WO2018179626A1 - Vehicle control system, vehicle control method, vehicle control device, and vehicle control program - Google Patents

Vehicle control system, vehicle control method, vehicle control device, and vehicle control program Download PDF

Info

Publication number
WO2018179626A1
WO2018179626A1 PCT/JP2017/045722 JP2017045722W WO2018179626A1 WO 2018179626 A1 WO2018179626 A1 WO 2018179626A1 JP 2017045722 W JP2017045722 W JP 2017045722W WO 2018179626 A1 WO2018179626 A1 WO 2018179626A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
state
unit
determination unit
control
Prior art date
Application number
PCT/JP2017/045722
Other languages
French (fr)
Japanese (ja)
Inventor
洋斗 山岡
賢 華山
睦 中塚
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201780088932.8A priority Critical patent/CN110461674B/en
Priority to JP2019508572A priority patent/JP6838139B2/en
Publication of WO2018179626A1 publication Critical patent/WO2018179626A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a vehicle control system, a vehicle control method, a vehicle control device, and a vehicle control program.
  • the present invention has been made in view of such circumstances, and can be changed to an appropriate control mode based on the state of the equipment of the vehicle, a vehicle control method, a vehicle control device, and a vehicle.
  • One of the purposes is to provide a control program.
  • a traveling control unit that executes traveling control of a vehicle without depending on a driving operation of an occupant, a state determining unit that determines a state of a device used for execution of traveling control by the traveling control unit, and the state determination And a degree determining unit that determines a degree of traveling control by the traveling control unit based on the state of the device determined by the unit.
  • the degree determination unit determines that the state of the device has been lowered by the state determination unit.
  • the degree determination unit determines the degree of the vehicle traveling control by the traveling control unit. The degree is determined to be lower than the degree of travel control.
  • an actuator that drives, brakes, or steers the vehicle, a communication unit that communicates with a device in travel control of the vehicle, and a reduction in the state of the vehicle with respect to the occupant
  • a surrounding state acquisition unit that acquires a surrounding state of the vehicle, an operating state determination unit that acquires an operating state of an actuator that executes the traveling control, and a reception unit that receives an operation of the occupant
  • An operation state determination unit that acquires the state of the peripheral state acquisition unit, the operation state determination unit, or the operation state determination unit each provided in a plurality of systems, the state determination unit is the peripheral
  • the status acquisition unit, the operating state determination unit, or the operation state determination unit acquires the state of each system, the notification unit, among the states determined by the state determination unit, the peripheral status acquisition unit, When it is determined that the state of at least one system among the states of the respective systems of the operating state determination unit or the operation state determination unit is reduced, manual operation is performed on the occupant. And it performs a notification to do.
  • the information processing apparatus further includes a reception unit that receives an instruction to execute or stop travel control on the vehicle, the state determination unit acquires a state of the reception unit, and the notification unit includes the state When the determination unit determines that the instruction cannot be input from the reception unit, the occupant is notified that manual operation is to be performed.
  • the state determination unit acquires the state of the reception unit, and the traveling control unit receives the reception acquired by the state determination unit in a state where the traveling control is not performed.
  • the traveling control unit receives the reception acquired by the state determination unit in a state where the traveling control is not performed.
  • the vehicle further includes a travel state determination unit (170) for determining a travel state of the vehicle, and the travel control unit is stopped by the travel state determination unit. When it is determined that the vehicle is in a state, the current traveling control of the vehicle is maintained.
  • (9) A vehicle in which the in-vehicle computer executes vehicle travel control without depending on the driving operation of an occupant, and changes the degree of the travel control based on the state of a device used for execution of the vehicle travel control. It is a control method.
  • a storage device that stores information and a hardware processor that executes a program stored in the storage device, the hardware processor performing vehicle travel control regardless of the driving operation of the occupant.
  • the vehicle control device is configured to execute and determine the degree of the travel control based on the state of the device used for executing the travel control.
  • the in-vehicle computer is caused to execute the vehicle travel control without depending on the driving operation of the occupant, and the degree of the travel control is changed based on the state of the device used for executing the vehicle travel control. It is a vehicle control program.
  • the takeover request can be issued while continuing the control. Therefore, the occupant can take over the manual operation smoothly without suddenly switching the control.
  • FIG. 1 It is a figure showing an example of composition of vehicle system 1 of an embodiment. It is a figure which shows a mode that the relative position and attitude
  • FIG. It is a figure which shows a mode that a target track is produced
  • FIG. It is a figure which shows an example of the operation control degree determination table 191. It is a figure which shows an example of the traveling control table 192. It is a flowchart which shows an example of the flow of the traveling control process of embodiment. It is a figure showing an example of hardware constitutions of automatic operation control unit 100 of an embodiment.
  • the vehicle control system is applied to an autonomous driving vehicle.
  • the vehicle is driven by automatically controlling at least one of acceleration / deceleration or steering of the vehicle without depending on the driving operation of the occupant.
  • the driving support device such as ALC (Auto Lane Changing), LSP (Low Speed Car Passing) is operating, or automatic driving that automatically performs lane change, merging, and branching. included.
  • FIG. 1 is a diagram illustrating a configuration example of a vehicle system 1 according to the embodiment.
  • a vehicle on which the vehicle system 1 is mounted (hereinafter referred to as a vehicle M) is, for example, a vehicle such as a two-wheel, three-wheel, or four-wheel vehicle, and a drive source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, These are combinations.
  • the electric motor operates using electric power generated by a generator connected to the internal combustion engine or electric discharge power of a secondary battery or a fuel cell.
  • the vehicle system 1 includes, for example, a camera 10, a radar device 12, a finder 14, an object recognition device 16, a communication device 20, an HMI (Human Machine Interface) 30, a seat device 40, a navigation device 50, An MPU (Micro-Processing Unit) 60, a vehicle sensor 70, a driving operator 80, a vehicle interior camera 90, an automatic driving control unit 100, a traveling driving force output device 200, a brake device 210, and a steering device 220.
  • These devices are connected to each other by a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like.
  • the communication line and the communication network are examples of the “communication unit”.
  • the configuration illustrated in FIG. 1 is merely an example, and a part of the configuration may be omitted, or another configuration such as a power supply unit may be added.
  • the “vehicle control system” includes, for example, the HMI 30, the vehicle sensor 70, the driving operator 80, the automatic driving control unit 100, the travel driving force output device 200, the brake device 210, and the steering device 220. including.
  • the automatic driving control unit 100 is an example of a “vehicle control device”.
  • the camera 10 is a digital camera using a solid-state image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • a solid-state image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • One or a plurality of cameras 10 are attached to any part of the vehicle M on which the vehicle system 1 is mounted.
  • the camera 10 When imaging the front, the camera 10 is attached to the upper part of the front windshield, the rear surface of the rearview mirror, or the like.
  • the camera 10 When imaging the rear, the camera 10 is attached to an upper part of the rear windshield, a back door, or the like.
  • the camera 10 is attached to a door mirror or the like.
  • the camera 10 periodically and repeatedly images the periphery of the vehicle M.
  • the camera 10 may be a stereo camera.
  • the radar device 12 radiates a radio wave such as a millimeter wave around the vehicle M and detects a radio wave (reflected wave) reflected by the object to detect at least the position (distance and azimuth) of the object.
  • a radio wave such as a millimeter wave around the vehicle M
  • a radio wave reflected wave
  • One or a plurality of radar devices 12 are attached to any part of the vehicle M.
  • the radar device 12 may detect the position and velocity of the object by FMCW (Frequency Modulated Continuous Wave) method.
  • FMCW Frequency Modulated Continuous Wave
  • the finder 14 is LIDAR (Light Detection and Ranging or Laser Imaging Detection and Ranging) that measures the scattered light with respect to the irradiation light and detects the distance to the target.
  • LIDAR Light Detection and Ranging or Laser Imaging Detection and Ranging
  • One or a plurality of finders 14 are attached to any part of the vehicle M.
  • the object recognition device 16 performs sensor fusion processing on detection results of some or all of the camera 10, the radar device 12, and the finder 14 to recognize the position, type, speed, and the like of the object.
  • the object recognition device 16 outputs the recognition result to the automatic driving control unit 100.
  • the communication device 20 communicates with other vehicles existing around the vehicle M using, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), etc. It communicates with various server devices via a station.
  • a cellular network for example, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), etc. It communicates with various server devices via a station.
  • the HMI 30 includes, for example, a first notification unit 31, a second notification unit 32, a notification unit 33, and a reception unit 34.
  • reports that the state of the vehicle M fell with respect to the passenger
  • the first notification unit 31 include a hydraulic warning light, a brake warning light, an SRS (Supplemental Restraint System) airbag system warning light, an engine warning light, an ABS (Anti-lock Brake System) warning light, a transmission warning light, and the like. is there.
  • reports the state of the traveling control of the vehicle M with respect to a passenger
  • the second notification unit 32 includes, for example, a lamp that is turned on when the traveling control of the vehicle M is automatic driving.
  • the notification unit 33 notifies the occupant of various information. For example, the notification unit 33 notifies information indicating that the occupant performs manual driving based on the degree level determined by the degree determination unit 180.
  • the notification unit 33 is, for example, various display devices, speakers, buzzers, or the like.
  • the accepting unit 34 accepts an input operation by an occupant.
  • the reception unit 34 is, for example, a touch panel, various operation switches, keys, and the like.
  • the reception unit 34 includes, for example, a changeover switch that switches between automatic driving and manual driving of the vehicle M.
  • the seat device 40 is a seat (seat) on which an occupant of the vehicle M is seated.
  • the seat device 40 includes a driver's seat to be seated for manually driving the vehicle M using the driving operator 80, a passenger seat next to the driver's seat, a rear seat behind the driver's seat and the passenger seat, and the like. It is. *
  • the navigation device 50 includes, for example, a GNSS (Global Navigation Satellite System) receiver 51, a navigation HMI 52, and a route determination unit 53.
  • the first map information 54 is stored in a storage device such as an HDD (Hard Disk Drive) or a flash memory. Holding.
  • the GNSS receiver 51 specifies the position of the vehicle M based on the signal received from the GNSS satellite. The position of the vehicle M may be specified or supplemented by an INS (Inertial Navigation System) using the output of the vehicle sensor 70.
  • the navigation HMI 52 includes a display device, a speaker, a touch panel, keys, and the like. The navigation HMI 52 may be partly or wholly shared with the HMI 30 described above.
  • the route determination unit 53 for example, a route (for example, a destination) from the position of the vehicle M specified by the GNSS receiver 51 (or any input position) to the destination input by the occupant using the navigation HMI 52. (Including information on waypoints when traveling to the ground) is determined with reference to the first map information 54.
  • the first map information 54 is information in which a road shape is expressed by, for example, a link indicating a road and nodes connected by the link.
  • the first map information 54 may include road curvature and POI (Point Of Interest) information.
  • the route determined by the route determination unit 53 is output to the MPU 60.
  • the navigation device 50 may perform route guidance using the navigation HMI 52 based on the route determined by the route determination unit 53.
  • the navigation device 50 may be realized, for example, by a function of a terminal device such as a smartphone or a tablet terminal held by the user.
  • the navigation device 50 may acquire the route returned from the navigation server by transmitting the current position and the destination to the navigation server via the communication device 20.
  • the MPU 60 functions as the recommended lane determining unit 61 and holds the second map information 62 in a storage device such as an HDD or a flash memory.
  • the recommended lane determining unit 61 divides the route provided from the navigation device 50 into a plurality of blocks (for example, every 100 [m] with respect to the vehicle traveling direction), and refers to the second map information 62 for each block. Determine the recommended lane.
  • the recommended lane determining unit 61 performs determination such as what number of lanes from the left to travel.
  • the recommended lane determining unit 61 determines a recommended lane so that the vehicle M can travel on a reasonable travel route for proceeding to the branch destination when there is a branch point, a junction point, or the like on the route.
  • the second map information 62 is map information with higher accuracy than the first map information 54.
  • the second map information 62 includes, for example, information on the center of the lane or information on the boundary of the lane.
  • the second map information 62 may include road information, traffic regulation information, address information (address / postal code), facility information, telephone number information, and the like.
  • Road information includes information indicating the type of road such as expressway, toll road, national road, prefectural road, number of road lanes, emergency parking area, width of each lane, road gradient, road position (longitude , Latitude and height (three-dimensional coordinates), lane curve curvature, lane merging and branch point positions, road markings, and other information.
  • the second map information 62 may be updated at any time by accessing another device using the communication device 20.
  • the vehicle sensor 70 includes a vehicle speed sensor that detects the speed of the vehicle M, an acceleration sensor that detects acceleration, a yaw rate sensor that detects angular velocity around the vertical axis, a direction sensor that detects the direction of the vehicle M, and the like.
  • the driving operation element 80 includes, for example, an accelerator pedal, a brake pedal, a shift lever, a steering wheel, and other operation elements.
  • a sensor that detects the amount of operation or the presence or absence of an operation is attached to the driving operator 80, and the detection result is the automatic driving control unit 100, or the traveling driving force output device 200, the brake device 210, and the steering device. 220 is output to one or both of 220.
  • the vehicle interior camera 90 images the upper body around the face of the occupant seated on the seat device 40.
  • the vehicle interior camera 90 periodically images the occupant.
  • a captured image of the vehicle interior camera 90 is output to the automatic driving control unit 100.
  • the automatic operation control unit 100 includes, for example, a first control unit 120, a second control unit 140, an interface control unit 150, a device state determination unit 160, a travel state determination unit 170, a degree determination unit 180, and a storage. Part 190.
  • the first control unit 120, the second control unit 140, the interface control unit 150, the device state determination unit 160, the travel state determination unit 170, and the degree determination unit 180 are hardware such as a CPU (Central Processing Unit). This is realized by a wear processor executing a program (software).
  • Some or all of the functional units of the first control unit 120, the second control unit 140, the interface control unit 150, the device state determination unit 160, the travel state determination unit 170, and the degree determination unit 180 are LSI (Large Scale). Integration), application specific integrated circuit (ASIC), field-programmable gate array (FPGA), or the like, or may be realized by cooperation of software and hardware.
  • the device state determination unit 160 is an example of a “state determination unit”.
  • the 1st control part 120 is provided with the external world recognition part 121, the own vehicle position recognition part 122, and the action plan production
  • the external world recognition unit 121 is an example of a “peripheral situation acquisition unit”.
  • the external recognition unit 121 may include a plurality of external recognition units in consideration of safety.
  • the external environment recognition unit 121 Based on information input from the camera 10, the radar device 12, and the finder 14 via the object recognition device 16, the external environment recognition unit 121 recognizes the positions, speeds, accelerations, and the like of surrounding vehicles.
  • the position of the surrounding vehicle may be represented by a representative point such as the center of gravity or corner of the surrounding vehicle, or may be represented by an area expressed by the outline of the surrounding vehicle.
  • the “state” of the surrounding vehicle may include acceleration and jerk of the surrounding vehicle, or “behavioral state” (for example, whether or not the lane is changed or is about to be changed).
  • the outside world recognition unit 121 may recognize the positions of guardrails, utility poles, parked vehicles, persons such as pedestrians, and other objects in addition to surrounding vehicles.
  • the own vehicle position recognition unit 122 recognizes, for example, the lane (traveling lane) in which the vehicle M is traveling, and the relative position and posture of the vehicle M with respect to the traveling lane.
  • the own vehicle position recognition unit 122 for example, a road around the vehicle M recognized from a pattern of road marking lines (for example, an array of solid lines and broken lines) obtained from the second map information 62 and an image captured by the camera 10.
  • the travel lane is recognized by comparing the lane marking pattern. In this recognition, the position of the vehicle M acquired from the navigation device 50 and the processing result by INS may be taken into consideration.
  • FIG. 2 is a diagram illustrating how the vehicle position recognition unit 122 recognizes the relative position and posture of the vehicle M with respect to the travel lane L1.
  • the own vehicle position recognizing unit 122 for example, an angle ⁇ formed with respect to a line connecting the deviation point OS of the reference point (for example, the center of gravity) of the vehicle M from the travel lane center CL and the travel lane center CL in the traveling direction of the vehicle M. Is recognized as the relative position and posture of the vehicle M with respect to the traveling lane L1.
  • the vehicle position recognition unit 122 may recognize the position of the reference point of the vehicle M with respect to any side end portion of the travel lane L1 as the relative position of the vehicle M with respect to the travel lane.
  • the relative position of the vehicle M recognized by the own vehicle position recognition unit 122 is provided to the recommended lane determination unit 61 and the action plan generation unit 123.
  • the action plan generation unit 123 generates an action plan for the vehicle M to perform automatic driving on a destination or the like. For example, the action plan generation unit 123 determines events that are sequentially executed in the automatic driving control so as to travel in the recommended lane determined by the recommended lane determination unit 61 and to cope with the surrounding situation of the vehicle M. To do.
  • the event in the automatic driving of the embodiment includes, for example, a constant speed traveling event that travels in the same traveling lane at a constant speed, a lane change event that changes the traveling lane of the vehicle M, an overtaking event that overtakes the preceding vehicle, and a preceding vehicle Follow-up event to follow and run, Join event to join vehicles at junction, Branch event to run vehicle M in target direction at road junction, Emergency stop event to stop vehicle M emergency stop, Autonomous driving finished Then, there is a switching event for switching to manual operation.
  • actions for avoidance may be planned based on the surrounding situation of the vehicle M (the presence of surrounding vehicles and pedestrians, lane narrowing due to road construction, etc.).
  • the action plan generation unit 123 generates a target track on which the vehicle M will travel in the future.
  • the target trajectory includes, for example, a velocity element.
  • the target trajectory is generated as a set of target points (orbit points) that should be set at a plurality of future reference times for each predetermined sampling time (for example, about 0 comma [sec]) and reach these reference times. The For this reason, when the space
