JPH06105693A - Dna fragment having base sequency coding esterase - Google Patents

Dna fragment having base sequency coding esterase

Info

Publication number
JPH06105693A
JPH06105693A JP3081279A JP8127991A JPH06105693A JP H06105693 A JPH06105693 A JP H06105693A JP 3081279 A JP3081279 A JP 3081279A JP 8127991 A JP8127991 A JP 8127991A JP H06105693 A JPH06105693 A JP H06105693A
Authority
JP
Japan
Prior art keywords
esterase
gly
ala
dna fragment
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3081279A
Other languages
Japanese (ja)
Other versions
JP2759000B2 (en
Inventor
Eiji Ozaki
英司 尾崎
Akihiro Sakimae
明宏 崎前
Ryozo Numazawa
亮三 沼沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP3081279A priority Critical patent/JP2759000B2/en
Publication of JPH06105693A publication Critical patent/JPH06105693A/en
Application granted granted Critical
Publication of JP2759000B2 publication Critical patent/JP2759000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To provide a new DNA fragment coding an esterase having high thermal stability and capable of forming an optically active carboxylic acid useful as a synthetic raw material for a physiologically active substance such as hypotensor. CONSTITUTION:A DNA fragment having a base sequence of formula II and coding an esterase catalyzing the asymmetric hydrolysis reaction of a carboxylic acid ester of formula I (R<1> is alkyl, aralkyl or aryl; R<2> and R<3> are independently alkyl; (n) is 1 or 2). It can be produced e.g. by cloning a chromosome of a microorganism capable of producing the desired esterase, e.g. Pseudomonas putida MR-2068 strain (FERM P-9677).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カルボン酸エステルの
不斉加水分解反応を触媒する熱安定性の高いエステラー
ゼをコードする塩基配列を有するクローン化DNA断片
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cloned DNA fragment having a nucleotide sequence encoding an esterase having high thermostability which catalyzes asymmetric hydrolysis of carboxylic acid ester.

【0002】[0002]

【従来の技術】下記一般式(I):PRIOR ART The following general formula (I):

【0003】[0003]

【化2】 [式(I)中、R1 はアルキル基、アルアルキル基また
はアリール基を、R2 およびR3 はそれぞれ独立にアル
キル基を、nは1または2を示す]で表されるカルボン
酸エステルをエステラーゼの存在下で不斉加水分解する
ことにより、下記一般式(II):
[Chemical 2] [In the formula (I), R 1 is an alkyl group, an aralkyl group or an aryl group, R 2 and R 3 are each independently an alkyl group, and n is 1 or 2] By asymmetric hydrolysis in the presence of esterase, the following general formula (II):

【0004】[0004]

【化3】 [式(II)中、R1 、R2 およびnは上記一般式
(I)と同様に定義される]で表され、血圧降下剤カプ
トプリル(商品名)で代表される種々の生理活性物質の
合成原料として有用である光学活性カルボン酸を得るこ
とができる。
[Chemical 3] [In the formula (II), R 1 , R 2 and n are defined in the same manner as in the above general formula (I)], and various physiologically active substances represented by the hypotensive agent captopril (trade name) An optically active carboxylic acid useful as a synthetic raw material can be obtained.

【0005】なお、上記一般式(I)および(II)に
おけるR1 のアルキル基としては、例えばメチル基、エ
チル基などが、アルアルキル基としては、例えばベンジ
ル基が、アリール基としては、例えばフェニル基等がそ
れぞれ挙げられ、またR2 、R3 としてのアルキル基と
しては、例えばメチル基、エチル基等が挙げられる。
The alkyl group represented by R 1 in the above general formulas (I) and (II) is, for example, a methyl group or an ethyl group, the aralkyl group is, for example, a benzyl group, and the aryl group is, for example, Examples thereof include a phenyl group and the like, and examples of the alkyl group as R 2 and R 3 include a methyl group and an ethyl group.

【0006】上記一般式(I)の化合物の代表例として
は、例えば、β−アセチルチオ−α−メチルプロピオン
酸メチル、S−アセチル−β−メルカプトイソ酪酸メチ
ル、S−アセチル−γ−メルカプト−α−メチル−n−
酪酸メチル、S−ベンゾイル−β−メルカプトイソ酪酸
メチル、S−フェニルアセチル−β−メルカプトイソ酪
酸メチルなどが挙げられる。
Representative examples of the compound of the above-mentioned general formula (I) include, for example, methyl β-acetylthio-α-methylpropionate, methyl S-acetyl-β-mercaptoisobutyrate and S-acetyl-γ-mercapto-α. -Methyl-n-
Examples include methyl butyrate, methyl S-benzoyl-β-mercaptoisobutyrate and methyl S-phenylacetyl-β-mercaptoisobutyrate.

【0007】この不斉加水分解反応におけるエステラー
ゼ活性の利用は、例えば、反応系にエステラーゼを産生
する微生物自体を存在させる方法、反応系にエステラー
ゼを生産する微生物から分離、回収したエステラーゼを
存在させる方法などにより行うことができる(本発明者
らによる特開昭60−12992号公報、特開昭60−
12993号公報等参照)。
Utilization of the esterase activity in this asymmetric hydrolysis reaction is carried out, for example, by a method of allowing the reaction system to include the esterase-producing microorganism itself, or a method of allowing the reaction system to include the esterase separated and recovered from the esterase-producing microorganism. And the like (JP-A-60-12992, JP-A-60-
12993, etc.).

【0008】また、特開平1−222798号公報に
は、本発明者らにより高活性エステラーゼ生産菌として
新たに単離されたシュードモナス プチダ(Pseudomona
s putida) MR−2068株(微工研菌寄第9677
号:FERM P−9677)が開示されている。
[0008] Further, in Japanese Patent Laid-Open No. 1-222798, Pseudomona ( Pseudomona ) newly isolated by the present inventors as a highly active esterase-producing bacterium.
s putida ) MR-2068 strain
No .: FERM P-9677) is disclosed.

【0009】一方、近年組換えDNA技術を中心とする
遺伝子操作技術の急速な進歩に応じて、種々の有用な酵
素等の組換えDNA技術を利用した大量生産への種々の
試みが為されてきており、上記のエステラーゼについて
も、特開平1−67190号公報にシュードモナス フ
ルオレッセンス(Pseudomonas fluorescens)IFO30
18株由来のエステラーゼ遺伝子のクローニングが開示
されている。
On the other hand, various attempts have been made to mass-produce various useful enzymes and the like using recombinant DNA technology in response to the rapid progress of gene manipulation technology centering on recombinant DNA technology in recent years. As for the above esterase, Pseudomonas fluorescens IFO30 is disclosed in JP-A-1-67190.
Cloning of the esterase gene from 18 strains has been disclosed.

【0010】[0010]

【発明が解決しようとする課題】上述のカルボン酸エス
テルの不斉加水分解反応は、より高温の条件を採用する
ことで、より効率良く行うことが可能であるが、高温下
での効率良い反応を行うには、エステラーゼが、高い光
学純度のカルボン酸を生成できることに加えて、良好な
熱安定性を有することが必須となる。
The asymmetric hydrolysis reaction of the above-mentioned carboxylic acid ester can be carried out more efficiently by adopting higher temperature conditions, but an efficient reaction at high temperature is possible. In order to carry out the above, it is essential that the esterase has good thermal stability in addition to being capable of producing a carboxylic acid with high optical purity.

【0011】しかしながら、これらの特性を同時に満足
するエステラーゼの組換えDNA技術による量産のため
に必要なエステラーゼ遺伝子のクローニングは未だ行わ
れていなかったのが現状である。
However, under the present circumstances, the cloning of the esterase gene necessary for mass production of the esterase satisfying these characteristics at the same time by the recombinant DNA technology has not been carried out.

【0012】例えば、上述のシュードモナス フルオレ
ッセンスIFO 3018株からのエステラーゼ遺伝子
を用いた組換えDNA技術により生産されたエステラー
ゼは遺伝子供与体の有するエステラーゼと実質的に同一
の特性を有し、熱安定性に劣り、例えば50℃以上の温
度条件下では数時間で失活してしまうものであり、高温
度条件を用いる不斉加水分解反応には利用できない。
For example, the esterase produced by recombinant DNA technology using the esterase gene from Pseudomonas fluorescens IFO 3018 strain described above has substantially the same properties as the esterase possessed by the gene donor, and is thermostable. However, it is inactivated in several hours under a temperature condition of 50 ° C. or higher, and cannot be used for an asymmetric hydrolysis reaction using a high temperature condition.

【0013】本発明の目的は、上記一般式(I)で規定
される特定構造のカルボン酸エステルの不斉加水分解反
応を触媒する活性を有し、かつ熱安定性の高いエステラ
ーゼをコードするDNA配列を含むクローン化DNA断
片を提供することにある。
The object of the present invention is to provide a DNA encoding an esterase which has an activity to catalyze the asymmetric hydrolysis reaction of a carboxylic acid ester having a specific structure defined by the above general formula (I) and has a high thermostability. To provide a cloned DNA fragment containing the sequence.

【0014】[0014]

【課題を解決するための手段】本発明のDNA断片は、
前記一般式(I)で表されるカルボン酸エステルの不斉
加水分解反応を触媒するエステラーゼをコードする下記
塩基配列(配列番号:1)を有することを特徴とする。 ATGAGCTATG TAACCACGAA GGACGGCGTA CAGATCTTCT ACAAGGACTG GGGCCCGCGC 60 GATGCGCCGG TCATCCACTT CCACCACGGC TGGCCGCTCA GTGCCGACGA CTGGGACGCG 120 CAGATGCTGT TCTTCCTCGC CCACGGTTAC CGCGTGGTCG CCCACGACCG CCGCGGCCAT 180 GGCCGCTCCA GCCAGGTATG GGACGGCCAC GACATGGACC ACTACGCCGA CGACGTAGCC 240 GCAGTGGTGG CCCACCTGGG CATTCAGGGC GCCGTGCATG TCGGCCACTC GACCGGTGGC 300 GGTGAGGTGG TGCGCTACAT GGCCCGACAC CCTGCAGACA AGGTGGCCAA GGCCGTGCTG 360 ATCGCCGCCG TACCGCCGTT GATGGTGCAG ACTCCCGATA ATCCCGGTGG CCTGCCCAAA 420 TCCGTTTTCG ACGGCTTCCA GGCCCAGGTC GCCAGCAACC GCGCGCAGTT CTACCGGGAT 480 GTGCCGGCAG GGCCGTTCTA CGGCTACAAC CGCCCCGGTG TCGACGCCAG CGAAGGCATC 540 ATCGGCAACT GGTGGCGCCA GGGCATGATC GGTAGCGCCA AGGCCCATTA CGATGGCATC 600 GTGGCGTTTT CCCAGACCGA CTTCACCGAA GACCTGAAGG GCATTACCCA GCCGGTGCTG 660 GTGATGCATG GCGACGACGA CCAGATCGTG CCGTATGAGA ACTCCGGGCT GCTGTCGGCC 720 AAGCTGCTGC CCAATGGCAC ACTGAAGACC TACCAGGGCT ACCCGCATGG CATGCCGACC 780 ACCCATGCCG ATGTGATCAA TGCGGATTTG CTGGCGTTTA TCCGTAGCTG A 831 …(配列番号1) 本発明のDNA断片は、所望のエステラーゼを産生する
微生物の染色体からのクローニングにより、あるいはD
NA合成機を用いた合成によって得ることができ、その
形態は1本鎖、2本鎖のいずれでも良い。
The DNA fragment of the present invention comprises:
It is characterized by having the following base sequence (SEQ ID NO: 1) encoding an esterase which catalyzes the asymmetric hydrolysis reaction of the carboxylic acid ester represented by the general formula (I). ATGAGCTATG TAACCACGAA GGACGGCGTA CAGATCTTCT ACAAGGACTG GGGCCCGCGC 60 GATGCGCCGG TCATCCACTT CCACCACGGC TGGCCGCTCA GTGCCGACGA CTGGGACGCG 120 CAGATGCTGT TCTTCCTCGC CCACGGTTAC CGCGTGGTCG CCCACGACCG CCGCGGCCAT 180 GGCCGCTCCA GCCAGGTATG GGACGGCCAC GACATGGACC ACTACGCCGA CGACGTAGCC 240 GCAGTGGTGG CCCACCTGGG CATTCAGGGC GCCGTGCATG TCGGCCACTC GACCGGTGGC 300 GGTGAGGTGG TGCGCTACAT GGCCCGACAC CCTGCAGACA AGGTGGCCAA GGCCGTGCTG 360 ATCGCCGCCG TACCGCCGTT GATGGTGCAG ACTCCCGATA ATCCCGGTGG CCTGCCCAAA 420 TCCGTTTTCG ACGGCTTCCA GGCCCAGGTC GCCAGCAACC GCGCGCAGTT CTACCGGGAT 480 GTGCCGGCAG GGCCGTTCTA CGGCTACAAC CGCCCCGGTG TCGACGCCAG CGAAGGCATC 540 ATCGGCAACT GGTGGCGCCA GGGCATGATC GGTAGCGCCA AGGCCCATTA CGATGGCATC 600 GTGGCGTTTT CCCAGACCGA CTTCACCGAA GACCTGAAGG GCATTACCCA GCCGGTGCTG 660 GTGATGCATG GCGACGACGA CCAGATCGTG CCGTATGAGA ACTCCGGGCT GCTGTCGGCC 720 AAGCTGCTGC CCAATGGCAC ACTGAAGACC TACCAGGGCT ACCCGCATGG CATGCCGACC 780 ACCCATGCCG ATGTGATCAA TGCGGATTTG CTGGCGTTTA TCCGTAGCTG A 831 ... ( Sequence number 1) Book Ming DNA fragments by cloning from chromosome of a microorganism producing the desired esterase, or D
It can be obtained by synthesis using an NA synthesizer, and its form may be either single-stranded or double-stranded.

【0015】クローニングによって得る場合の染色体供
与微生物としては、例えばたシュードモナス プチダM
R−2068株(微工研菌寄第9677号)を好適なも
のとして挙げることができる。
Examples of chromosome-donating microorganisms obtained by cloning include Pseudomonas putida M.
The R-2068 strain (Ministry of Industrial Research, No. 9677) can be mentioned as a preferable example.

【0016】以下、上記塩基配列(配列番号:1)全体
を含むDNA断片のクローニング法の一例について説明
する。
An example of a method for cloning a DNA fragment containing the entire base sequence (SEQ ID NO: 1) will be described below.

【0017】まず、染色体供与菌としての、例えばシュ
ードモナス プチダMR−2068株の培養菌体より、
Marmurらの方法[J. Marmur et al, J. Mol. Bio
l.,3, 208 (1961) ]に従って得た染色体DNAを、E
coRIで部分消化し、DNA断片混合物を調製する。
First, from a cultured bacterial cell of, for example, Pseudomonas putida MR-2068 strain as a chromosome donor,
The method of Marmur et al. [J. Marmur et al, J. Mol. Bio
l., 3 , 208 (1961)].
Partial digestion with coRI prepares a DNA fragment mixture.

【0018】一方、プラスミドpUC19をEcoRI
で消化することにより、lacオペロン(大腸菌のラク
トースオペロン)内のlacZ中のマルチクローニング
サイトにあるEcoRI部位でこれを開環し、先に得た
DNA断片混合物とT4 リガーゼの存在下で反応させ
る。
On the other hand, the plasmid pUC19 was transformed with EcoRI.
It is opened at the EcoRI site at the multiple cloning site in lacZ within the lac operon (the lactose operon of E. coli) by digestion with and reacted with the DNA fragment mixture obtained above in the presence of T 4 ligase. .

【0019】得られた反応混合物を、予めCaCl2
理により外来DNAを受入れ易くした例えば大腸菌(Esc
herichia coli)K−12株の一つであるJM109株に
導入する。
The reaction mixture obtained was treated with CaCl 2 in advance to make it easier to receive foreign DNA. For example, E. coli (Esc)
It is introduced into JM109 strain, which is one of the K-12 strains of herichia coli.

【0020】反応混合物が導入された宿主大腸菌株を、
アンピシリン、IPTG(イソプロピルチオガラクトシ
ド)およびX−Gal(5−クロロ−4−ブロモ−3−
インドリル−β−D−ガラクトシド)を含むLB寒天培
地からなるプレートに撒き、これを培養する。
The host E. coli strain into which the reaction mixture has been introduced,
Ampicillin, IPTG (isopropylthiogalactoside) and X-Gal (5-chloro-4-bromo-3-)
It is seeded on a plate made of LB agar medium containing indolyl-β-D-galactoside) and cultured.

【0021】この培養において、EcoRI部位へのD
NA断片の挿入が行われなかったpUC19を有する形
質転換体は、アンピシリン耐性を獲得し、かつIPTG
の誘導によってβ−ガラクトシダーゼを発現するので、
上記組成のプレートにおいて増殖し、そのコロニーはβ
−ガラクトシダーゼ活性によるX−Galの切断によっ
て青色に呈色する。
In this culture, D at the EcoRI site
The transformant having pUC19 in which the NA fragment was not inserted acquired ampicillin resistance and IPTG.
Expresses β-galactosidase by the induction of
It grows on the plate of the above composition, and the colony is β
Cleavage of X-Gal by galactosidase activity produces a blue color.

【0022】一方、pUC19のEcoRI部位へDN
A断片が挿入されると、β−ガラクトシダーゼの発現が
不能となるので、pUC19のEcoRI部位にDNA
断片が挿入された組換えプラスミドを有する形質転換体
は、アンピシリン耐性を獲得するものの、β−ガラクト
シダーゼ活性の発現による青色の呈色を起さない。
On the other hand, DN was added to the EcoRI site of pUC19.
Since the expression of β-galactosidase is disabled when the A fragment is inserted, DNA is inserted at the EcoRI site of pUC19.
The transformant having the recombinant plasmid having the inserted fragment acquired ampicillin resistance, but did not cause blue coloration due to the expression of β-galactosidase activity.

【0023】従って、上記の培養後、プレートに現われ
る無色のコロニーを選択することにより、pUC19の
EcoRI部位にDNA断片が挿入された組換えプラス
ミドを有する形質転換体を選別することができる。
Therefore, after the above culture, by selecting colorless colonies appearing on the plate, transformants having a recombinant plasmid having a DNA fragment inserted at the EcoRI site of pUC19 can be selected.

【0024】次に、これらの無色の株から、エステラー
ゼ活性を有する株をスクリーニングすることで、目的と
する組換えプラスミドを有する株を選択できる。
Next, a strain having an objective recombinant plasmid can be selected by screening a strain having an esterase activity from these colorless strains.

【0025】このスクリーニングは、例えば以下の操作
によって行うことができる。
This screening can be carried out, for example, by the following operation.

【0026】上記の培養プレート上のコロニーを、濾紙
[10mMトリス−HCl(pH7.5)、0.01%
ブロモクレゾールパープル、100ppmのカルボン酸
エステルとしてのDL−β−アセチルチオ−α−メチル
プロピオン酸メチルを染み込ませたもの)に転写して、
室温で数時間放置して反応させる。
The colonies on the culture plate were filtered with a filter paper [10 mM Tris-HCl (pH 7.5), 0.01%.
Bromocresol purple, which was impregnated with 100 ppm of methyl DL-β-acetylthio-α-methylpropionate as a carboxylic acid ester),
Leave to react at room temperature for several hours.

【0027】この反応において、エステラーゼ活性を持
つコロニーはカルボン酸を生成し、コロニー付近のpH
は低下するので、pH指示薬であるブロモクレゾールパ
ープルの青紫色が黄色に変化する。従って、エステラー
ゼ構造遺伝子を有する株ではコロニーの周囲に黄色への
変色が起きるのでその存在を肉眼で確認できる。
In this reaction, colonies having esterase activity produce carboxylic acid, and pH near the colonies
Decreases, so that the blue-purple color of bromocresol purple, which is a pH indicator, changes to yellow. Therefore, in the strain having the esterase structural gene, discoloration to yellow occurs around the colony, and its presence can be confirmed with the naked eye.

【0028】なお、プラスミドからpUC19に挿入さ
れたEcoRI DNA断片中でのエステラーゼ構造遺
伝子の位置は、例えば以下の方法により決定できる。
The position of the esterase structural gene in the EcoRI DNA fragment inserted from the plasmid into pUC19 can be determined, for example, by the following method.

【0029】まず、上記の操作でエステラーゼ構造遺伝
子を有することが確認された株からプラスミドを単離
し、染色体由来のEcoRI DNA断片を調製する。
First, a plasmid is isolated from the strain confirmed to have an esterase structural gene by the above-mentioned operation, and a chromosome-derived EcoRI DNA fragment is prepared.

【0030】次に、EcoRI DNA断片を種々の制
限酵素で処理して、このEcoRIDNA断片のいろい
ろな部分に相当する小DNA断片を調製し、それらを個
々にpUC19に組み込んで組換えプラスミドを調製す
る。
Next, the EcoRI DNA fragment is treated with various restriction enzymes to prepare small DNA fragments corresponding to various portions of this EcoRI DNA fragment, which are individually incorporated into pUC19 to prepare a recombinant plasmid. .

【0031】最後に、得られた組換えプラスミドで形質
転換された大腸菌のエステラーゼ活性を測定して、活性
を示すEcoRI DNA断片中の最小DNA断片領域
を特定する。
Finally, the esterase activity of Escherichia coli transformed with the obtained recombinant plasmid is measured to identify the minimum DNA fragment region in the EcoRI DNA fragment showing the activity.

【0032】また、このようにして決定されたエステラ
ーゼ構造遺伝子を含む領域を切り出して、その領域の塩
基配列を各種の方法で決定することにより上記塩基配列
(配列番号:1)を得ることができる。
Further, the above-mentioned base sequence (SEQ ID NO: 1) can be obtained by cutting out the region containing the esterase structural gene thus determined and determining the base sequence of the region by various methods. .

【0033】本発明のDNA断片のクローニングは、上
述の方法に限定されず、種々の方法が利用でき、クロー
ニング用ベクターとしても、上記のpUC19の他、p
UC18、M13mp18、M13mp19[いずれも
宝酒造〓からの市販品を利用できる]などを、宿主の種
類に応じて選択して用いることができる。
The cloning of the DNA fragment of the present invention is not limited to the above-mentioned method, and various methods can be used. As a cloning vector, pUC19 or p
UC18, M13mp18, M13mp19 [all of which are commercially available from Takara Shuzo] can be selected and used according to the type of host.

【0034】上記塩基配列(配列番号:1)を有するD
NA断片を、塩基配列(配列番号:1)にコードされる
エステラーゼの発現を可能とするプロモーター等の機能
領域と組合せて、宿主での複製オリジンを有するベクタ
ーに組み込むことにより、組換えDNA技術を利用した
エステラーゼ産生能を有する形質転換体を得るための組
換えDNAを構築できる。
D having the above base sequence (SEQ ID NO: 1)
By combining the NA fragment with a functional region such as a promoter capable of expressing the esterase encoded by the nucleotide sequence (SEQ ID NO: 1) and incorporating it into a vector having a replication origin in a host, recombinant DNA technology can be obtained. Recombinant DNA can be constructed to obtain a transformant having the esterase-producing ability used.

【0035】この形質転換体は、エステラーゼの量産
に、また形質転換体自体を用いた前記一般式(I)のカ
ルボン酸エステルの不斉加水分解に好適に用い得る。ま
た、該形質転換体により産生されたエステラーゼは熱安
定性を有するので、これを用いることにより、より高温
条件下での効率良い不斉加水分解反応を行うことが可能
となる。
This transformant can be suitably used for mass production of esterase and for asymmetric hydrolysis of the carboxylic acid ester of the above general formula (I) using the transformant itself. Moreover, since the esterase produced by the transformant has thermostability, it is possible to perform an efficient asymmetric hydrolysis reaction under higher temperature conditions by using it.

【0036】[0036]

【実施例】【Example】

実施例1 1−1)染色体DNAの調製 Marmurらの方法[J. Marmur et al, J. Mol. Bio
l., 3, 208 (1961) ]に従って、下記の操作によりシュ
ードモナス プチダMR−2068株(微工研菌寄第9
677号)の染色体を分離した。
Example 1 1-1) Preparation of chromosomal DNA The method of Marmur et al. [J. Marmur et al, J. Mol. Bio
l., 3 , 208 (1961)], the following operations were performed on Pseudomonas putida MR-2068 strain
No. 677) was isolated.

【0037】100mlのLB培地(1%ポリペプト
ン、0.5%イーストエキストラクト、0.5%NaC
l)にシュードモナス プチダMR−2068株(微工
研菌寄第9677号)を植菌し、37℃で一晩培養し
た。
100 ml of LB medium (1% polypeptone, 0.5% yeast extract, 0.5% NaC
Pseudomonas putida MR-2068 strain (Ministry of Microbiology, Ltd. No. 9677) was inoculated in 1) and cultured overnight at 37 ° C.

【0038】培養後、遠心分離により集菌し、その約3
g(湿重量)を24mlのTEG緩衝液[25mMトリ
ス−HCl、10mM EDTA(エチレンジアミン四
酢酸)、50mMグルコース、pH8.0]に懸濁し、
リゾチーム溶液(10mg/mlの濃度でリゾチームを
TEG緩衝液に溶解させたもの)の1mlを加え、これ
を32℃で30分間攪拌した。
After culturing, the cells were collected by centrifugation, and about 3
g (wet weight) was suspended in 24 ml of TEG buffer [25 mM Tris-HCl, 10 mM EDTA (ethylenediaminetetraacetic acid), 50 mM glucose, pH 8.0],
1 ml of a lysozyme solution (lysozyme dissolved in TEG buffer at a concentration of 10 mg / ml) was added, and this was stirred at 32 ° C. for 30 minutes.

【0039】攪拌終了後、2mlの12.5%SDS
(ドデシル硫酸ナトリウム)溶液を混合し、更に、5M
過塩素酸ナトリウム溶液(6.75ml)を加え、良く
混合した。
After stirring, 2 ml of 12.5% SDS was added.
(Sodium dodecyl sulfate) solution is mixed, and further 5M
Sodium perchlorate solution (6.75 ml) was added and mixed well.

【0040】次に、得られた混合物に、33.8mlの
クロロホルム−イソアミルアルコール(24:1、容量
比)混合液を加え、30分間ゆるやかに攪拌した。
Next, 33.8 ml of a chloroform-isoamyl alcohol (24: 1, volume ratio) mixed solution was added to the obtained mixture and gently stirred for 30 minutes.

【0041】攪拌終了後、混合物を遠心にかけ、その上
清を、その2倍量の冷エタノール中に静かに加え、析出
するDNAをガラス棒に付着させて巻取り、冷エタノー
ルから取り出した。このDNAを9mlの0.1×SS
C(1×SSC:0.15MNaCl、15mMクエン
酸三ナトリウム)に溶かし、得られた溶液に更に10×
SSCの1mlを加えDNA溶液を得た。
After completion of stirring, the mixture was centrifuged, and the supernatant was gently added to twice the amount of cold ethanol, and the precipitated DNA was attached to a glass rod and wound up, and taken out from the cold ethanol. Add 9 ml of this DNA to 0.1 x SS
C (1 × SSC: 0.15 M NaCl, 15 mM trisodium citrate), and the resulting solution was added to 10 ×.
1 ml of SSC was added to obtain a DNA solution.

【0042】次に、このDNA溶液にRNaseAを5
0μg/mlの濃度となるように加え、30分間ゆるや
かに攪拌した後、10.2mlのクロロホルム−イソア
ミルアルコール(24:1、容量比)混合液を加えて更
に30分間ゆるやかに攪拌した。
Next, 5 parts of RNase A was added to this DNA solution.
The mixture was added to a concentration of 0 μg / ml and gently stirred for 30 minutes, then 10.2 ml of a chloroform-isoamyl alcohol (24: 1, volume ratio) mixed solution was added, and the mixture was gently stirred for another 30 minutes.

【0043】攪拌終了後、反応混合物を遠心にかけ、得
られた上清を回収し、これに1mlの酢酸−EDTA
(3M酢酸ナトリウム、0.01M EDTA、pH
7.0)溶液を加え、これにガラス棒で攪拌しながらイ
ソプロピルアルコールを滴下(全量5.4ml)し、析
出したDNAをガラス棒に付着させて巻取った。
After completion of stirring, the reaction mixture was centrifuged, and the resulting supernatant was collected and added to 1 ml of acetic acid-EDTA.
(3M sodium acetate, 0.01M EDTA, pH
7.0) solution was added, and isopropyl alcohol was added dropwise to this with stirring with a glass rod (total amount 5.4 ml), and the precipitated DNA was attached to the glass rod and wound.

【0044】ガラス棒に巻取ったDNAを更に1×SS
C(3ml)に溶解させ、染色体DNA溶液(2μgD
NA/μl)とした。
The DNA wound on a glass rod was further added to 1 × SS.
C (3 ml) and chromosomal DNA solution (2 μgD
NA / μl).

【0045】1−2)組換えプラスミドの調製 上記1−1)項で得た染色体DNA溶液5μl(10μ
gDNAに相当)に、2単位/μgDNAとなるように
制限酵素EcoRIを加え、常法に従って反応させて3
7℃で30分間保温し、EcoRIによる部分消化によ
るDNA断片混合物を得た。
1-2) Preparation of recombinant plasmid 5 μl (10 μm) of the chromosomal DNA solution obtained in the above 1-1)
(corresponding to gDNA), a restriction enzyme EcoRI was added to 2 units / μg DNA, and the reaction was carried out according to a conventional method to obtain 3
The mixture was kept warm at 7 ° C for 30 minutes to obtain a DNA fragment mixture by partial digestion with EcoRI.

【0046】一方、プラスミドpUC19の1μgを常
法によりEcoRIで消化して、開環し、直鎖状のDN
A断片を得た。
On the other hand, 1 μg of the plasmid pUC19 was digested with EcoRI by a conventional method to open the ring, and linear DN
A fragment was obtained.

【0047】次に、染色体DNAからのDNA断片混合
物と、プラスミドpUC19からのDNA断片を、T4
リガーゼの存在下で常法に従って反応させて反応混合物
を得た。
Next, the mixture of DNA fragments from chromosomal DNA and the DNA fragment from plasmid pUC19 were treated with T 4
Reaction was carried out in the presence of ligase according to a conventional method to obtain a reaction mixture.

【0048】1−3)組換えプラスミドの単離 大腸菌JM109株(宝酒造株式会社より購入できる)
をLB培地で37℃で2〜3時間培養した後、培養菌体
を集菌し、これを氷冷した50mM CaCl2 溶液に
懸濁させた。この懸濁液から再び遠心により集菌し、再
度新鮮な50mM CaCl2 溶液に懸濁させ、氷冷し
ながら30分間静置した。
1-3) Isolation of recombinant plasmid Escherichia coli JM109 strain (available from Takara Shuzo Co., Ltd.)
Was cultured in LB medium at 37 ° C. for 2 to 3 hours, and then the cultured bacterial cells were collected and suspended in an ice-cooled 50 mM CaCl 2 solution. The cells were collected from this suspension by centrifugation again, suspended again in a fresh 50 mM CaCl 2 solution, and allowed to stand for 30 minutes while cooling with ice.

【0049】この懸濁液の一部(100〜200μl程
度)を試験管中に採取し、そこに上記1−2)項で得た
反応混合物(2μgDNAに相当する量)を加え、更に
氷冷しながら30分間静置した。次に、この試験管を4
2℃で2分間加熱してから、これに1mlのLB培地を
注入し、37℃で60分間振とうした。
A portion (about 100 to 200 μl) of this suspension was sampled in a test tube, the reaction mixture (the amount corresponding to 2 μg DNA) obtained in the above section 1-2) was added thereto, and the mixture was ice-cooled. While standing still for 30 minutes. Next, test tube 4
After heating at 2 ° C. for 2 minutes, 1 ml of LB medium was added thereto, and the mixture was shaken at 37 ° C. for 60 minutes.

【0050】振とう後、試験管内の菌体懸濁液の約10
0μlを、LB寒天培地プレート(100μg/mlの
アンピシリン、0.5mM IPTG、0.2%X−G
alを含む)中に分散させ、これを37℃で一晩置い
た。
After shaking, about 10 cell suspensions in a test tube were prepared.
0 μl was added to LB agar plates (100 μg / ml ampicillin, 0.5 mM IPTG, 0.2% X-G).
al.) and placed at 37 ° C. overnight.

【0051】プレートに現われたコロニーのうち、無色
のコロニーについて、下記の方法でエステラーゼ活性を
測定し、エステラーゼ構造遺伝子が挿入された組換えプ
ラスミドを有する株を選択した。 エステラーゼ活性の測定;0.01%ブロモクレゾール
パープル及び100ppm DL−β−アセチルチオ−
α−メチルプロピオン酸メチルを含む10mMトリス−
HCl(pH7.5)を染み込ませた濾紙に無色のコロ
ニーを転写した後、室温で数時間放置した。
Of the colonies appearing on the plate, the colorless colonies were assayed for esterase activity by the following method, and a strain having a recombinant plasmid into which the esterase structural gene had been inserted was selected. Measurement of esterase activity: 0.01% bromocresol purple and 100 ppm DL-β-acetylthio-
10 mM tris-containing methyl α-methylpropionate
A colorless colony was transferred onto a filter paper soaked with HCl (pH 7.5), and then left at room temperature for several hours.

【0052】エステラーゼの発現によるカルボン酸エス
テルからのカルボン酸の生成にともなうpH低下を示す
青紫色から黄色への変色を起したコロニーを選び、それ
をエステラーゼ構造遺伝子が挿入された組換えプラスミ
ドを有する形質転換株とした。
[0052] A colony having a blue-purple to yellow discoloration which shows a pH decrease due to the production of carboxylic acid from a carboxylic acid ester by the expression of esterase is selected, and it is harbored with a recombinant plasmid into which an esterase structural gene has been inserted. It was used as a transformant.

【0053】得られた形質転換株の一つを単離培養し、
得られた培養菌体から、Birnboimらの方法[Birnboim e
t al, Nucleic Acid Res., 7, 1513〜1523(1979)]に従
いプラスミドを調製し、その制限酵素酵素地図を作製し
た。その結果を図2に示す。なお、この図2に示す構成
の組換えプラスミドをpPE101とした。
One of the obtained transformants was isolated and cultured,
From the obtained cultured cells, the method of Birnboim et al. [Birnboim e
al., Nucleic Acid Res., 7, 1513-1523 (1979)] and prepared a restriction enzyme map. The result is shown in FIG. The recombinant plasmid having the structure shown in FIG. 2 was designated as pPE101.

【0054】1−4)エステラーゼ構造遺伝子領域の決
定 pPE101をEcoRIで常法に従って消化し、得ら
れたDNA断片混合物から電気泳動法を用いることによ
って、EcoRI DNA断片(大断片)を分離、回収
した。
1-4) Determination of Esterase Structural Gene Region pPE101 was digested with EcoRI according to a conventional method, and the resulting DNA fragment mixture was subjected to electrophoresis to separate and recover the EcoRI DNA fragment (large fragment). .

【0055】次に、この大DNA断片を更に各種制限酵
素で処理して、より小さなDNA断片とした。その一例
を図3に示す。
Next, this large DNA fragment was further treated with various restriction enzymes to obtain smaller DNA fragments. An example thereof is shown in FIG.

【0056】次に、各小DNA断片を個々にpUC19
のlacZ領域内のマルチクローニングサイトに挿入し
て組換えプラスミドを調製し、各組換えプラスミドで形
質転換したJM103におけるエステラーゼ活性を測定
した。
Next, each of the small DNA fragments was individually transformed into pUC19.
A recombinant plasmid was prepared by inserting the recombinant plasmid into the multi-cloning site in the lacZ region of E. coli and the esterase activity in JM103 transformed with each recombinant plasmid was measured.

【0057】なお、各組換えプラスミドの調製、宿主の
形質転換及びエステラーゼ活性の測定は、上記1−2)
項〜1−3)項の方法に準じて行った。また、各小DN
A断片のpUC19への挿入に際し、必要に応じてリン
カーを合成して用いた。
The preparation of each recombinant plasmid, the transformation of the host and the measurement of esterase activity are carried out according to the above 1-2).
The method was carried out according to the method of items 1 to 3). Also, each small DN
When inserting the A fragment into pUC19, a linker was synthesized and used as necessary.

【0058】各組換えプラスミドにより形質転換された
JM103のエステラーゼ活性の有無は、図3に示すと
おりとなり、その結果からEcoRI 大DNA断片中
のClaI−SmaI DNA断片(約1.3kb)に
エステラーゼ構造遺伝子が存在することがわかった。
The presence or absence of esterase activity of JM103 transformed with each recombinant plasmid is as shown in FIG. 3. From the results, the esterase structure was found in the ClaI-SmaI DNA fragment (about 1.3 kb) in the EcoRI large DNA fragment. It turned out that the gene exists.

【0059】1−5)エステラーゼ構造遺伝子の塩基配
列の決定 上記1−4)項で得たClaI−SmaI DNA断片
の全塩基配列を、ファージベクターを用いたdideoxy ch
ain terminater法[F. Sanger, Science, 214,1205(198
1) ]により決定した。また、得られた塩基配列中のS
D配列等の位置や酵素活性に必須なDNA領域等から、
オープンリーディングフレーム及び対応するアミノ酸を
特定した。その結果(配列番号:2)を下記に示す。 CCCGGGCCGT GAGCGATGCC ATCCTCGGTG ACGACGACCT GCTGGCGCTA TATCAAGGCA 60 TCGACAACGG CCGCTTCCCC GGTGGCGACC TGCTGGCCGC ACCGCTGGAA GCCGCCGCCA 120 AGGCCTGGTA CCGGATGCGC GACCGCGCCT GATCGCCTGG CACCGCTCCT ACACGGCGCC 180 GGGCAGGCCG GAAGCATGGT GCAAGCCCAC TGCAGTGCAG TCACCACAAA TTCCGGCGCC 240 AAGCAAAATT CCTCCTATTC TCAATAGCTC ACTTCGCTTC CTGCACACAG GAGACCCGAC 300 C ATG AGC TAT GTA ACC ACG AAG GAC GGC GTA CAG ATC TTC TAC AAG GAC 349 Met Ser Tyr Val Thr Thr Lys Asp Gly Val Gln Ile Phe Tyr Lys Asp 1 5 10 15 TGG GGC CCG CGC GAT GCG CCG GTC ATC CAC TTC CAC CAC GGC TGG CCG 397 Trp Gly Pro Arg Asp Ala Pro Val Ile His Phe His His Gly Trp Pro 20 25 30 CTC AGT GCC GAC GAC TGG GAC GCG CAG ATG CTG TTC TTC CTC GCC CAC 445 Leu Ser Ala Asp Asp Trp Asp Ala Gln Met Leu Phe Phe Leu Ala His 35 40 45 GGT TAC CGC GTG GTC GCC CAC GAC CGC CGC GGC CAT GGC CGC TCC AGC 493 Gly Tyr Arg Val Val Ala His Asp Arg Arg Gly His Gly Arg Ser Ser 50 55 60 CAG GTA TGG GAC GGC CAC GAC ATG GAC CAC TAC GCC GAC GAC GTA GCC 541 Gln Val Trp Asp Gly His Asp Met Asp His Tyr Ala Asp Asp Val Ala 65 70 75 80 GCA GTG GTG GCC CAC CTG GGC ATT CAG GGC GCC GTG CAT GTC GGC CAC 589 Ala Val Val Ala His Leu Gly Ile Gln Gly Ala Val His Val Gly His 85 90 95 TCG ACC GGT GGC GGT GAG GTG GTG CGC TAC ATG GCC CGA CAC CCT GCA 637 Ser Thr Gly Gly Gly Glu Val Val Arg Tyr Met Ala Arg His Pro Ala 100 105 110 GAC AAG GTG GCC AAG GCC GTG CTG ATC GCC GCC GTA CCG CCG TTG ATG 685 Asp Lys Val Ala Lys Ala Val Leu Ile Ala Ala Val Pro Pro Leu Met 115 120 125 GTG CAG ACT CCC GAT AAT CCC GGT GGC CTG CCC AAA TCC GTT TTC GAC 733 Val Gln Thr Pro Asp Asn Pro Gly Gly Leu Pro Lys Ser Val Phe Asp 130 135 140 GGC TTC CAG GCC CAG GTC GCC AGC AAC CGC GCG CAG TTC TAC CGG GAT 781 Gly Phe Gln Ala Gln Val Ala Ser Asn Arg Ala Gln Phe Tyr Arg Asp 145 150 155 160 GTG CCG GCA GGG CCG TTC TAC GGC TAC AAC CGC CCC GGT GTC GAC GCC 829 Val Pro Ala Gly Pro Phe Tyr Gly Tyr Asn Arg Pro Gly Val Asp Ala 165 170 175 AGC GAA GGC ATC ATC GGC AAC TGG TGG CGC CAG GGC ATG ATC GGT AGC 877 Ser Glu Gly Ile Ile Gly Asn Trp Trp Arg Gln Gly Met Ile Gly Ser 180 185 190 GCC AAG GCC CAT TAC GAT GGC ATC GTG GCG TTT TCC CAG ACC GAC TTC 925 Ala Lys Ala His Tyr Asp Gly Ile Val Ala Phe Ser Gln Thr Asp Phe 195 200 205 ACC GAA GAC CTG AAG GGC ATT ACC CAG CCG GTG CTG GTG ATG CAT GGC 973 Thr Glu Asp Leu Lys Gly Ile Thr Gln Pro Val Leu Val Met His Gly 210 215 220 GAC GAC GAC CAG ATC GTG CCG TAT GAG AAC TCC GGG CTG CTG TCG GCC 1021 Asp Asp Asp Gln Ile Val Pro Tyr Glu Asn Ser Gly Leu Leu Ser Ala 225 230 235 240 AAG CTG CTG CCC AAT GGC ACA CTG AAG ACC TAC CAG GGC TAC CCG CAT 1069 Lys Leu Leu Pro Asn Gly Thr Leu Lys Thr Tyr Gln Gly Tyr Pro His 245 250 255 GGC ATG CCG ACC ACC CAT GCC GAT GTG ATC AAT GCG GAT TTG CTG GCG 1117 Gly Met Pro Thr Thr His Ala Asp Val Ile Asn Ala Asp Leu Leu Ala 260 265 270 TTT ATC CGT AGC TGA TGTGATCGCC TGCACCGGCC TCTTCGCGGG CACTGGCAAC 1172 Phe Ile Arg Ser 275 276 ACACCTCCC CCAGGATTAC CATGTCACGC TTCTAGTGCG GCCCTTTGCC GCCCCTTGC 1230 CTCCCTGCC TGCCAAAACC CCATGCCCTT CGAACTCACC GTAGAACCCC TCACCCTGC 1298 TGATCCTGG CCCTGGTCGC CTTCGTCGCC GGTTTCATCG AT 1329 なお、この配列において、5’端にある塩基を第1番と
してある。
1-5) Determination of Nucleotide Sequence of Esterase Structural Gene The entire nucleotide sequence of the ClaI-SmaI DNA fragment obtained in the above 1-4) was used for dideoxy ch
ain terminater method [F. Sanger, Science, 214 , 1205 (198
1)]. In addition, S in the obtained nucleotide sequence
From the position of D sequence and the DNA region essential for enzyme activity,
The open reading frame and corresponding amino acids were identified. The results (SEQ ID NO: 2) are shown below. CCCGGGCCGT GAGCGATGCC ATCCTCGGTG ACGACGACCT GCTGGCGCTA TATCAAGGCA 60 TCGACAACGG CCGCTTCCCC GGTGGCGACC TGCTGGCCGC ACCGCTGGAA GCCGCCGCCA 120 AGGCCTGGTA CCGGATGCGC GACCGCGCCT GATCGCCTGG CACCGCTCCT ACACGGCGCC 180 GGGCAGGCCG GAAGCATGGT GCAAGCCCAC TGCAGTGCAG TCACCACAAA TTCCGGCGCC 240 AAGCAAAATT CCTCCTATTC TCAATAGCTC ACTTCGCTTC CTGCACACAG GAGACCCGAC 300 C ATG AGC TAT GTA ACC ACG AAG GAC GGC GTA CAG ATC TTC TAC AAG GAC 349 Met Ser Tyr Val Thr Thr Lys Asp Gly Val Gln Ile Phe Tyr Lys Asp 1 5 10 15 TGG GGC CCG CGC GAT GCG CCG GTC ATC CAC TTC CAC CAC GGC TGG CCG 397 Trp Gly Pro Arg Asp Ala Pro Val Ile His Phe His His Gly Trp Pro 20 25 30 CTC AGT GCC GAC GAC TGG GAC GCG CAG ATG CTG TTC TTC CTC GCC CAC 445 Leu Ser Ala Asp Asp Trp Asp Ala Gln Met Leu Phe Phe Leu Ala His 35 40 45 GGT TAC CGC GTG GTC GCC CAC GAC CGC CGC GGC CAT GGC CGC TCC AGC 493 Gly Tyr Arg Val Val Ala His Asp Arg Arg Gly His Gly Arg Ser Ser 50 55 60 CAG GTA TGG GAC GGC CAC GAC ATG GAC CAC TAC GCC GAC GAC GTA GCC 541 Gln Val Trp Asp Gly His Asp Met Asp His Tyr Ala Asp Asp Val Ala 65 70 75 80 GCA GTG GTG GCC CAC CTG GGC ATT CAG GGC GCC GTG CAT GTC GGC CAC 589 Ala Val Val Ala His Leu Gly Ile Gln Gly Ala Val His Val Gly His 85 90 95 TCG ACC GGT GGC GGT GAG GTG GTG CGC TAC ATG GCC CGA CAC CCT GCA 637 Ser Thr Gly Gly Gly Glu Val Val Arg Tyr Met Ala Arg His Pro Ala 100 105 110 GAC AAG GTG GCC AAG GCC GTG CTG ATC GCC GCC GTA CCG CCG TTG ATG 685 Asp Lys Val Ala Lys Ala Val Leu Ile Ala Ala Val Pro Pro Leu Met 115 120 125 GTG CAG ACT CCC GAT AAT CCC GGT GGC CTG CCC AAA TCC GTT TTC GAC 733 Val Gln Thr Pro Asp Asn Pro Gly Gly Leu Pro Lys Ser Val Phe Asp 130 135 140 GGC TTC CAG GCC CAG GTC GCC AGC AAC CGC GCG CAG TTC TAC CGG GAT 781 Gly Phe Gln Ala Gln Val Ala Ser Asn Arg Ala Gln Phe Tyr Arg Asp 145 150 155 160 GTG CCG GCA GGG CCG TTC TAC GGC TAC AAC CGC CCC GGT GTC GAC GCC 829 Val Pro Ala Gly Pro Phe Tyr Gly Tyr Asn Arg Pro Gly Val Asp Ala 165 170 175 AGC GAA GGC ATC ATC GGC AAC TGG TGG CGC CAG GGC ATG ATC GGT AGC 877 Ser Glu Gly Ile Ile Gly Asn Trp Trp Arg Gln Gly Met Ile Gly Ser 180 185 190 GCC AAG GCC CAT TAC GAT GGC ATC GTG GCG TTT TCC CAG ACC GAC TTC 925 Ala Lys Ala His Tyr Asp Gly Ile Val Ala Phe Ser Gln Thr Asp Phe 195 200 205 ACC GAA GAC CTG AAG GGC ATT ACC CAG CCG GTG CTG GTG ATG CAT GGC 973 Thr Glu Asp Leu Lys Gly Ile Thr Gln Pro Val Leu Val Met His Gly 210 215 220 GAC GAC GAC CAG ATC GTG CCG TAT GAG AAC TCC GGG CTG CTG TCG GCC 1021 Asp Asp Asp Gln Ile Val Pro Tyr Glu Asn Ser Gly Leu Leu Ser Ala 225 230 235 240 AAG CTG CTG CCC AAT GGC ACA CTG AAG ACC TAC CAG GGC TAC CCG CAT 1069 Lys Leu Leu Pro Asn Gly Thr Leu Lys Thr Tyr Gln Gly Tyr Pro His 245 250 255 GGC ATG CCG ACC ACC CAT GCC GAT GTG ATC AAT GCG GAT TTG CTG GCG 1117 Gly Met Pro Thr Thr His Ala Asp Val Ile Asn Ala Asp Leu Leu Ala 260 265 270 TTT ATC CGT AGC TGA TGTGATCGCC TGCACCGGCC TCTTCGCGGG CACTGGCAAC 1172 Phe Ile Arg Ser 275 276 ACACCTCCC CCAGGATTAC CATGTCACGC TTCTAGTGCG GCCCTTTGCC GCCCCTTGC 1230 CTCCCTGCC TGCCAAAACC CCATGCCCTT CGAACTCACC GTAGAACCCC TCACCCTGC 1298 TGATCCTGG CCCTGGTCGC CTTCGTCGCC GGTTTCATCG AT 1329 In this sequence, the base at the 5'end is numbered 1.

【0060】実施例2 エステラーゼの熱安定試験 シュードモナス フルオレッセンスIFO 3018
株、シュードモナス プチダMR−2068株(微工研
菌寄第9677号)及び上記1−5)項で大腸菌JM1
09株を組換えプラスミドpPE116で形質転換して
得た大腸菌JM109(pPE116)株をそれぞれ下
記の条件で培養した。
Example 2 Esterase thermostability test Pseudomonas fluorescens IFO 3018
Strain, Pseudomonas putida MR-2068 strain (Ministry of Industrial Science and Technology No. 9677), and Escherichia coli JM1 in the above 1-5).
The E. coli JM109 (pPE116) strain obtained by transforming the 09 strain with the recombinant plasmid pPE116 was cultured under the following conditions.

【0061】(a)シュードモナス フルオレッセンス
IFO 3018株; 培地:LB培地(500ml)、 培養温度:30℃、 培養時間:一晩。
(A) Pseudomonas fluorescens IFO 3018 strain; medium: LB medium (500 ml), culture temperature: 30 ° C., culture time: overnight.

【0062】(b)シュードモナス プチダMR−20
68株(微工研菌寄第9677号); 培地:LB培地(500ml)、 培養温度:30℃、 培養時間:一晩。
(B) Pseudomonas Petida MR-20
68 strains (Microtech Lab. No. 9677); Medium: LB medium (500 ml), culture temperature: 30 ° C., culture time: overnight.

【0063】(c)大腸菌JM109(pPE116)
株; 培地:50μg/mlのアンピシリンを含むLB培地
(500ml)、 培養温度:37℃、 培養時間:一晩。
(C) Escherichia coli JM109 (pPE116)
Strain; Medium: LB medium (500 ml) containing 50 μg / ml ampicillin, culture temperature: 37 ° C., culture time: overnight.

【0064】次に、以上の培養操作で得られた培養菌体
のエステラーゼの熱安定性を下記の方法によって測定し
た。
Next, the thermostability of esterase of the cultured bacterial cells obtained by the above-mentioned culture procedure was measured by the following method.

【0065】培養後、培養菌体を集菌し、その1.0g
(湿重量)を取り、これをDL−β−アセチルチオ−α
−メチルプロピオン酸メチル5.0gを含む0.05M
リン酸緩衝液(pH7.0)の100mlに懸濁させ、
これを30℃に保温して酵素反応を開始させ、反応に応
じて懸濁液のpHが低下するのを0.1NのNaOH溶
液を滴下することにより7.0に維持した。その際の反
応初期1時間あたりにpHの維持に消費したNaOHの
全量(Q1 )を求めた。
After culturing, the cultured bacterial cells were collected and 1.0 g
(Wet weight) is taken and this is DL-β-acetylthio-α
-0.05M containing 5.0 g of methyl methylpropionate
Suspend in 100 ml of phosphate buffer (pH 7.0),
This was kept warm at 30 ° C. to start an enzymatic reaction, and the pH of the suspension was lowered to 7.0 according to the reaction by dropping a 0.1 N NaOH solution. At this time, the total amount (Q 1 ) of NaOH consumed for maintaining the pH was determined per hour at the beginning of the reaction.

【0066】次に、集菌した培養菌体からその1.0g
(湿重量)を取り、これを0.05Mリン酸緩衝液(p
H7.0)の100mlに懸濁させ、これを20〜80
℃の範囲から選択した温度条件で3時間インキュベート
した後、DL−β−アセチルチオ−α−メチルプロピオ
ン酸メチル5.0gを加え、これを30℃に保温し、上
記と同様にして、pHの維持に消費したNaOHの全量
(Q2 )を求め、下記式; 残存エステラーゼ活性=(Q2 ÷Q1 )×100 から残存エステラーゼ活性を求めた。
Next, 1.0 g of the collected cultured bacterial cells
(Wet weight) and take this 0.05M phosphate buffer (p
H7.0) in 100 ml and this is 20-80
After incubating for 3 hours under the temperature condition selected from the range of ° C, 5.0 g of methyl DL-β-acetylthio-α-methylpropionate was added, and the mixture was kept at 30 ° C and maintained at the same pH as above. The total amount of NaOH consumed (Q 2 ) was calculated, and the residual esterase activity was calculated from the following formula: residual esterase activity = (Q 2 ÷ Q 1 ) × 100.

【0067】その結果を表1に示す。The results are shown in Table 1.

【0068】[0068]

【表1】 表1の結果から、シュードモナス プチダMR−206
8株(b)及び大腸菌JM109(pPE116)株
(c)が産生するエステラーゼは、シュードモナス フ
ルオレッセンスIFO 3018株(a)の産生するエ
ステラーゼに比べて熱安定性が高いことが解る。
[Table 1] From the results of Table 1, Pseudomonas putida MR-206
It is understood that the esterase produced by the 8 strain (b) and the Escherichia coli JM109 (pPE116) strain (c) has higher thermostability than the esterase produced by Pseudomonas fluorescens IFO 3018 strain (a).

【0069】[0069]

【発明の効果】本発明により、前記(I)式で示される
カルボン酸エステルを加水分解する際に好適に用い得る
熱安定性の良いエステラーゼの構造遺伝子を含むクロー
ン化DNA断片が提供された。
INDUSTRIAL APPLICABILITY The present invention provides a cloned DNA fragment containing a structural gene of esterase having good thermostability, which can be suitably used when hydrolyzing the carboxylic acid ester represented by the above formula (I).

【0070】従来の技術では、このような熱安定性の高
いエステラーゼに対応するDNA断片のクローニングは
行われておらず、本発明による該クローン化DNA断片
の提供は、組換えDNA技術による熱安定性の良好なエ
ステラーゼの大量生産技術の基本として極めて重要であ
る。
In the prior art, a DNA fragment corresponding to such an esterase having a high thermostability has not been cloned. The cloned DNA fragment according to the present invention is provided by a thermostable recombinant DNA technique. It is extremely important as the basis of mass production technology of esterase with good properties.

【0071】[0071]

【配列表】[Sequence list]

配列番号:1 配列の長さ:831 配列の型:核酸 鎖の数:一本鎖または二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:シュードモナス プチダ(Pseudomonas putid
a) 株名:MR−2068株 通商産業省工業技術院微生物工業技術研究所寄託番号:
微工研菌寄第9677号(FERM P−9677) 配列の特徴 特徴を表す記号:mat peputide 存在位置:1..828 特徴を決定した方法:S 配列 ATGAGCTATG TAACCACGAA GGACGGCGTA CAGATCTTCT ACAAGGACTG GGGCCCGCGC 60 GATGCGCCGG TCATCCACTT CCACCACGGC TGGCCGCTCA GTGCCGACGA CTGGGACGCG 120 CAGATGCTGT TCTTCCTCGC CCACGGTTAC CGCGTGGTCG CCCACGACCG CCGCGGCCAT 180 GGCCGCTCCA GCCAGGTATG GGACGGCCAC GACATGGACC ACTACGCCGA CGACGTAGCC 240 GCAGTGGTGG CCCACCTGGG CATTCAGGGC GCCGTGCATG TCGGCCACTC GACCGGTGGC 300 GGTGAGGTGG TGCGCTACAT GGCCCGACAC CCTGCAGACA AGGTGGCCAA GGCCGTGCTG 360 ATCGCCGCCG TACCGCCGTT GATGGTGCAG ACTCCCGATA ATCCCGGTGG CCTGCCCAAA 420 TCCGTTTTCG ACGGCTTCCA GGCCCAGGTC GCCAGCAACC GCGCGCAGTT CTACCGGGAT 480 GTGCCGGCAG GGCCGTTCTA CGGCTACAAC CGCCCCGGTG TCGACGCCAG CGAAGGCATC 540 ATCGGCAACT GGTGGCGCCA GGGCATGATC GGTAGCGCCA AGGCCCATTA CGATGGCATC 600 GTGGCGTTTT CCCAGACCGA CTTCACCGAA GACCTGAAGG GCATTACCCA GCCGGTGCTG 660 GTGATGCATG GCGACGACGA CCAGATCGTG CCGTATGAGA ACTCCGGGCT GCTGTCGGCC 720 AAGCTGCTGC CCAATGGCAC ACTGAAGACC TACCAGGGCT ACCCGCATGG CATGCCGACC 780 ACCCATGCCG ATGTGATCAA TGCGGATTTG CTGGCGTTTA TCCGTAGCTG A 831 配列番号:2 配列の長さ:1329 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:シュードモナス プチダ(Pseudomonas putid
a) 株名:MR−2068株 通商産業省工業技術院微生物工業研究所寄託番号:微工
研菌寄第9677号(FERM P−9677) 配列の特徴 特徴を表す記号:mat peputide 存在位置:302..1129 特徴を決定した方法:S 配列 CCCGGGCCGT GAGCGATGCC ATCCTCGGTG ACGACGACCT GCTGGCGCTA TATCAAGGCA 60 TCGACAACGG CCGCTTCCCC GGTGGCGACC TGCTGGCCGC ACCGCTGGAA GCCGCCGCCA 120 AGGCCTGGTA CCGGATGCGC GACCGCGCCT GATCGCCTGG CACCGCTCCT ACACGGCGCC 180 GGGCAGGCCG GAAGCATGGT GCAAGCCCAC TGCAGTGCAG TCACCACAAA TTCCGGCGCC 240 AAGCAAAATT CCTCCTATTC TCAATAGCTC ACTTCGCTTC CTGCACACAG GAGACCCGAC 300 C ATG AGC TAT GTA ACC ACG AAG GAC GGC GTA CAG ATC TTC TAC AAG GAC 349 Met Ser Tyr Val Thr Thr Lys Asp Gly Val Gln Ile Phe Tyr Lys Asp 1 5 10 15 TGG GGC CCG CGC GAT GCG CCG GTC ATC CAC TTC CAC CAC GGC TGG CCG 397 Trp Gly Pro Arg Asp Ala Pro Val Ile His Phe His His Gly Trp Pro 20 25 30 CTC AGT GCC GAC GAC TGG GAC GCG CAG ATG CTG TTC TTC CTC GCC CAC 445 Leu Ser Ala Asp Asp Trp Asp Ala Gln Met Leu Phe Phe Leu Ala His 35 40 45 GGT TAC CGC GTG GTC GCC CAC GAC CGC CGC GGC CAT GGC CGC TCC AGC 493 Gly Tyr Arg Val Val Ala His Asp Arg Arg Gly His Gly Arg Ser Ser 50 55 60 CAG GTA TGG GAC GGC CAC GAC ATG GAC CAC TAC GCC GAC GAC GTA GCC 541 Gln Val Trp Asp Gly His Asp Met Asp His Tyr Ala Asp Asp Val Ala 65 70 75 80 GCA GTG GTG GCC CAC CTG GGC ATT CAG GGC GCC GTG CAT GTC GGC CAC 589 Ala Val Val Ala His Leu Gly Ile Gln Gly Ala Val His Val Gly His 85 90 95 TCG ACC GGT GGC GGT GAG GTG GTG CGC TAC ATG GCC CGA CAC CCT GCA 637 Ser Thr Gly Gly Gly Glu Val Val Arg Tyr Met Ala Arg His Pro Ala 100 105 110 GAC AAG GTG GCC AAG GCC GTG CTG ATC GCC GCC GTA CCG CCG TTG ATG 685 Asp Lys Val Ala Lys Ala Val Leu Ile Ala Ala Val Pro Pro Leu Met 115 120 125 GTG CAG ACT CCC GAT AAT CCC GGT GGC CTG CCC AAA TCC GTT TTC GAC 733 Val Gln Thr Pro Asp Asn Pro Gly Gly Leu Pro Lys Ser Val Phe Asp 130 135 140 GGC TTC CAG GCC CAG GTC GCC AGC AAC CGC GCG CAG TTC TAC CGG GAT 781 Gly Phe Gln Ala Gln Val Ala Ser Asn Arg Ala Gln Phe Tyr Arg Asp 145 150 155 160 GTG CCG GCA GGG CCG TTC TAC GGC TAC AAC CGC CCC GGT GTC GAC GCC 829 Val Pro Ala Gly Pro Phe Tyr Gly Tyr Asn Arg Pro Gly Val Asp Ala 165 170 175 AGC GAA GGC ATC ATC GGC AAC TGG TGG CGC CAG GGC ATG ATC GGT AGC 877 Ser Glu Gly Ile Ile Gly Asn Trp Trp Arg Gln Gly Met Ile Gly Ser 180 185 190 GCC AAG GCC CAT TAC GAT GGC ATC GTG GCG TTT TCC CAG ACC GAC TTC 925 Ala Lys Ala His Tyr Asp Gly Ile Val Ala Phe Ser Gln Thr Asp Phe 195 200 205 ACC GAA GAC CTG AAG GGC ATT ACC CAG CCG GTG CTG GTG ATG CAT GGC 973 Thr Glu Asp Leu Lys Gly Ile Thr Gln Pro Val Leu Val Met His Gly 210 215 220 GAC GAC GAC CAG ATC GTG CCG TAT GAG AAC TCC GGG CTG CTG TCG GCC 1021 Asp Asp Asp Gln Ile Val Pro Tyr Glu Asn Ser Gly Leu Leu Ser Ala 225 230 235 240 AAG CTG CTG CCC AAT GGC ACA CTG AAG ACC TAC CAG GGC TAC CCG CAT 1069 Lys Leu Leu Pro Asn Gly Thr Leu Lys Thr Tyr Gln Gly Tyr Pro His 245 250 255 GGC ATG CCG ACC ACC CAT GCC GAT GTG ATC AAT GCG GAT TTG CTG GCG 1117 Gly Met Pro Thr Thr His Ala Asp Val Ile Asn Ala Asp Leu Leu Ala 260 265 270 TTT ATC CGT AGC TGA TGTGATCGCC TGCAC
CGGCC TCTTCGCGGG CACTGGCAAC 1172 Phe Ile Arg Ser 275 276 ACACCTCCC CCAGGATTAC CATGTCACGC TTCTAGTGCG GCCCTTTGCC GCCCCTTGC 1230 CTCCCTGCC TGCCAAAACC CCATGCCCTT CGAACTCACC GTAGAACCCC TCACCCTGC 1298 TGATCCTGG CCCTGGTCGC CTTCGTCGCC GGTTTCATCG AT 1329
SEQ ID NO: 1 Sequence length: 831 Sequence type: Nucleic acid Number of strands: Single-stranded or double-stranded Topology: Linear Sequence type: Genomic DNA Origin: Organism: Pseudomonas putid
a ) Share name: MR-2068 strain Ministry of International Trade and Industry, Institute of Industrial Technology Microbial Industrial Research Institute Deposit No:
MICRO LABORATORY NO. 9677 (FERM P-9677) Characteristic of sequence Symbol representing the characteristic: mat peptide Location: 1..828 Method of determining the characteristic: S sequence ATGAGCTATG TAACCACGAA GGACGGCGTA CAGATCTTCT ACAAGGACTG GGGCCCGCGCCTCCACCCGGCTCG GTGCCGACGA CTGGGACGCG 120 CAGATGCTGT TCTTCCTCGC CCACGGTTAC CGCGTGGTCG CCCACGACCG CCGCGGCCAT 180 GGCCGCTCCA GCCAGGTATG GGACGGCCAC GACATGGACC ACTACGCCGA CGACGTAGCC 240 GCAGTGGTGG CCCACCTGGG CATTCAGGGC GCCGTGCATG TCGGCCACTC GACCGGTGGC 300 GGTGAGGTGG TGCGCTACAT GGCCCGACAC CCTGCAGACA AGGTGGCCAA GGCCGTGCTG 360 ATCGCCGCCG TACCGCCGTT GATGGTGCAG ACTCCCGATA ATCCCGGTGG CCTGCCCAAA 420 TCCGTTTTCG ACGGCTTCCA GGCCCAGGTC GCCAGCAACC GCGCGCAGTT CTACCGGGAT 480 GTGCCGGCAG GGCCGTTCTA CGGCTACAAC CGCCCCGGTG TCGACGCCAG CGAAGGCATC 540 ATCGGCAACT GGTGGCGCCA GGGCATGATC GGTAGCGCCA AGGCCCATTA CGATGGCATC 600 GTGGCGTTTT CCCAGACCGA CTTCACCGAA GACCTGAAGG GCATTACCCA GCCGGTGCTG 660 GTGATGCATG GCGACGACGA CCAGATCGTG CCGTATGAGA ACTCCGGGCT GCTGTCGGCC 720 AAGCTGCTGC CCAATGGCAC ACTGAAGACC TACCAGGGCT ACCCGCATGG CATGCCGACC 780 ACCCATGCCG ATGTGATCAA TGCGGATTTG CTGGCGTTTA TCCGTAGCTG A 831 SEQ ID NO: 2 Sequence length: Number of two-chain sequences: Nucleic acid sequence: Number of two-chain sequences: Nucleic acid sequence: Nucleotide sequence: Nucleotide sequence number: Nucleotide sequence number: 1329 Genomic DNA Origin: Organism name: Pseudomonas putid
a ) Strain name: MR-2068 strain Ministry of International Trade and Industry, Institute of Industrial Technology, Microbial Industry Research Institute Deposit No: Microindustrial Research Institute of Microbiology No. 9677 (FERM P-9677) Sequence features Characteristic symbols: mat peptide Location: 302 ..1129 method to determine the characteristics: S sequence CCCGGGCCGT GAGCGATGCC ATCCTCGGTG ACGACGACCT GCTGGCGCTA TATCAAGGCA 60 TCGACAACGG CCGCTTCCCC GGTGGCGACC TGCTGGCCGC ACCGCTGGAA GCCGCCGCCA 120 AGGCCTGGTA CCGGATGCGC GACCGCGCCT GATCGCCTGG CACCGCTCCT ACACGGCGCC 180 GGGCAGGCCG GAAGCATGGT GCAAGCCCAC TGCAGTGCAG TCACCACAAA TTCCGGCGCC 240 AAGCAAAATT CCTCCTATTC TCAATAGCTC ACTTCGCTTC CTGCACACAG GAGACCCGAC 300 C ATG AGC TAT GTA ACC ACG AAG GAC GGC GTA CAG ATC TTC TAC AAG GAC 349 Met Ser Tyr Val Thr Thr Lys Asp Gly Val Gln Ile Phe Tyr Lys Asp 1 5 10 15 TGG GGC CCG CGC GAT GCG CCG GTC ATC CAC TTC CAC CAC GGC TGG CCG 397 Trp Gly Pro Arg Asp Ala Pro Val Ile His Phe His His Gly Trp Pro 20 25 30 CTC AGT GCC GAC GAC TGG GAC GCG CAG ATG CTG TTC TTC CTC GCC CAC 445 Leu Ser Ala Asp Asp Trp Asp Ala Gln Met Leu Phe Phe Leu Ala His 35 40 45 GGT TAC CGC GTG GTC GCC CAC GAC CGC CGC GGC CAT GGC CGC TCC AGC 493 Gly Tyr Arg Val Val Ala His Asp Arg Arg Gly His Gly Arg Ser Ser 50 55 60 CAG GTA TGG GAC GGC CAC GAC ATG GAC CAC TAC GCC GAC GAC GTA GCC 541 Gln Val Trp Asp Gly His Asp Met Asp His Tyr Ala Asp Asp Val Ala 65 70 75 80 GCA GTG GTG GCC CAC CTG GGC ATT CAG GGC GCC GTG CAT GTC GGC CAC 589 Ala Val Val Ala His Leu Gly Ile Gln Gly Ala Val His Val Gly His 85 90 95 TCG ACC GGT GGC GGT GAG GTG GTG CGC TAC ATG GCC CGA CAC CCT GCA 637 Ser Thr Gly Gly Gly Glu Val Val Arg Tyr Met Ala Arg His Pro Ala 100 105 110 GAC AAG GTG GCC AAG GCC GTG CTG ATC GCC GCC GTA CCG CCG TTG ATG 685 Asp Lys Val Ala Lys Ala Val Leu Ile Ala Ala Val Pro Pro Leu Met 115 120 125 GTG CAG ACT CCC GAT AAT CCC GGT GGC CTG CCC AAA TCC GTT TTC GAC 733 Val Gln Thr Pro Asp Asn Pro Gly Gly Leu Pro Lys Ser Val Phe Asp 130 135 140 GGC TTC CAG GCC CAG GTC GCC AGC AAC CGC GCG CAG TTC TAC CGG GAT 781 Gly Phe Gln Ala Gln Val Ala Ser Asn Arg Ala Gln Phe Tyr Arg Asp 145 150 155 160 GTG CCG GCA GGG CCG TTC TAC GGC TAC AAC CGC CCC GGT GTC GAC GCC 829 Val Pro Ala Gly Pro Phe Tyr Gly Tyr Asn Arg Pro Gly Val Asp Ala 165 170 175 AGC GAA GGC ATC ATC GGC AAC TGG TGG CGC CAG GGC ATG ATC GGT AGC 877 Ser Glu Gly Ile Ile Gly Asn Trp Trp Arg Gln Gly Met Ile Gly Ser 180 185 190 GCC AAG GCC CAT TAC GAT GGC ATC GTG GCG TTT TCC CAG ACC GAC TTC 925 Ala Lys Ala His Tyr Asp Gly Ile Val Ala Phe Ser Gln Thr Asp Phe 195 200 205 ACC GAA GAC CTG AAG GGC ATT ACC CAG CCG GTG CTG GTG ATG CAT GGC 973 Thr Glu Asp Leu Lys Gly Ile Thr Gln Pro Val Leu Val Met His Gly 210 215 220 GAC GAC GAC CAG ATC GTG CCG TAT GAG AAC TCC GGG CTG CTG TCG GCC 1021 Asp Asp Asp Gln Ile Val Pro Tyr Glu Asn Ser Gly Leu Leu Ser Ala 225 230 235 240 AAG CTG CTG CCC AAT GGC ACA CTG AAG ACC TAC CAG GGC TAC CCG CAT 1069 Lys Leu Leu Pro Asn Gly Thr Leu Lys Thr Tyr Gln Gly Tyr Pro His 245 250 255 GGC ATG CCG ACC ACC CAT GCC GA T GTG ATC AAT GCG GAT TTG CTG GCG 1117 Gly Met Pro Thr Thr His Ala Asp Val Ile Asn Ala Asp Leu Leu Ala 260 265 270 TT TAT ATC CGT AGC TGA TGTGATCGCC TGCAC
CGGCC TCTTCGCGGG CACTGGCAAC 1172 Phe Ile Arg Ser 275 276 ACACCTCCC CCAGGATTAC CATGTCACGC TTCTAGTGCG GCCCTTTGCC GCCCCTTGC 1230 CTCCCTGCC TGCCAAAACC CCATGCCTTT 12

【図面の簡単な説明】[Brief description of drawings]

【図1】クローニング用ベクターpUC19の構成を示
す図である。
FIG. 1 is a diagram showing the construction of a cloning vector pUC19.

【図2】本発明のエステラーゼ構造遺伝子を含むDNA
断片が組み込まれた組換えプラスミドpPE101の制
限酵素地図を示す図である。
FIG. 2 DNA containing the esterase structural gene of the present invention
It is a figure which shows the restriction enzyme map of the recombinant plasmid pPE101 in which the fragment was integrated.

【図3】組換えプラスミドpPE101中のEcoRI
大DNA断片の種々の部分を欠失させた小DNA断片の
EcoRI大DNA断片中での位置関係、及び各小DN
A断片を個々にpUC19に組み込んで調製した組換え
プラスミドで形質転換した形質転換体のエステラーゼ活
性の有無を示す図である。
FIG. 3 EcoRI in recombinant plasmid pPE101
Positional relationship of small DNA fragments lacking various portions of large DNA fragment in EcoRI large DNA fragment, and each small DN
It is a figure which shows the presence or absence of esterase activity of the transformant transformed with the recombinant plasmid prepared by individually incorporating the A fragment into pUC19.

【符号の説明】 Amp アンピシリン耐性をコードする領域 lacZ β−ガラクトシダーゼ構造遺伝子領域 lai リプレッサー構造遺伝子領域 染色体DNAに由来する部分 pU19に由来する部分 B BglII C ClaI EI EcoRI EV EcoRV P PstI PV PvuII S SalI Sm SmaI[Explanation of Codes] Amp ampicillin resistance coding region lacZ β-galactosidase structural gene region lai repressor structural gene region Part derived from chromosomal DNA Part derived from pU19 B BglII C ClaI EI EcoRI EV EcoRV P PstI PV SVuII Sm SmaI

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年6月13日[Submission date] June 13, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】 得られた反応混合物を、予めCaCl2
処理により外来DNAを受入れ易くした例えば大腸菌(E
scherichia coli)K−12株の一つであるJM10
に導入する。
The reaction mixture obtained is preliminarily treated with CaCl 2
For example, E. coli (E
scherichia coli) is introduced into JM10 5 strain, which is one of the K-12 strain.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】 本発明のDNA断片のクローニングは、
上述の方法に限定されず、種々の方法が利用でき、クロ
ーニング用ベクターとしても、上記のpUC19の他、
pUC18、M13mp18、M13mp19[いずれ
も宝酒造(株)からの市販品を利用できる]などを、宿
主の種類に応じて選択して用いることができる。
The cloning of the DNA fragment of the present invention comprises
The method is not limited to the above-mentioned method, various methods can be used, and as the cloning vector, in addition to the above pUC19,
pUC18, M13mp18, M13mp19 [all commercially available from Takara Shuzo Co., Ltd. ] can be selected and used according to the type of host.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0041[Correction target item name] 0041

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0041】 攪拌終了後、混合物を遠心にかけ、その
上清を、その2倍量の冷エタノール中に静かに加え、析
出するDNAをガラス棒に付着させて巻取り、冷エタノ
ールから取り出した。このDNAを9mlの0.1×S
SC(1×SSC:0.15M NaCl、15mMク
エン酸三ナトリウム)に溶かし、得られた溶液に1ml
10×SSCを加えDNA溶液を得た。
After completion of stirring, the mixture was centrifuged, and the supernatant was gently added to twice the amount of cold ethanol, and the precipitated DNA was attached to a glass rod and wound up, and taken out from the cold ethanol. Add 9 ml of this DNA to 0.1 x S
Dissolve in SC (1 × SSC: 0.15M NaCl, 15 mM trisodium citrate) and add 1 ml to the resulting solution.
Was obtained in 10 × SSC was added the DNA solution.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0048[Correction target item name] 0048

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0048】 1−3)組換えプラスミドの単離 大腸菌JM10株(宝酒造株式会社より購入できる)
をLB培地で37℃で2〜3時間培養した後、培養菌体
を集菌し、これを氷冷した50mM CaCl 2 溶液に
懸濁させた。この懸濁液から再び遠心により集菌し、再
度新鮮な50mM CaCl2 溶液に懸濁させ、氷冷し
ながら30分間静置した。
1-3) Isolation of recombinant plasmid E. coli JM105Stock (available from Takara Shuzo Co., Ltd.)
Were cultured in LB medium at 37 ° C. for 2 to 3 hours, and then cultured cells
Was collected and ice-cooled to 50 mM CaCl 2 In solution
Suspended. The cells were collected from this suspension by centrifugation again and re-collected.
Fresh 50 mM CaCl2 Suspend in solution and chill with ice
While standing still for 30 minutes.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0050[Correction target item name] 0050

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0050】 振とう後、試験管内の菌体懸濁液の約1
00μlを、LB寒天培地プレート(100μg/ml
のアンピシリン、0.5mM IPTG、0.2%X−
Galを含む)に分散させ、これを37℃で一晩置い
た。
After shaking, about 1 of the bacterial cell suspension in the test tube was used.
00 μl was added to LB agar plate (100 μg / ml
Ampicillin, 0.5 mM IPTG, 0.2% X-
Dispersed on including gal), kept overnight at 37 ° C. this.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0053[Correction target item name] 0053

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0053】 得られた形質転換株の一つを単離培養
し、Birnboimらの方法[Birnboim et al, Nucleic Acid
Res., 7, 1513〜1523(1979)]に従いプラスミドを調製
し、その制限酵素地図を作製した。その結果を図2に示
す。なお、この図2に示す構成の組換えプラスミドをp
PE101とした。
Isolation and culture of one of the obtained transformants
And, Birnboim et al's method [Birnboim et al, Nucleic Acid
Res., 7, 1513-1523 (1979)] and prepared a restriction enzyme map . The result is shown in FIG. The recombinant plasmid having the structure shown in FIG.
It was PE101.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0056[Correction target item name] 0056

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0056】 次に、各小DNA断片を個々にpUC1
9のlacZ領域内のマルチクローニングサイトに挿入
して組換えプラスミドを調製し、各組換えプラスミドで
形質転換したJM105株におけるエステラーゼ活性を
測定した。
Next, each small DNA fragment was individually treated with pUC1.
Recombinant plasmids were prepared by inserting into the multi-cloning site within the lacZ region of 9 and the esterase activity in the JM105 strain transformed with each recombinant plasmid was measured.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0058[Name of item to be corrected] 0058

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0058】 各組換えプラスミドにより形質転換され
たJM105株のエステラーゼ活性の有無は、図3に示
すとおりとなり、その結果からEcoRI 大DNA断
片中のClaI−SmaI DNA断片(約1.3k
b)にエステラーゼ構造遺伝子が存在することがわかっ
た。
The presence or absence of esterase activity of the JM105 strain transformed with each recombinant plasmid is as shown in FIG. 3, and the results show that the ClaI-SmaI DNA fragment (about 1.3 k) in the EcoRI large DNA fragment was obtained.
It was found that there is an esterase structural gene in b).

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0060[Correction target item name] 0060

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0060】実施例2 エステラーゼの熱安定試験 シュードモナス フルオレッセンスIFO 3018
株、シュードモナス プチダMR−2068株(微工研
菌寄第9677号)及び上記1−5)項で大腸菌JM1
株を組換えプラスミドpPE116で形質転換して
得た大腸菌JM10(pPE116)株をそれぞれ下
記の条件で培養した。
Example 2 Esterase thermostability test Pseudomonas fluorescens IFO 3018
Strain, Pseudomonas putida MR-2068 strain (Ministry of Industrial Science and Technology No. 9677), and Escherichia coli JM1 in the above 1-5).
0 E. coli JM10 which the 5 strains obtained by transformation with the recombinant plasmid pPE116 5 (pPE116) strains were each cultured under the following conditions.

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0063[Correction target item name] 0063

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0063】(c)大腸菌JM10(pPE116)
株; 培地:50μg/mlのアンピシリンを含むLB培地
(500ml)、 培養温度:37℃、 培養時間:一晩。
(C) Escherichia coli JM10 5 (pPE116)
Strain; Medium: LB medium (500 ml) containing 50 μg / ml ampicillin, culture temperature: 37 ° C., culture time: overnight.

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0068[Correction target item name] 0068

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0068】[0068]

【表1】 表1の結果から、シュードモナス プチダMR−206
8株(b)及び大腸菌JM10(pPE116)株
(c)が産生するエステラーゼは、シュードモナス フ
ルオレッセンスIFO 3018株(a)の産生するエ
ステラーゼに比べて熱安定性が高いことが解る。
[Table 1] From the results of Table 1, Pseudomonas putida MR-206
It is understood that the esterase produced by the 8 strain (b) and the Escherichia coli JM10 5 (pPE116) strain (c) has higher thermostability than the esterase produced by Pseudomonas fluorescens IFO 3018 strain (a).

【手続補正12】[Procedure Amendment 12]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of code

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【符号の説明】 Amp アンピシリン耐性をコードする領域 lacZ β−ガラクトシダーゼ構造遺伝子領域 lai リプレッサー構造遺伝子領域 pU19に由来する部分 染色体DNAに由来する部分 B BglII C ClaI EI EcoRI EV EcoRV P PstI PV PvuII S SalI Sm SmaI[Explanation of Codes] Amp ampicillin resistance coding region lacZ β-galactosidase structural gene region lai repressor structural gene region Partial derived from partial chromosomal DNA derived from pU19 B BglII C ClaI EI EcoRI EV EcoRV P PstI PV PvuII S S Sm SmaI

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:40) (C12N 9/18 C12R 1:19) (C12P 41/00 C12R 1:19) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C12R 1:40) (C12N 9/18 C12R 1:19) (C12P 41/00 C12R 1:19)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I): 【化1】 (式中、R1 はアルキル基、アルアルキル基またはアリ
ール基を、R2 およびR3 はそれぞれ独立にアルキル基
を、nは1または2を示す)で表されるカルボン酸エス
テルの不斉加水分解反応を触媒するエステラーゼをコー
ドする下記塩基配列(配列番号:1)を有することを特
徴とするDNA断片。 ATGAGCTATG TAACCACGAA GGACGGCGTA CAGATCTTCT ACAAGGACTG GGGCCCGCGC 60 GATGCGCCGG TCATCCACTT CCACCACGGC TGGCCGCTCA GTGCCGACGA CTGGGACGCG 120 CAGATGCTGT TCTTCCTCGC CCACGGTTAC CGCGTGGTCG CCCACGACCG CCGCGGCCAT 180 GGCCGCTCCA GCCAGGTATG GGACGGCCAC GACATGGACC ACTACGCCGA CGACGTAGCC 240 GCAGTGGTGG CCCACCTGGG CATTCAGGGC GCCGTGCATG TCGGCCACTC GACCGGTGGC 300 GGTGAGGTGG TGCGCTACAT GGCCCGACAC CCTGCAGACA AGGTGGCCAA GGCCGTGCTG 360 ATCGCCGCCG TACCGCCGTT GATGGTGCAG ACTCCCGATA ATCCCGGTGG CCTGCCCAAA 420 TCCGTTTTCG ACGGCTTCCA GGCCCAGGTC GCCAGCAACC GCGCGCAGTT CTACCGGGAT 480 GTGCCGGCAG GGCCGTTCTA CGGCTACAAC CGCCCCGGTG TCGACGCCAG CGAAGGCATC 540 ATCGGCAACT GGTGGCGCCA GGGCATGATC GGTAGCGCCA AGGCCCATTA CGATGGCATC 600 GTGGCGTTTT CCCAGACCGA CTTCACCGAA GACCTGAAGG GCATTACCCA GCCGGTGCTG 660 GTGATGCATG GCGACGACGA CCAGATCGTG CCGTATGAGA ACTCCGGGCT GCTGTCGGCC 720 AAGCTGCTGC CCAATGGCAC ACTGAAGACC TACCAGGGCT ACCCGCATGG CATGCCGACC 780 ACCCATGCCG ATGTGATCAA TGCGGATTTG CTGGCGTTTA TCCGTAGCTG A 831 …(配列番号:1)
1. The following general formula (I): (Wherein R 1 is an alkyl group, an aralkyl group or an aryl group, R 2 and R 3 are each independently an alkyl group, and n is 1 or 2). A DNA fragment having the following base sequence (SEQ ID NO: 1) encoding an esterase that catalyzes a decomposition reaction. ATGAGCTATG TAACCACGAA GGACGGCGTA CAGATCTTCT ACAAGGACTG GGGCCCGCGC 60 GATGCGCCGG TCATCCACTT CCACCACGGC TGGCCGCTCA GTGCCGACGA CTGGGACGCG 120 CAGATGCTGT TCTTCCTCGC CCACGGTTAC CGCGTGGTCG CCCACGACCG CCGCGGCCAT 180 GGCCGCTCCA GCCAGGTATG GGACGGCCAC GACATGGACC ACTACGCCGA CGACGTAGCC 240 GCAGTGGTGG CCCACCTGGG CATTCAGGGC GCCGTGCATG TCGGCCACTC GACCGGTGGC 300 GGTGAGGTGG TGCGCTACAT GGCCCGACAC CCTGCAGACA AGGTGGCCAA GGCCGTGCTG 360 ATCGCCGCCG TACCGCCGTT GATGGTGCAG ACTCCCGATA ATCCCGGTGG CCTGCCCAAA 420 TCCGTTTTCG ACGGCTTCCA GGCCCAGGTC GCCAGCAACC GCGCGCAGTT CTACCGGGAT 480 GTGCCGGCAG GGCCGTTCTA CGGCTACAAC CGCCCCGGTG TCGACGCCAG CGAAGGCATC 540 ATCGGCAACT GGTGGCGCCA GGGCATGATC GGTAGCGCCA AGGCCCATTA CGATGGCATC 600 GTGGCGTTTT CCCAGACCGA CTTCACCGAA GACCTGAAGG GCATTACCCA GCCGGTGCTG 660 GTGATGCATG GCGACGACGA CCAGATCGTG CCGTATGAGA ACTCCGGGCT GCTGTCGGCC 720 AAGCTGCTGC CCAATGGCAC ACTGAAGACC TACCAGGGCT ACCCGCATGG CATGCCGACC 780 ACCCATGCCG ATGTGATCAA TGCGGATTTG CTGGCGTTTA TCCGTAGCTG A 831 ... ( SEQ ID NO: 1)
JP3081279A 1991-03-22 1991-03-22 DNA fragment having base sequence encoding esterase Expired - Fee Related JP2759000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3081279A JP2759000B2 (en) 1991-03-22 1991-03-22 DNA fragment having base sequence encoding esterase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3081279A JP2759000B2 (en) 1991-03-22 1991-03-22 DNA fragment having base sequence encoding esterase

Publications (2)

Publication Number Publication Date
JPH06105693A true JPH06105693A (en) 1994-04-19
JP2759000B2 JP2759000B2 (en) 1998-05-28

Family

ID=13741937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3081279A Expired - Fee Related JP2759000B2 (en) 1991-03-22 1991-03-22 DNA fragment having base sequence encoding esterase

Country Status (1)

Country Link
JP (1) JP2759000B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6065615A (en) * 1996-02-28 2000-05-23 Asahi Glass Company, Ltd. Vertical wafer boat
WO2001032847A1 (en) * 1999-11-01 2001-05-10 Korea Research Institute Of Bioscience And Biotechnology Novel esterases derived from pseudomonas aeruginosa, its gene and process for production of optically active carboxylic acids using them
EP0952847A4 (en) * 1996-01-11 2003-09-03 Thermogen Inc Stable biocatalysts for ester hydrolysis
WO2018180187A1 (en) * 2017-03-30 2018-10-04 天野エンザイム株式会社 Degradation of ethyl carbamate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467190A (en) * 1987-09-09 1989-03-13 Nitto Chemical Industry Co Ltd Recombinant plasmid having gene of enzyme asymmetrically hydrolyzing carboxylic acid ester, microorganism transformed therewith and production of optically active carboxylic acid ester with said microorganism
JPH01222798A (en) * 1988-02-29 1989-09-06 Mitsubishi Rayon Co Ltd Production of optically active carboxylic acid and antipode ester thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467190A (en) * 1987-09-09 1989-03-13 Nitto Chemical Industry Co Ltd Recombinant plasmid having gene of enzyme asymmetrically hydrolyzing carboxylic acid ester, microorganism transformed therewith and production of optically active carboxylic acid ester with said microorganism
JPH01222798A (en) * 1988-02-29 1989-09-06 Mitsubishi Rayon Co Ltd Production of optically active carboxylic acid and antipode ester thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952847A4 (en) * 1996-01-11 2003-09-03 Thermogen Inc Stable biocatalysts for ester hydrolysis
US6065615A (en) * 1996-02-28 2000-05-23 Asahi Glass Company, Ltd. Vertical wafer boat
WO2001032847A1 (en) * 1999-11-01 2001-05-10 Korea Research Institute Of Bioscience And Biotechnology Novel esterases derived from pseudomonas aeruginosa, its gene and process for production of optically active carboxylic acids using them
WO2018180187A1 (en) * 2017-03-30 2018-10-04 天野エンザイム株式会社 Degradation of ethyl carbamate

Also Published As

Publication number Publication date
JP2759000B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
JP2944094B2 (en) Method for integrating target gene into bacterial chromosome and bacterium obtained by the method
Kasimoglu et al. Transcriptional regulation of the proton-translocating ATPase (atpIBEFHAGDC) operon of Escherichia coli: control by cell growth rate
US4375514A (en) Preparation and use of recombinant plasmids containing genes for alkaline phosphatases
KR101083136B1 (en) Microorganisms for producing l-amino acids and process for producing l-amino acids using them
HU209581B (en) Process for high-level expression of desacetoxycephalosporin c synthetase ensime in host cell containing recombinant dna
US20040005695A1 (en) Method for producing recombinant proteins by gram-negative bacteria
KR100312456B1 (en) Gene Derived from Pseudomonas fluorescens Which Promotes the Secretion of Foreign Protein in Microorganism
Kuhlemeier et al. Cloning of nitrate reductase genes from the cyanobacterium Anacystis nidulans
CA2145400C (en) Biotechnological method of producing biotin
JPH0753111B2 (en) A plasmid with uncontrolled replication behavior
JPH0838184A (en) Kanamycin resistant gene derived from rhodococcus bacterium
AU753879B2 (en) Industrial method for producing heterologous proteins in E.coli and strains useful for said method
EP0583817A2 (en) A transformant capable of producing D-amino acid oxidase
JPH06105693A (en) Dna fragment having base sequency coding esterase
JP3009257B2 (en) Genetic DNA encoding aspartase and use thereof
US5405777A (en) Acetic acid assimilating gene and a method for preventing accumulation of acetic acid in culture medium
KR100211002B1 (en) Process for the preparation of glutarylacylase in large quantities
US5457037A (en) Cloning of the gene coding the isoamylase enzyme and its use in the production of said enzyme
IE863080L (en) Expression in lactic acid bacteria
US5308765A (en) Esterase genes, esterase, recombinant plasmids and transformants containing the recombinant plasmid and methods of producing optically acitve carboxylic acids and their enantiomeric esters using said transformants
US5830692A (en) Expression system which can be regulated
JPH0773505B2 (en) Expression of recombinant DNA under the control of an inducible promoter
US5830720A (en) Recombinant DNA and expression vector for the repressible and inducible expression of foreign genes
RU2731897C1 (en) Method for cell metabolism control
US5766881A (en) Induction-free process for the recombinant preparation of glutarylamidase

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110313

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees