WO2018180209A1 - Medical device - Google Patents

Medical device Download PDF

Info

Publication number
WO2018180209A1
WO2018180209A1 PCT/JP2018/008112 JP2018008112W WO2018180209A1 WO 2018180209 A1 WO2018180209 A1 WO 2018180209A1 JP 2018008112 W JP2018008112 W JP 2018008112W WO 2018180209 A1 WO2018180209 A1 WO 2018180209A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheath
dilator
protrusion
medical device
tip
Prior art date
Application number
PCT/JP2018/008112
Other languages
French (fr)
Japanese (ja)
Inventor
阪川洋一
伊藤祐貴
生野恵理
秋山真洋
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2018180209A1 publication Critical patent/WO2018180209A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like

Definitions

  • the present invention relates to a medical device including a catheter for delivering an embolus into an aneurysm through a blood vessel wall connected to the aneurysm and an expansion body placed in the aneurysm.
  • a stent graft in which an expandable stent is locked to a tubular graft (artificial blood vessel), is expanded in the aortic aneurysm and closely adhered to the blood vessel wall, thereby circulating blood in the stent graft and in the aneurysm (aneurysm).
  • Stent graft insertion is performed to block blood flow to the blood vessel wall between the stent graft and the stent graft (see Japanese Patent Application Laid-Open No. 2014-12135). It is known that in stent graft insertion, a so-called type 2 endoleak complication may occur, in which blood flows back into the aneurysm from the side branch of the aortic aneurysm.
  • Perigraft As a treatment for such type 2 endoleak, treatment called Perigraft (Perigraft) (Motoki Nakai, MD, PhD, Akira Ikoma, MD, PhD, Morio Sato, MD, PhD, Hirotatsu Sato, MD, Yoshiharu Nishimura, MD , PhD, and Yoshitaka Okamura, MD, PhD, "Prophylactic Intraoperative Embolization of Abdominal Aortic Aneurysm Sacs Using N-Butyl Cyanoacrylate / Lipiodol / Ethanol Mixture with Proximal Neck Aortic Balloon Occlusion during Endovascular Abdominal Aortic Repair", Prophylactic Sac Embolization with NBCA / Lipiodol / Ethanol during EVAR, July 2016, Vol.
  • Transsealing Treatment called Transealing or Transsealing (hereinafter referred to as Transsealing) (G. Coppi, G. Saitta, G. Coppi, S. Gennai, A. Lauricella, R. Silingardi, ⁇ Transealing: A Novel and Simple Technique for Embolization of Type 2 Endoleaks Through Direct Sac Access From the Distal Stent-graft Landing Zone ”, European Journal of Vascular and Endovascular Surgery, April 2014, Volume 47, No.4, p.394-401).
  • the distal end of the long catheter (sheath) is placed between the contracted stent graft and the vessel wall, and the stent graft is expanded to place the distal end of the sheath in the aneurysm.
  • An embolus is introduced into the aneurysm.
  • the catheter (sheath) is pushed forward with a guide wire between the expanded stent graft and the blood vessel wall, the distal end of the sheath is left in the aneurysm, and the embolus is introduced into the aneurysm through the sheath.
  • the guide wire becomes easier to insert as the hardness of the guide wire is increased.
  • the blood vessel wall may be damaged by the guide wire. There is a problem that it becomes higher (third problem).
  • the present invention has been made in view of such problems, and an object thereof is to provide a medical device that can solve at least one of the first to third problems.
  • a medical device includes a catheter that can be placed between a blood vessel wall connected to an aneurysm and an expansion body placed in the blood vessel connected to the aneurysm.
  • the catheter has a flexible and long shaft main body, and an outer peripheral surface of a distal shaft portion constituting at least a distal end portion of the shaft main body so as to contact a strut constituting the expansion body. And a shaft projection that spirally circulates around the shaft body in the circumferential direction.
  • proximal side surface A direction-oriented side surface (hereinafter referred to as “proximal side surface”) can be hooked on the strut of the expansion body.
  • the shaft protrusion is turned into the strut by rotating the shaft with the proximal end side surface of the shaft protrusion in contact with the strut. Because the shaft rotates while pushing in the proximal direction, a reaction force in the distal direction from the strut acts on the shaft protrusion. That is, the rotational force input to the proximal end side of the catheter is converted into a propulsive force at the distal shaft portion. Therefore, the shaft body can be smoothly advanced between the expanded body in the expanded state and the blood vessel wall. In this case, since it is not necessary to push the proximal end side of the catheter excessively in the distal direction, the deflection of the shaft body can be suppressed. That is, the second problem can be solved.
  • the guide wire when a guide wire is inserted between the expanded body in the expanded state and the blood vessel wall in advance of the shaft body, the guide wire can be pushed forward with the proximal end side surface of the shaft protrusion hooked on the strut. it can.
  • the expansion body can receive the reaction force in the proximal direction that acts on the catheter when the guide wire is advanced, the guide wire can be smoothly advanced without excessively increasing the hardness of the guide wire. it can. That is, the third problem described above can be solved.
  • the side surface (hereinafter referred to as the “front end side surface”) of the shaft projection facing the distal direction is in contact with the strut of the expanded body in the expanded state.
  • the shaft protrusion rotates while pushing the strut in the distal direction, so that the reaction force in the proximal direction from the strut is applied to the shaft protrusion.
  • the shaft body can be smoothly retracted between the expanded body in the expanded state and the blood vessel wall. Therefore, the catheter can be easily removed.
  • the catheter has a sheath including a sheath body as the shaft body and a sheath protrusion as the shaft protrusion, and the sheath protrusion delivers an embolus into the aneurysm.
  • the sheath protrusion delivers an embolus into the aneurysm.
  • it may be provided so as to be positioned between the expansion body and the blood vessel wall.
  • the expansion body can receive the reaction force in the proximal direction acting on the sheath when the embolus is delivered into the aneurysm in the perigraft and the transsealing, the distal end position of the sheath main body can be received. Can be prevented from shifting in the proximal direction. Therefore, the embolus can be reliably introduced into the aneurysm.
  • assigns the base end direction of the said sheath among the said sheath protrusion is a flat surface extended in the direction orthogonal to the axis line of the said sheath main body, or the protrusion end of the said sheath protrusion
  • the flat surface which inclines in the base end direction of the said sheath main body toward may be sufficient.
  • the sheath protrusion may extend to the distal end portion of the distal shaft portion.
  • the tip shaft portion can be smoothly inserted between the expanded stent graft and the blood vessel wall in the transceiling. Further, in the perigraft and transceiling, the distal shaft portion can be smoothly removed from between the expanded stent graft and the blood vessel wall.
  • the distal end of the sheath protrusion is configured such that a protrusion length of the distal end portion of the sheath protrusion with respect to the outer peripheral surface of the distal end shaft portion decreases toward one end in the extending direction of the spiral. You may connect smoothly with the outer peripheral surface of a shaft part.
  • the tip shaft portion can be smoothly inserted between the expanded stent graft and the blood vessel wall in the transsealing.
  • the catheter includes a dilator that is removably inserted into the sheath, and the dilator protrudes further to the distal end side than the distal end of the sheath body in a state of being inserted into the sheath.
  • a long hollow dilator main body having flexibility, and provided on an outer peripheral surface of a tip protruding portion located on the tip end side of the sheath main body of the dilator main body, the dilator main body spirally in a circumferential direction And a dilator protrusion that circulates.
  • the tip protruding portion of the dilator main body having an outer diameter smaller than that of the sheath can be inserted in advance between the expanded body in the expanded state and the blood vessel wall. And the sheath body can be more smoothly inserted between the blood vessel wall and the blood vessel wall.
  • the dilator protrusion rotates while pushing the strut in the base end direction, so that the rotational force of the dilator is converted into propulsive force. . Therefore, the dilator body can be smoothly advanced between the expanded body in the expanded state and the blood vessel wall. In this case, since it is not necessary to excessively push the proximal end side of the dilator in the distal direction, the bending of the dilator body can be suppressed.
  • the dilator protrusion and the sheath protrusion push the strut in the proximal direction, so that force is concentrated on a part of the strut. You can avoid doing that. Thereby, it can suppress that a stent graft bends (kinks).
  • the guide wire when a guide wire is inserted between the expanded body in an expanded state and the blood vessel wall prior to the dilator body, the guide wire can be pushed forward while the proximal end side surface of the dilator protrusion is hooked on the strut. it can.
  • the expansion body can receive the reaction force in the proximal direction acting on the dilator when the guide wire is advanced, the guide wire can be smoothly advanced without excessively increasing the hardness of the guide wire. it can.
  • the dilator is removed from the sheath, thereby introducing the embolus into the aneurysm through the lumen of the sheath larger than the lumen of the dilator. be able to.
  • the base end side surface which faces the base end direction of the said dilator among the said dilator protrusion is a flat surface extended in the direction orthogonal to the axis line of the said dilator main body, or the protrusion end of the said dilator protrusion
  • the flat surface which inclines in the base end direction of the said dilator main body toward this may be sufficient.
  • the pitch of the dilator projection and the pitch of the sheath projection may be substantially the same.
  • a plurality of the base end side surfaces of the dilator projection and the base end side surface of the sheath projection are provided in the transsealing.
  • the strut can be contacted efficiently.
  • the proximal end of the dilator projection and the distal end of the sheath projection may have substantially the same circumferential phase.
  • the proximal end side surface of the dilator projection and the proximal end side surface of the sheath projection can be more efficiently brought into contact with a plurality of struts.
  • the medical device may include a rotation restricting portion that restricts relative rotation between the dilator and the sheath.
  • the dilator protrusion may extend to the tip of the tip protrusion.
  • the tip of the tip protrusion can be smoothly inserted between the expanded stent graft and the blood vessel wall in the transceiling.
  • the outer peripheral surface of the dilator protrusion has a protrusion length with respect to an outer peripheral surface of the tip protrusion portion at a tip portion of the dilator protrusion that decreases toward one end in a spiral extending direction. You may connect smoothly with the outer peripheral surface of a protrusion part.
  • the tip end portion of the tip protruding portion can be smoothly inserted between the expanded body in the expanded state and the blood vessel wall in the transceiling. It is possible to suppress an excessive force from acting on the blood vessel wall and the expansion body when the dilator rotates.
  • the catheter includes a flexible and long sheath, and a dilator removably inserted into the sheath, and the dilator is inserted into the sheath.
  • a dilator main body as a long shaft body having flexibility that protrudes to the front end side from the front end of the sheath in the inserted state, and the front end of the dilator main body that is positioned on the front end side of the sheath
  • a dilator protrusion as the shaft protrusion that is provided on the outer peripheral surface of the tip projecting portion constituting the shaft portion and spirals around the dilator body in the circumferential direction may be included.
  • the distal end position of the sheath body is shifted in the proximal direction in the perigraft and the transsealing. That can be suppressed. Further, in the transceiling, the deflection of the shaft body can be suppressed and the guide wire can be smoothly advanced. Further, the shaft body can be smoothly retracted in the perigraft and transceiling.
  • FIG. 1 is a perspective view of a medical device according to an embodiment of the present invention.
  • FIG. 2 is a partially omitted vertical sectional view of the medical device of FIG. 1. It is an enlarged plan view of the front end side of the medical device of FIG. 4A is an enlarged cross-sectional view of a sheath protrusion (dilator protrusion), and FIG. 4B is a cross-sectional view taken along line IVB-IVB in FIG. 5A is a cross-sectional view taken along the line VA-VA of FIG. 2, and FIG. 5B is a plan view of the expanded stent graft.
  • FIG. 6A is a first explanatory diagram of a perigraft
  • FIG. 6B is a second explanatory diagram of a perigraft.
  • FIG. 7A is a third explanatory diagram of the perigraft, and FIG. 7B is a fourth explanatory diagram of the perigraft.
  • FIG. 8A is a first explanatory diagram of transceiling, and FIG. 8B is a second explanatory diagram of transceiling.
  • 9A is a third explanatory view of transceiling, and FIG. 9B is a fourth explanatory view of transceiling. It is 1st cross-sectional explanatory drawing explaining the effect of the said medical device. It is 2nd cross-sectional explanatory drawing explaining the effect of the said medical device. It is 3rd cross-sectional explanatory drawing explaining the effect of the said medical device. It is a perspective view which shows the modification of the catheter of a medical device.
  • the medical device 10 As shown in FIGS. 7B and 9B, the medical device 10 according to the present embodiment is placed on the blood vessel wall 120La connected to the abdominal aortic aneurysm (hereinafter referred to as “aneurysm 122a”) and the aneurysm 122a.
  • the embolus 130 is delivered to the aneurysm 122a through the stent graft 100.
  • the medical device 10 can also be used for procedures such as a thoracic aortic aneurysm using the stent graft 100, for example.
  • the stent graft 100 as an expansion body will be briefly described with reference to FIG. 5B.
  • the stent graft 100 shown in FIG. 5B is in an expanded state.
  • the stent graft 100 includes a cylindrical graft 102 as an artificial blood vessel, and a stent 104 locked to the outer peripheral surface of the graft 102 by sewing or the like.
  • the stent 104 is formed by providing a plurality of linear struts 106 extending in a wave shape (zigzag shape) and circulating around the graft 102 so as to be separated from each other in the axial direction of the stent graft 100. That is, each strut 106 includes a plurality of straight portions that are inclined at an acute angle with respect to the axial direction of the graft 102.
  • the cross section of each strut 106 is formed in a circular shape (see FIG. 10).
  • the medical device 10 includes a catheter 11 having a long sheath 12 and a dilator 14 removably inserted into the sheath 12.
  • the sheath 12 includes a sheath body 16 as a long hollow shaft body, and a sheath hub 18 provided at the proximal end of the sheath body 16.
  • the sheath body 16 is a tube having a lumen 16a having a substantially constant inner diameter d1 over the entire length.
  • the sheath body 16 has flexibility (softness) so that it can easily follow a meandering blood vessel, and has an appropriate rigidity that cannot be bent in the blood vessel.
  • Examples of the constituent material of the sheath body 16 include polyolefin (for example, polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more thereof), polyvinyl chloride, Examples thereof include polymer materials such as polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane, polyurethane elastomer, polyimide, fluororesin, or a mixture thereof, or the above-described two or more polymer materials.
  • the sheath body 16 may be a multilayer tube in which a plurality of these materials are stacked.
  • the outer peripheral surface of the distal end region extending a predetermined length in the proximal direction from the distal end of the sheath body 16 is tapered toward the distal end.
  • the outer diameter of the proximal end side of the distal end region of the sheath body 16 is formed to be constant.
  • the sheath body 16 has an inner diameter d1 of 1.5 mm or more and an outer diameter d2 (an outer diameter on the proximal end side of the distal end region of the sheath body 16) of about 9 Fr (3 mm).
  • the inner diameter d1 and the outer diameter d2 of the sheath body 16 can be arbitrarily set.
  • the distal end surface 16b of the sheath body 16 is curved to suppress damage to the blood vessel wall.
  • the distal shaft portion 17 constituting at least the distal end portion of the sheath body 16 is disposed between the stent graft 100 and the blood vessel wall 120La.
  • a sheath projection 20 is provided on the outer peripheral surface of the distal end shaft portion 17 of the sheath body 16 so as to spirally surround the sheath body 16 in the circumferential direction so as to contact the strut 106 of the expanded stent graft 100. That is, the sheath projection 20 as the shaft projection is not provided at the proximal end portion of the sheath body 16. However, the extending range of the sheath projection 20 can be arbitrarily set.
  • the sheath projection 20 is formed by, for example, winding a belt-like flat plate around the outer peripheral surface of the sheath body 16 in a spiral manner and joining them.
  • the sheath protrusion 20 may be formed by cutting the outer peripheral surface of the sheath body 16.
  • the constituent material of the sheath protrusion 20 include a metal or a resin that is the same as or different from that of the sheath body 16.
  • a metallic biomaterial such as stainless steel, cobalt chromium alloy, titanium alloy or the like is preferably used.
  • the sheath projection 20 connects the proximal end side surface 20a directed in the proximal direction of the sheath 12, the distal end side surface 20b directed in the distal end direction of the sheath 12, and the proximal end side surface 20a and the distal end side surface 20b. And an outer peripheral surface 20c.
  • the chamfering process is applied to the boundary portion between the proximal end side surface 20a and the outer peripheral surface 20c and the boundary portion between the distal end side surface 20b and the outer peripheral surface 20c in order to prevent damage to the blood vessel wall.
  • Each of the proximal end side surface 20 a and the distal end side surface 20 b is a flat surface extending in a direction orthogonal to the axis of the sheath body 16.
  • the proximal end side surface 20a may be a flat surface that inclines in the proximal end direction of the sheath body 16 toward the protruding end (projecting direction) of the sheath projection 20. In this case, transmission of force between the proximal end side surface 20a of the sheath projection 20 and the strut 106 can be performed efficiently.
  • distal end side surface 20b may be a flat surface inclined toward the distal end direction of the sheath body 16 toward the protruding end (projecting direction) of the sheath projection 20. In this case, transmission of force between the distal end side surface 20b of the sheath projection 20 and the strut 106 can be performed efficiently.
  • the sheath projection 20 extends to the distal end portion of the distal shaft portion 17.
  • the outer peripheral surface 20 c of the sheath projection 20 has a protrusion length with respect to the outer peripheral surface of the distal shaft portion 17 at the distal end portion of the sheath projection 20 that decreases toward one end (starting end) in the spiral extending direction.
  • the outer peripheral surface of the tip shaft portion 17 is smoothly connected. That is, there is no step between the distal end portion of the sheath projection 20 and the outer peripheral surface of the distal shaft portion 17.
  • the outer peripheral surface 20c of the distal end portion of the sheath projection 20 is inclined toward the distal shaft portion 17 side (inward in the radial direction) so as to become thinner toward the spiral start end.
  • the outer peripheral surface 20c of the sheath projection 20 has a protruding length with respect to the outer peripheral surface of the sheath body 16 at the proximal end portion of the sheath projection 20 toward the other end (terminal) in the spiral extending direction.
  • the outer peripheral surface 20c of the proximal end portion of the sheath projection 20 is inclined toward the distal shaft portion 17 side (inward in the radial direction) so as to become thinner toward the end of the spiral.
  • a recess in which the distal end portion of the sheath projection 20 is disposed is formed on the outer circumferential surface of the distal shaft portion 17 so that the outer circumferential surface 20c of the distal end portion of the sheath projection 20 is smoothly connected to the outer circumferential surface of the distal shaft portion 17. May be. Further, a recess in which the proximal end portion of the sheath projection 20 is disposed on the outer peripheral surface of the distal shaft portion 17 so that the outer peripheral surface 20c of the proximal end portion of the sheath projection 20 is smoothly connected to the outer peripheral surface of the distal shaft portion 17. It may be formed.
  • the protruding length of the proximal side surface 20a (the protruding length of the flat portion of the proximal end side surface 20a with respect to the outer peripheral surface of the distal shaft portion 17) and the protruding length of the distal side surface 20b.
  • the protruding length of the flat portion of the base end side surface 20a with respect to the outer peripheral surface of the distal end shaft portion 17 is set to the same height h over the entire length of the intermediate portion. In this case, it is possible to efficiently transmit force between the sheath projection 20 and the strut 106 and to suppress the sheath projection 20 from hitting the graft 102.
  • the height h is preferably larger than the radius r (see FIG. 11) of the strut 106 and smaller than the diameter of the strut 106. That is, for example, when the diameter of the strut 106 is 0.4 mm, the height h is set in a range larger than 0.2 mm and smaller than 0.4 mm. When the height h is 0.1 mm or less, it becomes smaller than the average thickness of the aortic intima of men over 60 years old, so that damage to the blood vessel wall can be suppressed. However, the height h can be arbitrarily set.
  • the helical angle ⁇ 1 of the sheath projection 20 (the angle formed by the line segment orthogonal to the axis of the sheath 12 and the sheath projection 20) is the inclination angle ⁇ 2 of the strut 106 of the expanded stent graft 100 ( The angle is set to be equal to or close to the angle formed between the line segment orthogonal to the axis of the stent graft 100 and the straight portion of the strut 106 (see FIG. 5B). In this case, the proximal end side surface 20 a and the distal end side surface 20 b of the sheath projection 20 can be efficiently brought into contact with the straight portion of the strut 106.
  • the spiral angle ⁇ 1 of the sheath projection 20 is set to, for example, 30 ° to 45 °.
  • the pitch L1 of the sheath projection 20 (the distance between the proximal side surface 20a and the distal side surface 20b adjacent in the axial direction) is substantially constant over the entire length, and is larger than the distance L2 between the struts 106 adjacent in the axial direction of the stent graft 100. narrow. In this case, the proximal end side surface 20a of the sheath projection 20 can be efficiently brought into contact with the plurality of struts 106. Further, when the sheath 12 is removed from between the expanded stent graft 100 and the blood vessel wall 120La, the distal side surface 20b of the sheath projection 20 can be efficiently brought into contact with the plurality of struts 106.
  • the pitch L1 of the sheath protrusion 20 is determined based on the outer diameter d2 of the sheath body 16 and the helical angle ⁇ 1 of the sheath protrusion 20.
  • the sheath hub 18 is formed in a hollow shape and has a lumen 18a through which the dilator 14 is inserted.
  • the constituent material of the sheath hub 18 include the same materials as the constituent material of the sheath body 16.
  • the sheath hub 18 is connected to the outer peripheral surface of the sheath body 16 and has an outer peripheral surface having an outer peripheral surface that is tapered toward the proximal direction, and an annular sheath side provided at the proximal end of the expanded diameter portion 22. And an engaging portion 24.
  • An annular groove 26 is formed on the outer peripheral surface of the sheath side engaging portion 24.
  • a key groove 28 extending along the axial direction of the sheath hub 18 is formed on the inner peripheral surface of the sheath side engaging portion 24. The key groove 28 is open to the proximal end surface of the sheath hub 18.
