for example, the zeolite membrane may be exposed to an inert gas atmosphere by flowing an inert gas continuously or intermittently in a space in which the zeolite membrane is accommodated, or the zeolite membrane After the space in which the membrane is accommodated is replaced with an inert gas, the zeolite membrane may be exposed to an inert gas atmosphere by keeping the space airtight.
In addition, the place which exposes a zeolite membrane to inert gas atmosphere may be in a housing or a storage container similarly to the said process (A).
 なお、工程(B)中にて、ゼオライト膜が曝されている雰囲気を昇温させるにあたり、昇温は、工程(B)の最初から開始してもよいし、工程(B)の途中で開始してもよい。工程(B)の初期段階でゼオライト膜が曝されている雰囲気の昇温を伴わない場合には、かかる初期段階が、後述する<膜加圧操作>に相当しても良い。 In addition, in raising the atmosphere to which the zeolite membrane is exposed during the step (B), the temperature rise may be started from the beginning of the step (B) or in the middle of the step (B). May be. When there is no temperature increase in the atmosphere to which the zeolite membrane is exposed in the initial stage of the step (B), the initial stage may correspond to a <membrane pressing operation> described later.
 また、不活性ガス雰囲気の温度は、100℃以上まで昇温させることが好ましく、150℃以上まで昇温させることがより好ましく、200℃以上まで昇温させることがさらに好ましく、450℃以下まで昇温させることが好ましく、400℃以下まで昇温させることがより好ましい。昇温後の雰囲気の温度(昇温後温度)を上記下限値以上とすれば、工程(B)を経て得られる再生済ゼオライト膜の分離係数を一層十分に高めることができるからである。また、昇温後の雰囲気の温度(昇温後温度)を上記上限値以下とすれば、熱によりゼオライト膜が欠損することを効率的に抑制することができるからである。 The temperature of the inert gas atmosphere is preferably raised to 100 ° C. or higher, more preferably raised to 150 ° C. or higher, further preferably raised to 200 ° C. or higher, and raised to 450 ° C. or lower. It is preferable to raise the temperature, and it is more preferable to raise the temperature to 400 ° C. or lower. This is because the separation factor of the regenerated zeolite membrane obtained through the step (B) can be further sufficiently increased by setting the temperature of the atmosphere after the temperature increase (temperature after the temperature increase) to the above lower limit value or more. Further, if the temperature of the atmosphere after the temperature rise (temperature after the temperature rise) is not more than the above upper limit value, it is possible to efficiently suppress the loss of the zeolite membrane due to heat.
 なお、昇温後に雰囲気の温度を昇温後温度で保持する時間は、特に限定されるものではないが、例えば5時間以上とすることが好ましく、10時間以上とすることがより好ましく、12時間以上とすることが更に好ましく、50時間以下とすることが好ましく、30時間以下とすることがより好ましい。雰囲気を昇温後温度で保持する時間を上記下限値以上とすれば、工程(B)を経て得られる再生済ゼオライト膜の分離係数を一層十分に高めることができるからである。また、雰囲気を昇温後温度で保持する時間を上記上限値以下とすれば、熱によりゼオライト膜が欠損することを効率的に抑制することができるからである。 The time for maintaining the temperature of the atmosphere at the temperature after the temperature rise after the temperature rise is not particularly limited, but is preferably, for example, 5 hours or more, more preferably 10 hours or more, and 12 hours. More preferably, the time is 50 hours or less, and more preferably 30 hours or less. This is because the separation coefficient of the regenerated zeolite membrane obtained through the step (B) can be further sufficiently increased by setting the time for maintaining the temperature at the temperature after raising the temperature to the above lower limit value or more. Moreover, it is because it can suppress efficiently that a zeolite membrane | film | coat lose | deletes with a heat | fever if the time which hold | maintains atmosphere after temperature rising is below the said upper limit.
 そして、工程(B)では、任意に、昇温させた雰囲気の温度を例えば30℃以下、好ましくは25℃以下まで降温させることができる。ゼオライト膜が曝される雰囲気の温度を上記上限値以下まで降温させれば、工程(B)を経て得られた再生済ゼオライト膜を用いて炭化水素混合物を膜分離する際に急激な温度降下によってゼオライト膜の破壊が起こるのを抑制することができるからである。
 なお、雰囲気の温度を降温させる場合、工程(B)を終了させるタイミングは、降温の終了と同時であってもよいし、降温が終了してから任意の時間が経過した後でもよい。
In the step (B), the temperature of the heated atmosphere can be arbitrarily lowered to, for example, 30 ° C. or lower, preferably 25 ° C. or lower. If the temperature of the atmosphere to which the zeolite membrane is exposed is lowered to the above upper limit value or less, when the hydrocarbon mixture is subjected to membrane separation using the regenerated zeolite membrane obtained through the step (B), a rapid temperature drop occurs. This is because the destruction of the zeolite membrane can be suppressed.
Note that when the temperature of the atmosphere is lowered, the timing of ending the step (B) may be the same as the end of the temperature drop, or may be after an arbitrary time has elapsed after the temperature drop is ended.
