WO2018179662A1 - Power conversion device and power conversion method - Google Patents

Power conversion device and power conversion method Download PDF

Info

Publication number
WO2018179662A1
WO2018179662A1 PCT/JP2017/047401 JP2017047401W WO2018179662A1 WO 2018179662 A1 WO2018179662 A1 WO 2018179662A1 JP 2017047401 W JP2017047401 W JP 2017047401W WO 2018179662 A1 WO2018179662 A1 WO 2018179662A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power conversion
motor
voltage
conversion method
Prior art date
Application number
PCT/JP2017/047401
Other languages
French (fr)
Japanese (ja)
Inventor
愼治 杉本
正登 安東
徹郎 児島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018179662A1 publication Critical patent/WO2018179662A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a power converter for driving an AC rotary motor.
  • the output voltage output from the control device of the AC rotary motor increases in proportion to the speed of the rotating electrical machine at low speed, and increases to the maximum output voltage that can be output by the control device in the medium speed range.
  • the maximum output voltage is constant, and the rotating electrical machine is driven. In this case, depending on the driving conditions, the vehicle is not necessarily operated at the maximum efficiency.
  • Patent Documents 1 to 4 are disclosed as changing the voltage applied to the rotary motor.
  • Patent Document 1 is for reducing the switching loss of an inverter when a high output is required for a rotary motor that generates a steering force.
  • the rotational speed or output of the rotary motor increases, the current flowing through the harness increases and the amount of voltage drop in the harness increases, thereby decreasing the input voltage.
  • the input voltage changes according to the rotational speed or output of the rotary motor, it is determined based on the input voltage whether the rotary motor is operating in a predetermined rotational speed region.
  • the carrier frequency is set lower than when the rotary motor is operating in the low torque region.
  • the electric drive control device includes: a DC voltage detection unit that detects a DC voltage applied to the smoothing unit; and an input characteristic of the power converter when the DC voltage detected by the DC voltage detection unit exceeds a predetermined voltage. And a motor control unit that corrects the input characteristics so that the DC voltage decreases. The operation of the motor control unit is configured to prevent the occurrence of overvoltage application to the device connected to the output of the power supply source.
  • Patent Document 3 discloses a motor drive system controller that controls an AC rotary motor according to a modulation method in which the fundamental component of a motor applied voltage is larger than that of a sine wave PWM control method. The current is appropriately controlled.
  • the motor voltage correction means determines the correction degree of the applied voltage to the AC rotary motor with respect to the rotational speed difference when the rotational speed of the AC rotary motor is reduced, and the correction degree when the rotational speed of the AC rotary motor is increased. It is supposed to be set larger than.
  • Patent Document 4 is for reducing the switching loss of an inverter circuit.
  • the motor generator which is a rotating electrical machine that supplies AC power, is controlled by the PWM method in an operation region where the motor generator is in a low speed operation state, and the operation is shifted to the PHM method in an operation region in which the rotational speed of the rotating electrical machine is higher than the low speed operation region. . This suppresses the influence of distortion as much as possible and realizes improvement in efficiency.
  • the inventor of the present application diligently studied about driving the AC rotary motor with high efficiency, and as a result, the following knowledge was obtained.
  • Patent Document 1 since the carrier frequency is set low, the iron loss generated in the iron core in the rotary motor increases as the applied voltage of the rotary motor increases. Further, by lowering the carrier frequency, the distortion of the applied voltage of the rotary motor increases, and the harmonic component of the loss generated in the rotary motor increases. Due to the increase in these losses, there is a problem that the efficiency of the rotary motor is reduced.
  • Patent Document 2 when the DC voltage becomes equal to or higher than a predetermined voltage, the input characteristics of the power conversion device are corrected to input characteristics that reduce the DC voltage, and the overvoltage to the device connected to the output of the power supply source is corrected. Generation of application can be prevented. However, since the voltage output from the power converter is driven by the allowable voltage of the power converter, there is a problem that the driven AC rotary motor is not operated under the maximum efficiency.
  • the degree of correction of the applied voltage to the AC rotary motor with respect to the rotational speed difference when the rotational speed of the AC rotary motor is decreased is set to be larger than the correction degree when the rotational speed of the AC rotary motor is increased.
  • the copper loss can be reduced and the efficiency can be improved as compared with the overcurrent.
  • the applied voltage of the AC rotary motor is corrected in order to suppress overcurrent, there is a problem that the AC rotary motor is not operated under the maximum efficiency.
  • Patent Document 4 has a configuration in which control is performed by a PWM method in an operation region in a low-speed operation state, and control is shifted to a control by a PHM method in an operation region in which the rotation speed of the rotating electrical machine is higher than that in the low-speed operation region.
  • the efficiency can be improved by reducing the switching loss of the inverter circuit.
  • the applied voltage of the AC rotary motor is the maximum value of the voltage output from the inverter circuit in both the PWM system and the PHM system, there is a problem that the AC rotary motor is not operated under the maximum efficiency. is there.
  • An object of the present invention relates to driving a rotating electrical machine with high efficiency by reducing the total loss of copper loss and iron loss.
  • the output voltage is increased according to the increase in the rotational speed of the AC rotary motor, and then the output voltage is increased according to the increase in the rotational speed.
  • the output voltage is increased according to the increase in the rotational speed.
  • the loss of the AC rotating motor can be minimized in the operating region where the rotational speed is high, and the AC rotating motor can be operated with high efficiency.
  • FIG. 1 is a circuit diagram of a power conversion device 1 according to a first embodiment.
  • Block diagram for operating the inverter 2 according to the first embodiment The graph which shows the rotation speed-torque characteristic of the motor 100 concerning Example 1.
  • FIG. The graph which shows the conventional speed-alternating-current voltage pattern input into the motor 100 The graph which shows the copper loss and the iron loss which are the loss of the motor 100 in the conventional speed-alternating-current voltage pattern input into the motor 100
  • the power conversion device drives the AC rotary motor by converting the power supplied from the power source, and after increasing the output voltage according to the increase in the rotational speed of the AC rotary motor, according to the increase in the rotational speed What lowers an output voltage is disclosed.
  • the power conversion method converts power supplied from a power source into power for driving an AC rotary motor, and after the output voltage is increased according to the increase in the rotational speed of the AC rotary motor, the rotation is performed. Disclosed is an output voltage that decreases as the number increases.
  • the embodiment discloses that after the output voltage reaches the maximum value as the rotational speed of the AC rotary motor increases, the output voltage is decreased as the rotational speed increases.
  • the output voltage is decreased according to the increase in the rotation speed in the operation region where the output is decreased according to the increase in the rotation speed of the AC rotary motor.
  • the power converter is equipped with a booster circuit. Also disclosed is that the power from the power source is boosted by a booster circuit and supplied to the inverter.
  • the power converter is equipped with a step-down circuit. Moreover, it discloses that the power from the power source is stepped down by a step-down circuit and supplied to the inverter.
  • the power conversion device is equipped with a storage battery. Moreover, applying the voltage of a storage battery to the electric power from a power supply and supplying to an inverter is disclosed.
  • the power conversion device is equipped with a converter that converts AC power supplied from a power source into DC power. Further, it discloses that AC power from a power source is converted into a DC voltage by a converter and supplied to an inverter.
  • the voltage of the capacitor connected in parallel to the inverter of the power conversion device is decreased as the rotational speed of the AC rotary motor is increased. Further, it is disclosed that the voltage of the capacitor connected in parallel to the inverter for power conversion is lowered as the rotational speed of the AC rotating motor is increased.
  • the AC rotary motor is an induction machine, a permanent magnet type synchronous motor or a switched reluctance motor.
  • an electric vehicle including a power conversion device is disclosed. Also disclosed is a method for running an electric vehicle in which the electric power converted by the power conversion method is supplied to an AC rotary electric motor of the electric vehicle to run the electric vehicle.
  • FIG. 1 is a circuit diagram of a power conversion apparatus 1 according to the present embodiment.
  • the power converter 1 includes a capacitor 5 that smoothes the voltage supplied from the DC power supply 4 and six switching elements 601.
  • the capacitor 5 may be either an electrolytic capacitor or a film capacitor, and a large number of small capacitors may be connected in parallel to increase the capacity of the capacitor 5.
  • the switching element 601 may be either an IGBT or a MOSFET. When the switching element 601 is an IGBT, diodes 901 are connected in parallel in the opposite direction to the IGBT, and when the switching element 601 is a MOSFET, a diode As 901, a MOSFET parasitic diode can be used.
  • the semiconductor module 801 is a 2-in-1 module configured by connecting two switching elements 601 in series, but is not limited thereto, and a 1-in-1 module including only one switching element 601 may be combined.
  • a connection point of the switching element 601 is an AC output point to the motor 100.
  • FIG. 2 is a block diagram for operating the inverter 2 according to the present embodiment.
  • the inverter 2 is controlled by the motor control unit 10 based on the position information ⁇ of the rotor of the motor output from the inverter 2 and the AC currents Iu, Iv, Iw of the motor.
  • FIG. 3 is a graph showing the rotational speed-torque characteristics of the motor 100 according to the present embodiment.
  • the motor 100 When the motor 100 is operated at a variable speed, the motor 100 has an operation region where the torque is constant in the low speed region, and has a characteristic in which the output is constant or the output is reduced in the middle / high speed region where the speed is higher than the low speed region.
  • FIG. 4 is a graph showing a conventional speed-AC voltage pattern input to the motor 100.
  • the AC voltage is increased in proportion to the speed of the motor 100, and in the medium speed region, the AC voltage is increased to the maximum AC voltage that can be output.
  • the AC voltage is constant at the maximum value and the motor 100 is driven.
  • FIG. 5 is a graph showing copper loss and iron loss, which are losses of the motor 100 in the conventional speed-AC voltage pattern input to the motor 100 shown in FIG.
  • the copper loss is a Joule loss that occurs due to the current flowing in the winding of the motor 100
  • the iron loss is a loss that occurs due to the time change of the magnetic flux generated inside the motor 100.
  • the copper loss is larger than the iron loss in the low speed region, whereas the iron loss is larger than the copper loss in the medium speed region and the high speed region.
  • Calculation formulas for copper loss and iron loss are shown below.
  • Copper loss Ws R ⁇ I 2
  • Iron loss Wi Kh ⁇ (B) ⁇ f + Ke ⁇ (B) 2 ⁇ f 2 ... (2) It is expressed.
  • R is a resistance value of the winding of the motor 100
  • I is a current value for three phases flowing through the motor 100
  • Kh and Ke are coefficients determined by the internal structure of the motor 100
  • B is a magnetic flux density inside the motor 100.
  • is the amount of magnetic flux generated inside the motor 100
  • S is the area where the magnetic flux ⁇ is linked
  • f is the frequency of the AC voltage.
  • the magnetic flux density and voltage are expressed by the following equations.
  • Magnetic flux density B ⁇ / S (3)
  • V N ⁇ (d ⁇ / dt) (4)
  • N is the number of windings of the motor 100
  • d ⁇ is the time variation of the magnetic flux ⁇
  • dt is the time variation.
  • the iron loss Wi can be rewritten by the following equation.
  • Iron loss Wi Kh ⁇ ((N ⁇ Vdt)) / S) ⁇ f + Ke ⁇ ((N ⁇ Vdt)) / S) 2 ⁇ f 2 ⁇ ⁇ ⁇ (5)
  • the iron loss Wi is proportional to the voltage and frequency in the first and second power. For this reason, since the iron loss increases as the rotational speed of the motor 100 increases, there is an operating region in which the iron loss of the motor 100 is dominant in the high speed region.
  • FIG. 6 is a graph showing a speed-AC voltage pattern input to the motor 100 according to the present embodiment, and is an AC voltage pattern when the AC voltage is lowered in a high-speed region.
  • FIG. 7 is a graph showing the iron loss, copper loss, and total loss (total value of iron loss and copper loss) of motor 100 in the AC voltage patterns shown in FIGS. 4 and 6.
  • the AC voltage is increased according to the increase in the rotation speed of the motor 100, there is an operation area in which the AC voltage is decreased in a high speed area where the rotation speed of the motor 100 is further increased.
  • the AC voltage is decreased in the high speed region after the AC voltage is increased as the rotational speed of the motor 100 is increased, the AC voltage is decreased to minimize the total loss of the copper loss and the iron loss. Can be operated with high efficiency.
  • this embodiment increases the AC voltage up to the maximum output voltage upper limit.
  • the difference from the first embodiment will be mainly described.
  • FIG. 8 is a graph showing a speed-AC voltage pattern according to this example, which is an AC voltage pattern when the AC voltage is lowered in a high speed region.
  • the AC voltage pattern of this embodiment after the AC voltage rises to the upper limit of the maximum output voltage of the control device according to the increase in the rotation speed of the motor 100, an operation region in which the AC voltage is decreased according to the increase in the rotation speed of the motor 100 is defined. Have.
  • the motor 100 when the torque output from the motor 100 is large, by outputting the output voltage of the control device 1 up to the maximum value, the current flowing through the motor 100 can be reduced, and the copper loss can be reduced. . In addition, by reducing the AC voltage in the high speed region, the total loss of copper loss and iron loss can be minimized, and the motor 100 can be operated with high efficiency.
  • FIG. 9 is a graph showing the speed-AC voltage pattern according to this example, showing the rotational speed-torque characteristics of the motor 100 and the AC voltage pattern input to the motor 100.
  • the motor 100 has a constant torque operation region in the low speed region, a medium output region where the speed is higher than the low speed region, and a low output in the operation region where the rotation speed is high. Has characteristics.
  • the AC voltage applied to the motor 100 has an operation region in which the AC voltage increases according to the speed of the motor 100 in the low / medium speed region and decreases in the high speed region where the output decreases. is doing.
  • the AC voltage is increased as the number of rotations of the motor 100 is increased in the low / medium speed region where torque / output is required, and the AC voltage is decreased in the high speed region where output is not required.
  • the motor 100 can be driven with high efficiency according to the speed.
  • the power conversion device 1 includes an inverter 2 and a booster circuit 3.
  • the difference from the first to third embodiments will be mainly described.
  • FIG. 10 is a circuit diagram of the power conversion apparatus 1 according to the present embodiment.
  • the power conversion device 1 according to this embodiment includes an inverter 2 and a booster circuit 3.
  • the booster circuit 3 includes a semiconductor module 802 and a reactor 15.
  • the semiconductor module 802 is configured by connecting two switching elements 602 in series. A connection point of the switching element 602 is connected to the DC power supply 4 through the reactor 15.
  • the semiconductor module 802 is connected in parallel with the inverter 2. Note that the semiconductor module 802 may be a single unit or a plurality of units, and a plurality of switching elements 602 and diodes 902 may be connected in parallel to increase the capacity.
  • FIG. 11 is a block diagram for operating the booster circuit 3 according to the present embodiment.
  • the AVR control unit Based on the voltage command value Ecf * , the AVR control unit adjusts the voltage to control the current command value Is *.
  • the ACR control unit controls the current value Is such that the current command value Is * output from the AVR control unit.
  • the gate driver 17 controls the booster circuit 3 according to Is output from the ACR control unit, and adjusts the voltage Ecf output from the booster circuit 3. Thereby, the booster circuit 3 is operated, and the DC voltage value input to the inverter 2 is adjusted.
  • the power conversion device 1 since the power conversion device 1 is equipped with the booster circuit 3, when the rotational speed of the motor 100 is increased, the AC voltage can be reduced with low loss. Therefore, the motor 100 can be operated with high efficiency.
  • the power conversion device 1 includes an inverter 2 and a step-down circuit 8.
  • the difference from the first to fourth embodiments will be mainly described.
  • FIG. 12 is a circuit diagram of the power conversion apparatus 1 according to the present embodiment.
  • the power conversion device 1 according to this embodiment includes an inverter 2 and a step-down circuit 8.
  • the step-down circuit 8 includes a semiconductor module 803 and a reactor 15.
  • the semiconductor module 803 is configured by connecting two switching elements 603 in series.
  • the switching element 603 is an IGBT, it is necessary to connect the diodes 903 in parallel in the opposite direction to the IGBT.
  • the switching element 603 is a MOSFET, a parasitic diode of a MOSFET can be used as the diode 903.
  • a connection point between the two switching elements 603 is connected to the reactor 15, and the reactor 15 is connected to the inverter 2.
  • the semiconductor module 803 may be a plurality of semiconductor modules as well as a single unit, and a plurality of switching elements 803 and diodes 903 may be connected in parallel to increase the capacity.
  • the inverter 2 is the same as the inverter 2 described in the above embodiment.
  • the operation of the step-down circuit 8 is the same as the block diagram for operating the step-up circuit 3 according to the fourth embodiment shown in FIG. 11, and the Ecf output from the step-down circuit 8 and the input current of the gate driver 17 Based on the Is information, the voltage and current are controlled and the output voltage value is adjusted.
  • the AC voltage when the rotational speed of the motor 100 is increased, the AC voltage can be reduced with low loss, so that the total loss of copper loss and iron loss can be minimized, and the motor 100 can be made highly efficient. I can drive.
  • the power conversion device 1 includes an inverter 2 and a power storage device 9.
  • the difference from the first to fifth embodiments will be mainly described.
  • FIG. 13 is a circuit diagram of the power conversion apparatus 1 according to the present embodiment.
  • the power conversion device 1 according to this embodiment includes an inverter 2 and a power storage device 9, and the high voltage side of the power conversion device 1 is connected to the overhead wire 11 via a reactor 15.
  • the inverter 2 is the same as the inverter 2 of the first embodiment.
  • the power storage device 9 is connected to the ground side of the inverter 2, and a DC voltage output from the power storage device 9 is applied to the inverter 2 in addition to the DC voltage of the overhead wire 11.
  • the operation of the power storage device 9 is the same as the block diagram for operating the booster circuit 3 according to the fourth embodiment shown in FIG. 11, and the Ecf output from the power storage device 9 and the input current of the gate driver 17 Based on the Is information, the voltage and current are controlled and the output voltage value is adjusted.
  • the AC voltage can be lowered when the rotation speed of the motor 100 is increased. Furthermore, the generated power generated when the motor 100 decelerates can be stored in the power storage device 9, and the motor 100 can be operated with high efficiency.
  • the power conversion device 1 includes an inverter 2 and a converter 13.
  • the difference from the first to sixth embodiments will be mainly described.
  • FIG. 14 is a circuit diagram of the power conversion apparatus 1 according to the present embodiment.
  • the power conversion apparatus 1 of the present embodiment supplies the voltage supplied from the AC power supply 18 to the converter 13 that converts the AC voltage into a DC voltage after changing the magnitude of the voltage by the transformer 16.
  • the converter 13 is composed of four switching elements 604.
  • the switching element 604 is an IGBT, it is necessary to connect the diodes 904 in parallel in the opposite direction to the IGBT.
  • the switching element 604 is a MOSFET, a parasitic diode of the MOSFET can be used as the diode 904.
  • the semiconductor module 804 is configured by connecting switching elements 604 in series.
  • the two semiconductor modules 804 are connected in parallel.
  • the connection point of the switching element 604 of each of the two semiconductor modules 804 is connected to the transformer 16.
  • the converter 13 is connected to the inverter 2.
  • the inverter 2 is the same as the inverter 2 of the first embodiment.
  • the power conversion device 1 includes an inverter 2 and a converter 13, and the operation of the converter 13 is a block diagram for operating the booster circuit 3 according to the fourth embodiment illustrated in FIG. 11. Similarly, based on Ecf output from the converter 13 and information on the input current Is of the gate driver 17, the voltage / current is controlled and the output voltage value is adjusted.
  • the AC voltage when the rotation speed of the motor 100 is increased, the AC voltage can be lowered, and the motor 100 can be operated with high efficiency.
  • the voltage Ecf of the capacitor 5 has an operating region in which the voltage decreases when the rotation speed of the motor 100 increases.
  • the difference from the first to seventh embodiments will be mainly described.
  • FIG. 15 is a graph showing capacitor voltage-speed and AC voltage-speed in the power converter according to the present embodiment, and the relationship between the voltage of the capacitor 5 mounted on the power converter 1 and the rotation speed of the motor 100. And the relationship of the alternating voltage of the motor 100 is shown.
  • the booster circuit 3 of the fourth embodiment As means for changing the voltage of the capacitor 5 mounted on the power converter 1, the booster circuit 3 of the fourth embodiment, the step-down circuit 8 of the fifth embodiment, the storage battery of the sixth embodiment, or the seventh embodiment is applied.
  • a power converter (converter) that converts AC to DC is used.
  • the operation of the means for changing these voltages is the same as the block diagram for operating the booster circuit 3 according to the fourth embodiment shown in FIG.
  • the voltage Ecf of the capacitor 5 according to the present embodiment has an operation region that decreases when the rotation speed of the motor 100 increases, and the AC voltage of the motor 100 also decreases in the same operation region.
  • the total loss of the copper loss and the iron loss can be minimized by reducing the AC voltage when the rotation speed of the motor 100 is increased, and the motor 100 can be operated with high efficiency.
  • This example is a railway vehicle equipped with the power conversion device according to any one of Examples 1 to 8.
  • the difference from the first to eighth embodiments will be mainly described.
  • FIG. 16 is a configuration diagram of an AC motor drive system for an electric railway vehicle according to the present embodiment, and shows a railway vehicle using the AC motor drive system.
  • electric power is supplied from an overhead wire 11 via a current collector, and AC power is supplied to the motor 100 via the power converter 1 to drive the motor 100.
  • the motor 100 is connected to the axle of the railway vehicle, and the traveling of the railway vehicle is controlled by the motor 100.
  • the electrical ground is connected via the rail 12.
  • the voltage of the overhead wire 11 may be either direct current or alternating current.
  • the railway vehicle can be driven with high efficiency.
  • the induction motor has been described as an example.
  • the present invention is not limited to this, and the present invention can also be applied to a permanent magnet type motor or a switched reluctance.
  • the railway vehicle has been described as an example, but the present invention can also be applied to an electric vehicle, a hybrid car, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The present invention relates to a method in which, when converting power supplied from a power supply to a power for driving an AC rotating electric machine, an output voltage is raised with the increase of the rotational speed of the AC rotating electric machine and then the output voltage is lowered with the increase of the rotational speed. According to the present invention, the loss of the AC rotating electric machine can be minimized in a high rotational speed operation region, so that the AC rotating electric machine can be operated with high efficiency.

Description

電力変換装置および電力変換方法Power conversion device and power conversion method
 本発明は、交流回転電動機を駆動させる電力変換装置に関する。 The present invention relates to a power converter for driving an AC rotary motor.
 一般に、交流回転電動機の制御装置から出力される出力電圧は、低速時には、回転電機の速度に比例して増加し、中速域には、制御装置が出力可能な最大出力電圧まで上昇し、中速域以上の高速域では、最大出力電圧で一定となり、回転電機を駆動させる。この場合、駆動する条件によっては、効率最大で運転しているとは限らない。こうした課題を解決するために、回転電動機に印加する電圧を変えるものとして、特許文献1~4が開示されている。 In general, the output voltage output from the control device of the AC rotary motor increases in proportion to the speed of the rotating electrical machine at low speed, and increases to the maximum output voltage that can be output by the control device in the medium speed range. In the high speed range above the speed range, the maximum output voltage is constant, and the rotating electrical machine is driven. In this case, depending on the driving conditions, the vehicle is not necessarily operated at the maximum efficiency. In order to solve such problems, Patent Documents 1 to 4 are disclosed as changing the voltage applied to the rotary motor.
 特許文献1は、操舵力を発生する回転電動機に高出力が必要なときに、インバータのスイッチング損失を低減するためのものである。回転電動機の回転速度または出力が増加すると、ハーネスに流れる電流が大きくなってハーネスにおける電圧降下量が増大するため、これによって入力電圧が低下することになる。このように、入力電圧は回転電動機の回転速度または出力に応じて変化することから、回転電動機が所定の回転速度領域で動作しているか否かを入力電圧に基づいて判断し、回転電動機がこの回転速度領域で動作している場合に、回転電動機が低トルク領域で動作しているときよりもキャリア周波数を低く設定するようにしている。 Patent Document 1 is for reducing the switching loss of an inverter when a high output is required for a rotary motor that generates a steering force. When the rotational speed or output of the rotary motor increases, the current flowing through the harness increases and the amount of voltage drop in the harness increases, thereby decreasing the input voltage. Thus, since the input voltage changes according to the rotational speed or output of the rotary motor, it is determined based on the input voltage whether the rotary motor is operating in a predetermined rotational speed region. When operating in the rotational speed region, the carrier frequency is set lower than when the rotary motor is operating in the low torque region.
 また、特許文献2は、平滑コンデンサの容量低下による電圧の変動が大きくなり過ぎると、十分に抑制できなくなって過大な電圧変動が発生し、電力供給源の出力に接続された電子機器に過電圧印加が発生するおそれを無くすためのものである。この電動駆動制御装置は、平滑手段に印加される直流電圧を検出する直流電圧検出手段と、直流電圧検出手段で検出された直流電圧が所定電圧以上となった場合に、電力変換装置の入力特性を直流電圧が減少するような入力特性に補正するモータ制御部とを備える。モータ制御部の動作により、電力供給源の出力に接続された機器への過電圧印加の発生を防止できる構成としている。 Further, in Patent Document 2, if the voltage fluctuation due to the decrease in the capacity of the smoothing capacitor becomes too large, the voltage cannot be sufficiently suppressed and an excessive voltage fluctuation occurs, and an overvoltage is applied to an electronic device connected to the output of the power supply source. This is to eliminate the possibility of the occurrence of the above. The electric drive control device includes: a DC voltage detection unit that detects a DC voltage applied to the smoothing unit; and an input characteristic of the power converter when the DC voltage detected by the DC voltage detection unit exceeds a predetermined voltage. And a motor control unit that corrects the input characteristics so that the DC voltage decreases. The operation of the motor control unit is configured to prevent the occurrence of overvoltage application to the device connected to the output of the power supply source.
 さらに、特許文献3は、正弦波PWM制御方式よりもモータ印加電圧の基本波成分が大きい変調方式に従って交流回転電動機を制御するモータ駆動システムの制御装置において、交流回転電動機の回転数の急変時にモータ電流を適切に制御するものである。モータ駆動システムの制御装置では、モータ電圧修正手段は、交流回転電動機の回転数減少時における回転数差に対する交流回転電動機への印加電圧の修正度合いを、交流回転電動機の回転数上昇時における修正度合いよりも大きく設定するものとしている。 Further, Patent Document 3 discloses a motor drive system controller that controls an AC rotary motor according to a modulation method in which the fundamental component of a motor applied voltage is larger than that of a sine wave PWM control method. The current is appropriately controlled. In the control device of the motor drive system, the motor voltage correction means determines the correction degree of the applied voltage to the AC rotary motor with respect to the rotational speed difference when the rotational speed of the AC rotary motor is reduced, and the correction degree when the rotational speed of the AC rotary motor is increased. It is supposed to be set larger than.
 特許文献4は、インバータ回路のスイッチング損失を低減するものである。交流電力を供給する回転電機であるモータジェネレータの低速運転状態である運転領域では、PWM方式で制御し、回転電機の回転速度が低速運転領域より上昇した運転領域では、PHM方式による制御に移行する。これにより歪の影響をできるだけ押さえ、効率向上を実現できるものとしている。 Patent Document 4 is for reducing the switching loss of an inverter circuit. The motor generator, which is a rotating electrical machine that supplies AC power, is controlled by the PWM method in an operation region where the motor generator is in a low speed operation state, and the operation is shifted to the PHM method in an operation region in which the rotational speed of the rotating electrical machine is higher than the low speed operation region. . This suppresses the influence of distortion as much as possible and realizes improvement in efficiency.
特開2010-221856号公報JP 2010-221856 A 特開2010-011687号公報JP 2010-011687 A 特開2006-320039号公報JP 2006-320039 A 国際公開第2011/135621号International Publication No. 2011/135621
 本願発明者が、交流回転電動機を高効率で駆動することについて鋭意検討した結果、次の知見を得るに至った。 The inventor of the present application diligently studied about driving the AC rotary motor with high efficiency, and as a result, the following knowledge was obtained.
 特許文献1では、キャリア周波数を低く設定するため、回転電動機の印加電圧が増加することにより、回転電動機内の鉄心に発生する鉄損が増加する。また、キャリア周波数を低くすることにより、回転電動機の印加電圧の歪みが大きくなり、回転電動機内で発生する損失の高調波成分が大きくなる。これらの損失増加により、回転電動機の効率が低下する課題がある。 In Patent Document 1, since the carrier frequency is set low, the iron loss generated in the iron core in the rotary motor increases as the applied voltage of the rotary motor increases. Further, by lowering the carrier frequency, the distortion of the applied voltage of the rotary motor increases, and the harmonic component of the loss generated in the rotary motor increases. Due to the increase in these losses, there is a problem that the efficiency of the rotary motor is reduced.
 特許文献2では、直流電圧が所定電圧以上となった場合に、電力変換装置の入力特性を直流電圧が減少するような入力特性に補正し、電力供給源の出力に接続された機器への過電圧印加の発生を防止できる。しかし、電力変換装置が出力する電圧は、電力変換装置の許容電圧で駆動されるため、駆動される交流回転電動機は、効率が最大の条件で運転されない課題がある。 In Patent Document 2, when the DC voltage becomes equal to or higher than a predetermined voltage, the input characteristics of the power conversion device are corrected to input characteristics that reduce the DC voltage, and the overvoltage to the device connected to the output of the power supply source is corrected. Generation of application can be prevented. However, since the voltage output from the power converter is driven by the allowable voltage of the power converter, there is a problem that the driven AC rotary motor is not operated under the maximum efficiency.
 特許文献3では、交流回転電動機の回転数減少時における回転数差に対する交流回転電動機への印加電圧の修正度合いを、交流回転電動機の回転数上昇時における修正度合いよりも大きく設定する構成である。この構成では、交流回転電動機の過電流を抑制することにより、過電流時よりも銅損を低減でき、効率を向上させることができる。しかし一方で、交流回転電動機の印加電圧を、過電流を抑制するために修正しているため、交流回転電動機の効率が最大の条件で運転されない課題がある。 In Patent Document 3, the degree of correction of the applied voltage to the AC rotary motor with respect to the rotational speed difference when the rotational speed of the AC rotary motor is decreased is set to be larger than the correction degree when the rotational speed of the AC rotary motor is increased. In this configuration, by suppressing the overcurrent of the AC rotary motor, the copper loss can be reduced and the efficiency can be improved as compared with the overcurrent. However, on the other hand, since the applied voltage of the AC rotary motor is corrected in order to suppress overcurrent, there is a problem that the AC rotary motor is not operated under the maximum efficiency.
 特許文献4では、低速運転状態である運転領域ではPWM方式で制御し、回転電機の回転速度が低速運転領域より上昇した運転領域ではPHM方式による制御に移行する構成である。この構成では、インバータ回路のスイッチング損失を低減することにより、効率が向上できる。しかし一方で、交流回転電動機の印加電圧は、PWM方式およびPHM方式の両方式ともに、インバータ回路が出力される電圧の最大値となるため、交流回転電動機の効率が最大の条件で運転されない課題がある。 Patent Document 4 has a configuration in which control is performed by a PWM method in an operation region in a low-speed operation state, and control is shifted to a control by a PHM method in an operation region in which the rotation speed of the rotating electrical machine is higher than that in the low-speed operation region. In this configuration, the efficiency can be improved by reducing the switching loss of the inverter circuit. However, on the other hand, since the applied voltage of the AC rotary motor is the maximum value of the voltage output from the inverter circuit in both the PWM system and the PHM system, there is a problem that the AC rotary motor is not operated under the maximum efficiency. is there.
 本発明の目的は、銅損および鉄損の合計損失を低減して、回転電機を高効率に駆動することに関する。 An object of the present invention relates to driving a rotating electrical machine with high efficiency by reducing the total loss of copper loss and iron loss.
 本発明は、電源から供給された電力を、交流回転電動機を駆動する電力に変換する際、当該交流回転電動機の回転数の上昇に従って出力電圧を上昇させた後に、当該回転数の上昇に従って出力電圧を下降させることに関する。 In the present invention, when power supplied from a power source is converted into power for driving an AC rotary motor, the output voltage is increased according to the increase in the rotational speed of the AC rotary motor, and then the output voltage is increased according to the increase in the rotational speed. Related to lowering.
 本発明によれば、回転数が高い運転領域において交流回転電動機の損失を最小化でき、交流回転電動機を高効率に運転できる。 According to the present invention, the loss of the AC rotating motor can be minimized in the operating region where the rotational speed is high, and the AC rotating motor can be operated with high efficiency.
実施例1にかかる電力変換装置1の回路図1 is a circuit diagram of a power conversion device 1 according to a first embodiment. 実施例1にかかるインバータ2を動作させるためのブロック線図Block diagram for operating the inverter 2 according to the first embodiment 実施例1にかかるモータ100の回転数-トルク特性を示すグラフThe graph which shows the rotation speed-torque characteristic of the motor 100 concerning Example 1. FIG. モータ100に入力される従来の速度-交流電圧パターンを示すグラフThe graph which shows the conventional speed-alternating-current voltage pattern input into the motor 100 モータ100に入力される従来の速度-交流電圧パターンでのモータ100の損失である銅損および鉄損を示すグラフThe graph which shows the copper loss and the iron loss which are the loss of the motor 100 in the conventional speed-alternating-current voltage pattern input into the motor 100 実施例1にかかるモータ100に入力される速度-交流電圧パターンを示すグラフThe graph which shows the speed-alternating-current voltage pattern input into the motor 100 concerning Example 1. FIG. 図4および図6に示した交流電圧パターンにおけるモータ100の鉄損、銅損および全損失(鉄損と銅損の合計値)を示すグラフGraph showing iron loss, copper loss and total loss (total value of iron loss and copper loss) of motor 100 in the AC voltage pattern shown in FIGS. 4 and 6 実施例2にかかる速度-交流電圧パターンを示すグラフThe graph which shows the speed-alternating current voltage pattern concerning Example 2 実施例3にかかる速度-交流電圧パターンを示すグラフThe graph which shows the speed-alternating current voltage pattern concerning Example 3 実施例4にかかる電力変換装置1の回路図Circuit diagram of power conversion device 1 according to the fourth embodiment. 実施例4にかかる昇圧回路3を動作させるためのブロック線図Block diagram for operating the booster circuit 3 according to the fourth embodiment. 実施例5にかかる電力変換装置1の回路図The circuit diagram of the power converter device 1 concerning Example 5. FIG. 実施例6にかかる電力変換装置1の回路図The circuit diagram of the power converter device 1 concerning Example 6. FIG. 実施例7にかかる電力変換装置1の回路図The circuit diagram of the power converter device 1 concerning Example 7. FIG. 実施例8にかかる電力変換装置内のコンデンサ電圧-速度、交流電圧-速度を示すグラフThe graph which shows the capacitor voltage-speed and alternating voltage-speed in the power converter device concerning Example 8 実施例9にかかる電気鉄道車両の交流電動機駆動システムの構成図Configuration diagram of AC motor drive system for electric railway vehicle according to embodiment 9
 実施例では、電源から供給された電力を変換して交流回転電動機を駆動する電力変換装置であって、交流回転電動機の回転数の上昇に従って出力電圧を上昇させた後に、当該回転数の上昇に従って出力電圧を下降させるものを開示する。 In the embodiment, the power conversion device drives the AC rotary motor by converting the power supplied from the power source, and after increasing the output voltage according to the increase in the rotational speed of the AC rotary motor, according to the increase in the rotational speed What lowers an output voltage is disclosed.
 また、実施例では、電源から供給された電力を、交流回転電動機を駆動する電力に変換する電力変換方法であって、交流回転電動機の回転数の上昇に従って出力電圧を上昇させた後に、当該回転数の上昇に従って出力電圧を下降させるものを開示する。 Further, in the embodiment, the power conversion method converts power supplied from a power source into power for driving an AC rotary motor, and after the output voltage is increased according to the increase in the rotational speed of the AC rotary motor, the rotation is performed. Disclosed is an output voltage that decreases as the number increases.
 また、実施例では、交流回転電動機の回転数の上昇に従って出力電圧が最大値に達した後に、当該回転数の上昇に従って出力電圧を下降させることを開示する。 Also, the embodiment discloses that after the output voltage reaches the maximum value as the rotational speed of the AC rotary motor increases, the output voltage is decreased as the rotational speed increases.
 また、実施例では、交流回転電動機の回転数の上昇に従って出力が下降する運転領域で、当該回転数の上昇に従って出力電圧を下降させることを開示する。 Also, in the embodiment, it is disclosed that the output voltage is decreased according to the increase in the rotation speed in the operation region where the output is decreased according to the increase in the rotation speed of the AC rotary motor.
 また、実施例では、電力変換装置が、昇圧回路を搭載することを開示する。また、電源からの電力を昇圧回路により昇圧してインバータに供給することを開示する。 Also, in the embodiment, it is disclosed that the power converter is equipped with a booster circuit. Also disclosed is that the power from the power source is boosted by a booster circuit and supplied to the inverter.
 また、実施例では、電力変換装置が、降圧回路を搭載することを開示する。また、電源からの電力を降圧回路により降圧してインバータに供給することを開示する。 Also, in the embodiment, it is disclosed that the power converter is equipped with a step-down circuit. Moreover, it discloses that the power from the power source is stepped down by a step-down circuit and supplied to the inverter.
 また、実施例では、電力変換装置が、蓄電池を搭載することを開示する。また、電源からの電力に、蓄電池の電圧を印加してインバータに供給することを開示する。 Also, in the embodiment, it is disclosed that the power conversion device is equipped with a storage battery. Moreover, applying the voltage of a storage battery to the electric power from a power supply and supplying to an inverter is disclosed.
 また、実施例では、電力変換装置が、電源から供給された交流電力を直流電力に変換するコンバータを搭載することを開示する。また、電源からの交流電力をコンバータにより直流電圧に変換してインバータに供給することを開示する。 Also, in the embodiment, it is disclosed that the power conversion device is equipped with a converter that converts AC power supplied from a power source into DC power. Further, it discloses that AC power from a power source is converted into a DC voltage by a converter and supplied to an inverter.
 また、実施例では、電力変換装置のインバータに並列接続されるコンデンサの電圧を、交流回転電動機の回転数の上昇に従って下降させることを開示する。また、電力変換するインバータに並列接続されるコンデンサの電圧を、交流回転電動機の回転数の上昇に従って下降させることを開示する。 Also, in the embodiment, it is disclosed that the voltage of the capacitor connected in parallel to the inverter of the power conversion device is decreased as the rotational speed of the AC rotary motor is increased. Further, it is disclosed that the voltage of the capacitor connected in parallel to the inverter for power conversion is lowered as the rotational speed of the AC rotating motor is increased.
 また、実施例では、交流回転電動機が、誘導機、永久磁石式同期電動機またはスイッチトリラクタンス電動機であることを開示する。 Also, in the embodiment, it is disclosed that the AC rotary motor is an induction machine, a permanent magnet type synchronous motor or a switched reluctance motor.
 また、実施例では、電力変換装置を備える電気車を開示する。また、電力変換方法により変換された電力を、電気車の交流回転電動機に供給して電気車を走行させる、電気車の走行方法を開示する。 In the embodiment, an electric vehicle including a power conversion device is disclosed. Also disclosed is a method for running an electric vehicle in which the electric power converted by the power conversion method is supplied to an AC rotary electric motor of the electric vehicle to run the electric vehicle.
 以下、上記およびその他の本発明の新規な特徴と効果について図面を参酌して説明する。なお、図面は専ら発明の理解のために用いるものであり、権利範囲を限縮するものではない。 Hereinafter, the above and other novel features and effects of the present invention will be described with reference to the drawings. It should be noted that the drawings are used exclusively for understanding the invention and do not limit the scope of rights.
 本実施例について、図1乃至図7に基づいて説明する。 This example will be described with reference to FIGS.
 図1は、本実施例にかかる電力変換装置1の回路図である。電力変換装置1は、直流電源4から供給された電圧を平滑するコンデンサ5と、6つのスイッチング素子601で構成されている。コンデンサ5は、電解コンデンサやフィルムコンデンサのどちらでもよく、コンデンサ5を大容量化するために、小容量のコンデンサを多数並列接続して構成しても良い。スイッチング素子601は、IGBTやMOSFETのどちらでもよく、スイッチング素子601がIGBTである場合には、IGBTとは逆向きにダイオード901をそれぞれ並列接続し、スイッチング素子601がMOSFETである場合には、ダイオード901としてMOSFETの寄生ダイオードを利用できる。半導体モジュール801は、2つのスイッチング素子601が直列に接続されて構成されている2in1モジュールであるが、これに限られず、一つのスイッチング素子601のみを含む1in1モジュールを組み合わせてもよい。スイッチング素子601の接続点は、モータ100への交流出力点となる。 FIG. 1 is a circuit diagram of a power conversion apparatus 1 according to the present embodiment. The power converter 1 includes a capacitor 5 that smoothes the voltage supplied from the DC power supply 4 and six switching elements 601. The capacitor 5 may be either an electrolytic capacitor or a film capacitor, and a large number of small capacitors may be connected in parallel to increase the capacity of the capacitor 5. The switching element 601 may be either an IGBT or a MOSFET. When the switching element 601 is an IGBT, diodes 901 are connected in parallel in the opposite direction to the IGBT, and when the switching element 601 is a MOSFET, a diode As 901, a MOSFET parasitic diode can be used. The semiconductor module 801 is a 2-in-1 module configured by connecting two switching elements 601 in series, but is not limited thereto, and a 1-in-1 module including only one switching element 601 may be combined. A connection point of the switching element 601 is an AC output point to the motor 100.
 図2は、本実施例にかかるインバータ2を動作させるためのブロック線図である。インバータ2は、インバータ2から出力されるモータの回転子の位置情報θ、モータの交流電流Iu、Iv、Iwを基に、モータ制御部10にて制御される。 FIG. 2 is a block diagram for operating the inverter 2 according to the present embodiment. The inverter 2 is controlled by the motor control unit 10 based on the position information θ of the rotor of the motor output from the inverter 2 and the AC currents Iu, Iv, Iw of the motor.
 図3は、本実施例にかかるモータ100の回転数-トルク特性を示すグラフである。モータ100は、可変速運転される場合、低速領域にトルク一定の運転領域、低速領域よりも速度が高い中・高速領域に出力一定又は出力を低下させた特性を有する。 FIG. 3 is a graph showing the rotational speed-torque characteristics of the motor 100 according to the present embodiment. When the motor 100 is operated at a variable speed, the motor 100 has an operation region where the torque is constant in the low speed region, and has a characteristic in which the output is constant or the output is reduced in the middle / high speed region where the speed is higher than the low speed region.
 図4は、モータ100に入力される従来の速度-交流電圧パターンを示すグラフである。従来は、図4に示すように、低速領域では、モータ100の速度に比例して交流電圧を増加させ、中速領域では、電力変換装置1が出力可能な最大の交流電圧まで上昇させ、中速域以上の高速領域では、交流電圧を最大値で一定として、モータ100を駆動させる。 FIG. 4 is a graph showing a conventional speed-AC voltage pattern input to the motor 100. Conventionally, as shown in FIG. 4, in the low speed region, the AC voltage is increased in proportion to the speed of the motor 100, and in the medium speed region, the AC voltage is increased to the maximum AC voltage that can be output. In the high speed region above the high speed region, the AC voltage is constant at the maximum value and the motor 100 is driven.
 図5は、図4で示したモータ100に入力される従来の速度-交流電圧パターンでのモータ100の損失である銅損および鉄損を示すグラフである。銅損はモータ100の巻線に流れる電流によって発生するジュール損失であり、鉄損はモータ100の内部で作られる磁束の時間変化によって、発生する損失である。図5では、低速領域では、鉄損に比べて銅損が大きいのに対して、中速領域および高速領域では銅損に比べて鉄損の方が大きい。銅損および鉄損の算出式を以下に示す。
銅損Ws=R・I2・・・(1)
鉄損Wi=Kh・(B)・f +Ke・(B)2・f2・・・(2)
であらわされる。
FIG. 5 is a graph showing copper loss and iron loss, which are losses of the motor 100 in the conventional speed-AC voltage pattern input to the motor 100 shown in FIG. The copper loss is a Joule loss that occurs due to the current flowing in the winding of the motor 100, and the iron loss is a loss that occurs due to the time change of the magnetic flux generated inside the motor 100. In FIG. 5, the copper loss is larger than the iron loss in the low speed region, whereas the iron loss is larger than the copper loss in the medium speed region and the high speed region. Calculation formulas for copper loss and iron loss are shown below.
Copper loss Ws = R · I 2 (1)
Iron loss Wi = Kh · (B) · f + Ke · (B) 2 · f 2 ... (2)
It is expressed.
 ここで、Rはモータ100の巻線の抵抗値、Iはモータ100に流れる3相分の電流値、KhおよびKeはモータ100の内部構造によって決定する係数、Bはモータ100の内部の磁束密度、φはモータ100内部で発生する磁束量、Sは磁束φが鎖交する面積、fは交流電圧の周波数である。磁束密度と電圧は以下の式で表される。
磁束密度B=φ/S・・・(3)
交流電圧V=N・(dφ/dt)・・・(4)
 ここで、Nはモータ100の巻線数、dφは磁束φの時間変化量、dtは時間変化量である。(2)(3)(4)式から鉄損Wiは以下の式で書きなおせる。
鉄損Wi=Kh・((N∫Vdt))/S)・f +Ke・((N∫Vdt))/S)2・f2・・・(5)
(5)式から鉄損Wiは電圧と周波数に1乗と2乗で比例する。このことから、モータ100の回転数が上昇すると鉄損が増加するため、高速領域では、モータ100の鉄損が支配的となる運転領域が存在する。
Here, R is a resistance value of the winding of the motor 100, I is a current value for three phases flowing through the motor 100, Kh and Ke are coefficients determined by the internal structure of the motor 100, and B is a magnetic flux density inside the motor 100. , Φ is the amount of magnetic flux generated inside the motor 100, S is the area where the magnetic flux φ is linked, and f is the frequency of the AC voltage. The magnetic flux density and voltage are expressed by the following equations.
Magnetic flux density B = φ / S (3)
AC voltage V = N ・ (dφ / dt) (4)
Here, N is the number of windings of the motor 100, dφ is the time variation of the magnetic flux φ, and dt is the time variation. (2) From the equations (3) and (4), the iron loss Wi can be rewritten by the following equation.
Iron loss Wi = Kh ・ ((N∫Vdt)) / S) ・ f + Ke ・ ((N∫Vdt)) / S) 2・ f 2・ ・ ・ (5)
From equation (5), the iron loss Wi is proportional to the voltage and frequency in the first and second power. For this reason, since the iron loss increases as the rotational speed of the motor 100 increases, there is an operating region in which the iron loss of the motor 100 is dominant in the high speed region.
 図6は、本実施例にかかるモータ100に入力される速度-交流電圧パターンを示すグラフであり、高速領域で交流電圧を下げた場合の交流電圧パターンである。図7は、図4および図6に示した交流電圧パターンにおけるモータ100の鉄損、銅損および全損失(鉄損と銅損の合計値)を示すグラフである。高速領域で交流電圧を下げることにより、銅損および鉄損の合計値を最小化して、モータ100を高効率に運転できる。 FIG. 6 is a graph showing a speed-AC voltage pattern input to the motor 100 according to the present embodiment, and is an AC voltage pattern when the AC voltage is lowered in a high-speed region. FIG. 7 is a graph showing the iron loss, copper loss, and total loss (total value of iron loss and copper loss) of motor 100 in the AC voltage patterns shown in FIGS. 4 and 6. By reducing the AC voltage in the high speed region, the total value of copper loss and iron loss can be minimized, and the motor 100 can be operated with high efficiency.
 本実施例では、モータ100の回転数の上昇にしたがって交流電圧を上昇させた後に、さらにモータ100の回転数が上昇した高速領域で交流電圧を下降させる運転領域を有している。本実施例によれば、モータ100の回転数の上昇にしたがって交流電圧を上昇させた後の高速領域において、交流電圧を下げることにより、銅損および鉄損の全損失を最小化して、モータ100を高効率に運転できる。 In this embodiment, after the AC voltage is increased according to the increase in the rotation speed of the motor 100, there is an operation area in which the AC voltage is decreased in a high speed area where the rotation speed of the motor 100 is further increased. According to the present embodiment, in the high speed region after the AC voltage is increased as the rotational speed of the motor 100 is increased, the AC voltage is decreased to minimize the total loss of the copper loss and the iron loss. Can be operated with high efficiency.
 本実施例は、実施例1と異なり、最大出力電圧上限まで交流電圧を上昇させる。以下、実施例1との相違点を中心に説明する。 異 な り Unlike the first embodiment, this embodiment increases the AC voltage up to the maximum output voltage upper limit. Hereinafter, the difference from the first embodiment will be mainly described.
 図8は、本実施例にかかる速度-交流電圧パターンを示すグラフであり、高速領域で交流電圧を下げた場合の交流電圧パターンである。本実施例の交流電圧パターンでは、モータ100の回転数の上昇にしたがって制御装置の最大出力電圧上限まで交流電圧が上昇した後に、モータ100の回転数の上昇にしたがって交流電圧を下降させる運転領域を有している。 FIG. 8 is a graph showing a speed-AC voltage pattern according to this example, which is an AC voltage pattern when the AC voltage is lowered in a high speed region. In the AC voltage pattern of this embodiment, after the AC voltage rises to the upper limit of the maximum output voltage of the control device according to the increase in the rotation speed of the motor 100, an operation region in which the AC voltage is decreased according to the increase in the rotation speed of the motor 100 is defined. Have.
 本実施例によれば、モータ100が出力するトルクが大きい場合に、制御装置1の出力電圧を最大値まで出力することにより、モータ100に流れる電流を小さくでき、銅損を小さくして運転できる。また、高速領域で交流電圧を下げることにより、銅損および鉄損の合計損失を最小化でき、モータ100を高効率に運転できる。 According to the present embodiment, when the torque output from the motor 100 is large, by outputting the output voltage of the control device 1 up to the maximum value, the current flowing through the motor 100 can be reduced, and the copper loss can be reduced. . In addition, by reducing the AC voltage in the high speed region, the total loss of copper loss and iron loss can be minimized, and the motor 100 can be operated with high efficiency.
 本実施例では、トルク一定の低速領域、出力一定の中速領域、および出力低下の高速領域を有するものである。以下、実施例1乃至2との相違点を中心に説明する。 In this embodiment, there is a low speed region where the torque is constant, a medium speed region where the output is constant, and a high speed region where the output is reduced. Hereinafter, the difference from the first and second embodiments will be mainly described.
 図9は、本実施例にかかる速度-交流電圧パターンを示すグラフであり、モータ100の回転数-トルク特性、およびモータ100に入力される交流電圧パターンである。本実施例では、モータ100の低速領域にトルク一定の運転領域、低速領域よりも速度が高い中速領域に出力一定の運転領域を有し、さらに回転数が高い運転領域では出力を低下させた特性を有する。これに対して、モータ100に印加される交流電圧は、低・中速領域では、モータ100の速度に従って交流電圧が増加し、出力が低下する高速領域では、交流電圧を下降させる運転領域を有している。 FIG. 9 is a graph showing the speed-AC voltage pattern according to this example, showing the rotational speed-torque characteristics of the motor 100 and the AC voltage pattern input to the motor 100. In this embodiment, the motor 100 has a constant torque operation region in the low speed region, a medium output region where the speed is higher than the low speed region, and a low output in the operation region where the rotation speed is high. Has characteristics. On the other hand, the AC voltage applied to the motor 100 has an operation region in which the AC voltage increases according to the speed of the motor 100 in the low / medium speed region and decreases in the high speed region where the output decreases. is doing.
 本実施例によれば、トルク・出力が必要な低・中速領域ではモータ100の回転数の増加に従って交流電圧を増加させ、出力が不要な高速領域では、交流電圧を低下させているため、速度に応じてモータ100を高効率に駆動できる。 According to this embodiment, the AC voltage is increased as the number of rotations of the motor 100 is increased in the low / medium speed region where torque / output is required, and the AC voltage is decreased in the high speed region where output is not required. The motor 100 can be driven with high efficiency according to the speed.
 本実施例では、実施例1と異なり、電力変換装置1がインバータ2と昇圧回路3から構成されている。以下、実施例1乃至3との相違点を中心に説明する。 In this embodiment, unlike the first embodiment, the power conversion device 1 includes an inverter 2 and a booster circuit 3. Hereinafter, the difference from the first to third embodiments will be mainly described.
 図10は、本実施例にかかる電力変換装置1の回路図である。本実施例の電力変換装置1は、インバータ2と昇圧回路3から構成されている。 FIG. 10 is a circuit diagram of the power conversion apparatus 1 according to the present embodiment. The power conversion device 1 according to this embodiment includes an inverter 2 and a booster circuit 3.
 昇圧回路3は、半導体モジュール802とリアクトル15から構成されている。半導体モジュール802は、2つのスイッチング素子602が直列に接続されて構成されている。スイッチング素子602の接続点は、リアクトル15を介して直流電源4に接続されている。また、半導体モジュール802は、インバータ2と並列に接続されている。なお、半導体モジュール802は、単体のみならず複数でもよく、複数のスイッチング素子602およびダイオード902を並列に接続して大容量化しても良い。 The booster circuit 3 includes a semiconductor module 802 and a reactor 15. The semiconductor module 802 is configured by connecting two switching elements 602 in series. A connection point of the switching element 602 is connected to the DC power supply 4 through the reactor 15. The semiconductor module 802 is connected in parallel with the inverter 2. Note that the semiconductor module 802 may be a single unit or a plurality of units, and a plurality of switching elements 602 and diodes 902 may be connected in parallel to increase the capacity.
 図11は、本実施例にかかる昇圧回路3を動作させるためのブロック線図である。電圧指令値Ecf*を基にAVR制御部で電圧を調節し、電流指令値Is*を制御する。ACR制御部はAVR制御部から出す電流指令値Is*となるように電流値Isをコントロールする。ゲート・ドライバー17はACR制御部から出るIsに応じて昇圧回路3を制御し、昇圧回路3から出力される電圧Ecfを調節する。これにより、昇圧回路3を動作させ、インバータ2に入力される直流電圧値を調節する。 FIG. 11 is a block diagram for operating the booster circuit 3 according to the present embodiment. Based on the voltage command value Ecf * , the AVR control unit adjusts the voltage to control the current command value Is *. The ACR control unit controls the current value Is such that the current command value Is * output from the AVR control unit. The gate driver 17 controls the booster circuit 3 according to Is output from the ACR control unit, and adjusts the voltage Ecf output from the booster circuit 3. Thereby, the booster circuit 3 is operated, and the DC voltage value input to the inverter 2 is adjusted.
 本実施例によれば、電力変換装置1が昇圧回路3を搭載しているため、モータ100の回転数が上昇した際に交流電圧を下げることが低損失で実施できるため、銅損および鉄損の合計損失を最小化でき、モータ100を高効率に運転できる。 According to the present embodiment, since the power conversion device 1 is equipped with the booster circuit 3, when the rotational speed of the motor 100 is increased, the AC voltage can be reduced with low loss. Therefore, the motor 100 can be operated with high efficiency.
 本実施例では、実施例1と異なり、電力変換装置1がインバータ2と降圧回路8から構成されている。以下、実施例1乃至4との相違点を中心に説明する。 In this embodiment, unlike the first embodiment, the power conversion device 1 includes an inverter 2 and a step-down circuit 8. Hereinafter, the difference from the first to fourth embodiments will be mainly described.
 図12は、本実施例にかかる電力変換装置1の回路図である。本実施例の電力変換装置1は、インバータ2と降圧回路8から構成されている。 FIG. 12 is a circuit diagram of the power conversion apparatus 1 according to the present embodiment. The power conversion device 1 according to this embodiment includes an inverter 2 and a step-down circuit 8.
 降圧回路8は、半導体モジュール803とリアクトル15から構成されている。半導体モジュール803は、2つのスイッチング素子603が直列に接続されて構成されている。スイッチング素子603がIGBTである場合には、IGBTとは逆向きにダイオード903をそれぞれ並列接続する必要があるが、スイッチング素子603がMOSFETである場合には、ダイオード903としてMOSFETの寄生ダイオードを利用できる。2つのスイッチング素子603の接続点は、リアクトル15に接続されており、リアクトル15は、インバータ2に接続されている。なお、半導体モジュール803は、単体のみならず複数でもよく、複数のスイッチング素子803およびダイオード903を並列に接続して大容量化しても良い。また、インバータ2は前述した実施例に記載のインバータ2と同様である。降圧回路8の動作は、図11に記載の、実施例4にかかる昇圧回路3を動作させるためのブロック線図と同様であり、降圧回路8が出力するEcfと、ゲート・ドライバー17の入力電流Isの情報を基に、電圧・電流を制御し、出力する電圧値を調節する。 The step-down circuit 8 includes a semiconductor module 803 and a reactor 15. The semiconductor module 803 is configured by connecting two switching elements 603 in series. When the switching element 603 is an IGBT, it is necessary to connect the diodes 903 in parallel in the opposite direction to the IGBT. However, when the switching element 603 is a MOSFET, a parasitic diode of a MOSFET can be used as the diode 903. . A connection point between the two switching elements 603 is connected to the reactor 15, and the reactor 15 is connected to the inverter 2. Note that the semiconductor module 803 may be a plurality of semiconductor modules as well as a single unit, and a plurality of switching elements 803 and diodes 903 may be connected in parallel to increase the capacity. The inverter 2 is the same as the inverter 2 described in the above embodiment. The operation of the step-down circuit 8 is the same as the block diagram for operating the step-up circuit 3 according to the fourth embodiment shown in FIG. 11, and the Ecf output from the step-down circuit 8 and the input current of the gate driver 17 Based on the Is information, the voltage and current are controlled and the output voltage value is adjusted.
 本実施例によれば、モータ100の回転数が上昇にした際に交流電圧を下げることが低損失で実施できるため、銅損および鉄損の合計損失を最小化でき、モータ100を高効率に運転できる。 According to this embodiment, when the rotational speed of the motor 100 is increased, the AC voltage can be reduced with low loss, so that the total loss of copper loss and iron loss can be minimized, and the motor 100 can be made highly efficient. I can drive.
 本実施例では、実施例1と異なり、電力変換装置1がインバータ2と蓄電装置9から構成されている。以下、実施例1乃至5との相違点を中心に説明する。 In this embodiment, unlike the first embodiment, the power conversion device 1 includes an inverter 2 and a power storage device 9. Hereinafter, the difference from the first to fifth embodiments will be mainly described.
 図13は、本実施例にかかる電力変換装置1の回路図である。本実施例の電力変換装置1は、インバータ2と蓄電装置9から構成されており、電力変換装置1の高圧側は、リアクトル15を介して架線11に接続されている。インバータ2は、実施例1のインバータ2と同様である。蓄電装置9は、インバータ2のグランド側に接続されており、架線11の直流電圧に加えて、蓄電装置9の出力する直流電圧がインバータ2に印加される。蓄電装置9の動作は、図11に記載の、実施例4にかかる昇圧回路3を動作させるためのブロック線図と同様であり、蓄電装置9が出力するEcfと、ゲート・ドライバー17の入力電流Isの情報を基に、電圧・電流を制御し、出力する電圧値を調節する。 FIG. 13 is a circuit diagram of the power conversion apparatus 1 according to the present embodiment. The power conversion device 1 according to this embodiment includes an inverter 2 and a power storage device 9, and the high voltage side of the power conversion device 1 is connected to the overhead wire 11 via a reactor 15. The inverter 2 is the same as the inverter 2 of the first embodiment. The power storage device 9 is connected to the ground side of the inverter 2, and a DC voltage output from the power storage device 9 is applied to the inverter 2 in addition to the DC voltage of the overhead wire 11. The operation of the power storage device 9 is the same as the block diagram for operating the booster circuit 3 according to the fourth embodiment shown in FIG. 11, and the Ecf output from the power storage device 9 and the input current of the gate driver 17 Based on the Is information, the voltage and current are controlled and the output voltage value is adjusted.
 本実施例によれば、モータ100の回転数が上昇にした際に交流電圧を下げることができる。さらに、モータ100が減速する際に発生する発電電力を蓄電装置9に貯蔵でき、モータ100を高効率に運転できる。 According to this embodiment, the AC voltage can be lowered when the rotation speed of the motor 100 is increased. Furthermore, the generated power generated when the motor 100 decelerates can be stored in the power storage device 9, and the motor 100 can be operated with high efficiency.
 本実施例では、実施例1と異なり、電力変換装置1がインバータ2とコンバータ13から構成されている。以下、実施例1乃至6との相違点を中心に説明する。 In this embodiment, unlike the first embodiment, the power conversion device 1 includes an inverter 2 and a converter 13. Hereinafter, the difference from the first to sixth embodiments will be mainly described.
 図14は、本実施例にかかる電力変換装置1の回路図である。本実施例の電力変換装置1は、交流電源18から供給された電圧を、変圧器16により電圧の大きさを変えた上で、交流電圧を直流電圧に変換するコンバータ13に供給する。コンバータ13は、4つのスイッチング素子604から構成されている。スイッチング素子604がIGBTである場合には、IGBTとは逆向きにダイオード904をそれぞれ並列接続する必要があるが、スイッチング素子604がMOSFETである場合には、ダイオード904としてMOSFETの寄生ダイオードを利用できる。半導体モジュール804は、スイッチング素子604が直列に接続されて構成されている。2つの半導体モジュール804は、並列に接続されている。また、2つの半導体モジュール804各々のスイッチング素子604の接続点は、変圧器16と接続されている。コンバータ13は、インバータ2に接続されている。なお、インバータ2は、実施例1のインバータ2と同様である。 FIG. 14 is a circuit diagram of the power conversion apparatus 1 according to the present embodiment. The power conversion apparatus 1 of the present embodiment supplies the voltage supplied from the AC power supply 18 to the converter 13 that converts the AC voltage into a DC voltage after changing the magnitude of the voltage by the transformer 16. The converter 13 is composed of four switching elements 604. When the switching element 604 is an IGBT, it is necessary to connect the diodes 904 in parallel in the opposite direction to the IGBT. However, when the switching element 604 is a MOSFET, a parasitic diode of the MOSFET can be used as the diode 904. . The semiconductor module 804 is configured by connecting switching elements 604 in series. The two semiconductor modules 804 are connected in parallel. The connection point of the switching element 604 of each of the two semiconductor modules 804 is connected to the transformer 16. The converter 13 is connected to the inverter 2. The inverter 2 is the same as the inverter 2 of the first embodiment.
 本実施例の電力変換装置1は、インバータ2とコンバータ13から構成されており、コンバータ13の動作は、図11に記載の、実施例4にかかる昇圧回路3を動作させるためのブロック線図と同様であり、コンバータ13が出力するEcfと、ゲート・ドライバー17の入力電流Isの情報を基に、電圧・電流を制御し、出力する電圧値を調節する。 The power conversion device 1 according to the present embodiment includes an inverter 2 and a converter 13, and the operation of the converter 13 is a block diagram for operating the booster circuit 3 according to the fourth embodiment illustrated in FIG. 11. Similarly, based on Ecf output from the converter 13 and information on the input current Is of the gate driver 17, the voltage / current is controlled and the output voltage value is adjusted.
 本実施例によれば、モータ100の回転数が上昇にした際に交流電圧を下げることができ、モータ100を高効率に運転できる。 According to this embodiment, when the rotation speed of the motor 100 is increased, the AC voltage can be lowered, and the motor 100 can be operated with high efficiency.
 本実施例では、実施例1と異なり、コンデンサ5の電圧Ecfがモータ100の回転数が上昇した際に低下する運転領域を有する。以下、実施例1乃至7との相違点を中心に説明する。 In the present embodiment, unlike the first embodiment, the voltage Ecf of the capacitor 5 has an operating region in which the voltage decreases when the rotation speed of the motor 100 increases. Hereinafter, the difference from the first to seventh embodiments will be mainly described.
 図15は、本実施例にかかる電力変換装置内のコンデンサ電圧-速度、交流電圧-速度を示すグラフであり、電力変換装置1に搭載されているコンデンサ5の電圧とモータ100の回転数の関係およびモータ100の交流電圧の関係を示している。本実施例では、電力変換装置1に搭載されるコンデンサ5の電圧を変える手段として、実施例4の昇圧回路3、実施例5の降圧回路8、実施例6の蓄電池、または実施例7にかかる交流から直流に変換する電力変換装置(コンバータ)などを用いる。また、これらの電圧を変える手段の動作は、図11に記載の、実施例4にかかる昇圧回路3を動作させるためのブロック線図と同様である。 FIG. 15 is a graph showing capacitor voltage-speed and AC voltage-speed in the power converter according to the present embodiment, and the relationship between the voltage of the capacitor 5 mounted on the power converter 1 and the rotation speed of the motor 100. And the relationship of the alternating voltage of the motor 100 is shown. In the present embodiment, as means for changing the voltage of the capacitor 5 mounted on the power converter 1, the booster circuit 3 of the fourth embodiment, the step-down circuit 8 of the fifth embodiment, the storage battery of the sixth embodiment, or the seventh embodiment is applied. A power converter (converter) that converts AC to DC is used. The operation of the means for changing these voltages is the same as the block diagram for operating the booster circuit 3 according to the fourth embodiment shown in FIG.
 本実施例にかかるコンデンサ5の電圧Ecfは、モータ100の回転数が上昇した際に低下する運転領域を有し、同じ運転領域において、モータ100の交流電圧も低下する。 The voltage Ecf of the capacitor 5 according to the present embodiment has an operation region that decreases when the rotation speed of the motor 100 increases, and the AC voltage of the motor 100 also decreases in the same operation region.
 本実施例によれば、モータ100の回転数が上昇した際に交流電圧を下げることにより、銅損および鉄損の合計損失を最小化でき、モータ100を高効率に運転できる。 According to this embodiment, the total loss of the copper loss and the iron loss can be minimized by reducing the AC voltage when the rotation speed of the motor 100 is increased, and the motor 100 can be operated with high efficiency.
 本実施例は、実施例1乃至8いずれかの電力変換装置を搭載した鉄道車両である。以下、実施例1乃至8との相違点を中心に説明する。 This example is a railway vehicle equipped with the power conversion device according to any one of Examples 1 to 8. Hereinafter, the difference from the first to eighth embodiments will be mainly described.
 図16は、本実施例にかかる電気鉄道車両の交流電動機駆動システムの構成図であり、交流電動機駆動システムを用いた鉄道車両を示す。鉄道車両の交流電動機駆動システムでは、架線11から集電装置を介して電力が供給され、電力変換装置1を経由して交流電力がモータ100に供給されることによりモータ100を駆動する。モータ100は、鉄道車両の車軸と連結されており、モータ100により鉄道車両の走行が制御される。電気的なグランドはレール12を介して接続されている。なお、架線11の電圧は直流および交流のどちらでもよい。 FIG. 16 is a configuration diagram of an AC motor drive system for an electric railway vehicle according to the present embodiment, and shows a railway vehicle using the AC motor drive system. In an AC motor drive system for a railway vehicle, electric power is supplied from an overhead wire 11 via a current collector, and AC power is supplied to the motor 100 via the power converter 1 to drive the motor 100. The motor 100 is connected to the axle of the railway vehicle, and the traveling of the railway vehicle is controlled by the motor 100. The electrical ground is connected via the rail 12. The voltage of the overhead wire 11 may be either direct current or alternating current.
 本実施例によれば、鉄道車両を高効率に運転できる。 According to this embodiment, the railway vehicle can be driven with high efficiency.
 上記実施例では、誘導電動機を例に説明したが、これに限らず、永久磁石式電動機やスイッチトリラクタンスなどにも、本発明は適用できる。また、上記実施例では、鉄道車両を例に説明したが、電気自動車やハイブリッドカーなどにも、本発明は適用できる。 In the above embodiment, the induction motor has been described as an example. However, the present invention is not limited to this, and the present invention can also be applied to a permanent magnet type motor or a switched reluctance. In the above embodiment, the railway vehicle has been described as an example, but the present invention can also be applied to an electric vehicle, a hybrid car, and the like.
1 電力変換装置
2 インバータ
3 昇圧回路
4 直流電源
5 コンデンサ
8 降圧回路
9 蓄電装置
10 モータ制御部
11 架線
12 レール
13 コンバータ
14 車輪
15 リアクトル
16 変圧器
17 ゲート・ドライバー
18 交流電源
100 モータ
601 インバータのスイッチング素子
602 昇圧回路のスイッチング素子
603 降圧回路のスイッチング素子
604 コンバータのスイッチング素子
801 インバータの半導体モジュール
802 昇圧回路の半導体モジュール
803 降圧回路の半導体モジュール
804 コンバータの半導体モジュール
901 インバータのダイオード
902 昇圧回路のダイオード
903 降圧回路のダイオード
904 コンバータのダイオード
DESCRIPTION OF SYMBOLS 1 Power converter 2 Inverter 3 Booster circuit 4 DC power supply 5 Capacitor 8 Step-down circuit 9 Power storage device 10 Motor control part 11 Overhead wire 12 Rail 13 Converter 14 Wheel 15 Reactor 16 Transformer 17 Gate driver 18 AC power supply 100 Motor 601 Switching of inverter Element 602 Step-up circuit switching element 603 Step-down circuit switching element 604 Converter switching element 801 Inverter semiconductor module 802 Step-up circuit semiconductor module 803 Step-down circuit semiconductor module 804 Converter semiconductor module 901 Inverter diode 902 Step-up circuit diode 903 Step-down circuit diode 904 Converter diode

Claims (20)

  1.  電源から供給された電力を変換して交流回転電動機を駆動する電力変換装置であって、
     前記交流回転電動機の回転数の上昇に従って出力電圧を上昇させた後に、当該回転数の上昇に従って出力電圧を下降させることを特徴とする電力変換装置。
    A power conversion device that converts power supplied from a power source to drive an AC rotary motor,
    The power converter according to claim 1, wherein after increasing the output voltage according to an increase in the rotational speed of the AC rotary motor, the output voltage is decreased according to the increase in the rotational speed.
  2.  請求項1に記載の電力変換装置において、
     前記交流回転電動機の回転数の上昇に従って出力電圧が最大値に達した後に、当該回転数の上昇に従って出力電圧を下降させることを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    A power conversion device, wherein after the output voltage reaches a maximum value as the rotational speed of the AC rotary motor increases, the output voltage is decreased as the rotational speed increases.
  3.  請求項1~2のいずれかに記載の電力変換装置において、
     前記交流回転電動機の回転数の上昇に従って出力が下降する運転領域で、当該回転数の上昇に従って出力電圧を下降させることを特徴とする電力変換装置。
    The power conversion device according to any one of claims 1 and 2,
    The power converter according to claim 1, wherein the output voltage is decreased according to the increase in the rotation speed in an operation region where the output is decreased according to the increase in the rotation speed of the AC rotary motor.
  4.  請求項1~3のいずれかに記載の電力変換装置において、
     当該電力変換装置が、昇圧回路を搭載することを特徴とする電力変換装置。
    The power converter according to any one of claims 1 to 3,
    The power converter is equipped with a booster circuit.
  5.  請求項1~3のいずれかに記載の電力変換装置において、
     当該電力変換装置が、降圧回路を搭載することを特徴する電力変換装置。
    The power converter according to any one of claims 1 to 3,
    A power converter, wherein the power converter is equipped with a step-down circuit.
  6.  請求項1~3のいずれかに記載の電力変換装置において、
     当該電力変換装置が、蓄電池を搭載することを特徴する電力変換装置。
    The power converter according to any one of claims 1 to 3,
    The said power converter device mounts a storage battery, The power converter device characterized by the above-mentioned.
  7.  請求項1~3のいずれかに記載の電力変換装置において、
     前記電源が交流電源であり、
     当該電力変換装置が、前記交流電力を直流電力に変換するコンバータを搭載することを特徴とする電力変換装置。
    The power converter according to any one of claims 1 to 3,
    The power source is an AC power source;
    The said power converter device mounts the converter which converts the said alternating current power into direct-current power, The power converter device characterized by the above-mentioned.
  8.  請求項1~7のいずれかに記載の電力変換装置において、
     当該電力変換装置のインバータに並列接続されるコンデンサの電圧を、前記交流回転電動機の回転数の上昇に従って下降させることを特徴とする電力変換装置。
    The power conversion device according to any one of claims 1 to 7,
    The voltage of the capacitor | condenser connected in parallel with the inverter of the said power converter device is dropped according to the raise of the rotation speed of the said AC rotary motor, The power converter device characterized by the above-mentioned.
  9.  請求項1~8のいずれかに記載の電力変換装置において、
     前記交流回転電動機が、誘導機、永久磁石式同期電動機またはスイッチトリラクタンス電動機であることを特徴とする電力変換装置。
    The power conversion device according to any one of claims 1 to 8,
    The AC rotating motor is an induction machine, a permanent magnet synchronous motor, or a switched reluctance motor.
  10.  請求項1~9のいずれかに記載の電力変換装置を備える電気車。 An electric vehicle comprising the power conversion device according to any one of claims 1 to 9.
  11.  電源から供給された電力を、交流回転電動機を駆動する電力に変換する電力変換方法であって、
     前記交流回転電動機の回転数の上昇に従って出力電圧を上昇させた後に、当該回転数の上昇に従って出力電圧を下降させることを特徴とする電力変換方法。
    A power conversion method for converting electric power supplied from a power source into electric power for driving an AC rotary motor,
    A power conversion method comprising: increasing an output voltage according to an increase in the rotational speed of the AC rotating motor; and then decreasing the output voltage according to the increase in the rotational speed.
  12.  請求項11に記載の電力変換方法において、
     前記交流回転電動機の回転数の上昇に従って出力電圧が最大値に達した後に、当該回転数の上昇に従って出力電圧を下降させることを特徴とする電力変換方法。
    The power conversion method according to claim 11,
    A power conversion method, wherein after the output voltage reaches a maximum value as the rotational speed of the AC rotary motor increases, the output voltage is decreased according to the increase in the rotational speed.
  13.  請求項11~12のいずれかに記載の電力変換方法において、
     前記交流回転電動機の回転数の上昇に従って出力が下降する運転領域で、当該回転数の上昇に従って出力電圧を下降させることを特徴とする電力変換方法。
    The power conversion method according to any one of claims 11 to 12,
    A power conversion method, wherein an output voltage is decreased in accordance with an increase in the rotation speed in an operation region in which an output is decreased in accordance with an increase in the rotation speed of the AC rotary motor.
  14.  請求項11~13のいずれかに記載の電力変換方法において、
     前記電源からの電力を昇圧回路により昇圧して供給することを搭載することを特徴とする電力変換方法。
    The power conversion method according to any one of claims 11 to 13,
    A power conversion method comprising mounting the power from the power source after being boosted by a booster circuit.
  15.  請求項11~13のいずれかに記載の電力変換方法において、
     前記電源からの電力を降圧回路により降圧して供給することを特徴する電力変換方法。
    The power conversion method according to any one of claims 11 to 13,
    A power conversion method, wherein power from the power supply is stepped down and supplied by a step-down circuit.
  16.  請求項11~13のいずれかに記載の電力変換方法において、
     前記電源からの電力に、蓄電池の電圧を印加して供給することを特徴する電力変換方法。
    The power conversion method according to any one of claims 11 to 13,
    A power conversion method comprising applying a voltage of a storage battery to power from the power source and supplying the power.
  17.  請求項11~13のいずれかに記載の電力変換方法において、
     前記電源からの交流電力をコンバータにより直流電圧に変換して供給することを特徴とする電力変換方法。
    The power conversion method according to any one of claims 11 to 13,
    A power conversion method, wherein AC power from the power source is converted into a DC voltage by a converter and supplied.
  18.  請求項11~17のいずれかに記載の電力変換方法において、
     電力変換するインバータに並列接続されるコンデンサの電圧を、前記交流回転電動機の回転数の上昇に従って下降させることを特徴とする電力変換方法。
    The power conversion method according to any one of claims 11 to 17,
    A power conversion method characterized in that the voltage of a capacitor connected in parallel to an inverter for power conversion is lowered as the rotational speed of the AC rotary motor increases.
  19.  請求項11~18のいずれかに記載の電力変換方法において、
     前記交流回転電動機が、誘導機、永久磁石式同期電動機またはスイッチトリラクタンス電動機であることを特徴とする電力変換方法。
    The power conversion method according to any one of claims 11 to 18,
    The AC rotating motor is an induction machine, a permanent magnet synchronous motor, or a switched reluctance motor.
  20.  請求項11~19のいずれかに記載の電力変換方法により変換された電力を、電気車の交流回転電動機に供給して電気車を走行させる、電気車の走行方法。 An electric vehicle traveling method in which the electric vehicle is driven by supplying the electric power converted by the power conversion method according to any one of claims 11 to 19 to an AC rotary electric motor of the electric vehicle.
PCT/JP2017/047401 2017-03-28 2017-12-28 Power conversion device and power conversion method WO2018179662A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-062049 2017-03-28
JP2017062049A JP6751683B2 (en) 2017-03-28 2017-03-28 Power converter and power conversion method

Publications (1)

Publication Number Publication Date
WO2018179662A1 true WO2018179662A1 (en) 2018-10-04

Family

ID=63674590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047401 WO2018179662A1 (en) 2017-03-28 2017-12-28 Power conversion device and power conversion method

Country Status (2)

Country Link
JP (1) JP6751683B2 (en)
WO (1) WO2018179662A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091339A1 (en) * 2020-10-30 2022-05-05 三菱電機株式会社 Driving system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224860A (en) * 1999-01-28 2000-08-11 Matsushita Electric Ind Co Ltd Apparatus and system for power supply
JP2005027410A (en) * 2003-07-01 2005-01-27 Tsudakoma Corp Method and device for driving induction motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224860A (en) * 1999-01-28 2000-08-11 Matsushita Electric Ind Co Ltd Apparatus and system for power supply
JP2005027410A (en) * 2003-07-01 2005-01-27 Tsudakoma Corp Method and device for driving induction motor

Also Published As

Publication number Publication date
JP2018166349A (en) 2018-10-25
JP6751683B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
US9327604B2 (en) Electric vehicle control apparatus and electric vehicle
US7439697B2 (en) Motor driving device and automobile using the same
CN111434028B (en) Rotary electric machine control device
JP5365586B2 (en) Power converter
US7881081B1 (en) Systems and methods for reducing AC drive common-mode currents
EP2456066B1 (en) Low-inductance, high-efficiency induction machine
WO2022131019A1 (en) Power conversion device
WO2014157629A1 (en) Drive device for rotary electric machine
US10903772B2 (en) Multigroup-multiphase rotating-electric-machine driving apparatus
CN102792577B (en) Power conversion device
Ewanchuk et al. A Square-wave Controller for a high speed induction motor drive using a three phase floating bridge inverter
JP7312065B2 (en) Motor control device, electromechanical integrated unit, generator system, motor drive device and electric vehicle system
JP2012135141A (en) Motor drive system
JP2010130837A (en) Motor drive controller for railcar
WO2018179662A1 (en) Power conversion device and power conversion method
WO2014157374A1 (en) Drive device for rotary electric machine
JP4788949B2 (en) Variable speed drive device for induction motor
JP6634992B2 (en) Induction motor control device
US11909342B2 (en) Rotating electrical machine control device
Tang et al. A novel current angle control scheme in a current source inverter fed surface-mounted permanent magnet synchronous motor drive
Yi et al. A quasi-Z-source integrated multi-port power converter with reduced capacitance for switched reluctance motor drives
JP2016086488A (en) Driving device of railway vehicle
KR20200070859A (en) Apparatus and method for pmsm drive control using torque predictive control
Koiwa et al. Efficiency evaluation of a matrix converter with a boost-up AC chopper in an adjustable drive system
JP7192258B2 (en) Rotating electric machine for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904033

Country of ref document: EP

Kind code of ref document: A1