  • FIG. 3 is a diagram illustrating a state in which a target track is generated based on the recommended lane.
  • the recommended lane is set so as to be convenient for traveling along the route to the destination.
  • the action plan generation unit 123 activates a lane change event, a branch event, a merge event, or the like when it reaches a predetermined distance before the recommended lane switching point (may be determined according to the type of event). If it becomes necessary to avoid an obstacle during the execution of each event, an avoidance trajectory is generated as shown in the figure.
  • the action plan generation unit 123 generates a plurality of target trajectory candidates, and selects an optimal target trajectory that matches the route to the destination at that time, based on safety and efficiency.
  • the second control unit 140 includes, for example, a travel control unit 141 and a switching control unit 142.
  • the travel control unit 141 executes vehicle travel control by automatic driving.
  • the traveling control unit 141 causes the vehicle M to pass through the target trajectory generated by the action plan generating unit 123 as the automatic driving control in a state where there is no operation instruction from the driving operator 80.
  • the traveling driving force output device 200, the brake device 210, and the steering device 220 are controlled.
  • the traveling control unit 141 changes the degree of traveling control for the vehicle M according to the degree level determined by the degree determining unit 180.
  • the switching control unit 142 switches the driving mode of the vehicle M based on the behavior plan generated by the behavior plan generation unit 123. For example, the switching control unit 142 switches the operation mode from manual operation to automatic operation at a scheduled start point of automatic operation. The switching control unit 142 switches the operation mode from the automatic operation to the manual operation at the scheduled end point of the automatic operation.
  • the switching control unit 142 may switch between automatic driving and manual driving based on a switching signal input from an automatic driving switch included in the HMI 30.
  • the switching control unit 142 switches the driving mode of the vehicle M from automatic driving to manual driving based on an operation for instructing acceleration, deceleration, or steering of the driving operator 80 such as an accelerator pedal, a brake pedal, and a steering wheel. Also good.
  • input information from the driving operator 80 is directly output to the traveling driving force output device 200, the brake device 210, and the steering device 220.
  • Input information from the driving operator 80 may be output to the travel driving force output device 200, the brake device 210, and the steering device 220 via the automatic driving control unit 100.
  • Each ECU (Electronic Control Unit) of the travel driving force output device 200, the brake device 210, and the steering device 220 performs respective operations based on input information from the driving operator 80 and the like.
  • the interface control unit 150 causes the state of equipment used for execution of travel control, the travel state during automatic operation or manual operation of the vehicle M, the timing at which automatic operation and manual operation are switched to each other, and causes the occupant to perform manual operation.
  • the notification about the information or the like is output to the HMI 30.
  • the interface control unit 150 may output information received by the HMI 30 to the first control unit 120 or the device state determination unit 160.
  • the device state determination unit 160 acquires the state of the device used for execution of travel control by the travel control unit 141.
  • the state of the device is, for example, on / off of the power source of the device, the operating state of the device, and an output result from the device.
  • the state of the device is an operation state of each system when there are a plurality of systems of the same device.
  • the device state determination unit 160 determines whether or not the state of the device has decreased. Details of the function of the device state determination unit 160 will be described later.
  • the traveling state determination unit 170 determines the traveling state of the vehicle M. For example, the traveling state determination unit 170 determines whether the vehicle M is performing traveling control by automatic driving or traveling control by manual driving. The traveling state determination unit 170 determines whether or not the vehicle M is in a state determined to be stopped from the vehicle speed detected by the vehicle speed sensor. The state determined to be stopped includes, for example, a state where the vehicle M is traveling not only at a speed of 0 [km / h] but also at a low speed of 5 [km / h] or less. The traveling state determination unit 170 determines that the vehicle M is traveling when the vehicle M is not in a state where it is determined that the vehicle M is stopped or when the vehicle M is traveling at a speed exceeding 5 km / h. Also good.
  • the degree determination unit 180 determines the degree of traveling control for the vehicle M based on the state of the device determined by the device state determination unit 160 and the traveling state of the vehicle M determined by the traveling state determination unit 170. For example, when the travel control such as automatic driving is being executed and the device state determination unit 160 determines that the state of the device has decreased, the degree determination unit 180 uses the travel control unit 141. The degree of traveling control of the vehicle M is determined to be lower than the current degree of traveling control.
  • the storage unit 190 stores information such as a driving control degree determination table 191 and a travel control table 192, for example. Details of the operation control degree determination table 191 and the travel control table 192 will be described later.
  • the storage unit 190 is realized by a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), a flash memory, or the like.
  • a program executed by the hardware processor may be stored in the storage unit 190 in advance, or may be downloaded from an external device via an in-vehicle Internet facility or the like.
  • the program may be installed in the storage unit 190 by attaching a portable storage medium storing the program to a drive device (not shown).
  • the traveling driving force output device 200 performs driving for causing the vehicle M to travel.
  • the brake device 210 brakes the vehicle M.
  • the steering device 220 steers the vehicle M.
  • FIG. 4 is a diagram illustrating a configuration example of the travel driving force output device 200, the brake device 210, and the steering device 220.
  • a throttle motor, an electric motor, and an assist motor described below are typical actuators that the vehicle M executes travel control.
  • the traveling driving force output device 200 outputs a traveling driving force (torque) for the vehicle M to travel to the driving wheels.
  • the travel driving force output device 200 includes, for example, an engine that is a combination of an internal combustion engine, an electric motor, and a transmission, a throttle motor that controls the driving amount of the engine, and an engine ECU that controls the throttle motor.
  • the engine ECU drives the throttle motor according to the information input from the travel control unit 141 or the information input from the driving operator 80, and outputs the travel driving force of the engine to the drive wheels.
  • the brake device 210 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU that controls the electric motor.
  • the brake ECU controls the electric motor in accordance with the information input from the travel control unit 141 or the information input from the driving operation element 80 so that the brake torque corresponding to the braking operation is output to each wheel.
  • the brake device 210 may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal included in the driving operation element 80 to the cylinder via the master cylinder.
  • the brake device 210 is not limited to the configuration described above, and controls the hydraulic actuator in accordance with information input from the travel control unit 141 or information input from the driving operator 80, and transmits the hydraulic pressure of the master cylinder to the cylinder.
  • An electronically controlled hydraulic brake device may be used.
  • the brake device 210 may include a plurality of brake devices in consideration of safety.
  • the steering device 220 includes, for example, a rack and pinion mechanism that changes the direction of the steered wheels, an assist motor that applies a force to the rack and pinion mechanism, and a steering ECU that controls the assist motor.
  • the steering ECU drives the assist motor and changes the direction of the steered wheels in accordance with information input from the travel control unit 141 or information input from the driving operator 80.
  • FIG. 5 is a diagram illustrating a configuration example of the device state determination unit 160.
  • the device state determination unit 160 includes, for example, a communication state determination unit 161, an operation state determination unit 162, and an operation state determination unit 163.
  • the communication state determination unit 161 acquires the state of a multiplex communication line, a serial communication line, and a wireless communication network that connect devices in the vehicle M.
  • the communication state determination unit 161 determines that the communication state is normal when, for example, a signal (for example, an alive counter) transmitted from a connection destination connected via a communication line or a communication network can be periodically received. To do. For example, when the alive counter has not been acquired from the communication line or the communication network for a predetermined time or more, the communication state determination unit 161 determines that the connection destination device, the communication line, or the communication network has been blocked or reduced.
  • the communication state determination unit 161 may determine that the power supply is cut off or lowered when there is no signal from the communication line connected to the power supply unit or when the power from the power supply unit is lower than a predetermined value.
  • the operating state determination unit 162 determines, for example, the operating state of an actuator that executes traveling control. For example, the operating state determination unit 162 acquires the operating state of the throttle motor under the control of the engine ECU of the traveling driving force output device 200, and the throttle motor is driven with a driving amount corresponding to the control amount instructed by the engine ECU. In this case, it is determined that the operating state of the throttle motor is normal. The operating state determination unit 162 determines the state of the throttle motor when the throttle motor is not operating with respect to the control amount instructed by the engine ECU or when the throttle motor is not driven with a driving amount corresponding to the control amount. Is determined to have decreased. The state of the electric motor in the brake device 210 and the assist motor in the steering device 220 are similarly determined. The operation state determination unit 162 may determine that the state of the corresponding ECU is lowered when the engine ECU, the brake ECU, or the steering ECU does not operate.
  • the operation state determination unit 163 receives the state of the reception unit 34 and determines the state. For example, the operation state determination unit 163 determines that the operation state is normal when receiving one selection instruction from an operation button that can select only one of a plurality of selections, and selects a plurality of selections. When the instruction is accepted, it is determined that the operation state is lowered. For example, the operation state determination unit 163 receives a signal from the changeover switch when the changeover switch has been on for a predetermined time or more, or when a part of the signal continuously transmitted from the reception unit 34 is interrupted. It may be determined that the instruction cannot be input, and it may be determined that the operation state of the changeover switch is lowered.
  • the operation state determination unit 163 acquires the state in the first notification unit 31, the second notification unit 32, or the notification unit 33. For example, when the notification or notification is not performed, or the content of the notification or notification is incorrect. In this case, it may be determined that the state of the corresponding device is deteriorated.
  • At least one of the communication state determination unit 161, the operation state determination unit 162, and the operation state determination unit 163 may include a plurality of systems in consideration of safety. .
  • the device state determination unit 160 acquires and determines the state of the device in each system.
  • the degree determination unit 180 refers to the driving control degree determination table 191 stored in the storage unit 190 and determines the degree of automatic driving of the corresponding vehicle M based on the state of the device determined by the device state determination unit 160. To do.
  • FIG. 6 is a diagram illustrating an example of the operation control degree determination table 191.
  • the operation control degree determination table 191 illustrated in FIG. 6 is information in which the degree level is associated with the device state determined by the device state determination unit 160.
  • the degree level is information for identifying the degree of traveling control.
  • the determination result by the device state determination unit 160 indicates that the degree determination unit 180 indicates that “the actuator state is reduced”, “the communication unit is blocked or reduced”, “the first notification unit 31 is reduced”, “second”
  • the level is determined to be “first degree”.
  • the first degree refers to, for example, switching to manual operation by an occupant without performing automatic operation of the vehicle M, or performing travel control such as emergency stop.
  • the degree determination unit 180 is a case where the degree level does not correspond to the first degree condition, and “the state of the notification unit 33 is reduced”, “the state of the driving operator 80 is reduced”, or “ During automatic driving, if the automatic driving is turned off or the switch that switches the degree of automatic driving does not respond, the driving control level is determined to be "second degree" To do. In the second degree, the vehicle M can be continuously driven automatically, but travel control is switched to manual operation by the occupant.
  • the degree determination unit 180 may include at least one of the states of each system when each of the external environment recognition unit 121, the operation state determination unit 162, and the operation state determination unit 163 is provided in a plurality of systems. When it is determined that the state of the vehicle is lowered, the degree of travel control may be determined to be “second degree”.
  • the degree determination unit 180 is a state in which the determination result by the traveling state determination unit 170 is determined to be “the vehicle M is stopped”, and the determination result by the device state determination unit 160 is “first degree or second degree”. If the condition of “degree device state” is satisfied, or if the condition “does not operate even if the changeover switch is pressed during manual operation” is satisfied, the degree of travel control is determined to be “third degree”.
  • the third degree refers to, for example, running control that suppresses switching to automatic driving when automatic driving is not being executed. In this case, the degree determination unit 180 maintains the third degree even when a travel control execution instruction is received by the changeover switch.
  • the above-described first to third degree levels are lower than the degree of normal automatic driving control.
  • the degree determination unit 180 may determine another degree level based on the determination results by the device state determination unit 160 and the traveling state determination unit 170.
  • the degree determination unit 180 outputs information to the occupant that manual operation is performed to the interface control unit 150.
  • the interface control unit 150 notifies the occupant of information indicating that manual operation is performed to the occupant from the notification unit 33.
  • the traveling control unit 141 refers to the traveling control table 192 stored in the storage unit 190 based on the degree determined by the degree determining unit 180 and performs traveling control corresponding to the degree level.
  • FIG. 7 is a diagram illustrating an example of the travel control table 192.
  • the traveling control unit 141 refers to the traveling control table 192, and executes the items in the time series in order from the smallest number among items whose traveling control content is ON.
  • the traveling control unit 141 can perform traveling control based on the first degree so as to perform deceleration control or the like based on vehicle determination when the state of the device is reduced. Since the traveling control unit 141 can execute the traveling control based on the second degree and can notify the occupant of the driving handover request when the state of the device related to the execution of the traveling control is lowered, the traveling control unit 141 can be manually operated appropriately. It can be taken over by driving. The travel control unit 141 executes the travel control based on the third degree, thereby suppressing the travel control from being performed in a state where the state of the device is reduced, and reducing the passenger's uncomfortable feeling. Can do.
  • FIG. 8 is a flowchart illustrating an example of a flow of travel control processing according to the embodiment.
  • the device state determination unit 160 acquires the state of the device of the vehicle M (step S100).
  • the traveling state determination unit 170 determines whether or not the vehicle M is executing automatic driving (step S102).
  • the traveling state determination unit 170 determines whether the vehicle M is traveling (in a traveling state) from the vehicle speed detected by the vehicle speed sensor of the vehicle M. It is determined whether or not (step S104).
  • the device state determination unit 160 determines whether or not the state of the vehicle M satisfies the first degree condition (step S106). When it is determined that the first degree condition is satisfied, the degree determination unit 180 outputs the control content corresponding to the first degree to the travel control unit 141 (step S108). Next, the traveling control unit 141 performs traveling control based on the first degree (step S110).
  • the device state determination unit 160 determines whether or not the second degree condition is satisfied (step S112).
  • the degree determination unit 180 outputs the control content corresponding to the second degree to the travel control unit 141 (step S114).
  • the traveling control unit 141 performs traveling control based on the second degree (step S116).
  • step S118 when it is determined that the vehicle state does not satisfy the second degree condition, the device state determination unit 160 determines whether or not the third degree condition is satisfied (step S118). The process of step S118 is also performed when it is determined in step S102 that the vehicle is not automatically driving, or when it is determined that the vehicle is not running in step S104.
  • the degree determination unit 180 outputs the control content corresponding to the third degree to the travel control unit 141 (step S120).
  • the traveling control unit 141 performs traveling control based on the third degree (step S122).
  • the travel control unit 141 ends the travel control process of the embodiment. Is determined (S124). If it is determined not to end the traveling control, the process returns to step S100. If it is determined that the traveling control process is to be terminated, the process of this flowchart is terminated.
  • the device state determination unit 160 may add a time condition when determining whether or not the state of the device has decreased. For example, the device state determination unit 160 determines that the state of the device is low when the state of the device does not return to the original state even after a predetermined time has elapsed since the state of the device has decreased. Thereby, for example, when the detection result by a sensor or the like used for external recognition or the like temporarily decreases due to the influence of rain, snow, dirt, or the like, it is possible to suppress frequent changes in travel control. Therefore, the traveling control of the vehicle M can be stabilized.
  • the vehicle system 1 includes the travel control unit that executes the travel control of the vehicle without depending on the driving operation of the occupant, and the state of the equipment that is used to execute the travel control by the travel control unit.
  • the travel control unit executes the travel control of the vehicle without depending on the driving operation of the occupant
  • the state of the equipment that is used to execute the travel control by the travel control unit.
  • FIG. 9 is a diagram illustrating an example of a hardware configuration of the automatic operation control unit 100 according to the embodiment.
  • the automatic operation control unit 100 includes a communication controller 100-1, a CPU 100-2, a RAM 100-3, a ROM 100-4, a storage device 100-5 such as a flash memory and an HDD, and a drive device 100-6. It is the structure mutually connected by the line.
  • the drive device 100-6 is loaded with a portable storage medium such as an optical disk.
  • the program 100-5a stored in the storage device 100-5 is expanded in the RAM 100-3 by a DMA controller (not shown) or the like and executed by the CPU 100-2, thereby realizing the functional unit of the automatic operation control unit 100
  • the program referred to by the CPU 100-2 may be stored in a portable storage medium attached to the drive device 100-6, or may be downloaded from another device via a network.
  • a storage device and a hardware processor for executing a program stored in the storage device The hardware processor executes the program, Execute vehicle travel control without relying on the driver's driving operation, Determine the state of the equipment used to execute the travel control, A vehicle control device configured to determine a degree of the travel control based on the determined state of the device.
  • Switching control part 150 ... Interface control part, 160 ... Device state determination unit, 170 ... running state determination unit, 180 ... degree determination unit, 190 ... storage unit, 200 ... running driving force output device, 210 ... brake device, 220 ... steering device, ... vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

A vehicle control system comprising: a travel control unit (141) that executes travel control of a vehicle without driving operations being carried out by a vehicle occupant; a state assessing unit (160) that assesses the state of equipment used for the execution of the travel control by the travel control unit; and a level determination unit (180) that determines the level of travel control executed by the travel control unit on the basis of the state of the equipment assessed by the state assessing unit.

Description

車両制御システム、車両制御方法、車両制御装置、および車両制御プログラムVehicle control system, vehicle control method, vehicle control device, and vehicle control program

 本発明は、車両制御システム、車両制御方法、車両制御装置、および車両制御プログラムに関する。
 本願は、2017年3月30日に、日本に出願された特願2017-67529号に基づき優先権を主張し、その内容をここに援用する。

The present invention relates to a vehicle control system, a vehicle control method, a vehicle control device, and a vehicle control program.
This application claims priority based on Japanese Patent Application No. 2017-67529 filed in Japan on March 30, 2017, the contents of which are incorporated herein by reference.

 近年、車両の加減速または操舵の少なくとも一方を自動的に制御して車両を走行させる技術(以下、「自動運転」と称する)についての研究が進められている。これに関連して、複数の自動運転実行部の個々の状態を診断し、診断結果に応じて、車外への報知態様を決定する技術が知られている(例えば、特許文献1参照)。

2. Description of the Related Art In recent years, research on a technique for automatically driving at least one of acceleration / deceleration or steering of a vehicle to drive the vehicle (hereinafter referred to as “automatic driving”) has been advanced. In relation to this, a technique is known in which individual states of a plurality of automatic driving execution units are diagnosed and a notification mode to the outside of the vehicle is determined according to the diagnosis result (for example, see Patent Document 1).

日本国特開2015-162005号公報Japanese Unexamined Patent Publication No. 2015-162005

 従来の技術では、車両に対する走行制御の実行に用いられる機器の状態に応じて車両の走行を制御することができない場合があった。本発明は、このような事情を考慮してなされたものであり、車両の機器の状態に基づいて適切な制御態様に変更することができる車両制御システム、車両制御方法、車両制御装置、および車両制御プログラムを提供することを目的の一つとする。

In the conventional technology, there are cases where it is not possible to control the traveling of the vehicle according to the state of the device used to execute the traveling control on the vehicle. The present invention has been made in view of such circumstances, and can be changed to an appropriate control mode based on the state of the equipment of the vehicle, a vehicle control method, a vehicle control device, and a vehicle. One of the purposes is to provide a control program.

 (1):乗員の運転操作によらずに車両の走行制御を実行する走行制御部と、前記走行制御部による走行制御の実行に用いられる機器の状態を判定する状態判定部と、前記状態判定部により判定された前記機器の状態に基づいて、前記走行制御部による走行制御の度合を決定する度合決定部と、を備える車両制御システムである。 

(1): a traveling control unit that executes traveling control of a vehicle without depending on a driving operation of an occupant, a state determining unit that determines a state of a device used for execution of traveling control by the traveling control unit, and the state determination And a degree determining unit that determines a degree of traveling control by the traveling control unit based on the state of the device determined by the unit.

 (2):(1)において、前記度合決定部は、前記状態判定部により前記機器の状態が低下したと判定された場合に、前記走行制御部による前記車両の走行制御の度合を、現在の走行制御の度合に比して低い度合に決定するものである。 

(2): In (1), when the degree determination unit determines that the state of the device has been lowered by the state determination unit, the degree determination unit determines the degree of the vehicle traveling control by the traveling control unit. The degree is determined to be lower than the degree of travel control.

 (3):(2)において、前記車両の駆動、制動、または操舵を行うアクチュエータと、前記車両の走行制御において機器と通信を行う通信部と、前記乗員に対して前記車両の状態の低下を報知する第1報知部と、前記乗員に対する前記車両の走行制御の状態を報知する第2報知部とを、更に備え、前記度合決定部は、前記状態判定部により判定された前記アクチュエータ、前記通信部、前記第1報知部、または前記第2報知部の状態のうち、少なくとも一つの状態が低下した場合に、前記現在の走行制御の度合に比して低い度合に変更するものである。 

(3): In (2), an actuator that drives, brakes, or steers the vehicle, a communication unit that communicates with a device in travel control of the vehicle, and a reduction in the state of the vehicle with respect to the occupant A first notifying unit for notifying, and a second notifying unit for notifying a state of travel control of the vehicle with respect to the occupant, wherein the degree determining unit includes the actuator determined by the state determining unit, the communication When at least one of the states of the part, the first notifying part, or the second notifying part is lowered, the degree is changed to a lower degree than the current traveling control degree.

 (4):(1)~(3)のうち、何れか一つにおいて、前記度合決定部により、前記車両の走行制御の度合を変更すると判定された場合に、乗員に対して手動運転を行う旨の通知を行う通知部を更に備える、ものである。 

(4): In any one of (1) to (3), when the degree determination unit determines that the degree of travel control of the vehicle is to be changed, the occupant is manually driven. It is further provided with a notification unit for performing notification to that effect.

 (5):(4)において、前記車両の周辺状況を取得する周辺状況取得部と、前記走行制御を実行するアクチュエータの作動状態を取得する作動状態判定部と、前記乗員の操作を受け付ける受付部の状態を取得する操作状態判定部と、を更に備え、前記周辺状況取得部、前記作動状態判定部、または前記操作状態判定部のそれぞれが複数系統で設けられ、前記状態判定部は、前記周辺状況取得部、前記作動状態判定部、または前記操作状態判定部のそれぞれの系統の状態を取得し、前記通知部は、前記状態判定部により判定された状態のうち、前記周辺状況取得部、前記作動状態判定部、または前記操作状態判定部のそれぞれの系統の状態のうち、少なくとも一つの系統の状態が低下していると判定された場合に、前記乗員に対して手動運転を行う旨の通知を行うものである。 

(5): In (4), a surrounding state acquisition unit that acquires a surrounding state of the vehicle, an operating state determination unit that acquires an operating state of an actuator that executes the traveling control, and a reception unit that receives an operation of the occupant An operation state determination unit that acquires the state of the peripheral state acquisition unit, the operation state determination unit, or the operation state determination unit each provided in a plurality of systems, the state determination unit is the peripheral The status acquisition unit, the operating state determination unit, or the operation state determination unit acquires the state of each system, the notification unit, among the states determined by the state determination unit, the peripheral status acquisition unit, When it is determined that the state of at least one system among the states of the respective systems of the operating state determination unit or the operation state determination unit is reduced, manual operation is performed on the occupant. And it performs a notification to do.

 (6):(4)において、前記車両に対する走行制御の実行または停止の指示を受け付ける受付部を更に備え、前記状態判定部は、前記受付部の状態を取得し、前記通知部は、前記状態判定部により前記受付部からの指示入力ができない状態であると判定された場合に、前記乗員に対して手動運転を行う旨の通知を行うものである。 

(6): In (4), the information processing apparatus further includes a reception unit that receives an instruction to execute or stop travel control on the vehicle, the state determination unit acquires a state of the reception unit, and the notification unit includes the state When the determination unit determines that the instruction cannot be input from the reception unit, the occupant is notified that manual operation is to be performed.

 (7):(6)において、前記状態判定部は、前記受付部の状態を取得し、前記走行制御部は、前記走行制御が行われていない状態で、前記状態判定部により取得した前記受付部の状態が低下したと判定された場合に、前記受付部により前記走行制御の実行指示を受け付けた場合でも、前記手動運転を維持するものである。 

(7): In (6), the state determination unit acquires the state of the reception unit, and the traveling control unit receives the reception acquired by the state determination unit in a state where the traveling control is not performed. When it is determined that the state of the section has decreased, the manual operation is maintained even when the reception section receives an instruction to execute the travel control.

 (8):(6)において、前記車両の走行状態を判定する走行状態判定部(170)を更に備え、前記走行制御部は、前記走行状態判定部により前記車両の走行状態が停止している状態であると判定された場合に、前記車両の現在の走行制御を維持するものである。 

(8): In (6), the vehicle further includes a travel state determination unit (170) for determining a travel state of the vehicle, and the travel control unit is stopped by the travel state determination unit. When it is determined that the vehicle is in a state, the current traveling control of the vehicle is maintained.

 (9):車載コンピュータが、乗員の運転操作によらずに車両の走行制御を実行し、前記車両の走行制御の実行に用いられる機器の状態に基づいて、前記走行制御の度合を変更する車両制御方法である。 

(9): A vehicle in which the in-vehicle computer executes vehicle travel control without depending on the driving operation of an occupant, and changes the degree of the travel control based on the state of a device used for execution of the vehicle travel control. It is a control method.

 (10):情報を記憶する記憶装置と、前記記憶装置に記憶されたプログラムを実行するハードウェアプロセッサと、を備え、前記ハードウェアプロセッサは、乗員の運転操作によらずに車両の走行制御を実行し、前記走行制御の実行に用いられる機器の状態に基づいて、前記走行制御の度合を決定する、ように構成されている、車両制御装置である。 

(10): A storage device that stores information and a hardware processor that executes a program stored in the storage device, the hardware processor performing vehicle travel control regardless of the driving operation of the occupant. The vehicle control device is configured to execute and determine the degree of the travel control based on the state of the device used for executing the travel control.

 (11):車載コンピュータに、乗員の運転操作によらずに車両の走行制御を実行させ、前記車両の走行制御の実行に用いられる機器の状態に基づいて、前記走行制御の度合を変更させる、車両制御プログラムである。

(11): The in-vehicle computer is caused to execute the vehicle travel control without depending on the driving operation of the occupant, and the degree of the travel control is changed based on the state of the device used for executing the vehicle travel control. It is a vehicle control program.

 (1)、または(9)~(11)によれば、車両の機器の状態に基づいて適切な制御態様に変更することができる。 

According to (1) or (9) to (11), it is possible to change to an appropriate control mode based on the state of the vehicle equipment.

 (2)または(3)によれば、走行制御の実行に関する機器の状態が低下した場合に、車両判断で減速等の制御を行うことができる。したがって、適切な車両制御を行うことができる。 

According to (2) or (3), when the state of the device relating to the execution of the travel control is lowered, it is possible to perform control such as deceleration by vehicle judgment. Therefore, appropriate vehicle control can be performed.

 (4)によれば、走行制御の実行に関する機器の状態が低下した場合に、乗員へ運転引継要求を通知することができるため、適切に手動運転に引き継がせることができる。 

According to (4), when the state of the equipment related to the execution of the travel control is lowered, it is possible to notify the occupant of the driving takeover request, so that the manual driving can be appropriately taken over.

 (5)または(6)によれば、走行制御が継続可能な場合には、制御を継続しつつ引継ぎ要求を出すことができる。したがてって、乗員は、急に制御が切り替わることなく、スムーズに手動運転を引き継ぐことができる。 

According to (5) or (6), when the traveling control can be continued, the takeover request can be issued while continuing the control. Therefore, the occupant can take over the manual operation smoothly without suddenly switching the control.

 (7)または(8)によれば、機器の状態が低下している状態で走行制御が行われるのを抑制することができ、乗員の違和感を低減することができる。

According to (7) or (8), it is possible to suppress the travel control from being performed in a state where the state of the device is lowered, and it is possible to reduce occupant discomfort.

実施形態の車両システム1の構成例を示す図である。It is a figure showing an example of composition of vehicle system 1 of an embodiment. 自車位置認識部122により走行車線L1に対する車両Mの相対位置および姿勢が認識される様子を示す図である。It is a figure which shows a mode that the relative position and attitude | position of the vehicle M with respect to the driving lane L1 are recognized by the own vehicle position recognition part 122. FIG. 推奨車線に基づいて目標軌道が生成される様子を示す図である。It is a figure which shows a mode that a target track is produced | generated based on a recommended lane. 走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220の構成例を示す図である。It is a figure which shows the structural example of the driving force output device 200, the brake device 210, and the steering device 220. 機器状態判定部160の構成例を示す図である。It is a figure which shows the structural example of the apparatus state determination part 160. FIG. 運転制御度合判定テーブル191の一例を示す図である。It is a figure which shows an example of the operation control degree determination table 191. 走行制御テーブル192の一例を示す図である。It is a figure which shows an example of the traveling control table 192. 実施形態の走行制御処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the traveling control process of embodiment. 実施形態の自動運転制御ユニット100のハードウェア構成の一例を示す図である。It is a figure showing an example of hardware constitutions of automatic operation control unit 100 of an embodiment.

 以下、図面を参照し、本発明の車両制御システム、車両制御方法、車両制御装置、および車両制御プログラムの実施形態について説明する。実施形態では、車両制御システムが自動運転車両に適用されたものとする。自動運転とは、例えば、乗員の運転操作によらずに、車両の加減速または操舵の少なくとも一方を自動的に制御して車両を走行させるものである。自動運転とは、例えば、ALC(Auto Lane Changing)、LSP(Low Speed Car Passing)等の運転支援装置が作動している場合、或いは、車線変更や合流、分岐までを自動的に行う自動運転が含まれる。 

Hereinafter, embodiments of a vehicle control system, a vehicle control method, a vehicle control device, and a vehicle control program according to the present invention will be described with reference to the drawings. In the embodiment, it is assumed that the vehicle control system is applied to an autonomous driving vehicle. In the automatic driving, for example, the vehicle is driven by automatically controlling at least one of acceleration / deceleration or steering of the vehicle without depending on the driving operation of the occupant. For example, when the driving support device such as ALC (Auto Lane Changing), LSP (Low Speed Car Passing) is operating, or automatic driving that automatically performs lane change, merging, and branching. included.

 [全体構成]
 図1は、実施形態の車両システム1の構成例を示す図である。車両システム1が搭載される車両(以下、車両Mと称する)は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジン等の内燃機関、電動機、或いはこれらの組み合わせである。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。 

[overall structure]
FIG. 1 is a diagram illustrating a configuration example of a vehicle system 1 according to the embodiment. A vehicle on which the vehicle system 1 is mounted (hereinafter referred to as a vehicle M) is, for example, a vehicle such as a two-wheel, three-wheel, or four-wheel vehicle, and a drive source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, These are combinations. The electric motor operates using electric power generated by a generator connected to the internal combustion engine or electric discharge power of a secondary battery or a fuel cell.

 車両システム1は、例えば、カメラ10と、レーダ装置12と、ファインダ14と、物体認識装置16と、通信装置20と、HMI(Human Machine Interface)30と、シート装置40と、ナビゲーション装置50と、MPU(Micro-Processing Unit)60と、車両センサ70と、運転操作子80と、車室内カメラ90と、自動運転制御ユニット100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とを備える。これらの機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。通信線および通信網は、「通信部」の一例である。図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に電源部等の別の構成が追加されてもよい。 

The vehicle system 1 includes, for example, a camera 10, a radar device 12, a finder 14, an object recognition device 16, a communication device 20, an HMI (Human Machine Interface) 30, a seat device 40, a navigation device 50, An MPU (Micro-Processing Unit) 60, a vehicle sensor 70, a driving operator 80, a vehicle interior camera 90, an automatic driving control unit 100, a traveling driving force output device 200, a brake device 210, and a steering device 220. With. These devices are connected to each other by a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like. The communication line and the communication network are examples of the “communication unit”. The configuration illustrated in FIG. 1 is merely an example, and a part of the configuration may be omitted, or another configuration such as a power supply unit may be added.

 実施形態において「車両制御システム」は、例えば、HMI30と、車両センサ70と、運転操作子80と、自動運転制御ユニット100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とを含む。自動運転制御ユニット100は、「車両制御装置」の一例である。 

In the embodiment, the “vehicle control system” includes, for example, the HMI 30, the vehicle sensor 70, the driving operator 80, the automatic driving control unit 100, the travel driving force output device 200, the brake device 210, and the steering device 220. including. The automatic driving control unit 100 is an example of a “vehicle control device”.

 カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、車両システム1が搭載される車両Mの任意の箇所に一つまたは複数が取り付けられる。前方を撮像する場合、カメラ10は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。後方を撮像する場合、カメラ10は、リアウインドシールド上部やバックドア等に取り付けられる。側方を撮像する場合、カメラ10は、ドアミラー等に取り付けられる。カメラ10は、例えば、周期的に繰り返し車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。 

The camera 10 is a digital camera using a solid-state image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). One or a plurality of cameras 10 are attached to any part of the vehicle M on which the vehicle system 1 is mounted. When imaging the front, the camera 10 is attached to the upper part of the front windshield, the rear surface of the rearview mirror, or the like. When imaging the rear, the camera 10 is attached to an upper part of the rear windshield, a back door, or the like. When imaging the side, the camera 10 is attached to a door mirror or the like. For example, the camera 10 periodically and repeatedly images the periphery of the vehicle M. The camera 10 may be a stereo camera.

 レーダ装置12は、車両Mの周辺にミリ波等の電波を放射するとともに、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、車両Mの任意の箇所に一つまたは複数が取り付けられる。レーダ装置12は、FMCW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。 

The radar device 12 radiates a radio wave such as a millimeter wave around the vehicle M and detects a radio wave (reflected wave) reflected by the object to detect at least the position (distance and azimuth) of the object. One or a plurality of radar devices 12 are attached to any part of the vehicle M. The radar device 12 may detect the position and velocity of the object by FMCW (Frequency Modulated Continuous Wave) method.

 ファインダ14は、照射光に対する散乱光を測定し、対象までの距離を検出するLIDAR(Light Detection and Ranging、或いはLaser Imaging Detection and Ranging)である。ファインダ14は、車両Mの任意の箇所に一つまたは複数が取り付けられる。 

The finder 14 is LIDAR (Light Detection and Ranging or Laser Imaging Detection and Ranging) that measures the scattered light with respect to the irradiation light and detects the distance to the target. One or a plurality of finders 14 are attached to any part of the vehicle M.

 物体認識装置16は、カメラ10、レーダ装置12、およびファインダ14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度等を認識する。物体認識装置16は、認識結果を自動運転制御ユニット100に出力する。 

The object recognition device 16 performs sensor fusion processing on detection results of some or all of the camera 10, the radar device 12, and the finder 14 to recognize the position, type, speed, and the like of the object. The object recognition device 16 outputs the recognition result to the automatic driving control unit 100.

 通信装置20は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)等を利用して、車両Mの周辺に存在する他車両と通信し、或いは無線基地局を介して各種サーバ装置と通信する。 

The communication device 20 communicates with other vehicles existing around the vehicle M using, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), etc. It communicates with various server devices via a station.

 HMI30は、例えば、第1報知部31と、第2報知部32と、通知部33と、受付部34とを備える。第1報知部31は、例えば、乗員に対して車両Mの状態が低下したことを報知する。第1報知部31とは、例えば、油圧警告灯やブレーキ警告灯、SRS(Supplemental Restraint System)エアバッグシステム警告灯、エンジン警告灯、ABS(Anti-lock Brake System)警告灯、トランスミッション警告灯等である。 

The HMI 30 includes, for example, a first notification unit 31, a second notification unit 32, a notification unit 33, and a reception unit 34. The 1st alerting | reporting part 31 alert | reports that the state of the vehicle M fell with respect to the passenger | crew, for example. Examples of the first notification unit 31 include a hydraulic warning light, a brake warning light, an SRS (Supplemental Restraint System) airbag system warning light, an engine warning light, an ABS (Anti-lock Brake System) warning light, a transmission warning light, and the like. is there.

 第2報知部32は、乗員に対する車両Mの走行制御の状態を報知する。第2報知部32には、例えば、車両Mの走行制御が自動運転である場合に点灯するランプが含まれる。 

The 2nd alerting | reporting part 32 alert | reports the state of the traveling control of the vehicle M with respect to a passenger | crew. The second notification unit 32 includes, for example, a lamp that is turned on when the traveling control of the vehicle M is automatic driving.

 通知部33は、乗員に各種情報を通知する。例えば、通知部33は、度合決定部180により決定された度合レベルに基づいて、乗員に手動運転を行わせる旨の情報を通知する。通知部33は、例えば、各種表示装置、スピーカ、ブザー等である。 

The notification unit 33 notifies the occupant of various information. For example, the notification unit 33 notifies information indicating that the occupant performs manual driving based on the degree level determined by the degree determination unit 180. The notification unit 33 is, for example, various display devices, speakers, buzzers, or the like.

 受付部34は、乗員による入力操作を受け付ける。受付部34は、例えば、タッチパネル、各種操作スイッチ、キー等である。受付部34には、例えば、車両Mの自動運転と手動運転とを切り替える切替スイッチが含まれる。

The accepting unit 34 accepts an input operation by an occupant. The reception unit 34 is, for example, a touch panel, various operation switches, keys, and the like. The reception unit 34 includes, for example, a changeover switch that switches between automatic driving and manual driving of the vehicle M.
 シート装置40は、車両Mの乗員が着座するシート(座席)である。シート装置40には、運転操作子80を用いて車両Mを手動で運転するために着座する運転席、運転席の横にある助手席、運転席や助手席の後部にある後部座席等が含まれる。  The seat device 40 is a seat (seat) on which an occupant of the vehicle M is seated. The seat device 40 includes a driver's seat to be seated for manually driving the vehicle M using the driving operator 80, a passenger seat next to the driver's seat, a rear seat behind the driver's seat and the passenger seat, and the like. It is. *

 ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機51と、ナビHMI52と、経路決定部53とを備え、HDD(Hard Disk Drive)やフラッシュメモリ等の記憶装置に第1地図情報54を保持している。GNSS受信機51は、GNSS衛星から受信した信号に基づいて、車両Mの位置を特定する。車両Mの位置は、車両センサ70の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。ナビHMI52は、表示装置、スピーカ、タッチパネル、キー等を含む。ナビHMI52は、前述したHMI30と一部または全部が共通化されてもよい。経路決定部53は、例えば、GNSS受信機51により特定された車両Mの位置(或いは入力された任意の位置)から、ナビHMI52を用いて乗員により入力された目的地までの経路(例えば、目的地まで走行するときの経由地に関する情報を含む)を、第1地図情報54を参照して決定する。第1地図情報54は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。第1地図情報54は、道路の曲率やPOI(Point Of Interest)情報等を含んでもよい。経路決定部53により決定された経路は、MPU60に出力される。ナビゲーション装置50は、経路決定部53により決定された経路に基づいて、ナビHMI52を用いた経路案内を行ってもよい。ナビゲーション装置50は、例えば、ユーザの保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。ナビゲーション装置50は、通信装置20を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから返信された経路を取得してもよい。 

The navigation device 50 includes, for example, a GNSS (Global Navigation Satellite System) receiver 51, a navigation HMI 52, and a route determination unit 53. The first map information 54 is stored in a storage device such as an HDD (Hard Disk Drive) or a flash memory. Holding. The GNSS receiver 51 specifies the position of the vehicle M based on the signal received from the GNSS satellite. The position of the vehicle M may be specified or supplemented by an INS (Inertial Navigation System) using the output of the vehicle sensor 70. The navigation HMI 52 includes a display device, a speaker, a touch panel, keys, and the like. The navigation HMI 52 may be partly or wholly shared with the HMI 30 described above. The route determination unit 53, for example, a route (for example, a destination) from the position of the vehicle M specified by the GNSS receiver 51 (or any input position) to the destination input by the occupant using the navigation HMI 52. (Including information on waypoints when traveling to the ground) is determined with reference to the first map information 54. The first map information 54 is information in which a road shape is expressed by, for example, a link indicating a road and nodes connected by the link. The first map information 54 may include road curvature and POI (Point Of Interest) information. The route determined by the route determination unit 53 is output to the MPU 60. The navigation device 50 may perform route guidance using the navigation HMI 52 based on the route determined by the route determination unit 53. The navigation device 50 may be realized, for example, by a function of a terminal device such as a smartphone or a tablet terminal held by the user. The navigation device 50 may acquire the route returned from the navigation server by transmitting the current position and the destination to the navigation server via the communication device 20.

 MPU60は、例えば、推奨車線決定部61として機能し、HDDやフラッシュメモリ等の記憶装置に第2地図情報62を保持している。推奨車線決定部61は、ナビゲーション装置50から提供された経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報62を参照してブロックごとに推奨車線を決定する。推奨車線決定部61は、左から何番目の車線を走行するといった決定を行う。推奨車線決定部61は、経路において分岐箇所や合流箇所等が存在する場合、車両Mが、分岐先に進行するための合理的な走行経路を走行できるように、推奨車線を決定する。 

For example, the MPU 60 functions as the recommended lane determining unit 61 and holds the second map information 62 in a storage device such as an HDD or a flash memory. The recommended lane determining unit 61 divides the route provided from the navigation device 50 into a plurality of blocks (for example, every 100 [m] with respect to the vehicle traveling direction), and refers to the second map information 62 for each block. Determine the recommended lane. The recommended lane determining unit 61 performs determination such as what number of lanes from the left to travel. The recommended lane determining unit 61 determines a recommended lane so that the vehicle M can travel on a reasonable travel route for proceeding to the branch destination when there is a branch point, a junction point, or the like on the route.

 第2地図情報62は、第1地図情報54よりも高精度な地図情報である。第2地図情報62は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。第2地図情報62には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報等が含まれてよい。道路情報には、高速道路、有料道路、国道、都道府県道といった道路の種別を表す情報や、道路の車線数、非常駐車帯の領域、各車線の幅員、道路の勾配、道路の位置(経度、緯度、高さを含む3次元座標)、車線のカーブの曲率、車線の合流および分岐ポイントの位置、道路に設けられた標識等の情報が含まれる。第2地図情報62は、通信装置20を用いて他装置にアクセスすることにより、随時、アップデートされてよい。 

The second map information 62 is map information with higher accuracy than the first map information 54. The second map information 62 includes, for example, information on the center of the lane or information on the boundary of the lane. The second map information 62 may include road information, traffic regulation information, address information (address / postal code), facility information, telephone number information, and the like. Road information includes information indicating the type of road such as expressway, toll road, national road, prefectural road, number of road lanes, emergency parking area, width of each lane, road gradient, road position (longitude , Latitude and height (three-dimensional coordinates), lane curve curvature, lane merging and branch point positions, road markings, and other information. The second map information 62 may be updated at any time by accessing another device using the communication device 20.

 車両センサ70は、車両Mの速度を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、車両Mの向きを検出する方位センサ等を含む。 

The vehicle sensor 70 includes a vehicle speed sensor that detects the speed of the vehicle M, an acceleration sensor that detects acceleration, a yaw rate sensor that detects angular velocity around the vertical axis, a direction sensor that detects the direction of the vehicle M, and the like.

 運転操作子80は、例えば、アクセルペダル、ブレーキペダル、シフトレバー、ステアリングホイールその他の操作子を含む。運転操作子80には、操作量あるいは操作の有無を検出するセンサが取り付けられており、その検出結果は、自動運転制御ユニット100、もしくは、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一方または双方に出力される。 

The driving operation element 80 includes, for example, an accelerator pedal, a brake pedal, a shift lever, a steering wheel, and other operation elements. A sensor that detects the amount of operation or the presence or absence of an operation is attached to the driving operator 80, and the detection result is the automatic driving control unit 100, or the traveling driving force output device 200, the brake device 210, and the steering device. 220 is output to one or both of 220.

 車室内カメラ90は、例えば、シート装置40に着座した乗員の顔を中心として上半身を撮像する。車室内カメラ90は、例えば、周期的に繰り返し乗員を撮像する。車室内カメラ90の撮像画像は、自動運転制御ユニット100に出力される。 

For example, the vehicle interior camera 90 images the upper body around the face of the occupant seated on the seat device 40. For example, the vehicle interior camera 90 periodically images the occupant. A captured image of the vehicle interior camera 90 is output to the automatic driving control unit 100.

 [自動運転制御ユニット]
 自動運転制御ユニット100は、例えば、第1制御部120と、第2制御部140と、インターフェース制御部150と、機器状態判定部160と、走行状態判定部170と、度合決定部180と、記憶部190とを備える。第1制御部120と、第2制御部140と、インターフェース制御部150と、機器状態判定部160と、走行状態判定部170と、度合決定部180とは、CPU(Central Processing Unit)等のハードウェアプロセッサがプログラム(ソフトウェア)を実行することで実現される。第1制御部120、第2制御部140、インターフェース制御部150、機器状態判定部160、走行状態判定部170、および度合決定部180の各機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。機器状態判定部160は、「状態判定部」の一例である。 

[Automatic operation control unit]
The automatic operation control unit 100 includes, for example, a first control unit 120, a second control unit 140, an interface control unit 150, a device state determination unit 160, a travel state determination unit 170, a degree determination unit 180, and a storage. Part 190. The first control unit 120, the second control unit 140, the interface control unit 150, the device state determination unit 160, the travel state determination unit 170, and the degree determination unit 180 are hardware such as a CPU (Central Processing Unit). This is realized by a wear processor executing a program (software). Some or all of the functional units of the first control unit 120, the second control unit 140, the interface control unit 150, the device state determination unit 160, the travel state determination unit 170, and the degree determination unit 180 are LSI (Large Scale). Integration), application specific integrated circuit (ASIC), field-programmable gate array (FPGA), or the like, or may be realized by cooperation of software and hardware. The device state determination unit 160 is an example of a “state determination unit”.

 第1制御部120は、例えば、外界認識部121と、自車位置認識部122と、行動計画生成部123とを備える。外界認識部121は、「周辺状況取得部」の一例である。外界認識部121は、安全面を考慮して複数系統の外界認識部を備えていてもよい。 

The 1st control part 120 is provided with the external world recognition part 121, the own vehicle position recognition part 122, and the action plan production | generation part 123, for example. The external world recognition unit 121 is an example of a “peripheral situation acquisition unit”. The external recognition unit 121 may include a plurality of external recognition units in consideration of safety.

 外界認識部121は、カメラ10、レーダ装置12、およびファインダ14から物体認識装置16を介して入力される情報に基づいて、周辺車両の位置および速度、加速度等の状態を認識する。周辺車両の位置は、その周辺車両の重心やコーナー等の代表点で表されてもよいし、周辺車両の輪郭で表現された領域で表されてもよい。周辺車両の「状態」とは、周辺車両の加速度やジャーク、あるいは「行動状態」(例えば車線変更をしている、またはしようとしているか否か)を含んでもよい。 

Based on information input from the camera 10, the radar device 12, and the finder 14 via the object recognition device 16, the external environment recognition unit 121 recognizes the positions, speeds, accelerations, and the like of surrounding vehicles. The position of the surrounding vehicle may be represented by a representative point such as the center of gravity or corner of the surrounding vehicle, or may be represented by an area expressed by the outline of the surrounding vehicle. The “state” of the surrounding vehicle may include acceleration and jerk of the surrounding vehicle, or “behavioral state” (for example, whether or not the lane is changed or is about to be changed).

 外界認識部121は、周辺車両に加えて、ガードレールや電柱、駐車車両、歩行者等の人物、その他の物体の位置を認識してもよい。 

The outside world recognition unit 121 may recognize the positions of guardrails, utility poles, parked vehicles, persons such as pedestrians, and other objects in addition to surrounding vehicles.

 自車位置認識部122は、例えば、車両Mが走行している車線(走行車線)、並びに走行車線に対する車両Mの相対位置および姿勢を認識する。自車位置認識部122は、例えば、第2地図情報62から得られる道路区画線のパターン(例えば実線と破線の配列)と、カメラ10によって撮像された画像から認識される車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。この認識において、ナビゲーション装置50から取得される車両Mの位置やINSによる処理結果が加味されてもよい。 

The own vehicle position recognition unit 122 recognizes, for example, the lane (traveling lane) in which the vehicle M is traveling, and the relative position and posture of the vehicle M with respect to the traveling lane. The own vehicle position recognition unit 122, for example, a road around the vehicle M recognized from a pattern of road marking lines (for example, an array of solid lines and broken lines) obtained from the second map information 62 and an image captured by the camera 10. The travel lane is recognized by comparing the lane marking pattern. In this recognition, the position of the vehicle M acquired from the navigation device 50 and the processing result by INS may be taken into consideration.

 そして、自車位置認識部122は、例えば、走行車線に対する車両Mの位置や姿勢を認識する。図2は、自車位置認識部122により走行車線L1に対する車両Mの相対位置および姿勢が認識される様子を示す図である。自車位置認識部122は、例えば、車両Mの基準点(例えば重心)の走行車線中央CLからの乖離OS、および車両Mの進行方向の走行車線中央CLを連ねた線に対してなす角度θを、走行車線L1に対する車両Mの相対位置および姿勢として認識する。これに代えて、自車位置認識部122は、走行車線L1の何れかの側端部に対する車両Mの基準点の位置等を、走行車線に対する車両Mの相対位置として認識してもよい。自車位置認識部122により認識される車両Mの相対位置は、推奨車線決定部61および行動計画生成部123に提供される。 

And the own vehicle position recognition part 122 recognizes the position and attitude | position of the vehicle M with respect to a travel lane, for example. FIG. 2 is a diagram illustrating how the vehicle position recognition unit 122 recognizes the relative position and posture of the vehicle M with respect to the travel lane L1. The own vehicle position recognizing unit 122, for example, an angle θ formed with respect to a line connecting the deviation point OS of the reference point (for example, the center of gravity) of the vehicle M from the travel lane center CL and the travel lane center CL in the traveling direction of the vehicle M. Is recognized as the relative position and posture of the vehicle M with respect to the traveling lane L1. Instead, the vehicle position recognition unit 122 may recognize the position of the reference point of the vehicle M with respect to any side end portion of the travel lane L1 as the relative position of the vehicle M with respect to the travel lane. The relative position of the vehicle M recognized by the own vehicle position recognition unit 122 is provided to the recommended lane determination unit 61 and the action plan generation unit 123.

 行動計画生成部123は、車両Mが目的地等に対して自動運転を行うための行動計画を生成する。例えば、行動計画生成部123は、推奨車線決定部61により決定された推奨車線を走行するように、且つ、車両Mの周辺状況に対応できるように、自動運転制御において順次実行されるイベントを決定する。実施形態の自動運転におけるイベントには、例えば、一定速度で同じ走行車線を走行する定速走行イベント、車両Mの走行車線を変更する車線変更イベント、前走車両を追い越す追い越しイベント、前走車両に追従して走行する追従走行イベント、合流地点で車両を合流させる合流イベント、道路の分岐地点で車両Mを目的の方向に走行させる分岐イベント、車両Mを緊急停車させる緊急停車イベント、自動運転を終了して手動運転に切り替えるための切替イベント等がある。これらのイベントの実行中に、車両Mの周辺状況(周辺車両や歩行者の存在、道路工事による車線狭窄等)に基づいて、回避のための行動が計画される場合もある。 

The action plan generation unit 123 generates an action plan for the vehicle M to perform automatic driving on a destination or the like. For example, the action plan generation unit 123 determines events that are sequentially executed in the automatic driving control so as to travel in the recommended lane determined by the recommended lane determination unit 61 and to cope with the surrounding situation of the vehicle M. To do. The event in the automatic driving of the embodiment includes, for example, a constant speed traveling event that travels in the same traveling lane at a constant speed, a lane change event that changes the traveling lane of the vehicle M, an overtaking event that overtakes the preceding vehicle, and a preceding vehicle Follow-up event to follow and run, Join event to join vehicles at junction, Branch event to run vehicle M in target direction at road junction, Emergency stop event to stop vehicle M emergency stop, Autonomous driving finished Then, there is a switching event for switching to manual operation. During execution of these events, actions for avoidance may be planned based on the surrounding situation of the vehicle M (the presence of surrounding vehicles and pedestrians, lane narrowing due to road construction, etc.).

 行動計画生成部123は、車両Mが将来走行する目標軌道を生成する。目標軌道は、例えば、速度要素を含んでいる。例えば、目標軌道は、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとに将来の基準時刻を複数設定し、それらの基準時刻に到達すべき目標地点(軌道点)の集合として生成される。このため、軌道点の間隔が広い場合、その軌道点の間の区間を高速に走行することを示している。 

The action plan generation unit 123 generates a target track on which the vehicle M will travel in the future. The target trajectory includes, for example, a velocity element. For example, the target trajectory is generated as a set of target points (orbit points) that should be set at a plurality of future reference times for each predetermined sampling time (for example, about 0 comma [sec]) and reach these reference times. The For this reason, when the space | interval of a track point is wide, it has shown running in the area between the track points at high speed.

 図3は、推奨車線に基づいて目標軌道が生成される様子を示す図である。図示するように、推奨車線は、目的地までの経路に沿って走行するのに都合が良いように設定される。行動計画生成部123は、推奨車線の切り替わり地点の所定距離手前(イベントの種類に応じて決定されてよい)に差し掛かると、車線変更イベント、分岐イベント、合流イベント等を起動する。各イベントの実行中に、障害物を回避する必要が生じた場合には、図示するように回避軌道が生成される。 

FIG. 3 is a diagram illustrating a state in which a target track is generated based on the recommended lane. As shown in the figure, the recommended lane is set so as to be convenient for traveling along the route to the destination. The action plan generation unit 123 activates a lane change event, a branch event, a merge event, or the like when it reaches a predetermined distance before the recommended lane switching point (may be determined according to the type of event). If it becomes necessary to avoid an obstacle during the execution of each event, an avoidance trajectory is generated as shown in the figure.

 行動計画生成部123は、例えば、複数の目標軌道の候補を生成し、安全性と効率性の観点に基づいて、その時点で目的地までの経路に適合する最適な目標軌道を選択する。 

For example, the action plan generation unit 123 generates a plurality of target trajectory candidates, and selects an optimal target trajectory that matches the route to the destination at that time, based on safety and efficiency.

 第2制御部140は、例えば、走行制御部141と、切替制御部142とを備える。走行制御部141は、例えば、自動運転による車両の走行制御を実行する。例えば、走行制御部141は、運転操作子80からの操作指示がない状態で、自動運転制御として、行動計画生成部123によって生成された目標軌道を、予定の時刻通りに車両Mが通過するように、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御する。走行制御部141は、度合決定部180により決定された度合レベルに応じて、車両Mに対する走行制御の度合を変更する。 

The second control unit 140 includes, for example, a travel control unit 141 and a switching control unit 142. For example, the travel control unit 141 executes vehicle travel control by automatic driving. For example, the traveling control unit 141 causes the vehicle M to pass through the target trajectory generated by the action plan generating unit 123 as the automatic driving control in a state where there is no operation instruction from the driving operator 80. In addition, the traveling driving force output device 200, the brake device 210, and the steering device 220 are controlled. The traveling control unit 141 changes the degree of traveling control for the vehicle M according to the degree level determined by the degree determining unit 180.

 切替制御部142は、行動計画生成部123により生成される行動計画に基づいて、車両Mの運転モードを切り替える。例えば、切替制御部142は、自動運転の開始予定地点で、運転モードを手動運転から自動運転に切り替える。切替制御部142は、自動運転の終了予定地点で、運転モードを自動運転から手動運転に切り替える。 

The switching control unit 142 switches the driving mode of the vehicle M based on the behavior plan generated by the behavior plan generation unit 123. For example, the switching control unit 142 switches the operation mode from manual operation to automatic operation at a scheduled start point of automatic operation. The switching control unit 142 switches the operation mode from the automatic operation to the manual operation at the scheduled end point of the automatic operation.

 切替制御部142は、例えばHMI30に含まれる自動運転切替スイッチから入力される切替信号に基づいて自動運転と手動運転とを相互に切り替えてもよい。切替制御部142は、例えば、アクセルペダルやブレーキペダル、ステアリングホイール等の運転操作子80に対する加速、減速または操舵を指示する操作に基づいて、車両Mの運転モードを自動運転から手動運転へ切り替えてもよい。 

For example, the switching control unit 142 may switch between automatic driving and manual driving based on a switching signal input from an automatic driving switch included in the HMI 30. For example, the switching control unit 142 switches the driving mode of the vehicle M from automatic driving to manual driving based on an operation for instructing acceleration, deceleration, or steering of the driving operator 80 such as an accelerator pedal, a brake pedal, and a steering wheel. Also good.

 手動運転時には、運転操作子80からの入力情報が、直接的に走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220に出力される。運転操作子80からの入力情報は、自動運転制御ユニット100を介して走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220に出力されてもよい。走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220の各ECU(Electronic Control Unit)は、運転操作子80等からの入力情報に基づいて、それぞれの動作を行う。 

During manual driving, input information from the driving operator 80 is directly output to the traveling driving force output device 200, the brake device 210, and the steering device 220. Input information from the driving operator 80 may be output to the travel driving force output device 200, the brake device 210, and the steering device 220 via the automatic driving control unit 100. Each ECU (Electronic Control Unit) of the travel driving force output device 200, the brake device 210, and the steering device 220 performs respective operations based on input information from the driving operator 80 and the like.

 インターフェース制御部150は、走行制御の実行に用いられる機器の状態、車両Mの自動運転時または手動運転時の走行状態、自動運転と手動運転とが相互に切り替わるタイミング、乗員に手動運転を行わせる旨の情報等に関する通知等を、HMI30に出力させる。インターフェース制御部150は、HMI30により受け付けた情報を第1制御部120や機器状態判定部160に出力してもよい。 

The interface control unit 150 causes the state of equipment used for execution of travel control, the travel state during automatic operation or manual operation of the vehicle M, the timing at which automatic operation and manual operation are switched to each other, and causes the occupant to perform manual operation. The notification about the information or the like is output to the HMI 30. The interface control unit 150 may output information received by the HMI 30 to the first control unit 120 or the device state determination unit 160.

 機器状態判定部160は、走行制御部141による走行制御の実行に用いられる機器の状態を取得する。機器の状態とは、例えば、機器の電源のオン・オフや、機器の動作状態、機器からの出力結果である。機器の状態とは、同一の機器が複数系統ある場合に、それぞれの系統の動作状態である。機器状態判定部160は、機器の状態が低下しているか否かを判定する。機器状態判定部160の機能の詳細については、後述する。 

The device state determination unit 160 acquires the state of the device used for execution of travel control by the travel control unit 141. The state of the device is, for example, on / off of the power source of the device, the operating state of the device, and an output result from the device. The state of the device is an operation state of each system when there are a plurality of systems of the same device. The device state determination unit 160 determines whether or not the state of the device has decreased. Details of the function of the device state determination unit 160 will be described later.

 走行状態判定部170は、車両Mの走行状態を判定する。例えば、走行状態判定部170は、車両Mが自動運転による走行制御を行っているか、または手動運転による走行制御を行っているかを判定する。走行状態判定部170は、車速センサにより検出される車速から、車両Mが停止していると判定される状態であるか否かを判定する。停止と判定される状態とは、例えば、車両Mの時速が0[km/h]だけでなく、時速が5[km/h]以下の低速で走行している状態も含む。走行状態判定部170は、車両Mが停止していると判定される状態でない場合、または5[km/h]を超える速度で車両Mが走行している場合に走行中であると判定してもよい。 

The traveling state determination unit 170 determines the traveling state of the vehicle M. For example, the traveling state determination unit 170 determines whether the vehicle M is performing traveling control by automatic driving or traveling control by manual driving. The traveling state determination unit 170 determines whether or not the vehicle M is in a state determined to be stopped from the vehicle speed detected by the vehicle speed sensor. The state determined to be stopped includes, for example, a state where the vehicle M is traveling not only at a speed of 0 [km / h] but also at a low speed of 5 [km / h] or less. The traveling state determination unit 170 determines that the vehicle M is traveling when the vehicle M is not in a state where it is determined that the vehicle M is stopped or when the vehicle M is traveling at a speed exceeding 5 km / h. Also good.

 度合決定部180は、機器状態判定部160により判定された機器の状態および走行状態判定部170により判定された車両Mの走行状態に基づいて、車両Mに対する走行制御の度合を決定する。例えば、度合決定部180は、自動運転等の走行制御が実行中である場合であって、且つ、機器状態判定部160により機器の状態が低下したと判定された場合に、走行制御部141による車両Mの走行制御の度合を、現在の走行制御の度合に比して低い度合に決定する。 

The degree determination unit 180 determines the degree of traveling control for the vehicle M based on the state of the device determined by the device state determination unit 160 and the traveling state of the vehicle M determined by the traveling state determination unit 170. For example, when the travel control such as automatic driving is being executed and the device state determination unit 160 determines that the state of the device has decreased, the degree determination unit 180 uses the travel control unit 141. The degree of traveling control of the vehicle M is determined to be lower than the current degree of traveling control.

 記憶部190には、例えば、運転制御度合判定テーブル191、走行制御テーブル192等の情報が格納される。運転制御度合判定テーブル191および走行制御テーブル192の詳細については、後述する。記憶部190は、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等で実現される。ハードウェアプロセッサが実行するプログラムは、予め記憶部190に格納されていてもよいし、車載インターネット設備等を介して外部装置からダウンロードされてもよい。プログラムは、そのプログラムを格納した可搬型記憶媒体が図示しないドライブ装置に装着されることで記憶部190にインストールされてもよい。 

The storage unit 190 stores information such as a driving control degree determination table 191 and a travel control table 192, for example. Details of the operation control degree determination table 191 and the travel control table 192 will be described later. The storage unit 190 is realized by a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), a flash memory, or the like. A program executed by the hardware processor may be stored in the storage unit 190 in advance, or may be downloaded from an external device via an in-vehicle Internet facility or the like. The program may be installed in the storage unit 190 by attaching a portable storage medium storing the program to a drive device (not shown).

 走行駆動力出力装置200は車両Mを走行させるための駆動を行う。ブレーキ装置210は、車両Mの制動を行う。ステアリング装置220は、車両Mの操舵を行う。図4は、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220の構成例を示す図である。以下に説明するスロットルモータ、電動モータ、アシストモータは、車両Mが走行制御を実行するアクチュエータの代表的なものである。 

The traveling driving force output device 200 performs driving for causing the vehicle M to travel. The brake device 210 brakes the vehicle M. The steering device 220 steers the vehicle M. FIG. 4 is a diagram illustrating a configuration example of the travel driving force output device 200, the brake device 210, and the steering device 220. A throttle motor, an electric motor, and an assist motor described below are typical actuators that the vehicle M executes travel control.

 走行駆動力出力装置200は、車両Mが走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機等の組み合わせであるエンジンと、エンジンの駆動量を制御するスロットルモータと、スロットルモータを制御するエンジンECUとを備える。エンジンECUは、走行制御部141から入力される情報、或いは運転操作子80から入力される情報に従って、スロットルモータを駆動し、エンジンによる走行駆動力を駆動輪に出力させる。 

The traveling driving force output device 200 outputs a traveling driving force (torque) for the vehicle M to travel to the driving wheels. The travel driving force output device 200 includes, for example, an engine that is a combination of an internal combustion engine, an electric motor, and a transmission, a throttle motor that controls the driving amount of the engine, and an engine ECU that controls the throttle motor. The engine ECU drives the throttle motor according to the information input from the travel control unit 141 or the information input from the driving operator 80, and outputs the travel driving force of the engine to the drive wheels.

 ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、電動モータを制御するブレーキECUとを備える。ブレーキECUは、走行制御部141から入力される情報、或いは運転操作子80から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子80に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。ブレーキ装置210は、上記説明した構成に限らず、走行制御部141から入力される情報、或いは運転操作子80から入力される情報に従って油圧アクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。ブレーキ装置210は、安全面を考慮して複数系統のブレーキ装置を備えていてもよい。 

The brake device 210 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU that controls the electric motor. The brake ECU controls the electric motor in accordance with the information input from the travel control unit 141 or the information input from the driving operation element 80 so that the brake torque corresponding to the braking operation is output to each wheel. The brake device 210 may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal included in the driving operation element 80 to the cylinder via the master cylinder. The brake device 210 is not limited to the configuration described above, and controls the hydraulic actuator in accordance with information input from the travel control unit 141 or information input from the driving operator 80, and transmits the hydraulic pressure of the master cylinder to the cylinder. An electronically controlled hydraulic brake device may be used. The brake device 210 may include a plurality of brake devices in consideration of safety.

 ステアリング装置220は、例えば、転舵輪の向きを変更するラックアンドピニオン機構と、ラックアンドピニオン機構に力を作用させるアシストモータと、アシストモータを制御するステアリングECUとを備える。ステアリングECUは、走行制御部141から入力される情報、或いは運転操作子80から入力される情報に従って、アシストモータを駆動し、転舵輪の向きを変更させる。 

The steering device 220 includes, for example, a rack and pinion mechanism that changes the direction of the steered wheels, an assist motor that applies a force to the rack and pinion mechanism, and a steering ECU that controls the assist motor. The steering ECU drives the assist motor and changes the direction of the steered wheels in accordance with information input from the travel control unit 141 or information input from the driving operator 80.

 [機器の状態に基づく車両Mの走行制御]
 次に、車両Mの走行制御の実行に用いられる機器の状態に基づいて、車両Mの走行制御の度合がどのように変更されるのかについて、具体的に説明する。図5は、機器状態判定部160の構成例を示す図である。機器状態判定部160は、例えば、通信状態判定部161と、作動状態判定部162と、操作状態判定部163とを備える。 

[Driving control of vehicle M based on device status]
Next, how the degree of travel control of the vehicle M is changed based on the state of the equipment used to execute the travel control of the vehicle M will be specifically described. FIG. 5 is a diagram illustrating a configuration example of the device state determination unit 160. The device state determination unit 160 includes, for example, a communication state determination unit 161, an operation state determination unit 162, and an operation state determination unit 163.

 通信状態判定部161は、車両M内の機器を接続する多重通信線やシリアル通信線、無線通信網の状態を取得する。通信状態判定部161は、例えば、通信線や通信網で接続された接続先から送信される信号(例えば、アライブカウンタ)を定期的に受信できている場合に、通信状態が正常であると判定する。通信状態判定部161は、例えば、通信線や通信網から所定時間以上、アライブカウンタを取得できていない場合は、接続先の機器または通信線や通信網が遮断または低下したと判定する。通信状態判定部161は、電源部に接続される通信線からの信号がない、または電源部から電力が所定値より低い場合に、電源が遮断または低下していると判定してもよい。 

The communication state determination unit 161 acquires the state of a multiplex communication line, a serial communication line, and a wireless communication network that connect devices in the vehicle M. The communication state determination unit 161 determines that the communication state is normal when, for example, a signal (for example, an alive counter) transmitted from a connection destination connected via a communication line or a communication network can be periodically received. To do. For example, when the alive counter has not been acquired from the communication line or the communication network for a predetermined time or more, the communication state determination unit 161 determines that the connection destination device, the communication line, or the communication network has been blocked or reduced. The communication state determination unit 161 may determine that the power supply is cut off or lowered when there is no signal from the communication line connected to the power supply unit or when the power from the power supply unit is lower than a predetermined value.

 作動状態判定部162は、例えば、走行制御を実行するアクチュエータの作動状態を判定する。例えば、作動状態判定部162は、走行駆動力出力装置200のエンジンECUの制御によるスロットルモータの作動状態を取得し、エンジンECUが指示した制御量に対応した駆動量でスロットルモータが駆動していた場合には、スロットルモータの作動状態が正常であると判定する。作動状態判定部162は、エンジンECUが指示した制御量に対し、スロットルモータが作動していない場合や、制御量に対応した駆動量でスロットルモータが駆動していなかった場合に、スロットルモータの状態が低下したと判定する。ブレーキ装置210における電動モータやステアリング装置220におけるアシストモータについても同様に状態の判定を行う。作動状態判定部162は、エンジンECUやブレーキECU、ステアリングECUが動作しない場合には、対応するECUの状態が低下していると判定してもよい。 

The operating state determination unit 162 determines, for example, the operating state of an actuator that executes traveling control. For example, the operating state determination unit 162 acquires the operating state of the throttle motor under the control of the engine ECU of the traveling driving force output device 200, and the throttle motor is driven with a driving amount corresponding to the control amount instructed by the engine ECU. In this case, it is determined that the operating state of the throttle motor is normal. The operating state determination unit 162 determines the state of the throttle motor when the throttle motor is not operating with respect to the control amount instructed by the engine ECU or when the throttle motor is not driven with a driving amount corresponding to the control amount. Is determined to have decreased. The state of the electric motor in the brake device 210 and the assist motor in the steering device 220 are similarly determined. The operation state determination unit 162 may determine that the state of the corresponding ECU is lowered when the engine ECU, the brake ECU, or the steering ECU does not operate.

 操作状態判定部163は、受付部34の状態を受け付けて状態の判定を行う。例えば、操作状態判定部163は、複数の選択のうち、何れかの一つの選択しかできない操作ボタンから、一つの選択指示を受け付けた場合には、操作状態が正常である判定し、複数の選択指示を受け付けた場合には、操作状態が低下していると判定する。操作状態判定部163は、例えば、切替スイッチのオン状態が所定時間以上継続している場合や、受付部34から継続的に送信される信号の一部が途切れている場合に、切替スイッチからの指示入力ができない状態であると判定し、その切替スイッチの操作状態が低下していると判定してもよい。操作状態判定部163は、第1報知部31、第2報知部32、または通知部33における状態を取得し、例えば、報知や通知がされていない場合や、報知または通知の内容が間違っている場合に、対応する機器の状態が低下していると判定してもよい。 

The operation state determination unit 163 receives the state of the reception unit 34 and determines the state. For example, the operation state determination unit 163 determines that the operation state is normal when receiving one selection instruction from an operation button that can select only one of a plurality of selections, and selects a plurality of selections. When the instruction is accepted, it is determined that the operation state is lowered. For example, the operation state determination unit 163 receives a signal from the changeover switch when the changeover switch has been on for a predetermined time or more, or when a part of the signal continuously transmitted from the reception unit 34 is interrupted. It may be determined that the instruction cannot be input, and it may be determined that the operation state of the changeover switch is lowered. The operation state determination unit 163 acquires the state in the first notification unit 31, the second notification unit 32, or the notification unit 33. For example, when the notification or notification is not performed, or the content of the notification or notification is incorrect. In this case, it may be determined that the state of the corresponding device is deteriorated.

 機器状態判定部160は、通信状態判定部161、作動状態判定部162、または操作状態判定部163のうち、少なくとも一つは、それぞれ安全面を考慮して複数系統の構成を備えていてもよい。複数系統の構成を備える場合には、機器状態判定部160は、それぞれの系統において、機器の状態の取得および判定を行う。 

At least one of the communication state determination unit 161, the operation state determination unit 162, and the operation state determination unit 163 may include a plurality of systems in consideration of safety. . In the case of providing a configuration of multiple systems, the device state determination unit 160 acquires and determines the state of the device in each system.

 度合決定部180は、記憶部190に記憶された運転制御度合判定テーブル191を参照し、機器状態判定部160により判定された機器の状態に基づいて、対応する車両Mの自動運転の度合を決定する。図6は、運転制御度合判定テーブル191の一例を示す図である。図6に示す運転制御度合判定テーブル191は、機器状態判定部160により判定された機器状態に度合レベルが対応付けられた情報である。度合レベルは、走行制御の度合を識別するための情報である。 

The degree determination unit 180 refers to the driving control degree determination table 191 stored in the storage unit 190 and determines the degree of automatic driving of the corresponding vehicle M based on the state of the device determined by the device state determination unit 160. To do. FIG. 6 is a diagram illustrating an example of the operation control degree determination table 191. The operation control degree determination table 191 illustrated in FIG. 6 is information in which the degree level is associated with the device state determined by the device state determination unit 160. The degree level is information for identifying the degree of traveling control.

 度合決定部180は、例えば、機器状態判定部160による判定結果が、「アクチュエータの状態が低下」、「通信部が遮断または低下」、「第1報知部31の状態が低下」、「第2報知部32の状態が低下」、「電源が遮断または低下」、または「駆動、制動、操舵に関する制御量が所定範囲外」の条件のうち、何れかの条件を満たす場合に、走行制御の度合レベルを「第1の度合」に決定する。第1の度合とは、例えば、車両Mの自動運転を継続できずに、乗員による手動運転に切り替えるか、または緊急停止等の走行制御を行うものである。 

For example, the determination result by the device state determination unit 160 indicates that the degree determination unit 180 indicates that “the actuator state is reduced”, “the communication unit is blocked or reduced”, “the first notification unit 31 is reduced”, “second” The degree of travel control when the condition of the notification unit 32 is “decreased”, “the power is shut off or reduced”, or “the control amount related to driving, braking, and steering is out of a predetermined range”. The level is determined to be “first degree”. The first degree refers to, for example, switching to manual operation by an occupant without performing automatic operation of the vehicle M, or performing travel control such as emergency stop.

 度合決定部180は、例えば、度合レベルが第1の度合の条件に該当しない場合であって、且つ、「通知部33の状態が低下」、「運転操作子80の状態が低下」、または「自動運転中に、自動運転をオフ、もしくは自動運転の度合を切り替えるスイッチが反応しない」の条件のうち、何れかの条件を満たす場合に、走行制御の度合レベルを「第2の度合」に決定する。第2の度合とは、車両Mの自動運転を継続できるが、乗員による手動運転に切り替える走行制御を行うものである。また、度合決定部180は、外界認識部121、作動状態判定部162、および操作状態判定部163のそれぞれが複数系統で設けられている場合に、それぞれの系統の状態のうち、少なくとも一つの系統の状態が低下していると判定された場合に、走行制御の度合レベルを「第2の度合」に決定してもよい。 

For example, the degree determination unit 180 is a case where the degree level does not correspond to the first degree condition, and “the state of the notification unit 33 is reduced”, “the state of the driving operator 80 is reduced”, or “ During automatic driving, if the automatic driving is turned off or the switch that switches the degree of automatic driving does not respond, the driving control level is determined to be "second degree" To do. In the second degree, the vehicle M can be continuously driven automatically, but travel control is switched to manual operation by the occupant. In addition, the degree determination unit 180 may include at least one of the states of each system when each of the external environment recognition unit 121, the operation state determination unit 162, and the operation state determination unit 163 is provided in a plurality of systems. When it is determined that the state of the vehicle is lowered, the degree of travel control may be determined to be “second degree”.

 度合決定部180は、走行状態判定部170による判定結果が「車両Mが停止している」と判定される状態で、機器状態判定部160による判定結果が、「第1の度合または第2の度合の機器状態」の条件を満たす場合、または「手動運転時に切替スイッチを押しても作動しない」という条件を満たす場合には、走行制御の度合レベルを「第3の度合」に決定する。第3の度合とは、例えば、自動運転が実行中でない場合に、自動運転への切り替えを抑制する走行制御を行うものである。この場合、度合決定部180は、切替スイッチにより走行制御の実行指示を受け付けた場合であっても第3の度合を維持する。上述した第1~第3の度合レベルは、通常の自動運転の走行制御の度合に比して低い度合である。度合決定部180は、機器状態判定部160および走行状態判定部170による判定結果に基づいて、他の度合レベルに決定してもよい。 

The degree determination unit 180 is a state in which the determination result by the traveling state determination unit 170 is determined to be “the vehicle M is stopped”, and the determination result by the device state determination unit 160 is “first degree or second degree”. If the condition of “degree device state” is satisfied, or if the condition “does not operate even if the changeover switch is pressed during manual operation” is satisfied, the degree of travel control is determined to be “third degree”. The third degree refers to, for example, running control that suppresses switching to automatic driving when automatic driving is not being executed. In this case, the degree determination unit 180 maintains the third degree even when a travel control execution instruction is received by the changeover switch. The above-described first to third degree levels are lower than the degree of normal automatic driving control. The degree determination unit 180 may determine another degree level based on the determination results by the device state determination unit 160 and the traveling state determination unit 170.

 度合決定部180は、乗員に手動運転を行う旨の情報をインターフェース制御部150に出力する。インターフェース制御部150は、乗員に手動運転を行う旨の情報を通知部33から乗員に通知する。 

The degree determination unit 180 outputs information to the occupant that manual operation is performed to the interface control unit 150. The interface control unit 150 notifies the occupant of information indicating that manual operation is performed to the occupant from the notification unit 33.

 走行制御部141は、度合決定部180により決定された度合に基づいて、記憶部190に記憶された走行制御テーブル192を参照し、度合レベルに対応する走行制御を行う。図7は、走行制御テーブル192の一例を示す図である。走行制御テーブル192には、走行制御内容の各項目に対して、走行制御の第1~第3の度合におけるオン・オフの情報が対応付けられている。走行制御部141は、例えば、走行制御テーブル192を参照し、走行制御内容がオンの項目のうち、数字の小さい方から順に時系列で実行する。 

The traveling control unit 141 refers to the traveling control table 192 stored in the storage unit 190 based on the degree determined by the degree determining unit 180 and performs traveling control corresponding to the degree level. FIG. 7 is a diagram illustrating an example of the travel control table 192. In the travel control table 192, on / off information in the first to third degrees of travel control is associated with each item of the travel control content. For example, the traveling control unit 141 refers to the traveling control table 192, and executes the items in the time series in order from the smallest number among items whose traveling control content is ON.

 例えば、走行制御部141は、第1の度合に基づく走行制御を実行することで、機器の状態が低下した場合に、車両判断で減速等の制御を行うことができる。走行制御部141は、第2の度合に基づく走行制御を実行することで、走行制御の実行に関する機器の状態が低下した場合に、乗員へ運転引継要求を通知することができるため、適切に手動運転に引き継がせることができる。走行制御部141は、第3の度合に基づく走行制御を実行させることで、機器の状態が低下している状態で走行制御が行われるのを抑制することができ、乗員の違和感を低減することができる。 

For example, the traveling control unit 141 can perform traveling control based on the first degree so as to perform deceleration control or the like based on vehicle determination when the state of the device is reduced. Since the traveling control unit 141 can execute the traveling control based on the second degree and can notify the occupant of the driving handover request when the state of the device related to the execution of the traveling control is lowered, the traveling control unit 141 can be manually operated appropriately. It can be taken over by driving. The travel control unit 141 executes the travel control based on the third degree, thereby suppressing the travel control from being performed in a state where the state of the device is reduced, and reducing the passenger's uncomfortable feeling. Can do.

 [処理フロー]
 次に、本実施形態の走行制御処理の流れの一例について説明する。図8は、実施形態の走行制御処理の流れの一例を示すフローチャートである。機器状態判定部160は、車両Mの機器の状態を取得する(ステップS100)。次に、走行状態判定部170は、車両Mが自動運転を実行しているか否かを判定する(ステップS102)。車両Mが自動運転を実行していると判定された場合、走行状態判定部170は、車両Mの車速センサにより検出された車速から、車両Mが走行中(走行している状態)であるか否かを判定する(ステップS104)。 

[Processing flow]
Next, an example of the flow of the travel control process of this embodiment will be described. FIG. 8 is a flowchart illustrating an example of a flow of travel control processing according to the embodiment. The device state determination unit 160 acquires the state of the device of the vehicle M (step S100). Next, the traveling state determination unit 170 determines whether or not the vehicle M is executing automatic driving (step S102). When it is determined that the vehicle M is performing automatic driving, the traveling state determination unit 170 determines whether the vehicle M is traveling (in a traveling state) from the vehicle speed detected by the vehicle speed sensor of the vehicle M. It is determined whether or not (step S104).

 車両Mが走行中であると判定された場合、機器状態判定部160は、車両Mの状態が第1の度合の条件を満たすか否かを判定する(ステップS106)。第1の度合の条件を満たすと判定された場合、度合決定部180は、第1の度合に対応する制御内容を走行制御部141に出力する(ステップS108)。次に、走行制御部141は、第1の度合に基づく走行制御を行う(ステップS110)。 

When it is determined that the vehicle M is traveling, the device state determination unit 160 determines whether or not the state of the vehicle M satisfies the first degree condition (step S106). When it is determined that the first degree condition is satisfied, the degree determination unit 180 outputs the control content corresponding to the first degree to the travel control unit 141 (step S108). Next, the traveling control unit 141 performs traveling control based on the first degree (step S110).

 車両の状態が第1の度合の条件を満たさないと判定された場合、機器状態判定部160は、第2の度合の条件を満たすか否かを判定する(ステップS112)。第2の度合の条件を満たすと判定された場合、度合決定部180は、第2の度合に対応する制御内容を走行制御部141に出力する(ステップS114)。次に、走行制御部141は、第2の度合に基づく走行制御を行う(ステップS116)。 

When it is determined that the vehicle state does not satisfy the first degree condition, the device state determination unit 160 determines whether or not the second degree condition is satisfied (step S112). When it is determined that the second degree condition is satisfied, the degree determination unit 180 outputs the control content corresponding to the second degree to the travel control unit 141 (step S114). Next, the traveling control unit 141 performs traveling control based on the second degree (step S116).

 S112の処理において、車両の状態が第2の度合の条件を満たさないと判定された場合、機器状態判定部160は、第3の度合の条件を満たすか否かを判定する(ステップS118)。ステップS118の処理は、ステップS102の処理において車両が自動運転中でないと判定された場合、または、ステップS104の処理において車両が走行中でないと判定された場合にも行われる。車両の状態が第3の度合の条件を満たすと判定された場合、度合決定部180は、第3の度合に対応する制御内容を走行制御部141に出力する(ステップS120)。次に、走行制御部141は、第3の度合に基づく走行制御を行う(ステップS122)。 

In the process of S112, when it is determined that the vehicle state does not satisfy the second degree condition, the device state determination unit 160 determines whether or not the third degree condition is satisfied (step S118). The process of step S118 is also performed when it is determined in step S102 that the vehicle is not automatically driving, or when it is determined that the vehicle is not running in step S104. When it is determined that the state of the vehicle satisfies the condition of the third degree, the degree determination unit 180 outputs the control content corresponding to the third degree to the travel control unit 141 (step S120). Next, the traveling control unit 141 performs traveling control based on the third degree (step S122).

 ステップS110、S116、S122の処理終了後、または、ステップS118の処理において車両の状態が第3の度合の条件を満たさない場合、走行制御部141は、実施形態の走行制御処理を終了するか否かを判定する(S124)。走行制御を終了しないと判定された場合は、ステップS100の処理に戻る。走行制御処理を終了すると判定された場合は、本フローチャートの処理を終了する。 

After the process of steps S110, S116, and S122 is completed, or when the state of the vehicle does not satisfy the third degree condition in the process of step S118, the travel control unit 141 ends the travel control process of the embodiment. Is determined (S124). If it is determined not to end the traveling control, the process returns to step S100. If it is determined that the traveling control process is to be terminated, the process of this flowchart is terminated.

 [変形例]
 例えば、機器状態判定部160は、機器の状態が低下したか否かを判定する場合に、時間の条件を追加してもよい。例えば、機器状態判定部160は、機器の状態が低くなってから所定時間が経過した後も機器の状態が元の状態に戻らない場合に、機器の状態が低いと判定する。これにより、例えば、外界認識等に用いられるセンサ等による検出結果が雨や雪、汚れ等の影響で一時的に低下した場合に、頻繁に走行制御が変更されるのを抑制することができる。したがって、車両Mの走行制御を安定させることができる。 

[Modification]
For example, the device state determination unit 160 may add a time condition when determining whether or not the state of the device has decreased. For example, the device state determination unit 160 determines that the state of the device is low when the state of the device does not return to the original state even after a predetermined time has elapsed since the state of the device has decreased. Thereby, for example, when the detection result by a sensor or the like used for external recognition or the like temporarily decreases due to the influence of rain, snow, dirt, or the like, it is possible to suppress frequent changes in travel control. Therefore, the traveling control of the vehicle M can be stabilized.

 以上説明した実施形態によれば、車両システム1は、乗員の運転操作によらずに車両の走行制御を実行する走行制御部と、前記走行制御部による走行制御の実行に用いられる機器の状態を判定する状態判定部と、前記状態判定部により判定された前記機器の状態に基づいて、前記走行制御部による走行制御の度合を決定する度合決定部とを備えることにより、車両の機器の状態に基づいて適切な制御態様に変更することができる。 

According to the embodiment described above, the vehicle system 1 includes the travel control unit that executes the travel control of the vehicle without depending on the driving operation of the occupant, and the state of the equipment that is used to execute the travel control by the travel control unit. By providing a state determination unit for determination and a degree determination unit for determining the degree of travel control by the travel control unit based on the state of the device determined by the state determination unit, Based on this, it is possible to change to an appropriate control mode.
 [ハードウェア構成]
 上述した実施形態の自動運転制御ユニット100は、例えば、図9に示すようなハードウェアの構成により実現される。図9は、実施形態の自動運転制御ユニット100のハードウェア構成の一例を示す図である。
[Hardware configuration]
The automatic operation control unit 100 of the above-described embodiment is realized by a hardware configuration as shown in FIG. 9, for example. FIG. 9 is a diagram illustrating an example of a hardware configuration of the automatic operation control unit 100 according to the embodiment.
 自動運転制御ユニット100は、通信コントローラ100-1、CPU100-2、RAM100-3、ROM100-4、フラッシュメモリやHDD等の記憶装置100-5、およびドライブ装置100-6が、内部バスあるいは専用通信線によって相互に接続された構成となっている。ドライブ装置100-6には、光ディスク等の可搬型記憶媒体が装着される。記憶装置100-5に格納されたプログラム100-5aがDMAコントローラ(不図示)等によってRAM100-3に展開され、CPU100-2によって実行されることで、自動運転制御ユニット100の機能部が実現される。CPU100-2が参照するプログラムは、ドライブ装置100-6に装着された可搬型記憶媒体に格納されていてもよいし、ネットワークを介して他の装置からダウンロードされてもよい。 The automatic operation control unit 100 includes a communication controller 100-1, a CPU 100-2, a RAM 100-3, a ROM 100-4, a storage device 100-5 such as a flash memory and an HDD, and a drive device 100-6. It is the structure mutually connected by the line. The drive device 100-6 is loaded with a portable storage medium such as an optical disk. The program 100-5a stored in the storage device 100-5 is expanded in the RAM 100-3 by a DMA controller (not shown) or the like and executed by the CPU 100-2, thereby realizing the functional unit of the automatic operation control unit 100 The The program referred to by the CPU 100-2 may be stored in a portable storage medium attached to the drive device 100-6, or may be downloaded from another device via a network.
 上記実施形態は、以下のように表現することができる。
 記憶装置と前記記憶装置に格納されたプログラムを実行するハードウェアプロセッサと、を備え、
 前記ハードウェアプロセッサは、前記プログラムを実行することにより、

 乗員の運転操作によらずに車両の走行制御を実行し、
 前記走行制御の実行に用いられる機器の状態を判定し、
 判定された前記機器の状態に基づいて、前記走行制御の度合を決定する、 ように構成されている車両制御装置。
The above embodiment can be expressed as follows.
A storage device and a hardware processor for executing a program stored in the storage device,
The hardware processor executes the program,

Execute vehicle travel control without relying on the driver's driving operation,
Determine the state of the equipment used to execute the travel control,
A vehicle control device configured to determine a degree of the travel control based on the determined state of the device.

 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。

As mentioned above, although the form for implementing this invention was demonstrated using embodiment, this invention is not limited to such embodiment at all, In the range which does not deviate from the summary of this invention, various deformation | transformation and substitution Can be added.

 1…車両システム、10…カメラ、12…レーダ装置、14…ファインダ、16…物体認識装置、20…通信装置、30…HMI、31…第1報知部、32…第2報知部、33…通知部、34…受付部、40…シート装置、50…ナビゲーション装置、60…MPU、70…車両センサ、80…運転操作子、90…車室内カメラ、100…自動運転制御ユニット、120…第1制御部、121…外界認識部、122…自車位置認識部、123…行動計画生成部、140…第2制御部、141…走行制御部、142…切替制御部、150…インターフェース制御部、160…機器状態判定部、170…走行状態判定部、180…度合決定部、190…記憶部、200…走行駆動力出力装置、210…ブレーキ装置、220…ステアリング装置、M…車両

DESCRIPTION OF SYMBOLS 1 ... Vehicle system, 10 ... Camera, 12 ... Radar apparatus, 14 ... Finder, 16 ... Object recognition apparatus, 20 ... Communication apparatus, 30 ... HMI, 31 ... 1st notification part, 32 ... 2nd notification part, 33 ... Notification 34: Reception unit, 40 ... Seat device, 50 ... Navigation device, 60 ... MPU, 70 ... Vehicle sensor, 80 ... Driving operator, 90 ... In-vehicle camera, 100 ... Automatic driving control unit, 120 ... First control , 121 ... External world recognition part, 122 ... Own vehicle position recognition part, 123 ... Action plan generation part, 140 ... Second control part, 141 ... Travel control part, 142 ... Switching control part, 150 ... Interface control part, 160 ... Device state determination unit, 170 ... running state determination unit, 180 ... degree determination unit, 190 ... storage unit, 200 ... running driving force output device, 210 ... brake device, 220 ... steering device, ... vehicle

Claims (11)

  1.  乗員の運転操作によらずに車両の走行制御を実行する走行制御部と、
     前記走行制御部による走行制御の実行に用いられる機器の状態を判定する状態判定部と、
     前記状態判定部により判定された前記機器の状態に基づいて、前記走行制御部による走行制御の度合を決定する度合決定部と、
     を備える車両制御システム。
    A travel control unit that executes the travel control of the vehicle without depending on the driving operation of the occupant;
    A state determination unit that determines the state of the device used for execution of the travel control by the travel control unit;
    Based on the state of the device determined by the state determination unit, a degree determination unit that determines the degree of traveling control by the traveling control unit,
    A vehicle control system comprising:
  2.  前記度合決定部は、前記状態判定部により前記機器の状態が低下したと判定された場合に、前記走行制御部による前記車両の走行制御の度合を、現在の走行制御の度合に比して低い度合に決定する、
     請求項1に記載の車両制御システム。
    When the state determination unit determines that the state of the device has decreased, the degree determination unit has a lower degree of traveling control of the vehicle by the traveling control unit than a current degree of traveling control Decide on the degree,
    The vehicle control system according to claim 1.
  3.  前記車両の駆動、制動、または操舵を行うアクチュエータと、
     前記車両の走行制御において機器と通信を行う通信部と、
     前記乗員に対して前記車両の状態の低下を報知する第1報知部と、
     前記乗員に対する前記車両の走行制御の状態を報知する第2報知部とを、更に備え、
     前記度合決定部は、前記状態判定部により判定された前記アクチュエータ、前記通信部、前記第1報知部、または前記第2報知部の状態のうち、少なくとも一つの状態が低下した場合に、前記現在の走行制御の度合に比して低い度合に変更する、
     請求項2に記載の車両制御システム。
    An actuator for driving, braking or steering the vehicle;
    A communication unit that communicates with a device in the travel control of the vehicle;
    A first notification unit that notifies the occupant of a decrease in the state of the vehicle;
    A second notification unit that notifies a state of travel control of the vehicle with respect to the occupant,
    The degree determination unit is configured to display the current state when at least one of the states of the actuator, the communication unit, the first notification unit, or the second notification unit determined by the state determination unit decreases. Change to a lower degree than the degree of driving control of
    The vehicle control system according to claim 2.
  4.  前記度合決定部により、前記車両の走行制御の度合を変更すると判定された場合に、乗員に対して手動運転を行う旨の通知を行う通知部を更に備える、
     請求項1から3のうち、何れか1項に記載の車両制御システム。
    When the degree determination unit determines to change the degree of travel control of the vehicle, the degree determination unit further includes a notification unit that notifies the occupant that manual driving is performed.
    The vehicle control system according to any one of claims 1 to 3.
  5.  前記車両の周辺状況を取得する周辺状況取得部と、
     前記走行制御を実行するアクチュエータの作動状態を取得する作動状態判定部と、
     前記乗員の操作を受け付ける受付部の状態を取得する操作状態判定部と、を更に備え、
     前記周辺状況取得部、前記作動状態判定部、または前記操作状態判定部のそれぞれが複数系統で設けられ、
     前記状態判定部は、前記周辺状況取得部、前記作動状態判定部、または前記操作状態判定部のそれぞれの系統の状態を取得し、
     前記通知部は、前記状態判定部により判定された状態のうち、前記周辺状況取得部、前記作動状態判定部、または前記操作状態判定部のそれぞれの系統の状態のうち、少なくとも一つの系統の状態が低下していると判定された場合に、前記乗員に対して手動運転を行う旨の通知を行う、
     請求項4に記載の車両制御システム。
    A surrounding situation obtaining unit for obtaining the surrounding situation of the vehicle;
    An operating state determination unit that acquires an operating state of an actuator that executes the travel control;
    An operation state determination unit that acquires a state of the reception unit that receives the operation of the occupant,
    Each of the surrounding state acquisition unit, the operation state determination unit, or the operation state determination unit is provided in a plurality of systems,
    The state determination unit acquires a state of each system of the surrounding state acquisition unit, the operation state determination unit, or the operation state determination unit,
    The notification unit is a state of at least one of the states of the surrounding state acquisition unit, the operation state determination unit, or the operation state determination unit among the states determined by the state determination unit. If it is determined that the vehicle has been lowered, a notification to the effect that manual operation will be performed to the occupant,
    The vehicle control system according to claim 4.
  6.  前記車両に対する走行制御の実行または停止の指示を受け付ける受付部を更に備え、
     前記状態判定部は、前記受付部の状態を取得し、
     前記通知部は、前記状態判定部により前記受付部からの指示入力ができない状態であると判定された場合に、前記乗員に対して手動運転を行う旨の通知を行う、
     請求項4に記載の車両制御システム。
    A reception unit that receives an instruction to execute or stop travel control for the vehicle;
    The state determination unit acquires the state of the reception unit,
    The notification unit notifies the occupant that manual operation is performed when it is determined by the state determination unit that an instruction cannot be input from the reception unit.
    The vehicle control system according to claim 4.
  7.  前記状態判定部は、前記受付部の状態を取得し、
     前記走行制御部は、前記走行制御が行われていない状態で、前記状態判定部により取得した前記受付部の状態が低下したと判定された場合に、前記受付部により前記走行制御の実行指示を受け付けた場合でも、前記手動運転を維持する、
     請求項6に記載の車両制御システム。
    The state determination unit acquires the state of the reception unit,
    When the traveling control unit determines that the state of the receiving unit acquired by the state determining unit has decreased in a state where the traveling control is not performed, the traveling control unit instructs the traveling unit to execute the traveling control. Even if accepted, maintain the manual operation,
    The vehicle control system according to claim 6.
  8.  前記車両の走行状態を判定する走行状態判定部を更に備え、
     前記走行制御部は、前記走行状態判定部により前記車両が停止している状態であると判定された場合に、前記車両の現在の走行制御を維持する、
     請求項6に記載の車両制御システム。
    The vehicle further includes a traveling state determination unit that determines a traveling state of the vehicle,
    The travel control unit maintains the current travel control of the vehicle when the travel state determination unit determines that the vehicle is stopped.
    The vehicle control system according to claim 6.
  9.  車載コンピュータが、
     乗員の運転操作によらずに車両の走行制御を実行し、
     前記車両の走行制御の実行に用いられる機器の状態に基づいて、前記走行制御の度合を変更する、
     車両制御方法。
    In-vehicle computer
    Execute vehicle travel control without relying on the driver's driving operation,
    Changing the degree of the travel control based on the state of the equipment used to execute the travel control of the vehicle;
    Vehicle control method.
  10.  情報を記憶する記憶装置と、
     前記記憶装置に記憶されたプログラムを実行するハードウェアプロセッサと、を備え、
     前記ハードウェアプロセッサは、
     乗員の運転操作によらずに車両の走行制御を実行し、
     前記走行制御の実行に用いられる機器の状態に基づいて、前記走行制御の度合を決定する、
     ように構成されている、
     車両制御装置。
    A storage device for storing information;
    A hardware processor for executing a program stored in the storage device,
    The hardware processor is
    Execute vehicle travel control without relying on the driver's driving operation,
    Determining the degree of the travel control based on the state of the equipment used to execute the travel control;
    Configured as
    Vehicle control device.
  11.  車載コンピュータに、
     乗員の運転操作によらずに車両の走行制御を実行させ、
     前記車両の走行制御の実行に用いられる機器の状態に基づいて、前記走行制御の度合を変更させる、
     車両制御プログラム。
    On-board computer
    Run the vehicle's driving control regardless of the driver's driving operation,
    Changing the degree of the travel control based on the state of the equipment used to execute the travel control of the vehicle;
    Vehicle control program.
PCT/JP2017/045722 2017-03-30 2017-12-20 Vehicle control system, vehicle control method, vehicle control device, and vehicle control program WO2018179626A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780088932.8A CN110461674B (en) 2017-03-30 2017-12-20 Vehicle control system, vehicle control method, vehicle control device, and storage medium
JP2019508572A JP6838139B2 (en) 2017-03-30 2017-12-20 Vehicle control systems, vehicle control methods, vehicle control devices, and vehicle control programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017067529 2017-03-30
JP2017-067529 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018179626A1 true WO2018179626A1 (en) 2018-10-04

Family

ID=63674503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045722 WO2018179626A1 (en) 2017-03-30 2017-12-20 Vehicle control system, vehicle control method, vehicle control device, and vehicle control program

Country Status (3)

Country Link
JP (1) JP6838139B2 (en)
CN (1) CN110461674B (en)
WO (1) WO2018179626A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732143B1 (en) * 2019-07-31 2020-07-29 三菱電機株式会社 Vehicle control device
JP2020132039A (en) * 2019-02-22 2020-08-31 本田技研工業株式会社 Vehicle control device, vehicle, and vehicle control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257436A (en) * 1988-08-23 1990-02-27 Nippon Denso Co Ltd Device for controlling constant speed running of vehicle
JPH09160643A (en) * 1995-12-11 1997-06-20 Toyota Motor Corp Diagnostic system for vehicle
JP2006336717A (en) * 2005-05-31 2006-12-14 Denso Corp Vehicle control system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3424673B2 (en) * 2001-02-02 2003-07-07 日産自動車株式会社 Constant speed traveling equipment for vehicles
KR20040091788A (en) * 2003-04-22 2004-11-02 현대자동차주식회사 Self-control Traveling System For Expressway and Control Method Thereof
JP6135618B2 (en) * 2014-08-08 2017-05-31 トヨタ自動車株式会社 Vehicle control device
JP6035308B2 (en) * 2014-11-07 2016-11-30 富士重工業株式会社 Vehicle travel control device
JP2016132421A (en) * 2015-01-22 2016-07-25 トヨタ自動車株式会社 Automatic drive unit
JP6323385B2 (en) * 2015-04-20 2018-05-16 トヨタ自動車株式会社 Vehicle travel control device
JP6524501B2 (en) * 2015-06-11 2019-06-05 パナソニックIpマネジメント株式会社 Vehicle control apparatus, vehicle control method and vehicle control program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257436A (en) * 1988-08-23 1990-02-27 Nippon Denso Co Ltd Device for controlling constant speed running of vehicle
JPH09160643A (en) * 1995-12-11 1997-06-20 Toyota Motor Corp Diagnostic system for vehicle
JP2006336717A (en) * 2005-05-31 2006-12-14 Denso Corp Vehicle control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132039A (en) * 2019-02-22 2020-08-31 本田技研工業株式会社 Vehicle control device, vehicle, and vehicle control method
JP7104646B2 (en) 2019-02-22 2022-07-21 本田技研工業株式会社 Vehicle control device and vehicle control method
JP6732143B1 (en) * 2019-07-31 2020-07-29 三菱電機株式会社 Vehicle control device
WO2021019715A1 (en) * 2019-07-31 2021-02-04 三菱電機株式会社 Vehicle control device

Also Published As

Publication number Publication date
JP6838139B2 (en) 2021-03-03
CN110461674B (en) 2022-08-05
CN110461674A (en) 2019-11-15
JPWO2018179626A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6646168B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6692898B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6523361B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6246844B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6496944B2 (en) Vehicle seat device
JP6528336B2 (en) Vehicle control system and vehicle control method
JP6428746B2 (en) Vehicle control system, vehicle control method, and vehicle control program
WO2018138769A1 (en) Vehicle control apparatus, vehicle control method, and vehicle control program
WO2019163121A1 (en) Vehicle control system, vehicle control method, and program
WO2018123344A1 (en) Vehicle control device, vehicle control method, and program
JPWO2018087828A1 (en) Vehicle control device, vehicle control system, vehicle control method, and vehicle control program
CN109890679B (en) Vehicle control system, vehicle control method, and storage medium
WO2018122973A1 (en) Vehicle control system, vehicle control method, and vehicle control program
WO2018179359A1 (en) Vehicle control system, vehicle control method, and vehicle control program
WO2018179958A1 (en) Vehicle control system, vehicle control method, and vehicle control program
JP2019119230A (en) Vehicle control system, vehicle control method, and program
WO2017183072A1 (en) Vehicle control system, vehicle communication system, vehicle control method, and vehicle control program
JP2018037100A (en) Vehicle control system, vehicle control method and vehicle control program
WO2018179626A1 (en) Vehicle control system, vehicle control method, vehicle control device, and vehicle control program
JP2018118532A (en) Vehicle seat control device, vehicle seat control method, and vehicle seat control program
CN110446644B (en) Vehicle control system, vehicle control method, vehicle control device, and storage medium
US10730476B2 (en) Occupant protection device, method for controlling occupant protection device, and program
US20240059304A1 (en) Vehicle control device, vehicle control system, vehicle control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508572

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902910

Country of ref document: EP

Kind code of ref document: A1