<膜加圧操作>
 さらに、本発明の膜再生方法では、上述した工程(B)の初期段階にて、ゼオライト膜を不活性ガス雰囲気下に曝した状態にて、ゼオライト膜を加圧する膜加圧操作を更に含むことが好ましい。かかる膜加圧操作を実施することで、工程(B)を経て得られるゼオライト膜の分離係数を一層十分に高めることができる。その理由は明らかではないが炭化水素混合物が吸着または付着した状態のゼオライト膜を加圧することで、ゼオライト膜の多孔構造中のより内部付近に炭化水素混合物をいわば「押し込む」ことができるためであると推察される。膜加圧操作は、ゼオライト膜を加圧することができる限りにおいて特に限定されることなく、あらゆる方途により実現することができる。例えば、膜加圧操作では、ゼオライト膜が収容された空間内に不活性ガスを充てんし、さらに、かかる空間内の圧力を高めることによりゼオライト膜を加圧することができる。なお、工程(B)の一部である膜加圧操作を実施する場所は、上述したように、ハウジング内であっても、保管容器内であってもよい。
<Membrane pressurization operation>
Furthermore, the membrane regeneration method of the present invention further includes a membrane pressurizing operation for pressurizing the zeolite membrane in a state where the zeolite membrane is exposed to an inert gas atmosphere in the initial stage of the step (B). Is preferred. By performing such a membrane pressurizing operation, the separation factor of the zeolite membrane obtained through the step (B) can be further sufficiently increased. The reason for this is not clear, but by pressing the zeolite membrane with the hydrocarbon mixture adsorbed or adhered, the hydrocarbon mixture can be "indented" closer to the inside of the porous structure of the zeolite membrane. It is guessed. The membrane pressurizing operation is not particularly limited as long as the zeolite membrane can be pressurized, and can be realized by any method. For example, in the membrane pressurizing operation, the zeolite membrane can be pressurized by filling the space containing the zeolite membrane with an inert gas and further increasing the pressure in the space. In addition, as described above, the place where the film pressurizing operation which is a part of the step (B) is performed may be in the housing or in the storage container.
 よって、例えば、膜分離モジュール内のゼオライト膜を加圧するにあたり、ゼオライト膜の非透過側下流方向からゼオライト膜に対して、所謂「背圧」をかけることでゼオライト膜を加圧することができる。或いは、膜分離モジュール内のゼオライト膜を加圧するにあたり、ゼオライト膜の非透過側上流方向からゼオライト膜に対して圧力をかけることでゼオライト膜を加圧することもできる。中でも、工程(B)にてゼオライト膜に対して不活性ガスを供給する流れ方向とは逆方向の気体流を利用して、ゼオライト膜を加圧することが好ましい。 Therefore, for example, in pressurizing the zeolite membrane in the membrane separation module, the zeolite membrane can be pressurized by applying a so-called “back pressure” to the zeolite membrane from the downstream side of the non-permeate side of the zeolite membrane. Alternatively, when the zeolite membrane in the membrane separation module is pressurized, the zeolite membrane can be pressurized by applying pressure to the zeolite membrane from the upstream side of the non-permeate side of the zeolite membrane. Among them, it is preferable to pressurize the zeolite membrane using a gas flow in a direction opposite to the flow direction in which the inert gas is supplied to the zeolite membrane in the step (B).
 膜分離モジュール内のゼオライト膜を加圧する場合など、ゼオライト膜の各表面に対して印加される圧力を異なる圧力とすることができる条件下では、差圧は、1MPa以下とすることが好ましく、700kPa以下とすることがより好ましく、400kPa以下とすることがさらに好ましく、通常、10kPa以上であり、100kPa以上とすることが好ましい。このとき、非透過側(即ち、炭化水素混合物を接触させた側)の圧力を透過側の圧力よりも高くすることが好ましい。
 また、ゼオライト膜の各表面に対して印加される圧力が同じである場合には、膜加圧操作時のゼオライト膜の曝される雰囲気の圧力は、1MPa以下とすることが好ましく、700kPa以下とすることがより好ましく、400kPa以下とすることがさらに好ましく、通常、10kPa以上である。
 膜加圧操作時の差圧または圧力を上記上限値以下とすることで、ゼオライト膜が圧力により損傷を受けることを効果的に抑制することができる。また、膜加圧操作時の差圧または圧力を上記下限値以上とすることで、工程(B)を経て得られるゼオライト膜の分離係数を一層十分に高めることができる。
Under the condition that the pressure applied to each surface of the zeolite membrane can be different, such as when the zeolite membrane in the membrane separation module is pressurized, the differential pressure is preferably 1 MPa or less, and 700 kPa More preferably, it is more preferably 400 kPa or less, usually 10 kPa or more, and preferably 100 kPa or more. At this time, the pressure on the non-permeation side (that is, the side on which the hydrocarbon mixture is brought into contact) is preferably made higher than the pressure on the permeation side.
When the pressure applied to each surface of the zeolite membrane is the same, the pressure of the atmosphere to which the zeolite membrane is exposed during the membrane pressurizing operation is preferably 1 MPa or less, and 700 kPa or less. More preferably, it is more preferably 400 kPa or less, and usually 10 kPa or more.
By setting the differential pressure or pressure during the membrane pressurization operation to the upper limit value or less, it is possible to effectively suppress the zeolite membrane from being damaged by the pressure. Moreover, the separation factor of the zeolite membrane obtained through the step (B) can be further sufficiently increased by setting the differential pressure or pressure during the membrane pressurizing operation to the above lower limit value or more.
 ここで、膜加圧操作の実施に先立って、工程(A)の後、工程(B)の冒頭に、まず、ゼオライト膜が収容された空間内から炭化水素混合物等を排出させる排出操作を実施することが好ましい。排出操作は、特に限定されることなく、例えば、上記工程(B)にて用いうる不活性ガスにてゼオライト膜周囲の雰囲気を置換させることができる限りにおいてあらゆる具体的操作により実現することができる。 Here, prior to the membrane pressurization operation, after the step (A), at the beginning of the step (B), first, a discharge operation for discharging the hydrocarbon mixture and the like from the space in which the zeolite membrane is accommodated is performed. It is preferable to do. The discharge operation is not particularly limited, and can be realized by any specific operation as long as the atmosphere around the zeolite membrane can be replaced with the inert gas that can be used in the step (B), for example. .