  • the dilator 14 includes a long hollow dilator body 30 having flexibility and protruding toward the distal end side of the distal end of the sheath body 16 when inserted into the sheath 12. And a dilator hub 32 provided at the proximal end of the dilator body 30 and detachable from the sheath hub 18. That is, the dilator main body 30 is configured to be longer than the sheath main body 16, and protrudes by a predetermined length from the distal end of the sheath 12 to the distal end side when the dilator hub 32 is attached to the sheath hub 18.
  • the dilator body 30 is a tube having a lumen 30a having a substantially constant inner diameter d3 over its entire length.
  • the dilator body 30 has flexibility (softness) so that it can easily follow a meandering blood vessel, and has an appropriate rigidity that cannot be bent in the blood vessel.
  • Examples of the constituent material of the dilator body 30 include the same materials as the constituent material of the sheath body 16.
  • the inner diameter d3 of the dilator main body 30 is configured to be 0.46 mm (0.018 inch) or more so that the guide wire 110 can be inserted. However, the inner diameter d3 of the dilator body 30 can be arbitrarily set.
  • the outer diameter of the dilator body 30 is set to a size that allows the dilator 14 to move in the axial direction with respect to the sheath 12.
  • the distal end surface 30b of the dilator body 30 is curved to suppress damage to the blood vessel wall.
  • the distal protrusion 34 of the dilator main body 30 (the portion of the dilator main body 30 located on the distal side of the distal end of the sheath 12) is a stent graft 100 placed in a blood vessel connected to the aneurysm 122a and a blood vessel wall 120La connected to the aneurysm 122a. Inserted between.
  • the outer peripheral surface of the tip protrusion 34 is gradually reduced in diameter toward the tip.
  • a dilator protrusion 36 that spirals around the dilator body 30 in the same direction as the spiral of the sheath protrusion 20 is provided. That is, the dilator projection 36 is not provided on the base end side of the tip protrusion 34 in the dilator body 30 (see FIG. 2).
  • the dilator protrusion 36 is formed by, for example, winding a belt-like flat plate around the outer peripheral surface of the tip protrusion 34 in a spiral manner and joining them.
  • the dilator protrusion 36 may be formed by cutting the outer peripheral surface of the tip protrusion 34.
  • the constituent material of the dilator protrusion 36 may be the same as the constituent material of the sheath protrusion 20.
  • the dilator protrusion 36 connects the base end side surface 36 a that faces the base end direction of the dilator 14, the front end side surface 36 b that points the front end direction of the dilator 14, and the base end side surface 36 a and the front end side surface 36 b. And an outer peripheral surface 36c.
  • the chamfering process is applied to the boundary between the proximal end side surface 36a and the outer peripheral surface 36c and the boundary portion between the distal end side surface 36b and the outer peripheral surface 36c in order to prevent damage to the blood vessel wall.
  • Each of the proximal end side surface 36 a and the distal end side surface 36 b is a flat surface extending in a direction perpendicular to the axis of the dilator body 30.
  • the base end side surface 36 a may be a flat surface that is inclined in the base end direction of the dilator main body 30 toward the protruding end (projecting direction) of the dilator protrusion 36. In this case, force transmission between the proximal end side surface 36a of the dilator protrusion 36 and the strut 106 can be efficiently performed.
  • the front end side surface 36 b may be a flat surface that inclines in the front end direction of the dilator main body 30 toward the protruding end (projecting direction) of the dilator protrusion 36. In this case, transmission of force between the tip side surface 36b of the dilator protrusion 36 and the strut 106 can be performed efficiently.
  • the dilator protrusion 36 extends to the tip of the tip protrusion 34.
  • the outer peripheral surface 36c of the dilator protrusion 36 has a protrusion length with respect to the outer peripheral surface of the tip protrusion 34 at the tip of the dilator protrusion 36 becoming smaller toward one end (starting end) in the spiral extending direction. Smoothly connected to the outer peripheral surface. That is, there is no step between the tip of the dilator protrusion 36 and the outer peripheral surface of the tip protrusion 34.
  • the outer peripheral surface 36c at the tip of the dilator projection 36 is inclined toward the tip protrusion 34 (inward in the radial direction) so as to become thinner toward the spiral start.
  • the outer peripheral surface 36c of the dilator protrusion 36 has a distal end that protrudes toward the other end (termination) in the spiral extending direction with respect to the outer peripheral surface of the distal protrusion 34 at the proximal end of the dilator protrusion 36, thereby
  • the projection 34 is smoothly connected to the outer peripheral surface. That is, there is no step between the base end portion of the dilator protrusion 36 and the outer peripheral surface of the tip protruding portion 34.
  • the outer peripheral surface 36c of the base end portion of the dilator protrusion 36 is inclined toward the tip protrusion 34 (in the radial direction) so as to become thinner toward the end of the spiral.
  • a recess in which the tip portion of the dilator projection 36 is disposed is formed on the outer peripheral surface of the tip protrusion portion 34 so that the outer peripheral surface 36c of the tip portion of the dilator projection 36 is smoothly connected to the outer periphery surface of the tip protrusion portion 34. May be.
  • the spiral angle ⁇ 3 of the dilator protrusion 36 (the angle formed by the line segment orthogonal to the axis of the dilator 14 and the dilator protrusion 36) is set to the same angle as the spiral angle ⁇ 1 of the sheath protrusion 20. That is, the spiral angle ⁇ 3 of the dilator protrusion 36 is set to be equal to or close to the inclination angle ⁇ 2 of the strut 106 of the expanded stent graft 100.
  • the pitch L3 (distance between the proximal side surface 36a and the distal side surface 36b adjacent to each other in the axial direction) of the dilator projection 36 is substantially constant over the entire length, and is substantially the same as the pitch L1 of the sheath projection 20. Further, the proximal end of the dilator protrusion 36 and the distal end of the sheath protrusion 20 have substantially the same circumferential phase. That is, the proximal end of the dilator protrusion 36 is smoothly connected to the distal end of the sheath protrusion 20 via the distal end surface 16 b of the sheath body 16.
  • the dilator hub 32 is formed in a hollow shape and has a lumen 32a through which the guide wire 110 is inserted.
  • the constituent material of the dilator hub 32 include the same constituent materials as those of the dilator body 30.
  • the dilator hub 32 is provided at the proximal end of the dilator main body 30 and can be attached to and detached from the sheath side engaging portion 24, and the gripping portion 40 extending from the dilator side engaging portion 38 in the proximal direction. And have.
  • the dilator side engaging portion 38 includes an annular plate-shaped flange portion 42 provided at the base end of the dilator main body 30, a cylindrical portion 44 extending from the outer edge portion of the flange portion 42 in the distal direction, and the cylindrical portion 44. And an annular claw portion 46 protruding radially inward from the protruding end.
  • a projecting portion 48 that projects in the distal direction and fits into the key groove 28 of the sheath side engaging portion 24 is provided on the surface of the flange portion 42 that faces the distal direction.
  • the protrusion 48 and the key groove 28 function as a rotation restricting portion 50 that restricts relative rotation between the dilator 14 and the sheath 12.
  • the protrusion 48 is connected to the outer peripheral surface of the dilator body 30.
  • the claw portion 46 is fitted into the annular groove 26 of the sheath side engaging portion 24.
  • the user when performing stent graft insertion as a treatment for aneurysm 122a, the user (operator) inserts a guide wire 110a into the blood vessel from the buttocks, for example, to insert the right common iliac artery 120R, Advance to the descending thoracic aorta 124 via the abdominal aorta 122. Thereafter, the catheter 126a having the contracted first stent graft 100a at the distal end is advanced along the guide wire 110a through the right common iliac artery 120R to the abdominal aorta 122 to move the first stent graft 100a into the aneurysm 122a. To be located.
  • the first stent graft 100a is expanded to bring the first stent graft 100a into close contact with the blood vessel wall 122b above the aneurysm 122a (the chest descending aorta 124 side) and the blood vessel wall 120Ra of the right common iliac artery 120R. . Then, the guide wire 110a and the catheter 126a are removed.
  • the guide wire 110 is inserted into the blood vessel from the buttocks and advanced into the aneurysm 122a via the left common iliac artery 120L.
  • the medical device 10 is moved until the distal end of the sheath body 16 reaches a predetermined position in the aneurysm 122a along the guide wire 110 with the guide wire 110 passed through the lumen 14a (see FIG. 2) of the dilator 14. Make it progress.
  • a guide wire 110b is inserted into the blood vessel from the buttocks and advanced to the descending thoracic aorta 124 via the left common iliac artery 120L and the abdominal aorta 122.
  • the catheter 126b provided with the second stent graft 100b in the contracted state is advanced to the abdominal aorta 122 through the left common iliac artery 120L along the guide wire 110b to expand the second stent graft 100b in the expanded state.
  • 1 Insert into the connection opening 107 (see FIG. 6B) of the stent graft 100a.
  • the second stent graft 100b is expanded to connect the second stent graft 100b to the first stent graft 100a and to be in close contact with the blood vessel wall 120La of the left common iliac artery 120L.
  • the distal end shaft portion 17 of the sheath body 16 is disposed between the expanded second stent graft 100b and the blood vessel wall 120La of the left common iliac artery 120L.
  • the second stent graft 100b is connected to the first stent graft 100a, whereby the inverted Y-shaped stent graft 100 is formed.
  • the guide wire 110b and the catheter 126b are removed, and the guide wire 110 and the dilator 14 are removed from the sheath 12.
  • the engagement between the claw portion 46 of the dilator side engaging portion 38 and the sheath side engaging portion 24 is released, and the dilator hub 32 is pulled back with respect to the sheath hub 18 in the proximal direction.
  • the sheath body 16 is left in the blood vessel.
  • the embolus 130 is delivered into the aneurysm 122a through the lumen 12a of the sheath 12 (see FIG. 2).
  • an embolic agent or a metal coil is used as the embolus 130.
  • a microcatheter (not shown) may be inserted into the lumen 12a of the sheath 12, and the embolus 130 may be delivered into the aneurysm 122a via the lumen of the microcatheter.
  • the embolus 130 may be delivered into the aneurysm 122a via the lumen 14a of the dilator 14 with the dilator 14 left without being removed from the sheath 12.
  • the user removes the sheath 12 by pulling it back in the proximal direction while rotating the sheath hub 18.
  • the dilator 14 may be inserted into the sheath 12 and the dilator 14 and the sheath 12 may be removed together. Thereby, since the sheath 12 is supported by the dilator 14, the sheath 12 can be easily removed.
  • type 2 endoleak in which blood flows backward from the aortic side branch 132 into the aneurysm 122a can be prevented.
  • an inverted Y-shaped stent graft 100 has already been placed in the aneurysm 122a. That is, the first stent graft 100a is closely attached to the blood vessel wall 122b above the aneurysm 122a of the abdominal aorta 122 and the blood vessel wall 120Ra of the right common iliac artery 120R, and the second stent graft 100b is a blood vessel of the left common iliac artery 120L. It is in close contact with the wall 120La.
  • the guide wire 110 is inserted into the blood vessel from the buttocks and advanced to the left common iliac artery 120L.
  • the medical device 10 is advanced along the guide wire 110 with the guide wire 110 passed through the lumen 14a of the dilator 14 until the tip of the dilator main body 30 is located immediately before the second stent graft 100b.
  • the medical device 10 is inserted while the guide wire 110 is advanced between the second stent graft 100b and the blood vessel wall 120La of the left common iliac artery 120L (see FIG. 8B).
  • the user advances the medical device 10 by rotating the sheath hub 18.
  • the guide wire 110 and the medical device 10 are alternately advanced by a predetermined length.
  • the guide wire 110 and the dilator 14 are removed.
  • the embolus 130 is delivered into the aneurysm 122a through the lumen 12a of the sheath 12 (see FIG. 9B).
  • an embolic agent medicine
  • a metal coil is used as the embolus 130.
  • a microcatheter (not shown) may be inserted into the lumen 12a of the sheath 12, and the embolus 130 may be delivered into the aneurysm 122a via the lumen of the microcatheter.
  • the embolus 130 may be delivered into the aneurysm 122a via the lumen 14a of the dilator 14 with the dilator 14 left without being removed from the sheath 12.
  • the user removes the sheath 12 by pulling back the sheath hub 18 in the proximal direction while rotating the sheath hub 18 in the direction opposite to that at the time of introduction.
  • the dilator 14 may be inserted into the sheath 12 and the dilator 14 and the sheath 12 may be removed together.
  • the sheath 12 can be easily removed.
  • type 2 endoleak is recognized, the backflow of blood in the aneurysm 122a from the aortic side branch 132 can be suppressed by filling the embolus 130 into the aneurysm 122a.
  • the medical device 10 may be used for an intermediate procedure between the above-described perigraft and transceiling. Specifically, the second stent graft 100b is expanded and placed on the blood vessel wall 120La with the guide wire 110 placed in the aneurysm 122a, and then the medical device 10 is expanded along the guide wire 110 in the expanded state. You may make it insert between 2 stent graft 100b and blood vessel wall 120La.
  • the medical device 10 includes a catheter 11 that can be placed between a blood vessel wall 120La connected to an aneurysm 122a and a stent graft 100 placed in a blood vessel connected to the aneurysm 122a.
  • the sheath 12 constituting the catheter 11 is in contact with a long sheath body 16 (shaft body) and a strut 106 constituting the stent 104 provided on the outer peripheral surface of the graft 102 constituting the stent graft 100.
  • a sheath projection 20 shaft projection that is provided on the outer peripheral surface of the tip shaft portion 17 that constitutes at least the tip portion of the sheath body 16 and spirals around the sheath body 16 in the circumferential direction.
  • the proximal side surface 20a of the sheath projection 20 is placed on the strut of the stent graft 100 in a state where the sheath body 16 is disposed between the expanded stent graft 100 placed in the aneurysm 122a and the blood vessel wall 120La.
  • 106 can be hooked. Accordingly, as shown in FIG. 10, the stent graft 100 can receive a proximal reaction force Fa acting on the sheath 12 when the embolus 130 is delivered into the aneurysm 122a. It is possible to prevent the position from shifting in the proximal direction. Therefore, the embolus 130 can be reliably introduced into the aneurysm 122a.
  • the proximal end side surface 20a of the sheath projection 20 is in contact with the strut 106.
  • the sheath projection 20 rotates while pushing the strut 106 in the proximal direction, so that a reaction force Fb in the distal direction from the strut 106 acts on the sheath projection 20. That is, the rotational force input to the proximal end side of the sheath 12 is converted into a propulsive force (reaction force Fb) by the distal shaft portion 17.
  • the sheath body 16 can be smoothly advanced between the expanded stent graft 100 and the blood vessel wall 120La. In this case, since it is not necessary to excessively push the proximal end side of the sheath 12 in the distal direction, the bending of the sheath body 16 can be suppressed.
  • the guide wire 110 when the guide wire 110 is inserted between the stent graft 100 in an expanded state and the blood vessel wall 120La prior to the sheath body 16, the proximal end side surface 20a of the sheath projection 20 is hooked on the strut 106.
  • the guide wire 110 can be pushed forward.
  • the guide wire 110 since the proximal graft reaction force acting on the sheath 12 when the guide wire 110 is advanced can be received by the stent graft 100, the guide wire 110 can be smoothly moved without excessively increasing the hardness of the guide wire 110. You can move forward.
  • the sheath 12 in the perigraft and transsealing, when the sheath 12 is removed, the sheath 12 is rotated while the distal end side surface 20b of the sheath projection 20 is in contact with the strut 106 of the expanded stent graft 100 (see FIG.
  • the sheath projection 20 rotates while pushing the strut 106 in the distal direction by rotating the sheath projection 20 in the direction opposite to the rotation direction when the sheath 12 is inserted in the transceiling.
  • Reaction force Fc acts.
  • the sheath body 16 can be smoothly retracted between the expanded stent graft 100 and the blood vessel wall 120La. Therefore, the sheath 12 can be easily removed. Therefore, the type 2 endoleak of the aneurysm 122a can be effectively treated.
  • proximal end side surface 20 a of the sheath projection 20 that faces the proximal direction of the sheath 12 extends in a direction perpendicular to the axis of the sheath body 16, the proximal end side surface 20 a of the sheath projection 20 and the strut 106 The transmission of force between them can be performed efficiently.
  • the distal shaft portion 17 can be smoothly inserted between the expanded stent graft 100 and the blood vessel wall 120La in the transsealing. Further, in the perigraft and transceiling, the distal end shaft portion 17 can be smoothly removed from between the expanded stent graft 100 and the blood vessel wall 120La.
  • the outer circumferential surface 20c of the sheath projection 20 is formed on the outer circumferential surface of the distal shaft portion 17 by the protrusion length of the distal end portion of the sheath projection 20 with respect to the outer circumferential surface of the distal shaft portion 17 becoming smaller toward one end in the spiral extending direction. It is connected smoothly. Thereby, the tip shaft portion 17 can be smoothly inserted between the stent graft 100 in the expanded state and the blood vessel wall 120La in the transsealing. Further, it is possible to suppress an extra force from acting on the blood vessel wall 120La and the stent graft 100 when the sheath 12 is rotated.
  • the medical device 10 includes a dilator 14 that is removably inserted into the sheath 12.
  • the dilator 14 includes a long hollow dilator body 30 having flexibility and protruding from the distal end side of the sheath body 16 in a state of being inserted into the sheath 12, and the sheath body 16 of the dilator body 30.
  • a dilator protrusion 36 that is provided on the outer peripheral surface of the tip protrusion 34 located on the tip side and spirals around the dilator body 30 in the circumferential direction.
  • the distal protrusion 34 of the dilator body 30 having an outer diameter smaller than that of the sheath 12 can be inserted in advance between the expanded stent graft 100 and the blood vessel wall 120La.
  • the sheath body 16 can be more smoothly inserted between the blood vessel wall 120La.
  • the dilator projection 36 rotates while pushing the strut 106 in the proximal direction. Is converted into propulsion. Therefore, the dilator body 30 can be smoothly advanced between the expanded stent graft 100 and the blood vessel wall 120La. In this case, since it is not necessary to excessively push the proximal end side of the dilator 14 in the distal direction, the bending of the dilator body 30 can be suppressed.
  • the dilator main body 30 and the sheath main body 16 are advanced between the expanded stent graft 100 and the blood vessel wall 120La, the dilator protrusion 36 and the sheath protrusion 20 push the strut 106 in the proximal direction. It is possible to avoid concentrating power on a part. Thereby, it can suppress that the stent graft 100 bends (kinks).
  • the guide wire 110 In the transsealing, when the guide wire 110 is inserted between the expanded stent graft 100 and the blood vessel wall 120La prior to the dilator main body 30, the guide wire is in a state where the proximal end side surface 36a of the dilator protrusion 36 is hooked on the strut 106. 110 can be pushed forward. At this time, since the stent graft 100 can receive the reaction force in the proximal direction acting on the dilator 14 when the guide wire 110 is advanced, the guide wire 110 can be smoothly moved without excessively increasing the hardness of the guide wire 110. You can move forward.
  • the dilator 14 is removed from the sheath 12, whereby the embolus 130 is inserted into the lumen 12 a of the sheath 12 larger than the lumen 14 a of the dilator 14. Through the aneurysm 122a.
  • the base end side surface 36 a that faces the base end direction of the dilator 14 is a flat surface that extends in a direction orthogonal to the axis of the dilator main body 30. It is possible to efficiently transmit force between the two.
  • the pitch L3 of the dilator projection 36 and the pitch L1 of the sheath projection 20 are substantially the same. Therefore, in the transsealing, when the dilator main body 30 and the sheath main body 16 are advanced between the expanded stent graft 100 and the blood vessel wall 120La, the base end side surface 36a of the dilator projection 36 and the base end side surface 20a of the sheath projection 20 are connected. The plurality of struts 106 can be contacted efficiently.
  • the proximal end of the dilator projection 36 and the distal end of the sheath projection 20 have substantially the same circumferential phase. Therefore, the proximal end side surface 36 a of the dilator projection 36 and the proximal end side surface 20 a of the sheath projection 20 are connected to a plurality of struts 106. Can be contacted more efficiently.
  • the medical device 10 includes the rotation restricting portion 50 that restricts the relative rotation between the dilator 14 and the sheath 12, the dilator protrusion 36 and the sheath protrusion 20 can be prevented from being displaced from each other in the circumferential direction.
  • the dilator protrusion 36 extends to the tip of the tip protrusion 34. Thereby, in the transceiling, the distal end portion of the distal protrusion 34 can be smoothly inserted between the expanded stent graft 100 and the blood vessel wall 120La.
  • the outer peripheral surface 36 c of the dilator protrusion 36 is formed on the outer peripheral surface of the tip protrusion 34 by reducing the protrusion length of the tip of the dilator protrusion 36 relative to the outer periphery of the tip protrusion 34 toward one end in the spiral extending direction. It is connected smoothly. Thereby, in the transceiling, the distal end portion of the distal protrusion 34 can be smoothly inserted between the expanded stent graft 100 and the blood vessel wall 120La. It is possible to suppress an extra force from acting on the blood vessel wall 120La and the stent graft 100 when the dilator 14 rotates.
  • the present invention is not limited to the configuration described above.
  • at least one of the proximal end side surface 20a and the distal end side surface 20b of the sheath projection 20 may be a convex curved surface.
  • at least one of the proximal end side surface 36a and the distal end side surface 36b of the dilator protrusion 36 may be a convex curved surface. In this case, damage to the blood vessel wall 120La by the sheath protrusion 20 and the dilator protrusion 36 can be suppressed.
  • the inner diameter of the tip of the dilator main body 30 may be substantially the same as the diameter of the tip of the guide wire 110.
  • the outer peripheral surface of the distal end protruding portion 34 is smoothly connected to the outer peripheral surface of the distal end portion of the guide wire 110. It is possible to suppress the occurrence of a step between the distal end of 34 and the distal end portion of the guide wire 110. Thereby, it is possible to prevent the blood vessel wall 120La from being damaged by the step between the tip of the dilator body 30 and the guide wire 110.
  • the direction of the spiral of the dilator protrusion 36 and the direction of the spiral of the sheath protrusion 20 may be opposite to each other.
  • the medical device 10 may include a catheter 11a shown in FIG.
  • the catheter 11a has a flexible sheath 13 that is long and a dilator 14 that is removably inserted into the sheath 13.
  • the dilator 14 includes a dilator main body 30 as a flexible long shaft main body that protrudes further to the front end side than the front end of the sheath main body 16 when inserted into the sheath 13, and the sheath main body 16 of the dilator main body 30. It has a dilator projection 36 as a shaft projection provided on the outer peripheral surface of the tip projection 34 that is located further on the tip side and that forms the tip shaft portion 17a and spirals around the dilator body 30 in the circumferential direction.
  • the sheath 13 is configured in the same manner as the sheath 12 described above except that the sheath protrusion 20 is not provided. Even with such a configuration, the same effects as those of the dilator 14 described above can be obtained.
  • the expansion body is not limited to the stent graft 100 described above, and may be formed of, for example, a fine mesh strut and may not include the graft 102.

Abstract

This medical device (10) is provided with a sheath (12) for passing between a blood vessel wall (120La) that is connected to an aneurysm (122a) and a stent graft (100) indwelled in the aneurysm (122a), in order to deliver an embolus (130) to the inside of the aneurysm (122a). The sheath (12) has: a sheath body (16) to be arranged between the stent graft (100) and the blood vessel wall (120La); and a helical sheath protrusion (20) that is provided on the external circumferential surface of a tip shaft part (17) so as to come into contact with a strut (106) of the stent graft (100).

Description

医療用デバイスMedical device
 本発明は、動脈瘤に連なる血管壁と、前記動脈瘤に留置された拡張体との間を通して前記動脈瘤内に塞栓物を送達するためのカテーテルを備える医療用デバイスに関する。 The present invention relates to a medical device including a catheter for delivering an embolus into an aneurysm through a blood vessel wall connected to the aneurysm and an expansion body placed in the aneurysm.
 近年、筒状のグラフト(人工血管)に拡張可能なステントが係止されたステントグラフトを大動脈瘤内で拡張させて血管壁に密着させることにより、ステントグラフト内に血液を流通させるとともに瘤内(動脈瘤の血管壁とステントグラフトとの間)への血流を遮断するステントグラフト内挿術が行われている(特開2014-12135号公報参照)。ステントグラフト内挿術では、大動脈瘤側枝から瘤内に血液が逆流する、いわゆるタイプ2のエンドリークと呼ばれる合併症が起こり得ることが知られている。 In recent years, a stent graft, in which an expandable stent is locked to a tubular graft (artificial blood vessel), is expanded in the aortic aneurysm and closely adhered to the blood vessel wall, thereby circulating blood in the stent graft and in the aneurysm (aneurysm). Stent graft insertion is performed to block blood flow to the blood vessel wall between the stent graft and the stent graft (see Japanese Patent Application Laid-Open No. 2014-12135). It is known that in stent graft insertion, a so-called type 2 endoleak complication may occur, in which blood flows back into the aneurysm from the side branch of the aortic aneurysm.
 このようなタイプ2のエンドリークの処置として、ペリグラフト(Perigraft)と呼ばれる処置(Motoki Nakai, MD, PhD, Akira Ikoma, MD, PhD, Morio Sato, MD, PhD, Hirotatsu Sato, MD, Yoshiharu Nishimura, MD, PhD, and Yoshitaka Okamura, MD, PhD、「Prophylactic Intraoperative Embolization of Abdominal Aortic Aneurysm Sacs Using N-Butyl Cyanoacrylate/Lipiodol/Ethanol Mixture with Proximal Neck Aortic Balloon Occlusion during Endovascular Abdominal Aortic Repair」、Prophylactic Sac Embolization with NBCA/Lipiodol/Ethanol during EVAR、2016年7月、27巻、7号、p.954-960参照)と、トランシーリング(Transealing)又はトランスシーリング(Transsealing)(以下、トランシーリングという。)と呼ばれる処置(G. Coppi, G. Saitta, G. Coppi, S. Gennai, A. Lauricella, R. Silingardi、「Transealing: A Novel and Simple Technique for Embolization of Type 2 Endoleaks Through Direct Sac Access From the Distal Stent-graft Landing Zone」、European Journal of Vascular and Endovascular Surgery、2014年4月、47巻、4号、p.394-401参照)とが提案されている。 As a treatment for such type 2 endoleak, treatment called Perigraft (Perigraft) (Motoki Nakai, MD, PhD, Akira Ikoma, MD, PhD, Morio Sato, MD, PhD, Hirotatsu Sato, MD, Yoshiharu Nishimura, MD , PhD, and Yoshitaka Okamura, MD, PhD, "Prophylactic Intraoperative Embolization of Abdominal Aortic Aneurysm Sacs Using N-Butyl Cyanoacrylate / Lipiodol / Ethanol Mixture with Proximal Neck Aortic Balloon Occlusion during Endovascular Abdominal Aortic Repair", Prophylactic Sac Embolization with NBCA / Lipiodol / Ethanol during EVAR, July 2016, Vol. 27, No. 7, p. 954-960) and treatment called Transealing or Transsealing (hereinafter referred to as Transsealing) (G. Coppi, G. Saitta, G. Coppi, S. Gennai, A. Lauricella, R. Silingardi, `` Transealing: A Novel and Simple Technique for Embolization of Type 2 Endoleaks Through Direct Sac Access From the Distal Stent-graft Landing Zone ”, European Journal of Vascular and Endovascular Surgery, April 2014, Volume 47, No.4, p.394-401).
 ペリグラフトでは、収縮状態のステントグラフトと血管壁との間に長尺なカテーテル(シース)の先端側を配置した状態でステントグラフトを拡張させることによりシースの先端を瘤内に留置し、このシースを介して塞栓物を瘤内に導入する。 In the perigraft, the distal end of the long catheter (sheath) is placed between the contracted stent graft and the vessel wall, and the stent graft is expanded to place the distal end of the sheath in the aneurysm. An embolus is introduced into the aneurysm.
 トランシーリングでは、拡張したステントグラフトと血管壁との間にガイドワイヤを先行させながらカテーテル(シース)を押し進めてシースの先端を瘤内に留置し、シースを介して塞栓物を瘤内に導入する。 In the transsealing, the catheter (sheath) is pushed forward with a guide wire between the expanded stent graft and the blood vessel wall, the distal end of the sheath is left in the aneurysm, and the embolus is introduced into the aneurysm through the sheath.
 上述したペリグラフト及びトランシーリングでは、塞栓物を瘤内に導入する際に、シースに基端方向に向かう反力が作用するため、シースの先端位置が基端方向にずれることがある(第1の課題)。 In the above-described perigraft and transceiling, when the embolus is introduced into the aneurysm, a reaction force acting in the proximal direction acts on the sheath, so that the distal end position of the sheath may be displaced in the proximal direction (the first Task).
 また、トランシーリングでは、拡張したステントグラフトと血管壁との間にシースを挿入させる際に、軸方向に過度な力が作用してシースが撓むことがある。そのため、拡張したステントグラフトと血管壁との間にシースを円滑に挿入することができない可能性がある(第2の課題)。 Also, in transsealing, when inserting a sheath between an expanded stent graft and a blood vessel wall, an excessive force may act in the axial direction to cause the sheath to bend. Therefore, there is a possibility that the sheath cannot be smoothly inserted between the expanded stent graft and the blood vessel wall (second problem).
 さらにまた、拡張したステントグラフトと血管壁との間にシースに先行してガイドワイヤを挿入する場合、ガイドワイヤの硬さを高めるほど挿入し易くなるが、ガイドワイヤにより血管壁を損傷する可能性も高くなるという問題がある(第3の課題)。 Furthermore, when a guide wire is inserted between the expanded stent graft and the blood vessel wall prior to the sheath, the guide wire becomes easier to insert as the hardness of the guide wire is increased. However, the blood vessel wall may be damaged by the guide wire. There is a problem that it becomes higher (third problem).
 本発明は、このような課題を考慮してなされたものであり、上記の第1~第3の課題の少なくとも1つを解決することができる医療用デバイスを提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide a medical device that can solve at least one of the first to third problems.
 上記目的を達成するために、本発明に係る医療用デバイスは、動脈瘤に連なる血管壁と、前記動脈瘤に連なる血管に留置された拡張体との間に配置可能なカテーテルを備える医療用デバイスであって、前記カテーテルは、可撓性を有するとともに長尺なシャフト本体と、前記拡張体を構成するストラットに接触するように前記シャフト本体の少なくとも先端部を構成する先端シャフト部の外周面に設けられ、前記シャフト本体を周方向に螺旋状に周回するシャフト突起と、を有することを特徴とする。 In order to achieve the above object, a medical device according to the present invention includes a catheter that can be placed between a blood vessel wall connected to an aneurysm and an expansion body placed in the blood vessel connected to the aneurysm. The catheter has a flexible and long shaft main body, and an outer peripheral surface of a distal shaft portion constituting at least a distal end portion of the shaft main body so as to contact a strut constituting the expansion body. And a shaft projection that spirally circulates around the shaft body in the circumferential direction.
 このような構成によれば、ペリグラフト及びトランシーリングにおいて、動脈瘤内の塞栓物を導入する際にシャフト突起が拡張体と血管壁との間に位置する場合、シャフト突起のうちシャフト本体の基端方向を指向する側面(以下、「基端側面」という。)を拡張体のストラットに対して引っ掛けることができる。これにより、動脈瘤内に塞栓物を送達する際にカテーテルに作用する基端方向の反力を拡張体で受けることができるため、シャフト本体の先端位置が基端方向にずれることを抑えることができる。よって、塞栓物を動脈瘤内に確実に導入することができる。すなわち、この場合、上記の第1の課題を解決することができる。 According to such a configuration, when the shaft protrusion is positioned between the expansion body and the blood vessel wall when the embolus in the aneurysm is introduced in the perigraft and the transsealing, the proximal end of the shaft main body among the shaft protrusions A direction-oriented side surface (hereinafter referred to as “proximal side surface”) can be hooked on the strut of the expansion body. As a result, it is possible to receive the reaction force in the proximal direction acting on the catheter when the embolus is delivered into the aneurysm with the expansion body, so that the distal end position of the shaft body can be prevented from shifting in the proximal direction. it can. Therefore, the embolus can be reliably introduced into the aneurysm. That is, in this case, the first problem can be solved.
 また、トランシーリングにおいて、シャフト本体を拡張状態の拡張体と血管壁との間に挿入する際にシャフト突起の基端側面をストラットに接触させた状態でシャフトを回転させることにより、シャフト突起がストラットを基端方向に押しながら回転するため、シャフト突起にはストラットから先端方向の反力が作用する。つまり、カテーテルの基端側に入力された回転力が先端シャフト部で推進力に変換される。よって、拡張状態の拡張体と血管壁との間においてシャフト本体を円滑に前進させることができる。この場合、カテーテルの基端側を先端方向に過度に押し込む必要がないため、シャフト本体の撓みを抑えることができる。すなわち、上記の第2の課題を解決することができる。 Further, in the transceiling, when the shaft body is inserted between the expanded body in the expanded state and the blood vessel wall, the shaft protrusion is turned into the strut by rotating the shaft with the proximal end side surface of the shaft protrusion in contact with the strut. Because the shaft rotates while pushing in the proximal direction, a reaction force in the distal direction from the strut acts on the shaft protrusion. That is, the rotational force input to the proximal end side of the catheter is converted into a propulsive force at the distal shaft portion. Therefore, the shaft body can be smoothly advanced between the expanded body in the expanded state and the blood vessel wall. In this case, since it is not necessary to push the proximal end side of the catheter excessively in the distal direction, the deflection of the shaft body can be suppressed. That is, the second problem can be solved.
 また、トランシーリングにおいて、拡張状態の拡張体と血管壁との間にシャフト本体に先行してガイドワイヤを挿入する場合、シャフト突起の基端側面をストラットに引っ掛けた状態でガイドワイヤを押し進めることができる。この際、ガイドワイヤを前進させる時にカテーテルに作用する基端方向の反力を拡張体で受けることができるため、ガイドワイヤの硬さを過度に高めなくてもガイドワイヤを円滑に前進させることができる。すなわち、上記の第3の課題を解決することができる。 Also, in the transceiling, when a guide wire is inserted between the expanded body in the expanded state and the blood vessel wall in advance of the shaft body, the guide wire can be pushed forward with the proximal end side surface of the shaft protrusion hooked on the strut. it can. At this time, since the expansion body can receive the reaction force in the proximal direction that acts on the catheter when the guide wire is advanced, the guide wire can be smoothly advanced without excessively increasing the hardness of the guide wire. it can. That is, the third problem described above can be solved.
 さらに、ペリグラフト及びトランシーリングにおいて、カテーテルを抜去する際にシャフト突起のうち先端方向を指向する側面(以下、「先端側面」という。)を拡張状態の拡張体のストラットに接触させた状態でカテーテルを回転(トランシーリングにおけるカテーテルの挿入時の回転方向とは逆方向に回転)させることにより、シャフト突起がストラットを先端方向に押しながら回転するため、シャフト突起にはストラットから基端方向の反力が作用する。これにより、拡張状態の拡張体と血管壁との間においてシャフト本体を円滑に後退させることができる。よって、カテーテルを容易に抜去することができる。 Further, in the perigraft and transceiling, when the catheter is removed, the side surface (hereinafter referred to as the “front end side surface”) of the shaft projection facing the distal direction is in contact with the strut of the expanded body in the expanded state. By rotating (rotating in the direction opposite to the rotation direction at the time of insertion of the catheter in transiling), the shaft protrusion rotates while pushing the strut in the distal direction, so that the reaction force in the proximal direction from the strut is applied to the shaft protrusion. Works. Accordingly, the shaft body can be smoothly retracted between the expanded body in the expanded state and the blood vessel wall. Therefore, the catheter can be easily removed.
 上記の医療用デバイスにおいて、前記カテーテルは、前記シャフト本体としてのシース本体と、前記シャフト突起としてのシース突起と、を含むシースを有し、前記シース突起は、前記動脈瘤内に塞栓物を送達する際に前記拡張体と前記血管壁との間に位置するように設けられていてもよい。 In the above medical device, the catheter has a sheath including a sheath body as the shaft body and a sheath protrusion as the shaft protrusion, and the sheath protrusion delivers an embolus into the aneurysm. In doing so, it may be provided so as to be positioned between the expansion body and the blood vessel wall.
 このような構成によれば、ペリグラフト及びトランシーリングにおいて、動脈瘤内に塞栓物を送達する際にシースに作用する基端方向の反力を拡張体で受けることができるため、シース本体の先端位置が基端方向にずれることを抑えることができる。よって、塞栓物を動脈瘤内に確実に導入することができる。 According to such a configuration, since the expansion body can receive the reaction force in the proximal direction acting on the sheath when the embolus is delivered into the aneurysm in the perigraft and the transsealing, the distal end position of the sheath main body can be received. Can be prevented from shifting in the proximal direction. Therefore, the embolus can be reliably introduced into the aneurysm.
 上記の医療用デバイスにおいて、前記シース突起のうち前記シースの基端方向を指向する基端側面は、前記シース本体の軸線と直交する方向に延在する平坦面か、又は前記シース突起の突出端に向かって前記シース本体の基端方向に傾斜する平坦面であってもよい。 Said medical device WHEREIN: The base end side surface which orient | assigns the base end direction of the said sheath among the said sheath protrusion is a flat surface extended in the direction orthogonal to the axis line of the said sheath main body, or the protrusion end of the said sheath protrusion The flat surface which inclines in the base end direction of the said sheath main body toward may be sufficient.
 このような構成によれば、シース突起の基端側面とストラットとの間の力の伝達を効率的に行うことができる。 According to such a configuration, it is possible to efficiently transmit force between the proximal end side surface of the sheath projection and the strut.
 上記の医療用デバイスにおいて、前記シース突起は、前記先端シャフト部の先端部まで延在していてもよい。 In the above-described medical device, the sheath protrusion may extend to the distal end portion of the distal shaft portion.
 このような構成によれば、トランシーリングにおいて、先端シャフト部を拡張状態のステントグラフトと血管壁との間に円滑に挿入させることができる。また、ペリグラフト及びトランシーリングにおいて、先端シャフト部を拡張状態のステントグラフトと血管壁との間から円滑に抜去させることができる。 According to such a configuration, the tip shaft portion can be smoothly inserted between the expanded stent graft and the blood vessel wall in the transceiling. Further, in the perigraft and transceiling, the distal shaft portion can be smoothly removed from between the expanded stent graft and the blood vessel wall.
 上記の医療用デバイスにおいて、前記シース突起の外周面は、前記シース突起の先端部における前記先端シャフト部の外周面に対する突出長が螺旋の延在方向の一端に向かって小さくなることにより、前記先端シャフト部の外周面に滑らかに連なっていてもよい。 In the above-described medical device, the distal end of the sheath protrusion is configured such that a protrusion length of the distal end portion of the sheath protrusion with respect to the outer peripheral surface of the distal end shaft portion decreases toward one end in the extending direction of the spiral. You may connect smoothly with the outer peripheral surface of a shaft part.
 このような構成によれば、トランシーリングにおいて、拡張状態のステントグラフトと血管壁との間に先端シャフト部を円滑に挿入することができる。また、シースの回転時に血管壁やステントグラフトに余計な力が作用することを抑えることができる。 According to such a configuration, the tip shaft portion can be smoothly inserted between the expanded stent graft and the blood vessel wall in the transsealing. In addition, it is possible to suppress an extra force from acting on the blood vessel wall and the stent graft when the sheath rotates.
 上記の医療用デバイスにおいて、前記カテーテルは、前記シース内に抜去可能に挿入されたダイレータを備え、前記ダイレータは、前記シース内に挿入された状態で前記シース本体の先端よりも先端側に突出する可撓性を有する長尺な中空状のダイレータ本体と、前記ダイレータ本体のうち前記シース本体よりも先端側に位置する先端突出部の外周面に設けられ、前記ダイレータ本体を周方向に螺旋状に周回するダイレータ突起と、を有していてもよい。 In the above medical device, the catheter includes a dilator that is removably inserted into the sheath, and the dilator protrudes further to the distal end side than the distal end of the sheath body in a state of being inserted into the sheath. A long hollow dilator main body having flexibility, and provided on an outer peripheral surface of a tip protruding portion located on the tip end side of the sheath main body of the dilator main body, the dilator main body spirally in a circumferential direction And a dilator protrusion that circulates.
 このような構成によれば、トランシーリングにおいて、拡張状態の拡張体と血管壁との間にシースよりも外径の細いダイレータ本体の先端突出部を先行して挿入することができるため、拡張体と血管壁との間にシース本体をより円滑に挿入することができる。この際、ダイレータ突起の基端側面をストラットに接触させた状態でダイレータを回転させることにより、ダイレータ突起がストラットを基端方向に押しながら回転するため、ダイレータの回転力が推進力に変換される。よって、拡張状態の拡張体と血管壁との間においてダイレータ本体を円滑に前進させることができる。この場合、ダイレータの基端側を先端方向に過度に押し込む必要がないため、ダイレータ本体の撓みを抑えることができる。 According to such a configuration, in the transceiling, the tip protruding portion of the dilator main body having an outer diameter smaller than that of the sheath can be inserted in advance between the expanded body in the expanded state and the blood vessel wall. And the sheath body can be more smoothly inserted between the blood vessel wall and the blood vessel wall. At this time, by rotating the dilator while the base end side surface of the dilator protrusion is in contact with the strut, the dilator protrusion rotates while pushing the strut in the base end direction, so that the rotational force of the dilator is converted into propulsive force. . Therefore, the dilator body can be smoothly advanced between the expanded body in the expanded state and the blood vessel wall. In this case, since it is not necessary to excessively push the proximal end side of the dilator in the distal direction, the bending of the dilator body can be suppressed.
 また、拡張状態の拡張体と血管壁との間にダイレータ本体及びシース本体を前進させる際に、ダイレータ突起及びシース突起がストラットを基端方向に押すことになるため、ストラットの一部分に力が集中することを避けることができる。これにより、ステントグラフトが折れ曲がる(キンクする)ことを抑えることができる。 Further, when the dilator main body and the sheath main body are advanced between the expanded body in the expanded state and the blood vessel wall, the dilator protrusion and the sheath protrusion push the strut in the proximal direction, so that force is concentrated on a part of the strut. You can avoid doing that. Thereby, it can suppress that a stent graft bends (kinks).
 さらに、トランシーリングにおいて、拡張状態の拡張体と血管壁との間にダイレータ本体に先行してガイドワイヤを挿入する場合、ダイレータ突起の基端側面をストラットに引っ掛けた状態でガイドワイヤを押し進めることができる。この際、ガイドワイヤを前進させる時にダイレータに作用する基端方向の反力を拡張体で受けることができるため、ガイドワイヤの硬さを過度に高めなくてもガイドワイヤを円滑に前進させることができる。 Furthermore, in the transceiling, when a guide wire is inserted between the expanded body in an expanded state and the blood vessel wall prior to the dilator body, the guide wire can be pushed forward while the proximal end side surface of the dilator protrusion is hooked on the strut. it can. At this time, since the expansion body can receive the reaction force in the proximal direction acting on the dilator when the guide wire is advanced, the guide wire can be smoothly advanced without excessively increasing the hardness of the guide wire. it can.
 さらにまた、シースの先端を瘤内の所定位置まで前進させた後で、ダイレータをシースから抜去することにより、塞栓物をダイレータの内腔よりも大きいシースの内腔を介して瘤内に導入することができる。 Furthermore, after the distal end of the sheath is advanced to a predetermined position in the aneurysm, the dilator is removed from the sheath, thereby introducing the embolus into the aneurysm through the lumen of the sheath larger than the lumen of the dilator. be able to.
 上記の医療用デバイスにおいて、前記ダイレータ突起のうち前記ダイレータの基端方向を指向する基端側面は、前記ダイレータ本体の軸線と直交する方向に延在する平坦面か、又は前記ダイレータ突起の突出端に向かって前記ダイレータ本体の基端方向に傾斜する平坦面であってもよい。 Said medical device WHEREIN: The base end side surface which faces the base end direction of the said dilator among the said dilator protrusion is a flat surface extended in the direction orthogonal to the axis line of the said dilator main body, or the protrusion end of the said dilator protrusion The flat surface which inclines in the base end direction of the said dilator main body toward this may be sufficient.
 このような構成によれば、ダイレータ突起の基端側面とストラットとの間の力の伝達を効率的に行うことができる。 According to such a configuration, it is possible to efficiently transmit force between the proximal end side surface of the dilator protrusion and the strut.
 上記の医療用デバイスにおいて、前記ダイレータ突起のピッチと前記シース突起のピッチは、互いに略同一であってもよい。 In the above medical device, the pitch of the dilator projection and the pitch of the sheath projection may be substantially the same.
 このような構成によれば、トランシーリングにおいて、拡張状態の拡張体と血管壁との間にダイレータ本体及びシース本体を前進させる際にダイレータ突起の基端側面とシース突起の基端側面とを複数のストラットに効率的に接触させることができる。 According to such a configuration, when the dilator main body and the sheath main body are advanced between the expanded body in the expanded state and the blood vessel wall, a plurality of the base end side surfaces of the dilator projection and the base end side surface of the sheath projection are provided in the transsealing. The strut can be contacted efficiently.
 上記の医療用デバイスにおいて、前記ダイレータ突起の基端と前記シース突起の先端とは、周方向の位相が互いに略同一であってもよい。 In the above medical device, the proximal end of the dilator projection and the distal end of the sheath projection may have substantially the same circumferential phase.
 このような構成によれば、ダイレータ突起の基端側面とシース突起の基端側面とを複数のストラットに一層効率的に接触させることができる。 According to such a configuration, the proximal end side surface of the dilator projection and the proximal end side surface of the sheath projection can be more efficiently brought into contact with a plurality of struts.
 上記の医療用デバイスにおいて、前記ダイレータと前記シースとの相対的な回転を規制する回転規制部を備えていてもよい。 The medical device may include a rotation restricting portion that restricts relative rotation between the dilator and the sheath.
 このような構成によれば、ダイレータ突起とシース突起とが互いに周方向にずれることを抑えることができる。 According to such a configuration, it is possible to suppress the dilator protrusion and the sheath protrusion from being displaced from each other in the circumferential direction.
 上記の医療用デバイスにおいて、前記ダイレータ突起は、前記先端突出部の先端部まで延在していてもよい。 In the above medical device, the dilator protrusion may extend to the tip of the tip protrusion.
 このような構成によれば、トランシーリングにおいて、先端突出部の先端部を拡張状態のステントグラフトと血管壁との間に円滑に挿入させることができる。 According to such a configuration, the tip of the tip protrusion can be smoothly inserted between the expanded stent graft and the blood vessel wall in the transceiling.
