WO2018180192A1 - Plating liquid - Google Patents

Plating liquid Download PDF

Info

Publication number
WO2018180192A1
WO2018180192A1 PCT/JP2018/007997 JP2018007997W WO2018180192A1 WO 2018180192 A1 WO2018180192 A1 WO 2018180192A1 JP 2018007997 W JP2018007997 W JP 2018007997W WO 2018180192 A1 WO2018180192 A1 WO 2018180192A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
plating
formula
surfactant
salt
Prior art date
Application number
PCT/JP2018/007997
Other languages
French (fr)
Japanese (ja)
Inventor
眞美 渡邉
中矢 清隆
康 今野
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018031865A external-priority patent/JP7015975B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201880021384.1A priority Critical patent/CN110462108B/en
Priority to EP18777379.1A priority patent/EP3604622A4/en
Priority to KR1020197029812A priority patent/KR20190127814A/en
Priority to US16/497,032 priority patent/US11174565B2/en
Publication of WO2018180192A1 publication Critical patent/WO2018180192A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • C25D3/32Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors

Definitions

  • the present invention relates to a plating solution for forming a tin or tin alloy plating film. More specifically, the present invention relates to a tin or tin alloy plating solution that is suitable for forming solder bumps for semiconductor wafers and printed circuit boards, has a uniform bump height over a wide current density range, and suppresses the generation of voids during bump formation. It is.
  • This international application includes Japanese Patent Application No. 61175 (Japanese Patent Application No. 2017-61175) filed on March 27, 2017 and Japanese Patent Application No. 31865 (Japanese Patent Application No. 31865) filed on February 26, 2018. The contents of Japanese Patent Application No. 2017-61175 and Japanese Patent Application No. 2018-31865 are incorporated in this international application.
  • a lead-tin alloy solder plating solution comprising an aqueous solution containing at least one selected from acids and salts thereof, a soluble lead compound, a soluble tin compound, a nonionic surfactant and a formalin condensate of naphthalenesulfonic acid or a salt thereof
  • a formalin condensate of naphthalenesulfonic acid or a salt thereof as an additive contains 0.02 to 1.50% by mass with respect to lead ions.
  • Patent Document 1 states that even if plating is performed with this plating solution at a high current density, a lead-tin alloy protruding electrode having a small surface height variation, smoothness, and a small variation in the lead / tin composition ratio can be formed. Are listed.
  • a soluble salt composed of any of a tin salt and a mixture of a tin salt and a predetermined metal salt such as silver, copper, bismuth and lead, (B) an acid or a salt thereof, and (C) a specific A tin or tin alloy plating bath containing a phenanthrolinedione compound is disclosed (for example, see Patent Document 2).
  • Patent Document 2 since this plating bath contains a specific phenanthrolinedione compound as an additive, the plating bath can have excellent uniform electrodeposition and a good film appearance in a wide range of current densities. It is described that a uniform synthetic composition can be obtained in the current density region.
  • Patent Document 3 a tin plating solution containing a tin ion source, at least one nonionic surfactant, and imidazoline dicarboxylate and 1,10-phenanthroline as additives is disclosed (for example, see Patent Document 3). ).
  • Patent Document 3 states that this tin plating solution does not cause discoloration even in the plating of highly complicated printed circuit boards, has excellent uniformity of in-plane film thickness distribution, and excellent uniformity of through-hole plating. Has been.
  • JP 2005-290505 A (Claim 1, paragraph [0004]) Japanese Patent Laying-Open No. 2013-044001 (Summary, paragraph [0010]) JP 2012-087393 A (summary, paragraph [0006])
  • the thickness uniformity of the plating film that is, the height of the solder bumps (within- die; WID) uniformity is required.
  • WID solder bumps
  • the height uniformity of solder bumps has been improved by the conventional tin or tin alloy plating solution containing the additives described in Patent Documents 1 to 3 above, in recent years, there has been a demand for the quality of the plating film. Accordingly, there is a demand for further improvement in solder bump height uniformity.
  • voids called voids may be formed inside the bumps after reflow treatment, which may cause poor bonding. There is a need to not form this void.
  • voids there is a contradictory relationship between improving the height uniformity of the solder bumps and suppressing the generation of voids when the bumps are formed, and there is an additive for the plating solution that solves both of these problems. It has been sought.
  • An object of the present invention is to provide a plating solution in which the height of solder bumps is uniform in a wide current density range, and generation of voids is suppressed when the bumps are formed.
  • a first aspect of the present invention is a plating solution containing (A) a soluble salt containing at least a stannous salt, (B) an acid selected from organic acids and inorganic acids or salts thereof, and (C) an additive.
  • the additive contains two types of surfactants, an amine surfactant (C1) and a nonionic surfactant (C2 and / or C3), and the amine surfactant (C1).
  • the nonionic surfactant (C2 or C3) is a polyoxyethylene alkylamine represented by the following general formula (2) or general formula (3) It is a condensate of oxyethylene and polyoxypropylene.
  • x is 12 to 18, and y is 4 to 12.
  • n1 + n2 is 40 to 50.
  • n 40 to 50.
  • a second aspect of the present invention is an invention based on the first aspect, wherein the additive is a surfactant other than the two types of surfactants (C1, C2 and / or C3), complexing
  • the plating solution further contains two or more other additives among the agent, brightener and antioxidant.
  • the amine surfactant (C1) and the nonionic surfactant (C2 and / or C3) both suppress the precipitation of Sn ions during plating, and the surface to be plated. It is possible to plate well.
  • the amine surfactant (C1) alone has too little effect of suppressing the precipitation of Sn ions at a low current density, resulting in variations in bump height when solder bumps are formed.
  • the nonionic surfactant (C2 and / or C3) when only the nonionic surfactant (C2 and / or C3) is used, when the current density is increased and the plating rate is increased, Sn ions near the surface to be plated are depleted, resulting in poor plating.
  • both amine-based surfactant (C1) and nonionic surfactant (C2 and / or C3) as additives the defects of both surfactants can be compensated for each other, and a wide range of current can be achieved even at high plating rates.
  • Bump height (WID) uniformity is achieved in the density range, and void generation is suppressed when bumps are formed.
  • two of surfactants, complexing agents, brighteners and antioxidants different from the two kinds of surfactants (C1, C2 and / or C3) are used.
  • a surfactant other than the two types of surfactants (C1, C2 and / or C3) has effects such as stabilizing the plating solution and improving solubility.
  • the complexing agent stabilizes the noble metal ions and the like in the bath and makes the precipitated alloy composition uniform.
  • the brightener imparts gloss to the plating film.
  • the antioxidant prevents oxidation of the soluble stannous salt to the stannic salt.
  • the plating solution of the present invention is a plating solution of tin or a tin alloy, (A) a soluble salt containing at least a stannous salt, (B) an acid selected from an organic acid and an inorganic acid or a salt thereof, (C ) Contains additives.
  • This additive contains two types of surfactants, an amine surfactant (C1) and a nonionic surfactant (C2 and / or C3).
  • the amine surfactant (C1) is represented by the above general formula (1).
  • the nonionic surfactant (C2 or C3) is a condensate of polyoxyethylene and polyoxypropylene represented by the above general formula (2) or general formula (3). is there.
  • the soluble salt is composed of any one of a stannous salt and a mixture of the stannous salt and a metal salt selected from the group consisting of silver, copper, bismuth, nickel, antimony, indium, and zinc.
  • the tin alloy of the present invention is an alloy of tin and a predetermined metal selected from silver, copper, bismuth, nickel, antimony, indium, and zinc.
  • tin-silver alloy, tin-copper alloy, tin-bismuth examples include alloys, tin-nickel alloys, tin-antimony alloys, tin-indium alloys, tin-zinc alloy binary alloys, ternary alloys such as tin-copper-bismuth and tin-copper-silver alloys.
  • the soluble salt (A) of the present invention contains Sn 2+ , Ag + , Cu + , Cu 2+ , Bi 3+ , Ni 2+ , Sb 3+ , In 3+ , Zn 2+ and the like in the plating solution. It means any soluble salt that generates various metal ions, and examples thereof include the metal oxides, halides, inorganic acids, and organic acids of the metals.
  • metal oxides include stannous oxide, copper oxide, nickel oxide, bismuth oxide, antimony oxide, indium oxide, and zinc oxide.
  • Metal halides include stannous chloride, bismuth chloride, and bromide. Examples thereof include bismuth, cuprous chloride, cupric chloride, nickel chloride, antimony chloride, indium chloride, and zinc chloride.
  • Metal salts of inorganic or organic acids include copper sulfate, stannous sulfate, bismuth sulfate, nickel sulfate, antimony sulfate, bismuth nitrate, silver nitrate, copper nitrate, antimony sulfate, indium nitrate, nickel nitrate, zinc nitrate, copper acetate , Nickel acetate, nickel carbonate, sodium stannate, stannous borofluoride, stannous methanesulfonate, silver methanesulfonate, copper methanesulfonate, bismuth methanesulfonate, nickel methanesulfonate, indium metasulfonate, bismethane Examples thereof include zinc sulfonate, stannous ethanesulfonate, and bismuth 2-hydroxypropanesulfonate.
  • the acid or salt (B) of the present invention is selected from organic acids and inorganic acids, or salts thereof.
  • organic acid include organic sulfonic acids such as alkane sulfonic acid, alkanol sulfonic acid, and aromatic sulfonic acid, and aliphatic carboxylic acids.
  • Inorganic acids include borohydrofluoric acid, silicohydrofluoric acid, and sulfamine. Acid, hydrochloric acid, sulfuric acid, nitric acid, perchloric acid and the like can be mentioned.
  • the salts include alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts, sulfonates, and the like.
  • the component (B) is preferably an organic sulfonic acid from the viewpoint of the solubility of the metal salt and the ease of wastewater treatment.
  • methanesulfonic acid, ethane In addition to sulfonic acid, 1-propanesulfonic acid, 2-propanesulfonic acid, 1-butanesulfonic acid, 2-butanesulfonic acid, pentanesulfonic acid, and the like, hexanesulfonic acid, decanesulfonic acid, dodecanesulfonic acid, and the like can be given.
  • 2-hydroxyethane-1-sulfonic acid 2-hydroxypropane-1-sulfonic acid, 2-hydroxybutane-1-sulfonic acid, 2-hydroxypentane-1-sulfonic acid, etc.
  • the aromatic sulfonic acid is basically benzene sulfonic acid, alkylbenzene sulfonic acid, phenol sulfonic acid, naphthalene sulfonic acid, alkyl naphthalene sulfonic acid, etc., specifically, 1-naphthalene sulfonic acid, 2-naphthalene.
  • Examples include sulfonic acid, toluenesulfonic acid, xylenesulfonic acid, p-phenolsulfonic acid, cresolsulfonic acid, sulfosalicylic acid, nitrobenzenesulfonic acid, sulfobenzoic acid, diphenylamine-4-sulfonic acid, and the like.
  • aliphatic carboxylic acid examples include acetic acid, propionic acid, butyric acid, citric acid, tartaric acid, gluconic acid, sulfosuccinic acid, and trifluoroacetic acid.
  • the amine surfactant (C1) contained in the additive (C) of the present invention is a polyoxyethylene alkylamine represented by the following general formula (1).
  • x is 12 to 18, and y is 4 to 12.
  • the nonionic surfactant (C2 or C3) contained in the additive (C) of the present invention is a condensate of polyoxyethylene and polyoxypropylene represented by the following general formula (2) or general formula (3) It is.
  • n1 + n2 is 40 to 50.
  • n 40 to 50.
  • the plating solution of the present invention preferably further contains two or more of other surfactants, complexing agents, brighteners and antioxidants other than those described above as other additives.
  • surfactants examples include ordinary anionic surfactants, cationic surfactants, nonionic surfactants and amphoteric surfactants.
  • anionic surfactants include polyoxyethylene (ethylene oxide: containing 12 mol) nonyl ether sulfate polyoxyalkylene alkyl ether sulfate such as sodium sulfate, polyoxyethylene (ethylene oxide: containing 12 mol) dodecyl phenyl ether sodium sulfate, etc.
  • Cationic surfactants include mono-trialkylamine salts, dimethyldialkylammonium salts, trimethylalkylammonium salts, dodecyltrimethylammonium salts, hexadecyltrimethylammonium salts, octadecyltrimethylammonium salts, dodecyldimethylammonium salts, octadecenyl Dimethylethylammonium salt, dodecyldimethylbenzylammonium salt, hexadecyldimethylbenzylammonium salt, octadecyldimethylbenzylammonium salt, trimethylbenzylammonium salt, triethylbenzylammonium salt, hexadecylpyridinium salt, dodecylpyridinium salt, dodecylpicolinium salt, dodecylimidazo Linium salt, oleylimidazolinium
  • Nonionic surfactants include sugar ester, fatty acid ester, C 1 -C 25 alkoxyl phosphoric acid (salt), sorbitan ester, silicon-based polyoxyethylene ether, silicon-based polyoxyethylene ester, fluorine-based polyoxyethylene ether, Examples thereof include a sulfated or sulfonated adduct of a condensation product of fluorine-based polyoxyethylene ester, ethylene oxide and / or propylene oxide and alkylamine or diamine.
  • amphoteric surfactants include betaine, carboxybetaine, imidazolinium betaine, sulfobetaine, and aminocarboxylic acid.
  • the above complexing agent is used to stabilize noble metal ions in a bath with a plating solution containing a noble metal such as silver and to make the composition of the deposited alloy uniform.
  • the complexing agent include oxycarboxylic acid, polycarboxylic acid, and monocarboxylic acid.
  • gluconic acid, citric acid, glucoheptonic acid, gluconolactone, glucoheptlactone formic acid, acetic acid, propionic acid, butyric acid, ascorbic acid, oxalic acid, malonic acid, succinic acid, glycolic acid, malic acid, Tartaric acid, diglycolic acid, thioglycolic acid, thiodiglycolic acid, thioglycol, thiodiglycol, mercaptosuccinic acid, 3,6-dithia-1,8-octanediol, 3,6,9-trithiadecane-1,11 -Disulfonic acid, thiobis (dodecaethylene glycol), di (6-methylbenzothiazolyl) disulfide trisulfonic acid, di (6-chlorobenzothiazolyl) disulfide disulfonic acid, gluconic acid, citric acid, glucoheptonic acid
  • sulfur-containing compounds such as thioureas and phosphorus compounds such as tris (3-hydroxypropyl) phosphine.
  • the conductive salt include sulfuric acid, hydrochloric acid, phosphoric acid, sulfamic acid, sodium salt of sulfonic acid, potassium salt, magnesium salt, ammonium salt, and amine salt.
  • Brighteners include benzaldehyde, o-chlorobenzaldehyde, 2,4,6-trichlorobenzaldehyde, m-chlorobenzaldehyde, p-nitrobenzaldehyde, p-hydroxybenzaldehyde, furfural, 1-naphthaldehyde, 2-naphthaldehyde, 2- Various aldehydes such as hydroxy-1-naphthaldehyde, 3-acenaphthaldehyde, benzylideneacetone, pyridideneacetone, furfuryldenacetone, cinnamaldehyde, anisaldehyde, salicylaldehyde, crotonaldehyde, acrolein, glutaraldehyde, paraaldehyde, vanillin , Triazine, imidazole, indole, quinoline, 2-vinyl
  • Antioxidants include hypophosphorous acids, ascorbic acid or a salt thereof, phenolsulfonic acid (Na), cresolsulfonic acid (Na), hydroquinonesulfonic acid (Na), hydroquinone, ⁇ or ⁇ -naphthol, catechol, Examples include resorcin, phloroglucin, hydrazine, phenolsulfonic acid, catecholsulfonic acid, hydroxybenzenesulfonic acid, naphtholsulfonic acid, and salts thereof.
  • the content of the amine surfactant (C1) of the present invention in the plating solution is 1 to 10 g / L, preferably 3 to 5 g / L. If the content is less than the appropriate range, the effect of suppressing Sn ions is weak. If the amount is too large, the effect of suppressing the precipitation of Sn ions at a low current density is further reduced, and the bump height may be nonuniform.
  • the content of the nonionic surfactant (C2 and / or C3) of the present invention in the plating solution is 1 to 10 g / L, preferably 1 to 5 g / L. If the content is less than the appropriate range, the effect of suppressing Sn ions is weak. On the other hand, if the amount is too large, the depletion of Sn ions in the vicinity of the surface to be plated is further promoted, and plating defects such as dendrites may occur.
  • the total content of the nonionic surfactant (C2) and the nonionic surfactant (C3) is within the above range. It is better to be inside.
  • the total content of both the amine surfactant (C1) and the nonionic surfactant (C2 and / or C3) in the plating solution is 1 to 10 g / L, preferably 1 to 5 g / L. L.
  • the predetermined soluble metal salt (A) can be used alone or in combination, and its content in the plating solution is 30 to 100 g / L, preferably 40 to 60 g / L. When the content is less than the appropriate range, productivity is lowered, and when the content is increased, the cost of the plating solution is increased.
  • the inorganic acid, organic acid or salt thereof (B) can be used alone or in combination, and the content in the plating solution is 80 to 300 g / L, preferably 100 to 200 g / L. If the content is less than the appropriate range, the electrical conductivity is low and the voltage is increased. If the content is increased, the viscosity of the plating solution is increased and the stirring speed of the plating solution is decreased.
  • concentration of each of the above components (A) to (C) is arbitrarily adjusted and selected according to the plating method such as barrel plating, rack plating, high-speed continuous plating, rackless plating, and bump plating.
  • the temperature of the electroplating solution of the present invention is generally 70 ° C. or lower, preferably 10 to 40 ° C.
  • the current density at the time of forming a plating film by electroplating is in the range of 0.1 A / dm 2 to 100 A / dm 2 , preferably in the range of 0.5 A / dm 2 to 20 A / dm 2 . If the current density is too low, the productivity deteriorates, and if it is too high, the bump height uniformity deteriorates.
  • a tin or tin alloy plating solution containing both the amine-based surfactant (C1) and the nonionic surfactant (C2 and / or C3) of the present invention as an additive is applied to an electronic component that is an object to be plated.
  • a predetermined metal film can be formed on the electronic component.
  • the electronic component include a printed board, a flexible printed board, a film carrier, a semiconductor integrated circuit, a resistor, a capacitor, a filter, an inductor, a thermistor, a crystal resonator, a switch, and a lead wire.
  • a coating can be formed by applying the plating solution of the present invention to a part of an electronic component such as a bump of a wafer.
  • Amine surfactants used in Examples 1-1 to 1-15, Examples 2-1 to 2-12, Comparative Examples 1-1 to 1-11, and Comparative Examples 2-1 to 2-13 (C1 Table 1 shows the structural formulas of polyoxyethylene alkylamines (C1-1 to C1-11).
  • the condensate of polyoxyethylene and polyoxypropylene which is C3) is represented by the general formula (2) or the general formula (3) described above.
  • Table 2 shows m, n1 + n2 and molecular weight in the structural formulas (C2-1 to C2-10) of the condensate represented by the general formula (2).
  • Table 3 shows m1 + m2, n and molecular weight in the structural formulas (C3-1 to C3-10) of the condensate represented by the general formula (3).
  • m represents the number of ethylene oxide (EO) groups
  • n represents the number of propylene oxide (PO) groups.
  • Methanesulfonic acid Sn (as Sn 2+ ): 80 g / L Methanesulfonic acid (as free acid): 150 g / L Catechol: 1g / L Amine-based surfactant C1-3: 5 g / L Nonionic surfactant C2-4: 5 g / L Ion-exchange water: balance
  • amine surfactants C1
  • nonionic surfactants C2 or C3
  • Example 1-11 the amine surfactant (C1) was not used.
  • Comparative Example 2-13 the nonionic surfactant (C2 and / or C3) was not used.
  • Methanesulfonic acid Sn (as Sn 2+ ): 80 g / L Methanesulfonic acid Ag (as Ag + ): 1.0 g / L Methanesulfonic acid (as free acid): 150 g / L Catechol: 1g / L Thiourea: 2 g / L Benzaldehyde: 0.01 g / L Amine surfactant C1-4: 3 g / L Nonionic surfactant C2-4: 4 g / L Ion-exchange water: balance
  • Example 1-3 Methanesulfonic acid as a free acid, catechol as an antioxidant, and thiourea as a complexing agent were mixed and dissolved in a methanesulfonic acid Sn aqueous solution, and then further added with methanesulfonic acid Cu liquid and mixed. . After a uniform solution is obtained by mixing, the polyoxyethylene alkylamine (No. C1-6) (mass average molecular weight: 650) as a surfactant and the condensate of polyoxyethylene and polyoxypropylene of C2-4 are used.
  • No. C1-6 mass average molecular weight: 650
  • Methanesulfonic acid Sn (as Sn 2+ ): 80 g / L Methanesulfonic acid Cu (as Cu 2+ ): 0.5 g / L Methanesulfonic acid (as free acid): 150 g / L Catechol: 1g / L Thiourea: 2 g / L Amine-based surfactant C1-6: 3 g / L Nonionic surfactant C2-4: 3 g / L Ion-exchange water: balance
  • Tables 1 to A surfactant having the properties shown in 3 was used.
  • SnCu plating solution of the said Example and the said comparative example was constructed.
  • Example 3-1 After mixing methanesulfonic acid as a free acid and catechol as an antioxidant into a methanesulfonic acid Sn aqueous solution to form a uniform solution, the polyoxyethylene of No. C1-4 as a surfactant is further added.
  • ion-exchange water was added and the Sn plating liquid of the following composition was constructed.
  • the methanesulfonic acid Sn aqueous solution was prepared by electrolyzing a metal Sn plate in a methanesulfonic acid aqueous solution.
  • Methanesulfonic acid Sn (as Sn 2+ ): 80 g / L Methanesulfonic acid (as free acid): 150 g / L Catechol: 1g / L Amine-based surfactant C1-3: 5 g / L Nonionic surfactant C2-4: 3 g / L Nonionic surfactant C3-4: 2 g / L Ion-exchange water: balance
  • Example 3-2> In a methanesulfonic acid Sn aqueous solution, methanesulfonic acid as a free acid, catechol as an antioxidant, thiourea as a complexing agent, and benzaldehyde as a brightener are mixed and dissolved, and further methanesulfonic acid Ag solution And mixed. After a uniform solution is obtained by mixing, the polyoxyethylene alkylamine (No. C1-4) (mass average molecular weight: 1300) as a surfactant and a condensate of polyoxyethylene and polyoxypropylene (C2-6) are used.
  • No. C1-4 mass average molecular weight: 1300
  • Methanesulfonic acid Sn (as Sn 2+ ): 80 g / L Methanesulfonic acid Ag (as Ag + ): 1.0 g / L Methanesulfonic acid (as free acid): 150 g / L Catechol: 1g / L Thiourea: 2 g / L Benzaldehyde: 0.01 g / L Amine surfactant C1-4: 3 g / L Nonionic surfactant C2-6: 2 g / L Nonionic surfactant C3-7: 2 g / L Ion-exchange water: balance
  • Examples 1-1 to 1-15, Examples 2-1 to 2-12, Comparative Examples 1-1 to 1-11, Comparative Examples 2-1 to 2-13, and Examples 3-1 to 3-2 A plating film (bump) is formed using the three types of plating baths, and the uniformity of the thickness of the plating film inside the die (WID) and the ease of occurrence of voids during the reflow process. evaluated. The results are shown in Tables 4-6.
  • a seed layer for electrical conduction of 0.1 ⁇ m titanium and 0.3 ⁇ m copper is formed on the surface of a wafer (8 inches) by sputtering, and the seed layer A dry film resist (film thickness 50 ⁇ m) was laminated on the substrate. Next, the dry film resist was partially exposed through an exposure mask, and then developed.
  • the wafer 1 on which the resist layer 3 is formed is immersed in a plating apparatus (dip-type paddle stirring apparatus), and the resist is respectively subjected to three conditions: a plating solution temperature: 25 ° C., a current density: 4 ASD, 8 ASD, and 12 ASD.
  • the opening 2 of layer 3 was plated.
  • the wafer 1 was taken out of the plating apparatus, washed and dried, and then the resist layer 3 was peeled off using an organic solvent. In this way, a bumped wafer was produced in which bumps having a diameter of 90 ⁇ m were formed in a single die in a pattern in which 150 ⁇ m, 225 ⁇ m, and 375 ⁇ m were arranged at different pitch intervals.
  • y in the formula (1) of the amine surfactant (C1-5) was 40 and was not within the range of 4 to 12, and therefore, from 4 ASD to 12 ASD WID exceeded the standard over the current density range, and the plating film thickness was not uniform. Furthermore, voids were also generated.
  • y in formula (1) of the amine surfactant (C1-7) was 40, which was not within the range of 4 to 12, and therefore, from 4 ASD to 12 ASD WID exceeded the standard over the current density range, and the plating film thickness was not uniform. Furthermore, voids were also generated.
  • y in formula (1) of the amine surfactant (C1-8) was 2 and was not within the range of 4 to 12.
  • the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
  • Comparative Example 1-5 and Comparative Example 1-10 y in formula (1) of the amine surfactant (C1-11) was 40, and it was not within the range of 4 to 12, so that from 4 ASD to 12 ASD WID exceeded the standard over the current density range, and the plating film thickness was not uniform. In Comparative Example 1-5, no void was observed, but in Comparative Example 1-10, a void was also generated.
  • m of the EO group of the formula (2) of the nonionic surfactant (C2-1) is 10 and is within the range of 15-30.
  • n1 + n2 of PO group was 30 and was not within the range of 40-50, no void was seen in the bump, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
  • n1 + n2 of the PO group of the formula (2) of the nonionic surfactant (C2-2) was 40 and was in the range of 40 to 50, but the m of the EO group was 10. There was no void in the bump because it was not in the range of 15 to 30, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
  • m of the EO group of formula (2) of the nonionic surfactant (C2-3) was 15 and was in the range of 15 to 30, but n1 + n2 of the PO group was 30. There was no void in the bump because it was not in the range of 40-50, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
  • the n1 + n2 of the PO group of the formula (2) in the nonionic surfactant (C2-8) was 50 and was in the range of 40 to 50, but the m of the EO group was 40. Yes, because it was not in the range of 15 to 30, the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform. Furthermore, voids were also generated.
  • m of the EO group of the formula (2) of the nonionic surfactant (C2-9) was 30 and was in the range of 15 to 30, but the n1 + n2 of the PO group was 60. Since it was not in the range of 40 to 50, the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform. Furthermore, voids were also generated.
  • m of the EO group of the formula (2) in the nonionic surfactant (C2-10) is 50, not in the range of 15 to 30, and n1 + n2 of the PO group is 60.
  • the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform. Furthermore, voids were also generated.
  • m1 + m2 of the EO group of the formula (3) of the nonionic surfactant (C3-1) is 10, which falls within the range of 15-30.
  • n of the PO group was 30 and was not in the range of 40 to 50, no void was found in the bump, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
  • n of the PO group of the formula (3) in the nonionic surfactant (C3-2) was 40 and was in the range of 40 to 50, but m1 + m2 of the EO group was 10. There was no void in the bump because it was not in the range of 15 to 30, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
  • m1 + m2 of the EO group of the formula (3) of the nonionic surfactant (C3-3) was 15 and was in the range of 15 to 30, but n of the PO group was 30. There was no void in the bump because it was not in the range of 40-50, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
  • n of the PO group of the formula (3) of the nonionic surfactant (C3-8) was 50 and was in the range of 40 to 50, but m1 + m2 of the EO group was 40. Yes, because it was not in the range of 15 to 30, the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform. Furthermore, voids were also generated.
  • m1 + m2 of the EO group of the formula (3) of the nonionic surfactant (C3-9) was 30 and was within the range of 15 to 30, but n of the PO group was 60. Since it was not in the range of 40 to 50, the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform. Furthermore, voids were also generated.
  • m1 + m2 of the EO group of the formula (3) in the nonionic surfactant (C3-10) is 50, not within the range of 15 to 30, and n of the PO group is 60.
  • the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform. Furthermore, voids were also generated.
  • X in the formula (1) of the activator (C1-3), (C1-4), (C1-6), (C1-9), (C1-10) is in the range of 12-18, and y is It is within the range of 4 to 12, and nonionic surfactants (C2-4), (C2-2), (C2-5), (C2-6), (C2-7), (C3-4) , (C3-5), (C3-6), and (C3-7)
  • the plating solution of the present invention includes printed circuit boards, flexible printed circuit boards, film carriers, semiconductor integrated circuits, resistors, capacitors, filters, inductors, thermistors, crystal resonators, switches, lead wires and other electronic components, and wafer bumps. It can be used for a part of such electronic components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

This plating liquid contains (A) a soluble salt that contains at least a first tin salt, (B) an acid selected from among organic acids and inorganic acids or a salt thereof, and (C) two surfactants, namely an amine-based surfactant (C1) and a nonionic surfactant (C2 and/or C3). The amine-based surfactant (C1) is a polyoxyethylene alkyl amine represented by general formula (1); and the nonionic surfactant (C2 and/or C3) is a condensation product of a polyoxyethylene and a polyoxypropylene represented by general formula (2) or general formula (3). In formula (1), x is 12-18 and y is 4-12. In formula (2), m is 15-30 and (n1 + n2) is 40-50. In formula (3), (m1 + m2) is 15-30 and n is 40-50.

Description

めっき液Plating solution
 本発明は、錫又は錫合金のめっき膜を形成するためのめっき液に関する。更に詳しくは、半導体ウエハやプリント基板用のはんだバンプ形成に適し、幅広い電流密度範囲でバンプの高さが均一であってかつバンプ形成時のボイドの発生を抑制する錫又は錫合金めっき液に関するものである。なお、本国際出願は、2017年3月27日に出願した日本国特許出願第61175号(特願2017-61175)及び2018年2月26日に出願した日本国特許出願第31865号(特願2018-31865)に基づく優先権を主張するものであり、特願2017-61175及び特願2018-31865の全内容を本国際出願に援用する。 The present invention relates to a plating solution for forming a tin or tin alloy plating film. More specifically, the present invention relates to a tin or tin alloy plating solution that is suitable for forming solder bumps for semiconductor wafers and printed circuit boards, has a uniform bump height over a wide current density range, and suppresses the generation of voids during bump formation. It is. This international application includes Japanese Patent Application No. 61175 (Japanese Patent Application No. 2017-61175) filed on March 27, 2017 and Japanese Patent Application No. 31865 (Japanese Patent Application No. 31865) filed on February 26, 2018. The contents of Japanese Patent Application No. 2017-61175 and Japanese Patent Application No. 2018-31865 are incorporated in this international application.
  従来、酸及びその塩から選ばれた少なくとも一種、可溶性鉛化合物、可溶性錫化合物、ノニオン系界面活性剤及びナフタレンスルホン酸のホルマリン縮合物又はその塩を含有する水溶液からなる鉛-錫合金はんだめっき液が開示されている(例えば、特許文献1参照。)。このめっき液は、添加物としてナフタレンスルホン酸のホルマリン縮合物又はその塩が鉛イオンに対して0.02~1.50質量%を含有する。特許文献1には、このめっき液により高電流密度でめっきしても、表面の高さばらつきが小さく、平滑でかつ鉛/錫組成比のばらつきが少ない鉛-錫合金突起電極を形成できる旨が記載されている。 Conventionally, a lead-tin alloy solder plating solution comprising an aqueous solution containing at least one selected from acids and salts thereof, a soluble lead compound, a soluble tin compound, a nonionic surfactant and a formalin condensate of naphthalenesulfonic acid or a salt thereof Is disclosed (for example, see Patent Document 1). In this plating solution, a formalin condensate of naphthalenesulfonic acid or a salt thereof as an additive contains 0.02 to 1.50% by mass with respect to lead ions. Patent Document 1 states that even if plating is performed with this plating solution at a high current density, a lead-tin alloy protruding electrode having a small surface height variation, smoothness, and a small variation in the lead / tin composition ratio can be formed. Are listed.
 また、(A)錫塩と、錫塩及び銀、銅、ビスマス、鉛などの所定の金属塩の混合物とのいずれかよりなる可溶性塩と、(B)酸又はその塩と、(C)特定のフェナントロリンジオン化合物とを含有する錫又は錫合金めっき浴が開示されている(例えば、特許文献2参照。)。特許文献2には、このめっき浴が添加物として特定のフェナントロリンジオン化合物を含有するため、このめっき浴により広範囲の電流密度域で優れた均一電着性と良好な皮膜外観を具備でき、広範囲の電流密度域で均一な合成組成を得ることができる旨が記載されている。 Further, (A) a soluble salt composed of any of a tin salt and a mixture of a tin salt and a predetermined metal salt such as silver, copper, bismuth and lead, (B) an acid or a salt thereof, and (C) a specific A tin or tin alloy plating bath containing a phenanthrolinedione compound is disclosed (for example, see Patent Document 2). In Patent Document 2, since this plating bath contains a specific phenanthrolinedione compound as an additive, the plating bath can have excellent uniform electrodeposition and a good film appearance in a wide range of current densities. It is described that a uniform synthetic composition can be obtained in the current density region.
 更に、錫イオン源と、少なくとも1種のノニオン系界面活性剤と、添加物としてイミダゾリンジカルボキシレート及び1,10-フェナントロリンを含有する錫めっき液が開示されている(例えば、特許文献3参照。)。特許文献3には、この錫めっき液により、高度に複雑化したプリント基板のめっきにおいてもヤケがなく、面内膜厚分布の均一性に優れ、スルーホールめっきの均一性にも優れる旨が記載されている。 Furthermore, a tin plating solution containing a tin ion source, at least one nonionic surfactant, and imidazoline dicarboxylate and 1,10-phenanthroline as additives is disclosed (for example, see Patent Document 3). ). Patent Document 3 states that this tin plating solution does not cause discoloration even in the plating of highly complicated printed circuit boards, has excellent uniformity of in-plane film thickness distribution, and excellent uniformity of through-hole plating. Has been.
特開2005-290505号公報(請求項1、段落[0004])JP 2005-290505 A (Claim 1, paragraph [0004]) 特開2013-044001号公報(要約、段落[0010])Japanese Patent Laying-Open No. 2013-044001 (Summary, paragraph [0010]) 特開2012-087393号公報(要約、段落[0006])JP 2012-087393 A (summary, paragraph [0006])
 半導体ウエハやプリント基板用のめっき膜としてのはんだバンプを形成するための錫又は錫合金のめっき液に対しては、めっき膜の厚さ均一性、即ちはんだバンプの高さとなるダイ内(within-die; WID)均一性が要求される。従来の上記特許文献1~3に記載された添加剤を含む錫又は錫合金のめっき液により、はんだバンプの高さ均一性は改善されてきていたが、近年、めっき膜に対する品質への要求は高まり、更なるはんだバンプの高さ均一性の向上が求められている。 For tin or tin alloy plating solution for forming solder bumps as plating films for semiconductor wafers and printed circuit boards, the thickness uniformity of the plating film, that is, the height of the solder bumps (within- die; WID) uniformity is required. Although the height uniformity of solder bumps has been improved by the conventional tin or tin alloy plating solution containing the additives described in Patent Documents 1 to 3 above, in recent years, there has been a demand for the quality of the plating film. Accordingly, there is a demand for further improvement in solder bump height uniformity.
 またフリップチップ実装において半導体デバイスを接続するために基板に設けられるバンプをめっき法により形成する場合、リフロー処理後のバンプの内部にボイドと呼ばれる空隙が形成されることがあり、接合不良を生じるおそれがあるこのボイドを形成しないことが求められている。しかしながら、はんだバンプの高さ均一性を向上することとバンプを形成したときのボイドの発生を抑制することとは相反する関係になっていて、この両方の課題を解決するめっき液の添加剤が求められてきた。 In addition, when bumps provided on a substrate for connecting semiconductor devices in flip chip mounting are formed by plating, voids called voids may be formed inside the bumps after reflow treatment, which may cause poor bonding. There is a need to not form this void. However, there is a contradictory relationship between improving the height uniformity of the solder bumps and suppressing the generation of voids when the bumps are formed, and there is an additive for the plating solution that solves both of these problems. It has been sought.
 本発明の目的は、幅広い電流密度範囲ではんだバンプの高さ均一性が図られ、かつバンプを形成したときにボイド発生が抑制されるめっき液を提供することにある。 An object of the present invention is to provide a plating solution in which the height of solder bumps is uniform in a wide current density range, and generation of voids is suppressed when the bumps are formed.
 本発明の第1の観点は、(A)少なくとも第一錫塩を含む可溶性塩、(B)有機酸及び無機酸から選ばれた酸又はその塩、(C)添加剤を含むめっき液である。その特徴ある点は、前記添加剤がアミン系界面活性剤(C1)とノニオン系界面活性剤(C2及び/又はC3)の2種類の界面活性剤を含み、前記アミン系界面活性剤(C1)が次の一般式(1)で表されるポリオキシエチレンアルキルアミンであり、前記ノニオン系界面活性剤(C2又はC3)が次の一般式(2)又は一般式(3)で表されるポリオキシエチレンとポリオキシプロピレンの縮合体であることにある。 A first aspect of the present invention is a plating solution containing (A) a soluble salt containing at least a stannous salt, (B) an acid selected from organic acids and inorganic acids or salts thereof, and (C) an additive. . The characteristic point is that the additive contains two types of surfactants, an amine surfactant (C1) and a nonionic surfactant (C2 and / or C3), and the amine surfactant (C1). Is a polyoxyethylene alkylamine represented by the following general formula (1), and the nonionic surfactant (C2 or C3) is a polyoxyethylene alkylamine represented by the following general formula (2) or general formula (3) It is a condensate of oxyethylene and polyoxypropylene.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ただし、式(1)中、xは12~18、yは4~12である。 However, in the formula (1), x is 12 to 18, and y is 4 to 12.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 ただし、式(2)中、mは15~30、n1+n2は40~50である。 However, in the formula (2), m is 15 to 30, and n1 + n2 is 40 to 50.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ただし、式(3)中、m1+m2は15~30、nは40~50である。 However, in the formula (3), m1 + m2 is 15 to 30, and n is 40 to 50.
  本発明の第2の観点は、第1の観点に基づく発明であって、前記添加剤が前記2種類の界面活性剤(C1, C2及び/又はC3)とは別の界面活性剤、錯化剤、光沢剤及び酸化防止剤のうち、2つ以上のその他の添加剤を更に含むめっき液である。 A second aspect of the present invention is an invention based on the first aspect, wherein the additive is a surfactant other than the two types of surfactants (C1, C2 and / or C3), complexing The plating solution further contains two or more other additives among the agent, brightener and antioxidant.
 本発明の第1の観点のめっき液では、アミン系界面活性剤(C1)及びノニオン系界面活性剤(C2及び/又はC3)は双方ともめっき時に、Snイオンの析出を抑制し、めっき対象表面に良好にめっきすることが可能となる。アミン系界面活性剤(C1)だけでは、低い電流密度でのSnイオンの析出抑制効果が少なすぎて、はんだバンプを形成したときにバンプの高さにばらつきを生じる。またノニオン系界面活性剤(C2及び/又はC3)だけでは、電流密度を高めてめっき速度を上げた場合にめっき対象表面近傍のSnイオンが枯渇し、めっき不良が発生する。アミン系界面活性剤(C1)とノニオン系界面活性剤(C2及び/又はC3)の双方を添加剤として含むことにより、双方の界面活性剤の欠点を互いに補い、めっき速度が高くても幅広い電流密度範囲でバンプの高さ(WID)均一性が図られ、かつバンプを形成したときにボイド発生が抑制される。 In the plating solution according to the first aspect of the present invention, the amine surfactant (C1) and the nonionic surfactant (C2 and / or C3) both suppress the precipitation of Sn ions during plating, and the surface to be plated. It is possible to plate well. The amine surfactant (C1) alone has too little effect of suppressing the precipitation of Sn ions at a low current density, resulting in variations in bump height when solder bumps are formed. In addition, when only the nonionic surfactant (C2 and / or C3) is used, when the current density is increased and the plating rate is increased, Sn ions near the surface to be plated are depleted, resulting in poor plating. By including both amine-based surfactant (C1) and nonionic surfactant (C2 and / or C3) as additives, the defects of both surfactants can be compensated for each other, and a wide range of current can be achieved even at high plating rates. Bump height (WID) uniformity is achieved in the density range, and void generation is suppressed when bumps are formed.
  本発明の第2の観点のめっき液では、2種類の界面活性剤(C1, C2及び/又はC3)とは別の界面活性剤、錯化剤、光沢剤及び酸化防止剤のうち、2つ以上のその他の添加剤を更に含むことにより、次の効果を奏する。2種類の界面活性剤(C1, C2及び/又はC3)とは別の界面活性剤はめっき液の安定化、溶解性の向上等の効果を奏する。また錯化剤はめっき液が銀などの貴金属を含む場合、貴金属イオンなどを浴中で安定化させるとともに析出合金組成を均一化する。光沢剤はめっき皮膜に光沢を付与する。更に酸化防止剤は可溶性第一錫塩の第二錫塩への酸化を防止する。 In the plating solution according to the second aspect of the present invention, two of surfactants, complexing agents, brighteners and antioxidants different from the two kinds of surfactants (C1, C2 and / or C3) are used. By further including the above other additives, the following effects are obtained. A surfactant other than the two types of surfactants (C1, C2 and / or C3) has effects such as stabilizing the plating solution and improving solubility. Further, when the plating solution contains a noble metal such as silver, the complexing agent stabilizes the noble metal ions and the like in the bath and makes the precipitated alloy composition uniform. The brightener imparts gloss to the plating film. Furthermore, the antioxidant prevents oxidation of the soluble stannous salt to the stannic salt.
実施例で作製したレジスト層を有するウエハの平面図である。It is a top view of the wafer which has the resist layer produced in the Example.
 次に本発明を実施するための形態を説明する。 Next, a mode for carrying out the present invention will be described.
 本発明のめっき液は、錫又は錫合金のめっき液であって、(A)少なくとも第一錫塩を含む可溶性塩、(B)有機酸及び無機酸から選ばれた酸又はその塩、(C)添加剤を含む。この添加剤はアミン系界面活性剤(C1)とノニオン系界面活性剤(C2及び/又はC3)の2種類の界面活性剤を含み、アミン系界面活性剤(C1)が上記一般式(1)で表されるポリオキシエチレンアルキルアミンであり、ノニオン系界面活性剤(C2又はC3)が上記一般式(2)又は一般式(3)で表されるポリオキシエチレンとポリオキシプロピレンの縮合体である。上記可溶性塩は、第一錫塩と、この第一錫塩及び銀、銅、ビスマス、ニッケル、アンチモン、インジウム、亜鉛からなる群から選ばれた金属の塩の混合物とのいずれかよりなる。 The plating solution of the present invention is a plating solution of tin or a tin alloy, (A) a soluble salt containing at least a stannous salt, (B) an acid selected from an organic acid and an inorganic acid or a salt thereof, (C ) Contains additives. This additive contains two types of surfactants, an amine surfactant (C1) and a nonionic surfactant (C2 and / or C3). The amine surfactant (C1) is represented by the above general formula (1). The nonionic surfactant (C2 or C3) is a condensate of polyoxyethylene and polyoxypropylene represented by the above general formula (2) or general formula (3). is there. The soluble salt is composed of any one of a stannous salt and a mixture of the stannous salt and a metal salt selected from the group consisting of silver, copper, bismuth, nickel, antimony, indium, and zinc.
 本発明の錫合金は、錫と、銀、銅、ビスマス、ニッケル、アンチモン、インジウム、亜鉛より選ばれた所定金属との合金であり、例えば、錫-銀合金、錫-銅合金、錫-ビスマス合金、錫-ニッケル合金、錫-アンチモン合金、錫-インジウム合金、錫-亜鉛合金の2元合金、錫-銅-ビスマス、錫-銅-銀合金などの3元合金が挙げられる。 The tin alloy of the present invention is an alloy of tin and a predetermined metal selected from silver, copper, bismuth, nickel, antimony, indium, and zinc. For example, tin-silver alloy, tin-copper alloy, tin-bismuth Examples include alloys, tin-nickel alloys, tin-antimony alloys, tin-indium alloys, tin-zinc alloy binary alloys, ternary alloys such as tin-copper-bismuth and tin-copper-silver alloys.
 従って、本発明の可溶性塩(A)はめっき液中でSn2+、Ag+、Cu+、Cu2+、Bi3+、Ni2+、Sb3+、In3+、Zn2+などの各種金属イオンを生成する任意の可溶性塩を意味し、例えば、当該金属の酸化物、ハロゲン化物、無機酸又は有機酸の当該金属塩などが挙げられる。 Accordingly, the soluble salt (A) of the present invention contains Sn 2+ , Ag + , Cu + , Cu 2+ , Bi 3+ , Ni 2+ , Sb 3+ , In 3+ , Zn 2+ and the like in the plating solution. It means any soluble salt that generates various metal ions, and examples thereof include the metal oxides, halides, inorganic acids, and organic acids of the metals.
 金属酸化物としては、酸化第一錫、酸化銅、酸化ニッケル、酸化ビスマス、酸化アンチモン、酸化インジウム、酸化亜鉛などが挙げられ、金属のハロゲン化物としては、塩化第一錫、塩化ビスマス、臭化ビスマス、塩化第一銅、塩化第二銅、塩化ニッケル、塩化アンチモン、塩化インジウム、塩化亜鉛などが挙げられる。 Examples of metal oxides include stannous oxide, copper oxide, nickel oxide, bismuth oxide, antimony oxide, indium oxide, and zinc oxide. Metal halides include stannous chloride, bismuth chloride, and bromide. Examples thereof include bismuth, cuprous chloride, cupric chloride, nickel chloride, antimony chloride, indium chloride, and zinc chloride.
 無機酸又は有機酸の金属塩としては、硫酸銅、硫酸第一錫、硫酸ビスマス、硫酸ニッケル、硫酸アンチモン、硝酸ビスマス、硝酸銀、硝酸銅、硝酸アンチモン、硝酸インジウム、硝酸ニッケル、硝酸亜鉛、酢酸銅、酢酸ニッケル、炭酸ニッケル、錫酸ナトリウム、ホウフッ化第一錫、メタンスルホン酸第一錫、メタンスルホン酸銀、メタンスルホン酸銅、メタンスルホン酸ビスマス、メタンスルホン酸ニッケル、メタスルホン酸インジウム、ビスメタンスルホン酸亜鉛、エタンスルホン酸第一錫、2-ヒドロキシプロパンスルホン酸ビスマスなどが挙げられる。 Metal salts of inorganic or organic acids include copper sulfate, stannous sulfate, bismuth sulfate, nickel sulfate, antimony sulfate, bismuth nitrate, silver nitrate, copper nitrate, antimony nitrate, indium nitrate, nickel nitrate, zinc nitrate, copper acetate , Nickel acetate, nickel carbonate, sodium stannate, stannous borofluoride, stannous methanesulfonate, silver methanesulfonate, copper methanesulfonate, bismuth methanesulfonate, nickel methanesulfonate, indium metasulfonate, bismethane Examples thereof include zinc sulfonate, stannous ethanesulfonate, and bismuth 2-hydroxypropanesulfonate.
 本発明の酸又はその塩(B)は、有機酸及び無機酸、或いはその塩から選択される。上記有機酸には、アルカンスルホン酸、アルカノールスルホン酸、芳香族スルホン酸等の有機スルホン酸、或いは脂肪族カルボン酸などが挙げられ、無機酸には、ホウフッ化水素酸、ケイフッ化水素酸、スルファミン酸、塩酸、硫酸、硝酸、過塩素酸などが挙げられる。その塩は、アルカリ金属の塩、アルカリ土類金属の塩、アンモニウム塩、アミン塩、スルホン酸塩などである。当該成分(B)は、金属塩の溶解性や排水処理の容易性の観点から有機スルホン酸が好ましい。 The acid or salt (B) of the present invention is selected from organic acids and inorganic acids, or salts thereof. Examples of the organic acid include organic sulfonic acids such as alkane sulfonic acid, alkanol sulfonic acid, and aromatic sulfonic acid, and aliphatic carboxylic acids. Inorganic acids include borohydrofluoric acid, silicohydrofluoric acid, and sulfamine. Acid, hydrochloric acid, sulfuric acid, nitric acid, perchloric acid and the like can be mentioned. The salts include alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts, sulfonates, and the like. The component (B) is preferably an organic sulfonic acid from the viewpoint of the solubility of the metal salt and the ease of wastewater treatment.
 上記アルカンスルホン酸としては、化学式Cn2n+1SO3H(例えば、n=1~5、好ましくは1~3)で示されるものが使用でき、具体的には、メタンスルホン酸、エタンスルホン酸、1―プロパンスルホン酸、2―プロパンスルホン酸、1―ブタンスルホン酸、2―ブタンスルホン酸、ペンタンスルホン酸などの他、ヘキサンスルホン酸、デカンスルホン酸、ドデカンスルホン酸などが挙げられる。 As the alkanesulfonic acid, those represented by the chemical formula C n H 2n + 1 SO 3 H (for example, n = 1 to 5, preferably 1 to 3) can be used. Specifically, methanesulfonic acid, ethane In addition to sulfonic acid, 1-propanesulfonic acid, 2-propanesulfonic acid, 1-butanesulfonic acid, 2-butanesulfonic acid, pentanesulfonic acid, and the like, hexanesulfonic acid, decanesulfonic acid, dodecanesulfonic acid, and the like can be given.
 上記アルカノールスルホン酸としては、化学式Cp2p+1-CH(OH)-Cq2q-SO3H(例えば、p=0~6、q=1~5)で示されるものが使用でき、具体的には、2―ヒドロキシエタン―1―スルホン酸、2―ヒドロキシプロパン―1―スルホン酸、2―ヒドロキシブタン―1―スルホン酸、2―ヒドロキシペンタン―1―スルホン酸などの外、1―ヒドロキシプロパン―2―スルホン酸、3―ヒドロキシプロパン―1―スルホン酸、4―ヒドロキシブタン―1―スルホン酸、2―ヒドロキシヘキサン―1―スルホン酸、2―ヒドロキシデカン―1―スルホン酸、2―ヒドロキシドデカン―1―スルホン酸などが挙げられる。 As the alkanol sulfonic acid, those represented by the chemical formula C p H 2p + 1 —CH (OH) —C q H 2q —SO 3 H (for example, p = 0 to 6, q = 1 to 5) can be used. Specifically, in addition to 2-hydroxyethane-1-sulfonic acid, 2-hydroxypropane-1-sulfonic acid, 2-hydroxybutane-1-sulfonic acid, 2-hydroxypentane-1-sulfonic acid, etc. -Hydroxypropane-2-sulfonic acid, 3-hydroxypropane-1-sulfonic acid, 4-hydroxybutane-1-sulfonic acid, 2-hydroxyhexane-1-sulfonic acid, 2-hydroxydecane-1-sulfonic acid, 2 -Hydroxydodecane-1-sulfonic acid and the like.
 上記芳香族スルホン酸は、基本的にはベンゼンスルホン酸、アルキルベンゼンスルホン酸、フェノールスルホン酸、ナフタレンスルホン酸、アルキルナフタレンスルホン酸などであって、具体的には、1-ナフタレンスルホン酸、2―ナフタレンスルホン酸、トルエンスルホン酸、キシレンスルホン酸、p―フェノールスルホン酸、クレゾールスルホン酸、スルホサリチル酸、ニトロベンゼンスルホン酸、スルホ安息香酸、ジフェニルアミン―4―スルホン酸などが挙げられる。 The aromatic sulfonic acid is basically benzene sulfonic acid, alkylbenzene sulfonic acid, phenol sulfonic acid, naphthalene sulfonic acid, alkyl naphthalene sulfonic acid, etc., specifically, 1-naphthalene sulfonic acid, 2-naphthalene. Examples include sulfonic acid, toluenesulfonic acid, xylenesulfonic acid, p-phenolsulfonic acid, cresolsulfonic acid, sulfosalicylic acid, nitrobenzenesulfonic acid, sulfobenzoic acid, diphenylamine-4-sulfonic acid, and the like.
 上記脂肪族カルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、クエン酸、酒石酸、グルコン酸、スルホコハク酸、トリフルオロ酢酸などが挙げられる。 Examples of the aliphatic carboxylic acid include acetic acid, propionic acid, butyric acid, citric acid, tartaric acid, gluconic acid, sulfosuccinic acid, and trifluoroacetic acid.
 本発明の添加剤(C)に含まれるアミン系界面活性剤(C1)は、次の一般式(1)で表されるポリオキシエチレンアルキルアミンである。 The amine surfactant (C1) contained in the additive (C) of the present invention is a polyoxyethylene alkylamine represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 ただし、式(1)中、xは12~18、yは4~12である。 However, in the formula (1), x is 12 to 18, and y is 4 to 12.
 本発明の添加剤(C)に含まれるノニオン系界面活性剤(C2又はC3)は、次の一般式(2)又は一般式(3)で表されるポリオキシエチレンとポリオキシプロピレンの縮合体である。 The nonionic surfactant (C2 or C3) contained in the additive (C) of the present invention is a condensate of polyoxyethylene and polyoxypropylene represented by the following general formula (2) or general formula (3) It is.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 ただし、式(2)中、mは15~30、n1+n2は40~50である。 However, in the formula (2), m is 15 to 30, and n1 + n2 is 40 to 50.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ただし、式(3)中、m1+m2は15~30、nは40~50である。 However, in the formula (3), m1 + m2 is 15 to 30, and n is 40 to 50.
 本発明のめっき液には、その他の添加剤として、上記以外の他の界面活性剤、錯化剤、光沢剤及び酸化防止剤のうち、2つ以上を更に含むことが好ましい。 The plating solution of the present invention preferably further contains two or more of other surfactants, complexing agents, brighteners and antioxidants other than those described above as other additives.
 この場合の他の界面活性剤としては、通常のアニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤及び両性界面活性剤が挙げられる。 Examples of other surfactants in this case include ordinary anionic surfactants, cationic surfactants, nonionic surfactants and amphoteric surfactants.
 アニオン系界面活性剤としては、ポリオキシエチレン(エチレンオキサイド:12モル含有)ノニルエーテル硫酸ナトリウム等のポリオキシアルキレンアルキルエーテル硫酸塩、ポリオキシエチレン(エチレンオキサイド:12モル含有)ドデシルフェニルエーテル硫酸ナトリウム等のポリオキシアルキレンアルキルフェニルエーテル硫酸塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、1-ナフトール-4-スルホン酸ナトリウム、2-ナフトール-3,6-ジスルホン酸ジナトリウム等のナフトールスルホン酸塩、ジイソプロピルナフタレンスルホン酸ナトリウム、ジブチルナフタレンスルホン酸ナトリウム等の(ポリ)アルキルナフタレンスルホン酸塩、ドデシル硫酸ナトリウム、オレイル硫酸ナトリウム等のアルキル硫酸塩等が挙げられる。 Examples of anionic surfactants include polyoxyethylene (ethylene oxide: containing 12 mol) nonyl ether sulfate polyoxyalkylene alkyl ether sulfate such as sodium sulfate, polyoxyethylene (ethylene oxide: containing 12 mol) dodecyl phenyl ether sodium sulfate, etc. Polyoxyalkylene alkylphenyl ether sulfates, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, naphthol sulfonates such as 1-naphthol-4-sulfonic acid sodium, 2-naphthol-3,6-disulfonic acid disodium salt (Poly) alkylnaphthalene sulfonates such as sodium diisopropyl naphthalene sulfonate, sodium dibutyl naphthalene sulfonate, sodium dodecyl sulfate, sodium oleyl sulfate Alkyl sulfates such as Um like.
 カチオン系界面活性剤としては、モノ―トリアルキルアミン塩、ジメチルジアルキルアンモニウム塩、トリメチルアルキルアンモニウム塩、ドデシルトリメチルアンモニウム塩、ヘキサデシルトリメチルアンモニウム塩、オクタデシルトリメチルアンモニウム塩、ドデシルジメチルアンモニウム塩、オクタデセニルジメチルエチルアンモニウム塩、ドデシルジメチルベンジルアンモニウム塩、ヘキサデシルジメチルベンジルアンモニウム塩、オクタデシルジメチルベンジルアンモニウム塩、トリメチルベンジルアンモニウム塩、トリエチルベンジルアンモニウム塩、ヘキサデシルピリジニウム塩、ドデシルピリジニウム塩、ドデシルピコリニウム塩、ドデシルイミダゾリニウム塩、オレイルイミダゾリニウム塩、オクタデシルアミンアセテート、ドデシルアミンアセテートなどが挙げられる。 Cationic surfactants include mono-trialkylamine salts, dimethyldialkylammonium salts, trimethylalkylammonium salts, dodecyltrimethylammonium salts, hexadecyltrimethylammonium salts, octadecyltrimethylammonium salts, dodecyldimethylammonium salts, octadecenyl Dimethylethylammonium salt, dodecyldimethylbenzylammonium salt, hexadecyldimethylbenzylammonium salt, octadecyldimethylbenzylammonium salt, trimethylbenzylammonium salt, triethylbenzylammonium salt, hexadecylpyridinium salt, dodecylpyridinium salt, dodecylpicolinium salt, dodecylimidazo Linium salt, oleylimidazolinium salt, octadecylamine acetate DOO, and the like dodecylamine acetate.
 ノニオン系界面活性剤としては、糖エステル、脂肪酸エステル、C1~C25アルコキシルリン酸(塩)、ソルビタンエステル、シリコン系ポリオキシエチレンエーテル、シリコン系ポリオキシエチレンエステル、フッ素系ポリオキシエチレンエーテル、フッ素系ポリオキシエチレンエステル、エチレンオキサイド及び/又はプロピレンオキサイドとアルキルアミン又はジアミンとの縮合生成物の硫酸化あるいはスルホン化付加物などが挙げられる。 Nonionic surfactants include sugar ester, fatty acid ester, C 1 -C 25 alkoxyl phosphoric acid (salt), sorbitan ester, silicon-based polyoxyethylene ether, silicon-based polyoxyethylene ester, fluorine-based polyoxyethylene ether, Examples thereof include a sulfated or sulfonated adduct of a condensation product of fluorine-based polyoxyethylene ester, ethylene oxide and / or propylene oxide and alkylamine or diamine.
 両性界面活性剤としては、ベタイン、カルボキシベタイン、イミダゾリニウムベタイン、スルホベタイン、アミノカルボン酸などが挙げられる。 Examples of amphoteric surfactants include betaine, carboxybetaine, imidazolinium betaine, sulfobetaine, and aminocarboxylic acid.
 上記錯化剤は銀などの貴金属を含むめっき液で貴金属イオンなどを浴中で安定化させるとともに析出した合金の組成を均一化するために用いられる。錯化剤としては、オキシカルボン酸、ポリカルボン酸、モノカルボン酸などが挙げられる。具体的には、グルコン酸、クエン酸、グルコヘプトン酸、グルコノラクトン、グルコヘプトラクトン、ギ酸、酢酸、プロピオン酸、酪酸、アスコルビン酸、シュウ酸、マロン酸、コハク酸、グリコール酸、リンゴ酸、酒石酸、ジグリコール酸、チオグリコール酸、チオジグリコール酸、チオグリコール、チオジグリコール、メルカプトコハク酸、3,6-ジチア-1,8-オクタンジオール、3,6,9-トリチアデカン-1,11-ジスルホン酸、チオビス(ドデカエチレングリコール)、ジ(6-メチルベンゾチアゾリル)ジスルフィドトリスルホン酸、ジ(6-クロロベンゾチアゾリル)ジスルフィドジスルホン酸、グルコン酸、クエン酸、グルコヘプトン酸、グルコノラクトン、グルコヘプトラクトン、ジチオジアニリン、ジピリジルジスルフィド、メルカプトコハク酸、亜硫酸塩、チオ硫酸塩、エチレンジアミン、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、ニトリロ三酢酸(NTA)、イミノジ酢酸(IDA)、イミノジプロピオン酸(IDP)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、トリエチレンテトラミン六酢酸(TTHA)、エチレンジオキシビス(エチルアミン)-N,N,N′,N′-テトラ酢酸、グリシン類、ニトリロトリメチルホスホン酸、或はこれらの塩などが挙げられる。また、チオ尿素類などの含イオウ化合物、トリス(3-ヒドロキシプロピル)ホスフィンなどのリン化合物がある。また、導電性塩としては、硫酸、塩酸、リン酸、スルファミン酸、スルホン酸のナトリウム塩、カリウム塩、マグネシウム塩、アンモニウム塩、アミン塩などが挙げられる。 The above complexing agent is used to stabilize noble metal ions in a bath with a plating solution containing a noble metal such as silver and to make the composition of the deposited alloy uniform. Examples of the complexing agent include oxycarboxylic acid, polycarboxylic acid, and monocarboxylic acid. Specifically, gluconic acid, citric acid, glucoheptonic acid, gluconolactone, glucoheptlactone, formic acid, acetic acid, propionic acid, butyric acid, ascorbic acid, oxalic acid, malonic acid, succinic acid, glycolic acid, malic acid, Tartaric acid, diglycolic acid, thioglycolic acid, thiodiglycolic acid, thioglycol, thiodiglycol, mercaptosuccinic acid, 3,6-dithia-1,8-octanediol, 3,6,9-trithiadecane-1,11 -Disulfonic acid, thiobis (dodecaethylene glycol), di (6-methylbenzothiazolyl) disulfide trisulfonic acid, di (6-chlorobenzothiazolyl) disulfide disulfonic acid, gluconic acid, citric acid, glucoheptonic acid, gluco Nolactone, glucoheptlactone, dithiodianiline, dipyridyl dis Fido, mercaptosuccinic acid, sulfite, thiosulfate, ethylenediamine, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), iminodipropionic acid (IDP), Hydroxyethyl ethylenediamine triacetic acid (HEDTA), triethylenetetramine hexaacetic acid (TTHA), ethylenedioxybis (ethylamine) -N, N, N ', N'-tetraacetic acid, glycines, nitrilotrimethylphosphonic acid, or these Examples include salt. Further, there are sulfur-containing compounds such as thioureas and phosphorus compounds such as tris (3-hydroxypropyl) phosphine. Examples of the conductive salt include sulfuric acid, hydrochloric acid, phosphoric acid, sulfamic acid, sodium salt of sulfonic acid, potassium salt, magnesium salt, ammonium salt, and amine salt.
 上記光沢剤はめっき皮膜に光沢を付与するために用いられる。光沢剤としては、ベンズアルデヒド、o-クロロベンズアルデヒド、2,4,6-トリクロロベンズアルデヒド、m-クロロベンズアルデヒド、p-ニトロベンズアルデヒド、p-ヒドロキシベンズアルデヒド、フルフラール、1-ナフトアルデヒド、2-ナフトアルデヒド、2-ヒドロキシ-1-ナフトアルデヒド、3-アセナフトアルデヒド、ベンジリデンアセトン、ピリジデンアセトン、フルフリルデンアセトン、シンナムアルデヒド、アニスアルデヒド、サリチルアルデヒド、クロトンアルデヒド、アクロレイン、グルタルアルデヒド、パラアルデヒド、バニリンなどの各種アルデヒド、トリアジン、イミダゾール、インドール、キノリン、2-ビニルピリジン、アニリン、フェナントロリン、ネオクプロイン、ピコリン酸、チオ尿素類、N―(3―ヒドロキシブチリデン)―p―スルファニル酸、N―ブチリデンスルファニル酸、N―シンナモイリデンスルファニル酸、2,4―ジアミノ―6―(2′―メチルイミダゾリル(1′))エチル―1,3,5―トリアジン、2,4―ジアミノ―6―(2′―エチル―4―メチルイミダゾリル(1′))エチル―1,3,5―トリアジン、2,4―ジアミノ―6―(2′―ウンデシルイミダゾリル(1′))エチル―1,3,5―トリアジン、サリチル酸フェニル、或は、ベンゾチアゾール、2-メルカトプトベンゾチアゾール、2―メチルベンゾチアゾール、2―アミノベンゾチアゾール、2―アミノ―6―メトキシベンゾチアゾール、2―メチル―5―クロロベンゾチアゾール、2―ヒドロキシベンゾチアゾール、2―アミノ―6―メチルベンゾチアゾール、2―クロロベンゾチアゾール、2,5―ジメチルベンゾチアゾール、5―ヒドロキシ―2―メチルベンゾチアゾール等のベンゾチアゾール類などが挙げられる。 The above brightener is used to give the plating film gloss. Brighteners include benzaldehyde, o-chlorobenzaldehyde, 2,4,6-trichlorobenzaldehyde, m-chlorobenzaldehyde, p-nitrobenzaldehyde, p-hydroxybenzaldehyde, furfural, 1-naphthaldehyde, 2-naphthaldehyde, 2- Various aldehydes such as hydroxy-1-naphthaldehyde, 3-acenaphthaldehyde, benzylideneacetone, pyridideneacetone, furfuryldenacetone, cinnamaldehyde, anisaldehyde, salicylaldehyde, crotonaldehyde, acrolein, glutaraldehyde, paraaldehyde, vanillin , Triazine, imidazole, indole, quinoline, 2-vinylpyridine, aniline, phenanthroline, neocuproine, picolinic acid, thiourea N- (3-hydroxybutylidene) -p-sulfanilic acid, N-butylidenesulfanilic acid, N-cinnamoylidenesulfanilic acid, 2,4-diamino-6- (2'-methylimidazolyl (1 ')) Ethyl-1,3,5-triazine, 2,4-diamino-6- (2'-ethyl-4-methylimidazolyl (1 ')) ethyl-1,3,5-triazine, 2,4-diamino-6 -(2'-Undecylimidazolyl (1 ')) ethyl-1,3,5-triazine, phenyl salicylate, or benzothiazole, 2-mercaptobenzobenzothiazole, 2-methylbenzothiazole, 2-aminobenzo Thiazole, 2-amino-6-methoxybenzothiazole, 2-methyl-5-chlorobenzothiazole, 2-hydroxybenzothiazole, 2-amino-6-methylbenzothiazole, - chlorobenzothiazole, 2,5-dimethyl benzothiazole, benzothiazole such as 5-hydroxy-2-methyl-benzothiazole.
 上記酸化防止剤は、可溶性第一錫塩の第二錫塩への酸化を防止するために用いられる。酸化防止剤としては、次亜リン酸類を初め、アスコルビン酸又はその塩、フェノールスルホン酸(Na)、クレゾールスルホン酸(Na)、ハイドロキノンスルホン酸(Na)、ハイドロキノン、α又はβ-ナフトール、カテコール、レゾルシン、フロログルシン、ヒドラジン、フェノールスルホン酸、カテコールスルホン酸、ヒドロキシベンゼンスルホン酸、ナフトールスルホン酸、或いはこれらの塩などが挙げられる。 The above antioxidant is used to prevent oxidation of soluble stannous salt to stannic salt. Antioxidants include hypophosphorous acids, ascorbic acid or a salt thereof, phenolsulfonic acid (Na), cresolsulfonic acid (Na), hydroquinonesulfonic acid (Na), hydroquinone, α or β-naphthol, catechol, Examples include resorcin, phloroglucin, hydrazine, phenolsulfonic acid, catecholsulfonic acid, hydroxybenzenesulfonic acid, naphtholsulfonic acid, and salts thereof.
 本発明のアミン系界面活性剤(C1)のめっき液での含有量は1~10g/L、好ましくは3~5g/Lである。含有量が適正範囲より少ないと、Snイオンの抑制効果が弱い。また多すぎると、低い電流密度でのSnイオンの析出抑制効果が更に少なくなり、バンプ高さが不均一となるおそれがある。 The content of the amine surfactant (C1) of the present invention in the plating solution is 1 to 10 g / L, preferably 3 to 5 g / L. If the content is less than the appropriate range, the effect of suppressing Sn ions is weak. If the amount is too large, the effect of suppressing the precipitation of Sn ions at a low current density is further reduced, and the bump height may be nonuniform.
 本発明のノニオン系界面活性剤(C2及び/又はC3)のめっき液での含有量は1~10g/L、好ましくは1~5g/Lである。含有量が適正範囲より少ないと、Snイオンの抑制効果が弱い。また多すぎると、めっき対象表面近傍のSnイオンの枯渇を更に助長し、デンドライトなどのめっき不良が発生するおそれがある。ノニオン系界面活性剤(C2)とノニオン系界面活性剤(C3)の双方を含有する場合、ノニオン系界面活性剤(C2)とノニオン系界面活性剤(C3)の含有量の合算が、上記範囲内となるようにするとよい。アミン系界面活性剤(C1)及びノニオン系界面活性剤(C2及び/又はC3)の双方の界面活性剤を合計しためっき液での含有量は、1~10g/L、好ましくは1~5g/Lである。 The content of the nonionic surfactant (C2 and / or C3) of the present invention in the plating solution is 1 to 10 g / L, preferably 1 to 5 g / L. If the content is less than the appropriate range, the effect of suppressing Sn ions is weak. On the other hand, if the amount is too large, the depletion of Sn ions in the vicinity of the surface to be plated is further promoted, and plating defects such as dendrites may occur. When both the nonionic surfactant (C2) and the nonionic surfactant (C3) are contained, the total content of the nonionic surfactant (C2) and the nonionic surfactant (C3) is within the above range. It is better to be inside. The total content of both the amine surfactant (C1) and the nonionic surfactant (C2 and / or C3) in the plating solution is 1 to 10 g / L, preferably 1 to 5 g / L. L.
 また、上記所定の可溶性金属塩(A)は単用又は併用でき、めっき液中での含有量は30~100g/L、好ましくは40~60g/Lである。含有量が適正範囲より少ないと生産性が落ち、含有量が多くなるとめっき液のコストが上昇してしまう。 The predetermined soluble metal salt (A) can be used alone or in combination, and its content in the plating solution is 30 to 100 g / L, preferably 40 to 60 g / L. When the content is less than the appropriate range, productivity is lowered, and when the content is increased, the cost of the plating solution is increased.
 無機酸、有機酸又はその塩(B)は単用又は併用でき、めっき液中での含有量は80~300g/L、好ましくは100~200g/Lである。含有量が適正範囲より少ないと導電率が低く電圧が上昇し、含有量が多くなるとめっき液の粘度が上昇しめっき液の撹拌速度が低下してしまう。 The inorganic acid, organic acid or salt thereof (B) can be used alone or in combination, and the content in the plating solution is 80 to 300 g / L, preferably 100 to 200 g / L. If the content is less than the appropriate range, the electrical conductivity is low and the voltage is increased. If the content is increased, the viscosity of the plating solution is increased and the stirring speed of the plating solution is decreased.
 なお、上記(A)~(C)の各成分の添加濃度はバレルめっき、ラックめっき、高速連続めっき、ラックレスめっき、バンプめっきなどのめっき方式に応じて任意に調整・選択することになる。 It should be noted that the concentration of each of the above components (A) to (C) is arbitrarily adjusted and selected according to the plating method such as barrel plating, rack plating, high-speed continuous plating, rackless plating, and bump plating.
 一方、本発明の電気めっき液の液温は一般に70℃以下、好ましくは10~40℃である。電気めっきによるめっき膜形成時の電流密度は、0.1A/dm2以上100A/dm2以下の範囲、好ましくは0.5A/dm2以上20A/dm2以下の範囲である。電流密度が低すぎると生産性が悪化し、高すぎるとバンプの高さ均一性が悪化してしまう。 On the other hand, the temperature of the electroplating solution of the present invention is generally 70 ° C. or lower, preferably 10 to 40 ° C. The current density at the time of forming a plating film by electroplating is in the range of 0.1 A / dm 2 to 100 A / dm 2 , preferably in the range of 0.5 A / dm 2 to 20 A / dm 2 . If the current density is too low, the productivity deteriorates, and if it is too high, the bump height uniformity deteriorates.
 本発明のアミン系界面活性剤(C1)とノニオン系界面活性剤(C2及び/又はC3)の双方を添加剤として含む錫又は錫合金のめっき液を被めっき物である電子部品に適用して、電子部品に所定の金属皮膜を形成することができる。電子部品としては、プリント基板、フレキシブルプリント基板、フィルムキャリア、半導体集積回路、抵抗、コンデンサ、フィルタ、インダクタ、サーミスタ、水晶振動子、スイッチ、リード線などが挙げられる。また、ウエハのバンプなどのように電子部品の一部に本発明のめっき液を適用して皮膜を形成することもできる。 A tin or tin alloy plating solution containing both the amine-based surfactant (C1) and the nonionic surfactant (C2 and / or C3) of the present invention as an additive is applied to an electronic component that is an object to be plated. A predetermined metal film can be formed on the electronic component. Examples of the electronic component include a printed board, a flexible printed board, a film carrier, a semiconductor integrated circuit, a resistor, a capacitor, a filter, an inductor, a thermistor, a crystal resonator, a switch, and a lead wire. Further, a coating can be formed by applying the plating solution of the present invention to a part of an electronic component such as a bump of a wafer.
 次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
(実施例及び比較例で用いるアミン系界面活性剤(C1)、ノニオン系界面活性剤(C2又はC3))
 実施例1-1~1~15、実施例2-1~2-12、比較例1-1~1-11、比較例2-1~2-13において使用されるアミン系界面活性剤(C1)であるポリオキシエチレンアルキルアミン(C1-1~C1-11)の各構造式を表1に示す。
(Amine surfactant (C1) and nonionic surfactant (C2 or C3) used in Examples and Comparative Examples)
Amine surfactants used in Examples 1-1 to 1-15, Examples 2-1 to 2-12, Comparative Examples 1-1 to 1-11, and Comparative Examples 2-1 to 2-13 (C1 Table 1 shows the structural formulas of polyoxyethylene alkylamines (C1-1 to C1-11).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例1-1~1~15、実施例2-1~2-12、比較例1-1~1-11、比較例2-1~2-13において使用されるノニオン系界面活性剤(C2又はC3)であるポリオキシエチレンとポリオキシプロピレンの縮合体は、前述した一般式(2)又は一般式(3)で表される。一般式(2)で表される上記縮合体の構造式(C2-1~C2-10)におけるm、n1+n2及び分子量を表2に示す。また一般式(3)で表される上記縮合体の構造式(C3-1~C3-10)におけるm1+m2、n及び分子量を表3に示す。式(2)及び式(3)において、mはエチレンオキシド(EO)基の数を、nはプロピレンオキシド(PO)基の数をそれぞれ示す。 Nonionic surfactants (C2) used in Examples 1-1 to 1-15, Examples 2-1 to 2-12, Comparative Examples 1-1 to 1-11, and Comparative Examples 2-1 to 2-13 Or the condensate of polyoxyethylene and polyoxypropylene which is C3) is represented by the general formula (2) or the general formula (3) described above. Table 2 shows m, n1 + n2 and molecular weight in the structural formulas (C2-1 to C2-10) of the condensate represented by the general formula (2). Table 3 shows m1 + m2, n and molecular weight in the structural formulas (C3-1 to C3-10) of the condensate represented by the general formula (3). In formula (2) and formula (3), m represents the number of ethylene oxide (EO) groups, and n represents the number of propylene oxide (PO) groups.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(Snめっき液の建浴)
 <実施例1-1>
 メタンスルホン酸Sn水溶液に、遊離酸としてのメタンスルホン酸と、酸化防止剤としてカテコールとを混合して、均一な溶液となった後、更に界面活性剤として上記No.C1-3のポリオキシエチレンアルキルアミン(質量平均分子量:800)と上記No.C2-4のポリオキシエチレンとポリオキシプロピレンの縮合体(質量平均分子量:3100、ポリアルキレンオキシド基のEO基:PO基(モル比)=15:40)を加えた。そして最後にイオン交換水を加えて、下記組成のSnめっき液を建浴した。なお、メタンスルホン酸Sn水溶液は、金属Sn板をメタンスルホン酸水溶液中で電解させることにより調製した。
(Building bath of Sn plating solution)
<Example 1-1>
After mixing methanesulfonic acid as a free acid and catechol as an antioxidant into a methanesulfonic acid Sn aqueous solution to form a uniform solution, the polyoxyethylene of No. C1-3 above is further used as a surfactant. Condensation of alkylamine (mass average molecular weight: 800) and No. C2-4 polyoxyethylene and polyoxypropylene (mass average molecular weight: 3100, EO group of polyalkylene oxide group: PO group (molar ratio) = 15 : 40) was added. And finally ion-exchange water was added and the Sn plating liquid of the following composition was constructed. The methanesulfonic acid Sn aqueous solution was prepared by electrolyzing a metal Sn plate in a methanesulfonic acid aqueous solution.
(Snめっき液の組成)
 メタンスルホン酸Sn(Sn2+として):80g/L
 メタンスルホン酸(遊離酸として):150g/L
 カテコール:1g/L
 アミン系界面活性剤C1-3:5g/L
 ノニオン系界面活性剤C2-4:5g/L
 イオン交換水:残部
(Composition of Sn plating solution)
Methanesulfonic acid Sn (as Sn 2+ ): 80 g / L
Methanesulfonic acid (as free acid): 150 g / L
Catechol: 1g / L
Amine-based surfactant C1-3: 5 g / L
Nonionic surfactant C2-4: 5 g / L
Ion-exchange water: balance
 <実施例1-6~1-10、実施例2-1、2-2、2-5~2-8、2-11、2-12、比較例1-2、1-3、1-5、1-6、1-9~1-11、比較例2-1、2-3~2-5、2-7、2-9~2-11、2-13>
  実施例1-6~1-10、実施例2-1、2-2、2-5~2-8、2-11、2-12、比較例1-2、1-3、1-5、1-6、1-9~1-11、比較例2-1、2-3~2-5、2-7、2-9~2-11、2-13では、アミン系界面活性剤(C1)及びノニオン系界面活性剤(C2又はC3)として、表1~表3に示す性状の界面活性剤を用いた。それ以外は、実施例1と同様にして、上記実施例及び上記比較例のSnめっき液を建浴した。なお、比較例1-11では、アミン系界面活性剤(C1)を用いなかった。比較例2-13では、ノニオン系界面活性剤(C2及び/又はC3)を用いなかった。
<Examples 1-6 to 1-10, Examples 2-1, 2-2, 2-5 to 2-8, 2-11, 2-12, Comparative Examples 1-2, 1-3, 1-5 1-6, 1-9 to 1-11, Comparative Examples 2-1, 2-3 to 2-5, 2-7, 2-9 to 2-11, 2-13>
Examples 1-6 to 1-10, Examples 2-1, 2-2, 2-5 to 2-8, 2-11, 2-12, Comparative Examples 1-2, 1-3, 1-5, In 1-6, 1-9 to 1-11, Comparative Examples 2-1, 2-3 to 2-5, 2-7, 2-9 to 2-11, and 2-13, amine surfactants (C1 ) And nonionic surfactants (C2 or C3), surfactants having properties shown in Tables 1 to 3 were used. Other than that was carried out similarly to Example 1, and bathed the Sn plating solution of the said Example and the said comparative example. In Comparative Example 1-11, the amine surfactant (C1) was not used. In Comparative Example 2-13, the nonionic surfactant (C2 and / or C3) was not used.
(SnAgめっき液の建浴)
 <実施例1-2>
  メタンスルホン酸Sn水溶液に、遊離酸としてのメタンスルホン酸と、酸化防止剤としてカテコールと、錯化剤としてチオ尿素と、光沢剤としてベンズアルデヒドを混合して溶解させた後、更にメタンスルホン酸Ag液を加えて混合した。混合によって均一な溶液となった後、更に界面活性剤として上記No.C1-4のポリオキシエチレンアルキルアミン(質量平均分子量:1300)と上記C2-4のポリオキシエチレンとポリオキシプロピレンの縮合体(質量平均分子量:3100、ポリアルキレンオキシド基のEO基:PO基(モル比)=15:40)を加えた。そして最後にイオン交換水を加えて、下記組成のSnAgめっき液を建浴した。なお、メタンスルホン酸Sn水溶液は、金属Sn板を、メタンスルホン酸Ag水溶液は、金属Ag板を、それぞれメタンスルホン酸水溶液中で電解させることにより調製した。
(Building bath of SnAg plating solution)
<Example 1-2>
In a methanesulfonic acid Sn aqueous solution, methanesulfonic acid as a free acid, catechol as an antioxidant, thiourea as a complexing agent, and benzaldehyde as a brightener are mixed and dissolved, and further methanesulfonic acid Ag solution And mixed. After mixing to a uniform solution, the polyoxyethylene alkylamine (No. C1-4) (mass average molecular weight: 1300) as a surfactant and a condensate of polyoxyethylene and polyoxypropylene (C2-4) (Mass average molecular weight: 3100, EO group of polyalkylene oxide group: PO group (molar ratio) = 15: 40) was added. And finally, ion-exchange water was added and the SnAg plating solution of the following composition was constructed. In addition, the methanesulfonic acid Sn aqueous solution was prepared by electrolyzing a metal Sn plate, and the methanesulfonic acid Ag aqueous solution was electrolyzed in a methanesulfonic acid aqueous solution, respectively.
(SnAgめっき液の組成)
 メタンスルホン酸Sn(Sn2+として):80g/L
 メタンスルホン酸Ag(Ag+として):1.0g/L
 メタンスルホン酸(遊離酸として):150g/L
 カテコール:1g/L
 チオ尿素:2g/L
 ベンズアルデヒド:0.01g/L
 アミン系界面活性剤C1-4:3g/L
 ノニオン系界面活性剤C2-4:4g/L
 イオン交換水:残部
(Composition of SnAg plating solution)
Methanesulfonic acid Sn (as Sn 2+ ): 80 g / L
Methanesulfonic acid Ag (as Ag + ): 1.0 g / L
Methanesulfonic acid (as free acid): 150 g / L
Catechol: 1g / L
Thiourea: 2 g / L
Benzaldehyde: 0.01 g / L
Amine surfactant C1-4: 3 g / L
Nonionic surfactant C2-4: 4 g / L
Ion-exchange water: balance
 <実施例1-4、1-11、1-13、1-15、実施例2-3、2-9、比較例1-1、1-4、1-8、比較例2-6、2-12>
  実施例1-4、1-11、1-13、1-15、実施例1-6、2-12、比較例1-1、1-4、1-8、比較例2-6、2-12では、界面活性剤として、表1~表3に示す性状の界面活性剤を用いた。それ以外は、実施例1-2と同様にして、上記実施例及び上記比較例のSnAgめっき液を建浴した。
<Examples 1-4, 1-11, 1-13, 1-15, Examples 2-3, 2-9, Comparative Examples 1-1, 1-4, 1-8, Comparative Examples 2-6, 2 -12>
Examples 1-4, 1-11, 1-13, 1-15, Examples 1-6, 2-12, Comparative Examples 1-1, 1-4, 1-8, Comparative Examples 2-6, 2- In No. 12, surfactants having the properties shown in Tables 1 to 3 were used as surfactants. Other than that, the SnAg plating solutions of the above examples and comparative examples were constructed in the same manner as in Example 1-2.
(SnCuめっき液の建浴)
 <実施例1-3>
  メタンスルホン酸Sn水溶液に、遊離酸としてのメタンスルホン酸と、酸化防止剤としてカテコールと、錯化剤としてチオ尿素とを混合して溶解させた後、更にメタンスルホン酸Cu液を加えて混合した。混合によって均一な溶液となった後、更に界面活性剤として上記No.C1-6のポリオキシエチレンアルキルアミン(質量平均分子量:650)と上記C2-4のポリオキシエチレンとポリオキシプロピレンの縮合体(質量平均分子量:3100、ポリアルキレンオキシド基のEO基:PO基(モル比)=15:40)を加えた。そして最後にイオン交換水を加えて、下記組成のSnCuめっき液を建浴した。なお、メタンスルホン酸Sn水溶液は、金属Sn板を、メタンスルホン酸Cu水溶液は、金属Cu板を、それぞれメタンスルホン酸水溶液中で電解させることにより調製した。
(Building bath of SnCu plating solution)
<Example 1-3>
Methanesulfonic acid as a free acid, catechol as an antioxidant, and thiourea as a complexing agent were mixed and dissolved in a methanesulfonic acid Sn aqueous solution, and then further added with methanesulfonic acid Cu liquid and mixed. . After a uniform solution is obtained by mixing, the polyoxyethylene alkylamine (No. C1-6) (mass average molecular weight: 650) as a surfactant and the condensate of polyoxyethylene and polyoxypropylene of C2-4 are used. (Mass average molecular weight: 3100, EO group of polyalkylene oxide group: PO group (molar ratio) = 15: 40) was added. And finally, ion-exchange water was added and the SnCu plating solution of the following composition was constructed. The methanesulfonic acid Sn aqueous solution was prepared by electrolysis of a metal Sn plate, and the methanesulfonic acid Cu aqueous solution was prepared by electrolysis of a metal Cu plate in a methanesulfonic acid aqueous solution.
(SnCuめっき液の組成)
 メタンスルホン酸Sn(Sn2+として):80g/L
 メタンスルホン酸Cu(Cu2+として):0.5g/L
 メタンスルホン酸(遊離酸として):150g/L
 カテコール:1g/L
 チオ尿素:2g/L
 アミン系界面活性剤C1-6:3g/L
 ノニオン系界面活性剤C2-4:3g/L
 イオン交換水:残部
(Composition of SnCu plating solution)
Methanesulfonic acid Sn (as Sn 2+ ): 80 g / L
Methanesulfonic acid Cu (as Cu 2+ ): 0.5 g / L
Methanesulfonic acid (as free acid): 150 g / L
Catechol: 1g / L
Thiourea: 2 g / L
Amine-based surfactant C1-6: 3 g / L
Nonionic surfactant C2-4: 3 g / L
Ion-exchange water: balance
 <実施例1-5、1-12、1-14、実施例2-4、2-10、比較例1-7、比較例2-2、2-8>
  実施例1-5、1-12、1-14、実施例2-4、2-10、比較例1-7、比較例2-2、2-8では、界面活性剤として、表1~表3に示す性状の界面活性剤を用いた。それ以外は、実施例1-3と同様にして、上記実施例及び上記比較例のSnCuめっき液を建浴した。
<Examples 1-5, 1-12, 1-14, Examples 2-4, 2-10, Comparative Example 1-7, Comparative Examples 2-2, 2-8>
In Examples 1-5, 1-12, 1-14, Examples 2-4, 2-10, Comparative Examples 1-7, and Comparative Examples 2-2, 2-8, Tables 1 to A surfactant having the properties shown in 3 was used. Other than that was carried out similarly to Example 1-3, and the SnCu plating solution of the said Example and the said comparative example was constructed.
 <実施例3-1>
 メタンスルホン酸Sn水溶液に、遊離酸としてのメタンスルホン酸と、酸化防止剤としてカテコールとを混合して、均一な溶液となった後、更に界面活性剤として上記No.C1-4のポリオキシエチレンアルキルアミン(質量平均分子量:1300)と、上記C2-4のポリオキシエチレンとポリオキシプロピレンの縮合体(質量平均分子量:3100、ポリアルキレンオキシド基のEO基:PO基(モル比)=15:40)と、上記C3-4のポリオキシエチレンとポリオキシプロピレンの縮合体(質量平均分子量:3100、ポリアルキレンオキシド基のEO基:PO基(モル比)=15:40)を加えた。そして最後にイオン交換水を加えて、下記組成のSnめっき液を建浴した。なお、メタンスルホン酸Sn水溶液は、金属Sn板をメタンスルホン酸水溶液中で電解させることにより調製した。
<Example 3-1>
After mixing methanesulfonic acid as a free acid and catechol as an antioxidant into a methanesulfonic acid Sn aqueous solution to form a uniform solution, the polyoxyethylene of No. C1-4 as a surfactant is further added. Alkylamine (mass average molecular weight: 1300) and condensate of C2-4 polyoxyethylene and polyoxypropylene (mass average molecular weight: 3100, EO group of polyalkylene oxide group: PO group (molar ratio) = 15: 40) and a condensate of C3-4 polyoxyethylene and polyoxypropylene (mass average molecular weight: 3100, EO group of polyalkylene oxide group: PO group (molar ratio) = 15: 40). And finally ion-exchange water was added and the Sn plating liquid of the following composition was constructed. The methanesulfonic acid Sn aqueous solution was prepared by electrolyzing a metal Sn plate in a methanesulfonic acid aqueous solution.
(Snめっき液の組成)
 メタンスルホン酸Sn(Sn2+として):80g/L
 メタンスルホン酸(遊離酸として):150g/L
 カテコール:1g/L
 アミン系界面活性剤C1-3:5g/L
 ノニオン系界面活性剤C2-4:3g/L
 ノニオン系界面活性剤C3-4:2g/L
 イオン交換水:残部
(Composition of Sn plating solution)
Methanesulfonic acid Sn (as Sn 2+ ): 80 g / L
Methanesulfonic acid (as free acid): 150 g / L
Catechol: 1g / L
Amine-based surfactant C1-3: 5 g / L
Nonionic surfactant C2-4: 3 g / L
Nonionic surfactant C3-4: 2 g / L
Ion-exchange water: balance
 <実施例3-2>
  メタンスルホン酸Sn水溶液に、遊離酸としてのメタンスルホン酸と、酸化防止剤としてカテコールと、錯化剤としてチオ尿素と、光沢剤としてベンズアルデヒドを混合して溶解させた後、更にメタンスルホン酸Ag液を加えて混合した。混合によって均一な溶液となった後、更に界面活性剤として上記No.C1-4のポリオキシエチレンアルキルアミン(質量平均分子量:1300)と上記C2-6のポリオキシエチレンとポリオキシプロピレンの縮合体(質量平均分子量:3400、ポリアルキレンオキシド基のEO基:PO基(モル比)=20:40)と、上記C3-7のポリオキシエチレンとポリオキシプロピレンの縮合体(質量平均分子量:3800、ポリアルキレンオキシド基のEO基:PO基(モル比)=30:40)を加えた。そして最後にイオン交換水を加えて、下記組成のSnAgめっき液を建浴した。なお、メタンスルホン酸Sn水溶液は、金属Sn板を、メタンスルホン酸Ag水溶液は、金属Ag板を、それぞれメタンスルホン酸水溶液中で電解させることにより調製した。
<Example 3-2>
In a methanesulfonic acid Sn aqueous solution, methanesulfonic acid as a free acid, catechol as an antioxidant, thiourea as a complexing agent, and benzaldehyde as a brightener are mixed and dissolved, and further methanesulfonic acid Ag solution And mixed. After a uniform solution is obtained by mixing, the polyoxyethylene alkylamine (No. C1-4) (mass average molecular weight: 1300) as a surfactant and a condensate of polyoxyethylene and polyoxypropylene (C2-6) are used. (Mass average molecular weight: 3400, EO group of polyalkylene oxide group: PO group (molar ratio) = 20: 40) and a condensate of C3-7 polyoxyethylene and polyoxypropylene (mass average molecular weight: 3800, EO group of polyalkylene oxide group: PO group (molar ratio) = 30: 40) was added. And finally, ion-exchange water was added and the SnAg plating solution of the following composition was constructed. In addition, the methanesulfonic acid Sn aqueous solution was prepared by electrolyzing a metal Sn plate, and the methanesulfonic acid Ag aqueous solution was electrolyzed in a methanesulfonic acid aqueous solution, respectively.
(SnAgめっき液の組成)
 メタンスルホン酸Sn(Sn2+として):80g/L
 メタンスルホン酸Ag(Ag+として):1.0g/L
 メタンスルホン酸(遊離酸として):150g/L
 カテコール:1g/L
 チオ尿素:2g/L
 ベンズアルデヒド:0.01g/L
 アミン系界面活性剤C1-4:3g/L
 ノニオン系界面活性剤C2-6:2g/L
 ノニオン系界面活性剤C3-7:2g/L
 イオン交換水:残部
(Composition of SnAg plating solution)
Methanesulfonic acid Sn (as Sn 2+ ): 80 g / L
Methanesulfonic acid Ag (as Ag + ): 1.0 g / L
Methanesulfonic acid (as free acid): 150 g / L
Catechol: 1g / L
Thiourea: 2 g / L
Benzaldehyde: 0.01 g / L
Amine surfactant C1-4: 3 g / L
Nonionic surfactant C2-6: 2 g / L
Nonionic surfactant C3-7: 2 g / L
Ion-exchange water: balance
 <比較試験及び評価>
 実施例1-1~1~15、実施例2-1~2-12、比較例1-1~1-11、比較例2-1~2-13、及び実施例3-1~3-2の3種類の建浴しためっき液を用いて、めっき膜(バンプ)を形成し、そのめっき膜のダイ内部(WID)での厚さの均一性とリフロー工程時のボイドの発生し易さを評価した。その結果を表4~表6に示す。
<Comparison test and evaluation>
Examples 1-1 to 1-15, Examples 2-1 to 2-12, Comparative Examples 1-1 to 1-11, Comparative Examples 2-1 to 2-13, and Examples 3-1 to 3-2 A plating film (bump) is formed using the three types of plating baths, and the uniformity of the thickness of the plating film inside the die (WID) and the ease of occurrence of voids during the reflow process. evaluated. The results are shown in Tables 4-6.
(1)ダイ内部(WID)でのめっき膜厚の均一性
 ウエハ(8インチ)の表面に、スパッタリング法によりチタン0.1μm、銅0.3μmの電気導通用シード層を形成し、そのシード層の上にドライフィルムレジスト(膜厚50μm)を積層した。次いで、露光用マスクを介して、ドライフィルムレジストを部分的に露光し、その後、現像処理した。こうして、図1に示すように、ウエハ1の表面に、直径が90μmの開口部2が、a:150μm、b:225μm、c:375μmの異なるピッチ間隔で形成されているパターンを有するレジスト層3を形成した。
(1) Uniformity of plating film thickness inside die (WID) A seed layer for electrical conduction of 0.1 μm titanium and 0.3 μm copper is formed on the surface of a wafer (8 inches) by sputtering, and the seed layer A dry film resist (film thickness 50 μm) was laminated on the substrate. Next, the dry film resist was partially exposed through an exposure mask, and then developed. Thus, as shown in FIG. 1, a resist layer 3 having a pattern in which openings 2 having a diameter of 90 μm are formed on the surface of the wafer 1 at different pitch intervals of a: 150 μm, b: 225 μm, and c: 375 μm. Formed.
 レジスト層3が形成されたウエハ1を、めっき装置(ディップ式パドル撹拌装置)に浸漬し、めっき液の液温:25℃、電流密度:4ASD、8ASD、12ASDの3つの条件にて、それぞれレジスト層3の開口部2をめっきした。次いで、ウエハ1をめっき装置から取出して、洗浄、乾燥した後、レジスト層3を有機溶媒を用いて剥離した。こうして、1ダイ内に、直径が90μmのバンプが、150μm、225μm、375μmの異なるピッチ間隔で配列されているパターンで形成されているバンプ付ウエハを作製した。このウエハのバンプの高さを、自動外観検査装置を用いて測定した。測定したバンプ高さから、以下の式により、ダイ内部(WID)でのめっき膜厚の均一性を算出した。その結果を表1の「WID」の欄に示す。
  WID=(最大高さ―最少高さ)/(2×平均高さ)×100
 電流密度が4ASDのとき、WIDが5以下である場合、電流密度が8ASDのとき、WIDが15以下である場合、また電流密度が12ASDのとき、WIDが20以下である場合を、それぞれめっき膜厚が均一である基準とした。
The wafer 1 on which the resist layer 3 is formed is immersed in a plating apparatus (dip-type paddle stirring apparatus), and the resist is respectively subjected to three conditions: a plating solution temperature: 25 ° C., a current density: 4 ASD, 8 ASD, and 12 ASD. The opening 2 of layer 3 was plated. Next, the wafer 1 was taken out of the plating apparatus, washed and dried, and then the resist layer 3 was peeled off using an organic solvent. In this way, a bumped wafer was produced in which bumps having a diameter of 90 μm were formed in a single die in a pattern in which 150 μm, 225 μm, and 375 μm were arranged at different pitch intervals. The height of the bumps on the wafer was measured using an automatic visual inspection apparatus. From the measured bump height, the uniformity of the plating film thickness inside the die (WID) was calculated by the following formula. The results are shown in the “WID” column of Table 1.
WID = (maximum height-minimum height) / (2 × average height) × 100
When the current density is 4 ASD, the WID is 5 or less, the current density is 8 ASD, the WID is 15 or less, and the current density is 12 ASD, the WID is 20 or less, respectively. The standard was uniform thickness.
(2)ボイドの発生し易さ
 電流密度を12ASDにしたときの上記(1)で作製したバンプ付ウエハのシード層をエッチングして、取り除いた後、リフロー装置を用いて240℃まで加熱して、バンプを溶融させた。放冷後、150μm、225μm、375μmの各ピッチ間隔で配列されているバンプ(計2000個)について、透過X線像を撮影した。撮影した画像を目視で観察し、バンプの大きさに対して1%以上の大きさのボイドが1つ以上見られた場合を「NG」とし、ボイドが見られない場合を「OK」とした。その結果を表4~表6の「ボイド」の欄に示す。
(2) Ease of occurrence of voids After etching and removing the seed layer of the bumped wafer prepared in (1) above when the current density is 12 ASD, the wafer is heated to 240 ° C. using a reflow apparatus. The bumps were melted. After cooling, transmission X-ray images were taken of bumps (2000 in total) arranged at intervals of 150 μm, 225 μm, and 375 μm. The photographed image was visually observed, and when one or more voids having a size of 1% or more with respect to the size of the bump was seen, “NG” was indicated, and when no void was seen, “OK” was designated. . The results are shown in the “Void” column of Tables 4-6.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
  表1及び表4から明らかなように、比較例1-1、比較例1-6では、  アミン系界面活性剤(C1-1)の式(1)のyが2であり、4~12の範囲内でなかったため、バンプにボイドは見られないものもあったが、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。 As is clear from Table 1 and Table 4, in Comparative Example 1-1 and Comparative Example 1-6, y in Formula (1) of the amine surfactant (C1-1) is 2, Since some of the bumps were not seen because they were not within the range, the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
  比較例1-2、比較例1-7では、アミン系界面活性剤(C1-5)の式(1)のyが40であり、4~12の範囲内でなかったため、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。更にボイドも発生した。 In Comparative Example 1-2 and Comparative Example 1-7, y in the formula (1) of the amine surfactant (C1-5) was 40 and was not within the range of 4 to 12, and therefore, from 4 ASD to 12 ASD WID exceeded the standard over the current density range, and the plating film thickness was not uniform. Furthermore, voids were also generated.
  比較例1-3、比較例1-8では、アミン系界面活性剤(C1-7)の式(1)のyが40であり、4~12の範囲内でなかったため、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。更にボイドも発生した。 In Comparative Example 1-3 and Comparative Example 1-8, y in formula (1) of the amine surfactant (C1-7) was 40, which was not within the range of 4 to 12, and therefore, from 4 ASD to 12 ASD WID exceeded the standard over the current density range, and the plating film thickness was not uniform. Furthermore, voids were also generated.
  比較例1-4、比較例1-9では、アミン系界面活性剤(C1-8)の式(1)のyが2であり、4~12の範囲内でなかったため、バンプにボイドは見られなかったが、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。 In Comparative Example 1-4 and Comparative Example 1-9, y in formula (1) of the amine surfactant (C1-8) was 2 and was not within the range of 4 to 12. However, the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
  比較例1-5、比較例1-10では、アミン系界面活性剤(C1-11)の式(1)のyが40であり、4~12の範囲内になかったため、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。また比較例1-5にはボイドは見られなかったが、比較例1-10ではボイドも発生した。 In Comparative Example 1-5 and Comparative Example 1-10, y in formula (1) of the amine surfactant (C1-11) was 40, and it was not within the range of 4 to 12, so that from 4 ASD to 12 ASD WID exceeded the standard over the current density range, and the plating film thickness was not uniform. In Comparative Example 1-5, no void was observed, but in Comparative Example 1-10, a void was also generated.
 比較例1-11では、界面活性剤がノニオン系界面活性剤(C3-5)のみであったため、バンプにボイドが見られず、しかも4ASDと8ASDの電流密度においてWIDが基準を満たし、めっき膜厚が均一であったが、12ASDの電流密度ではWIDが基準を超え、めっき膜厚が均一でなかった。即ち、ノニオン系界面活性剤(C2又はC3)はめっきの高さばらつきを抑えるのに必要な抑制効果はあるものの、単体ではSnイオンの供給を促す効果が低いため、高電流密度になるとSnイオンの枯渇が発生し、WIDが悪化した。 In Comparative Example 1-11, since the surfactant was only the nonionic surfactant (C3-5), no void was observed in the bumps, and the WID met the standard at the current densities of 4ASD and 8ASD, and the plating film Although the thickness was uniform, the WID exceeded the standard at a current density of 12 ASD, and the plating film thickness was not uniform. That is, the nonionic surfactant (C2 or C3) has a suppressing effect necessary for suppressing the variation in plating height, but the effect of promoting the supply of Sn ions by itself is low. Depletion occurred and WID deteriorated.
  表2及び表5から明らかなように、比較例2-1では、 ノニオン系界面活性剤(C2-1)の式(2)のEO基のmが10であり、15~30の範囲内になく、またPO基のn1+n2が30であり、40~50の範囲内になかったため、バンプにボイドは見られなかったが、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。 As is clear from Table 2 and Table 5, in Comparative Example 2-1, m of the EO group of the formula (2) of the nonionic surfactant (C2-1) is 10 and is within the range of 15-30. In addition, since n1 + n2 of PO group was 30 and was not within the range of 40-50, no void was seen in the bump, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness Was not uniform.
  比較例2-2では、 ノニオン系界面活性剤(C2-2)の式(2)のPO基のn1+n2が40であり、40~50の範囲内にあったが、EO基のmが10であり、15~30の範囲内になかったため、バンプにボイドは見られなかったが、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。 In Comparative Example 2-2, n1 + n2 of the PO group of the formula (2) of the nonionic surfactant (C2-2) was 40 and was in the range of 40 to 50, but the m of the EO group was 10. There was no void in the bump because it was not in the range of 15 to 30, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
 比較例2-3では、ノニオン系界面活性剤(C2-3)の式(2)のEO基のmが15であり、15~30の範囲内にあったが、PO基のn1+n2が30であり、40~50の範囲内になかったため、バンプにボイドは見られなかったが、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。 In Comparative Example 2-3, m of the EO group of formula (2) of the nonionic surfactant (C2-3) was 15 and was in the range of 15 to 30, but n1 + n2 of the PO group was 30. There was no void in the bump because it was not in the range of 40-50, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
  比較例2-4では、 ノニオン系界面活性剤(C2-8)の式(2)のPO基のn1+n2が50であり、40~50の範囲内にあったが、EO基のmが40であり、15~30の範囲内になかったため、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。更にボイドも発生した。 In Comparative Example 2-4, the n1 + n2 of the PO group of the formula (2) in the nonionic surfactant (C2-8) was 50 and was in the range of 40 to 50, but the m of the EO group was 40. Yes, because it was not in the range of 15 to 30, the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform. Furthermore, voids were also generated.
 比較例2-5では、ノニオン系界面活性剤(C2-9)の式(2)のEO基のmが30であり、15~30の範囲内にあったが、PO基のn1+n2が60であり、40~50の範囲内になかったため、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。更にボイドも発生した。 In Comparative Example 2-5, m of the EO group of the formula (2) of the nonionic surfactant (C2-9) was 30 and was in the range of 15 to 30, but the n1 + n2 of the PO group was 60. Since it was not in the range of 40 to 50, the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform. Furthermore, voids were also generated.
 比較例2-6では、 ノニオン系界面活性剤(C2-10)の式(2)のEO基のmが50であり、15~30の範囲内になく、またPO基のn1+n2が60であり、40~50の範囲内になかったため、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。更にボイドも発生した。 In Comparative Example 2-6, m of the EO group of the formula (2) in the nonionic surfactant (C2-10) is 50, not in the range of 15 to 30, and n1 + n2 of the PO group is 60. , The WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform. Furthermore, voids were also generated.
  表3及び表5から明らかなように、比較例2-7では、 ノニオン系界面活性剤(C3-1)の式(3)のEO基のm1+m2が10であり、15~30の範囲内になく、またPO基のnが30であり、40~50の範囲内になかったため、バンプにボイドは見られなかったが、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。 As is clear from Tables 3 and 5, in Comparative Example 2-7, m1 + m2 of the EO group of the formula (3) of the nonionic surfactant (C3-1) is 10, which falls within the range of 15-30. In addition, since the n of the PO group was 30 and was not in the range of 40 to 50, no void was found in the bump, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness Was not uniform.
  比較例2-8では、 ノニオン系界面活性剤(C3-2)の式(3)のPO基のnが40であり、40~50の範囲内にあったが、EO基のm1+m2が10であり、15~30の範囲内になかったため、バンプにボイドは見られなかったが、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。 In Comparative Example 2-8, n of the PO group of the formula (3) in the nonionic surfactant (C3-2) was 40 and was in the range of 40 to 50, but m1 + m2 of the EO group was 10. There was no void in the bump because it was not in the range of 15 to 30, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
 比較例2-9では、ノニオン系界面活性剤(C3-3)の式(3)のEO基のm1+m2が15であり、15~30の範囲内にあったが、PO基のnが30であり、40~50の範囲内になかったため、バンプにボイドは見られなかったが、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。 In Comparative Example 2-9, m1 + m2 of the EO group of the formula (3) of the nonionic surfactant (C3-3) was 15 and was in the range of 15 to 30, but n of the PO group was 30. There was no void in the bump because it was not in the range of 40-50, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform.
  比較例2-10では、 ノニオン系界面活性剤(C3-8)の式(3)のPO基のnが50であり、40~50の範囲内にあったが、EO基のm1+m2が40であり、15~30の範囲内になかったため、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。更にボイドも発生した。 In Comparative Example 2-10, n of the PO group of the formula (3) of the nonionic surfactant (C3-8) was 50 and was in the range of 40 to 50, but m1 + m2 of the EO group was 40. Yes, because it was not in the range of 15 to 30, the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform. Furthermore, voids were also generated.
 比較例2-11では、ノニオン系界面活性剤(C3-9)の式(3)のEO基のm1+m2が30であり、15~30の範囲内にあったが、PO基のnが60であり、40~50の範囲内になかったため、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。更にボイドも発生した。 In Comparative Example 2-11, m1 + m2 of the EO group of the formula (3) of the nonionic surfactant (C3-9) was 30 and was within the range of 15 to 30, but n of the PO group was 60. Since it was not in the range of 40 to 50, the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform. Furthermore, voids were also generated.
 比較例2-12では、 ノニオン系界面活性剤(C3-10)の式(3)のEO基のm1+m2が50であり、15~30の範囲内になく、またPO基のnが60であり、40~50の範囲内になかったため、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。更にボイドも発生した。 In Comparative Example 2-12, m1 + m2 of the EO group of the formula (3) in the nonionic surfactant (C3-10) is 50, not within the range of 15 to 30, and n of the PO group is 60. , The WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was not uniform. Furthermore, voids were also generated.
  比較例2-13では、 界面活性剤がアミン系界面活性剤(C1-4)のみであったため、ボイドは見られなかったが、4ASDから12ASDまでの電流密度範囲にわたってWIDが基準を超え、めっき膜厚が均一でなかった。即ち、アミン系界面活性剤(C1)はSnイオンの供給を促す効果があるものの、単体ではめっきの高さばらつきを抑えるのに必要な抑制効果が得られず、WIDが高かった。 In Comparative Example 2-13, since the soot surfactant was only the amine surfactant (C1-4), no void was observed, but the WID exceeded the standard over the current density range from 4 ASD to 12 ASD, and plating was performed. The film thickness was not uniform. That is, the amine-based surfactant (C1) has an effect of promoting the supply of Sn ions, but the suppression effect necessary for suppressing the variation in plating height cannot be obtained by itself, and the WID was high.
 これに対して、表4~表6から明らかなように、実施例1-1~1~15、実施例2-1~2-12及び実施例3-1~3-2では、アミン系界面活性剤(C1-3)、(C1-4)、(C1-6)、(C1-9)、(C1-10)の式(1)のxが12~18の範囲内にあり、yが4~12の範囲内にあり、しかもノニオン系界面活性剤(C2-4)、(C2-2)、(C2-5)、(C2-6)、(C2-7)、(C3-4)、(C3-5)、(C3-6)、(C3-7)のEO基:PO基(モル比)のm:n1+n2又はm1+m2:nが15~30:40~50の範囲内であったため、バンプにボイドは見られず、また4ASDから12ASDまでの電流密度範囲にわたってWIDが基準内にあり、めっき膜厚が均一であった。即ち、アミン系界面活性剤(C1)とノニオン系界面活性剤(C2及び/又はC3)を適切に組み合わせることで4~12ASDと幅広い電流密度において良好なWID、及びボイドが無いバンプが得られた。 On the other hand, as is clear from Tables 4 to 6, in Examples 1-1 to 1-15, Examples 2-1 to 2-12, and Examples 3-1 to 3-2, X in the formula (1) of the activator (C1-3), (C1-4), (C1-6), (C1-9), (C1-10) is in the range of 12-18, and y is It is within the range of 4 to 12, and nonionic surfactants (C2-4), (C2-2), (C2-5), (C2-6), (C2-7), (C3-4) , (C3-5), (C3-6), and (C3-7) EO group: PO group (molar ratio) m: n1 + n2 or m1 + m2: n was in the range of 15-30: 40-50 Voids were not seen in the bumps, and WID was within the standard over the current density range from 4 ASD to 12 ASD, and the plating film thickness was uniform. That is, by appropriately combining the amine surfactant (C1) and the nonionic surfactant (C2 and / or C3), a good WID and a void-free bump were obtained in a wide current density of 4 to 12 ASD. .
 本発明のめっき液は、プリント基板、フレキシブルプリント基板、フィルムキャリア、半導体集積回路、抵抗、コンデンサ、フィルタ、インダクタ、サーミスタ、水晶振動子、スイッチ、リード線などの電子部品、及びウエハのバンプなどのような電子部品の一部に利用することができる。 The plating solution of the present invention includes printed circuit boards, flexible printed circuit boards, film carriers, semiconductor integrated circuits, resistors, capacitors, filters, inductors, thermistors, crystal resonators, switches, lead wires and other electronic components, and wafer bumps. It can be used for a part of such electronic components.

Claims (2)

  1.  (A)少なくとも第一錫塩を含む可溶性塩、
     (B)有機酸及び無機酸から選ばれた酸又はその塩、
     (C)添加剤
     を含むめっき液であって、
     前記添加剤がアミン系界面活性剤(C1)とノニオン系界面活性剤(C2及び/又はC3)の2種類の界面活性剤を含み、
     前記アミン系界面活性剤(C1)が次の一般式(1)で表されるポリオキシエチレンアルキルアミンであり、前記ノニオン系界面活性剤(C2又はC3)が次の一般式(2)又は一般式(3)で表されるポリオキシエチレンとポリオキシプロピレンの縮合体であることを特徴とするめっき液。
    Figure JPOXMLDOC01-appb-C000001
     ただし、式(1)中、xは12~18、yは4~12である。
    Figure JPOXMLDOC01-appb-C000002
     ただし、式(2)中、mは15~30、n1+n2は40~50である。
    Figure JPOXMLDOC01-appb-C000003
     ただし、式(3)中、m1+m2は15~30、nは40~50である。
    (A) a soluble salt containing at least a stannous salt,
    (B) an acid selected from organic acids and inorganic acids or salts thereof,
    (C) a plating solution containing an additive,
    The additive includes two types of surfactants, an amine surfactant (C1) and a nonionic surfactant (C2 and / or C3),
    The amine surfactant (C1) is a polyoxyethylene alkylamine represented by the following general formula (1), and the nonionic surfactant (C2 or C3) is the following general formula (2) or general A plating solution, which is a condensate of polyoxyethylene and polyoxypropylene represented by formula (3).
    Figure JPOXMLDOC01-appb-C000001
    However, in the formula (1), x is 12 to 18, and y is 4 to 12.
    Figure JPOXMLDOC01-appb-C000002
    However, in the formula (2), m is 15 to 30, and n1 + n2 is 40 to 50.
    Figure JPOXMLDOC01-appb-C000003
    However, in the formula (3), m1 + m2 is 15 to 30, and n is 40 to 50.
  2.  前記添加剤が前記2種類の界面活性剤(C1, C2及び/又はC3)とは別の界面活性剤、錯化剤、光沢剤及び酸化防止剤のうち、2つ以上のその他の添加剤を更に含む請求項1記載のめっき液。 The additive is a surfactant, complexing agent, brightener and antioxidant other than the two types of surfactants (C1, C2 and / or C3), and two or more other additives are added. The plating solution according to claim 1, further comprising:
PCT/JP2018/007997 2017-03-27 2018-03-02 Plating liquid WO2018180192A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880021384.1A CN110462108B (en) 2017-03-27 2018-03-02 Electroplating solution
EP18777379.1A EP3604622A4 (en) 2017-03-27 2018-03-02 Plating liquid
KR1020197029812A KR20190127814A (en) 2017-03-27 2018-03-02 Plating amount
US16/497,032 US11174565B2 (en) 2017-03-27 2018-03-02 Plating liquid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-061175 2017-03-27
JP2017061175 2017-03-27
JP2018-031865 2018-02-26
JP2018031865A JP7015975B2 (en) 2017-03-27 2018-02-26 Tin or tin alloy plating solution

Publications (1)

Publication Number Publication Date
WO2018180192A1 true WO2018180192A1 (en) 2018-10-04

Family

ID=63677014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007997 WO2018180192A1 (en) 2017-03-27 2018-03-02 Plating liquid

Country Status (3)

Country Link
CN (1) CN110462108B (en)
TW (1) TWI742262B (en)
WO (1) WO2018180192A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864393A (en) * 1981-10-14 1983-04-16 Kizai Kk Plating bath for tin-zinc alloy
JPS61175A (en) 1984-06-06 1986-01-06 大倉工業株式会社 Blister package of medical appliance strilized through projection of radiation
JPS61117298A (en) * 1984-11-12 1986-06-04 Nippon Mining Co Ltd Treatment of surface
JPS63161188A (en) * 1986-12-24 1988-07-04 Nippon Mining Co Ltd Production of reflow-treated solder plated material
JPH10306396A (en) * 1997-03-03 1998-11-17 Murata Mfg Co Ltd Electroplating bath of tin or tin alloy and electroplating bath using the same
JP2003342778A (en) * 2002-05-24 2003-12-03 Murata Mfg Co Ltd Tinning bath, plating method for electronic parts and electronic parts
JP2005290505A (en) 2004-04-02 2005-10-20 Mitsubishi Materials Corp Lead-tin alloy solder plating liquid
JP2007332447A (en) * 2006-06-19 2007-12-27 Adeka Corp Electrolytic copper plating bath and electrolytic copper plating method
JP2011063834A (en) * 2009-09-16 2011-03-31 Mitsubishi Shindoh Co Ltd SULFURIC ACID BATH FOR HIGH CURRENT DENSITY Sn PLATING
JP2012087393A (en) 2010-10-22 2012-05-10 Rohm & Haas Denshi Zairyo Kk Tin plating solution
JP2013044001A (en) 2011-08-22 2013-03-04 Ishihara Chem Co Ltd Tin and tin alloy plating bath, and electronic part with electrodeposited film formed with the bath
JP2017061175A (en) 2015-09-24 2017-03-30 日本精機株式会社 Display device for vehicle
JP2018031865A (en) 2016-08-24 2018-03-01 キヤノン株式会社 Optical scanner and image forming apparatus including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099713A (en) * 1996-11-25 2000-08-08 C. Uyemura & Co., Ltd. Tin-silver alloy electroplating bath and tin-silver alloy electroplating process
US20150122662A1 (en) * 2013-11-05 2015-05-07 Rohm And Haas Electronic Materials Llc Plating bath and method
JP2015193916A (en) * 2014-03-18 2015-11-05 上村工業株式会社 Tin or tin alloy electroplating bath and method for producing bump

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864393A (en) * 1981-10-14 1983-04-16 Kizai Kk Plating bath for tin-zinc alloy
JPS61175A (en) 1984-06-06 1986-01-06 大倉工業株式会社 Blister package of medical appliance strilized through projection of radiation
JPS61117298A (en) * 1984-11-12 1986-06-04 Nippon Mining Co Ltd Treatment of surface
JPS63161188A (en) * 1986-12-24 1988-07-04 Nippon Mining Co Ltd Production of reflow-treated solder plated material
JPH10306396A (en) * 1997-03-03 1998-11-17 Murata Mfg Co Ltd Electroplating bath of tin or tin alloy and electroplating bath using the same
JP2003342778A (en) * 2002-05-24 2003-12-03 Murata Mfg Co Ltd Tinning bath, plating method for electronic parts and electronic parts
JP2005290505A (en) 2004-04-02 2005-10-20 Mitsubishi Materials Corp Lead-tin alloy solder plating liquid
JP2007332447A (en) * 2006-06-19 2007-12-27 Adeka Corp Electrolytic copper plating bath and electrolytic copper plating method
JP2011063834A (en) * 2009-09-16 2011-03-31 Mitsubishi Shindoh Co Ltd SULFURIC ACID BATH FOR HIGH CURRENT DENSITY Sn PLATING
JP2012087393A (en) 2010-10-22 2012-05-10 Rohm & Haas Denshi Zairyo Kk Tin plating solution
JP2013044001A (en) 2011-08-22 2013-03-04 Ishihara Chem Co Ltd Tin and tin alloy plating bath, and electronic part with electrodeposited film formed with the bath
JP2017061175A (en) 2015-09-24 2017-03-30 日本精機株式会社 Display device for vehicle
JP2018031865A (en) 2016-08-24 2018-03-01 キヤノン株式会社 Optical scanner and image forming apparatus including the same

Also Published As

Publication number Publication date
CN110462108A (en) 2019-11-15
TW201843354A (en) 2018-12-16
TWI742262B (en) 2021-10-11
CN110462108B (en) 2022-02-01

Similar Documents

Publication Publication Date Title
EP1001054B1 (en) Tin-copper alloy electroplating bath and plating process therewith
JP3871013B2 (en) Tin-copper alloy electroplating bath and plating method using the same
JP5150016B2 (en) Tin or tin alloy plating bath and barrel plating method using the plating bath
JP7015975B2 (en) Tin or tin alloy plating solution
JP6631349B2 (en) Plating solution using ammonium salt
EP3770305A1 (en) Tin or tin-alloy plating liquid, bump forming method, and circuit board production method
WO2019181905A1 (en) Tin or tin-alloy plating liquid, bump forming method, and circuit board production method
JP2017179515A (en) Plating solution
JP6631348B2 (en) Plating solution using phosphonium salt
KR102629674B1 (en) tin alloy plating solution
WO2018180192A1 (en) Plating liquid
JP6607106B2 (en) Plating solution using sulfonium salt
JP2003293185A (en) Tin electroplating bath and plating method using the same
WO2016152983A1 (en) Plating solution using phosphonium salt
JP2018123402A (en) Plating solution using ammonium salt
WO2016152997A1 (en) Plating solution using sulfonium salt
WO2016152986A1 (en) Plating solution using ammonium salt
TW202229648A (en) Tin or tin alloy plating solution and formation method of bump using the solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197029812

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018777379

Country of ref document: EP

Effective date: 20191028