 このように、工程(B)の冒頭には、任意の炭化水素排出操作や膜加圧操作等を介在させうる。ここで、工程(A)と工程(B)との間において、大気や二酸化炭素雰囲気等の、炭化水素混合物や不活性ガス以外の他の雰囲気下に曝し、昇温させる工程は含まない。 Thus, at the beginning of the step (B), any hydrocarbon discharging operation, membrane pressurizing operation, or the like can be interposed. Here, between the step (A) and the step (B), the step of exposing to an atmosphere other than the hydrocarbon mixture or inert gas, such as the atmosphere or carbon dioxide atmosphere, and raising the temperature is not included.
 以下、本発明の膜再生方法により再生可能なゼオライト膜を備える膜分離装置の概略構成の一例について説明する。かかる膜分離装置100は、内部にゼオライト膜を備える膜分離モジュール30、膜分離モジュール30に炭化水素混合物を供給する原料供給機構20、および不活性ガス(図示例では、N)を膜分離モジュール30のゼオライト膜が収容された空間に供給する気体供給機構40を備える。そして、膜分離装置100は、原料供給機構20を用いて炭化水素混合物を膜分離モジュール30に供給して膜分離した後に、気体供給機構40を用いて供給した不活性ガス雰囲気の下、昇温しつつ膜分離モジュールを再生することができる。 Hereinafter, an example of a schematic configuration of a membrane separation apparatus including a zeolite membrane that can be regenerated by the membrane regeneration method of the present invention will be described. The membrane separation apparatus 100 includes a membrane separation module 30 having a zeolite membrane therein, a raw material supply mechanism 20 for supplying a hydrocarbon mixture to the membrane separation module 30, and an inert gas (N 2 in the illustrated example) as a membrane separation module. A gas supply mechanism 40 is provided for supplying a space containing 30 zeolite membranes. Then, the membrane separation apparatus 100 supplies the hydrocarbon mixture to the membrane separation module 30 using the raw material supply mechanism 20 and performs membrane separation, and then raises the temperature in an inert gas atmosphere supplied using the gas supply mechanism 40. However, the membrane separation module can be regenerated.
 膜分離モジュール30は、ハウジング31と、ハウジング31内に収容されてハウジング31内に非透過側領域33および透過側領域34を画成するゼオライト膜32とを備える。なお、膜分離モジュール30の非透過側領域33の下流側には、非透過成分を流出させる非透過成分流出機構60が設けられている。そして、非透過成分流出機構60は、非透過成分ライン61と、背圧弁62と、非透過成分ライン弁63とを備えており、非透過成分ライン61は、図示しない非透過成分回収装置に接続されていてもよいし、炭化水素混合物の貯留槽10に接続されて循環流路を形成していてもよい。 The membrane separation module 30 includes a housing 31 and a zeolite membrane 32 that is accommodated in the housing 31 and defines a non-permeation side region 33 and a permeation side region 34 in the housing 31. A non-permeate component outflow mechanism 60 that allows non-permeate components to flow out is provided on the downstream side of the non-permeate side region 33 of the membrane separation module 30. The non-permeable component outflow mechanism 60 includes a non-permeable component line 61, a back pressure valve 62, and a non-permeable component line valve 63. The non-permeable component line 61 is connected to a non-permeable component recovery device (not shown). Or may be connected to a hydrocarbon mixture reservoir 10 to form a circulation channel.
 更に、非透過成分ライン61からは、気体供給機構から供給された気体を流出させる気体流出ライン71が分岐して延びており、気体流出ライン71には、気体流出ライン弁72が設けられている。そして、気体流出ライン71および気体流出ライン弁72は、気体供給機構40から供給されてゼオライト膜と接触した気体(図示例では、N)を流出させる気体流出機構70を構成している。 Further, a gas outflow line 71 for branching out the gas supplied from the gas supply mechanism branches and extends from the non-permeating component line 61, and a gas outflow line valve 72 is provided in the gas outflow line 71. . The gas outflow line 71 and the gas outflow line valve 72 constitute a gas outflow mechanism 70 that outflows the gas (N 2 in the illustrated example) supplied from the gas supply mechanism 40 and in contact with the zeolite membrane.
 また、膜分離モジュール30の透過側領域34の下流側には、透過成分を流出させる透過成分ラインよりなる透過成分流出機構50が設けられている。そして、透過成分ラインには、図示しない透過成分ライン弁が設けられている。また、透過成分ラインは、コールドトラップ等の図示しない透過成分回収装置に接続されている。 Further, a permeate component outflow mechanism 50 including a permeate component line for allowing permeate components to flow out is provided on the downstream side of the permeate side region 34 of the membrane separation module 30. The transmission component line is provided with a transmission component line valve (not shown). The permeation component line is connected to a permeation component recovery device (not shown) such as a cold trap.
 原料供給機構20は、炭化水素混合物の貯留槽10と膜分離モジュール30の非透過側領域33とを接続する原料ライン21と、原料ライン21に設けられて貯留槽10内の炭化水素混合物を非透過側領域33へと送出する移送器22と、原料ライン21に設けられて炭化水素混合物を加熱する加熱器23と、原料ライン弁24とを備える。 The raw material supply mechanism 20 is provided with a raw material line 21 that connects the hydrocarbon mixture storage tank 10 and the non-permeate side region 33 of the membrane separation module 30, and the raw material line 21 is configured to remove the hydrocarbon mixture in the storage tank 10. A transfer device 22 for feeding to the permeate side region 33, a heater 23 provided in the raw material line 21 for heating the hydrocarbon mixture, and a raw material line valve 24 are provided.