 上記の医療用デバイスにおいて、前記ダイレータ突起の外周面は、前記ダイレータ突起の先端部における前記先端突出部の外周面に対する突出長が螺旋の延在方向の一端に向かって小さくなることにより、前記先端突出部の外周面に滑らかに連なっていてもよい。 In the above-described medical device, the outer peripheral surface of the dilator protrusion has a protrusion length with respect to an outer peripheral surface of the tip protrusion portion at a tip portion of the dilator protrusion that decreases toward one end in a spiral extending direction. You may connect smoothly with the outer peripheral surface of a protrusion part.
 このような構成によれば、トランシーリングにおいて、拡張状態の拡張体と血管壁との間に先端突出部の先端部を円滑に挿入することができる。ダイレータの回転時に血管壁や拡張体に余計な力が作用することを抑えることができる。 According to such a configuration, the tip end portion of the tip protruding portion can be smoothly inserted between the expanded body in the expanded state and the blood vessel wall in the transceiling. It is possible to suppress an excessive force from acting on the blood vessel wall and the expansion body when the dilator rotates.
 上記の医療用デバイスにおいて、前記カテーテルは、可撓性を有するとともに長尺に形成されたシースと、前記シース内に抜去可能に挿入されたダイレータと、を備え、前記ダイレータは、前記シース内に挿入された状態で前記シースの先端よりも先端側に突出する可撓性を有する長尺な前記シャフト本体としてのダイレータ本体と、前記ダイレータ本体のうち前記シースよりも先端側に位置して前記先端シャフト部を構成する先端突出部の外周面に設けられ、前記ダイレータ本体を周方向に螺旋状に周回する前記シャフト突起としてのダイレータ突起と、を有していてもよい。 In the above-described medical device, the catheter includes a flexible and long sheath, and a dilator removably inserted into the sheath, and the dilator is inserted into the sheath. A dilator main body as a long shaft body having flexibility that protrudes to the front end side from the front end of the sheath in the inserted state, and the front end of the dilator main body that is positioned on the front end side of the sheath A dilator protrusion as the shaft protrusion that is provided on the outer peripheral surface of the tip projecting portion constituting the shaft portion and spirals around the dilator body in the circumferential direction may be included.
 このような構成によれば、上述したダイレータと同様の効果を奏する。 According to such a configuration, the same effect as the above-described dilator can be obtained.
 本発明によれば、動脈瘤内の塞栓物を導入する際にシャフト突起が拡張体と血管壁との間に位置する場合、ペリグラフト及びトランシーリングにおいて、シース本体の先端位置が基端方向にずれることを抑えることができる。また、トランシーリングにおいて、シャフト本体の撓みを抑えることができるとともにガイドワイヤを円滑に前進させることができる。また、ペリグラフト及びトランシーリングにおいて、シャフト本体を円滑に後退させることができる。 According to the present invention, when the shaft protrusion is positioned between the expansion body and the blood vessel wall when the embolus is introduced into the aneurysm, the distal end position of the sheath body is shifted in the proximal direction in the perigraft and the transsealing. That can be suppressed. Further, in the transceiling, the deflection of the shaft body can be suppressed and the guide wire can be smoothly advanced. Further, the shaft body can be smoothly retracted in the perigraft and transceiling.
本発明の一実施形態に係る医療用デバイスの斜視図である。1 is a perspective view of a medical device according to an embodiment of the present invention. 図1の医療用デバイスの一部省略縦断面図である。FIG. 2 is a partially omitted vertical sectional view of the medical device of FIG. 1. 図1の医療用デバイスの先端側の拡大平面図である。It is an enlarged plan view of the front end side of the medical device of FIG. 図4Aはシース突起(ダイレータ突起)の拡大断面図であり、図4Bは図3のIVB-IVB線に沿った横断面図である。4A is an enlarged cross-sectional view of a sheath protrusion (dilator protrusion), and FIG. 4B is a cross-sectional view taken along line IVB-IVB in FIG. 図5Aは図2のVA-VA線に沿った横断面図であり、図5Bは拡張状態のステントグラフトの平面図である。5A is a cross-sectional view taken along the line VA-VA of FIG. 2, and FIG. 5B is a plan view of the expanded stent graft. 図6Aはペリグラフトの第1説明図であり、図6Bはペリグラフトの第2説明図である。FIG. 6A is a first explanatory diagram of a perigraft, and FIG. 6B is a second explanatory diagram of a perigraft. 図7Aはペリグラフトの第3説明図であり、図7Bはペリグラフトの第4説明図である。FIG. 7A is a third explanatory diagram of the perigraft, and FIG. 7B is a fourth explanatory diagram of the perigraft. 図8Aはトランシーリングの第1説明図であり、図8Bはトランシーリングの第2説明図である。FIG. 8A is a first explanatory diagram of transceiling, and FIG. 8B is a second explanatory diagram of transceiling. 図9Aはトランシーリングの第3説明図であり、図9Bはトランシーリングの第4説明図である。9A is a third explanatory view of transceiling, and FIG. 9B is a fourth explanatory view of transceiling. 前記医療用デバイスの効果を説明する第1断面説明図である。It is 1st cross-sectional explanatory drawing explaining the effect of the said medical device. 前記医療用デバイスの効果を説明する第2断面説明図である。It is 2nd cross-sectional explanatory drawing explaining the effect of the said medical device. 前記医療用デバイスの効果を説明する第3断面説明図である。It is 3rd cross-sectional explanatory drawing explaining the effect of the said medical device. 医療用デバイスのカテーテルの変形例を示す斜視図である。It is a perspective view which shows the modification of the catheter of a medical device.
 以下、本発明に係る医療用デバイスについて好適な実施形態を挙げ、添付の図面を参照しながら説明する。 Hereinafter, preferred embodiments of the medical device according to the present invention will be described with reference to the accompanying drawings.
 本実施形態に係る医療用デバイス10は、図7B及び図9B等に示すように、腹部大動脈瘤(以下、「動脈瘤122a」という。)に連なる血管壁120Laと、動脈瘤122aに留置されたステントグラフト100との間を通して動脈瘤122a内に塞栓物130を送達するためのものである。ただし、医療用デバイス10は、例えば、ステントグラフト100を用いた胸部大動脈瘤等の手技に対しても用いることができる。 As shown in FIGS. 7B and 9B, the medical device 10 according to the present embodiment is placed on the blood vessel wall 120La connected to the abdominal aortic aneurysm (hereinafter referred to as “aneurysm 122a”) and the aneurysm 122a. The embolus 130 is delivered to the aneurysm 122a through the stent graft 100. However, the medical device 10 can also be used for procedures such as a thoracic aortic aneurysm using the stent graft 100, for example.
 まず、拡張体としてのステントグラフト100について図5Bを参照しながら簡単に説明する。なお、図5Bに示すステントグラフト100は、拡張状態である。図5Bに示すように、ステントグラフト100は、人工血管としての円筒状のグラフト102と、グラフト102の外周面に縫合等によって係止されたステント104とを有する。ステント104は、波状(ジグザグ状)に延在してグラフト102を周回する複数の線状のストラット106がステントグラフト100の軸線方向に互いに離間して設けられることによって形成されている。つまり、各ストラット106は、グラフト102の軸線方向に対して鋭角に傾斜する複数の直線部を含む。各ストラット106の横断面は、円形状に形成されている(図10参照)。 First, the stent graft 100 as an expansion body will be briefly described with reference to FIG. 5B. Note that the stent graft 100 shown in FIG. 5B is in an expanded state. As shown in FIG. 5B, the stent graft 100 includes a cylindrical graft 102 as an artificial blood vessel, and a stent 104 locked to the outer peripheral surface of the graft 102 by sewing or the like. The stent 104 is formed by providing a plurality of linear struts 106 extending in a wave shape (zigzag shape) and circulating around the graft 102 so as to be separated from each other in the axial direction of the stent graft 100. That is, each strut 106 includes a plurality of straight portions that are inclined at an acute angle with respect to the axial direction of the graft 102. The cross section of each strut 106 is formed in a circular shape (see FIG. 10).
 図1及び図2に示すように、医療用デバイス10は、長尺なシース12と、シース12内に抜去可能に挿入されたダイレータ14とを有するカテーテル11を備える。シース12は、長尺な中空状のシャフト本体としてのシース本体16と、シース本体16の基端に設けられたシースハブ18とを有する。 As shown in FIGS. 1 and 2, the medical device 10 includes a catheter 11 having a long sheath 12 and a dilator 14 removably inserted into the sheath 12. The sheath 12 includes a sheath body 16 as a long hollow shaft body, and a sheath hub 18 provided at the proximal end of the sheath body 16.
 シース本体16は、全長に亘って略一定の内径d1の内腔16aを有するチューブである。シース本体16は、蛇行する血管に容易に追従し得るように可撓性(柔軟性)を有するとともに、血管内で折り曲げられない適度な剛性を有する。シース本体16の構成材料としては、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、或いはこれら2種以上の混合物等)、ポリ塩化ビニル、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、ポリウレタンエラストマー、ポリイミド、フッ素樹脂等の高分子材料又はこれらの混合物、或いは上記2種以上の高分子材料が挙げられる。シース本体16は、これらの材料を複数積層した多層チューブであってもよい。 The sheath body 16 is a tube having a lumen 16a having a substantially constant inner diameter d1 over the entire length. The sheath body 16 has flexibility (softness) so that it can easily follow a meandering blood vessel, and has an appropriate rigidity that cannot be bent in the blood vessel. Examples of the constituent material of the sheath body 16 include polyolefin (for example, polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more thereof), polyvinyl chloride, Examples thereof include polymer materials such as polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane, polyurethane elastomer, polyimide, fluororesin, or a mixture thereof, or the above-described two or more polymer materials. The sheath body 16 may be a multilayer tube in which a plurality of these materials are stacked.
 シース本体16の先端から基端方向に所定長延在する先端領域の外周面は、先端に向かってテーパ状に縮径している。シース本体16の先端領域よりも基端側の外径は、一定に形成されている。シース本体16は、例えば、内径d1が1.5mm以上、外径d2(シース本体16の先端領域よりも基端側の外径)が9Fr(3mm)程度に構成される。ただし、シース本体16の内径d1及び外径d2は、任意に設定可能である。シース本体16の先端面16bは、血管壁に対する損傷を抑えるために湾曲している。シース本体16の少なくとも先端部を構成する先端シャフト部17は、ステントグラフト100と血管壁120Laとの間に配設される。シース本体16の先端シャフト部17の外周面には、拡張状態のステントグラフト100のストラット106に接触するようにシース本体16を周方向に螺旋状に周回するシース突起20が設けられている。つまり、シース本体16の基端部には、シャフト突起としてのシース突起20が設けられていない。ただし、シース突起20の延在する範囲は、任意に設定可能である。 The outer peripheral surface of the distal end region extending a predetermined length in the proximal direction from the distal end of the sheath body 16 is tapered toward the distal end. The outer diameter of the proximal end side of the distal end region of the sheath body 16 is formed to be constant. For example, the sheath body 16 has an inner diameter d1 of 1.5 mm or more and an outer diameter d2 (an outer diameter on the proximal end side of the distal end region of the sheath body 16) of about 9 Fr (3 mm). However, the inner diameter d1 and the outer diameter d2 of the sheath body 16 can be arbitrarily set. The distal end surface 16b of the sheath body 16 is curved to suppress damage to the blood vessel wall. The distal shaft portion 17 constituting at least the distal end portion of the sheath body 16 is disposed between the stent graft 100 and the blood vessel wall 120La. A sheath projection 20 is provided on the outer peripheral surface of the distal end shaft portion 17 of the sheath body 16 so as to spirally surround the sheath body 16 in the circumferential direction so as to contact the strut 106 of the expanded stent graft 100. That is, the sheath projection 20 as the shaft projection is not provided at the proximal end portion of the sheath body 16. However, the extending range of the sheath projection 20 can be arbitrarily set.
 図2及び図3に示すように、シース突起20は、例えば、帯状の平板をシース本体16の外周面に螺旋状に巻き付けて接合することにより形成される。ただし、シース突起20は、シース本体16の外周面を切削することによって形成してもよい。シース突起20の構成材料としては、金属又はシース本体16と同じ若しくは異なる樹脂が挙げられる。シース突起20を構成する金属材料としては、例えば、ステンレス鋼、コバルトクロム合金、チタン合金等の金属系の生体材料が好適に用いられる。 As shown in FIGS. 2 and 3, the sheath projection 20 is formed by, for example, winding a belt-like flat plate around the outer peripheral surface of the sheath body 16 in a spiral manner and joining them. However, the sheath protrusion 20 may be formed by cutting the outer peripheral surface of the sheath body 16. Examples of the constituent material of the sheath protrusion 20 include a metal or a resin that is the same as or different from that of the sheath body 16. As the metal material constituting the sheath projection 20, for example, a metallic biomaterial such as stainless steel, cobalt chromium alloy, titanium alloy or the like is preferably used.
 図4Aに示すように、シース突起20は、シース12の基端方向を指向する基端側面20aと、シース12の先端方向を指向する先端側面20bと、基端側面20a及び先端側面20bを連結する外周面20cとを有する。基端側面20a及び外周面20cの境界部と先端側面20b及び外周面20cの境界部は、血管壁の損傷を防止するためにR面取り加工が施されている。 As shown in FIG. 4A, the sheath projection 20 connects the proximal end side surface 20a directed in the proximal direction of the sheath 12, the distal end side surface 20b directed in the distal end direction of the sheath 12, and the proximal end side surface 20a and the distal end side surface 20b. And an outer peripheral surface 20c. The chamfering process is applied to the boundary portion between the proximal end side surface 20a and the outer peripheral surface 20c and the boundary portion between the distal end side surface 20b and the outer peripheral surface 20c in order to prevent damage to the blood vessel wall.
 基端側面20a及び先端側面20bのそれぞれは、シース本体16の軸線と直交する方向に延在する平坦面である。ただし、基端側面20aは、シース突起20の突出端(突出方向)に向かってシース本体16の基端方向に傾斜する平坦面であってもよい。この場合、シース突起20の基端側面20aとストラット106との間の力の伝達を効率的に行うことができる。また、先端側面20bは、シース突起20の突出端(突出方向)に向かってシース本体16の先端方向に傾斜する平坦面であってもよい。この場合、シース突起20の先端側面20bとストラット106との間の力の伝達を効率的に行うことができる。 Each of the proximal end side surface 20 a and the distal end side surface 20 b is a flat surface extending in a direction orthogonal to the axis of the sheath body 16. However, the proximal end side surface 20a may be a flat surface that inclines in the proximal end direction of the sheath body 16 toward the protruding end (projecting direction) of the sheath projection 20. In this case, transmission of force between the proximal end side surface 20a of the sheath projection 20 and the strut 106 can be performed efficiently. Further, the distal end side surface 20b may be a flat surface inclined toward the distal end direction of the sheath body 16 toward the protruding end (projecting direction) of the sheath projection 20. In this case, transmission of force between the distal end side surface 20b of the sheath projection 20 and the strut 106 can be performed efficiently.
 図2及び図3において、シース突起20は、先端シャフト部17の先端部まで延在している。図4Bに示すように、シース突起20の外周面20cは、シース突起20の先端部における先端シャフト部17の外周面に対する突出長が螺旋の延在方向の一端(始端)に向かって小さくなることにより、先端シャフト部17の外周面に滑らかに連なっている。すなわち、シース突起20の先端部と先端シャフト部17の外周面との間に段差は存在しない。具体的には、シース突起20の先端部の外周面20cは、螺旋の始端に向かって薄肉になるように先端シャフト部17側(径方向内方)に傾斜している。 2 and 3, the sheath projection 20 extends to the distal end portion of the distal shaft portion 17. As shown in FIG. 4B, the outer peripheral surface 20 c of the sheath projection 20 has a protrusion length with respect to the outer peripheral surface of the distal shaft portion 17 at the distal end portion of the sheath projection 20 that decreases toward one end (starting end) in the spiral extending direction. Thus, the outer peripheral surface of the tip shaft portion 17 is smoothly connected. That is, there is no step between the distal end portion of the sheath projection 20 and the outer peripheral surface of the distal shaft portion 17. Specifically, the outer peripheral surface 20c of the distal end portion of the sheath projection 20 is inclined toward the distal shaft portion 17 side (inward in the radial direction) so as to become thinner toward the spiral start end.
 また、図1に示すように、シース突起20の外周面20cは、シース突起20の基端部におけるシース本体16の外周面に対する突出長が螺旋の延在方向の他端(終端)に向かって小さくなることにより、先端シャフト部17の外周面に滑らかに連なっている。すなわち、シース突起20の基端部と先端シャフト部17の外周面との間に段差は存在しない。具体的には、シース突起20の基端部の外周面20cは、螺旋の終端に向かって薄肉になるように先端シャフト部17側(径方向内方)に傾斜している。 Further, as shown in FIG. 1, the outer peripheral surface 20c of the sheath projection 20 has a protruding length with respect to the outer peripheral surface of the sheath body 16 at the proximal end portion of the sheath projection 20 toward the other end (terminal) in the spiral extending direction. By becoming smaller, it is smoothly connected to the outer peripheral surface of the tip shaft portion 17. That is, there is no step between the proximal end portion of the sheath projection 20 and the outer peripheral surface of the distal end shaft portion 17. Specifically, the outer peripheral surface 20c of the proximal end portion of the sheath projection 20 is inclined toward the distal shaft portion 17 side (inward in the radial direction) so as to become thinner toward the end of the spiral.
 ただし、シース突起20の先端部の外周面20cが先端シャフト部17の外周面に滑らかに連なるように、先端シャフト部17の外周面にシース突起20の先端部が配設される凹部を形成してもよい。また、シース突起20の基端部の外周面20cが先端シャフト部17の外周面に滑らかに連なるように、先端シャフト部17の外周面にシース突起20の基端部が配設される凹部を形成してもよい。 However, a recess in which the distal end portion of the sheath projection 20 is disposed is formed on the outer circumferential surface of the distal shaft portion 17 so that the outer circumferential surface 20c of the distal end portion of the sheath projection 20 is smoothly connected to the outer circumferential surface of the distal shaft portion 17. May be. Further, a recess in which the proximal end portion of the sheath projection 20 is disposed on the outer peripheral surface of the distal shaft portion 17 so that the outer peripheral surface 20c of the proximal end portion of the sheath projection 20 is smoothly connected to the outer peripheral surface of the distal shaft portion 17. It may be formed.
 図4Aにおいて、シース突起20の延在方向の中間部において、基端側面20aの突出長(基端側面20aの平坦部分の先端シャフト部17の外周面に対する突出長)と先端側面20bの突出長(基端側面20aの平坦部分の先端シャフト部17の外周面に対する突出長)とは、中間部の全長に亘って同一の高さhに設定されている。この場合、シース突起20とストラット106との間の力の伝達を効率的に行うことができるとともにシース突起20がグラフト102に当たることを抑えることができる。高さhは、ストラット106の半径r(図11参照)よりも大きく且つストラット106の直径よりも小さいことが好ましい。つまり、例えば、ストラット106の直径が0.4mmである場合、高さhは、0.2mmよりも大きく且つ0.4mmよりも小さい範囲で設定される。高さhを0.1mm以下にすると、60歳以上の男性の大動脈内膜厚の平均厚さよりも小さくなるため、血管壁の損傷を抑えることができる。ただし、高さhは、任意に設定可能である。 In FIG. 4A, at the intermediate portion in the extending direction of the sheath projection 20, the protruding length of the proximal side surface 20a (the protruding length of the flat portion of the proximal end side surface 20a with respect to the outer peripheral surface of the distal shaft portion 17) and the protruding length of the distal side surface 20b. (The protruding length of the flat portion of the base end side surface 20a with respect to the outer peripheral surface of the distal end shaft portion 17) is set to the same height h over the entire length of the intermediate portion. In this case, it is possible to efficiently transmit force between the sheath projection 20 and the strut 106 and to suppress the sheath projection 20 from hitting the graft 102. The height h is preferably larger than the radius r (see FIG. 11) of the strut 106 and smaller than the diameter of the strut 106. That is, for example, when the diameter of the strut 106 is 0.4 mm, the height h is set in a range larger than 0.2 mm and smaller than 0.4 mm. When the height h is 0.1 mm or less, it becomes smaller than the average thickness of the aortic intima of men over 60 years old, so that damage to the blood vessel wall can be suppressed. However, the height h can be arbitrarily set.
 図3に示すように、シース突起20の螺旋角度θ1(シース12の軸線に対して直交する線分とシース突起20とのなす角度)は、拡張状態のステントグラフト100のストラット106の傾斜角度θ2(ステントグラフト100の軸線に対して直交する線分とストラット106の直線部とのなす角度)と同一又は近い値になるように設定されている(図5B参照)。この場合、シース突起20の基端側面20a及び先端側面20bをストラット106の直線部に効率的に接触させることができる。シース突起20の螺旋角度θ1は、例えば、30°以上45°以下に設定される。 As shown in FIG. 3, the helical angle θ1 of the sheath projection 20 (the angle formed by the line segment orthogonal to the axis of the sheath 12 and the sheath projection 20) is the inclination angle θ2 of the strut 106 of the expanded stent graft 100 ( The angle is set to be equal to or close to the angle formed between the line segment orthogonal to the axis of the stent graft 100 and the straight portion of the strut 106 (see FIG. 5B). In this case, the proximal end side surface 20 a and the distal end side surface 20 b of the sheath projection 20 can be efficiently brought into contact with the straight portion of the strut 106. The spiral angle θ1 of the sheath projection 20 is set to, for example, 30 ° to 45 °.
 シース突起20のピッチL1(軸線方向に隣接する基端側面20aと先端側面20bとの間隔)は、全長に亘って略一定であり、ステントグラフト100の軸方向に隣接するストラット106の間隔L2よりも狭い。この場合、シース突起20の基端側面20aを複数のストラット106に効率的に接触させることができる。また、拡張状態のステントグラフト100と血管壁120Laとの間からシース12を抜去する際に、シース突起20の先端側面20bを複数のストラット106に効率的に接触させることができる。シース突起20のピッチL1は、シース本体16の外径d2及びシース突起20の螺旋角度θ1に基づいて定められる。 The pitch L1 of the sheath projection 20 (the distance between the proximal side surface 20a and the distal side surface 20b adjacent in the axial direction) is substantially constant over the entire length, and is larger than the distance L2 between the struts 106 adjacent in the axial direction of the stent graft 100. narrow. In this case, the proximal end side surface 20a of the sheath projection 20 can be efficiently brought into contact with the plurality of struts 106. Further, when the sheath 12 is removed from between the expanded stent graft 100 and the blood vessel wall 120La, the distal side surface 20b of the sheath projection 20 can be efficiently brought into contact with the plurality of struts 106. The pitch L1 of the sheath protrusion 20 is determined based on the outer diameter d2 of the sheath body 16 and the helical angle θ1 of the sheath protrusion 20.
