WO2018180187A1 - Degradation of ethyl carbamate - Google Patents

Degradation of ethyl carbamate Download PDF

Info

Publication number
WO2018180187A1
WO2018180187A1 PCT/JP2018/007918 JP2018007918W WO2018180187A1 WO 2018180187 A1 WO2018180187 A1 WO 2018180187A1 JP 2018007918 W JP2018007918 W JP 2018007918W WO 2018180187 A1 WO2018180187 A1 WO 2018180187A1
Authority
WO
WIPO (PCT)
Prior art keywords
esterase
amino acid
acinetobacter
acid sequence
seq
Prior art date
Application number
PCT/JP2018/007918
Other languages
French (fr)
Japanese (ja)
Inventor
和典 吉田
哲也 ▲高▼橋
Original Assignee
天野エンザイム株式会社
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社, 江南大学 filed Critical 天野エンザイム株式会社
Priority to JP2019509049A priority Critical patent/JP7138867B2/en
Priority to CN201880023590.6A priority patent/CN111065280A/en
Publication of WO2018180187A1 publication Critical patent/WO2018180187A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G3/00Preparation of other alcoholic beverages
    • C12G3/08Preparation of other alcoholic beverages by methods for altering the composition of fermented solutions or alcoholic beverages not provided for in groups C12G3/02 - C12G3/07
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12HPASTEURISATION, STERILISATION, PRESERVATION, PURIFICATION, CLARIFICATION OR AGEING OF ALCOHOLIC BEVERAGES; METHODS FOR ALTERING THE ALCOHOL CONTENT OF FERMENTED SOLUTIONS OR ALCOHOLIC BEVERAGES
    • C12H6/00Methods for increasing the alcohol content of fermented solutions or alcoholic beverages
    • C12H6/02Methods for increasing the alcohol content of fermented solutions or alcoholic beverages by distillation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a method for decomposing ethyl carbamate. Specifically, the present invention relates to a method for decomposing ethyl carbamate in foods or beverages.
  • This application claims priority based on Japanese Patent Application No. 2017-068426 filed on Mar. 30, 2017, the entire contents of which are incorporated by reference.
  • Ethyl carbamate (hereinafter sometimes abbreviated as “EC”) is a compound suspected to be carcinogenic or mutagenic, although it has been used as a pharmaceutical in the past.
  • EC Ethyl carbamate
  • Shaoxing liquor, sherry liquor, or fermented foods contain a relatively large amount of EC, and development of means for reducing or removing EC is desired.
  • Various attempts have been made so far. For example, a method using uretanase (see, for example, Patent Document 1 and Non-Patent Documents 1 to 3) and a method using a cell of a microorganism producing an EC-degrading enzyme ( For example, see Patent Documents 2 and 3).
  • the method of degrading EC using uretanase has a problem that the stability of uretanase in the presence of alcohol is low and the thermal stability is also low.
  • the decomposition method using microbial cells is not particularly satisfactory in terms of practicality.
  • an object of the present invention is to provide a practical method capable of efficiently decomposing EC in food or beverage.
  • esterase derived from Acinetobacter calcoaceticus shows high degradation activity against EC.
  • esterase derived from Acinetobacter calcoaceticus is useful as a means of degrading EC in alcoholic beverages.
  • esterases are classified as serine proteases, and are usually subject to activity inhibition by alcohol hydroxyl groups. From this technical common sense, the new utilization form of esterase that has been clarified by the study of the present inventors, that is, “use of esterase for the degradation of EC in alcoholic beverages” can be said to be extremely unique.
  • esterase derived from Acinetobacter calcoaceticus has high stability in alcohol and temperature stability, and is excellent in practicality.
  • various properties of the esterase were clarified, and useful information for practical use was also provided.
  • [1] Decomposing ethyl carbamate in food or beverage, characterized by allowing esterase comprising 70% or more of the amino acid sequence of SEQ ID NO: 1 to act on food or beverage containing ethyl carbamate how to.
  • [2] The degradation method according to [1], wherein the amino acid sequence of the esterase includes any one of the amino acid sequences of SEQ ID NOS: 1 to 18.
  • [3] The degradation method according to [1], wherein the esterase is derived from an Acinetobacter genus microorganism, a Pseudomonas genus microorganism, a Burkholderia microorganism, or a Parabalkhorderia microorganism.
  • the microorganism belonging to the genus Acinetobacter is Acinetobacter calcoaceticus, Acinetobacter guillouiae, Acinetobacter baumannii, or the genus Acinetobacter baumannii, Is Pseudomonas aeruginosa, Pseudomonas fluorescens or Pseudomonas putida, and the Burkholderia is Burkholderia ubonensis or Burkholderia [3] Borans (Purukholderia pseudomultivorans), and the Parabalkholderia is Paraburkholderia ferrariae [3 ]
  • the esterase is Acinetobacter sp. NBRC 110496 (Acinetobacter sp. NBRC 110496), Acinetobacter sp. NIPH809 (Acinetobacter sp. NIPH809), Pseudomonas fluorescens A506, Pseudomonas sp. ABAC61), Pseudomonas putida IFO12996 (Pseudomonas putida IFO12996) or Pseudomonas putida MR2068 (Pseudomonas putida MR2068).
  • the alcoholic beverage is Shaoxing liquor, distilled liquor made from drupe, whiskey, brandy, tequila, cachassa, shochu, sake, wine, refined wine, plum wine, sherry liquor, or mixed liquor.
  • the disassembly method described in 1. A method for producing a food or beverage from which ethyl carbamate is removed or reduced, comprising a treatment step with an esterase comprising an amino acid sequence 70% or more identical to the amino acid sequence of SEQ ID NO: 1. [11] The production method according to [10], wherein the esterase is the esterase defined in any one of [2] to [7].
  • EC degradation activity of related enzymes An esterase-related enzyme derived from Acinetobacter calcoaceticus (A. calcoaceticus) was expressed in an E. coli expression system, and the presence or absence of EC degradation ability was examined. Top: Ability to degrade EC at pH 7.0 of related enzymes No.1 to No.10. Bottom: EC degradation ability of related enzymes No. 11 to No. 16 at pH 7.0. Alcohol stability of esterase from A. calcoaceticus. A. Optimum temperature of calcoaceticus-derived esterase. A. Optimal pH of calcoaceticus-derived esterase. Temperature stability of esterase derived from A. calcoaceticus. PH stability of esterase derived from A. ticcalcoaceticus.
  • the present invention is a method for decomposing ethyl carbamate in foods or beverages, characterized in that esterase is allowed to act on foods or beverages containing ethyl carbamates. According to the present invention, a food or beverage from which ethyl carbamate is removed or reduced can be obtained.
  • esterase used in the present invention is not particularly limited as long as it exhibits a degrading activity against ethyl carbamate.
  • One preferred esterase is an esterase comprising the amino acid sequence of SEQ ID NO: 1.
  • the esterase is an esterase derived from Acinetobacter calcoaceticus, which has been found by the present inventors, as shown in the Examples below, and has high resistance to alcohol and temperature stability. It has the feature of being excellent.
  • esterases identified by an amino acid sequence having 70% or more identity with the amino acid sequence of SEQ ID NO: 1 have a degradation activity against ethyl carbamate, like esterase derived from Acinetobacter calcoaceticus.
  • esterases having an amino acid sequence that is 70% or more identical to the amino acid sequence of SEQ ID NO: 1 are also suitable for the present invention.
  • Specific examples of the corresponding esterase are derived from Acinetobacter guillouiae, derived from esterase having the amino acid sequence of SEQ ID NO: 2 (amino acid sequence identity of 98%) and Acinetobacter baumannii ABNIH3.
  • NBRC 110496 (Acinetobacter sp. NBRC 110496), SEQ ID NO: Esterase having an amino acid sequence of 11 (81% identity in amino acid sequence), Esterase derived from Acinetobacter seifertii and having the amino acid sequence of SEQ ID NO: 12 (90% identity in amino acid sequence), Acinetobacter sp Derived from NIPH809 (Acinetobacter sp.
  • NIPH809 derived from esterase having the amino acid sequence of SEQ ID NO: 13 (80% identity of amino acid sequence), Pseudomonas fluorescens A506 (A506 Pseudomonas fluorescens A506), Esterase having amino acid sequence (80% identity in amino acid sequence), Pseudomonas sp. ABAC61 (Pseudomonas sp.
  • esterase having amino acid sequence of SEQ ID NO: 15 (79% identity in amino acid sequence
  • Pseudomonas Puchida IFO12996 Pseudomonas putida IFO12996
  • Esterase derived from and having the amino acid sequence of SEQ ID NO: 16 (76% identity in amino acid sequence
  • the identity of the amino acid sequence of the esterase derived from Arthrobacter ramosus (see Examples) that did not show the degradation activity against ethyl carbamate was only 21%.
  • an esterase having an amino acid sequence equivalent to the above amino acid sequence can also be used.
  • the “equivalent amino acid sequence” here is partially different from the reference amino acid sequence (sequence of any of SEQ ID NOs: 1 to 18), but the difference is the function of the protein (here, with respect to ethyl carbamate).
  • the degree of degradation activity against ethyl carbamate is preferably the same or higher than that of an enzyme having a polypeptide chain consisting of a reference amino acid sequence.
  • “Partial difference in amino acid sequence” typically means deletion, substitution, or addition, insertion of one to several amino acids, or a combination thereof. This means that a mutation (change) has occurred in the amino acid sequence.
  • the difference in the amino acid sequence here is permissible as long as the decomposition activity against ethyl carbamate is retained (there may be some variation in activity).
  • the positions where the amino acid sequences are different are not particularly limited, and differences may occur at a plurality of positions.
  • the “plurality” herein is, for example, a number corresponding to less than about 30% of all amino acids, preferably a number corresponding to less than about 20%, more preferably a number corresponding to less than about 10%, Even more preferred is a number corresponding to less than about 5%, most preferred a number corresponding to less than about 1%. That is, the equivalent protein has a reference amino acid sequence, for example, about 60% or more, about 70% or more, about 75% or more, about 76% or more, about 79% or more, about 80% or more, about 81% or more, about 85%. More than about 90%, about 95%, about 97%, about 98% or more, or about 99% or more (the higher the percentage of identity, the better).
  • the Acinebacter calcoaceticus esterase specified by the amino acid sequence of SEQ ID NO: 1 the 97th serine (Ser97), the 227th aspartic acid (Asp227) and the 256th histidine (Ser97), which are presumed to constitute the active center His256) is preferably not subject to deletion or substitution.
  • an equivalent amino acid sequence can be obtained by causing a conservative amino acid substitution at an amino acid residue that is not essential for the decomposition activity against ethyl carbamate.
  • conservative amino acid substitution refers to substitution of a certain amino acid residue with an amino acid residue having a side chain having the same properties.
  • a basic side chain eg lysine, arginine, histidine
  • an acidic side chain eg aspartic acid, glutamic acid
  • an uncharged polar side chain eg glycine, asparagine, glutamine, serine, threonine, tyrosine
  • Cysteine eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • ⁇ -branched side chains eg threonine, valine, isoleucine
  • aromatic side chains eg tyrosine, phenylalanine, Like tryptophan and histidine.
  • a conservative amino acid substitution is preferably a substitution between amino acid residues within the same family.
  • the identity (%) of two amino acid sequences or two nucleic acids can be determined by the following procedure, for example.
  • two sequences are aligned for optimal comparison (eg, a gap may be introduced into the first sequence to optimize alignment with the second sequence).
  • a molecule amino acid residue or nucleotide
  • Gapped BLAST described in Altschul et al. (1997) Amino Acids Research 25 (17): 3389-3402 can be used.
  • the default parameters of the corresponding programs eg, XBLAST and NBLAST
  • gap weight 12, 10, 8, 6, or 4
  • the esterase used in the present invention may be a part of a larger protein (for example, a fusion protein).
  • a fusion protein for example, a fusion protein
  • sequences added in the fusion protein include sequences useful for purification, such as multiple histidine residues, and additional sequences that ensure stability during recombinant production.
  • the esterase having the amino acid sequence can be easily prepared by a genetic engineering technique. For example, it can be prepared by transforming a suitable host cell (for example, E. coli) with DNA encoding the target esterase and recovering the protein expressed in the transformant. The recovered protein is appropriately purified according to the purpose. Thus, various modifications are possible if the desired enzyme is obtained as a recombinant protein. For example, if a DNA encoding the target enzyme and another appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, the recombinant protein to which any peptide or protein is linked can be obtained. The target enzyme can be obtained.
  • a DNA encoding the target enzyme and another appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, the recombinant protein to which any peptide or protein is linked can be obtained.
  • the target enzyme can be obtained.
  • modification may be performed so that addition of sugar chain and / or lipid, or processing of N-terminal or C-terminal may occur.
  • modification as described above, extraction of recombinant protein, simplification of purification, addition of biological function, and the like are possible.
  • esterase The origin of esterase is not particularly limited. For example, Acinetobacter calcoaceticus, Acinetobacter guillouiae, Acinetobacter baumannii, Acinetobacter seudotii, Acinetobacter seifertii , Pseudomonas fluorescens, Pseudomonas putida, and other Pseudomonas microorganisms, Burkholderia ubonensis, Burkholderia pseudomultivorans, Burkholderia pseudomultivorans, etc.
  • Microorganisms derived from microorganisms such as microorganisms belonging to the genus Delia or Paraburkholderia ferrariae such as Paraburkholderia ferrariae A sterase can be used.
  • Acinetobacter baumannii ABNIH3 Acinetobacter baumannii ABNIH3
  • Acinetobacter sp. NBRC 110496 Acinetobacter sp. NBRC 110496
  • Acinetobacter sp. Pseudomonas fluorescens A506, Pseudomonas sp. ABAC61 (Pseudomonas sp.
  • Pseudomonas putida IFO12996 Pseudomonas putida IFO12996
  • Pseudomonas putida MR2068 Pseudomonas putida MR2068
  • the “esterase derived from a microorganism” as used herein means an esterase produced by a microorganism of each genus (which may be a wild strain or a mutant), or a microorganism of each genus (a wild strain). It may be an esterase obtained by genetic engineering techniques using an esterase gene (which may or may not be a mutant). Therefore, an esterase produced by a host microorganism into which an esterase gene (or a gene obtained by modifying the gene) obtained from a microorganism classified as described above is also an esterase derived from the microorganism classified as described above.
  • the esterase-producing bacterium may be a wild strain (an isolated strain that has not been subjected to mutation / modification treatment such as gene manipulation) or a mutant strain.
  • a transformant obtained by introducing an esterase gene isolated from the original production strain into an appropriate host microorganism such as Escherichia coli, Bacillus bacteria, Neisseria gonorrhoeae, or budding yeast (Saccharomyces cerevisiae)). May be used as production bacteria.
  • esterase derived from Acinetobacter calcoaceticus specified by the amino acid sequence of SEQ ID NO: 1 is a particularly suitable esterase in the degradation method of the present invention.
  • the present inventors also succeeded in specifying various properties of the esterase as follows.
  • Optimal temperature for esterase activity The optimal temperature for this esterase is 20-30 ° C.
  • the optimum temperature can be evaluated based on the measurement result under the condition of pH 7 (for example, using 50 mM phosphate buffer).
  • Optimal pH for esterase activity The optimum pH of this esterase is 7. The optimum pH is determined based on, for example, the results of measurement in a 100 mM McIlvaine buffer in the pH range of 3.0 to 8.0 and in a 100 mM Atkins buffer in the pH range of pH 8.0 to 11.0.
  • Alcohol stability This esterase exhibits high stability in alcohol. If the alcohol concentration is 40% or less, it will not be inactivated even when treated at 30 ° C for 8 days (residual activity is 90% or more).
  • Foods or beverages on which esterases are allowed to act are not particularly limited.
  • foods and beverages that can be processed include various fermented foods (eg yogurt, cheese, pickles, soy sauce, miso), bread, Shaoxing liquor, and nuclear fruits (cherry, peach, plum, apricot, etc.) Liquor, whiskey, brandy, tequila, cachassa, shochu, sake, wine, refined wine (sherry, port wine, madeira wine, marsala wine, etc.), plum wine, sherry, mixed liquor (liqueur, vermouth, medicinal liquor, etc.) is there.
  • alcoholic beverages such as Shaoxing liquor, sherry liquor, and sake are treated.
  • foods or beverages in the process of production may be treated.
  • the esterase is added to a food or beverage to be treated and reacted for a predetermined time.
  • the food or beverage to be treated is brought into contact with the esterase immobilized on the carrier to cause an enzymatic reaction.
  • the amount of enzyme to be used (enzyme concentration), temperature conditions, reaction time, etc. may be determined through preliminary experiments.
  • ⁇ Method for producing food or beverage> As is apparent from the above description, by incorporating the decomposition method of the present invention into the production process, a food or beverage from which ethyl carbamate is removed or reduced can be obtained. Then, the 2nd aspect of this invention provides the manufacturing method of the foodstuff or drink using the decomposition
  • a treatment step with esterase hereinafter sometimes referred to as “enzyme treatment step” is performed during the production process.
  • the position of the enzyme treatment process in the entire production process is particularly It is not limited. However, except in exceptional cases, the enzyme treatment process is carried out after these processes, considering that ethyl carbamate is produced in the fermentation process or the aging / storage process, which is the final or final stage of the production process. It is preferable to do. Therefore, in a preferred embodiment, the enzyme treatment step is performed after the fermentation step, or the enzyme treatment step is performed after the aging / storage step.
  • esterase may be added and allowed to act during a specific step.
  • an enzyme reaction occurs in parallel with the progress of a specific process.
  • specific process here include a fermentation process, an aging process, and a storage process.
  • a normal production method may be used.
  • the term “normal manufacturing method” is used to distinguish from the manufacturing method to which the present invention is applied, and is not intended to be limited to a specific manufacturing method. Therefore, the “normal manufacturing method” to which the present invention is applicable is not particularly limited.
  • EC ethyl carbamate
  • Screening for ethyl carbamate (EC) degrading enzymes including 130 enzymes (23 lipases or esterases, as well as various hydrolases such as protease and amylase) ) And a large-scale screening for microorganisms.
  • the screening method is shown below. First, prepare an EC reaction solution (100 mM phosphate buffer pH 7.0: 2 mL, EC: 10 mM, enzyme: 2 mg) for each enzyme to be screened (the culture solution was used instead of the enzyme for microorganisms), and the reaction (30 ° C., stirring with a stirrer, 48 hours).
  • esterase derived from A. calcoaceticus can degrade EC.
  • lipase and Arthrobacter bramosus-derived esterase were not able to degrade EC, and the degradation activity against EC was found to be a characteristic property of A. calcoaceticus-derived esterase.
  • ⁇ PCR conditions Composition of the reaction mixture: 10 ⁇ l of 5 ⁇ PrimeSTAR GXL Buffer, 4 ⁇ l of dNTP Mixture (2.5 mM each), 10 pmol of forward primer, 10 pmol of reverse primer, 10 ng of template, PrimeSTAR GXL DNA Polymerase (Takara) 1 ⁇ l (adjusted to 50 ⁇ l with sterilized distilled water) Reaction conditions: 30 cycles of 98 ° C for 10 seconds, 60 ° C for 30 seconds, and 68 ° C for 1.5 minutes
  • the amplified product was purified (NucleoSpin Geland PCR Clean-up (MACHEREY-NAGEL)) to obtain each gene fragment.
  • Each gene fragment and pUC18 (Takara) were treated with restriction enzymes (Eco RI (Takara), Hind III (Takara)), and then ligated (DNA Ligation Kit ⁇ Mighty Mix> (Takara)) to obtain E.coli DH5 ⁇
  • Each E. coli recombinant was obtained by transformation into (Takara).
  • E. coli recombinant is inoculated into LB Broth Base (invitrogen) + Amp: 100 ⁇ g / mL: 5mL and shaken (37 °C, 16h, 140rpm), then NucleoSpin Plasmid EasyPure (MACHEREY-NAGEL) To obtain an E. coli expression plasmid.
  • E. coli expression plasmid was transformed into E. coli BL21 (DE3) (Nippongene) to obtain each E. coli expression strain.
  • the culture solution (cultured cells) of each esterase gene recombinant E. coli expression strain was obtained in two stages of culture. First, each esterase gene recombinant E. coli expression strain was inoculated into 5 mL of L Broth (inbitrogen) (Amp: 100 ⁇ g / mL) and cultured for 16 hours (140 rpm, 37 ° C) in a shaking incubator.
  • Teriffic Broth (Invitrogen) (Amp: 100 ⁇ g / mL) 0.5 mL was inoculated into 50 mL. Thereafter, the cells were cultured for 48 hours under the conditions of 200 rpm and 33 ° C., and the expression of the enzyme was induced by adding 0.1 mM IPTG to the culture solution 24 hours after the start of the culture. After centrifuging 50 mL of the culture solution (7,500 g ⁇ 10 minutes, 4 ° C.), the cultured cells were recovered by removing the centrifugal supernatant.
  • Alcohol stability of A. calcoaceticus-derived esterase The alcohol stability of A. calcoaceticus-derived esterase that showed excellent EC degradation ability was examined.
  • a treatment solution was prepared by mixing 9 mL of each concentration of alcohol solution (ethanol-reagent grade (Wako)) (0 to 70%) and 1 g of A. calcoaceticus esterase. Each treatment solution was allowed to stand at 30 ° C. and sampled (1 mL) after 16 hours, 4 days, and 8 days. The enzyme activity of each sample was measured by the following measurement method.
  • the enzyme solution can be used with 50 mM phosphate buffer pH 7.0. Dilute.
  • the residual activity was calculated from the measured value (activity value), and the residual activity of each treatment solution was compared. As a result, it was confirmed that A. calcoaceticus-derived esterase was not inactivated even when treated at 30 ° C. for 8 days when the alcohol concentration was 40% or less (FIG. 2).
  • Optimum temperature The activity was measured by setting the sample block of the absorptiometer to a predetermined temperature, and the optimum temperature was determined. A 50 mM phosphate buffer (pH 7.0) was used to dilute the enzyme to match the measurement range. As a result of the measurement, the optimum temperature was 20-30 ° C. (FIG. 3).
  • Optimum pH Activity was measured with a measurement system in which “50 mM phosphate buffer pH 7.0 2.1 mL” in the reaction solution was replaced with a buffer adjusted to a predetermined pH, and the optimum pH was determined.
  • Two types of buffer solutions (McIlvaine, Atkins) adjusted to each pH for measurement at a predetermined pH (McIlvaine buffer solution: pH3.0, pH4.0, pH5.0, pH6.0, pH7.0, pH 8.0, Atkins buffer: pH 8.0, pH 9.0, pH 10.0, pH 11.0) were prepared.
  • a 50 mM phosphate buffer (pH 7.0) was used to dilute the enzyme to match the measurement range.
  • the optimum pH was pH 7 (FIG. 4).
  • Temperature stability was evaluated by measuring residual activity after treating the enzyme at each temperature. First, an enzyme diluted solution was prepared using 50 mM phosphate buffer pH 7.0, then treated at a predetermined temperature for 1 hour, and cooled with ice water for 5 minutes. After this treatment, the activity was measured by diluting with 50 mM phosphate buffer pH 7.0 to be within the measurement range. As a result, it was stable up to 70 ° C. (residual activity of 80% or more) (FIG. 5).
  • pH stability was evaluated by measuring the residual activity after treating the enzyme at each pH.
  • an enzyme dilution solution was prepared using a buffer solution adjusted to each pH, and then treated at 37 ° C. for 1 hour (pH treatment).
  • Two types of buffer solution (McIlvaine, Atkins) adjusted to each pH as the buffer solution used for enzyme pH treatment (McIlvaine buffer solution: pH3.0, pH4.0, pH5.0, pH6.0, pH7. 0, pH 8.0 Atkins buffer: pH 8.0, pH 9.0, pH 10.0, pH 11.0) was used.
  • the pH treatment was stopped by adding an equal volume of 1M phosphate buffer pH 7.0 to the enzyme dilution.
  • the activity was measured after diluting with 50 mM phosphate buffer pH 7.0 to be within the measurement range. As a result of the measurement, it was stable at pH 5 to 11 (residual activity of 90% or more) (FIG. 6).
  • ethyl carbamate (EC) in food or beverage can be decomposed.
  • the present invention is useful for removing or reducing EC in alcoholic beverages and fermented foods.
  • SEQ ID NO: 37 Description of artificial sequence: primer
  • SEQ ID NO: 38 Description of artificial sequence: primer

Abstract

The present invention addresses the problem of providing a practically useful method whereby ethyl carbamate in a food or beverage can be efficiently degraded. A food or beverage containing ethyl carbamate is treated with an esterase to thereby degrade ethyl carbamate.

Description

カルバミン酸エチルの分解Decomposition of ethyl carbamate
 本発明はカルバミン酸エチルを分解する方法に関する。詳しくは、食品又は飲料中のカルバミン酸エチルを分解する方法に関する。本出願は、2017年3月30日に出願された日本国特許出願第2017-068426号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to a method for decomposing ethyl carbamate. Specifically, the present invention relates to a method for decomposing ethyl carbamate in foods or beverages. This application claims priority based on Japanese Patent Application No. 2017-068426 filed on Mar. 30, 2017, the entire contents of which are incorporated by reference.
 カルバミン酸エチル(以下、「EC」と略称することがある)は、過去に医薬品として使用された実績があるものの、発がん性ないし変異原性が疑われる化合物であり、食品又は飲料等を介して摂取された場合の人体への影響が懸念されている。特に、紹興酒やシェリー酒、或いは発酵食品中にはECが比較的多く含まれており、ECを低減又は除去する手段の開発が望まれている。これまでにも様々な試みがなされており、例えば、ウレタナーゼを利用した方法(例えば特許文献1、非特許文献1~3を参照)やEC分解酵素を産生する微生物の菌体を利用した方法(例えば特許文献2、3を参照)等が提案されている。 Ethyl carbamate (hereinafter sometimes abbreviated as “EC”) is a compound suspected to be carcinogenic or mutagenic, although it has been used as a pharmaceutical in the past. There are concerns about the effects on the human body when ingested. In particular, Shaoxing liquor, sherry liquor, or fermented foods contain a relatively large amount of EC, and development of means for reducing or removing EC is desired. Various attempts have been made so far. For example, a method using uretanase (see, for example, Patent Document 1 and Non-Patent Documents 1 to 3) and a method using a cell of a microorganism producing an EC-degrading enzyme ( For example, see Patent Documents 2 and 3).
特開平4-325079号公報Japanese Patent Laid-Open No. 4-325079 中国特許第102492633B号公報Chinese Patent No. 10249263B 特開H1-24017号公報JP H1-204017
 ウレタナーゼを利用してECを分解する方法については、アルコール存在下でのウレタナーゼの安定性が低く、しかも熱安定性も低いという問題がある。一方、微生物菌体を利用した分解方法は特に実用性の面で十分とはいえない。 The method of degrading EC using uretanase has a problem that the stability of uretanase in the presence of alcohol is low and the thermal stability is also low. On the other hand, the decomposition method using microbial cells is not particularly satisfactory in terms of practicality.
 酒類や発酵食品は日常的かつ継続的に摂取され得るものであり、そのEC含量は今後、大きな問題になると考えられる。このような状況に対処すべく、本発明は、食品又は飲料中のECを効率的に分解できる、実用性に優れた方法を提供することを課題とする。 Alcoholic beverages and fermented foods can be ingested daily and continuously, and their EC content will be a major problem in the future. In order to cope with such a situation, an object of the present invention is to provide a practical method capable of efficiently decomposing EC in food or beverage.
 上記課題を解決すべく本発明者らは、酵素を利用したECの分解方法の確立を目指し、広範な酵素を対象として大規模なスクリーニングを実施した。その結果、アシネトバクター・カルコアセティカス(Acinetobacter calcoaceticus)由来のエステラーゼがECに対して高い分解活性を示すことが明らかとなった。また、驚くべきことに、当該エステラーゼは高アルコール濃度下でも分解活性を発揮した。この事実は、アルコール飲料中のECを分解する手段としてアシネトバクター・カルコアセティカス由来のエステラーゼが有用であることを示す。ここで、エステラーゼはセリンプロテアーゼに分類され、通常はアルコールの水酸基によって活性阻害を受ける。この技術常識からすれば、本発明者らの検討によって明らかとなったエステラーゼの新規利用形態、即ち、「アルコール飲料中のECの分解にエステラーゼを用いること」、は極めてユニークといえる。 In order to solve the above problems, the present inventors conducted a large-scale screening for a wide range of enzymes with the aim of establishing an EC degradation method using enzymes. As a result, it has been clarified that esterase derived from Acinetobacter calcoaceticus shows high degradation activity against EC. Surprisingly, the esterase exhibited a degradation activity even under high alcohol concentration. This fact shows that esterase derived from Acinetobacter calcoaceticus is useful as a means of degrading EC in alcoholic beverages. Here, esterases are classified as serine proteases, and are usually subject to activity inhibition by alcohol hydroxyl groups. From this technical common sense, the new utilization form of esterase that has been clarified by the study of the present inventors, that is, “use of esterase for the degradation of EC in alcoholic beverages” can be said to be extremely unique.
 一方、アシネトバクター・カルコアセティカス由来のエステラーゼの類縁酵素(アミノ酸配列の同一性が70%以上)のEC分解活性を確認したところ、類縁酵素も分解活性を示し、ECを分解可能という特性がアシネトバクター・カルコアセティカス由来のエステラーゼに固有のものではないことが明らかとなった。 On the other hand, when the EC-degrading activity of an esterase-related enzyme (amino acid sequence identity of 70% or more) derived from Acinetobacter calcoaceticus was confirmed, the related enzyme also showed a degrading activity, indicating that EC can be degraded.・ It became clear that it is not unique to esterases derived from Calcoaceticus.
 更なる検討によって、アシネトバクター・カルコアセティカス由来のエステラーゼはアルコール中での安定性及び温度安定性が高く、実用性に優れることが判明した。また、当該エステラーゼの諸性質も明らかとなり、実用化する上で有用な情報ももたらされた。 Further investigation revealed that esterase derived from Acinetobacter calcoaceticus has high stability in alcohol and temperature stability, and is excellent in practicality. In addition, various properties of the esterase were clarified, and useful information for practical use was also provided.
 以下の発明は上記成果及び考察に基づく。
 [1]配列番号1のアミノ酸配列と70%以上同一のアミノ酸配列からなるエステラーゼを、カルバミン酸エチルを含有する食品又は飲料に作用させることを特徴とする、食品又は飲料中のカルバミン酸エチルを分解する方法。
 [2]前記エステラーゼのアミノ酸配列が、配列番号1~18のいずれかのアミノ酸配列を含む、[1]に記載の分解方法。
 [3]前記エステラーゼがアシネトバクター属微生物、シュードモナス属微生物、バークホルデリア属微生物又はパラバークホルデリア属微生物に由来する、[1]に記載の分解方法。
 [4]前記アシネトバクター属微生物がアシネトバクター・カルコアセティカス(Acinetobacter calcoaceticus)、アシネトバクター・ギロイエ(Acinetobacter guillouiae)、アシネトバクター・バウマニ(Acinetobacter baumannii)又はアシネトバクター・セイフェルティ(Acinetobacter seifertii)であり、前記シュードモナス属微生物がシュードモナス・エルジノーサ(Pseudomonas aeruginosa)、シュードモナス・フルオレセンス(Pseudomonas fluorescens)又はシュードモナス・プチダ(Pseudomonas putida)であり、前記バークホルデリアがバークホルデリア・ユボネンシス(Burkholderia ubonensis)又はバークホルデリア・シュードマルチボランス(Burkholderia pseudomultivorans)であり、前記パラバークホルデリアがパラバークホルデリア・フェラリエ(Paraburkholderia ferrariae)である、[3]に記載の分解方法。
 [5]前記エステラーゼがアシネトバクター sp. NBRC 110496(Acinetobacter sp. NBRC 110496)、アシネトバクター sp. NIPH809(Acinetobacter sp. NIPH809)、シュードモナス・フルオレセンスA506(Pseudomonas fluorescens A506)、シュードモナス sp. ABAC61(Pseudomonas sp. ABAC61)、シュードモナス・プチダIFO12996(Pseudomonas putida IFO12996)又はシュードモナス・プチダMR2068(Pseudomonas putida MR2068)に由来する、[1]に記載の分解方法。
 [6]前記エステラーゼが以下の特徴を備える、[1]に記載の分解方法:
 (1)至適温度: 20~30℃;
 (2)至適pH: pH7;
 (3)温度安定性: 70℃まで安定(pH7、1時間);
 (4)pH安定性: pH5~11で安定である;
 (5)分子量: 約85kDa(ゲルろ過による)。
 [7]前記エステラーゼが以下の特徴を更に備える、[6]に記載の分解方法:
 (6)アルコール安定性:アルコール濃度が40%以下であれば、8日間、30℃で処理しても失活しない。
 [8]前記飲料がアルコール飲料である、[1]~[7]のいずれか一項に記載の分解方法。
 [9]前記アルコール飲料が、紹興酒、核果を原料とした蒸留酒、ウイスキー、ブランデー、テキーラ、カシャッサ、焼酎、清酒、ワイン、酒精強化ワイン、梅酒、シェリー酒、又は混成酒である、[8]に記載の分解方法。
 [10]配列番号1のアミノ酸配列と70%以上同一のアミノ酸配列からなるエステラーゼによる処理工程を含む、カルバミン酸エチルが除去又は低減された食品又は飲料の製造方法。
 [11]前記エステラーゼが、[2]~[7]のいずれか一項において定義されたエステラーゼである、[10]に記載の製造方法。
 [12]前記飲料がアルコール飲料である、[10]又は[11]に記載の製造方法。
 [13]前記アルコール飲料が、紹興酒、核果を原料とした蒸留酒、ウイスキー、ブランデー、テキーラ、カシャッサ、焼酎、清酒、ワイン、酒精強化ワイン、梅酒、シェリー酒又は混成酒である、[12]に記載の製造方法。
 [14][10]~[13]のいずれか一項に記載の製造方法で得られた、カルバミン酸エチルが除去又は低減された食品又は飲料。
The following invention is based on the above results and considerations.
[1] Decomposing ethyl carbamate in food or beverage, characterized by allowing esterase comprising 70% or more of the amino acid sequence of SEQ ID NO: 1 to act on food or beverage containing ethyl carbamate how to.
[2] The degradation method according to [1], wherein the amino acid sequence of the esterase includes any one of the amino acid sequences of SEQ ID NOS: 1 to 18.
[3] The degradation method according to [1], wherein the esterase is derived from an Acinetobacter genus microorganism, a Pseudomonas genus microorganism, a Burkholderia microorganism, or a Parabalkhorderia microorganism.
[4] The microorganism belonging to the genus Acinetobacter is Acinetobacter calcoaceticus, Acinetobacter guillouiae, Acinetobacter baumannii, or the genus Acinetobacter baumannii, Is Pseudomonas aeruginosa, Pseudomonas fluorescens or Pseudomonas putida, and the Burkholderia is Burkholderia ubonensis or Burkholderia [3] Borans (Purukholderia pseudomultivorans), and the Parabalkholderia is Paraburkholderia ferrariae [3 ] The decomposition method as described in.
[5] The esterase is Acinetobacter sp. NBRC 110496 (Acinetobacter sp. NBRC 110496), Acinetobacter sp. NIPH809 (Acinetobacter sp. NIPH809), Pseudomonas fluorescens A506, Pseudomonas sp. ABAC61), Pseudomonas putida IFO12996 (Pseudomonas putida IFO12996) or Pseudomonas putida MR2068 (Pseudomonas putida MR2068).
[6] The degradation method according to [1], wherein the esterase has the following characteristics:
(1) Optimal temperature: 20-30 ° C;
(2) Optimal pH: pH 7;
(3) Temperature stability: stable up to 70 ° C ( pH 7, 1 hour);
(4) pH stability: stable at pH 5-11;
(5) Molecular weight: about 85 kDa (by gel filtration).
[7] The degradation method according to [6], wherein the esterase further comprises the following characteristics:
(6) Alcohol stability: If the alcohol concentration is 40% or less, it will not be inactivated even if treated at 30 ° C. for 8 days.
[8] The decomposition method according to any one of [1] to [7], wherein the beverage is an alcoholic beverage.
[9] The alcoholic beverage is Shaoxing liquor, distilled liquor made from drupe, whiskey, brandy, tequila, cachassa, shochu, sake, wine, refined wine, plum wine, sherry liquor, or mixed liquor. [8] The disassembly method described in 1.
[10] A method for producing a food or beverage from which ethyl carbamate is removed or reduced, comprising a treatment step with an esterase comprising an amino acid sequence 70% or more identical to the amino acid sequence of SEQ ID NO: 1.
[11] The production method according to [10], wherein the esterase is the esterase defined in any one of [2] to [7].
[12] The production method according to [10] or [11], wherein the beverage is an alcoholic beverage.
[13] In the above [12], the alcoholic beverage is Shaoxing liquor, distilled liquor made from drupe, whiskey, brandy, tequila, cachassa, shochu, sake, wine, refined wine, plum wine, sherry liquor, or mixed liquor. The manufacturing method as described.
[14] A food or beverage obtained by the production method according to any one of [10] to [13] from which ethyl carbamate has been removed or reduced.
類縁酵素のEC分解活性。アシネトバクター・カルコアセティカス(A. calcoaceticus)由来のエステラーゼの類縁酵素をE.coli発現系で発現させ、EC分解能力の有無を調べた。上:類縁酵素No.1~No.10のpH7.0でのEC分解能力。下:類縁酵素No.11~No.16のpH7.0でのEC分解能力。EC degradation activity of related enzymes. An esterase-related enzyme derived from Acinetobacter calcoaceticus (A. calcoaceticus) was expressed in an E. coli expression system, and the presence or absence of EC degradation ability was examined. Top: Ability to degrade EC at pH 7.0 of related enzymes No.1 to No.10. Bottom: EC degradation ability of related enzymes No. 11 to No. 16 at pH 7.0. A. calcoaceticus由来エステラーゼのアルコール安定性。Alcohol stability of esterase from A. calcoaceticus. A. calcoaceticus由来エステラーゼの至適温度。A. Optimum temperature of calcoaceticus-derived esterase. A. calcoaceticus由来エステラーゼの至適pH。A. Optimal pH of calcoaceticus-derived esterase. A. calcoaceticus由来エステラーゼの温度安定性。Temperature stability of esterase derived from A. calcoaceticus. A. calcoaceticus由来エステラーゼのpH安定性。PH stability of esterase derived from A. ticcalcoaceticus.
<食品又は飲料中のカルバミン酸エチルの分解>
 本発明は食品又は飲料中のカルバミン酸エチルを分解する方法であり、カルバミン酸エチルを含有する食品又は飲料にエステラーゼを作用させることを特徴とする。本発明によれば、カルバミン酸エチルが除去又は低減された食品又は飲料が得られる。
<Decomposition of ethyl carbamate in food or beverage>
The present invention is a method for decomposing ethyl carbamate in foods or beverages, characterized in that esterase is allowed to act on foods or beverages containing ethyl carbamates. According to the present invention, a food or beverage from which ethyl carbamate is removed or reduced can be obtained.
1.エステラーゼを規定するアミノ酸配列
 本発明に用いるエステラーゼは、カルバミン酸エチルに対して分解活性を示すものである限り、特に限定されない。好ましいエステラーゼの1つは、配列番号1のアミノ酸配列を含むエステラーゼである。当該エステラーゼは、後述の実施例に示す通り、本発明者らの検討によって見出された、アシネバクター・カルコアセティカス(Acinetobacter calcoaceticus)由来のエステラーゼであり、アルコールに対する耐性が高く、しかも温度安定性に優れるという特徴を備える。一方、配列番号1のアミノ酸配列と70%以上の同一性を示すアミノ酸配列で特定される17種ものエステラーゼが、アシネトバクター・カルコアセティカス由来のエステラーゼと同様、カルバミン酸エチルに対して分解活性を示した事実(後述の実施例を参照)に鑑みれば、配列番号1のアミノ酸配列と70%以上同一のアミノ酸配列を有するエステラーゼも本発明に好適である。該当するエステラーゼの具体例は、アシネトバクター・ギロイエ(Acinetobacter guillouiae)に由来し、配列番号2のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性98%)、アシネトバクター・バウマニABNIH3(Acinetobacter baumannii ABNIH3)に由来し、配列番号3のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性97%)、アシネトバクター・セイフェルティ(Acinetobacter seifertii)に由来し、配列番号4のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性90%)、シュードモナス・エルジノーサ(Pseudomonas aeruginosa)に由来し、配列番号5のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性80%)、シュードモナス・エルジノーサ(Pseudomonas aeruginosa)に由来し、配列番号6のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性80%)、シュードモナス・エルジノーサ(Pseudomonas aeruginosa)に由来し、配列番号7のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性80%)、バークホルデリア・ユボネンシス(Burkholderia ubonensis)に由来し、配列番号8のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性81%)、パラバークホルデリア・フェラリエ(Paraburkholderia ferrariae)に由来し、配列番号9のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性81%)、バークホルデリア・シュードマルチボランス(Burkholderia pseudomultivorans)に由来し、配列番号10のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性81%)、アシネトバクター sp. NBRC 110496(Acinetobacter sp. NBRC 110496)に由来し、配列番号11のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性81%)、アシネトバクター・セイフェルティ(Acinetobacter seifertii)に由来し、配列番号12のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性90%)、アシネトバクター sp. NIPH809(Acinetobacter sp. NIPH809)に由来し、配列番号13のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性80%)、シュードモナス・フルオレセンスA506(A506Pseudomonas fluorescens A506)に由来し、配列番号14のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性80%)、シュードモナス sp. ABAC61(Pseudomonas sp. ABAC61)に由来し、配列番号15のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性79%)、シュードモナス・プチダIFO12996(Pseudomonas putida IFO12996)に由来し、配列番号16のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性76%)、シュードモナス・プチダMR2068(Pseudomonas putida MR2068)に由来し、配列番号17のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性76%)、シュードモナス・エルジノーサ(Pseudomonas aeruginosa)に由来し、配列番号18のアミノ酸配列を有するエステラーゼ(アミノ酸配列の同一性80%)、である。尚、カルバミン酸エチルに対する分解活性を示さなかったArthrobacter ramosus由来のエステラーゼ(実施例を参照)のアミノ酸配列の同一性は21%に留まる。
1. Amino acid sequence defining esterase The esterase used in the present invention is not particularly limited as long as it exhibits a degrading activity against ethyl carbamate. One preferred esterase is an esterase comprising the amino acid sequence of SEQ ID NO: 1. The esterase is an esterase derived from Acinetobacter calcoaceticus, which has been found by the present inventors, as shown in the Examples below, and has high resistance to alcohol and temperature stability. It has the feature of being excellent. On the other hand, as many as 17 esterases identified by an amino acid sequence having 70% or more identity with the amino acid sequence of SEQ ID NO: 1 have a degradation activity against ethyl carbamate, like esterase derived from Acinetobacter calcoaceticus. In view of the facts shown (see Examples described later), esterases having an amino acid sequence that is 70% or more identical to the amino acid sequence of SEQ ID NO: 1 are also suitable for the present invention. Specific examples of the corresponding esterase are derived from Acinetobacter guillouiae, derived from esterase having the amino acid sequence of SEQ ID NO: 2 (amino acid sequence identity of 98%) and Acinetobacter baumannii ABNIH3. Esterase having the amino acid sequence of SEQ ID NO: 3 (97% identity of amino acid sequence), esterase derived from Acinetobacter seifertii and having the amino acid sequence of SEQ ID NO: 4 (90% identity of amino acid sequence) , Derived from Pseudomonas aeruginosa and having the amino acid sequence of SEQ ID NO: 5 (80% identity of amino acid sequence), derived from Pseudomonas aeruginosa and having the amino acid sequence of SEQ ID NO: 6 S Terase (80% identity in amino acid sequence), esterase derived from Pseudomonas aeruginosa and having the amino acid sequence of SEQ ID NO: 7 (80% identity in amino acid sequence), Burkholderia ubonensis Esterase having the amino acid sequence of SEQ ID NO: 8 (identity of amino acid sequence 81%), derived from Paraburkholderia ferrariae and having the amino acid sequence of SEQ ID NO: 9 (of the amino acid sequence) 81% identity), an esterase derived from Burkholderia pseudomultivorans and having the amino acid sequence of SEQ ID NO: 10 (81% identity in amino acid sequence), Acinetobacter sp. NBRC 110496 (Acinetobacter sp. NBRC 110496), SEQ ID NO: Esterase having an amino acid sequence of 11 (81% identity in amino acid sequence), Esterase derived from Acinetobacter seifertii and having the amino acid sequence of SEQ ID NO: 12 (90% identity in amino acid sequence), Acinetobacter sp Derived from NIPH809 (Acinetobacter sp. NIPH809), derived from esterase having the amino acid sequence of SEQ ID NO: 13 (80% identity of amino acid sequence), Pseudomonas fluorescens A506 (A506 Pseudomonas fluorescens A506), Esterase having amino acid sequence (80% identity in amino acid sequence), Pseudomonas sp. ABAC61 (Pseudomonas sp. ABAC61), esterase having amino acid sequence of SEQ ID NO: 15 (79% identity in amino acid sequence), Pseudomonas Puchida IFO12996 (Pseudomonas putida IFO12996) Esterase derived from and having the amino acid sequence of SEQ ID NO: 16 (76% identity in amino acid sequence), Pseudomonas putida MR2068 and esterase having the amino acid sequence of SEQ ID NO: 17 (identity of amino acid sequence) 76%), an esterase derived from Pseudomonas aeruginosa and having the amino acid sequence of SEQ ID NO: 18 (80% identity in amino acid sequence). In addition, the identity of the amino acid sequence of the esterase derived from Arthrobacter ramosus (see Examples) that did not show the degradation activity against ethyl carbamate was only 21%.
 上記のアミノ酸配列と等価なアミノ酸配列を有するエステラーゼを用いることもできる。ここでの「等価なアミノ酸配列」とは、基準となるアミノ酸配列(配列番号1~18のいずれかの配列)と一部で相違するが、当該相違がタンパク質の機能(ここではカルバミン酸エチルに対する分解活性)に実質的な影響を与えていないアミノ酸配列のことをいう。従って、等価なアミノ酸配列からなるポリペプチド鎖を有する酵素はカルバミン酸エチルに対する分解活性を示す。カルバミン酸エチルに対する分解活性の程度は、基準となるアミノ酸配列からなるポリペプチド鎖を有する酵素と同程度又はそれよりも高いことが好ましい。 An esterase having an amino acid sequence equivalent to the above amino acid sequence can also be used. The “equivalent amino acid sequence” here is partially different from the reference amino acid sequence (sequence of any of SEQ ID NOs: 1 to 18), but the difference is the function of the protein (here, with respect to ethyl carbamate). An amino acid sequence that does not substantially affect (degradation activity). Therefore, an enzyme having a polypeptide chain consisting of an equivalent amino acid sequence exhibits a degradation activity for ethyl carbamate. The degree of degradation activity against ethyl carbamate is preferably the same or higher than that of an enzyme having a polypeptide chain consisting of a reference amino acid sequence.
 「アミノ酸配列の一部の相違」とは、典型的には、アミノ酸配列を構成する1~数個のアミノ酸の欠失、置換、若しくは1~数個のアミノ酸の付加、挿入、又はこれらの組合せによりアミノ酸配列に変異(変化)が生じていることをいう。ここでのアミノ酸配列の相違はカルバミン酸エチルに対する分解活性が保持される限り許容される(活性の多少の変動があってもよい)。この条件を満たす限りアミノ酸配列が相違する位置は特に限定されず、また複数の位置で相違が生じていてもよい。ここでの「複数」とは例えば全アミノ酸の約30%未満に相当する数であり、好ましくは約20%未満に相当する数であり、さらに好ましくは約10%未満に相当する数であり、より一層好ましくは約5%未満に相当する数であり、最も好ましくは約1%未満に相当する数である。即ち等価タンパク質は、基準となるアミノ酸配列と例えば約60%以上、約70%以上、約75%以上、約76%以上、約79%以上、約80%以上、約81%以上、約85%以上、約90%以上、約95%以上、約97%以上、約98%以上、又は約99%以上(同一性のパーセンテージが高いほど好ましい)の同一性を有する。尚、配列番号1のアミノ酸配列で特定されるアシネバクター・カルコアセティカスのエステラーゼについては、活性中心を構成すると推定される97位セリン(Ser97)、227位アスパラギン酸(Asp227)及び256位ヒスチジン(His256)は欠失又は置換の対象にしないことが好ましい。 “Partial difference in amino acid sequence” typically means deletion, substitution, or addition, insertion of one to several amino acids, or a combination thereof. This means that a mutation (change) has occurred in the amino acid sequence. The difference in the amino acid sequence here is permissible as long as the decomposition activity against ethyl carbamate is retained (there may be some variation in activity). As long as this condition is satisfied, the positions where the amino acid sequences are different are not particularly limited, and differences may occur at a plurality of positions. The “plurality” herein is, for example, a number corresponding to less than about 30% of all amino acids, preferably a number corresponding to less than about 20%, more preferably a number corresponding to less than about 10%, Even more preferred is a number corresponding to less than about 5%, most preferred a number corresponding to less than about 1%. That is, the equivalent protein has a reference amino acid sequence, for example, about 60% or more, about 70% or more, about 75% or more, about 76% or more, about 79% or more, about 80% or more, about 81% or more, about 85%. More than about 90%, about 95%, about 97%, about 98% or more, or about 99% or more (the higher the percentage of identity, the better). As for the Acinebacter calcoaceticus esterase specified by the amino acid sequence of SEQ ID NO: 1, the 97th serine (Ser97), the 227th aspartic acid (Asp227) and the 256th histidine (Ser97), which are presumed to constitute the active center His256) is preferably not subject to deletion or substitution.
 好ましくは、カルバミン酸エチルに対する分解活性に必須でないアミノ酸残基において保存的アミノ酸置換を生じさせることによって等価なアミノ酸配列が得られる。ここでの「保存的アミノ酸置換」とは、あるアミノ酸残基を、同様の性質の側鎖を有するアミノ酸残基に置換することをいう。アミノ酸残基はその側鎖によって塩基性側鎖(例えばリシン、アルギニン、ヒスチジン)、酸性側鎖(例えばアスパラギン酸、グルタミン酸)、非荷電極性側鎖(例えばグリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えばアラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐側鎖(例えばスレオニン、バリン、イソロイシン)、芳香族側鎖(例えばチロシン、フェニルアラニン、トリプトファン、ヒスチジン)のように、いくつかのファミリーに分類されている。保存的アミノ酸置換は好ましくは、同一のファミリー内のアミノ酸残基間の置換である。 Preferably, an equivalent amino acid sequence can be obtained by causing a conservative amino acid substitution at an amino acid residue that is not essential for the decomposition activity against ethyl carbamate. As used herein, “conservative amino acid substitution” refers to substitution of a certain amino acid residue with an amino acid residue having a side chain having the same properties. Depending on the side chain of the amino acid residue, a basic side chain (eg lysine, arginine, histidine), an acidic side chain (eg aspartic acid, glutamic acid), an uncharged polar side chain (eg glycine, asparagine, glutamine, serine, threonine, tyrosine) Cysteine), non-polar side chains (eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), β-branched side chains (eg threonine, valine, isoleucine), aromatic side chains (eg tyrosine, phenylalanine, Like tryptophan and histidine). A conservative amino acid substitution is preferably a substitution between amino acid residues within the same family.
 ところで、二つのアミノ酸配列又は二つの核酸(以下、これらを含む用語として「二つの配列」を使用する)の同一性(%)は例えば以下の手順で決定することができる。まず、最適な比較ができるよう二つの配列を並べる(例えば、第一の配列にギャップを導入して第二の配列とのアライメントを最適化してもよい)。第一の配列の特定位置の分子(アミノ酸残基又はヌクレオチド)が、第二の配列における対応する位置の分子と同じであるとき、その位置の分子が同一であるといえる。二つの配列の同一性は、その二つの配列に共通する同一位置の数の関数であり(すなわち、同一性(%)=同一位置の数/位置の総数 × 100)、好ましくは、アライメントの最適化に要したギャップの数およびサイズも考慮に入れる。 Incidentally, the identity (%) of two amino acid sequences or two nucleic acids (hereinafter, “two sequences” is used as a term including them) can be determined by the following procedure, for example. First, two sequences are aligned for optimal comparison (eg, a gap may be introduced into the first sequence to optimize alignment with the second sequence). When a molecule (amino acid residue or nucleotide) at a specific position in the first sequence is the same as the molecule at the corresponding position in the second sequence, it can be said that the molecule at that position is the same. The identity of two sequences is a function of the number of identical positions common to the two sequences (ie identity (%) = number of identical positions / total number of positions × 100), preferably the optimal alignment Take into account the number and size of gaps required for conversion.
 二つの配列の比較及び同一性の決定は数学的アルゴリズムを用いて実現可能である。配列の比較に利用可能な数学的アルゴリズムの具体例としては、KarlinおよびAltschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-68に記載され、KarlinおよびAltschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-77において改変されたアルゴリズムがあるが、これに限定されることはない。このようなアルゴリズムは、Altschulら (1990) J. Mol. Biol. 215:403-10に記載のNBLASTプログラムおよびXBLASTプログラム(バージョン2.0)に組み込まれている。本発明の核酸分子に等価なヌクレオチド配列を得るには例えば、NBLASTプログラムでscore = 100、wordlength = 12としてBLASTヌクレオチド検索を行えばよい。等価なアミノ酸配列を得るには例えば、XBLASTプログラムでscore = 50、wordlength = 3としてBLASTポリペプチド検索を行えばよい。比較のためのギャップアライメントを得るためには、Altschulら (1997) Amino Acids Research 25(17):3389-3402に記載のGapped BLASTが利用可能である。BLASTおよびGapped BLASTを利用する場合は、対応するプログラム(例えばXBLASTおよびNBLAST)のデフォルトパラメータを使用することができる。詳しくはhttp://www.ncbi.nlm.nih.govを参照されたい。配列の比較に利用可能な他の数学的アルゴリズムの例としては、MyersおよびMiller (1988) Comput Appl Biosci. 4:11-17に記載のアルゴリズムがある。このようなアルゴリズムは、例えばGENESTREAMネットワークサーバー(IGH Montpellier、フランス)またはISRECサーバーで利用可能なALIGNプログラムに組み込まれている。アミノ酸配列の比較にALIGNプログラムを利用する場合は例えば、PAM120残基質量表を使用し、ギャップ長ペナルティ=12、ギャップペナルティ=4とすることができる。 比較 Comparison of two sequences and determination of identity can be achieved using a mathematical algorithm. Specific examples of mathematical algorithms that can be used for sequence comparison are described in Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 226 87: 2264-68; Karlin and Altschul (1993) Proc. Natl. There is a modified algorithm in Acad. Sci. USA 90: 5873-77, but it is not limited to this. Such an algorithm is incorporated in the NBLAST program and XBLAST program (version 2.0) described in Altschul et al. (1990) J. Mol. Biol. 215: 403-10. In order to obtain a nucleotide sequence equivalent to the nucleic acid molecule of the present invention, for example, a BLAST nucleotide search may be carried out with the score = s100 and wordlength = 12 in the NBLAST program. In order to obtain an equivalent amino acid sequence, for example, a BLAST polypeptide search may be performed using the XBLAST program with score = 50 and wordlength = 3. In order to obtain a gap alignment for comparison, Gapped BLAST described in Altschul et al. (1997) Amino Acids Research 25 (17): 3389-3402 can be used. When utilizing BLAST and Gapped BLAST, the default parameters of the corresponding programs (eg, XBLAST and NBLAST) can be used. Please refer to http://www.ncbi.nlm.nih.gov for details. Examples of other mathematical algorithms that can be used for sequence comparison include those described in Myers and Miller (1988) Comput Appl Biosci. 4: 11-17. Such an algorithm is incorporated in the ALIGN program available on, for example, the GENESTREAM network server (IGH (Montpellier, France) or the ISREC server. When using the ALIGN program for comparison of amino acid sequences, for example, a PAM120 residue mass table can be used, with a gap length penalty = 12 and a gap penalty = 4.
 二つのアミノ酸配列の同一性を、GCGソフトウェアパッケージのGAPプログラムを用いて、Blossom 62マトリックスまたはPAM250マトリックスを使用し、ギャップ加重=12、10、8、6、又は4、ギャップ長加重=2、3、又は4として決定することができる。また、二つの核酸配列の相同度を、GCGソフトウェアパッケージ(http://www.gcg.comで利用可能)のGAPプログラムを用いて、ギャップ加重=50、ギャップ長加重=3として決定することができる。 The identity of two amino acid sequences, using the Gloss program in the GCG software package, using a Blossom 62 matrix or PAM250 matrix, gap weight = 12, 10, 8, 6, or 4, gap length weight = 2, 3 Or 4 can be determined. In addition, the degree of homology between two nucleic acid sequences can be determined using the GAP program in the GCG software package (available at http://www.gcg.com) with gap weight = 50 and gap length weight = 3. it can.
 本発明に用いるエステラーゼが、より大きいタンパク質(例えば融合タンパク質)の一部であってもよい。融合タンパク質において付加される配列としては、例えば、多重ヒスチジン残基のような精製に役立つ配列、組み換え生産の際の安定性を確保する付加配列等が挙げられる。 The esterase used in the present invention may be a part of a larger protein (for example, a fusion protein). Examples of sequences added in the fusion protein include sequences useful for purification, such as multiple histidine residues, and additional sequences that ensure stability during recombinant production.
 上記アミノ酸配列を有するエステラーゼは、遺伝子工学的手法によって容易に調製することができる。例えば、目的のエステラーゼをコードするDNAで適当な宿主細胞(例えば大腸菌)を形質転換し、形質転換体内で発現されたタンパク質を回収することにより調製することができる。回収されたタンパク質は目的に応じて適宜精製される。このように組換えタンパク質として目的の酵素を得ることにすれば種々の修飾が可能である。例えば、目的の酵素をコードするDNAと他の適当なDNAとを同じベクターに挿入し、当該ベクターを用いて組換えタンパク質の生産を行えば、任意のペプチドないしタンパク質が連結された組換えタンパク質からなる、目的の酵素を得ることができる。また、糖鎖及び/又は脂質の付加や、あるいはN末端若しくはC末端のプロセッシングが生ずるような修飾を施してもよい。以上のような修飾により、組換えタンパク質の抽出、精製の簡便化、又は生物学的機能の付加等が可能である。 The esterase having the amino acid sequence can be easily prepared by a genetic engineering technique. For example, it can be prepared by transforming a suitable host cell (for example, E. coli) with DNA encoding the target esterase and recovering the protein expressed in the transformant. The recovered protein is appropriately purified according to the purpose. Thus, various modifications are possible if the desired enzyme is obtained as a recombinant protein. For example, if a DNA encoding the target enzyme and another appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, the recombinant protein to which any peptide or protein is linked can be obtained. The target enzyme can be obtained. In addition, modification may be performed so that addition of sugar chain and / or lipid, or processing of N-terminal or C-terminal may occur. By the modification as described above, extraction of recombinant protein, simplification of purification, addition of biological function, and the like are possible.
2.エステラーゼの由来
 エステラーゼの由来も特に限定されない。例えば、アシネトバクター・カルコアセティカス(Acinetobacter calcoaceticus)、アシネトバクター・ギロイエ(Acinetobacter guillouiae)、アシネトバクター・バウマニ(Acinetobacter baumannii)、アシネトバクター・セイフェルティ(Acinetobacter seifertii)等のアシネトバクター属微生物、シュードモナス・エルジノーサ(Pseudomonas aeruginosa)、シュードモナス・フルオレセンス(Pseudomonas fluorescens)、シュードモナス・プチダ(Pseudomonas putida)等のシュードモナス属微生物、バークホルデリア・ユボネンシス(Burkholderia ubonensis)、バークホルデリア・シュードマルチボランス(Burkholderia pseudomultivorans)等のバークホルデリア属微生物、又はパラバークホルデリア・フェラリエ(Paraburkholderia ferrariae)等のパラバークホルデリア属微生物等、微生物に由来するエステラーゼを用いることができる。尚、アシネトバクター属微生物の具体例としてアシネトバクター・バウマニABNIH3(Acinetobacter baumannii ABNIH3)、アシネトバクター sp. NBRC 110496(Acinetobacter sp. NBRC 110496)及びアシネトバクター sp. NIPH809(Acinetobacter sp. NIPH809)を、シュードモナス属微生物の具体例としてシュードモナス・フルオレセンスA506(Pseudomonas fluorescens A506)、シュードモナス sp. ABAC61(Pseudomonas sp. ABAC61)、シュードモナス・プチダIFO12996(Pseudomonas putida IFO12996)及びシュードモナス・プチダMR2068(Pseudomonas putida MR2068)を挙げることができる。
2. Origin of esterase The origin of esterase is not particularly limited. For example, Acinetobacter calcoaceticus, Acinetobacter guillouiae, Acinetobacter baumannii, Acinetobacter seudotii, Acinetobacter seifertii , Pseudomonas fluorescens, Pseudomonas putida, and other Pseudomonas microorganisms, Burkholderia ubonensis, Burkholderia pseudomultivorans, Burkholderia pseudomultivorans, etc. Microorganisms derived from microorganisms, such as microorganisms belonging to the genus Delia or Paraburkholderia ferrariae such as Paraburkholderia ferrariae A sterase can be used. As specific examples of microorganisms belonging to the genus Acinetobacter, Acinetobacter baumannii ABNIH3 (Acinetobacter baumannii ABNIH3), Acinetobacter sp. NBRC 110496 (Acinetobacter sp. NBRC 110496) and Acinetobacter sp. Pseudomonas fluorescens A506, Pseudomonas sp. ABAC61 (Pseudomonas sp. ABAC61), Pseudomonas putida IFO12996 (Pseudomonas putida IFO12996) and Pseudomonas putida MR2068 (Pseudomonas putida MR2068).
 ここでの「微生物に由来するエステラーゼ」とは、上記の各属の微生物(野生株であっても変異株であってもよい)が生産するエステラーゼ、或いは上記の各属の微生物(野生株であっても変異株であってもよい)のエステラーゼ遺伝子を利用して遺伝子工学的手法によって得られたエステラーゼであることを意味する。従って、上記に分類される微生物より取得したエステラーゼ遺伝子(又は当該遺伝子を改変した遺伝子)を導入した宿主微生物によって生産されたエステラーゼも、上記に分類される微生物に由来するエステラーゼに該当する。 The “esterase derived from a microorganism” as used herein means an esterase produced by a microorganism of each genus (which may be a wild strain or a mutant), or a microorganism of each genus (a wild strain). It may be an esterase obtained by genetic engineering techniques using an esterase gene (which may or may not be a mutant). Therefore, an esterase produced by a host microorganism into which an esterase gene (or a gene obtained by modifying the gene) obtained from a microorganism classified as described above is also an esterase derived from the microorganism classified as described above.
 エステラーゼの生産菌は野生株(天然からの分離株であって、遺伝子操作などの変異・改変処理が施されていないもの)であっても変異株であってもよい。また、本来の生産菌から単離したエステラーゼ遺伝子を適当な宿主微生物(大腸菌(エシェリヒア・コリ)、バチルス属細菌、麹菌、出芽酵母(サッカロマイセス・セレビシエ)など)に導入して得られた形質転換体を生産菌としてもよい。 The esterase-producing bacterium may be a wild strain (an isolated strain that has not been subjected to mutation / modification treatment such as gene manipulation) or a mutant strain. In addition, a transformant obtained by introducing an esterase gene isolated from the original production strain into an appropriate host microorganism (such as Escherichia coli, Bacillus bacteria, Neisseria gonorrhoeae, or budding yeast (Saccharomyces cerevisiae)). May be used as production bacteria.
3.アシネトバクター・カルコアセティカス由来のエステラーゼの諸性質
 配列番号1のアミノ酸配列で特定される、アシネトバクター・カルコアセティカス由来のエステラーゼは、本発明の分解方法において特に好適なエステラーゼである。本発明者らは、以下の通り、本エステラーゼの諸性質を特定することにも成功した。
3. Various properties of esterase derived from Acinetobacter calcoaceticus The esterase derived from Acinetobacter calcoaceticus specified by the amino acid sequence of SEQ ID NO: 1 is a particularly suitable esterase in the degradation method of the present invention. The present inventors also succeeded in specifying various properties of the esterase as follows.
(1)エステラーゼ活性に関する至適温度
 本エステラーゼの至適温度は20℃~30℃である。尚、至適温度は、pH7(例えば50mM リン酸緩衝液を用いる)の条件下での測定結果に基づき評価することができる。
(1) Optimal temperature for esterase activity The optimal temperature for this esterase is 20-30 ° C. The optimum temperature can be evaluated based on the measurement result under the condition of pH 7 (for example, using 50 mM phosphate buffer).
(2)エステラーゼ活性に関する至適pH
 本エステラーゼの至適pHは7である。至適pHは、例えば、pH3.0~8.0のpH域では100 mM McIlvaine緩衝液中、pH8.0~11.0のpH域では100 mM Atkins緩衝液中で測定した結果を基に判断される。
(2) Optimal pH for esterase activity
The optimum pH of this esterase is 7. The optimum pH is determined based on, for example, the results of measurement in a 100 mM McIlvaine buffer in the pH range of 3.0 to 8.0 and in a 100 mM Atkins buffer in the pH range of pH 8.0 to 11.0.
(3)エステラーゼ活性に関する温度安定性
 本エステラーゼの温度安定性については、50mM リン酸緩衝液(pH7)中、70℃以下の条件で1時間処理しても80%以上の活性が残存する。
(3) Temperature stability regarding esterase activity As for the temperature stability of this esterase, 80% or more of the activity remains even after treatment for 1 hour at 70 ° C. or less in a 50 mM phosphate buffer (pH 7).
(4)エステラーゼ活性に関するpH安定性
 本エステラーゼはpH5~11で安定である。即ち、処理に供する酵素溶液のpHがこの範囲内にあれば、37℃、1時間の処理後、90%以上の活性が残存する。
(4) pH stability regarding esterase activity This esterase is stable at pH 5-11. That is, if the pH of the enzyme solution to be treated is within this range, 90% or more activity remains after treatment at 37 ° C. for 1 hour.
(5)分子量
 本エステラーゼの分子量は約85kDa(ゲルろ過による)である。尚、ホモ三量体を形成している。
(5) Molecular weight The molecular weight of this esterase is about 85 kDa (by gel filtration). A homotrimer is formed.
(6)アルコール安定性
 本エステラーゼはアルコール中で高い安定性を示す。アルコール濃度が40%以下であれば、8日間、30℃で処理しても失活しない(残存活性が90%以上)。
(6) Alcohol stability This esterase exhibits high stability in alcohol. If the alcohol concentration is 40% or less, it will not be inactivated even when treated at 30 ° C for 8 days (residual activity is 90% or more).
4.エステラーゼを作用させる食品又は飲料
 エステラーゼを作用させる対象(以下では「処理対象」と呼ぶことがある)、即ち、食品又は飲料は特に限定されない。処理対象になり得る食品及び飲料を例示すれば、各種発酵食品(例えばヨーグルト、チーズ、漬物、醤油、味噌)、パン、紹興酒、核果(さくらんぼ、もも、すもも、あんず等)を原料とした蒸留酒、ウイスキー、ブランデー、テキーラ、カシャッサ、焼酎、清酒、ワイン、酒精強化ワイン(シェリー酒、ポートワイン、マデイラワイン、マルサラワイン等)、梅酒、シェリー酒、混成酒(リキュール、ベルモット、薬酒等)である。好ましい一態様では、アルコール飲料、例えば紹興酒、シェリー酒、清酒を処理対象とする。
4). Foods or beverages on which esterases are allowed to act The targets on which esterases are allowed to act (hereinafter sometimes referred to as “treatment targets”), that is, foods or beverages are not particularly limited. Examples of foods and beverages that can be processed include various fermented foods (eg yogurt, cheese, pickles, soy sauce, miso), bread, Shaoxing liquor, and nuclear fruits (cherry, peach, plum, apricot, etc.) Liquor, whiskey, brandy, tequila, cachassa, shochu, sake, wine, refined wine (sherry, port wine, madeira wine, marsala wine, etc.), plum wine, sherry, mixed liquor (liqueur, vermouth, medicinal liquor, etc.) is there. In a preferred embodiment, alcoholic beverages such as Shaoxing liquor, sherry liquor, and sake are treated.
 完成品としての食品又は飲料の他、製造途中の食品又は飲料(即ち中間製品)を処理対象としてもよい。 In addition to foods and beverages as finished products, foods or beverages in the process of production (ie, intermediate products) may be treated.
5.作用条件
 エステラーゼを食品又は飲料に作用させるためには、例えば、処理対象である食品又は飲料にエステラーゼを添加し、所定時間、反応させる。或いは、担体に固定したエステラーゼに処理対象である食品又は飲料を接触させ、酵素反応を生じさせる。使用する酵素量(酵素濃度)、温度条件、反応時間などは、予備実験を通して決定すればよい。
5). Action conditions In order to make an esterase act on a food or a beverage, for example, the esterase is added to a food or beverage to be treated and reacted for a predetermined time. Alternatively, the food or beverage to be treated is brought into contact with the esterase immobilized on the carrier to cause an enzymatic reaction. The amount of enzyme to be used (enzyme concentration), temperature conditions, reaction time, etc. may be determined through preliminary experiments.
<食品又は飲料の製造方法>
 以上の説明から明らかなように、本発明の分解方法をその製造過程に取り込むことにより、カルバミン酸エチルが除去又は低減された食品又は飲料を得ることができる。そこで本発明の第2の局面は、本発明の分解方法を利用した食品又は飲料の製造方法を提供する。本発明の製造方法では、製造過程の中でエステラーゼによる処理工程(以下では、「酵素処理工程」と呼ぶことがある)が行われる。本発明に特有の効果、即ち、エステラーゼの作用によってカルバミン酸エチルが分解されること、が発揮される限り、全製造工程における酵素処理工程の位置(即ち、他の製造工程との順序)は特に限定されない。但し、例外的な場合を除き、製造過程の後期又は最終段階である、発酵工程ないし熟成・貯蔵工程でカルバミン酸エチルが生成するという点を考慮すれば、これらの工程の後に酵素処理工程を実施することが好ましい。従って、好ましい一態様では、発酵工程の後に酵素処理工程を実施するか、或いは熟成・貯蔵工程の後に酵素処理工程を実施する。
<Method for producing food or beverage>
As is apparent from the above description, by incorporating the decomposition method of the present invention into the production process, a food or beverage from which ethyl carbamate is removed or reduced can be obtained. Then, the 2nd aspect of this invention provides the manufacturing method of the foodstuff or drink using the decomposition | disassembly method of this invention. In the production method of the present invention, a treatment step with esterase (hereinafter sometimes referred to as “enzyme treatment step”) is performed during the production process. As long as the effects specific to the present invention, that is, the decomposition of ethyl carbamate by the action of esterase, is exerted, the position of the enzyme treatment process in the entire production process (that is, the order of other production processes) is particularly It is not limited. However, except in exceptional cases, the enzyme treatment process is carried out after these processes, considering that ethyl carbamate is produced in the fermentation process or the aging / storage process, which is the final or final stage of the production process. It is preferable to do. Therefore, in a preferred embodiment, the enzyme treatment step is performed after the fermentation step, or the enzyme treatment step is performed after the aging / storage step.
 専用の酵素処理工程を設けるのではなく、特定の工程中にエステラーゼを添加し、作用させることにしてもよい。この場合、特定の工程の進行と並行して酵素反応が生ずることになる。ここでの「特定の工程」として、発酵工程、熟成工程、貯蔵工程を例示することができる。 Instead of providing a dedicated enzyme treatment step, esterase may be added and allowed to act during a specific step. In this case, an enzyme reaction occurs in parallel with the progress of a specific process. Examples of the “specific process” here include a fermentation process, an aging process, and a storage process.
 本発明に特有の工程(酵素処理工程)以外については、通常の製造方法に準じればよい。用語「通常の製造方法」は、本発明を適用した製造方法と区別するために使用され、特定の製造方法に限定されることを意図したものではない。従って、本発明を適用可能な「通常の製造方法」は特に限定されない。 Except for the steps specific to the present invention (enzyme treatment step), a normal production method may be used. The term “normal manufacturing method” is used to distinguish from the manufacturing method to which the present invention is applied, and is not intended to be limited to a specific manufacturing method. Therefore, the “normal manufacturing method” to which the present invention is applicable is not particularly limited.
1.カルバミン酸エチル(EC)分解酵素のスクリーニング
 カルバミン酸エチル(EC)の分解が可能な酵素を見出すため、130種類の酵素(リパーゼ又はエステラーゼ23種類の他に、プロテアーゼ、アミラーゼなど各種加水分解酵素を含む)及び微生物を対象として大規模スクリーニングを実施した。スクリーニング方法を以下に示す。まず、スクリーニング対象の各酵素についてEC反応液(100mM リン酸緩衝液 pH7.0: 2mL, EC: 10mM, 酵素: 2mg)を調製し(微生物については酵素のかわりに培養液を用いた)、反応(30℃、スターラー攪拌、48時間)させた。反応終了後、反応液0.4mLに1N HCl 0.1mL及びクロロホルム0.6 mL(Wako)を添加した後、十分に混合した。混合液を遠心分離(15,000 rpm×5分, 4℃)した後、クロロホルム層をバイアル瓶に回収してGC分析サンプルとした。このようにして調製したサンプルを用い、GC分析にてECを検出した。尚、EC分解率は、カルバミン酸エチル(EC)のピーク面積(R.T = 8.9分)より算出した。
(GC分析条件)
 Gas chromatography (GC7700, Agilent)を使用し、以下の条件で分析した。
 カラム: DB-WAX(60m×0.25mm×0.25um)(Agilent J&W)
 インジェクター: 250℃
 検出器: FID, 250℃
 オーブン: 100℃(0分) → 10℃/分で昇温 → 250℃で5分保持
 流速: 2.0 mL/分
 注入量: 5 μL
1. Screening for ethyl carbamate (EC) degrading enzymes In order to find enzymes capable of degrading ethyl carbamate (EC), including 130 enzymes (23 lipases or esterases, as well as various hydrolases such as protease and amylase) ) And a large-scale screening for microorganisms. The screening method is shown below. First, prepare an EC reaction solution (100 mM phosphate buffer pH 7.0: 2 mL, EC: 10 mM, enzyme: 2 mg) for each enzyme to be screened (the culture solution was used instead of the enzyme for microorganisms), and the reaction (30 ° C., stirring with a stirrer, 48 hours). After completion of the reaction, 1N HCl 0.1 mL and chloroform 0.6 mL (Wako) were added to 0.4 mL of the reaction solution, and then mixed well. After the mixture was centrifuged (15,000 rpm × 5 minutes, 4 ° C.), the chloroform layer was collected in a vial and used as a GC analysis sample. EC was detected by GC analysis using the sample thus prepared. The EC decomposition rate was calculated from the peak area (RT = 8.9 minutes) of ethyl carbamate (EC).
(GC analysis conditions)
Gas chromatography (GC7700, Agilent) was used for analysis under the following conditions.
Column: DB-WAX (60m x 0.25mm x 0.25um) (Agilent J & W)
Injector: 250 ℃
Detector: FID, 250 ℃
Oven: 100 ° C (0 min) → Temperature rise at 10 ° C / min → Hold at 250 ° C for 5 min Flow rate: 2.0 mL / min Injection volume: 5 μL
 GC分析の結果、アシネトバクター・カルコアセティカス(A. calcoaceticus)由来のエステラーゼがECを分解可能であることを発見した。一方、リパーゼやArthrobacter ramosus由来のエステラーゼはECを分解できず、ECに対する分解活性はA. calcoaceticus由来エステラーゼに特有の性質であることが判明した。 As a result of GC analysis, it was discovered that esterase derived from A. calcoaceticus can degrade EC. On the other hand, lipase and Arthrobacter bramosus-derived esterase were not able to degrade EC, and the degradation activity against EC was found to be a characteristic property of A. calcoaceticus-derived esterase.
2.A. calcoaceticus由来エステラーゼによるECの分解(紹興酒)
 スクリーニングによって見出されたA. calcoaceticus由来エステラーゼの紹興酒中でのEC分解能力を検討した。EC反応液(紹興酒(pH5.0):60mL, EC:1.3 ppm, E-2酵素製剤:3g(終濃度800 U/mL))を調製して300mL三角フラスコにて反応(30℃, 100rpm, 9日)させた。反応後、EC反応液を遠心分離(7,000 g×10分, 4℃)し、膜ろ過(0.45μm又は0.2μm)後、ガスクロマトグラフ-質量分析法でEC濃度を分析した。
2. Degradation of EC by esterase derived from A. calcoaceticus (Shaoxing Sake)
The ability of A. calcoaceticus-derived esterase found by screening to examine EC degradation in Shaoxing liquor was examined. EC reaction solution (Shaoxing liquor (pH 5.0): 60 mL, EC: 1.3 ppm, E-2 enzyme preparation: 3 g (final concentration 800 U / mL)) was prepared and reacted in a 300 mL Erlenmeyer flask (30 ° C, 100 rpm, 9th) After the reaction, the EC reaction solution was centrifuged (7,000 g × 10 minutes, 4 ° C.), subjected to membrane filtration (0.45 μm or 0.2 μm), and then analyzed for EC concentration by gas chromatography-mass spectrometry.
 分析の結果、A. calcoaceticus由来エステラーゼは紹興酒(pH5.0)中のECを分解できることが確認された(表1)。
Figure JPOXMLDOC01-appb-T000001
As a result of the analysis, it was confirmed that esterase derived from A. calcoaceticus can degrade EC in Shaoxing liquor (pH 5.0) (Table 1).
Figure JPOXMLDOC01-appb-T000001
3.類縁酵素のEC分解能力の検討
 2.の検討によって、A. calcoaceticus 由来エステラーゼが紹興酒中のECを分解できることが確認された。A. calcoaceticus由来エステラーゼの類縁酵素にEC分解能力があるか、以下の検討を行った。
3. Examination of EC degradation ability of related enzymes It was confirmed that the esterase derived from A. calcoaceticus can degrade EC in Shaoxing liquor. The following examination was conducted to determine whether the A. calcoaceticus-derived esterase-related enzyme has EC-degrading ability.
(1)A. calcoaceticus 由来エステラーゼ及び類縁菌株由来エステラーゼのE.coli発現系の構築
(1-1)エステラーゼ遺伝子の全合成(E.coli最適化)
 E.coli発現系を構築するにあたり、A. calcoaseticus及び類縁菌株由来のエステラーゼ遺伝子をE.coli発現用にコドンの最適化をした後、全合成した。尚、A. calcoaseticus及び類縁菌株由来のエステラーゼのアミノ酸配列及び遺伝子配列(コドンの最適化後)を以下に示す。
<A. calcoaseticus由来のエステラーゼ>
 アミノ酸配列:配列番号1
 遺伝子配列:配列番号19
<類縁酵素No.1>
 由来:アシネトバクター・ギロイエ(Acinetobacter guillouiae)
 アミノ酸配列:配列番号2
 遺伝子配列:配列番号20
<類縁酵素No.2>
 由来:アシネトバクター・バウマニABNIH3(Acinetobacter baumannii ABNIH3)
 アミノ酸配列:配列番号3
 遺伝子配列:配列番号21
<類縁酵素No.3>
 由来:アシネトバクター・セイフェルティ(Acinetobacter seifertii)
 アミノ酸配列:配列番号4
 遺伝子配列:配列番号22
<類縁酵素No.4>
 由来:シュードモナス・エルジノーサ(Pseudomonas aeruginosa)
 アミノ酸配列:配列番号5
 遺伝子配列:配列番号23
<類縁酵素No.5>
 由来:シュードモナス・エルジノーサ(Pseudomonas aeruginosa)
 アミノ酸配列:配列番号6
 遺伝子配列:配列番号24
<類縁酵素No.6>
 由来:シュードモナス・エルジノーサ(Pseudomonas aeruginosa)
 アミノ酸配列:配列番号7
 遺伝子配列:配列番号25
<類縁酵素No.7>
 由来:バークホルデリア・ユボネンシス(Burkholderia ubonensis)
 アミノ酸配列:配列番号8
 遺伝子配列:配列番号26
<類縁酵素No.8>
 由来:パラバークホルデリア・フェラリエ(Paraburkholderia ferrariae)
 アミノ酸配列:配列番号9
 遺伝子配列:配列番号27
<類縁酵素No.9>
 由来:バークホルデリア・シュードマルチボランス(Burkholderia pseudomultivorans)
 アミノ酸配列:配列番号10
 遺伝子配列:配列番号28
<類縁酵素No.10>
 由来:アシネトバクター sp. NBRC 110496(Acinetobacter sp. NBRC 110496)
 アミノ酸配列:配列番号11
 遺伝子配列:配列番号29
<類縁酵素No.11>
 由来:アシネトバクター・セイフェルティ(Acinetobacter seifertii)
 アミノ酸配列:配列番号12
 遺伝子配列:配列番号30
<類縁酵素No.12>
 由来:アシネトバクター sp. NIPH809(Acinetobacter sp. NIPH809)
 アミノ酸配列:配列番号13
 遺伝子配列:配列番号31
<類縁酵素No.13>
 由来:シュードモナス・フルオレセンスA506(Pseudomonas fluorescens A506)
 アミノ酸配列:配列番号14
 遺伝子配列:配列番号32
<類縁酵素No.14>
 由来:シュードモナス sp. ABAC61(Pseudomonas sp. ABAC61)
 アミノ酸配列:配列番号15
 遺伝子配列:配列番号33
<類縁酵素No.15>
 由来:シュードモナス・プチダIFO12996(Pseudomonas putida IFO12996)
 アミノ酸配列:配列番号16
 遺伝子配列:配列番号34
<類縁酵素No.16>
 由来:シュードモナス・プチダMR2068(Pseudomonas putida MR2068)
 アミノ酸配列:配列番号17
 遺伝子配列:配列番号35
<類縁酵素No.17>
 由来:シュードモナス・エルジノーサ(Pseudomonas aeruginosa)
 アミノ酸配列:配列番号18
 遺伝子配列:配列番号36
(1) Construction of E. coli expression system of esterase derived from A. calcoaceticus and related strain (1-1) Total synthesis of esterase gene (E.coli optimization)
In constructing the E.coli expression system, esterase genes derived from A. calcoaseticus and related strains were optimized after codon optimization for E.coli expression. The amino acid sequence and gene sequence (after codon optimization) of esterase derived from A. calcoaseticus and related strains are shown below.
<Esterase from A. calcoaseticus>
Amino acid sequence: SEQ ID NO: 1
Gene sequence: SEQ ID NO: 19
<Related enzyme No.1>
Origin: Acinetobacter guillouiae
Amino acid sequence: SEQ ID NO: 2
Gene sequence: SEQ ID NO: 20
<Related enzyme No.2>
Origin: Acinetobacter baumannii ABNIH3
Amino acid sequence: SEQ ID NO: 3
Gene sequence: SEQ ID NO: 21
<Related enzyme No.3>
Origin: Acinetobacter seifertii
Amino acid sequence: SEQ ID NO: 4
Gene sequence: SEQ ID NO: 22
<Related enzyme No. 4>
Origin: Pseudomonas aeruginosa
Amino acid sequence: SEQ ID NO: 5
Gene sequence: SEQ ID NO: 23
<Related enzyme No. 5>
Origin: Pseudomonas aeruginosa
Amino acid sequence: SEQ ID NO: 6
Gene sequence: SEQ ID NO: 24
<Related enzyme No. 6>
Origin: Pseudomonas aeruginosa
Amino acid sequence: SEQ ID NO: 7
Gene sequence: SEQ ID NO: 25
<Related enzyme No. 7>
Origin: Burkholderia ubonensis
Amino acid sequence: SEQ ID NO: 8
Gene sequence: SEQ ID NO: 26
<Related enzyme No. 8>
Origin: Paraburkholderia ferrariae
Amino acid sequence: SEQ ID NO: 9
Gene sequence: SEQ ID NO: 27
<Related enzyme No. 9>
Origin: Burkholderia pseudomultivorans
Amino acid sequence: SEQ ID NO: 10
Gene sequence: SEQ ID NO: 28
<Related enzyme No. 10>
Origin: Acinetobacter sp. NBRC 110496 (Acinetobacter sp. NBRC 110496)
Amino acid sequence: SEQ ID NO: 11
Gene sequence: SEQ ID NO: 29
<Related enzyme No. 11>
Origin: Acinetobacter seifertii
Amino acid sequence: SEQ ID NO: 12
Gene sequence: SEQ ID NO: 30
<Related enzyme No. 12>
Origin: Acinetobacter sp. NIPH809
Amino acid sequence: SEQ ID NO: 13
Gene sequence: SEQ ID NO: 31
<Related enzyme No. 13>
Origin: Pseudomonas fluorescens A506
Amino acid sequence: SEQ ID NO: 14
Gene sequence: SEQ ID NO: 32
<Related enzyme No. 14>
Origin: Pseudomonas sp. ABAC61
Amino acid sequence: SEQ ID NO: 15
Gene sequence: SEQ ID NO: 33
<Related enzyme No. 15>
Origin: Pseudomonas putida IFO12996 (Pseudomonas putida IFO12996)
Amino acid sequence: SEQ ID NO: 16
Gene sequence: SEQ ID NO: 34
<Related enzyme No. 16>
Origin: Pseudomonas putida MR2068
Amino acid sequence: SEQ ID NO: 17
Gene sequence: SEQ ID NO: 35
<Related enzyme No. 17>
Origin: Pseudomonas aeruginosa
Amino acid sequence: SEQ ID NO: 18
Gene sequence: SEQ ID NO: 36
(1-2)E.coli発現用プラスミドの取得とE.coli発現系の構築
 全合成したエステラーゼ遺伝子を鋳型とし、リンカー配列(Eco RI, Hind III)を付加するプライマーを用いてPCR(PrimeSTAR GXL DNA Polymerase (Takara))を行った。PCR条件は以下の通りとした。
<PCR条件>
 反応液の組成:5×PrimeSTAR GXL Bufferを10 μl、dNTP Mixture(各2.5 mM)を4 μl、フォワードプライマーを10 pmol、リバースプライマーを10 pmol、鋳型を10 ng、PrimeSTAR GXL DNA Polymerase(Takara)を1μl(滅菌蒸留水で全量50μlに調整)
 反応条件:98℃で10秒、60℃で30秒、68℃で1.5分を30サイクル
(1-2) Obtaining an E. coli expression plasmid and constructing an E. coli expression system PCR (PrimeSTAR GXL) using a primer that adds a linker sequence (Eco RI, Hind III) using a fully synthesized esterase gene as a template DNA Polymerase (Takara)). PCR conditions were as follows.
<PCR conditions>
Composition of the reaction mixture: 10 μl of 5 × PrimeSTAR GXL Buffer, 4 μl of dNTP Mixture (2.5 mM each), 10 pmol of forward primer, 10 pmol of reverse primer, 10 ng of template, PrimeSTAR GXL DNA Polymerase (Takara) 1μl (adjusted to 50μl with sterilized distilled water)
Reaction conditions: 30 cycles of 98 ° C for 10 seconds, 60 ° C for 30 seconds, and 68 ° C for 1.5 minutes
 増幅産物を精製(NucleoSpin Gel and PCR Clean-up (MACHEREY-NAGEL))して各遺伝子断片を取得した。各遺伝子断片、及びpUC18(Takara)を制限酵素(Eco RI (Takara), Hind III (Takara))で処理した後、ライゲーション(DNA Ligation Kit <Mighty Mix> (Takara))して、E.coli DH5α (Takara)に形質転換することで、各E.coli組換え体を取得した。各E.coli組換え体をLB Broth Base(invitrogen)+ Amp : 100μg/mL:5mLに植菌して振とう培養(37℃、16h、140rpm)した後、NucleoSpin Plasmid EasyPure(MACHEREY-NAGEL)を用いて抽出して、E.coli発現用プラスミドを取得した。取得した各E.coli発現用プラスミドをE.coli BL21(DE3)(Nippongene)に形質転換して、各E.coli発現菌株を取得した。尚、Sequence Primer(M13 M4 Primer:5’-GTTTT CCCAGTCACGAC-3’(配列番号:37)、M13 RV Primer:5’- CAGGAAACAGCTATGAC-3’ (配列番号:38))を用いて各E.coli発現用プラスミドのシークエンスを確認した。 The amplified product was purified (NucleoSpin Geland PCR Clean-up (MACHEREY-NAGEL)) to obtain each gene fragment. Each gene fragment and pUC18 (Takara) were treated with restriction enzymes (Eco RI (Takara), Hind III (Takara)), and then ligated (DNA Ligation Kit <Mighty Mix> (Takara)) to obtain E.coli DH5α Each E. coli recombinant was obtained by transformation into (Takara). Each E. coli recombinant is inoculated into LB Broth Base (invitrogen) + Amp: 100μg / mL: 5mL and shaken (37 ℃, 16h, 140rpm), then NucleoSpin Plasmid EasyPure (MACHEREY-NAGEL) To obtain an E. coli expression plasmid. Each obtained E. coli expression plasmid was transformed into E. coli BL21 (DE3) (Nippongene) to obtain each E. coli expression strain. In addition, each E.coli expression using Sequence 用 い Primer (M13 M4 Primer: 5'-GTTTT CCCAGTCACGAC-3 '(SEQ ID NO: 37), M13 RV Primer: 5'- CAGGAAACAGCTATGAC-3' (SEQ ID NO: 38)) The sequence of the plasmid was confirmed.
(2)各エステラーゼの培養液(培養菌体)、及び菌体抽出液の取得
 構築した各エステラーゼ遺伝子組換えE.coli発現菌株(宿主:E.coli BL21(DE3))を用いて、培養液(培養菌体)の取得を試みた。各エステラーゼ遺伝子組換えE.coli発現菌株の培養液(培養菌体)の取得は、2段階の培養で行った。まず、各エステラーゼ遺伝子組換えE.coli発現菌株をL Broth(inbitrogen社)(Amp : 100 μg/mL) 5mLに接種し、振とう培養機にて16時間、培養(140rpm, 37℃)した後、Teriffic Broth(invitrogen社)(Amp : 100 μg/mL) 50mLに0.5 mLを植菌した。その後、200rpm、33℃の条件で48時間培養し、培養開始から24時間の時点で0.1 mM IPTGを培養液に添加することで酵素の発現を誘導した。培養液50mLを遠心分離(7,500g×10分, 4℃)した後、遠心上清を除去することで培養菌体を回収した。
(2) Acquiring each esterase culture solution (cultured cells) and cell extract Using each constructed esterase gene recombinant E.coli expression strain (host: E.coli BL21 (DE3)) An attempt was made to obtain (cultured cells). The culture solution (cultured cells) of each esterase gene recombinant E. coli expression strain was obtained in two stages of culture. First, each esterase gene recombinant E. coli expression strain was inoculated into 5 mL of L Broth (inbitrogen) (Amp: 100 μg / mL) and cultured for 16 hours (140 rpm, 37 ° C) in a shaking incubator. Teriffic Broth (Invitrogen) (Amp: 100 μg / mL) 0.5 mL was inoculated into 50 mL. Thereafter, the cells were cultured for 48 hours under the conditions of 200 rpm and 33 ° C., and the expression of the enzyme was induced by adding 0.1 mM IPTG to the culture solution 24 hours after the start of the culture. After centrifuging 50 mL of the culture solution (7,500 g × 10 minutes, 4 ° C.), the cultured cells were recovered by removing the centrifugal supernatant.
 取得した各培養菌体を20mM リン酸緩衝液 (pH7.0) 20mLに懸濁した後、ビーズ(0.1mm)(安井機器) 10gを添加して、ビーズショッカー(2,500rpm, on: 60秒, off: 30秒, 15サイクル, 4℃)(安井機器)にて物理破砕した。物理破砕液を遠心分離(7,500g×10分, 4℃)した後、遠心上清を回収し、菌体抽出液とした。 Suspend each obtained bacterial cell in 20 mM phosphate buffer (pH 7.0) 20 mL, add 10 g beads (0.1 mm) (Yasui Kikai), and add beads shocker (2,500 rpm, on: 60 seconds, off: 破 砕 30 seconds, 15 cycles, 4 ℃) (Yasui Kikai). The physical disruption solution was centrifuged (7,500 g × 10 minutes, 4 ° C.), and the supernatant was collected to obtain a cell extract.
(3)類縁酵素によるECの分解(緩衝液pH7.0)
 取得した菌体抽出液を用いて、緩衝液中(pH7.0)でのEC分解能力を確認した。EC反応液(緩衝液(100mM リン酸緩衝液 pH7.0):1.3mL, EC:10mM, 各菌体抽出液:1.3mL)を調製して、反応(30℃, 100rpm, 9日間)させた。反応期間中、適宜、反応液をサンプリング(0.4mL)し、分析サンプルを調製した。分析サンプルをGCで分析した。分析の結果、活性の強弱はあるものの、いずれの類縁酵素もEC分解能力を有することが確認された(図1)。
(3) Degradation of EC by related enzymes (buffer pH 7.0)
Using the obtained bacterial cell extract, EC decomposition ability in a buffer solution (pH 7.0) was confirmed. EC reaction solution (buffer solution (100 mM phosphate buffer pH 7.0): 1.3 mL, EC: 10 mM, each bacterial cell extract: 1.3 mL) was prepared and reacted (30 ° C., 100 rpm, 9 days) . During the reaction period, the reaction solution was appropriately sampled (0.4 mL) to prepare an analysis sample. The analytical sample was analyzed by GC. As a result of the analysis, it was confirmed that all the related enzymes have EC-decomposing ability although the activity is strong and weak (FIG. 1).
4.A. calcoaceticus由来エステラーゼのアルコール安定性
 優れたEC分解能力を示したA. calcoaceticus由来エステラーゼについて、アルコール安定性を検討した。まず、各濃度のアルコール溶液(エタノール-試薬特級(Wako))(0~70%)9mLとA. calcoaceticus由来エステラーゼ 1gを混合することで処理液を調製した。各処理液を30℃で静置し、16時間後、4日後、8日後にサンプリング(1mL)した。以下の測定法で各サンプルの酵素活性を測定した。
(3,4-dihydrocoumarinを基質とした活性測定法)
 50mM リン酸緩衝液(pH7.0) 2.1 mL、5 mM 3,4-dihydrocoumarin(Sigma-aldrich (コード:D104809))溶液(40% EtOH含) 0.3mL、酵素溶液 0.6mLを混合し、反応させた。本測定法では、反応により生じる生成物(3-(2-ヒドロキシフェニル)プロピオン酸)の吸光値変化をカイネティクス測定(Abs. 270nm, 30℃, 5分)することで、1分間に1nmolの生成物(3-(2-ヒドロキシフェニル)プロピオン酸)を生成する酵素量を1単位(U)と定義している。尚、本測定において正確な測定値が得られるΔODは、ΔOD=0.01~0.05/2分(Abs. 250nm)の範囲であり、必要に応じて酵素溶液を50mM リン酸緩衝液 pH7.0にて希釈する。
4). Alcohol stability of A. calcoaceticus-derived esterase The alcohol stability of A. calcoaceticus-derived esterase that showed excellent EC degradation ability was examined. First, a treatment solution was prepared by mixing 9 mL of each concentration of alcohol solution (ethanol-reagent grade (Wako)) (0 to 70%) and 1 g of A. calcoaceticus esterase. Each treatment solution was allowed to stand at 30 ° C. and sampled (1 mL) after 16 hours, 4 days, and 8 days. The enzyme activity of each sample was measured by the following measurement method.
(Activity measurement method using 3,4-dihydrocoumarin as substrate)
50 mL phosphate buffer solution (pH 7.0) 2.1 mL, 5 mM 3,4-dihydrocoumarin (Sigma-aldrich (Code: D104809)) solution (containing 40% EtOH) 0.3 mL, enzyme solution 0.6 mL are mixed and reacted. It was. In this measurement method, the change in absorbance of the product (3- (2-hydroxyphenyl) propionic acid) produced by the reaction is measured by kinetics (Abs. 270 nm, 30 ° C., 5 minutes). The amount of enzyme that produces the product (3- (2-hydroxyphenyl) propionic acid) is defined as 1 unit (U). In this measurement, ΔOD for obtaining an accurate measurement value is in the range of ΔOD = 0.01 to 0.05 / 2 min (Abs. 250 nm). If necessary, the enzyme solution can be used with 50 mM phosphate buffer pH 7.0. Dilute.
 測定値(活性値)から残存活性を算出し、各処理液の残存活性を比較した。その結果、A. calcoaceticus由来エステラーゼは、アルコール濃度が40%以下であれば、8日間、30℃で処理しても失活しないことが確認された(図2)。 The residual activity was calculated from the measured value (activity value), and the residual activity of each treatment solution was compared. As a result, it was confirmed that A. calcoaceticus-derived esterase was not inactivated even when treated at 30 ° C. for 8 days when the alcohol concentration was 40% or less (FIG. 2).
5.A. calcoaceticus由来エステラーゼの諸性質
 上記の「3,4-dihydrocoumarinを基質とした活性測定法」を用い(サンプルの前処理条件等は個別に記載する)、A. calcoaceticus由来エステラーゼの酵素学的性質を特定した。
5). Various properties of A. calcoaceticus-derived esterase Using the above "activity measurement method using 3,4-dihydrocoumarin as a substrate" (sample pretreatment conditions are described separately), enzymatic properties of A. calcoaceticus-derived esterase Identified.
(1)至適温度
 吸光度計のサンプルブロックを所定の温度に設定して活性を測定し、至適温度を決定した。測定範囲に合わせるための酵素の希釈には50mM リン酸緩衝液(pH7.0)を用いた。測定の結果、至適温度は20~30℃であった(図3)。
(1) Optimum temperature The activity was measured by setting the sample block of the absorptiometer to a predetermined temperature, and the optimum temperature was determined. A 50 mM phosphate buffer (pH 7.0) was used to dilute the enzyme to match the measurement range. As a result of the measurement, the optimum temperature was 20-30 ° C. (FIG. 3).
(2)至適pH
 反応液中の「50mM リン酸緩衝液 pH7.0 2.1 mL」を所定のpHに調整した緩衝液に置き換えた測定系で活性を測定し、至適pHを決定した。所定のpHで測定する為、2種類の緩衝液(McIlvaine、Atkins)を各pHに調整したもの(McIlvaine緩衝液:pH3.0, pH4.0, pH5.0, pH6.0, pH7.0, pH8.0。Atkins緩衝液:pH8.0, pH9.0, pH10.0, pH11.0)を用意した。測定範囲に合わせるための酵素の希釈には50mM リン酸緩衝液(pH7.0)を用いた。測定の結果、至適pHはpH7であった(図4)。
(2) Optimum pH
Activity was measured with a measurement system in which “50 mM phosphate buffer pH 7.0 2.1 mL” in the reaction solution was replaced with a buffer adjusted to a predetermined pH, and the optimum pH was determined. Two types of buffer solutions (McIlvaine, Atkins) adjusted to each pH for measurement at a predetermined pH (McIlvaine buffer solution: pH3.0, pH4.0, pH5.0, pH6.0, pH7.0, pH 8.0, Atkins buffer: pH 8.0, pH 9.0, pH 10.0, pH 11.0) were prepared. A 50 mM phosphate buffer (pH 7.0) was used to dilute the enzyme to match the measurement range. As a result of the measurement, the optimum pH was pH 7 (FIG. 4).
(3)温度安定性
 酵素を各温度で処理した後に残存活性を測定することにより、温度安定性を評価した。まず、50mM リン酸緩衝液 pH7.0を用いて酵素希釈液を調製した後、所定の温度で1時間処理して、氷水にて5分間冷却した。この処理の後、50mM リン酸緩衝液 pH7.0を用いて測定範囲内に入るように希釈し、活性を測定した。結果、70℃まで安定(80%以上の残存活性)であった(図5)。
(3) Temperature stability Temperature stability was evaluated by measuring residual activity after treating the enzyme at each temperature. First, an enzyme diluted solution was prepared using 50 mM phosphate buffer pH 7.0, then treated at a predetermined temperature for 1 hour, and cooled with ice water for 5 minutes. After this treatment, the activity was measured by diluting with 50 mM phosphate buffer pH 7.0 to be within the measurement range. As a result, it was stable up to 70 ° C. (residual activity of 80% or more) (FIG. 5).
(4)pH安定性
 酵素を各pHで処理した後、残存活性を測定することにより、pH安定性を評価した。まず、各pHに調製した緩衝液を用いて酵素希釈液を調製した後、37℃で1時間処理した(pH処理)。酵素のpH処理に用いる緩衝液として、2種類の緩衝液(McIlvaine、Atkins)を各pHに調整したもの(McIlvaine緩衝液:pH3.0, pH4.0, pH5.0, pH6.0, pH7.0, pH8.0。Atkins緩衝液:pH8.0, pH9.0, pH10.0, pH11.0)を使用した。pH処理の後、酵素希釈液と等量の1M リン酸緩衝液 pH7.0を加えることでpH処理を停止した。50mM リン酸緩衝液 pH7.0 を用いて測定範囲内に入るように希釈した後、活性を測定した。測定の結果、pH5~11で安定(90%以上の残存活性)であった(図6)。
(4) pH stability The pH stability was evaluated by measuring the residual activity after treating the enzyme at each pH. First, an enzyme dilution solution was prepared using a buffer solution adjusted to each pH, and then treated at 37 ° C. for 1 hour (pH treatment). Two types of buffer solution (McIlvaine, Atkins) adjusted to each pH as the buffer solution used for enzyme pH treatment (McIlvaine buffer solution: pH3.0, pH4.0, pH5.0, pH6.0, pH7. 0, pH 8.0 Atkins buffer: pH 8.0, pH 9.0, pH 10.0, pH 11.0) was used. After the pH treatment, the pH treatment was stopped by adding an equal volume of 1M phosphate buffer pH 7.0 to the enzyme dilution. The activity was measured after diluting with 50 mM phosphate buffer pH 7.0 to be within the measurement range. As a result of the measurement, it was stable at pH 5 to 11 (residual activity of 90% or more) (FIG. 6).
(5)分子量
 以下の条件の下、ゲル濾過クロマトグラフィーによって非変性条件下での分子量を測定した。測定の結果、分子量は約85kDaと推定された。
(実験条件)
 使用カラム:Amersham pharmacia (現GEヘルスケア)製 Superdex 200HR 10/30
 使用緩衝液:50mmol/L NaCl リン酸緩衝液(pH 7.0)+0.15 mol/L NaCl
 分子量マーカー:High Molecular Weight Gel Filtration Calibration Kit(Amersham社製) (Aldolase 158 k, Catalase 232 k, Ferritin 440 k, Thyroglobulin 669 k)を用いた。
(5) Molecular weight The molecular weight under non-denaturing conditions was measured by gel filtration chromatography under the following conditions. As a result of the measurement, the molecular weight was estimated to be about 85 kDa.
(Experimental conditions)
Column used: Supermers 200HR 10/30 manufactured by Amersham pharmacia (currently GE Healthcare)
Buffer used: 50 mmol / L NaCl phosphate buffer (pH 7.0) + 0.15 mol / L NaCl
Molecular weight marker: High Molecular Weight Gel Filtration Calibration Kit (manufactured by Amersham) (Aldolase 158 k, Catalase 232 k, Ferritin 440 k, Thyroglobulin 669 k) was used.
 本発明によれば食品又は飲料中のカルバミン酸エチル(EC)を分解可能である。特に、酒類や発酵食品中のECを除去又は低減することに本発明は有用である。 According to the present invention, ethyl carbamate (EC) in food or beverage can be decomposed. In particular, the present invention is useful for removing or reducing EC in alcoholic beverages and fermented foods.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims. The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.
 配列番号37:人工配列の説明:プライマー
 配列番号38:人工配列の説明:プライマー
SEQ ID NO: 37: Description of artificial sequence: primer SEQ ID NO: 38: Description of artificial sequence: primer

Claims (14)

  1.  配列番号1のアミノ酸配列と70%以上同一のアミノ酸配列からなるエステラーゼを、カルバミン酸エチルを含有する食品又は飲料に作用させることを特徴とする、食品又は飲料中のカルバミン酸エチルを分解する方法。 A method for decomposing ethyl carbamate in a food or beverage, comprising causing an esterase comprising an amino acid sequence 70% or more identical to the amino acid sequence of SEQ ID NO: 1 to act on a food or beverage containing ethyl carbamate.
  2.  前記エステラーゼのアミノ酸配列が、配列番号1~18のいずれかのアミノ酸配列を含む、請求項1に記載の分解方法。 The degradation method according to claim 1, wherein the amino acid sequence of the esterase comprises any one of the amino acid sequences of SEQ ID NOs: 1 to 18.
  3.  前記エステラーゼがアシネトバクター属微生物、シュードモナス属微生物、バークホルデリア属微生物又はパラバークホルデリア属微生物に由来する、請求項1に記載の分解方法。 The degradation method according to claim 1, wherein the esterase is derived from an Acinetobacter genus microorganism, a Pseudomonas genus microorganism, a Burkholderia microorganism, or a Parabalkhorderia microorganism.
  4.  前記アシネトバクター属微生物がアシネトバクター・カルコアセティカス(Acinetobacter calcoaceticus)、アシネトバクター・ギロイエ(Acinetobacter guillouiae)、アシネトバクター・バウマニ(Acinetobacter baumannii)又はアシネトバクター・セイフェルティ(Acinetobacter seifertii)であり、前記シュードモナス属微生物がシュードモナス・エルジノーサ(Pseudomonas aeruginosa)、シュードモナス・フルオレセンス(Pseudomonas fluorescens)又はシュードモナス・プチダ(Pseudomonas putida)であり、前記バークホルデリアがバークホルデリア・ユボネンシス(Burkholderia ubonensis)又はバークホルデリア・シュードマルチボランス(Burkholderia pseudomultivorans)であり、前記パラバークホルデリアがパラバークホルデリア・フェラリエ(Paraburkholderia ferrariae)である、請求項3に記載の分解方法。 The microorganism belonging to the genus Acinetobacter is Acinetobacter calcoaceticus, Acinetobacter guillouiae, Acinetobacter baumannii, or the microorganism belonging to the genus Acinetobacter baumannii, Acinetobacter ii Erginosa (Pseudomonas aeruginosa), Pseudomonas fluorescens or Pseudomonas putida, the Burkholderia or Burkholderia ubonensis (Burkholderia ubonensis) Burkholderia pseudomultivorans), and the Parabark holderia is Paraburkholderia Ferrariae, Decomposition method according to Motomeko 3.
  5.  前記エステラーゼがアシネトバクター sp. NBRC 110496(Acinetobacter sp. NBRC 110496)、アシネトバクター sp. NIPH809(Acinetobacter sp. NIPH809)、シュードモナス・フルオレセンスA506(Pseudomonas fluorescens A506)、シュードモナス sp. ABAC61(Pseudomonas sp. ABAC61)、シュードモナス・プチダIFO12996(Pseudomonas putida IFO12996)又はシュードモナス・プチダMR2068(Pseudomonas putida MR2068)に由来する、請求項1に記載の分解方法。 The esterase is Acinetobacter sp. NBRC 110496 (Acinetobacter sp. NBRC 110496), Acinetobacter sp. The decomposition method of Claim 1 which originates in Pseudomonas putida IFO12996 (Pseudomonas putida IFO12996) or Pseudomonas putida MR2068 (Pseudomonas putida MR2068).
  6.  前記エステラーゼが以下の特徴を備える、請求項1に記載の分解方法:
     (1)至適温度: 20~30℃;
     (2)至適pH: pH7;
     (3)温度安定性: 70℃まで安定(pH7、1時間);
     (4)pH安定性: pH5~11で安定である;
     (5)分子量: 約85kDa(ゲルろ過による)。
    The degradation method of claim 1, wherein the esterase comprises the following characteristics:
    (1) Optimal temperature: 20-30 ° C;
    (2) Optimal pH: pH 7;
    (3) Temperature stability: stable up to 70 ° C (pH 7, 1 hour);
    (4) pH stability: stable at pH 5-11;
    (5) Molecular weight: about 85 kDa (by gel filtration).
  7.  前記エステラーゼが以下の特徴を更に備える、請求項6に記載の分解方法:
     (6)アルコール安定性:アルコール濃度が40%以下であれば、8日間、30℃で処理しても失活しない。
    The degradation method of claim 6, wherein the esterase further comprises the following characteristics:
    (6) Alcohol stability: If the alcohol concentration is 40% or less, it will not be inactivated even if treated at 30 ° C. for 8 days.
  8.  前記飲料がアルコール飲料である、請求項1~7のいずれか一項に記載の分解方法。 The decomposition method according to any one of claims 1 to 7, wherein the beverage is an alcoholic beverage.
  9.  前記アルコール飲料が、紹興酒、核果を原料とした蒸留酒、ウイスキー、ブランデー、テキーラ、カシャッサ、焼酎、清酒、ワイン、酒精強化ワイン、梅酒、シェリー酒又は混成酒である、請求項8に記載の分解方法。 9. The decomposition according to claim 8, wherein the alcoholic beverage is Shaoxing liquor, distilled liquor made from drupe, whiskey, brandy, tequila, cachassa, shochu, sake, wine, refined wine, plum wine, sherry liquor or mixed liquor. Method.
  10.  配列番号1のアミノ酸配列と70%以上同一のアミノ酸配列からなるエステラーゼによる処理工程を含む、カルバミン酸エチルが除去又は低減された食品又は飲料の製造方法。 A method for producing a food or beverage from which ethyl carbamate has been removed or reduced, comprising a treatment step with an esterase comprising an amino acid sequence 70% or more identical to the amino acid sequence of SEQ ID NO: 1.
  11.  前記エステラーゼが、請求項2~7のいずれか一項において定義されたエステラーゼである、請求項10に記載の製造方法。 The production method according to claim 10, wherein the esterase is the esterase defined in any one of claims 2 to 7.
  12.  前記飲料がアルコール飲料である、請求項10又は11に記載の製造方法。 The manufacturing method according to claim 10 or 11, wherein the beverage is an alcoholic beverage.
  13.  前記アルコール飲料が、紹興酒、核果を原料とした蒸留酒、ウイスキー、ブランデー、テキーラ、カシャッサ、焼酎、清酒、ワイン、酒精強化ワイン、梅酒、シェリー酒又は混成酒である、請求項12に記載の製造方法。 The production according to claim 12, wherein the alcoholic beverage is Shaoxing liquor, distilled liquor made from drupe, whiskey, brandy, tequila, cachassa, shochu, sake, wine, refined wine, plum wine, sherry liquor or mixed liquor. Method.
  14.  請求項10~13のいずれか一項に記載の製造方法で得られた、カルバミン酸エチルが除去又は低減された食品又は飲料。 A food or beverage obtained by the production method according to any one of claims 10 to 13, wherein ethyl carbamate is removed or reduced.
PCT/JP2018/007918 2017-03-30 2018-03-02 Degradation of ethyl carbamate WO2018180187A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019509049A JP7138867B2 (en) 2017-03-30 2018-03-02 Decomposition of ethyl carbamate
CN201880023590.6A CN111065280A (en) 2017-03-30 2018-03-02 Decomposition of urethane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-068426 2017-03-30
JP2017068426 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180187A1 true WO2018180187A1 (en) 2018-10-04

Family

ID=63675286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007918 WO2018180187A1 (en) 2017-03-30 2018-03-02 Degradation of ethyl carbamate

Country Status (3)

Country Link
JP (1) JP7138867B2 (en)
CN (1) CN111065280A (en)
WO (1) WO2018180187A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211969A1 (en) * 2018-05-02 2019-11-07 天野エンザイム株式会社 Modified esterase and application therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113621469A (en) * 2021-07-16 2021-11-09 石河子大学 Method for degrading ethyl carbamate in wine
CN113755371B (en) * 2021-08-30 2023-05-16 中国科学院广州地球化学研究所 Strain A.seifertigii P52-1 and application thereof in degradation of polychlorinated biphenyl

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104155A (en) * 1986-10-14 1989-04-21 Takeda Chem Ind Ltd Improvement in quality of sake
JPH01240179A (en) * 1987-12-11 1989-09-25 Takeda Chem Ind Ltd Method for improving quality of liquirs
JPH01300892A (en) * 1988-05-27 1989-12-05 Kyoichi Kobashi Urethanase and production thereof
JPH0387170A (en) * 1989-08-31 1991-04-11 Takara Shuzo Co Ltd Removing of carbamide in brewed material
JPH04325079A (en) * 1991-04-24 1992-11-13 Nagase Seikagaku Kogyo Kk Method for improving quality of liquor
JPH06105693A (en) * 1991-03-22 1994-04-19 Mitsubishi Rayon Co Ltd Dna fragment having base sequency coding esterase
WO2004083385A2 (en) * 2003-03-14 2004-09-30 University Of Iowa Research Foundation Quorum sensing signaling in bacteria
JP2005245266A (en) * 2004-03-03 2005-09-15 Japan Science & Technology Agency New urethanase
JP2008306975A (en) * 2007-06-14 2008-12-25 National Research Inst Of Brewing Method for producing alcoholic beverage
JP2009017877A (en) * 2007-06-14 2009-01-29 National Research Inst Of Brewing Method for producing alcoholic beverages
JP2009296941A (en) * 2008-06-13 2009-12-24 National Research Inst Of Brewing Method for producing alcoholic beverage
JP2010274115A (en) * 2009-05-27 2010-12-09 Acushnet Co Polyurea cover for golf ball based on alycyclic isocyanate
JP2012183009A (en) * 2011-03-04 2012-09-27 Asahi Soft Drinks Co Ltd Tea beverage and method for producing the same
WO2012169634A1 (en) * 2011-06-09 2012-12-13 旭化成株式会社 Carbon-dioxide absorber and carbon-dioxide separation/recovery method using said absorber
JP2014128222A (en) * 2012-12-28 2014-07-10 Suntory Holdings Ltd Method of manufacturing fruit immersed in wine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492633B (en) * 2011-12-02 2013-01-23 江南大学 Rhodotorula mucilaginosa capable of degrading urethane and its application in liquor products and food

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104155A (en) * 1986-10-14 1989-04-21 Takeda Chem Ind Ltd Improvement in quality of sake
JPH01240179A (en) * 1987-12-11 1989-09-25 Takeda Chem Ind Ltd Method for improving quality of liquirs
JPH01300892A (en) * 1988-05-27 1989-12-05 Kyoichi Kobashi Urethanase and production thereof
JPH0387170A (en) * 1989-08-31 1991-04-11 Takara Shuzo Co Ltd Removing of carbamide in brewed material
JPH06105693A (en) * 1991-03-22 1994-04-19 Mitsubishi Rayon Co Ltd Dna fragment having base sequency coding esterase
JPH04325079A (en) * 1991-04-24 1992-11-13 Nagase Seikagaku Kogyo Kk Method for improving quality of liquor
WO2004083385A2 (en) * 2003-03-14 2004-09-30 University Of Iowa Research Foundation Quorum sensing signaling in bacteria
JP2005245266A (en) * 2004-03-03 2005-09-15 Japan Science & Technology Agency New urethanase
JP2008306975A (en) * 2007-06-14 2008-12-25 National Research Inst Of Brewing Method for producing alcoholic beverage
JP2009017877A (en) * 2007-06-14 2009-01-29 National Research Inst Of Brewing Method for producing alcoholic beverages
JP2009296941A (en) * 2008-06-13 2009-12-24 National Research Inst Of Brewing Method for producing alcoholic beverage
JP2010274115A (en) * 2009-05-27 2010-12-09 Acushnet Co Polyurea cover for golf ball based on alycyclic isocyanate
JP2012183009A (en) * 2011-03-04 2012-09-27 Asahi Soft Drinks Co Ltd Tea beverage and method for producing the same
WO2012169634A1 (en) * 2011-06-09 2012-12-13 旭化成株式会社 Carbon-dioxide absorber and carbon-dioxide separation/recovery method using said absorber
JP2014128222A (en) * 2012-12-28 2014-07-10 Suntory Holdings Ltd Method of manufacturing fruit immersed in wine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELMI F ET AL.: "Stereoselective esterase from Pseudomonas putida IF012996 reveals alpha/beta hydrolase folds for D-beta-acetylthioisobutyric acid synthesis", J. BACTERIOL., vol. 187, December 2005 (2005-12-01), pages 8470 - 8476, XP055556594 *
HONDA K ET AL.: "Role of Acinetobacter calcoaceticus 3,4-dihydrocoumarin hydrolase in oxidative stress defence against peroxoacids", EUR. J. BIOCHEM., vol. 270, no. 3, February 2003 (2003-02-01), pages 486 - 494, XP055556592, Retrieved from the Internet <URL:https://doi.org/10.1046/j.1432-1033.2003.03407.x> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211969A1 (en) * 2018-05-02 2019-11-07 天野エンザイム株式会社 Modified esterase and application therefor
CN112055751A (en) * 2018-05-02 2020-12-08 天野酶制品株式会社 Modified esterases and their use

Also Published As

Publication number Publication date
JP7138867B2 (en) 2022-09-20
CN111065280A (en) 2020-04-24
JPWO2018180187A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
Ahmed et al. An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis
JP7138867B2 (en) Decomposition of ethyl carbamate
JP5528333B2 (en) β-amylase, gene encoding the same, and method for producing the same
Ganasen et al. Cold-adapted organic solvent tolerant alkalophilic family I. 3 lipase from an Antarctic Pseudomonas
Guo et al. Characterization of a novel esterase Rv0045c from Mycobacterium tuberculosis
Torres et al. Promiscuous enantioselective (−)-γ-lactamase activity in the Pseudomonas fluorescens esterase I
JP2024016188A (en) Modified chrysanthemum acid esterase
JP5719173B2 (en) Tannase, gene encoding the same and method for producing the same
Watanabe et al. α-Ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of d-glucarate, d-galactarate, and hydroxy-l-proline: molecular and metabolic convergent evolution
Yoo et al. Identification, characterization, and immobilization of a novel YbfF esterase from Halomonas elongata
Zheng et al. Identification and expression of bifunctional acid urea‐degrading enzyme/urethanase from Enterobacter sp. R‐SYB082 and its application in degradation of ethyl carbamate in Chinese rice wine (Huangjiu)
WO2012077614A1 (en) Random transesterification method for fats and oils, and lipase for random transesterification
CN108118036A (en) Novel grape carbohydrate oxidase mutant
Chou et al. A novel recombinant chlorophyllase from cyanobacterium Cyanothece sp. ATCC 51142 for the production of bacteriochlorophyllide a
Chen et al. Isolation, expression and characterization of the thermophilic recombinant esterase from Geobacillus thermodenitrificans PS01
Wang et al. Characterization, immobilization, and mutagenesis of a novel cold-active acetylesterase (EaAcE) from Exiguobacterium antarcticum B7
US11078470B2 (en) Nucleosidase
JP4307826B2 (en) Variovorax-derived D-amidase, genes encoding it, plasmids and vectors containing such nucleic acids, hybridizing nucleic acids, primers for producing nucleic acids, improved rec-amidase, coding rec-amidase And nucleic acid preparation, use of D-amidase and nucleic acid, and whole cell catalyst
JP5735772B2 (en) Ergothionase and method for quantification of ergothioneine
Masaki Features and application potential of microbial urethanases
JP2003250588A (en) Tannase, gene of the same and method for producing tannase
JP7360951B2 (en) Nucleosidase agent with reduced contaminating activity
Yin et al. Structural insights into stereospecific reduction of α, β-unsaturated carbonyl substrates by old yellow enzyme from Gluconobacter oxydans
Kaur et al. Characterization of ML0314c of Mycobacterium leprae and deciphering its role in the immune response in leprosy patients
JP2005176828A (en) Modified sarcosine oxidase, its gene, its recombinant dna, and method for producing the modified sarcosine oxidase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775424

Country of ref document: EP

Kind code of ref document: A1