 そして、原料供給機構20によれば、原料ライン弁24を開いた状態で移送器22および加熱器23を運転することにより、移送器22を介して送出された炭化水素混合物を加熱器23で加熱して気化させ、膜分離モジュール30の非透過側領域33へと供給することができる。また、原料供給機構20によれば、原料ライン弁24を閉じることにより、膜分離モジュール30の非透過側領域33への炭化水素混合物の供給を停止することができる。 According to the raw material supply mechanism 20, the hydrocarbon mixture fed through the transfer device 22 is heated by the heater 23 by operating the transfer device 22 and the heater 23 with the raw material line valve 24 opened. Then, it can be vaporized and supplied to the non-permeate side region 33 of the membrane separation module 30. Further, according to the raw material supply mechanism 20, the supply of the hydrocarbon mixture to the non-permeate side region 33 of the membrane separation module 30 can be stopped by closing the raw material line valve 24.
 気体供給機構40は、原料ライン弁24と膜分離モジュール30との間で原料ライン21に連結して不活性ガスの供給源(図示せず)と膜分離モジュール30の非透過側領域33とを接続する気体ライン41と、気体ライン弁42と、気体ライン41に設けられて不活性ガスを加熱する加熱器43とを備える。 The gas supply mechanism 40 is connected to the raw material line 21 between the raw material line valve 24 and the membrane separation module 30 to connect an inert gas supply source (not shown) and the non-permeate side region 33 of the membrane separation module 30. The gas line 41 to connect, the gas line valve 42, and the heater 43 which is provided in the gas line 41 and heats inert gas is provided.
 そして、気体供給機構40によれば、気体ライン弁42を開いた状態で加熱器43を運転することにより、気体を加熱器43で加熱し、膜分離モジュール30の非透過側領域33へと供給することができる。また、気体供給機構40によれば、気体ライン弁42を閉じることにより、膜分離モジュール30の非透過側領域33への気体の供給を停止することができる。 And according to the gas supply mechanism 40, by operating the heater 43 with the gas line valve 42 open, the gas is heated by the heater 43 and supplied to the non-permeate side region 33 of the membrane separation module 30. can do. Further, according to the gas supply mechanism 40, the gas supply to the non-permeate side region 33 of the membrane separation module 30 can be stopped by closing the gas line valve 42.
 そして、上述した膜分離装置100によれば、原料ライン弁24、非透過成分ライン弁63および透過成分ライン弁(図示せず)を開き、気体ライン弁42および気体流出ライン弁72を閉じて原料供給機構20から膜分離モジュール30へと炭化水素混合物を流し、炭化水素混合物を膜分離することができる。具体的には、移送器22および加熱器23を介して膜分離モジュール30の非透過側領域33へと気化させた炭化水素混合物を送り、ゼオライト膜32を透過した透過成分を透過成分流出機構50を介して回収すると共に、ゼオライト膜32を透過しなかった非透過成分を非透過成分流出機構60を介して回収または循環させることができる。 And according to the membrane separation apparatus 100 mentioned above, the raw material line valve 24, the non-permeate component line valve 63, and the permeate component line valve (not shown) are opened, the gas line valve 42 and the gas outflow line valve 72 are closed, and the raw material The hydrocarbon mixture can be flowed from the supply mechanism 20 to the membrane separation module 30 to separate the hydrocarbon mixture. Specifically, the vaporized hydrocarbon mixture is sent to the non-permeate side region 33 of the membrane separation module 30 through the transfer device 22 and the heater 23, and the permeated component permeated through the zeolite membrane 32 is transmitted to the permeated component outflow mechanism 50. The non-permeate component that has not permeated the zeolite membrane 32 can be recovered or circulated through the non-permeate component outflow mechanism 60.
 また、上述した膜分離装置100によれば、原料ライン弁24、非透過成分ライン弁63および透過成分ライン弁(図示せず)を閉じ、気体ライン弁42および気体流出ライン弁72を開いた状態で気体供給機構40から膜分離モジュール30へと不活性ガスを流すことができる。具体的には、加熱器43で加熱された不活性ガスを膜分離モジュール30のハウジング31内へと流入させ、加熱された不活性ガスとゼオライト膜32とを接触させることができる。また、ゼオライト膜32と接触した後の不活性ガスは、気体流出ライン71を介して任意の処理装置へと排出することができる。 Further, according to the membrane separation device 100 described above, the raw material line valve 24, the non-permeating component line valve 63 and the permeating component line valve (not shown) are closed, and the gas line valve 42 and the gas outflow line valve 72 are opened. Thus, the inert gas can flow from the gas supply mechanism 40 to the membrane separation module 30. Specifically, the inert gas heated by the heater 43 can be caused to flow into the housing 31 of the membrane separation module 30 so that the heated inert gas and the zeolite membrane 32 can be brought into contact with each other. Further, the inert gas after coming into contact with the zeolite membrane 32 can be discharged to an arbitrary processing apparatus via the gas outflow line 71.
 このような膜分離装置100に備えられるゼオライト膜32は、上述した本発明の膜再生方法により再生処理することができる。そして、このような膜分離装置100は、得られた再生済のゼオライト膜32を用いて、炭化水素混合物を膜分離することができる。 The zeolite membrane 32 provided in such a membrane separation apparatus 100 can be regenerated by the membrane regeneration method of the present invention described above. Such a membrane separation device 100 can membrane-separate the hydrocarbon mixture using the obtained regenerated zeolite membrane 32.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 実施例および比較例において、炭化水素混合物の分離係数向上率は、下記の方法で測定および評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
In Examples and Comparative Examples, the separation factor improvement rate of the hydrocarbon mixture was measured and evaluated by the following method.