 図1、図2及び図5Aに示すように、シースハブ18は、中空状に形成され、ダイレータ14が挿通される内腔18aを有している。シースハブ18の構成材料としては、シース本体16の構成材料と同じものが挙げられる。シースハブ18は、シース本体16の外周面に連なり基端方向に向かってテーパ状に拡径した外周面を有する拡径部22と、拡径部22の基端に設けられた円環状のシース側係合部24とを有する。シース側係合部24の外周面には、環状溝26が形成されている。シース側係合部24の内周面には、シースハブ18の軸線方向に沿って延在したキー溝28が形成されている。キー溝28は、シースハブ18の基端面に開口している。 As shown in FIGS. 1, 2, and 5A, the sheath hub 18 is formed in a hollow shape and has a lumen 18a through which the dilator 14 is inserted. Examples of the constituent material of the sheath hub 18 include the same materials as the constituent material of the sheath body 16. The sheath hub 18 is connected to the outer peripheral surface of the sheath body 16 and has an outer peripheral surface having an outer peripheral surface that is tapered toward the proximal direction, and an annular sheath side provided at the proximal end of the expanded diameter portion 22. And an engaging portion 24. An annular groove 26 is formed on the outer peripheral surface of the sheath side engaging portion 24. A key groove 28 extending along the axial direction of the sheath hub 18 is formed on the inner peripheral surface of the sheath side engaging portion 24. The key groove 28 is open to the proximal end surface of the sheath hub 18.
 図1及び図2に示すように、ダイレータ14は、シース12内に挿入された状態でシース本体16の先端よりも先端側に突出する可撓性を有する長尺な中空状のダイレータ本体30と、ダイレータ本体30の基端に設けられてシースハブ18に着脱可能なダイレータハブ32とを有する。つまり、ダイレータ本体30は、シース本体16よりも長尺に構成されており、シースハブ18にダイレータハブ32を装着した状態で、シース12の先端よりも先端側に所定長だけ突出している。 As shown in FIG. 1 and FIG. 2, the dilator 14 includes a long hollow dilator body 30 having flexibility and protruding toward the distal end side of the distal end of the sheath body 16 when inserted into the sheath 12. And a dilator hub 32 provided at the proximal end of the dilator body 30 and detachable from the sheath hub 18. That is, the dilator main body 30 is configured to be longer than the sheath main body 16, and protrudes by a predetermined length from the distal end of the sheath 12 to the distal end side when the dilator hub 32 is attached to the sheath hub 18.
 ダイレータ本体30は、全長に亘って略一定の内径d3の内腔30aを有するチューブである。ダイレータ本体30は、蛇行する血管に容易に追従し得るように可撓性(柔軟性)を有するとともに、血管内で折り曲げられない適度な剛性を有する。ダイレータ本体30の構成材料としては、シース本体16の構成材料と同じものが挙げられる。 The dilator body 30 is a tube having a lumen 30a having a substantially constant inner diameter d3 over its entire length. The dilator body 30 has flexibility (softness) so that it can easily follow a meandering blood vessel, and has an appropriate rigidity that cannot be bent in the blood vessel. Examples of the constituent material of the dilator body 30 include the same materials as the constituent material of the sheath body 16.
 ダイレータ本体30の内径d3は、ガイドワイヤ110が挿通できるように0.46mm(0.018インチ)以上に構成されている。ただし、ダイレータ本体30の内径d3は、任意に設定可能である。ダイレータ本体30の外径は、ダイレータ14がシース12に対して軸線方向に移動できるような大きさに設定されている。ダイレータ本体30の先端面30bは、血管壁の損傷を抑えるために湾曲している。 The inner diameter d3 of the dilator main body 30 is configured to be 0.46 mm (0.018 inch) or more so that the guide wire 110 can be inserted. However, the inner diameter d3 of the dilator body 30 can be arbitrarily set. The outer diameter of the dilator body 30 is set to a size that allows the dilator 14 to move in the axial direction with respect to the sheath 12. The distal end surface 30b of the dilator body 30 is curved to suppress damage to the blood vessel wall.
 ダイレータ本体30の先端突出部34(ダイレータ本体30のうちシース12の先端よりも先端側に位置する部分)は、動脈瘤122aに連なる血管に留置されたステントグラフト100と動脈瘤122aに連なる血管壁120Laとの間に挿入される。先端突出部34の外周面は、先端に向かって徐々に縮径している。先端突出部34の外周面には、ダイレータ本体30をシース突起20の螺旋と同じ方向に螺旋状に周回するダイレータ突起36が設けられている。つまり、ダイレータ本体30のうち先端突出部34よりも基端側には、ダイレータ突起36が設けられていない(図2参照)。 The distal protrusion 34 of the dilator main body 30 (the portion of the dilator main body 30 located on the distal side of the distal end of the sheath 12) is a stent graft 100 placed in a blood vessel connected to the aneurysm 122a and a blood vessel wall 120La connected to the aneurysm 122a. Inserted between. The outer peripheral surface of the tip protrusion 34 is gradually reduced in diameter toward the tip. On the outer peripheral surface of the tip protrusion 34, a dilator protrusion 36 that spirals around the dilator body 30 in the same direction as the spiral of the sheath protrusion 20 is provided. That is, the dilator projection 36 is not provided on the base end side of the tip protrusion 34 in the dilator body 30 (see FIG. 2).
 図2及び図3に示すように、ダイレータ突起36は、例えば、帯状の平板を先端突出部34の外周面に螺旋状に巻き付けて接合することにより形成される。ただし、ダイレータ突起36は、先端突出部34の外周面を切削することによって形成してもよい。ダイレータ突起36の構成材料は、シース突起20の構成材料と同じものが挙げられる。 As shown in FIGS. 2 and 3, the dilator protrusion 36 is formed by, for example, winding a belt-like flat plate around the outer peripheral surface of the tip protrusion 34 in a spiral manner and joining them. However, the dilator protrusion 36 may be formed by cutting the outer peripheral surface of the tip protrusion 34. The constituent material of the dilator protrusion 36 may be the same as the constituent material of the sheath protrusion 20.
 図4Aに示すように、ダイレータ突起36は、ダイレータ14の基端方向を指向する基端側面36aと、ダイレータ14の先端方向を指向する先端側面36bと、基端側面36a及び先端側面36bを連結する外周面36cとを有する。基端側面36a及び外周面36cの境界部と先端側面36b及び外周面36cの境界部は、血管壁の損傷を防止するためにR面取り加工が施されている。 As shown in FIG. 4A, the dilator protrusion 36 connects the base end side surface 36 a that faces the base end direction of the dilator 14, the front end side surface 36 b that points the front end direction of the dilator 14, and the base end side surface 36 a and the front end side surface 36 b. And an outer peripheral surface 36c. The chamfering process is applied to the boundary between the proximal end side surface 36a and the outer peripheral surface 36c and the boundary portion between the distal end side surface 36b and the outer peripheral surface 36c in order to prevent damage to the blood vessel wall.
 基端側面36a及び先端側面36bのそれぞれは、ダイレータ本体30の軸線と直交する方向に延在する平坦面である。ただし、基端側面36aは、ダイレータ突起36の突出端(突出方向)に向かってダイレータ本体30の基端方向に傾斜する平坦面であってもよい。この場合、ダイレータ突起36の基端側面36aとストラット106との間の力の伝達を効率的に行うことができる。また、先端側面36bは、ダイレータ突起36の突出端(突出方向)に向かってダイレータ本体30の先端方向に傾斜する平坦面であってもよい。この場合、ダイレータ突起36の先端側面36bとストラット106との間の力の伝達を効率的に行うことができる。 Each of the proximal end side surface 36 a and the distal end side surface 36 b is a flat surface extending in a direction perpendicular to the axis of the dilator body 30. However, the base end side surface 36 a may be a flat surface that is inclined in the base end direction of the dilator main body 30 toward the protruding end (projecting direction) of the dilator protrusion 36. In this case, force transmission between the proximal end side surface 36a of the dilator protrusion 36 and the strut 106 can be efficiently performed. Further, the front end side surface 36 b may be a flat surface that inclines in the front end direction of the dilator main body 30 toward the protruding end (projecting direction) of the dilator protrusion 36. In this case, transmission of force between the tip side surface 36b of the dilator protrusion 36 and the strut 106 can be performed efficiently.
 図1~図3において、ダイレータ突起36は、先端突出部34の先端部まで延在している。ダイレータ突起36の外周面36cは、ダイレータ突起36の先端部における先端突出部34の外周面に対する突出長が螺旋の延在方向の一端(始端)に向かって小さくなることにより、先端突出部34の外周面に滑らかに連なっている。すなわち、ダイレータ突起36の先端部と先端突出部34の外周面との間に段差は存在しない。具体的には、ダイレータ突起36の先端部の外周面36cは、螺旋の始端に向かって薄肉になるように先端突出部34側(径方向内方)に傾斜している。 1 to 3, the dilator protrusion 36 extends to the tip of the tip protrusion 34. The outer peripheral surface 36c of the dilator protrusion 36 has a protrusion length with respect to the outer peripheral surface of the tip protrusion 34 at the tip of the dilator protrusion 36 becoming smaller toward one end (starting end) in the spiral extending direction. Smoothly connected to the outer peripheral surface. That is, there is no step between the tip of the dilator protrusion 36 and the outer peripheral surface of the tip protrusion 34. Specifically, the outer peripheral surface 36c at the tip of the dilator projection 36 is inclined toward the tip protrusion 34 (inward in the radial direction) so as to become thinner toward the spiral start.
 また、ダイレータ突起36の外周面36cは、ダイレータ突起36の基端部における先端突出部34の外周面に対する突出長が螺旋の延在方向の他端(終端)に向かって小さくなることにより、先端突出部34の外周面に滑らかに連なっている。すなわち、ダイレータ突起36の基端部と先端突出部34の外周面との間に段差は存在しない。具体的には、ダイレータ突起36の基端部の外周面36cは、螺旋の終端に向かって薄肉になるように先端突出部34側(径方向内方)に傾斜している。これにより、ダイレータ14をシース12から抜去する際に、ダイレータ突起36がシース本体16に引っ掛かることを抑えることができる。 In addition, the outer peripheral surface 36c of the dilator protrusion 36 has a distal end that protrudes toward the other end (termination) in the spiral extending direction with respect to the outer peripheral surface of the distal protrusion 34 at the proximal end of the dilator protrusion 36, thereby The projection 34 is smoothly connected to the outer peripheral surface. That is, there is no step between the base end portion of the dilator protrusion 36 and the outer peripheral surface of the tip protruding portion 34. Specifically, the outer peripheral surface 36c of the base end portion of the dilator protrusion 36 is inclined toward the tip protrusion 34 (in the radial direction) so as to become thinner toward the end of the spiral. Thereby, when the dilator 14 is removed from the sheath 12, it is possible to prevent the dilator protrusion 36 from being caught by the sheath body 16.
 ただし、ダイレータ突起36の先端部の外周面36cが先端突出部34の外周面に滑らかに連なるように、先端突出部34の外周面にダイレータ突起36の先端部が配設される凹部を形成してもよい。また、ダイレータ突起36の基端部の外周面36cが先端突出部34の外周面に滑らかに連なるように、先端突出部34の外周面にダイレータ突起36の基端部が配設される凹部を形成してもよい。 However, a recess in which the tip portion of the dilator projection 36 is disposed is formed on the outer peripheral surface of the tip protrusion portion 34 so that the outer peripheral surface 36c of the tip portion of the dilator projection 36 is smoothly connected to the outer periphery surface of the tip protrusion portion 34. May be. In addition, a recess in which the base end portion of the dilator projection 36 is disposed on the outer peripheral surface of the tip protrusion 34 so that the outer peripheral surface 36c of the base end portion of the dilator protrusion 36 is smoothly connected to the outer periphery of the tip protrusion 34. It may be formed.
 図3において、ダイレータ突起36の螺旋角度θ3(ダイレータ14の軸線に対して直交する線分とダイレータ突起36とのなす角度)は、シース突起20の螺旋角度θ1と同じ角度に設定されている。つまり、ダイレータ突起36の螺旋角度θ3は、拡張した状態のステントグラフト100のストラット106の傾斜角度θ2と同一又は近い値になるように設定されている。 3, the spiral angle θ3 of the dilator protrusion 36 (the angle formed by the line segment orthogonal to the axis of the dilator 14 and the dilator protrusion 36) is set to the same angle as the spiral angle θ1 of the sheath protrusion 20. That is, the spiral angle θ3 of the dilator protrusion 36 is set to be equal to or close to the inclination angle θ2 of the strut 106 of the expanded stent graft 100.
 ダイレータ突起36のピッチL3(軸線方向に隣接する基端側面36aと先端側面36bとの間隔)は、全長に亘って略一定であり、シース突起20のピッチL1と略同一である。また、ダイレータ突起36の基端とシース突起20の先端とは、周方向の位相が互いに略同一である。つまり、ダイレータ突起36の基端は、シース本体16の先端面16bを介してシース突起20の先端に滑らかに連なっている。 The pitch L3 (distance between the proximal side surface 36a and the distal side surface 36b adjacent to each other in the axial direction) of the dilator projection 36 is substantially constant over the entire length, and is substantially the same as the pitch L1 of the sheath projection 20. Further, the proximal end of the dilator protrusion 36 and the distal end of the sheath protrusion 20 have substantially the same circumferential phase. That is, the proximal end of the dilator protrusion 36 is smoothly connected to the distal end of the sheath protrusion 20 via the distal end surface 16 b of the sheath body 16.
 図1、図2及び図5Aに示すように、ダイレータハブ32は、中空状に形成され、ガイドワイヤ110が挿通される内腔32aを有している。ダイレータハブ32の構成材料としては、ダイレータ本体30の構成材料と同じものが挙げられる。ダイレータハブ32は、ダイレータ本体30の基端に設けられてシース側係合部24に着脱可能なダイレータ側係合部38と、ダイレータ側係合部38から基端方向に延在した把持部40とを有する。ダイレータ側係合部38は、ダイレータ本体30の基端に設けられた円環板状のフランジ部42と、フランジ部42の外縁部から先端方向に延出した円筒部44と、円筒部44の突出端から径方向内方に突出した環状の爪部46とを含む。フランジ部42の先端方向を指向する面には、先端方向に突出してシース側係合部24のキー溝28に嵌合する突出部48が設けられている。突出部48及びキー溝28は、ダイレータ14とシース12との相対的な回転を規制する回転規制部50として機能する。突出部48は、ダイレータ本体30の外周面に連結している。爪部46は、シース側係合部24の環状溝26に嵌合する。 As shown in FIGS. 1, 2 and 5A, the dilator hub 32 is formed in a hollow shape and has a lumen 32a through which the guide wire 110 is inserted. Examples of the constituent material of the dilator hub 32 include the same constituent materials as those of the dilator body 30. The dilator hub 32 is provided at the proximal end of the dilator main body 30 and can be attached to and detached from the sheath side engaging portion 24, and the gripping portion 40 extending from the dilator side engaging portion 38 in the proximal direction. And have. The dilator side engaging portion 38 includes an annular plate-shaped flange portion 42 provided at the base end of the dilator main body 30, a cylindrical portion 44 extending from the outer edge portion of the flange portion 42 in the distal direction, and the cylindrical portion 44. And an annular claw portion 46 protruding radially inward from the protruding end. A projecting portion 48 that projects in the distal direction and fits into the key groove 28 of the sheath side engaging portion 24 is provided on the surface of the flange portion 42 that faces the distal direction. The protrusion 48 and the key groove 28 function as a rotation restricting portion 50 that restricts relative rotation between the dilator 14 and the sheath 12. The protrusion 48 is connected to the outer peripheral surface of the dilator body 30. The claw portion 46 is fitted into the annular groove 26 of the sheath side engaging portion 24.
 次に、医療用デバイス10の作用について説明する。ここでは、まず、動脈瘤122a(腹部大動脈瘤)に対するステントグラフト内挿術における医療用デバイス10を用いたペリグラフト処置について説明する。 Next, the operation of the medical device 10 will be described. Here, first, a perigraft treatment using the medical device 10 in stent graft insertion for an aneurysm 122a (abdominal aortic aneurysm) will be described.
 図6Aに示すように、動脈瘤122aの治療としてステントグラフト内挿術を行う場合、ユーザ(術者)は、例えば、鼠蹊部からガイドワイヤ110aを血管内に挿入して右総腸骨動脈120R、腹部大動脈122を介して胸部下行大動脈124に進行させる。その後、収縮状態の第1ステントグラフト100aが先端部に設けられたカテーテル126aをガイドワイヤ110aに沿って右総腸骨動脈120Rを介して腹部大動脈122まで進行させて第1ステントグラフト100aを動脈瘤122a内に位置させる。この状態で第1ステントグラフト100aを拡張させることにより、第1ステントグラフト100aを動脈瘤122aよりも上方(胸部下行大動脈124側)の血管壁122bと右総腸骨動脈120Rの血管壁120Raとに密着させる。そして、ガイドワイヤ110a及びカテーテル126aを抜去する。 As shown in FIG. 6A, when performing stent graft insertion as a treatment for aneurysm 122a, the user (operator) inserts a guide wire 110a into the blood vessel from the buttocks, for example, to insert the right common iliac artery 120R, Advance to the descending thoracic aorta 124 via the abdominal aorta 122. Thereafter, the catheter 126a having the contracted first stent graft 100a at the distal end is advanced along the guide wire 110a through the right common iliac artery 120R to the abdominal aorta 122 to move the first stent graft 100a into the aneurysm 122a. To be located. In this state, the first stent graft 100a is expanded to bring the first stent graft 100a into close contact with the blood vessel wall 122b above the aneurysm 122a (the chest descending aorta 124 side) and the blood vessel wall 120Ra of the right common iliac artery 120R. . Then, the guide wire 110a and the catheter 126a are removed.
 続いて、図6Bに示すように、鼠蹊部からガイドワイヤ110を血管内に挿入して左総腸骨動脈120Lを介して動脈瘤122a内に進行させる。次いで、ダイレータ14の内腔14a(図2参照)にガイドワイヤ110を通した状態でガイドワイヤ110に沿ってシース本体16の先端が動脈瘤122a内の所定位置に到達するまで医療用デバイス10を進行させる。 Subsequently, as shown in FIG. 6B, the guide wire 110 is inserted into the blood vessel from the buttocks and advanced into the aneurysm 122a via the left common iliac artery 120L. Next, the medical device 10 is moved until the distal end of the sheath body 16 reaches a predetermined position in the aneurysm 122a along the guide wire 110 with the guide wire 110 passed through the lumen 14a (see FIG. 2) of the dilator 14. Make it progress.
 そして、図7Aに示すように、鼠蹊部からガイドワイヤ110bを血管内に挿入して左総腸骨動脈120L、腹部大動脈122を介して胸部下行大動脈124に進行させる。その後、収縮状態の第2ステントグラフト100bが先端部に設けられたカテーテル126bをガイドワイヤ110bに沿って左総腸骨動脈120Lを介して腹部大動脈122まで進行させて第2ステントグラフト100bを拡張状態の第1ステントグラフト100aの連結用開口部107(図6B参照)に挿入する。 Then, as shown in FIG. 7A, a guide wire 110b is inserted into the blood vessel from the buttocks and advanced to the descending thoracic aorta 124 via the left common iliac artery 120L and the abdominal aorta 122. Thereafter, the catheter 126b provided with the second stent graft 100b in the contracted state is advanced to the abdominal aorta 122 through the left common iliac artery 120L along the guide wire 110b to expand the second stent graft 100b in the expanded state. 1 Insert into the connection opening 107 (see FIG. 6B) of the stent graft 100a.
 その後、第2ステントグラフト100bを拡張させることにより、第2ステントグラフト100bを第1ステントグラフト100aに連結させるとともに左総腸骨動脈120Lの血管壁120Laに密着させる。この際、拡張した第2ステントグラフト100bと左総腸骨動脈120Lの血管壁120Laとの間にシース本体16の先端シャフト部17が配置される。また、第1ステントグラフト100aに第2ステントグラフト100bが連結されることにより逆Y字状のステントグラフト100が形成されることになる。 Thereafter, the second stent graft 100b is expanded to connect the second stent graft 100b to the first stent graft 100a and to be in close contact with the blood vessel wall 120La of the left common iliac artery 120L. At this time, the distal end shaft portion 17 of the sheath body 16 is disposed between the expanded second stent graft 100b and the blood vessel wall 120La of the left common iliac artery 120L. Further, the second stent graft 100b is connected to the first stent graft 100a, whereby the inverted Y-shaped stent graft 100 is formed.
 次いで、ガイドワイヤ110b及びカテーテル126bを抜去し、ガイドワイヤ110及びダイレータ14をシース12から抜去する。具体的には、ダイレータ側係合部38の爪部46とシース側係合部24との係合を解除し、ダイレータハブ32をシースハブ18に対して基端方向に引き戻す。これにより、血管内には、シース本体16が残されることとなる。 Next, the guide wire 110b and the catheter 126b are removed, and the guide wire 110 and the dilator 14 are removed from the sheath 12. Specifically, the engagement between the claw portion 46 of the dilator side engaging portion 38 and the sheath side engaging portion 24 is released, and the dilator hub 32 is pulled back with respect to the sheath hub 18 in the proximal direction. As a result, the sheath body 16 is left in the blood vessel.
 そして、シース12の内腔12a(図2参照)を介して塞栓物130を動脈瘤122a内に送達する。塞栓物130としては、塞栓剤又は金属製のコイル等が用いられる。塞栓物130としてコイルを用いる場合、シース12の内腔12aに図示しないマイクロカテーテルを挿入し、そのマイクロカテーテルの内腔を介して塞栓物130を動脈瘤122a内に送達するようにしてもよい。また、ダイレータ14をシース12から抜去することなく残した状態でダイレータ14の内腔14aを介して動脈瘤122a内に塞栓物130を送達してもよい。 Then, the embolus 130 is delivered into the aneurysm 122a through the lumen 12a of the sheath 12 (see FIG. 2). As the embolus 130, an embolic agent or a metal coil is used. When a coil is used as the embolus 130, a microcatheter (not shown) may be inserted into the lumen 12a of the sheath 12, and the embolus 130 may be delivered into the aneurysm 122a via the lumen of the microcatheter. Alternatively, the embolus 130 may be delivered into the aneurysm 122a via the lumen 14a of the dilator 14 with the dilator 14 left without being removed from the sheath 12.
 動脈瘤122a内への塞栓物130の導入が完了した後、ユーザは、シースハブ18を回転させながら基端方向に引き戻すことによりシース12を抜去する。なお、シース12を抜去する際に、ダイレータ14をシース12内に挿入し、ダイレータ14とシース12を一緒に抜去してもよい。これにより、ダイレータ14によりシース12が支持されるため、シース12を容易に抜去できる。このように、予め動脈瘤122a内に塞栓物130を充填しておくことにより、大動脈側枝132から動脈瘤122a内に血液が逆流するタイプ2のエンドリークを予防することができる。 After the introduction of the embolus 130 into the aneurysm 122a is completed, the user removes the sheath 12 by pulling it back in the proximal direction while rotating the sheath hub 18. When the sheath 12 is removed, the dilator 14 may be inserted into the sheath 12 and the dilator 14 and the sheath 12 may be removed together. Thereby, since the sheath 12 is supported by the dilator 14, the sheath 12 can be easily removed. Thus, by filling the embolus 130 in the aneurysm 122a in advance, type 2 endoleak in which blood flows backward from the aortic side branch 132 into the aneurysm 122a can be prevented.
 次に、動脈瘤122a(腹部大動脈瘤)に対するステントグラフト内挿術が行われた後、タイプ2のエンドリークが認められた際に行われる医療用デバイス10を用いたトランシーリング処置について説明する。 Next, the transsealing treatment using the medical device 10 performed when a type 2 endoleak is recognized after the stent-graft insertion for the aneurysm 122a (abdominal aortic aneurysm) will be described.
 この場合、図8Aに示すように、動脈瘤122a内には、逆Y字状のステントグラフト100がすでに留置されている。つまり、第1ステントグラフト100aが腹部大動脈122の動脈瘤122aよりも上方の血管壁122bと右総腸骨動脈120Rの血管壁120Raとに密着し、第2ステントグラフト100bが左総腸骨動脈120Lの血管壁120Laに密着している。 In this case, as shown in FIG. 8A, an inverted Y-shaped stent graft 100 has already been placed in the aneurysm 122a. That is, the first stent graft 100a is closely attached to the blood vessel wall 122b above the aneurysm 122a of the abdominal aorta 122 and the blood vessel wall 120Ra of the right common iliac artery 120R, and the second stent graft 100b is a blood vessel of the left common iliac artery 120L. It is in close contact with the wall 120La.
 トランシーリングでは、鼠蹊部からガイドワイヤ110を血管内に挿入して左総腸骨動脈120Lに進行させる。次いで、ダイレータ14の内腔14aにガイドワイヤ110を通した状態でガイドワイヤ110に沿ってダイレータ本体30の先端が第2ステントグラフト100bの直前に位置するまで医療用デバイス10を進行させる。 In transceiling, the guide wire 110 is inserted into the blood vessel from the buttocks and advanced to the left common iliac artery 120L. Next, the medical device 10 is advanced along the guide wire 110 with the guide wire 110 passed through the lumen 14a of the dilator 14 until the tip of the dilator main body 30 is located immediately before the second stent graft 100b.
 その後、第2ステントグラフト100bと左総腸骨動脈120Lの血管壁120Laとの間にガイドワイヤ110を先行させながら医療用デバイス10を挿入する(図8B参照)。この際、ユーザは、シースハブ18を回転させることにより医療用デバイス10を進行させる。また、ガイドワイヤ110と医療用デバイス10を交互に所定長だけ進行させる。そして、シース本体16の先端を動脈瘤122a内の所定位置に留置した後(図9A参照)、ガイドワイヤ110及びダイレータ14を抜去する。 Thereafter, the medical device 10 is inserted while the guide wire 110 is advanced between the second stent graft 100b and the blood vessel wall 120La of the left common iliac artery 120L (see FIG. 8B). At this time, the user advances the medical device 10 by rotating the sheath hub 18. In addition, the guide wire 110 and the medical device 10 are alternately advanced by a predetermined length. Then, after the distal end of the sheath body 16 is placed at a predetermined position in the aneurysm 122a (see FIG. 9A), the guide wire 110 and the dilator 14 are removed.
 その後、ペリグラフトの手順と同様の手順を行う。つまり、シース12の内腔12aを介して塞栓物130を動脈瘤122a内に送達する(図9B参照)。塞栓物130としては、塞栓剤(薬剤)又は金属製のコイル等が用いられる。塞栓物130としてコイルを用いる場合、シース12の内腔12aに図示しないマイクロカテーテルを挿入し、そのマイクロカテーテルの内腔を介して塞栓物130を動脈瘤122a内に送達するようにしてもよい。また、ダイレータ14をシース12から抜去することなく残した状態でダイレータ14の内腔14aを介して動脈瘤122a内に塞栓物130を送達してもよい。 Then, perform the same procedure as the perigraft procedure. That is, the embolus 130 is delivered into the aneurysm 122a through the lumen 12a of the sheath 12 (see FIG. 9B). As the embolus 130, an embolic agent (medicine) or a metal coil is used. When a coil is used as the embolus 130, a microcatheter (not shown) may be inserted into the lumen 12a of the sheath 12, and the embolus 130 may be delivered into the aneurysm 122a via the lumen of the microcatheter. Alternatively, the embolus 130 may be delivered into the aneurysm 122a via the lumen 14a of the dilator 14 with the dilator 14 left without being removed from the sheath 12.
 そして、動脈瘤122a内への塞栓物130の送達が完了した後、ユーザは、シースハブ18を導入時とは逆方向に回転させながら基端方向に引き戻すことによりシース12を抜去する。なお、シース12を抜去する際に、ダイレータ14をシース12内に挿入し、ダイレータ14とシース12を一緒に抜去してもよい。これにより、ダイレータ14によりシース12が支持されるため、シース12を容易に抜去できる。このように、タイプ2のエンドリークが認められた際、動脈瘤122a内に塞栓物130を充填することにより、大動脈側枝132からの動脈瘤122a内の血液の逆流を抑制することができる。 Then, after the delivery of the embolus 130 into the aneurysm 122a is completed, the user removes the sheath 12 by pulling back the sheath hub 18 in the proximal direction while rotating the sheath hub 18 in the direction opposite to that at the time of introduction. When the sheath 12 is removed, the dilator 14 may be inserted into the sheath 12 and the dilator 14 and the sheath 12 may be removed together. Thereby, since the sheath 12 is supported by the dilator 14, the sheath 12 can be easily removed. Thus, when type 2 endoleak is recognized, the backflow of blood in the aneurysm 122a from the aortic side branch 132 can be suppressed by filling the embolus 130 into the aneurysm 122a.
 医療用デバイス10は、上述したペリグラフトとトランシーリングの中間的な手技に用いてもよい。具体的には、ガイドワイヤ110を動脈瘤122a内に留置した状態で第2ステントグラフト100bを拡張させて血管壁120Laに留置し、その後、医療用デバイス10をガイドワイヤ110に沿って拡張状態の第2ステントグラフト100bと血管壁120Laとの間に挿入するようにしてもよい。 The medical device 10 may be used for an intermediate procedure between the above-described perigraft and transceiling. Specifically, the second stent graft 100b is expanded and placed on the blood vessel wall 120La with the guide wire 110 placed in the aneurysm 122a, and then the medical device 10 is expanded along the guide wire 110 in the expanded state. You may make it insert between 2 stent graft 100b and blood vessel wall 120La.
 次に、本実施形態の効果について以下に説明する。 Next, the effect of this embodiment will be described below.
 医療用デバイス10は、動脈瘤122aに連なる血管壁120Laと、動脈瘤122aに連なる血管に留置されたステントグラフト100との間に配置可能なカテーテル11を備える。カテーテル11を構成するシース12は、長尺なシース本体16(シャフト本体)と、ステントグラフト100を構成するグラフト102の外周面に設けられたステント104を構成するストラット106に接触するようにシース本体16の少なくとも先端部を構成する先端シャフト部17の外周面に設けられ、シース本体16を周方向に螺旋状に周回するシース突起20(シャフト突起)と、を有する。 The medical device 10 includes a catheter 11 that can be placed between a blood vessel wall 120La connected to an aneurysm 122a and a stent graft 100 placed in a blood vessel connected to the aneurysm 122a. The sheath 12 constituting the catheter 11 is in contact with a long sheath body 16 (shaft body) and a strut 106 constituting the stent 104 provided on the outer peripheral surface of the graft 102 constituting the stent graft 100. And a sheath projection 20 (shaft projection) that is provided on the outer peripheral surface of the tip shaft portion 17 that constitutes at least the tip portion of the sheath body 16 and spirals around the sheath body 16 in the circumferential direction.
 このため、ペリグラフト及びトランシーリングにおいて、動脈瘤122aに留置された拡張状態のステントグラフト100と血管壁120Laとの間にシース本体16を配置した状態でシース突起20の基端側面20aをステントグラフト100のストラット106に対して引っ掛けることができる。これにより、図10に示すように、動脈瘤122a内に塞栓物130を送達する際にシース12に作用する基端方向の反力Faをステントグラフト100で受けることができるため、シース本体16の先端位置が基端方向にずれることを抑えることができる。よって、塞栓物130を動脈瘤122a内に確実に導入することができる。 Therefore, in the perigraft and transceiling, the proximal side surface 20a of the sheath projection 20 is placed on the strut of the stent graft 100 in a state where the sheath body 16 is disposed between the expanded stent graft 100 placed in the aneurysm 122a and the blood vessel wall 120La. 106 can be hooked. Accordingly, as shown in FIG. 10, the stent graft 100 can receive a proximal reaction force Fa acting on the sheath 12 when the embolus 130 is delivered into the aneurysm 122a. It is possible to prevent the position from shifting in the proximal direction. Therefore, the embolus 130 can be reliably introduced into the aneurysm 122a.
 また、図11に示すように、トランシーリングにおいて、シース本体16を拡張状態のステントグラフト100と血管壁120Laとの間に挿入する際にシース突起20の基端側面20aをストラット106に接触させた状態でシース12を回転させることにより、シース突起20がストラット106を基端方向に押しながら回転するため、シース突起20にはストラット106から先端方向の反力Fbが作用する。つまり、シース12の基端側に入力された回転力が先端シャフト部17で推進力(反力Fb)に変換される。よって、拡張状態のステントグラフト100と血管壁120Laとの間においてシース本体16を円滑に前進させることができる。この場合、シース12の基端側を先端方向に過度に押し込む必要がないため、シース本体16の撓みを抑えることができる。 In addition, as shown in FIG. 11, in the transsealing, when the sheath body 16 is inserted between the expanded stent graft 100 and the blood vessel wall 120La, the proximal end side surface 20a of the sheath projection 20 is in contact with the strut 106. By rotating the sheath 12, the sheath projection 20 rotates while pushing the strut 106 in the proximal direction, so that a reaction force Fb in the distal direction from the strut 106 acts on the sheath projection 20. That is, the rotational force input to the proximal end side of the sheath 12 is converted into a propulsive force (reaction force Fb) by the distal shaft portion 17. Therefore, the sheath body 16 can be smoothly advanced between the expanded stent graft 100 and the blood vessel wall 120La. In this case, since it is not necessary to excessively push the proximal end side of the sheath 12 in the distal direction, the bending of the sheath body 16 can be suppressed.
 さらに、トランシーリングにおいて、拡張状態のステントグラフト100と血管壁120Laとの間にシース本体16に先行してガイドワイヤ110を挿入する場合、シース突起20の基端側面20aをストラット106に引っ掛けた状態でガイドワイヤ110を押し進めることができる。この際、ガイドワイヤ110を前進させる時にシース12に作用する基端方向の反力をステントグラフト100で受けることができるため、ガイドワイヤ110の硬さを過度に高めなくてもガイドワイヤ110を円滑に前進させることができる。 Further, in the transsealing, when the guide wire 110 is inserted between the stent graft 100 in an expanded state and the blood vessel wall 120La prior to the sheath body 16, the proximal end side surface 20a of the sheath projection 20 is hooked on the strut 106. The guide wire 110 can be pushed forward. At this time, since the proximal graft reaction force acting on the sheath 12 when the guide wire 110 is advanced can be received by the stent graft 100, the guide wire 110 can be smoothly moved without excessively increasing the hardness of the guide wire 110. You can move forward.
 さらにまた、図12に示すように、ペリグラフト及びトランシーリングにおいて、シース12を抜去する際にシース突起20の先端側面20bを拡張状態のステントグラフト100のストラット106に接触させた状態でシース12を回転(トランシーリングにおけるシース12の挿入時の回転方向とは逆方向に回転)させることにより、シース突起20がストラット106を先端方向に押しながら回転するため、シース突起20にはストラット106から基端方向の反力Fcが作用する。これにより、拡張状態のステントグラフト100と血管壁120Laとの間においてシース本体16を円滑に後退させることができる。よって、シース12を容易に抜去することができる。従って、動脈瘤122aのタイプ2のエンドリークを効果的に処置することができる。 Furthermore, as shown in FIG. 12, in the perigraft and transsealing, when the sheath 12 is removed, the sheath 12 is rotated while the distal end side surface 20b of the sheath projection 20 is in contact with the strut 106 of the expanded stent graft 100 (see FIG. The sheath projection 20 rotates while pushing the strut 106 in the distal direction by rotating the sheath projection 20 in the direction opposite to the rotation direction when the sheath 12 is inserted in the transceiling. Reaction force Fc acts. As a result, the sheath body 16 can be smoothly retracted between the expanded stent graft 100 and the blood vessel wall 120La. Therefore, the sheath 12 can be easily removed. Therefore, the type 2 endoleak of the aneurysm 122a can be effectively treated.
 シース突起20のうちシース12の基端方向を指向する基端側面20aは、シース本体16の軸線と直交する方向に延在しているため、シース突起20の基端側面20aとストラット106との間の力の伝達を効率的に行うことができる。 Since the proximal end side surface 20 a of the sheath projection 20 that faces the proximal direction of the sheath 12 extends in a direction perpendicular to the axis of the sheath body 16, the proximal end side surface 20 a of the sheath projection 20 and the strut 106 The transmission of force between them can be performed efficiently.
 シース突起20は先端シャフト部17の先端部まで延在しているため、トランシーリングにおいて、先端シャフト部17を拡張状態のステントグラフト100と血管壁120Laとの間に円滑に挿入させることができる。また、ペリグラフト及びトランシーリングにおいて、先端シャフト部17を拡張状態のステントグラフト100と血管壁120Laとの間から円滑に抜去させることができる。 Since the sheath protrusion 20 extends to the distal end portion of the distal shaft portion 17, the distal shaft portion 17 can be smoothly inserted between the expanded stent graft 100 and the blood vessel wall 120La in the transsealing. Further, in the perigraft and transceiling, the distal end shaft portion 17 can be smoothly removed from between the expanded stent graft 100 and the blood vessel wall 120La.
 シース突起20の外周面20cは、シース突起20の先端部における先端シャフト部17の外周面に対する突出長が螺旋の延在方向の一端に向かって小さくなることにより、先端シャフト部17の外周面に滑らかに連なっている。これにより、トランシーリングにおいて、拡張状態のステントグラフト100と血管壁120Laとの間に先端シャフト部17を円滑に挿入することができる。また、シース12の回転時に血管壁120Laやステントグラフト100に余計な力が作用することを抑えることができる。 The outer circumferential surface 20c of the sheath projection 20 is formed on the outer circumferential surface of the distal shaft portion 17 by the protrusion length of the distal end portion of the sheath projection 20 with respect to the outer circumferential surface of the distal shaft portion 17 becoming smaller toward one end in the spiral extending direction. It is connected smoothly. Thereby, the tip shaft portion 17 can be smoothly inserted between the stent graft 100 in the expanded state and the blood vessel wall 120La in the transsealing. Further, it is possible to suppress an extra force from acting on the blood vessel wall 120La and the stent graft 100 when the sheath 12 is rotated.
 医療用デバイス10は、シース12内に抜去可能に挿入されたダイレータ14を備える。ダイレータ14は、シース12内に挿入された状態でシース本体16の先端よりも先端側に突出する可撓性を有する長尺な中空状のダイレータ本体30と、ダイレータ本体30のうちシース本体16よりも先端側に位置する先端突出部34の外周面に設けられ、ダイレータ本体30を周方向に螺旋状に周回するダイレータ突起36と、を有する。 The medical device 10 includes a dilator 14 that is removably inserted into the sheath 12. The dilator 14 includes a long hollow dilator body 30 having flexibility and protruding from the distal end side of the sheath body 16 in a state of being inserted into the sheath 12, and the sheath body 16 of the dilator body 30. And a dilator protrusion 36 that is provided on the outer peripheral surface of the tip protrusion 34 located on the tip side and spirals around the dilator body 30 in the circumferential direction.
 これにより、トランシーリングにおいて、拡張状態のステントグラフト100と血管壁120Laとの間にシース12よりも外径の細いダイレータ本体30の先端突出部34を先行して挿入することができるため、ステントグラフト100と血管壁120Laとの間にシース本体16をより円滑に挿入することができる。この際、ダイレータ突起36の基端側面36aをストラット106に接触させた状態でダイレータ14を回転させることにより、ダイレータ突起36がストラット106を基端方向に押しながら回転するため、ダイレータ14の回転力が推進力に変換される。よって、拡張状態のステントグラフト100と血管壁120Laとの間においてダイレータ本体30を円滑に前進させることができる。この場合、ダイレータ14の基端側を先端方向に過度に押し込む必要がないため、ダイレータ本体30の撓みを抑えることができる。 Thereby, in the transsealing, the distal protrusion 34 of the dilator body 30 having an outer diameter smaller than that of the sheath 12 can be inserted in advance between the expanded stent graft 100 and the blood vessel wall 120La. The sheath body 16 can be more smoothly inserted between the blood vessel wall 120La. At this time, by rotating the dilator 14 with the proximal side surface 36a of the dilator projection 36 in contact with the strut 106, the dilator projection 36 rotates while pushing the strut 106 in the proximal direction. Is converted into propulsion. Therefore, the dilator body 30 can be smoothly advanced between the expanded stent graft 100 and the blood vessel wall 120La. In this case, since it is not necessary to excessively push the proximal end side of the dilator 14 in the distal direction, the bending of the dilator body 30 can be suppressed.
 拡張状態のステントグラフト100と血管壁120Laとの間にダイレータ本体30及びシース本体16を前進させる際に、ダイレータ突起36及びシース突起20がストラット106を基端方向に押すことになるため、ストラット106の一部分に力が集中することを避けることができる。これにより、ステントグラフト100が折れ曲がる(キンクする)ことを抑えることができる。 When the dilator main body 30 and the sheath main body 16 are advanced between the expanded stent graft 100 and the blood vessel wall 120La, the dilator protrusion 36 and the sheath protrusion 20 push the strut 106 in the proximal direction. It is possible to avoid concentrating power on a part. Thereby, it can suppress that the stent graft 100 bends (kinks).
 トランシーリングにおいて、拡張状態のステントグラフト100と血管壁120Laとの間にダイレータ本体30に先行してガイドワイヤ110を挿入する場合、ダイレータ突起36の基端側面36aをストラット106に引っ掛けた状態でガイドワイヤ110を押し進めることができる。この際、ガイドワイヤ110を前進させる時にダイレータ14に作用する基端方向の反力をステントグラフト100で受けることができるため、ガイドワイヤ110の硬さを過度に高めなくてもガイドワイヤ110を円滑に前進させることができる。 In the transsealing, when the guide wire 110 is inserted between the expanded stent graft 100 and the blood vessel wall 120La prior to the dilator main body 30, the guide wire is in a state where the proximal end side surface 36a of the dilator protrusion 36 is hooked on the strut 106. 110 can be pushed forward. At this time, since the stent graft 100 can receive the reaction force in the proximal direction acting on the dilator 14 when the guide wire 110 is advanced, the guide wire 110 can be smoothly moved without excessively increasing the hardness of the guide wire 110. You can move forward.
 シース12の先端を動脈瘤122a内の所定位置まで前進させた後で、ダイレータ14をシース12から抜去することにより、塞栓物130をダイレータ14の内腔14aよりも大きいシース12の内腔12aを介して動脈瘤122a内に送達することができる。 After the distal end of the sheath 12 is advanced to a predetermined position in the aneurysm 122 a, the dilator 14 is removed from the sheath 12, whereby the embolus 130 is inserted into the lumen 12 a of the sheath 12 larger than the lumen 14 a of the dilator 14. Through the aneurysm 122a.
 ダイレータ突起36のうちダイレータ14の基端方向を指向する基端側面36aは、ダイレータ本体30の軸線と直交する方向に延在する平坦面であるため、ダイレータ突起36の基端側面36aとストラット106との間の力の伝達を効率的に行うことができる。 Of the dilator protrusions 36, the base end side surface 36 a that faces the base end direction of the dilator 14 is a flat surface that extends in a direction orthogonal to the axis of the dilator main body 30. It is possible to efficiently transmit force between the two.
 ダイレータ突起36のピッチL3とシース突起20のピッチL1は、互いに略同一である。そのため、トランシーリングにおいて、拡張状態のステントグラフト100と血管壁120Laとの間にダイレータ本体30及びシース本体16を前進させる際にダイレータ突起36の基端側面36aとシース突起20の基端側面20aとを複数のストラット106に効率的に接触させることができる。 The pitch L3 of the dilator projection 36 and the pitch L1 of the sheath projection 20 are substantially the same. Therefore, in the transsealing, when the dilator main body 30 and the sheath main body 16 are advanced between the expanded stent graft 100 and the blood vessel wall 120La, the base end side surface 36a of the dilator projection 36 and the base end side surface 20a of the sheath projection 20 are connected. The plurality of struts 106 can be contacted efficiently.
 ダイレータ突起36の基端とシース突起20の先端とは、周方向の位相が互いに略同一であるため、ダイレータ突起36の基端側面36aとシース突起20の基端側面20aとを複数のストラット106に一層効率的に接触させることができる。 The proximal end of the dilator projection 36 and the distal end of the sheath projection 20 have substantially the same circumferential phase. Therefore, the proximal end side surface 36 a of the dilator projection 36 and the proximal end side surface 20 a of the sheath projection 20 are connected to a plurality of struts 106. Can be contacted more efficiently.
 医療用デバイス10は、ダイレータ14とシース12との相対的な回転を規制する回転規制部50を備えるため、ダイレータ突起36とシース突起20とが互いに周方向にずれることを抑えることができる。 Since the medical device 10 includes the rotation restricting portion 50 that restricts the relative rotation between the dilator 14 and the sheath 12, the dilator protrusion 36 and the sheath protrusion 20 can be prevented from being displaced from each other in the circumferential direction.
 ダイレータ突起36は、先端突出部34の先端部まで延在している。これにより、トランシーリングにおいて、先端突出部34の先端部を拡張状態のステントグラフト100と血管壁120Laとの間に円滑に挿入させることができる。 The dilator protrusion 36 extends to the tip of the tip protrusion 34. Thereby, in the transceiling, the distal end portion of the distal protrusion 34 can be smoothly inserted between the expanded stent graft 100 and the blood vessel wall 120La.
 ダイレータ突起36の外周面36cは、ダイレータ突起36の先端部における先端突出部34の外周面に対する突出長が螺旋の延在方向の一端に向かって小さくなることにより、先端突出部34の外周面に滑らかに連なっている。これにより、トランシーリングにおいて、拡張状態のステントグラフト100と血管壁120Laとの間に先端突出部34の先端部を円滑に挿入することができる。ダイレータ14の回転時に血管壁120Laやステントグラフト100に余計な力が作用することを抑えることができる。 The outer peripheral surface 36 c of the dilator protrusion 36 is formed on the outer peripheral surface of the tip protrusion 34 by reducing the protrusion length of the tip of the dilator protrusion 36 relative to the outer periphery of the tip protrusion 34 toward one end in the spiral extending direction. It is connected smoothly. Thereby, in the transceiling, the distal end portion of the distal protrusion 34 can be smoothly inserted between the expanded stent graft 100 and the blood vessel wall 120La. It is possible to suppress an extra force from acting on the blood vessel wall 120La and the stent graft 100 when the dilator 14 rotates.
 本発明は、上述した構成に限定されない。例えば、シース突起20の基端側面20a及び先端側面20bの少なくとも一方は、凸状の湾曲面であってもよい。また、ダイレータ突起36の基端側面36a及び先端側面36bの少なくとも一方は、凸状の湾曲面であってもよい。この場合、シース突起20及びダイレータ突起36によって血管壁120Laを損傷することを抑えることができる。 The present invention is not limited to the configuration described above. For example, at least one of the proximal end side surface 20a and the distal end side surface 20b of the sheath projection 20 may be a convex curved surface. In addition, at least one of the proximal end side surface 36a and the distal end side surface 36b of the dilator protrusion 36 may be a convex curved surface. In this case, damage to the blood vessel wall 120La by the sheath protrusion 20 and the dilator protrusion 36 can be suppressed.
 また、先端が球状のガイドワイヤ110を使用する場合、ダイレータ本体30(先端突出部34)の先端の内径は、ガイドワイヤ110の先端の直径と略同一にしてもよい。このような構成では、ガイドワイヤ110の先端部をダイレータ本体30の先端に位置させることにより、先端突出部34の外周面がガイドワイヤ110の先端部の外周面に滑らかに連なるため、先端突出部34の先端とガイドワイヤ110の先端部との間に段差が発生することを抑えることができる。これにより、ダイレータ本体30の先端とガイドワイヤ110との間の段差によって血管壁120Laを損傷することを抑えることができる。 Further, when the guide wire 110 having a spherical tip is used, the inner diameter of the tip of the dilator main body 30 (tip protruding portion 34) may be substantially the same as the diameter of the tip of the guide wire 110. In such a configuration, by positioning the distal end portion of the guide wire 110 at the distal end of the dilator body 30, the outer peripheral surface of the distal end protruding portion 34 is smoothly connected to the outer peripheral surface of the distal end portion of the guide wire 110. It is possible to suppress the occurrence of a step between the distal end of 34 and the distal end portion of the guide wire 110. Thereby, it is possible to prevent the blood vessel wall 120La from being damaged by the step between the tip of the dilator body 30 and the guide wire 110.
 ダイレータ突起36の螺旋の方向とシース突起20の螺旋の方向とは、互いに逆方向であってもよい。 The direction of the spiral of the dilator protrusion 36 and the direction of the spiral of the sheath protrusion 20 may be opposite to each other.
 医療用デバイス10は、図13に示すカテーテル11aを備えていてもよい。カテーテル11aは、可撓性を有するとともに長尺に形成されたシース13と、シース13内に抜去可能に挿入されたダイレータ14とを有する。ダイレータ14は、シース13内に挿入された状態でシース本体16の先端よりも先端側に突出する可撓性を有する長尺なシャフト本体としてのダイレータ本体30と、ダイレータ本体30のうちシース本体16よりも先端側に位置して先端シャフト部17aを構成する先端突出部34の外周面に設けられ、ダイレータ本体30を周方向に螺旋状に周回するシャフト突起としてのダイレータ突起36とを有する。シース13には、シース突起20が設けられていない点以外は、上述したシース12と同様に構成されている。このような構成であっても、上述したダイレータ14と同様の効果を奏する。 The medical device 10 may include a catheter 11a shown in FIG. The catheter 11a has a flexible sheath 13 that is long and a dilator 14 that is removably inserted into the sheath 13. The dilator 14 includes a dilator main body 30 as a flexible long shaft main body that protrudes further to the front end side than the front end of the sheath main body 16 when inserted into the sheath 13, and the sheath main body 16 of the dilator main body 30. It has a dilator projection 36 as a shaft projection provided on the outer peripheral surface of the tip projection 34 that is located further on the tip side and that forms the tip shaft portion 17a and spirals around the dilator body 30 in the circumferential direction. The sheath 13 is configured in the same manner as the sheath 12 described above except that the sheath protrusion 20 is not provided. Even with such a configuration, the same effects as those of the dilator 14 described above can be obtained.
 拡張体は、上述したステントグラフト100に限定されず、例えば、網目の細かいストラットによって構成され、グラフト102を備えていなくてもよい。 The expansion body is not limited to the stent graft 100 described above, and may be formed of, for example, a fine mesh strut and may not include the graft 102.

Claims (13)

  1.  動脈瘤(122a)に連なる血管壁(120La)と前記動脈瘤(122a)に連なる血管に留置された拡張体(100)との間に配置可能なカテーテル(11、11a)を備える医療用デバイス(10)であって、
     前記カテーテル(11、11a)は、
     可撓性を有するとともに長尺なシャフト本体と、
     前記拡張体(100)を構成するストラット(106)に接触するように前記シャフト本体の少なくとも先端部を構成する先端シャフト部(17、17a)の外周面に設けられ、前記シャフト本体を周方向に螺旋状に周回するシャフト突起と、を有する、
     ことを特徴とする医療用デバイス(10)。
    A medical device comprising a catheter (11, 11a) that can be placed between a blood vessel wall (120La) connected to an aneurysm (122a) and an expansion body (100) placed in a blood vessel connected to the aneurysm (122a) ( 10)
    The catheter (11, 11a)
    A flexible and long shaft body;
    Provided on the outer peripheral surface of the tip shaft portion (17, 17a) constituting at least the tip portion of the shaft main body so as to contact the strut (106) constituting the expansion body (100), and the shaft main body in the circumferential direction A shaft projection that spirally circulates,
    A medical device (10) characterized by the above.
  2.  請求項1記載の医療用デバイス(10)であって、
     前記カテーテル(11)は、前記シャフト本体としてのシース本体(16)と、前記シャフト突起としてのシース突起(20)と、を含むシース(12)を有し、
     前記シース突起(20)は、前記動脈瘤(122a)内に塞栓物(130)を送達する際に前記拡張体(100)と前記血管壁(120La)との間に位置するように設けられている、
     ことを特徴とする医療用デバイス(10)。
    The medical device (10) according to claim 1, comprising:
    The catheter (11) has a sheath (12) including a sheath body (16) as the shaft body and a sheath protrusion (20) as the shaft protrusion,
    The sheath protrusion (20) is provided to be positioned between the expansion body (100) and the blood vessel wall (120La) when delivering an embolus (130) into the aneurysm (122a). Yes,
    A medical device (10) characterized by the above.
  3.  請求項2記載の医療用デバイス(10)において、
     前記シース突起(20)のうち前記シース(12)の基端方向を指向する基端側面(20a)は、前記シース本体(16)の軸線と直交する方向に延在する平坦面か、又は前記シース突起(20)の突出端に向かって前記シース本体(16)の基端方向に傾斜する平坦面である、
     ことを特徴とする医療用デバイス(10)。
    The medical device (10) according to claim 2, wherein
    Of the sheath protrusions (20), the proximal end side surface (20a) oriented in the proximal end direction of the sheath (12) is a flat surface extending in a direction perpendicular to the axis of the sheath body (16), or A flat surface inclined toward the proximal end of the sheath body (16) toward the protruding end of the sheath projection (20);
    A medical device (10) characterized by the above.
  4.  請求項2又は3に記載の医療用デバイス(10)において、
     前記シース突起(20)は、前記先端シャフト部(17)の先端部まで延在している、
     ことを特徴とする医療用デバイス(10)。
    The medical device (10) according to claim 2 or 3,
    The sheath projection (20) extends to the distal end of the distal shaft portion (17).
    A medical device (10) characterized by the above.
  5.  請求項2~4のいずれか1項に記載の医療用デバイス(10)において、
     前記シース突起(20)の外周面(20c)は、前記シース突起(20)の先端部における前記先端シャフト部(17)の外周面に対する突出長が螺旋の延在方向の一端に向かって小さくなることにより、前記先端シャフト部(17)の外周面に滑らかに連なっている、
     ことを特徴とする医療用デバイス(10)。
    The medical device (10) according to any one of claims 2 to 4,
    In the outer peripheral surface (20c) of the sheath projection (20), the protruding length of the distal end portion of the sheath projection (20) with respect to the outer peripheral surface of the distal end shaft portion (17) decreases toward one end in the spiral extending direction. As a result, the end shaft portion (17) is smoothly connected to the outer peripheral surface.
    A medical device (10) characterized by the above.
  6.  請求項2~5のいずれか1項に記載の医療用デバイス(10)において、
     前記カテーテル(11)は、前記シース(12)内に抜去可能に挿入されたダイレータ(14)を備え、
     前記ダイレータ(14)は、前記シース(12)内に挿入された状態で前記シース本体(16)の先端よりも先端側に突出する可撓性を有する長尺なダイレータ本体(30)と、
     前記ダイレータ本体(30)のうち前記シース本体(16)よりも先端側に位置する先端突出部(34)の外周面に設けられ、前記ダイレータ本体(30)を周方向に螺旋状に周回するダイレータ突起(36)と、を有する、
     ことを特徴とする医療用デバイス(10)。
    The medical device (10) according to any one of claims 2 to 5,
    The catheter (11) includes a dilator (14) removably inserted into the sheath (12),
    The dilator (14) is a long dilator body (30) having flexibility and protruding toward the distal end side of the distal end of the sheath body (16) in a state of being inserted into the sheath (12);
    A dilator that is provided on the outer peripheral surface of the tip protrusion (34) located on the tip side of the sheath body (16) in the dilator body (30) and spirals around the dilator body (30) in the circumferential direction. A protrusion (36),
    A medical device (10) characterized by the above.
  7.  請求項6記載の医療用デバイス(10)において、
     前記ダイレータ突起(36)のうち前記ダイレータ(14)の基端方向を指向する基端側面(36a)は、前記ダイレータ本体(30)の軸線と直交する方向に延在する平坦面か、又は前記ダイレータ突起(36)の突出端に向かって前記ダイレータ本体(30)の基端方向に傾斜する平坦面である、
     ことを特徴とする医療用デバイス(10)。
    The medical device (10) according to claim 6, wherein:
    Of the dilator protrusion (36), the base end side surface (36a) oriented in the base end direction of the dilator (14) is a flat surface extending in a direction orthogonal to the axis of the dilator body (30), or A flat surface inclined toward the proximal end of the dilator body (30) toward the protruding end of the dilator protrusion (36);
    A medical device (10) characterized by the above.
  8.  請求項6又は7に記載の医療用デバイス(10)において、
     前記ダイレータ突起(36)のピッチ(L3)と前記シース突起(20)のピッチ(L1)は、互いに略同一である、
     ことを特徴とする医療用デバイス(10)。
    The medical device (10) according to claim 6 or 7,
    The pitch (L3) of the dilator protrusion (36) and the pitch (L1) of the sheath protrusion (20) are substantially the same.
    A medical device (10) characterized by the above.
  9.  請求項8記載の医療用デバイス(10)において、
     前記ダイレータ突起(36)の基端と前記シース突起(20)の先端とは、周方向の位相が互いに略同一である、
     ことを特徴とする医療用デバイス(10)。
    The medical device (10) according to claim 8,
    The proximal end of the dilator protrusion (36) and the distal end of the sheath protrusion (20) have substantially the same circumferential phase.
    A medical device (10) characterized by the above.
  10.  請求項9記載の医療用デバイス(10)において、
     前記ダイレータ(14)と前記シース(12)との相対的な回転を規制する回転規制部(50)を備える、
     ことを特徴とする医療用デバイス(10)。
    The medical device (10) according to claim 9, wherein
    A rotation restricting portion (50) for restricting relative rotation between the dilator (14) and the sheath (12);
    A medical device (10) characterized by the above.
  11.  請求項6~10のいずれか1項に記載の医療用デバイス(10)において、
     前記ダイレータ突起(36)は、前記先端突出部(34)の先端部まで延在している、
     ことを特徴とする医療用デバイス(10)。
    The medical device (10) according to any one of claims 6 to 10,
    The dilator protrusion (36) extends to the tip of the tip protrusion (34).
    A medical device (10) characterized by the above.
  12.  請求項6~11のいずれか1項に記載の医療用デバイス(10)において、
     前記ダイレータ突起(36)の外周面(36c)は、前記ダイレータ突起(36)の先端部における前記先端突出部(34)の外周面に対する突出長が螺旋の延在方向の一端に向かって小さくなることにより、前記先端突出部(34)の外周面に滑らかに連なっている、
     ことを特徴とする医療用デバイス(10)。
    The medical device (10) according to any one of claims 6 to 11,
    In the outer peripheral surface (36c) of the dilator protrusion (36), the protrusion length of the tip end portion of the dilator protrusion (36) with respect to the outer peripheral surface of the tip protrusion portion (34) decreases toward one end in the spiral extending direction. By this, it is smoothly connected to the outer peripheral surface of the tip protrusion (34).
    A medical device (10) characterized by the above.
  13.  請求項1記載の医療用デバイス(10)であって、
     前記カテーテル(11a)は、
     可撓性を有するとともに長尺に形成されたシース(13)と、
     前記シース(13)内に抜去可能に挿入されたダイレータ(14)と、を備え、
     前記ダイレータ(14)は、前記シース(13)内に挿入された状態で前記シース(13)の先端よりも先端側に突出する可撓性を有する長尺な前記シャフト本体としてのダイレータ本体(30)と、
     前記ダイレータ本体(30)のうち前記シース(13)よりも先端側に位置して前記先端シャフト部(17a)を構成する先端突出部(34)の外周面に設けられ、前記ダイレータ本体(30)を周方向に螺旋状に周回する前記シャフト突起としてのダイレータ突起(36)と、を有する、
     ことを特徴とする医療用デバイス(10)。
    The medical device (10) according to claim 1, comprising:
    The catheter (11a)
    A flexible sheath (13) that is long and flexible;
    A dilator (14) removably inserted into the sheath (13),
    The dilator (14) is a dilator body (30) which is a long shaft body having flexibility and protrudes more distally than the distal end of the sheath (13) in a state of being inserted into the sheath (13). )When,
    The dilator main body (30) is provided on the outer peripheral surface of the tip protruding portion (34) that is located on the tip side of the sheath (13) and constitutes the tip shaft portion (17a), and the dilator main body (30). A dilator protrusion (36) as the shaft protrusion that spirally circulates in the circumferential direction,
    A medical device (10) characterized by the above.
PCT/JP2018/008112 2017-03-28 2018-03-02 Medical device WO2018180209A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062215 2017-03-28
JP2017-062215 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180209A1 true WO2018180209A1 (en) 2018-10-04

