WO2018179853A1 - Vehicle-mounted control device - Google Patents

Vehicle-mounted control device Download PDF

Info

Publication number
WO2018179853A1
WO2018179853A1 PCT/JP2018/003903 JP2018003903W WO2018179853A1 WO 2018179853 A1 WO2018179853 A1 WO 2018179853A1 JP 2018003903 W JP2018003903 W JP 2018003903W WO 2018179853 A1 WO2018179853 A1 WO 2018179853A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
thermal radiation
coating film
radiation coating
electronic component
Prior art date
Application number
PCT/JP2018/003903
Other languages
French (fr)
Japanese (ja)
Inventor
真紀 伊藤
利昭 石井
河合 義夫
房郎 北條
尭之 福沢
正人 齋藤
剛資 近藤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018179853A1 publication Critical patent/WO2018179853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to an in-vehicle control device such as an ECU (Electronic Control Unit) mounted on an automobile, and more particularly to a heat dissipation structure of an electronic control device having a thermal radiation coating film on a circuit board on which electronic components are mounted.
  • ECU Electronic Control Unit
  • an in-vehicle control device (ECU) mounted on an automobile is usually configured to include a circuit board on which electronic components including heat-generating parts such as semiconductor elements are mounted, and a housing that accommodates the circuit board.
  • the terminal of the electronic component is fixed by attaching a joining member such as solder to the wiring circuit pattern of the circuit board.
  • the casing is generally composed of a base that fixes the circuit board and a cover that is assembled to the base so as to cover the circuit board.
  • Patent Document 1 proposes a heat dissipation technique in which heat treatment generated by an electronic component (heat generating element) is moved to a housing and heat-treated from the outer surface of the housing to the atmosphere to perform surface treatment on the housing. .
  • Patent Document 2 a heat dissipation method is known in which a coating film is formed on the surface of a heat-generating component with a paint containing ceramic particles.
  • the surface treatment applied to the surface of the housing absorbs heat from the heating element.
  • the amount of heat transferred from the circuit board and the heating element to the housing is small and not sufficiently performed. There was a fear.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to dissipate heat that can effectively increase the amount of heat transfer from the electronic component and the circuit board to the housing (base and cover). An object of the present invention is to provide a vehicle-mounted control device that is excellent in performance.
  • an in-vehicle control device basically covers a circuit board on which electronic components are mounted by a joining member such as solder, a base to which the circuit board is fixed, and the circuit board. And a cover assembled to the base.
  • a heat radiation coating film is formed in a thick film on and around the terminal portion of the electronic component (heat generating element).
  • the thermal radiation coating film formed on the terminal portion of the electronic component is characterized in that a concavo-convex shape is formed by the terminal of the electronic component.
  • the electronic component since the emissivity of the member that joins the terminal of the electronic component such as the terminal of the electronic component or solder and the circuit board, which has a low emissivity, and the surface area of the high emissivity is increased, the electronic component In addition, the amount of heat transfer from the circuit board to the housing can be increased. Therefore, the heat dissipation of the in-vehicle control device can be improved, and as a result, the temperature in the housing of the in-vehicle control device including the electronic component (heating element) can be kept low, and the reliability of the device is increased.
  • the disassembled perspective view which shows the basic composition of the actual condition form of the vehicle-mounted control apparatus which concerns on this invention.
  • Sectional drawing of the vehicle-mounted control apparatus with which description of Example 1 is provided.
  • Sectional drawing of the terminal part of an electronic component Sectional drawing of the terminal part of the electronic component of Example 1.
  • FIG. 1 to FIG. 7 are diagrams for explaining embodiments (Examples 1 to 4) of the in-vehicle control device 1 according to the present invention.
  • the same configuration part, the same function part, or the correspondence relationship The common symbols or related symbols are given to the portions in the.
  • the thickness of each part is exaggerated in FIGS.
  • FIG. 1 is an example of an exploded perspective view showing a main configuration of an in-vehicle control device 1 (ECU; Electronic Control Unit).
  • FIG. 2 is a cross-sectional view of the in-vehicle control device 1 in FIG.
  • the in-vehicle control device 1 includes a circuit board 12 on which electronic parts 11 such as ICs and semiconductor elements are mounted on both upper and lower (back and front) surfaces by solder, and a housing in which the circuit board 12 is accommodated. It is configured to include the body.
  • the housing is composed of a base 13 to which the circuit board 12 is fixed and a box-like or lid-like cover 14 having an open lower surface that is assembled to the base 13 so as to cover the circuit board 12.
  • a connector 15 for electrically connecting the circuit board 12 and the outside is attached to one end of the circuit board 12 in the hand direction.
  • the connector 15 includes a required number of pin terminals () and a housing provided with through holes into which the pin terminals are inserted by press fitting or the like. In this connector 15, after the pin terminals are inserted into the through holes of the housing, the lower ends (connection joints) of the pin terminals are connected and connected to the circuit board 12 by solder in a spot flow process.
  • the base 13 has a generally short flat plate shape as a whole so as to close the lower surface opening of the cover 14.
  • the base 13 includes a short plate-shaped portion, a short frame-shaped portion protruding from the short-shaped plate-shaped portion, and a seat of the circuit board 12 provided at the four corners of the short frame-shaped portion.
  • the base part 16 used as a surface and the vehicle assembly fixing part extended in the outer periphery of the short plate-shaped part are provided.
  • the vehicle assembly fixing unit is for assembling the in-vehicle control device 1 to the vehicle body, and is fixed by, for example, screwing bolts into a predetermined part of the vehicle body.
  • the base 13 and the cover 14 constituting the casing of the in-vehicle control device 1 are assembled by sandwiching the circuit board 12 to which the connector 15 is attached. More specifically, the circuit board 12 is fixed by a set screw 17 as an example of a fastening member while being sandwiched between a pedestal portion 16 provided at four corners of the base 13 and the cover 14.
  • the base 13 and the cover 14 are manufactured by casting, pressing or cutting using a metal material or a resin material. More specifically, it is produced by casting, pressing or cutting using a resin material such as an alloy mainly composed of aluminum, magnesium, iron, or polybutylene terephthalate.
  • a window for the connector 15 is formed in the cover 14 so that the circuit board 12 can supply power from the outside via the connector 15, input / output to / from an external device, and transmission / reception of output signals.
  • circuit board 12 For example, four electronic components 11 (three on the upper surface side and one on the lower surface side) are mounted on the circuit board 12, and the circuit wiring provided on the circuit board 12 is connected to each electronic component 11. In addition, it is also connected to the pin terminal of the connector 15.
  • thermal via 19 (through hole) is provided in a portion of the circuit board 12 where the electronic component 11 is mounted.
  • a thermal via 19 is provided below the electronic component 11 located at the center of the three electronic components 11 mounted on the upper surface side of the circuit board 12, and at the base 13 just below the thermal via 19.
  • a short convex protrudes from the position, and a high thermal conductive layer is interposed between the lower surface of the circuit board 12 and the upper surface of the short convex portion of the base 13 so as to be in contact with both.
  • an adhesive, grease, a heat dissipation sheet, or the like is used as the high thermal conductive layer.
  • the electronic component 11 (the main body portion) located on the right side of the three electronic components mounted on the upper surface side of the circuit board 12 is floated and attached from the upper surface of the circuit board 12 by the terminals of the electronic component 11. A gap is formed between the electronic component 11 and the circuit board 12.
  • the thermal radiation coating films 30, 31, and 32 are formed on specific parts such as the inside of the circuit board 12 and the connector 15 pins.
  • the thermal radiation coating films 30, 31, 32 are formed (applied) on the surface on which the electronic component 11 is mounted, and the base 13 and the cover
  • a protective coating film is formed (applied) on the pin terminal of the connector 15 in a portion between the connection joint portion on the circuit board 12 side and the connector 15 housing.
  • the coating method brush coating, spray coating, dip coating or the like is preferable, but electrostatic coating, curtain coating, electrodeposition coating, powder coating or the like may be used depending on the object to be coated.
  • a method such as natural drying, baking, or ultraviolet curing is preferably used.
  • the thermal radiation coating films 30, 31, and 32 are directly coated on the respective substrates.
  • the thermal radiation coating films 30, 31, 32 are formed on the circuit board 12 after the surface of the moisture-proof coating material or the like, the space between the surface of the circuit board 12 and the thermal radiation coating films 30, 31, 32 becomes a film thickness.
  • the moisture-proof coating film becomes a thermal resistance, the amount of heat transfer is reduced, and the heat dissipation is reduced.
  • FIG. 2 shows an example in which all of the thermal radiation coating films 30, 31, 32 are formed. From the viewpoint of improving heat dissipation, it is preferable to provide a thermal radiation coating material on the plurality of surfaces described above. However, not only the entire surface of each base material but also a part of the electronic component 11, particularly an electron having a low emissivity. You may make it the structure which comprises a coating material only around the joining member for joining with the circuit boards 12, such as the terminal 13 part of the components 1, and solder. Thereby, reduction of the usage-amount of the coating material for coating can be aimed at.
  • FIG. 3 is a conceptual diagram showing the structure of the terminal 13 of the electronic component provided with the thermal radiation coating film 30.
  • a thermal radiation coating film 30 is formed on a connection material such as the circuit board 12, the terminal 13 of the electronic component, and solder. Between the two terminals 13 of an electronic component, it has the concave shape which becomes lower than the vertex part of the thermal radiation coating film 30 provided on the terminal 13.
  • the thermal radiation coating film 30 By making the thermal radiation coating film 30 into such a shape, the surface area with high emissivity can be increased, and the amount of heat transfer from the heat generating portion to the housing can be increased.
  • the material for forming the thermal radiation coating film 30 is not particularly limited as long as it is a material having thermal radiation, but a composite material composed of an organic resin and inorganic particles is most preferable.
  • the inorganic particles conventionally known particles can be used, and are not particularly limited.
  • Preferred examples include ceramic powders such as lithium oxide, zinc oxide, magnesium hydroxide, and silicon dioxide, metal powders such as copper, nickel, iron, and silver, carbon materials, and the like. Is desirable.
  • the thermal radiation coating film 30 is required to have insulation. Therefore, it is preferable to mix an insulating material such as ceramic powder in the heat radiating coating forming the heat radiating coating film 30.
  • An insulating material such as ceramic powder in the heat radiating coating forming the heat radiating coating film 30.
  • a conventionally known particle shape of the inorganic material can be used, and is not particularly limited, but is different from spherical shape, flake shape, needle shape, rectangular parallelepiped shape, cube shape, tetrahedron shape, hexahedron shape, polyhedron shape, cylindrical shape, tube shape, and core portion. Examples thereof include a three-dimensional needle-like structure extending in the axial direction.
  • the average particle diameter is not particularly limited, but is 0.001 to 200 ⁇ m. If the average particle diameter is too large (exceeding 200 ⁇ m), the thickness of the coating film is increased and the thermal radiation is reduced, and the strength of the coating film and the adhesion strength and adhesion of the coated body may be reduced. Moreover, when an average particle diameter is too small (less than 0.001 micrometer), there exists a dislike that the interface of particle
  • a conventionally well-known thing can be used as said organic resin, although it does not specifically limit, A synthetic resin and water-system emulsion resin are mentioned as an example.
  • Synthetic resins include phenolic resins, alkyd resins, melamine urea resins, epoxy resins, polyurethane resins, vinyl acetate resins, acrylic resins, chlorinated rubber resins, vinyl chloride resins, fluororesins, etc.
  • An acrylic resin examples include silicon acrylic emulsion, urethane emulsion, and acrylic emulsion.
  • the organic resin is preferably not less than 1.1 ⁇ 10 6 Pa loss modulus at 125 °C 1.0 ⁇ 10 5 Pa or more, or storage modulus.
  • Examples of the solvent include water and organic solvents, and are not particularly limited. The selection of the solvent is optimally determined depending on the combination of the solvent and other materials such as a filler and a dispersing material, and it is desirable to select a suitable solvent.
  • Examples of the organic solvent include ketone-based, alcohol-based and aromatic-based organic solvents. Specific examples include acetone, methyl ethyl ketone, cyclohexene, ethylene glycol, propylene glycol, methyl alcohol, isopropyl alcohol, butanol, benzene, toluene, xylene, ethyl acetate, and butyl acetate. These may be used alone or in combination.
  • the thermal radiation coating material may further contain components as necessary.
  • the component include a solvent, a film forming aid, a plasticizer, a pigment, a silane coupling agent, and a viscosity modifier.
  • a solvent a solvent, a film forming aid, a plasticizer, a pigment, a silane coupling agent, and a viscosity modifier.
  • a viscosity modifier a viscosity modifier.
  • the application method of the thermal radiation coating material is not particularly limited, and can be selected from commonly used application methods according to the purpose. Specific examples include brush coating, spray coating, roll coater coating, and immersion coating. In the method of drying and forming a coating film after applying the heat radiation material, methods such as natural drying, baking, and ultraviolet curing can be used, which are selected depending on the properties of the paint.
  • the average film thickness of the flat portion of the thermal radiation coating film 30 on which the electronic component 11 is not mounted can be selected according to the purpose, but is preferably 200 ⁇ m or less, and preferably 1 ⁇ m to 200 ⁇ m. Is more preferable.
  • a coating film is 200 micrometers or more, a coating film becomes a heat insulation layer and there exists a possibility that heat dissipation may fall.
  • the thickness is 1 ⁇ m or less, the heat dissipation effect may not be sufficiently exhibited.
  • the thermal radiation coating film 30 preferably has a thermal emissivity with respect to each wavelength in the wavelength region of 2.5 ⁇ m to 20 ⁇ m of 0.8 or more, and more preferably closer to 1.
  • a binder resin is specified by an analysis method such as IR (infrared spectroscopy) or GCMS (gas chromatographic analysis), and the cross section of the thermal radiation coating film 30 is SEM-EDX (scanning electron microscope-energy dispersion type). Particles are identified by elemental analysis such as X-ray analysis), and each is blended, and the emissivity of the formed film is measured.
  • the emissivity measurement method is as follows.
  • the prepared material was applied to an aluminum plate having a size of 100 mm ⁇ 100 mm and a thickness of 1 mm by changing the film thickness using an applicator, and the cured sample was subjected to Kyoto Electronics D and S AERD.
  • the emissivity was measured at room temperature.
  • the hardness of the thermal radiation coating film 30 is measured by applying the prepared material to an aluminum plate having a size of 100 mm ⁇ 100 mm and a thickness of 1 mm using an applicator at a film thickness of 30 ⁇ m, and then thinning the cured sample at 27 ° C.
  • the indentation hardness was measured using a hardness meter (nanoindenter).
  • the viscosity measurement method of the thermal radiation coating material was measured at room temperature using a rotary viscometer.
  • the electronic component 11 is mounted on the circuit board 12 by a joining member such as solder. After the process of assembling the connector 15 pins to the connector 15 housing, the connector 15 pins and the circuit board 12 are joined by solder in a spot flow process. After the electronic component 11 and the connector 15 are mounted on the circuit board 12, a thermal radiation coating material is applied, and the thermal radiation coating film 30 is provided.
  • a thermal radiation coating material is applied, and the thermal radiation coating film 30 is provided.
  • application by brush coating, spray coating, dip coating or the like is preferable, but electrostatic coating, curtain coating, electrodeposition coating, powder coating, or the like may be used depending on the object to be applied.
  • a method for drying and forming a coating film after applying the thermal radiation coating material a method such as natural drying or baking is preferably used.
  • the cover 14 is manufactured by casting, pressing or cutting using a resin material such as an alloy mainly composed of aluminum, magnesium, iron, or polybutylene terephthalate.
  • the shape of the cover 14 is open at the bottom and is provided with a connector 15 window.
  • the base 13 is manufactured by casting, pressing or cutting using an alloy mainly composed of aluminum, magnesium, iron, or a resin such as polybutylene terephthalate.
  • the shape of the base 13 is formed on a substantially flat plate so as to close the bottom opening of the cover 14.
  • the film thickness of the thermal radiation coating film 30 is about 1 ⁇ m to 200 ⁇ m, preferably 10 ⁇ m to 150 ⁇ m, in a flat portion of the circuit board 12 where the electronic component 11 is not mounted.
  • the film thickness is too thicker than 200 ⁇ m, the absorbed heat is cut off, and when it is thinner than 1 ⁇ m, the heat radiation performance is lowered.
  • the film thickness of the thermal radiation coating film 30 covering the terminals 13 of the electronic component is 10 ⁇ m to 200 ⁇ m, preferably 30 ⁇ m to 150 ⁇ m.
  • the film thickness of the thermal radiation coating film 30 covering the central part between the two terminals 13 of the electronic component is about 1 ⁇ m to 200 ⁇ m, and preferably the film thickness is 70 ⁇ m to 150 ⁇ m.
  • the circuit board 12 impregnated with a resin material such as a glass epoxy substrate has an emissivity of 0.6 or more, and thus the emissivity is improved by setting the thickness of the thermal radiation coating film 30 to 70 ⁇ m or more.
  • the amount of heat transfer from the high temperature part such as a heating element to the outside of the housing increases.
  • the terminal 13 portion of the electronic component it is preferable to form a concave shape between the two terminals 13 that is lower than the apex portion of the thermal radiation coating film 30 provided on the terminal 13.
  • the surface area of the thermal radiation coating film 30 having a high emissivity is increased, so that the amount of heat transfer from a high temperature part such as a heating element to the outside of the housing is increased.
  • Example 1 As shown in FIG. 2, a radioactive coating film is formed on the front and back surfaces of the circuit board 12 on which the electronic component 11 is mounted.
  • the thermal radiation coating film 30 on the terminal 13 of the electronic component is formed with a film thickness of 10 ⁇ m, and the film thickness in the center between the two terminals 13 is 70 ⁇ m or less.
  • a concave shape is formed between the two terminals 13 that is lower than the apex portion of the thermal radiation coating film 30 provided on the terminals 13.
  • Example 2 as shown in FIG. 5, the thermal radiation coating film 30 on the terminal 13 of the electronic component is formed with a film thickness of 10 ⁇ m, and the film thickness of the central part between the two terminals 13 is 70 ⁇ m or more.
  • a concave shape is formed between the two terminals 13 that is lower than the apex portion of the thermal radiation coating film 30 provided on the terminals 13.
  • the emissivity is increased between the terminals 13 and the terminals 13 of the electronic component and the surface area is increased, so that heat dissipation is improved.
  • Example 3 as shown in FIG. 6, the thermal radiation coating film 30 on the terminal 13 of the electronic component is formed with a film thickness of 10 ⁇ m to 150 ⁇ m, and the film thickness of the central part between the two terminals 13 is 70 ⁇ m or less. .
  • a concave shape is formed between the two terminals 13 that is lower than the apex portion of the thermal radiation coating film 30 provided on the terminals 13.
  • the emissivity is increased on the terminal 13 of the electronic component and the surface area is increased, so that heat dissipation is improved.
  • the thermal radiation coating film 30 on the terminal 13 of the electronic component is formed with a film thickness of 10 ⁇ m to 150 ⁇ m, and the film thickness of the central part between the two terminals 13 is 70 ⁇ m or more.
  • a concave shape is formed between the two terminals 13 that is lower than the apex portion of the thermal radiation coating film 30 provided on the terminals 13.
  • the emissivity is increased between the terminals 13 and the terminals 13 of the electronic component and the surface area is increased, so that heat dissipation is improved.
  • the heat dissipation evaluation method is as follows.
  • thermocouple is bonded to the surface of the aluminum plate with aluminum plate solder.
  • the prepared sample was applied to the surface of the aluminum plate, dried by heating at 60 ° C. for 30 minutes, and applied with changing the film thickness.
  • the sample was placed in the center of a thermostat set at 25 ° C., 6 W was applied to the heater, and the temperature change on the aluminum plate surface was measured. Since the heater generates a certain amount of heat, the higher the heat radiation effect of the heat radiation material, the lower the heater temperature or the aluminum plate surface temperature. That is, it can be said that the heat dissipation effect is higher as the heater temperature or the aluminum plate surface temperature is lower.
  • the emissivity measurement method is as follows.
  • the prepared material was applied to an aluminum plate having a size of 100 mm ⁇ 100 mm and a thickness of 1 mm by changing the film thickness using an applicator, and the cured sample was subjected to Kyoto Electronics D and S AERD.
  • the emissivity was measured at room temperature.
  • Table 1 shows the film thickness and emissivity of the comparative material and the implementation material.
  • the emissivity with a thickness of 0 ⁇ m indicates the emissivity of the aluminum plate. From the results shown in Table 1, the emissivity can be further increased by increasing the thickness of the material of this embodiment.
  • Table 2 shows the film thickness and heat dissipation effect of the comparative material and the implementation material. “-” Indicates that measurement cannot be performed because the coating film cannot be thickened on the terminal 13 of the electronic component. From the results in Table 2, heat dissipation is improved by forming the material of this embodiment into a pressure film.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The purpose of the present invention is to provide a vehicle-mounted control device which is excellent in heat dissipation and capable of effectively increasing the amount of heat transfer from an electronic component and a circuit board to a case (a base and a cover). An electronic control device according to the present invention has: a circuit board; an electronic component mounted on the circuit board; a connecting member for connecting a terminal of an electronic component and the circuit board; and a heat radiation coating film that covers the circuit board and the terminal, wherein the thickness of the heat radiation coating film covering the terminal is set to 30 μm or greater.

Description

車載制御装置In-vehicle control device
 本発明は、自動車に搭載されるECU(Electronic Control Unit)などの車載制御装置に係り、特に電子部品を実装した回路基板に熱放射性コーティング膜を有した電子制御装置の放熱構造に関する。 The present invention relates to an in-vehicle control device such as an ECU (Electronic Control Unit) mounted on an automobile, and more particularly to a heat dissipation structure of an electronic control device having a thermal radiation coating film on a circuit board on which electronic components are mounted.
 従来、自動車に搭載される車載制御装置(ECU)は、通常、半導体素子等の発熱部品を含む電子部品が実装された回路基板と、この回路基板を収容する筐体とを含んで構成される。電子部品は、例えば電子部品の端子が、回路基板の配線回路パターンにはんだ等の接合部材をつけ、固定される。筐体は、回路基板を固定するベースと回路基板を覆うようにベースに組み付けられるカバーとからなるものが一般的である。 2. Description of the Related Art Conventionally, an in-vehicle control device (ECU) mounted on an automobile is usually configured to include a circuit board on which electronic components including heat-generating parts such as semiconductor elements are mounted, and a housing that accommodates the circuit board. . In the electronic component, for example, the terminal of the electronic component is fixed by attaching a joining member such as solder to the wiring circuit pattern of the circuit board. The casing is generally composed of a base that fixes the circuit board and a cover that is assembled to the base so as to cover the circuit board.
 このような車載制御装置において、近年、スペースの制約による小型化と、多機能化に伴い、発熱量が増加する傾向にある。特許文献1では電子部品(発熱素子)で発生した熱を筐体へと移動させ、筐体の外面から大気中へと放熱する目的で、筐体に表面処理を施す放熱技術が提案されている。 In such in-vehicle control devices, in recent years, the amount of heat generation tends to increase with downsizing due to space constraints and multi-functionality. Patent Document 1 proposes a heat dissipation technique in which heat treatment generated by an electronic component (heat generating element) is moved to a housing and heat-treated from the outer surface of the housing to the atmosphere to perform surface treatment on the housing. .
 また特許文献2にあるように、セラミックス粒子を含む塗料で発熱部品の表面に塗膜を形成する放熱方法が知られている。 Further, as disclosed in Patent Document 2, a heat dissipation method is known in which a coating film is formed on the surface of a heat-generating component with a paint containing ceramic particles.
特開2004-304200号公報JP 2004-304200 A 特開2013-144746号公報JP 2013-144746 A
 近年、省資源の観点等よりエンジンルームを高密度化にして小型化する社会的要請がある。車載制御装置においても、小型化が進められており、それに伴い基板面積の小型化や電子部品の集約化で発熱密度が増加するため、放熱性のより一層の向上が要望されている。 In recent years, there has been a social demand to reduce the size of the engine room by increasing the density from the viewpoint of resource saving. In-vehicle control devices are also being reduced in size, and accordingly, the heat generation density is increased due to the reduction in the board area and the concentration of electronic components, and thus further improvement in heat dissipation is desired.
 従来の提案技術では、筐体表面に施された表面処理で、発熱素子から熱を吸収する構造であったが、回路基板及び発熱素子から筐体への熱移動量が小さく十分に行われないおそれがあった。 In the conventional proposed technology, the surface treatment applied to the surface of the housing absorbs heat from the heating element. However, the amount of heat transferred from the circuit board and the heating element to the housing is small and not sufficiently performed. There was a fear.
 本発明は、上記事情を鑑みてなされたもので、その目的とするところは、電子部品及び回路基板から筐体(ベース及びカバー)への熱移動量を効果的に増大させることのできる、放熱性に優れた車載制御装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to dissipate heat that can effectively increase the amount of heat transfer from the electronic component and the circuit board to the housing (base and cover). An object of the present invention is to provide a vehicle-mounted control device that is excellent in performance.
 上記目的を達成すべく、本発明に係る車載制御装置は、基本的に電子部品がはんだ等の接合部材により実装された回路基板と、前記回路基板が固定されるベースと、前記回路基板を覆うように前記ベースに組み付けられるカバーと、を備える。
そして、電子部品(発熱素子)の端子部の上部及び周囲に熱放射性コーティング膜が厚膜で形成されることを特徴としている。また電子部品の端子部に形成された熱放射性コーティング膜は、電子部品の端子により凹凸形状が形成されることを特徴としている。
In order to achieve the above object, an in-vehicle control device according to the present invention basically covers a circuit board on which electronic components are mounted by a joining member such as solder, a base to which the circuit board is fixed, and the circuit board. And a cover assembled to the base.
A heat radiation coating film is formed in a thick film on and around the terminal portion of the electronic component (heat generating element). In addition, the thermal radiation coating film formed on the terminal portion of the electronic component is characterized in that a concavo-convex shape is formed by the terminal of the electronic component.
 本発明によれば、低放射率である、電子部品の端子やはんだ等の電子部品の端子と回路基板を接合する部材を高放射率化し、さらに高放射率な表面積を増大するため、電子部品及び回路基板から筐体への熱移動量を増大させることができる。そのため、車載制御装置の放熱性を向上させることができ、これによって、電子部品(発熱素子)をはじめとする車載制御装置の筐体内の温度を低く抑えることができ、装置の信頼性が増す。 According to the present invention, since the emissivity of the member that joins the terminal of the electronic component such as the terminal of the electronic component or solder and the circuit board, which has a low emissivity, and the surface area of the high emissivity is increased, the electronic component In addition, the amount of heat transfer from the circuit board to the housing can be increased. Therefore, the heat dissipation of the in-vehicle control device can be improved, and as a result, the temperature in the housing of the in-vehicle control device including the electronic component (heating element) can be kept low, and the reliability of the device is increased.
 上記した以外の、課題、構成、及び効果は、以下の実態形態により明らかにされる。
電子部品電子部品からの発熱を効率よく放熱することが可能な熱放射性コーティング膜を備えた車載制御装置を提供することができる。
Problems, configurations, and effects other than those described above will be clarified by the following actual forms.
It is possible to provide an in-vehicle control device provided with a thermal radiation coating film that can efficiently dissipate heat generated from electronic components.
本発明に係る車載制御装置の実態形態の基本構成を示す分解斜視図。The disassembled perspective view which shows the basic composition of the actual condition form of the vehicle-mounted control apparatus which concerns on this invention. 実施例1の説明に供される車載制御装置の断面図。Sectional drawing of the vehicle-mounted control apparatus with which description of Example 1 is provided. 電子部品の端子部の断面図。Sectional drawing of the terminal part of an electronic component. 実施例1の電子部品の端子部の断面図。Sectional drawing of the terminal part of the electronic component of Example 1. FIG. 実施例2の電子部品の端子部の断面図。Sectional drawing of the terminal part of the electronic component of Example 2. FIG. 実施例3の電子部品の端子部の断面図。Sectional drawing of the terminal part of the electronic component of Example 3. FIG. 実施例4の電子部品の端子部の断面図。Sectional drawing of the terminal part of the electronic component of Example 4. FIG.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1~図7は本発明に係る車載制御装置1の実施形態(実施例1~4)の説明に供される図であり、各図において、同一構成部分、同一機能部分、あるいは、対応関係にある部分には共通の符号ないし関連した記号が付されている。なお、本発明を理解しやすくするため、図1~図7おいて、各部の厚み等(特に熱放射性コーティング材の膜厚)は誇張して描かれている。 FIG. 1 to FIG. 7 are diagrams for explaining embodiments (Examples 1 to 4) of the in-vehicle control device 1 according to the present invention. In each figure, the same configuration part, the same function part, or the correspondence relationship The common symbols or related symbols are given to the portions in the. In order to facilitate understanding of the present invention, the thickness of each part (particularly the film thickness of the heat-radiating coating material) is exaggerated in FIGS.
 図1は、車載制御装置1(ECU;Electronic Control Unit)の主要構成を示す分解斜視図の一例である。図2は図1における車載制御装置1の断面図である。図1および図2に示すように、車載制御装置1はICや半導体素子等の電子部品11がはんだにより上下(裏表)両面に実装された回路基板12と、この回路基板12が収容される筐体とを含んで構成されている。筐体は、回路基板12が固定されるベース13と回路基板12を覆うようにベース13に組み付けられる下面が開口した箱状ないし蓋状のカバー14からなっている。 FIG. 1 is an example of an exploded perspective view showing a main configuration of an in-vehicle control device 1 (ECU; Electronic Control Unit). FIG. 2 is a cross-sectional view of the in-vehicle control device 1 in FIG. As shown in FIGS. 1 and 2, the in-vehicle control device 1 includes a circuit board 12 on which electronic parts 11 such as ICs and semiconductor elements are mounted on both upper and lower (back and front) surfaces by solder, and a housing in which the circuit board 12 is accommodated. It is configured to include the body. The housing is composed of a base 13 to which the circuit board 12 is fixed and a box-like or lid-like cover 14 having an open lower surface that is assembled to the base 13 so as to cover the circuit board 12.
 回路基板12の名が手方向一端側には、回路基板12と外部とを電気的に接続するためのコネクタ15が取着されている。コネクタ15は、所要本数のピン端子()と、ピン端子が圧入等により挿着される通し孔が設けられたハウジングとを備えている。このコネクタ15においては、ピン端子をハウジングの通し孔に挿着した後、ピン端子の下端部(連結接合部)が回路基板12にはんだによりスポットフロー工程で連結結合される。 A connector 15 for electrically connecting the circuit board 12 and the outside is attached to one end of the circuit board 12 in the hand direction. The connector 15 includes a required number of pin terminals () and a housing provided with through holes into which the pin terminals are inserted by press fitting or the like. In this connector 15, after the pin terminals are inserted into the through holes of the housing, the lower ends (connection joints) of the pin terminals are connected and connected to the circuit board 12 by solder in a spot flow process.
 ベース13は、カバー14の下面開口を閉鎖するように全体が概略短形平板状とされている。詳しくは、ベース13は、短形板状部と、この短形板状部に突設された短形枠状部と、この短形枠状部の四隅に設けられた、回路基板12の座面となる台座部16と、短形板状部の外周に延設された車両組付固定部と、を備えている。車両組付固定部は、車載制御装置1を車体ボディに組み付けるためのもので、例えば車体ボディの所定部位にボルト類を螺合させること等により固定されるようになっている。 The base 13 has a generally short flat plate shape as a whole so as to close the lower surface opening of the cover 14. Specifically, the base 13 includes a short plate-shaped portion, a short frame-shaped portion protruding from the short-shaped plate-shaped portion, and a seat of the circuit board 12 provided at the four corners of the short frame-shaped portion. The base part 16 used as a surface and the vehicle assembly fixing part extended in the outer periphery of the short plate-shaped part are provided. The vehicle assembly fixing unit is for assembling the in-vehicle control device 1 to the vehicle body, and is fixed by, for example, screwing bolts into a predetermined part of the vehicle body.
 車載制御装置1の筐体を構成するベース13とカバー14は、コネクタ15が取着された回路基板12を挟み込んで組み立てられている。より詳しくは、回路基板12は、ベース13の四隅に設けられた台座部16とカバー14との間に挟持されつつ、締結部材の一例として止めネジ17で固定されている。 The base 13 and the cover 14 constituting the casing of the in-vehicle control device 1 are assembled by sandwiching the circuit board 12 to which the connector 15 is attached. More specifically, the circuit board 12 is fixed by a set screw 17 as an example of a fastening member while being sandwiched between a pedestal portion 16 provided at four corners of the base 13 and the cover 14.
 ベース13とカバー14は、金属材料もしくは樹脂材料を用いた鋳造、プレス又は切削加工などにより製造される。より詳しくは、アルミニウム、マグネシウム、鉄などを主成分とする合金もしくはポリブチレンテレフタレートなどの樹脂材料を用いた鋳造、プレス又は切削加工などにより作製されている。 The base 13 and the cover 14 are manufactured by casting, pressing or cutting using a metal material or a resin material. More specifically, it is produced by casting, pressing or cutting using a resin material such as an alloy mainly composed of aluminum, magnesium, iron, or polybutylene terephthalate.
 なお、カバー14には、コネクタ15を介して回路基板12が外部から給電、もしくは外部装置との入、出力信号の授受が行えるようにコネクタ15用窓が形成されている。 Note that a window for the connector 15 is formed in the cover 14 so that the circuit board 12 can supply power from the outside via the connector 15, input / output to / from an external device, and transmission / reception of output signals.
 回路基板12には、例えば4個の電子部品11(上面側に3個、下面側に1個)が実装されており、回路基板12に設けられた回路配線は、各電子部品11に接続されるとともに、コネクタ15のピン端子にも接続されている。 For example, four electronic components 11 (three on the upper surface side and one on the lower surface side) are mounted on the circuit board 12, and the circuit wiring provided on the circuit board 12 is connected to each electronic component 11. In addition, it is also connected to the pin terminal of the connector 15.
 また、回路基板12における電子部品11が実装されている部分にはサーマルビア19(スルホール)が設けられている。 Further, a thermal via 19 (through hole) is provided in a portion of the circuit board 12 where the electronic component 11 is mounted.
 回路基板12の上面側に実装された3個の電子部品11のうちの中央に位置する電子部品11の下側には、サーマルビア19が設けられるとともに、ベース13における、サーマルビア19の真下に位置する部位には短形凸が突設されており、回路基板12の下面とベース13の短形凸部上面との間には、両者に接触するように高熱伝導層が介在せしめられている。高熱伝導層としては、ここでは、接着剤、グリース、放熱シートなどが用いられている。 A thermal via 19 is provided below the electronic component 11 located at the center of the three electronic components 11 mounted on the upper surface side of the circuit board 12, and at the base 13 just below the thermal via 19. A short convex protrudes from the position, and a high thermal conductive layer is interposed between the lower surface of the circuit board 12 and the upper surface of the short convex portion of the base 13 so as to be in contact with both. . Here, an adhesive, grease, a heat dissipation sheet, or the like is used as the high thermal conductive layer.
 また、回路基板12の上面側に実装された3個の電子部品のうち右側に位置する電子部品11(の本体部分)は、電子部品11の端子により回路基板12の上面から浮かせられ取り付けられており、この電子部品11と回路基板12との間には隙間が形成されている。 The electronic component 11 (the main body portion) located on the right side of the three electronic components mounted on the upper surface side of the circuit board 12 is floated and attached from the upper surface of the circuit board 12 by the terminals of the electronic component 11. A gap is formed between the electronic component 11 and the circuit board 12.
 本実施形態の車載制御装置1においては、回路基板12やコネクタ15ピンの内側などの特定の部位に熱放射性コーティング膜30、31、32が形成されている。 In the vehicle-mounted control device 1 of the present embodiment, the thermal radiation coating films 30, 31, and 32 are formed on specific parts such as the inside of the circuit board 12 and the connector 15 pins.
 この場合、回路基板12には、電子部品11及びコネクタ15が実装された後に、電子部品11が実装された面に熱放射性コーティング膜30、31、32が形成(塗布)さて、ベース13及びカバー14が所定寸法形状に作製された後、また、コネクタ15のピン端子には、回路基板12側の連結接合部からコネクタ15ハウジングまでの間の部分に保護コーティング膜が形成(塗布)される。 In this case, after the electronic component 11 and the connector 15 are mounted on the circuit board 12, the thermal radiation coating films 30, 31, 32 are formed (applied) on the surface on which the electronic component 11 is mounted, and the base 13 and the cover After the connector 14 is formed in a predetermined size and shape, a protective coating film is formed (applied) on the pin terminal of the connector 15 in a portion between the connection joint portion on the circuit board 12 side and the connector 15 housing.
 塗布方法としては、ハケ塗布、吹付塗装、浸漬塗装等での塗布が好ましいが、塗布する対象物により、静電塗装、カーテン塗装、電着塗装、粉体塗装等でもよい。材料塗布後、乾燥させ塗膜化する方法において、好ましくは自然乾燥、焼付、紫外線硬化等の方法を用いる。この際、熱放射性コーティング膜30、31、32は、各基材に直接コーティングされることが好ましい。例えば、回路基板12において、防湿コーティング材等の表面した後に熱放射性コーティング膜30、31、32を形成すると、回路基板12表面と熱放射性コーティング膜30、31、32の表面間は膜厚になり、防湿コーティング膜が熱抵抗となり、熱移動量が小さくなり、放熱性が低下する。 As the coating method, brush coating, spray coating, dip coating or the like is preferable, but electrostatic coating, curtain coating, electrodeposition coating, powder coating or the like may be used depending on the object to be coated. In the method of drying and forming a coating film after applying the material, a method such as natural drying, baking, or ultraviolet curing is preferably used. At this time, it is preferable that the thermal radiation coating films 30, 31, and 32 are directly coated on the respective substrates. For example, when the thermal radiation coating films 30, 31, 32 are formed on the circuit board 12 after the surface of the moisture-proof coating material or the like, the space between the surface of the circuit board 12 and the thermal radiation coating films 30, 31, 32 becomes a film thickness. The moisture-proof coating film becomes a thermal resistance, the amount of heat transfer is reduced, and the heat dissipation is reduced.
 なお、図2では熱放射性コーティング膜30、31、32がすべて形成された例を示している。放熱性を向上する観点からは、上記した複数の面に熱放射性コーティング材を設けることが好ましいが、各基材面の全面に限らず、電子部品11の一部、特に低放射率である電子部品1の端子13部及びはんだ等の回路基板12との接合するための接合部材の周囲にのみコーティング材を構成する構成にしても良い。これにより、コーティングするための塗料使用量の低減を図ることができる。 FIG. 2 shows an example in which all of the thermal radiation coating films 30, 31, 32 are formed. From the viewpoint of improving heat dissipation, it is preferable to provide a thermal radiation coating material on the plurality of surfaces described above. However, not only the entire surface of each base material but also a part of the electronic component 11, particularly an electron having a low emissivity. You may make it the structure which comprises a coating material only around the joining member for joining with the circuit boards 12, such as the terminal 13 part of the components 1, and solder. Thereby, reduction of the usage-amount of the coating material for coating can be aimed at.
 次に、本実施形態の熱放射性コーティング膜30、31、32の具体的な構成について説明する。図3は熱放射性コーティング膜30を備えた電子部品の端子13の構造を示す概念図である。回路基板12、電子部品の端子13、はんだ等の接続材料に熱放射性コーティング膜30が形成されている。電子部品の2つの端子13の間は、端子13上に設けられた熱放射性コーティング膜30の頂点部よりも低くなる凹形状を有することを特徴とする。熱放射性コーティング膜30をこのような形状にすることで、高放射率の表面積が増加し、発熱部から筐体への熱移動量を増加することができる。 Next, a specific configuration of the thermal radiation coating films 30, 31, and 32 of this embodiment will be described. FIG. 3 is a conceptual diagram showing the structure of the terminal 13 of the electronic component provided with the thermal radiation coating film 30. A thermal radiation coating film 30 is formed on a connection material such as the circuit board 12, the terminal 13 of the electronic component, and solder. Between the two terminals 13 of an electronic component, it has the concave shape which becomes lower than the vertex part of the thermal radiation coating film 30 provided on the terminal 13. By making the thermal radiation coating film 30 into such a shape, the surface area with high emissivity can be increased, and the amount of heat transfer from the heat generating portion to the housing can be increased.
 熱放射性コーティング膜30を形成する材料は、熱放射性を有する材料であれば特に限定されるものではないが、有機樹脂と無機粒子からなる複合材料が最も好ましい。この場合、無機粒子としては、従来公知のものを使用でき、特に限定されないが、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、ジルコニア、酸化鉄、酸化銅、酸化ニッケル、酸化コバルト、酸化リチウム、酸化亜鉛、水酸化マグネシウム、二酸化珪素等のセラミックス粉末や、銅、ニッケル、鉄、銀等の金属粉体や、炭素材料等が好ましい例として挙げられ、これらから少なくとも一種を配合することが望ましい。
特に電子部品11が実装された回路基板12には絶縁性が必要なため、熱放射性コーティング膜30には絶縁性が求められる。そのため、熱放射性コーティング膜30を形成する熱放射性コーティング時亜にはセラミックス粉末等の絶縁性を有する材料を配合することが好適である。無機材料の粒子形状は、従来公知のものを使用でき、特に限定されないが、球状、フレーク状、針状、直方体、立方体、四面体、六面体、多面体、筒状、チューブ状、核部から異なる4軸方向に伸びた三次元針状構造等が挙げられる。高熱放射性を有する粒子が二種類以上配合されている場合は、1200~500cm-1の赤外吸収領域おいて吸光度0.5以上で重複していない組み合わせが好ましい。広領域の波長で電磁波を放出でき、熱放射性能が向上する。前記無機粒子を配合する場合、その平均粒子径は、特に限定されないが、0.001~200μmとされる。平均粒子径が大きすぎる(200μmを超える)と、塗膜厚が厚くなり熱放射性の低下を招くとともに、塗膜の強度や被塗布体の接着強度及び密着力が低下する恐れがある。また、平均粒子径が小さすぎる(0.001μm未満)と、粒子とバインダーとの界面が増加し、熱放射性能が低下する嫌いがある。
The material for forming the thermal radiation coating film 30 is not particularly limited as long as it is a material having thermal radiation, but a composite material composed of an organic resin and inorganic particles is most preferable. In this case, as the inorganic particles, conventionally known particles can be used, and are not particularly limited. However, boron nitride, aluminum nitride, aluminum oxide, magnesium oxide, titanium oxide, zirconia, iron oxide, copper oxide, nickel oxide, cobalt oxide, Preferred examples include ceramic powders such as lithium oxide, zinc oxide, magnesium hydroxide, and silicon dioxide, metal powders such as copper, nickel, iron, and silver, carbon materials, and the like. Is desirable.
In particular, since the circuit board 12 on which the electronic component 11 is mounted needs insulation, the thermal radiation coating film 30 is required to have insulation. Therefore, it is preferable to mix an insulating material such as ceramic powder in the heat radiating coating forming the heat radiating coating film 30. A conventionally known particle shape of the inorganic material can be used, and is not particularly limited, but is different from spherical shape, flake shape, needle shape, rectangular parallelepiped shape, cube shape, tetrahedron shape, hexahedron shape, polyhedron shape, cylindrical shape, tube shape, and core portion. Examples thereof include a three-dimensional needle-like structure extending in the axial direction. When two or more kinds of particles having high thermal radiation are blended, a combination that has an absorbance of 0.5 or more and does not overlap in the infrared absorption region of 1200 to 500 cm −1 is preferable. Electromagnetic waves can be emitted at a wide range of wavelengths, improving thermal radiation performance. When the inorganic particles are blended, the average particle diameter is not particularly limited, but is 0.001 to 200 μm. If the average particle diameter is too large (exceeding 200 μm), the thickness of the coating film is increased and the thermal radiation is reduced, and the strength of the coating film and the adhesion strength and adhesion of the coated body may be reduced. Moreover, when an average particle diameter is too small (less than 0.001 micrometer), there exists a dislike that the interface of particle | grains and a binder will increase and heat radiation performance will fall.
 前記有機樹脂として従来公知なものが使用でき、特に限定されないが、一例として合成樹脂や水系エマルション樹脂が挙げられる。合成樹脂としては、フェノール樹脂、アルキド樹脂、メラミン尿素樹脂、エポキシ樹脂、ポリウレタン樹脂、酢酸ビニル樹脂、アクリル樹脂、塩化ゴム系樹脂、塩化ビニル樹脂、フッ素樹脂等の合成樹脂であり、好ましくは安価であるアクリル樹脂である。また水系エマルションとしては、シリコンアクリルエマルション、ウレタンエマルション、アクリルエマルション等がある。また前記有機樹脂は、125℃において損失弾性率が1.0×10Pa以上もしくは貯蔵弾性率が1.1×10Pa以上が好ましい。これは、電子部品11が実装された回路基板12を、自動車の稼動時と同様の熱衝撃、例えば-40℃と125℃を与えると、はんだ等の接続材料のフィレット部に亀裂が発生するが、高温領域125℃で熱放射性コーティング材が溶融し、接続材料の亀裂部に浸入することを防ぎ、信頼性が向上する。 A conventionally well-known thing can be used as said organic resin, Although it does not specifically limit, A synthetic resin and water-system emulsion resin are mentioned as an example. Synthetic resins include phenolic resins, alkyd resins, melamine urea resins, epoxy resins, polyurethane resins, vinyl acetate resins, acrylic resins, chlorinated rubber resins, vinyl chloride resins, fluororesins, etc. An acrylic resin. Examples of the water-based emulsion include silicon acrylic emulsion, urethane emulsion, and acrylic emulsion. Also, the organic resin is preferably not less than 1.1 × 10 6 Pa loss modulus at 125 ℃ 1.0 × 10 5 Pa or more, or storage modulus. This is because if the circuit board 12 on which the electronic component 11 is mounted is subjected to the same thermal shock as when the automobile is operated, for example, −40 ° C. and 125 ° C., cracks occur in the fillet portion of the connecting material such as solder. In the high temperature region 125 ° C., the thermal radiation coating material is melted and prevented from entering the cracked portion of the connecting material, and the reliability is improved.
 溶媒としては、水及び有機溶剤が挙げられ、特に限定されない。溶媒の選定は、溶剤と充填材、分散材等のほかの材料との組み合わせにおいて最適に決められるものであり、適した溶剤を選定することが望ましい。有機溶剤としてはケトン系、アルコール系、芳香族系等の有機溶剤が上げられる。具体的には、アセトン、メチルエチルケトン、シクロヘキセン、エチレングリコール、プロピレングリコール、メチルアルコール、イソプロピルアルコール、ブタノール、ベンゼン、トルエン、キシレン、酢酸エチル、酢酸ブチル等が挙げられる。これらは1種類で用いても、複数併用してもよい。 Examples of the solvent include water and organic solvents, and are not particularly limited. The selection of the solvent is optimally determined depending on the combination of the solvent and other materials such as a filler and a dispersing material, and it is desirable to select a suitable solvent. Examples of the organic solvent include ketone-based, alcohol-based and aromatic-based organic solvents. Specific examples include acetone, methyl ethyl ketone, cyclohexene, ethylene glycol, propylene glycol, methyl alcohol, isopropyl alcohol, butanol, benzene, toluene, xylene, ethyl acetate, and butyl acetate. These may be used alone or in combination.
 熱放射性コーティング材は、上記成分の他に必要に応じて、さらに成分を加えてもよい。成分としては、溶媒、造膜助剤、可塑剤、顔料、シランカップリング剤、粘度調整剤等が挙げられる。上記成分としては、従来のものが使用でき、特に限定されない。 In addition to the above components, the thermal radiation coating material may further contain components as necessary. Examples of the component include a solvent, a film forming aid, a plasticizer, a pigment, a silane coupling agent, and a viscosity modifier. As said component, a conventional thing can be used and it does not specifically limit.
 熱放射性コーティング材の塗布方法としては、特に限定されず、通常に用いられる塗布方法から、目的に応じて選択することが出来る。具体的には、ハケ塗布、吹付塗装、ロールコータ塗布、侵漬塗布等を挙げることが出来る。熱放射材料塗布後、乾燥させコーティング膜化する方法において、自然乾燥、焼付、紫外線硬化等の方法を用いることができ、塗料性状等によって選択される。 The application method of the thermal radiation coating material is not particularly limited, and can be selected from commonly used application methods according to the purpose. Specific examples include brush coating, spray coating, roll coater coating, and immersion coating. In the method of drying and forming a coating film after applying the heat radiation material, methods such as natural drying, baking, and ultraviolet curing can be used, which are selected depending on the properties of the paint.
 また、熱放射性コーティング膜30の電子部品11が実装されていない平坦部の平均膜厚は、目的に応じて選択されることができるが、200μm以下であることが好ましく、1μm~200μmであることがより好ましい。コーティング膜が200μm以上の場合、コーティング膜が断熱層となり、放熱性を低下する恐れがある。また、1μm以下の場合、放熱効果が十分に発揮されない恐れがある。また、熱放射性コーティング膜30は、熱放射性の観点から、波長領域2.5μm~20μmにおける各波長に対する熱放射率が0.8以上であることが好ましく、1に近いほどさらに好ましい。 Further, the average film thickness of the flat portion of the thermal radiation coating film 30 on which the electronic component 11 is not mounted can be selected according to the purpose, but is preferably 200 μm or less, and preferably 1 μm to 200 μm. Is more preferable. When a coating film is 200 micrometers or more, a coating film becomes a heat insulation layer and there exists a possibility that heat dissipation may fall. On the other hand, when the thickness is 1 μm or less, the heat dissipation effect may not be sufficiently exhibited. Further, from the viewpoint of thermal radiation, the thermal radiation coating film 30 preferably has a thermal emissivity with respect to each wavelength in the wavelength region of 2.5 μm to 20 μm of 0.8 or more, and more preferably closer to 1.
 熱放射性は、IR(赤外分光法)やGCMS(ガスクロマトグラフ分析法)等の分析方法によりバインダー樹脂を特定し、熱放射性コーティング膜30の断面をSEM-EDX(走査型電子顕微鏡-エネルギー分散型X線分析法)等の元素分析により粒子を特定し、それぞれを配合し、形成された膜の放射率を放射率測定する。 For thermal radiation, a binder resin is specified by an analysis method such as IR (infrared spectroscopy) or GCMS (gas chromatographic analysis), and the cross section of the thermal radiation coating film 30 is SEM-EDX (scanning electron microscope-energy dispersion type). Particles are identified by elemental analysis such as X-ray analysis), and each is blended, and the emissivity of the formed film is measured.
 放射率測定方法は、調合した材料を大きさ100mm×100mm、厚さ1mmのアルミニウム板にアプリコーターを用いて膜厚を変化させ塗布した後、硬化したサンプルを京都電子工業製D and S AERDを用いて、室温下で放射率を測定した。 The emissivity measurement method is as follows. The prepared material was applied to an aluminum plate having a size of 100 mm × 100 mm and a thickness of 1 mm by changing the film thickness using an applicator, and the cured sample was subjected to Kyoto Electronics D and S AERD. The emissivity was measured at room temperature.
 熱放射性コーティング膜30の硬度測定方法は、調合した材料を大きさ100mm×100mm、厚さ1mmのアルミニウム板にアプリコーターを用いて膜厚を30μmで塗布した後、硬化したサンプルを27℃で薄膜硬度計(ナノインデンター)を用い、押し込み硬さを測定した。 The hardness of the thermal radiation coating film 30 is measured by applying the prepared material to an aluminum plate having a size of 100 mm × 100 mm and a thickness of 1 mm using an applicator at a film thickness of 30 μm, and then thinning the cured sample at 27 ° C. The indentation hardness was measured using a hardness meter (nanoindenter).
 熱放射性コーティング材の粘度測定方法は、回転式粘度計を用い、室温下で測定した。 The viscosity measurement method of the thermal radiation coating material was measured at room temperature using a rotary viscometer.
 次に、車載制御装置1の組み立て工程の一例を説明する。
電子部品11ははんだ等の接合部材により、回路基板12に実装される。コネクタ15ピンをコネクタ15ハウジングに組み付ける工程後、コネクタ15ピンと回路基板12がはんだによりスポットフロー工程で接合される。電子部品11及びコネクタ15が回路基板12に実装された後に、熱放射性コーティング材を塗布し、熱放射性コーティング膜30を備える。塗布法法としては、ハケ塗装、吹付塗装、浸漬塗装等での塗布が好ましいが、塗布する対象物により、静電塗装、カーテン塗装、電着塗装、粉体塗装等でもよい。熱放射性コーティング材塗布後、乾燥させコーティング膜化する方法として、好ましくは自然乾燥、焼付等の方法を用いる。
Next, an example of an assembly process of the in-vehicle control device 1 will be described.
The electronic component 11 is mounted on the circuit board 12 by a joining member such as solder. After the process of assembling the connector 15 pins to the connector 15 housing, the connector 15 pins and the circuit board 12 are joined by solder in a spot flow process. After the electronic component 11 and the connector 15 are mounted on the circuit board 12, a thermal radiation coating material is applied, and the thermal radiation coating film 30 is provided. As an application method, application by brush coating, spray coating, dip coating or the like is preferable, but electrostatic coating, curtain coating, electrodeposition coating, powder coating, or the like may be used depending on the object to be applied. As a method for drying and forming a coating film after applying the thermal radiation coating material, a method such as natural drying or baking is preferably used.
 カバー14は、アルミニウム、マグネシウム、鉄などを主成分とする合金若しくはポリブチレンテレフタレートなどの樹脂材料を用いた鋳造、プレス又は切削加工などにより製造される。カバー14の形状は底面が開口し、コネクタ15部用窓が備えられている。 The cover 14 is manufactured by casting, pressing or cutting using a resin material such as an alloy mainly composed of aluminum, magnesium, iron, or polybutylene terephthalate. The shape of the cover 14 is open at the bottom and is provided with a connector 15 window.
 ベース13はアルミニウム、マグネシウム、鉄などを主成分とする合金若しくはポリブチレンテレフタレートなどの樹脂を用いた鋳造、プレス又は切削加工などにより製造される。ベース13の形状はカバー14の底面開口部を閉鎖するように略平板上に形成する。 The base 13 is manufactured by casting, pressing or cutting using an alloy mainly composed of aluminum, magnesium, iron, or a resin such as polybutylene terephthalate. The shape of the base 13 is formed on a substantially flat plate so as to close the bottom opening of the cover 14.
 熱放射性コーティング膜30の膜厚は回路基板12の電子部品11が実装されていない平坦部において、約1μm~200μmで、好ましくは膜厚が10μm~150μmである。膜厚が200μmよりも厚すぎると、吸収した熱を遮断し、1μmより薄すぎると熱放射性能が低下する。 The film thickness of the thermal radiation coating film 30 is about 1 μm to 200 μm, preferably 10 μm to 150 μm, in a flat portion of the circuit board 12 where the electronic component 11 is not mounted. When the film thickness is too thicker than 200 μm, the absorbed heat is cut off, and when it is thinner than 1 μm, the heat radiation performance is lowered.
 電子部品の端子13上を覆う熱放射性コーティング膜30の膜厚は、10μm~200μmで、好ましくは30μm~150μmである。膜厚が150μmより厚すぎると吸収した熱を遮断し、10μmより薄すぎると熱放射性能が低下する。そのため発熱体などの高温部から筐体外への熱移動量が低減する。電子部品の2つの端子13の間の中央部を覆う熱放射性コーティング膜30の膜厚は、約1μm~200μmで、好ましくは膜厚が70μm~150μmである。特にガラスエポキシ基板等の樹脂材料を含浸した回路基板12は、放射率が0.6以上のものが多いため、熱放射性コーティング膜30の膜厚を70μm以上にすることで放射率が向上し、発熱体などの高温部から筐体外への熱移動量が増大する。 The film thickness of the thermal radiation coating film 30 covering the terminals 13 of the electronic component is 10 μm to 200 μm, preferably 30 μm to 150 μm. When the film thickness is more than 150 μm, the absorbed heat is blocked, and when it is less than 10 μm, the heat radiation performance is deteriorated. Therefore, the amount of heat transfer from the high temperature part such as a heating element to the outside of the housing is reduced. The film thickness of the thermal radiation coating film 30 covering the central part between the two terminals 13 of the electronic component is about 1 μm to 200 μm, and preferably the film thickness is 70 μm to 150 μm. In particular, the circuit board 12 impregnated with a resin material such as a glass epoxy substrate has an emissivity of 0.6 or more, and thus the emissivity is improved by setting the thickness of the thermal radiation coating film 30 to 70 μm or more. The amount of heat transfer from the high temperature part such as a heating element to the outside of the housing increases.
 また電子部品の端子13部において、2つの端子13の間では、端子13上に設けられた熱放射性コーティング膜30の頂点部よりも低くなる凹形状を形成することが好ましい。これにより、高放射率である熱放射性コーティング膜30の表面積が増加するため、発熱体などの高温部から筐体外への熱移動量が増加する。 Also, in the terminal 13 portion of the electronic component, it is preferable to form a concave shape between the two terminals 13 that is lower than the apex portion of the thermal radiation coating film 30 provided on the terminal 13. As a result, the surface area of the thermal radiation coating film 30 having a high emissivity is increased, so that the amount of heat transfer from a high temperature part such as a heating element to the outside of the housing is increased.
 以下、実施例を用いて詳細に説明する。しかし本発明は、以下の実施例に記載された内容に限定されるものではない。 Hereinafter, a detailed description will be given using examples. However, the present invention is not limited to the contents described in the following examples.
 実施例1は、図2に示される如くに、電子部品11が実装してある回路基板12の表裏面に放射性コーティング膜が形成されている。 In Example 1, as shown in FIG. 2, a radioactive coating film is formed on the front and back surfaces of the circuit board 12 on which the electronic component 11 is mounted.
 図4に示されるが如くに、電子部品の端子13上の熱放射性コーティング膜30の膜厚は10μm、2つの端子13間の中央部の膜厚は70μm以下で形成する。また2つの端子13の間では、端子13上に設けられた熱放射性コーティング膜30の頂点部よりも低くなる凹形状を形成する。これにより、電子部品11の端子13上が高放射率化し、表面積が増加するため、放熱性が向上する。 As shown in FIG. 4, the thermal radiation coating film 30 on the terminal 13 of the electronic component is formed with a film thickness of 10 μm, and the film thickness in the center between the two terminals 13 is 70 μm or less. In addition, a concave shape is formed between the two terminals 13 that is lower than the apex portion of the thermal radiation coating film 30 provided on the terminals 13. Thereby, the emissivity is increased on the terminal 13 of the electronic component 11 and the surface area is increased, so that the heat dissipation is improved.
 実施例2は 図5に示されるが如く、電子部品の端子13上の熱放射性コーティング膜30の膜厚は10μm、2つの端子13間の中央部の膜厚は70μm以上で形成する。また2つの端子13の間では、端子13上に設けられた熱放射性コーティング膜30の頂点部よりも低くなる凹形状を形成する。これにより、電子部品の端子13上と端子13間が高放射率化し、表面積が増加するため、放熱性が向上する。 In Example 2, as shown in FIG. 5, the thermal radiation coating film 30 on the terminal 13 of the electronic component is formed with a film thickness of 10 μm, and the film thickness of the central part between the two terminals 13 is 70 μm or more. In addition, a concave shape is formed between the two terminals 13 that is lower than the apex portion of the thermal radiation coating film 30 provided on the terminals 13. As a result, the emissivity is increased between the terminals 13 and the terminals 13 of the electronic component and the surface area is increased, so that heat dissipation is improved.
 実施例3は、図6に示される如くに、電子部品の端子13上の熱放射性コーティング膜30の膜厚が10μm~150μm、2つの端子13間の中央部の膜厚は70μm以下で形成する。また2つの端子13の間では、端子13上に設けられた熱放射性コーティング膜30の頂点部よりも低くなる凹形状を形成する。これにより、電子部品の端子13上が高放射率化し、表面積が増加するため、放熱性が向上する。 In Example 3, as shown in FIG. 6, the thermal radiation coating film 30 on the terminal 13 of the electronic component is formed with a film thickness of 10 μm to 150 μm, and the film thickness of the central part between the two terminals 13 is 70 μm or less. . In addition, a concave shape is formed between the two terminals 13 that is lower than the apex portion of the thermal radiation coating film 30 provided on the terminals 13. As a result, the emissivity is increased on the terminal 13 of the electronic component and the surface area is increased, so that heat dissipation is improved.
 実施例4は、図7に示される如くに、電子部品の端子13上の熱放射性コーティング膜30の膜厚が10μm~150μm、2つの端子13間の中央部の膜厚は70μm以上で形成する。また2つの端子13の間では、端子13上に設けられた熱放射性コーティング膜30の頂点部よりも低くなる凹形状を形成する。これにより、電子部品の端子13上と端子13間が高放射率化し、表面積が増加するため、放熱性が向上する。 In Example 4, as shown in FIG. 7, the thermal radiation coating film 30 on the terminal 13 of the electronic component is formed with a film thickness of 10 μm to 150 μm, and the film thickness of the central part between the two terminals 13 is 70 μm or more. . In addition, a concave shape is formed between the two terminals 13 that is lower than the apex portion of the thermal radiation coating film 30 provided on the terminals 13. As a result, the emissivity is increased between the terminals 13 and the terminals 13 of the electronic component and the surface area is increased, so that heat dissipation is improved.
(評価材料)
(比較材料)
・樹脂A:粘度60mPa・s
(Evaluation materials)
(Comparative material)
Resin A: Viscosity 60 mPa · s
(実施材料)
・熱硬化性樹脂+ナノシリカ(粒径12nm)5W%含有:粘度90mPa・s
(Implementation material)
-Thermosetting resin + nanosilica (particle size 12 nm) 5 W% content: viscosity 90 mPa · s
(評価方法)
 放熱評価方法は次の通りである。
(Evaluation methods)
The heat dissipation evaluation method is as follows.
 面状発熱体ポリイミドヒーターFL-HEATNo.6(シンワ測定株式会社)をアルミ板(50mm×80mm、t:2mm)で挟む。アルミ板の表面に熱電対をアルミ板用はんだで接着する。アルミ板表面に調合した試料を塗布し、60℃30分で加熱乾燥させ、膜厚を変化させ塗布した。試料を25℃に設定した恒温槽中央に静置し、ヒーターに6Wを印加し、アルミ板表面の温度変化を測定した。ヒーターは一定の熱量を発生しているので、熱放射材料の放熱効果が高いほど、ヒーターの温度もしくはアルミ板表面温度は低下する。すなわち、ヒーターの温度もしくはアルミ板表面温度が低くなるほど放熱効果が高いといえる。 Surface heating element polyimide heater FL-HEATNo. 6 (Shinwa Measurement Co., Ltd.) is sandwiched between aluminum plates (50 mm × 80 mm, t: 2 mm). A thermocouple is bonded to the surface of the aluminum plate with aluminum plate solder. The prepared sample was applied to the surface of the aluminum plate, dried by heating at 60 ° C. for 30 minutes, and applied with changing the film thickness. The sample was placed in the center of a thermostat set at 25 ° C., 6 W was applied to the heater, and the temperature change on the aluminum plate surface was measured. Since the heater generates a certain amount of heat, the higher the heat radiation effect of the heat radiation material, the lower the heater temperature or the aluminum plate surface temperature. That is, it can be said that the heat dissipation effect is higher as the heater temperature or the aluminum plate surface temperature is lower.
 放射率測定方法は、調合した材料を大きさ100mm×100mm、厚さ1mmのアルミニウム板にアプリコーターを用いて膜厚を変化させ塗布した後、硬化したサンプルを京都電子工業製D and S AERDを用いて、室温下で放射率を測定した。 The emissivity measurement method is as follows. The prepared material was applied to an aluminum plate having a size of 100 mm × 100 mm and a thickness of 1 mm by changing the film thickness using an applicator, and the cured sample was subjected to Kyoto Electronics D and S AERD. The emissivity was measured at room temperature.
 比較材料と実施材料の膜厚と放射率を表1に示す。膜厚0μmの放射率は、アルミニウム板の放射率を示す。表1の結果から、本実施材料を厚膜化することで、より高放射率化する。 Table 1 shows the film thickness and emissivity of the comparative material and the implementation material. The emissivity with a thickness of 0 μm indicates the emissivity of the aluminum plate. From the results shown in Table 1, the emissivity can be further increased by increasing the thickness of the material of this embodiment.
 比較材料と実施材料の膜厚と放熱効果を表2に示す。「-」は電子部品の端子13上でコーティング膜を厚膜化できないため、測定不可を示す。表2の結果から、本実施材料を圧膜化することで放熱性が向上する。 Table 2 shows the film thickness and heat dissipation effect of the comparative material and the implementation material. “-” Indicates that measurement cannot be performed because the coating film cannot be thickened on the terminal 13 of the electronic component. From the results in Table 2, heat dissipation is improved by forming the material of this embodiment into a pressure film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1  車載制御装置
11 電子部品
12 回路基板
13 ベース
14 カバー
15 コネクタ
16 台座部
17 ネジ
18 車両搭載固定部
19 サーマルビア
22 接続部材
23 電子部品の端子
30、31、32 熱放射性コーティング膜
DESCRIPTION OF SYMBOLS 1 In-vehicle control apparatus 11 Electronic component 12 Circuit board 13 Base 14 Cover 15 Connector 16 Base part 17 Screw 18 Vehicle mounting fixing part 19 Thermal via 22 Connection member 23 Terminal 30, 31, 32 of electronic parts Thermal radiation coating film

Claims (7)

  1.  回路基板と、
     前記回路基板に実装される電子部品と、
     前記電子部品の端子と前記回路基板とを接続する接続部材と、
     前記回路基板及び端子を覆う熱放射性コーティング膜とを有する電子制御装置において、
     前記端子上を覆う熱放射性コーティング膜の厚みを10μm以上とすることを特徴とする電子制御装置。
    A circuit board;
    Electronic components mounted on the circuit board;
    A connection member for connecting the terminal of the electronic component and the circuit board;
    In an electronic control device having a thermal radiation coating film covering the circuit board and the terminal,
    An electronic control device characterized in that the thermal radiation coating film covering the terminals has a thickness of 10 μm or more.
  2.  回路基板と、
     前記回路基板に実装される電子部品と、
     前記電子部品の端子と前記回路基板とを接続する接続部材と、
     前記回路基板及び端子を覆う熱放射性コーティング膜とを有する電子制御装置において、
     前記端子上を覆う熱放射性コーティング膜の厚みを30μm以上とすることを特徴とする電子制御装置。
    A circuit board;
    Electronic components mounted on the circuit board;
    A connection member for connecting the terminal of the electronic component and the circuit board;
    In an electronic control device having a thermal radiation coating film covering the circuit board and the terminal,
    An electronic control device characterized in that the thermal radiation coating film covering the terminals has a thickness of 30 μm or more.
  3.  請求項1又は2に記載の電子制御装置において、
     前記熱放射性コーティング膜は、2つの前記端子の間では、前記端子上に設けられた熱放射性コーティング膜の頂点よりも低くなる凹形状となることを特徴とする電子制御装置。
    The electronic control device according to claim 1 or 2,
    The electronic control apparatus according to claim 1, wherein the thermal radiation coating film has a concave shape between the two terminals, which is lower than an apex of the thermal radiation coating film provided on the terminal.
  4.  請求項1から3いずれか一項記載の車載制御装置において、
     前記熱放射性コーティング膜は、2つの前記端子の間の中央部では、
     熱放射性コーティング膜の厚さが70μm以上となることを特徴とする車載制御装置。
    In the vehicle-mounted control apparatus as described in any one of Claim 1 to 3,
    The thermal radiation coating film has a central portion between the two terminals.
    A vehicle-mounted control device, wherein the thickness of the thermal radiation coating film is 70 μm or more.
  5.  請求項1から4いずれか一項記載の車載制御装置において、
     前記熱放射性コーティング膜の厚みは150μm以下となることを特徴とする電子制御装置。
    In the vehicle-mounted control apparatus as described in any one of Claim 1 to 4,
    The electronic control device according to claim 1, wherein the thermal radiation coating film has a thickness of 150 μm or less.
  6.  請求項1から5いずれか一項記載の車載制御装置において、
     前記熱放射性コーティング膜の硬さは5.5N/mm以上であることを特徴とする電子制御装置。
    In the vehicle-mounted control apparatus as described in any one of Claim 1 to 5,
    An electronic control device, wherein the thermal radiation coating film has a hardness of 5.5 N / mm 2 or more.
  7.  請求項1から6いずれか一項記載の熱放射性コーティング膜を形成する熱放射性コーティング材は、
     回路基板に塗布時の粘度が90mPa・sであることを特徴とする車載制御装置。
    The thermal radiation coating material for forming the thermal radiation coating film according to any one of claims 1 to 6,
    A vehicle-mounted control device characterized in that the viscosity upon application to a circuit board is 90 mPa · s.
PCT/JP2018/003903 2017-03-30 2018-02-06 Vehicle-mounted control device WO2018179853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-066633 2017-03-30
JP2017066633A JP6735248B2 (en) 2017-03-30 2017-03-30 In-vehicle control device

Publications (1)

Publication Number Publication Date
WO2018179853A1 true WO2018179853A1 (en) 2018-10-04

Family

ID=63675104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003903 WO2018179853A1 (en) 2017-03-30 2018-02-06 Vehicle-mounted control device

Country Status (2)

Country Link
JP (1) JP6735248B2 (en)
WO (1) WO2018179853A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220345003A1 (en) * 2019-09-26 2022-10-27 Hitachi Astemo, Ltd. Electronic Controller, Electric Drive Device, and Electric Power Steering Apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114296A (en) * 1986-10-31 1988-05-19 株式会社デンソー Insulating coating material for electronic circuit board and method of forming insulating cover layer for electronic circuit board
JPH04261092A (en) * 1991-01-21 1992-09-17 Mitsubishi Electric Corp Connection method for terminal of electric component
JPH0575241A (en) * 1991-09-12 1993-03-26 Toshiba Corp Circuit board device
JP2009026982A (en) * 2007-07-20 2009-02-05 Sit:Kk Electronic device and manufacturing method therefor
WO2017038343A1 (en) * 2015-09-02 2017-03-09 日立オートモティブシステムズ株式会社 In-vehicle control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251950A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Wiring board
JP6271164B2 (en) * 2013-06-17 2018-01-31 日立オートモティブシステムズ株式会社 Box-type in-vehicle controller
JP6470004B2 (en) * 2014-09-29 2019-02-13 日立オートモティブシステムズ株式会社 In-vehicle control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114296A (en) * 1986-10-31 1988-05-19 株式会社デンソー Insulating coating material for electronic circuit board and method of forming insulating cover layer for electronic circuit board
JPH04261092A (en) * 1991-01-21 1992-09-17 Mitsubishi Electric Corp Connection method for terminal of electric component
JPH0575241A (en) * 1991-09-12 1993-03-26 Toshiba Corp Circuit board device
JP2009026982A (en) * 2007-07-20 2009-02-05 Sit:Kk Electronic device and manufacturing method therefor
WO2017038343A1 (en) * 2015-09-02 2017-03-09 日立オートモティブシステムズ株式会社 In-vehicle control device

Also Published As

Publication number Publication date
JP2018170401A (en) 2018-11-01
JP6735248B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6271164B2 (en) Box-type in-vehicle controller
WO2016051991A1 (en) On-board control device
JP6431779B2 (en) In-vehicle control device and method for manufacturing in-vehicle control device
US6261680B1 (en) Electronic assembly with charge-dissipating transparent conformal coating
CN205105522U (en) Electromagnetic wave shielding piece and electronic equipment
WO2017038343A1 (en) In-vehicle control device
WO2018179853A1 (en) Vehicle-mounted control device
JP2017208505A (en) Structure, and electronic component and electronic apparatus including the structure
US20210345518A1 (en) Device and heat radiation method
GB2576665A (en) Electronics device that dissipates internal device heat via heat sink having exposed surface
CN107087370A (en) Waterproof-type electronic equipment unit
JP6484696B2 (en) Box-type in-vehicle controller
KR20110117927A (en) Emi sheilding film and circuit board having the same
JP2004122674A (en) Heat radiation coated metal plate
JP7425670B2 (en) heat dissipation material
CN107124851B (en) Resin structure, and electronic component and electronic device using same
JP2017197592A (en) Heat release material and motor
JP2022013411A (en) Heat dissipation material and production method thereof, heat dissipation material kit, and composition for heat dissipation material formation
JP6281848B2 (en) Thermal coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778340

Country of ref document: EP

Kind code of ref document: A1