<分離係数向上率>
 実施例、比較例では、それぞれ、新品のゼオライト膜を用いた。そして、各実施例、比較例の工程(A)として、分離工程を行い、透過側サンプルS1を得た。また、工程(B)を経た後の再生済ゼオライト膜を用いて、工程(A)と同条件で分離工程を行い、透過側サンプルS2を得た。そして、透過側サンプルS1およびS2を用いて、それぞれ、新品分離係数αnと再生済膜分離係数αrとを、下記式(I)に従って算出した。さらに、再生の前後における分離係数向上率を、下記式(II)に従って算出した。
 αnまたはαr=(Y/Yiso)/(X/Xiso) ・・・(I)
 分離係数向上率(%)=(αr-αn)/αn×100
 また、式(I)中、Xは、原料中のn-ペンタンの含有割合[モル%]であり、Xisoは、原料中のイソペンタンの含有割合[モル%]であり、Yは、透過側サンプルS1またはS2中のn-ペンタンの含有割合[モル%]であり、Yisoは、透過側サンプルS1またはS2中のイソペンタンの含有割合[モル%]である。
<Separation factor improvement rate>
In the examples and comparative examples, new zeolite membranes were used. Then, each of the examples, as comparative examples step (A), performs a separation process to obtain a permeate side samples S 1. Further, by using the reproduction completion zeolite membrane after a step (B), subjected to a separation step under the same conditions as step (A), to obtain a permeate side samples S 2. Then, using the permeation side samples S 1 and S 2 , a new product separation coefficient α n and a regenerated membrane separation coefficient α r were calculated according to the following formula (I). Furthermore, the separation factor improvement rate before and after the regeneration was calculated according to the following formula (II).
α n or α r = (Y n / Y iso ) / (X n / X iso ) (I)
Separation coefficient improvement rate (%) = (α r −α n ) / α n × 100
In formula (I), X n is the content ratio [mol%] of n-pentane in the raw material, X iso is the content ratio [mol%] of isopentane in the raw material, and Y n is a content of the permeate side samples S 1 or in S 2 of n- pentane [mol%], Y iso are content of isopentane in the permeate side sample S 1 or S 2 [mol%].
(実施例1)
<工程(A)>
 円筒状のムライト製多孔性支持体の外表面上にMFI型ゼオライトよりなる多孔性分離層を形成し、その後、露点2℃の大気雰囲気下において温度500℃で20時間焼成することにより構造規定剤を除去して得たMFI型ゼオライト膜を使用し、図1に示すような膜分離装置100を用いて、工程(A)としての分離工程を行った。なお、膜分離装置100の透過成分ラインは、サンプリング用のコールドトラップに接続し、非透過成分ライン61は冷却器としての熱交換器を介して貯留槽10に接続した。
 図1に示す膜分離装置100を用いた分離工程は、以下のようにして実施した。
 具体的には、まず、n-ペンタンとイソペンタンとの混合液(n-ペンタン:50モル%、イソペンタン:50モル%の混合液)からなる炭素数5の炭化水素混合物を貯留槽10に充填し、脱気操作を3回行った。
 次に、原料ライン弁24、非透過成分ライン弁63および透過成分ライン弁(図示せず)を閉じ、気体ライン弁42および気体流出ライン弁72を開いた状態で気体供給機構40から膜分離モジュール30へと窒素ガス(露点:-50℃、導入窒素ガス純度:99.99体積%)を流し、窒素ガスとゼオライト膜32とを接触させた。具体的には、加熱器43で加熱された窒素ガスを膜分離モジュール30のハウジング31内へと流入させ、ハウジング31内の温度が500℃(最高温度)まで昇温した後、当該最高温度500℃で窒素ガスとゼオライト膜32とを15時間接触させた。その後、ハウジング31内の温度を20℃まで降温させ、温度20℃で窒素ガスとゼオライト膜32とを19時間接触させた。
 その後、原料ライン弁24および非透過成分ライン弁63を開き、気体ライン弁42および気体流出ライン弁72を閉じた。そして、炭化水素混合物を、加熱器23で70℃に加温して、気相にて膜分離モジュール30に供給し、次いで、冷却器により凝縮し、貯留槽10に戻す原料循環処理を開始した。そして、原料循環処理開始後、系内の温度が定常状態に達するまで運転を行い、系内の温度が定常状態に達した後、背圧弁62により非透過側を150kPa(ゲージ圧)に加圧するとともに、透過側(コールドトラップ)を-100kPa(ゲージ圧)に減圧した。そして、系内の温度、圧力が安定したことを確認した後、透過成分ライン弁(図示せず)を開き、膜分離を開始した。即ち、温度70℃、非透過側と透過側の差圧250kPaの条件で膜分離を行った。
 そして、膜分離を開始した後、5時間経過した時点において、以下のようにして、原料を系内から排出する排出操作を行った。排出操作にあたり、まず、原料ライン弁24を閉じて気体ライン弁42を開いて、非透過成分ライン弁63を経てライン中の炭化水素混合物を貯留槽10に押し出した。そして、100内の圧力が150kPaとなるまで気体供給機構40により窒素ガスを供給して、系内を昇圧し、図示しない脱圧弁を開いて貯留槽10から脱圧した。かかる昇圧~脱圧までの操作を4回繰り返した後に、非透過成分ライン弁63を閉じて、再度気体流出ライン弁72を開いて窒素ガスの供給(即ち、窒素パージ)を開始した。
Example 1
<Process (A)>
A structure separating agent is formed by forming a porous separation layer made of MFI-type zeolite on the outer surface of a cylindrical mullite porous support, followed by firing in an air atmosphere having a dew point of 2 ° C. at a temperature of 500 ° C. for 20 hours. Using the MFI-type zeolite membrane obtained by removing the membrane, a separation step as step (A) was performed using a membrane separation apparatus 100 as shown in FIG. The permeation component line of the membrane separation apparatus 100 was connected to a sampling cold trap, and the non-permeation component line 61 was connected to the storage tank 10 via a heat exchanger as a cooler.
The separation process using the membrane separation apparatus 100 shown in FIG. 1 was performed as follows.
Specifically, first, the storage tank 10 is filled with a hydrocarbon mixture of 5 carbon atoms composed of a mixed liquid of n-pentane and isopentane (a mixed liquid of n-pentane: 50 mol% and isopentane: 50 mol%). The deaeration operation was performed three times.
Next, the raw material line valve 24, the non-permeate component line valve 63, and the permeate component line valve (not shown) are closed, and the gas line valve 42 and the gas outflow line valve 72 are opened. Nitrogen gas (dew point: −50 ° C., introduced nitrogen gas purity: 99.99% by volume) was passed through 30 to bring the nitrogen gas into contact with the zeolite membrane 32. Specifically, nitrogen gas heated by the heater 43 is caused to flow into the housing 31 of the membrane separation module 30 and the temperature in the housing 31 is raised to 500 ° C. (maximum temperature), and then the maximum temperature 500 is reached. Nitrogen gas and the zeolite membrane 32 were contacted at 15 ° C. for 15 hours. Thereafter, the temperature in the housing 31 was lowered to 20 ° C., and the nitrogen gas and the zeolite membrane 32 were contacted at a temperature of 20 ° C. for 19 hours.
Thereafter, the raw material line valve 24 and the non-permeate component line valve 63 were opened, and the gas line valve 42 and the gas outflow line valve 72 were closed. Then, the hydrocarbon mixture was heated to 70 ° C. by the heater 23, supplied to the membrane separation module 30 in the gas phase, then condensed by the cooler, and the raw material circulation process to return to the storage tank 10 was started. . Then, after starting the material circulation treatment, the system is operated until the temperature in the system reaches a steady state. After the temperature in the system reaches a steady state, the back pressure valve 62 pressurizes the non-permeate side to 150 kPa (gauge pressure). At the same time, the permeation side (cold trap) was reduced to -100 kPa (gauge pressure). And after confirming that the temperature and pressure in the system were stable, the permeation component line valve (not shown) was opened, and membrane separation was started. That is, membrane separation was performed under the conditions of a temperature of 70 ° C. and a differential pressure of 250 kPa between the non-permeable side and the permeable side.
And after starting membrane separation, when 5 hours passed, discharge operation which discharges a raw material from the system as follows was performed. In the discharging operation, first, the raw material line valve 24 was closed and the gas line valve 42 was opened, and the hydrocarbon mixture in the line was pushed out to the storage tank 10 through the non-permeating component line valve 63. Then, nitrogen gas was supplied by the gas supply mechanism 40 until the pressure in 100 became 150 kPa, the pressure inside the system was increased, and a pressure release valve (not shown) was opened to release pressure from the storage tank 10. After the operation from the pressure increase to the pressure release was repeated four times, the non-permeate component line valve 63 was closed, the gas outflow line valve 72 was opened again, and supply of nitrogen gas (that is, nitrogen purge) was started.
<膜加圧工程>
 そして、分離膜を再生処理する工程(B)に先立って、膜加圧工程を以下のようにして実施した。まず、窒素パージ開始後、背圧弁62を開いて非透過側に100kPa(ゲージ圧)の背圧をかけた。このとき、透過側(コールドトラップ)の圧力は-100kPa(ゲージ圧)のままとした。即ち、膜加圧工程において、非透過側と透過側の差圧を200kPaとした。かかる状態を10分間維持した。
<Membrane pressurization process>
Then, prior to the step (B) of regenerating the separation membrane, a membrane pressurizing step was performed as follows. First, after starting the nitrogen purge, the back pressure valve 62 was opened and a back pressure of 100 kPa (gauge pressure) was applied to the non-permeating side. At this time, the pressure on the permeation side (cold trap) was kept at −100 kPa (gauge pressure). That is, in the film pressurizing step, the differential pressure between the non-permeable side and the permeable side was set to 200 kPa. This state was maintained for 10 minutes.
<工程(B)>
 その後、工程(B)において、不活性ガスとしての窒素ガスに対して、ゼオライト膜32を曝しつつ、窒素ガスを昇温させた。具体的には、気体ライン弁42および気体流出ライン弁72を開いた状態で気体供給機構40から膜分離モジュール30へと窒素ガス(露点:-50℃、導入窒素ガス純度:99.99体積%)を流し、窒素ガスとゼオライト膜32とを接触させた。具体的には、加熱器43で加熱された窒素ガスを膜分離モジュール30のハウジング31内へと流入させ、ハウジング31内の温度が250℃(最高温度)まで昇温した後、当該最高温度250℃で窒素ガスとゼオライト膜32とを15時間接触させた。その後、ハウジング31内の温度を20℃まで降温させ、温度20℃で窒素ガスとゼオライト膜32とを19時間接触させた(降温操作)。
 そして、工程(B)を経て得られた再生済ゼオライト膜を用いて、上記方法に従って分離係数および分離係数向上率を評価した。結果を表1に示す。
<Process (B)>
Thereafter, in step (B), the nitrogen gas was heated while exposing the zeolite membrane 32 to nitrogen gas as an inert gas. Specifically, nitrogen gas (dew point: −50 ° C., introduced nitrogen gas purity: 99.99 vol%) from the gas supply mechanism 40 to the membrane separation module 30 with the gas line valve 42 and the gas outflow line valve 72 opened. ) And nitrogen gas and the zeolite membrane 32 were brought into contact with each other. Specifically, nitrogen gas heated by the heater 43 is caused to flow into the housing 31 of the membrane separation module 30 and the temperature in the housing 31 is raised to 250 ° C. (maximum temperature), and then the maximum temperature 250 is reached. Nitrogen gas and the zeolite membrane 32 were contacted at 15 ° C. for 15 hours. Thereafter, the temperature in the housing 31 was lowered to 20 ° C., and the nitrogen gas and the zeolite membrane 32 were contacted at a temperature of 20 ° C. for 19 hours (temperature lowering operation).
Then, using the regenerated zeolite membrane obtained through the step (B), the separation factor and the separation factor improvement rate were evaluated according to the above method. The results are shown in Table 1.
(実施例2)
 工程(B)におけるハウジング31内の最高温度を300℃に変更した以外は実施例1と同様にして再生済ゼオライト膜を得た。得られた再生済ゼオライト膜を用いて、上記方法に従って分離係数および分離係数向上率を評価した。結果を表1に示す。
(Example 2)
A regenerated zeolite membrane was obtained in the same manner as in Example 1 except that the maximum temperature in the housing 31 in the step (B) was changed to 300 ° C. Using the obtained regenerated zeolite membrane, the separation factor and the improvement factor of the separation factor were evaluated according to the above method. The results are shown in Table 1.
(比較例1)
 実施例1の工程(B)において、窒素ガスに代えて、露点20℃の空気を用いてゼオライト膜の曝される雰囲気を昇温させて最高温度250℃にて10時間保持した後、ゼオライト膜の曝される雰囲気を250℃の窒素ガス雰囲気として5時間保持する乾燥操作を介在させてから、降温操作を実施した。これらの点以外は実施例1と同様にして再生済ゼオライト膜を得た。得られた再生済ゼオライト膜を用いて、上記方法に従って分離係数および分離係数向上率を評価した。結果を表1に示す。
(Comparative Example 1)
In step (B) of Example 1, the atmosphere to which the zeolite membrane was exposed was raised using air having a dew point of 20 ° C. instead of nitrogen gas, and the zeolite membrane was held at a maximum temperature of 250 ° C. for 10 hours. The temperature lowering operation was performed after interposing a drying operation in which the atmosphere exposed to was maintained at 250 ° C. as a nitrogen gas atmosphere for 5 hours. Except for these points, a regenerated zeolite membrane was obtained in the same manner as in Example 1. Using the obtained regenerated zeolite membrane, the separation factor and the improvement factor of the separation factor were evaluated according to the above method. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~2では分離係数向上率が顕著に向上していることが分かる。即ち、実施例1~2では、再生済ゼオライト膜の分離係数を、新品のゼオライト膜よりも顕著に向上させ得たことが分かる。 From Table 1, it can be seen that in Examples 1 and 2, the separation factor improvement rate is remarkably improved. That is, in Examples 1 and 2, it can be seen that the separation factor of the regenerated zeolite membrane could be significantly improved over that of a new zeolite membrane.
 本発明によれば、炭化水素混合物を膜分離するための分離膜の分離係数を十分に高めることが可能な膜再生方法を提供することができる。 According to the present invention, it is possible to provide a membrane regeneration method capable of sufficiently increasing the separation factor of a separation membrane for membrane separation of a hydrocarbon mixture.
10 貯留槽
20 原料供給機構
21 原料ライン
22 移送器
23 加熱器
24 原料ライン弁
30 膜分離モジュール
31 ハウジング
32 ゼオライト膜
33 非透過側領域
34 透過側領域
40 気体供給機構
41 気体ライン
42 気体ライン弁
43 加熱器
50 透過成分流出機構
60 非透過成分流出機構
61 非透過成分ライン
62 背圧弁
63 非透過成分ライン弁
70 気体流出機構
71 気体流出ライン
72 気体流出ライン弁
100 膜分離装置
DESCRIPTION OF SYMBOLS 10 Reservoir 20 Raw material supply mechanism 21 Raw material line 22 Transfer device 23 Heater 24 Raw material line valve 30 Membrane separation module 31 Housing 32 Zeolite membrane 33 Non-permeation side area 34 Permeation side area 40 Gas supply mechanism 41 Gas line 42 Gas line valve 43 Heater 50 Permeate component outflow mechanism 60 Non-permeate component outflow mechanism 61 Non-permeate component line 62 Back pressure valve 63 Non-permeate component line valve 70 Gas outflow mechanism 71 Gas outflow line 72 Gas outflow line valve 100 Membrane separation device

Claims (4)

  1.  ゼオライト膜に対して炭化水素混合物を接触させる工程(A)と、
     不活性ガス雰囲気下に前記ゼオライト膜を曝して、前記不活性ガス雰囲気を昇温させる工程(B)と、を含む、膜再生方法。
    Contacting the hydrocarbon mixture with the zeolite membrane (A);
    A step (B) of exposing the zeolite membrane to an inert gas atmosphere to raise the temperature of the inert gas atmosphere.
  2.  前記工程(B)中の前記不活性ガス雰囲気の最高温度が、100℃以上450℃以下である、請求項1に記載の膜再生方法。 The film regeneration method according to claim 1, wherein a maximum temperature of the inert gas atmosphere in the step (B) is 100 ° C or higher and 450 ° C or lower.
  3.  前記不活性ガスが窒素ガスである、請求項1または2に記載の膜再生方法。 The film regeneration method according to claim 1 or 2, wherein the inert gas is nitrogen gas.
  4.  前記工程(B)が、前記不活性ガス雰囲気を昇温させる前に、前記ゼオライト膜を前記不活性ガス雰囲気下に曝した状態にて、前記ゼオライト膜を加圧する膜加圧操作を更に含む、請求項1~3の何れかに記載の膜再生方法。 The step (B) further includes a membrane pressurizing operation for pressurizing the zeolite membrane in a state where the zeolite membrane is exposed to the inert gas atmosphere before raising the temperature of the inert gas atmosphere. The film regeneration method according to any one of claims 1 to 3.
PCT/JP2018/008118 2017-03-28 2018-03-02 Film regeneration method WO2018180210A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509063A JPWO2018180210A1 (en) 2017-03-28 2018-03-02 Membrane regeneration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017063343 2017-03-28
JP2017-063343 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180210A1 true WO2018180210A1 (en) 2018-10-04

Family

ID=63675302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008118 WO2018180210A1 (en) 2017-03-28 2018-03-02 Film regeneration method

Country Status (2)

Country Link
JP (1) JPWO2018180210A1 (en)
WO (1) WO2018180210A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136718A1 (en) * 2018-12-25 2020-07-02 日揮グローバル株式会社 Non-hydrocarbon gas separation device and inorganic separation membrane regeneration method
JP2021028054A (en) * 2019-08-09 2021-02-25 三菱ケミカル株式会社 Regeneration method for zeolite membrane complex

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130000484A1 (en) * 2010-03-04 2013-01-03 Paul Jason Williams Method of separating gas mixtures
US20160008753A1 (en) * 2014-06-20 2016-01-14 Exxonmobil Research And Engineering Company Separation and Storage of Fluids Using ITQ-55
WO2016027713A1 (en) * 2014-08-21 2016-02-25 日本碍子株式会社 Separation device and regeneration method
JP2016534112A (en) * 2013-08-20 2016-11-04 エルジー・ケム・リミテッド Isopropyl alcohol purification method
JP2017148741A (en) * 2016-02-25 2017-08-31 日立造船株式会社 Regeneration method of zeolite membrane composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130000484A1 (en) * 2010-03-04 2013-01-03 Paul Jason Williams Method of separating gas mixtures
JP2016534112A (en) * 2013-08-20 2016-11-04 エルジー・ケム・リミテッド Isopropyl alcohol purification method
US20160008753A1 (en) * 2014-06-20 2016-01-14 Exxonmobil Research And Engineering Company Separation and Storage of Fluids Using ITQ-55
WO2016027713A1 (en) * 2014-08-21 2016-02-25 日本碍子株式会社 Separation device and regeneration method
JP2017148741A (en) * 2016-02-25 2017-08-31 日立造船株式会社 Regeneration method of zeolite membrane composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136718A1 (en) * 2018-12-25 2020-07-02 日揮グローバル株式会社 Non-hydrocarbon gas separation device and inorganic separation membrane regeneration method
US11801478B2 (en) 2018-12-25 2023-10-31 Jgc Corporation Non-hydrocarbon gas separation device and inorganic separation membrane regeneration method
JP2021028054A (en) * 2019-08-09 2021-02-25 三菱ケミカル株式会社 Regeneration method for zeolite membrane complex
JP7358827B2 (en) 2019-08-09 2023-10-11 三菱ケミカル株式会社 Method for regenerating zeolite membrane complex

Also Published As

Publication number Publication date
JPWO2018180210A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
Lin et al. Recent progress in polycrystalline zeolite membrane research
US5104425A (en) Gas separation by adsorbent membranes
Bernal et al. Tubular MFI zeolite membranes made by secondary (seeded) growth
EP1442784B1 (en) Inorganic porous membrane containing carbon, method of manufacturing and use thereof
WO2010106881A1 (en) Structure provided with zeolite separation membrane, method for producing same, method for separating mixed fluids and device for separating mixed fluids
WO2017169195A1 (en) Membrane separation method and membrane separation device
Chen et al. Preparation of silicalite-1 membrane by solution-filling method and its alcohol extraction properties
JP7220087B2 (en) Zeolite membrane composite, method for producing zeolite membrane composite, and separation method
WO2018180210A1 (en) Film regeneration method
Shahrestani et al. High performance dehydration of ethyl acetate/water mixture by pervaporation using NaA zeolite membrane synthesized by vacuum seeding method
WO2016027713A1 (en) Separation device and regeneration method
JP7174146B2 (en) Zeolite membrane composite, method for producing zeolite membrane composite, method for treating zeolite membrane composite, and method for separation
JP6626736B2 (en) Regeneration method of zeolite membrane composite
JP2008188564A (en) Separation membrane for organic mixed solution and manufacturing method for this separation membrane
EA021262B1 (en) Method of making a gas separation molecular sieve membrane
JP2016041419A (en) Separation method and separation apparatus
WO2021186959A1 (en) Gas separation method and zeolite membrane
JP2010180080A (en) Method for producing zeolite membrane
WO2011018919A1 (en) Mixture separation membrane, method for altering composition of mixture using same, and mixture separation device
WO2020050137A1 (en) Method for producing piperylene
Soydaş et al. Separation of gas and organic/water mixtures by MFI type zeolite membranes synthesized in a flow system
JP7098713B2 (en) Gas separation device, gas separation method and gas separation membrane
JP6251174B2 (en) Olefin recovery method
JP6837363B2 (en) Separation method of hydrocarbon compounds
WO2022163690A1 (en) Method for heat-treating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778084

Country of ref document: EP

Kind code of ref document: A1