Family

ID=63675312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008112 WO2018180209A1 (en) 2017-03-28 2018-03-02 Medical device

Country Status (1)

Country Link
WO (1) WO2018180209A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225025A1 (en) * 2018-05-24 2019-11-28 朝日インテック株式会社 Dilator
WO2020059120A1 (en) * 2018-09-21 2020-03-26 朝日インテック株式会社 Dilator
WO2020059122A1 (en) * 2018-09-21 2020-03-26 朝日インテック株式会社 Dilator
WO2020059121A1 (en) * 2018-09-21 2020-03-26 朝日インテック株式会社 Dilator
WO2021255906A1 (en) * 2020-06-18 2021-12-23 朝日インテック株式会社 Support device
US11331459B2 (en) 2017-03-24 2022-05-17 Asahi Intecc Co., Ltd. Dilator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540060A (en) * 2005-05-19 2008-11-20 スピラス メディカル インコーポレーテッド Rotating advance catheter insertion system
JP2012051670A (en) * 2010-08-31 2012-03-15 Japan Life Kk Jig for aligning magnet for use in manufacturing magnetic product
US20120265287A1 (en) * 2009-08-24 2012-10-18 Arsenal Medical, Inc. In-Situ Forming Foams for Treatment of Aneurysms

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540060A (en) * 2005-05-19 2008-11-20 スピラス メディカル インコーポレーテッド Rotating advance catheter insertion system
US20120265287A1 (en) * 2009-08-24 2012-10-18 Arsenal Medical, Inc. In-Situ Forming Foams for Treatment of Aneurysms
JP2012051670A (en) * 2010-08-31 2012-03-15 Japan Life Kk Jig for aligning magnet for use in manufacturing magnetic product

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11331459B2 (en) 2017-03-24 2022-05-17 Asahi Intecc Co., Ltd. Dilator
US11819647B2 (en) 2017-03-24 2023-11-21 Asahi Intecc Co., Ltd. Dilator
US11389631B2 (en) 2017-03-24 2022-07-19 Asahi Intecc Co., Ltd. Dilator
JPWO2019225026A1 (en) * 2018-05-24 2021-05-13 朝日インテック株式会社 Dilator
CN112188870A (en) * 2018-05-24 2021-01-05 朝日英达科株式会社 Dilator
WO2019225025A1 (en) * 2018-05-24 2019-11-28 朝日インテック株式会社 Dilator
JP7130741B2 (en) 2018-05-24 2022-09-05 朝日インテック株式会社 dilator
WO2019225026A1 (en) * 2018-05-24 2019-11-28 朝日インテック株式会社 Dilator
WO2020059121A1 (en) * 2018-09-21 2020-03-26 朝日インテック株式会社 Dilator
WO2020059122A1 (en) * 2018-09-21 2020-03-26 朝日インテック株式会社 Dilator
WO2020059120A1 (en) * 2018-09-21 2020-03-26 朝日インテック株式会社 Dilator
US11883067B2 (en) 2018-09-21 2024-01-30 Asahi Intecc Co., Ltd. Dilator
US11896790B2 (en) 2018-09-21 2024-02-13 Asahi Intecc Co., Ltd. Dilator
WO2021255906A1 (en) * 2020-06-18 2021-12-23 朝日インテック株式会社 Support device

Similar Documents

Publication Publication Date Title
WO2018180209A1 (en) Medical device
US11607304B2 (en) Endoluminal prosthesis having multiple branches or fenestrations and methods of deployment
US11779454B2 (en) Vascular prosthesis with crimped adapter and methods of use
US10258492B2 (en) Prosthesis delivery system with axially collapsible sheath
US9314360B2 (en) Bi-directional stent delivery system
US11801129B2 (en) Vascular prosthesis with fenestration ring and methods of use
JP6441297B2 (en) Stent and stent graft
JP4783876B2 (en) Stent graft, stent graft delivery (delivery) system and kit, and method for placing a stent graft
US8764812B2 (en) Bifurcated graft deployment systems and methods
EP0951253B1 (en) Apparatus for delivering and deploying an endoprosthesis
JP6714361B2 (en) Visceral-sided twin-tube main body stent graft and method of use
US20090318949A1 (en) Sealing apparatus and methods of use
US20120109279A1 (en) Apparatus and method of placement of a graft or graft system
WO2018156850A1 (en) Stent graft with fenestration lock
US11813185B2 (en) Self-orienting endovascular delivery system
JP6602491B2 (en) Stent delivery system, assembly thereof, and method of use thereof
US20230036965A1 (en) Drainage device
US20230248506A1 (en) Stent-Graft System
US8535371B2 (en) Method of positioning a tubular element in a blood vessel of a person
JP2020506016A (en) Implantable medical device delivery system and method
WO2014045428A1 (en) Indwelling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP