WO2018179473A1 - Induction-heating cooker and induction-heating cooker production method - Google Patents

Induction-heating cooker and induction-heating cooker production method Download PDF

Info

Publication number
WO2018179473A1
WO2018179473A1 PCT/JP2017/027205 JP2017027205W WO2018179473A1 WO 2018179473 A1 WO2018179473 A1 WO 2018179473A1 JP 2017027205 W JP2017027205 W JP 2017027205W WO 2018179473 A1 WO2018179473 A1 WO 2018179473A1
Authority
WO
WIPO (PCT)
Prior art keywords
top plate
induction heating
heating cooker
heated
glass
Prior art date
Application number
PCT/JP2017/027205
Other languages
French (fr)
Japanese (ja)
Inventor
彩加 鈴木
敦 阪本
一義 志智
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780088010.7A priority Critical patent/CN110383943B/en
Publication of WO2018179473A1 publication Critical patent/WO2018179473A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present disclosure relates to a cooking device for cooking food used in general households.
  • induction cookers that cook food to be cooked
  • induction cookers that perform cooking using electromagnetic induction have become widespread.
  • An induction heating cooker causes an eddy current to flow through a cooking container such as a pan, which is an object to be heated, without using fire as a heating source, thereby causing the cooking container itself to generate heat. Thereby, a to-be-cooked object is cooked. Therefore, the induction heating cooker has high safety and excellent cleaning properties.
  • the top plate of the induction heating cooker has a flat top surface.
  • a cooking container such as a pan that is an object to be heated is placed.
  • a glass top plate is employed as the top plate.
  • a heating cooker equipped with two types of heating sources such as an induction heating coil and a radiant heater is also widespread.
  • the radiant heater is a heating cooker of a type in which the radiant heater itself generates heat and heats an object to be heated by heat conduction. Therefore, in the case of a heating cooker using a radiant heater, the temperature of the top plate is 500 ° C. or higher. For this reason, crystallized glass that is excellent in thermal shock and has a coefficient of thermal expansion close to zero is generally used as a material for the top plate (see, for example, Patent Documents 1 and 2).
  • induction heating cookers that do not use a radiant heater as a heating source and all the heating sources are configured by induction heating coils have become widespread.
  • crystallized glass used for the top plate is manufactured by a special manufacturing method so as to have special characteristics such as a coefficient of thermal expansion of almost zero. Therefore, crystallized glass is very expensive.
  • crystallized glass has a yellowish glass fabric itself. For this reason, when the glass is printed and displayed on the top plate, colors such as white do not appear clearly. Then, in order to improve the design property of a top plate, the induction heating cooking appliance which uses non-crystallized glass is proposed (for example, refer patent document 3).
  • the top plate of the cooking device is required to have thermal shock resistance, which is the performance of glass when it is rapidly cooled after being heated to a high temperature.
  • adopted the glass material which further strengthened the non-crystallized glass is proposed (for example, refer patent document 5).
  • the induction heating cooker having the conventional configuration has room for further improvement in improving safety.
  • the present disclosure provides an induction heating cooker having a top plate that has high thermal shock resistance and is resistant to cracking.
  • An induction heating cooker is disposed in an upper portion of a housing, a top plate on which an object to be heated is placed, a frame that holds the top plate, an interior of the housing, A heating unit for heating the heated object and a control unit for controlling the heating unit are provided.
  • the top plate is made of glass having a surface compressive stress value larger than 25 MPa.
  • the induction cooking device of the present disclosure includes a top plate made of glass with improved strength and thermal shock resistance. Thereby, the crack of a top plate can be suppressed and the induction heating cooking appliance which has higher safety
  • security can be provided.
  • FIG. 1 is an exploded perspective view illustrating an outline of the overall configuration of the induction heating cooker according to the embodiment of the present disclosure.
  • FIG. 2A is an exploded perspective view of the top unit of the induction heating cooker according to the embodiment of the present disclosure.
  • FIG. 2B is a plan view of the top unit.
  • FIG. 2C is a perspective view of the top unit.
  • 2D is a cross-sectional view of the top unit shown in FIG. 2B taken along line 2D-2D.
  • FIG. 3 is a diagram showing the correlation between the surface compressive stress value and thermal shock resistance of borosilicate glass.
  • FIG. 4A is a schematic view of the state of the object to be heated as viewed from the front.
  • FIG. 4A is a schematic view of the state of the object to be heated as viewed from the front.
  • FIG. 4B is a schematic view of the state of the object to be heated as viewed from above.
  • FIG. 5A is a schematic view of the top plate as viewed from the front when the object to be heated is heated.
  • FIG. 5B is a schematic view of the deformation of the top plate when the object to be heated is heated, as viewed from above.
  • FIG. 6A is a cross-sectional view showing an example of a schematic configuration of a frame of the induction heating cooker in the present embodiment.
  • FIG. 6B is a cross-sectional view illustrating a comparative example of a schematic configuration of a frame.
  • FIG. 7A is a plan view of the top unit of the induction heating cooker in the present embodiment. 7B is a cross-sectional view taken along line 7B-7B of the top unit of FIG. 7A.
  • FIG. 8 is a flowchart showing a method for manufacturing the induction heating cooker of the present embodiment.
  • the conventional induction heating cooker employs non-crystallized glass with a small expansion coefficient.
  • non-crystallized glass having a small expansion coefficient has a large thermal deformation in a high temperature range. For this reason, when the object to be heated is cooked at a high temperature, the top plate may be cracked due to thermal deformation of the non-crystallized glass. Therefore, the conventional induction heating cooker cooks the object to be heated while controlling the temperature in a low temperature range. Therefore, the user cannot obtain the satisfaction that the object to be heated is cooked with high heating power.
  • An induction heating cooker includes a housing, a top plate that is disposed on an upper portion of the housing, on which an object to be heated is placed, a frame that holds the top plate, and an interior of the housing And a control section for controlling the heating section and a heating section for heating the object to be heated.
  • the top plate is made of glass having a surface compressive stress value larger than 25 MPa.
  • the top plate is made of glass having a surface compressive stress value larger than 25 MPa.
  • the top plate has high strength and thermal shock resistance.
  • cracking of the top plate can be suppressed.
  • the object to be heated can be cooked by raising the temperature to a high temperature range. Thereby, the user can be satisfied that the object to be heated is cooked with high heating power.
  • the glass constituting the top plate may be composed of borosilicate glass.
  • the top plate is made of borosilicate glass which is non-crystallized glass having high transparency. Therefore, the color printed on the top plate can be expressed beautifully. Thereby, the design property of a top plate improves.
  • the glass constituting the top plate may be physically strengthened by heat.
  • This configuration can enhance the strength and thermal shock resistance of the top plate. Thereby, generation
  • the glass constituting the top plate may have a thermal shock resistance of 300 ° C. or higher.
  • the user in cooking a fried food or the like, the user can cook the object to be heated by raising the temperature to a temperature range where a cooking feeling can be obtained with high heating power.
  • the glass constituting the top plate may have a surface compressive stress value of 55 MPa or less.
  • the top plate has high strength and thermal shock resistance that are necessary when considering the actual use situation (for example, the temperature of the object to be heated). Therefore, the induction heating cooking appliance which satisfies a user's cooking feeling can be provided.
  • the induction heating cooker according to the sixth aspect of the present disclosure has a peripheral portion arranged along the outer periphery of the top plate so that the frame surrounds the end surface portion of the top plate in a plan view of the top plate.
  • the peripheral portion may be configured not to be disposed at the position of the upper surface of the top plate.
  • the frame has a bottom surface portion located below the top plate, and the top plate is bonded to the bottom surface between the top plate and the bottom surface.
  • a member may be provided, and the elastic member may be arranged so as to surround the periphery of the heating unit in a plan view of the top plate.
  • the stress applied to the end surface portion of the top plate during thermal deformation can be distributed to portions other than the end surface portion of the top plate. Thereby, the crack of a top plate can be suppressed.
  • 8th aspect of this indication is a manufacturing method of the induction heating cooking appliance using the top plate comprised from the glass physically strengthened with the heat
  • the manufacturing method of an induction heating cooker arrange
  • the method for manufacturing the induction heating cooker according to the ninth aspect of the present disclosure may further include a step of calculating a correlation between the thermal shock resistance and the surface compressive stress value.
  • the user side which uses an induction heating cooking appliance is demonstrated as a front side (front side or front side), and the opposite side to the user side of an induction heating cooking appliance is set as a back side (back side).
  • the following embodiment is an illustration and can be changed suitably. That is, the present disclosure is not limited by the following embodiments.
  • FIG. 1 is an exploded perspective view showing an outline of the overall configuration of induction heating cooker 100 in the present embodiment.
  • a built-in induction heating cooker 100 that is used by being incorporated in a cabinet of a system kitchen will be described as an example of the induction heating cooker.
  • an induction heating cooker such as a stationary type that is used by being placed on a kitchen table or a desktop type that is used by being placed on a table such as a table.
  • the induction heating cooker 100 of the present embodiment includes a casing 1, a top unit 4 including a top plate 2 and a frame 3.
  • the housing 1 has an opening on the upper side, and stores a control unit 8, a cooling fan 9, a grill cooking chamber 12, and the like which will be described later.
  • the top plate 2 is provided so as to cover an upper opening formed in the housing 1, and an object to be heated is placed on the upper surface side.
  • the frame 3 supports the top plate 2.
  • the housing 1 and the top plate 2 constitute an outer shell of the induction heating cooker 100.
  • the top plate 2 is made of glass such as borosilicate glass strengthened by heat, as will be described later.
  • the top plate 2 is bonded and fixed to the frame 3 by an elastic member such as a silicon adhesive. Thereby, the top plate 2 is supported by the frame 3.
  • the housing 1 accommodates a heating coil 5, a control unit 8, a cooling fan 9, a grill cooking chamber 12, and the like.
  • the heating coil 5 heats an object to be heated placed on the upper surface 2b of the top plate 2 by electromagnetic induction.
  • the induction heating cooker 100 shown in FIG. 1 is illustrated as a three-hole heating cooker having three heating coils 5.
  • the number of heating coils 5 is not limited to three, and may be one, two, four or more, for example.
  • the induction heating cooker 100 includes a temperature detection unit 6 (for example, an infrared sensor) that detects the temperature of the object to be heated.
  • the temperature detection unit 6 is attached to the heating coil 5.
  • the temperature detector 6 and the heating coil 5 constitute a heating coil unit.
  • a plurality of temperature detection units 6 may be provided for one heating coil 5. Thereby, the detection precision of the temperature of a to-be-heated material improves. Furthermore, the temperature detection part 6 is not limited to the infrared sensor which detects infrared rays, You may comprise the thermistor etc. which detect temperature from the electromotive force by a temperature difference.
  • the temperature detectors 6 may be attached to all the heating coils 5.
  • the temperature detection unit 6 of the two heating coils 5 on the front side may be configured by an infrared sensor
  • the temperature detection unit 6 of the heating coil 5 on the rear side may be configured by a thermistor.
  • the casing 1 is provided with an operation unit 7 on the front side, which is operated by the user.
  • the user operates the operation unit 7 and inputs, for example, the heating condition and the heating time of the object to be heated.
  • the to-be-heated object is induction-heated on desired conditions via the heating coil 5.
  • control unit 8 controls the current flowing through the heating coil 5 by an inverter mounted on the control board. Thereby, the control part 8 controls the heating state with respect to a to-be-heated material.
  • the operation unit 7 may be installed on the top unit 4 or below the top unit 4 so that the user operates the operation unit 7 from above the top unit 4.
  • the operation unit 7 may be configured by detecting the capacitance via the top plate 2. Specifically, in the case of the operation unit 7 that detects the electrostatic capacity, a change in the electrostatic capacity is detected based on a resistance value suitable for the material of the top plate 2. Thereby, the operation unit 7 detects the input information by the user.
  • the control unit 8 is cooled by a cooling fan 9 housed in the housing 1.
  • the housing 1 that houses the control unit 8 and the cooling fan 9 is incorporated in a kitchen cabinet 10.
  • the cooling fan 9 draws in air inside the kitchen cabinet 10 through the intake holes 11 formed in the housing 1 and cools the control unit 8 and the like.
  • casing 1 is equipped with an opening part (not shown) in the position corresponding to the opening part 10a of the front side of the kitchen cabinet 10 by the front side. Therefore, the cooling fan 9 draws in air outside the kitchen cabinet 10 through the opening of the housing 1 and cools the control unit 8 and the like.
  • the cooling fan 9 simultaneously cools not only the control unit 8 but also the heating coil 5 and the casing 1 that forms the outer shell of the induction heating cooker 100.
  • the casing 1 of the built-in induction heating cooker 100 normally contains a grill cooking chamber 12 therein.
  • the grill cooking chamber 12 has an opening 12a on the front side, and a grill door 13 is provided so as to cover the opening 12a.
  • the user can open the grill door 13 and put a food such as fish into and out of the grill cooking chamber 12.
  • the induction heating apparatus of the present embodiment is configured.
  • 2A to 2C are an exploded perspective view, a plan view, and a perspective view of the top unit 4, respectively.
  • 2D is a cross-sectional view of the top unit 4 shown in FIG. 2B taken along line 2D-2D.
  • the top unit 4 is mainly composed of a top plate 2 and a frame 3 for holding the top plate 2 as shown in FIG. 2A.
  • the frame 3 includes an under frame 3a (bottom surface portion), a side frame 3b (peripheral portion), a back frame 3c, and the like.
  • the under frame 3 a constitutes the bottom surface of the frame 3 and holds the lower surface of the top plate 2.
  • the side frame 3 b constitutes a peripheral portion of the frame 3 and is disposed so as to surround the outer periphery of the top plate 2.
  • the back frame 3 c is disposed on the rear side of the top surface of the top unit 4.
  • the back frame 3c includes an exhaust port 15 that exhausts cooling air from the cooling fan 9 (see FIG. 1).
  • a back grille 16 having a plurality of holes formed thereon is disposed at the exhaust port 15. The back grill 16 discharges the exhaust from the exhaust port 15 upward.
  • the top plate 2 is placed on the under frame 3a and bonded and fixed to the under frame 3a through an elastic member such as a silicon adhesive 14, for example.
  • the end surface 2a of the top plate 2 is surrounded by the side frame 3b, and is bonded and fixed to the side frame 3b through an elastic member such as a silicon adhesive 14, for example.
  • the under frame 3a and the side frame 3b are simply fitted using, for example, fitting claws.
  • top plate 2 and the back frame 3c are similarly bonded and fixed to each other via an elastic member such as a silicon adhesive 14, for example.
  • the back frame 3c and the under frame 3a are simply fitted using fitting claws or the like, similarly to the side frame 3b.
  • the under frame 3a and the back frame 3c may be configured to be assembled with, for example, screws other than the fitting claws.
  • the top unit 4 is configured.
  • top plate 2 a method for forming the top plate 2 will be described.
  • the glass is cut into a predetermined size corresponding to the top plate 2. Thereafter, the cut end face 2 a of the glass is polished to form the top plate 2. At this time, it is preferable that the end surface portion 2a of the top plate 2 is polished with a fine polishing particle having a small particle diameter, for example, a particle size # 100 to # 240 or more. Thereby, for example, cracks and unevenness that are likely to be the starting point of cracking can be eliminated, and the end surface portion 2a of the top plate 2 can be finished with a clean surface.
  • the top plate 2 is subjected to a strengthening process by heat, for example, which will be described later. Thereby, reinforcement
  • the top plate 2 having a predetermined strength is formed.
  • FIG. 3 is a diagram showing the correlation between the surface compressive stress value and thermal shock resistance of borosilicate glass.
  • Borosilicate glass is a glass that is composed of SiO 2 , Al 2 O 3 , B 2 O 5 , Na 2 O 3 , and the like and has a composition ratio of these components within a predetermined range.
  • a predetermined heat treatment was performed on the borosilicate glass to strengthen the surface compressive stress, thereby preparing a test piece.
  • the physical strengthening treatment was performed by firing the borosilicate glass at a temperature of about 700 ° C. at maximum and quenching it.
  • a plurality of glasses having different surface compressive stress values were prepared by changing the firing temperature.
  • borosilicate glass test pieces having different surface compressive stress values were produced by changing, for example, the firing temperature and firing time as the heat strengthening treatment conditions for the borosilicate glass.
  • a glass of a test piece having a size of 250 mm square and a thickness of about 4 mm was produced.
  • the end face of the glass of the produced test piece is enhanced in characteristics such as thermal shock resistance by heat treatment after polishing.
  • the thermal shock resistance test method will be described below.
  • each prepared test piece is put in a thermostat maintained at a predetermined temperature, and held in the thermostat until the temperature of the test piece becomes constant.
  • the test piece is taken out from the thermostatic bath.
  • the measured results were plotted as thermal shock resistance ⁇ T (° C.) for different surface compressive stress values. As a result, a correlation result between the surface compressive stress value and the thermal shock resistance as shown in FIG. 3 was obtained.
  • the surface compressive stress value is measured using a test piece of borosilicate glass after stress relaxation. And the thermal shock resistance with respect to the borosilicate glass of the measured surface compressive stress value was measured, and the result shown in FIG. 3 is obtained.
  • the thermal shock resistance increases as the surface compressive stress value of the borosilicate glass increases.
  • an object to be heated by an induction heating cooker is controlled to be heated in a temperature range of about 140 ° C to 300 ° C.
  • the object to be heated is heated at a temperature of 200 ° C. or higher, the user can easily obtain a sense of cooking with high heating power.
  • the user can easily get a sense of cooking with a higher heating power.
  • the user has a strong tendency to heat the object to be heated in the above temperature range.
  • the top plate 2 does not crack. Is required.
  • the top plate 2 is made of glass having a surface compressive stress value of at least 20 MPa or more based on the correlation between the thermal shock resistance and the surface compressive stress value shown in FIG. Specifically, the top plate 2 is configured using borosilicate glass subjected to the above-described heat strengthening treatment as glass.
  • the top plate 2 preferably has a surface compressive stress value of about 60 MPa (not shown) to be extrapolated. If the top plate 2 has a surface compressive stress value of about 60 MPa, the thermal shock resistance when using the induction heating cooker 100 has a sufficient margin.
  • the top plate 2 when there is a possibility that the object to be heated is heated at a high temperature up to 300 ° C., the top plate 2 preferably has a surface compressive stress value larger than 25 MPa. That is, in the case of a surface compressive stress value greater than 25 MPa, the top plate 2 has a thermal shock resistance of 300 ° C. or higher as shown in FIG.
  • the surface compressive stress value of the top plate 2 is about 55 MPa, there is a margin even in consideration of the maximum temperature (for example, 300 ° C.) at which the object to be heated can be heated.
  • the top plate 2 of the present embodiment is made of glass (for example, borosilicate glass) having a surface compressive stress value of at least greater than 25 MPa and less than 55 MPa when the heating temperature is about 300 ° C. at the maximum. It is preferable.
  • FIG. 4A is a schematic view of the heated object 17 as viewed from the front.
  • FIG. 4B is a schematic view of the heated object 17 as viewed from above.
  • FIG. 5A is a schematic view of the deformation of the top plate 2 when the article to be heated 17 is heated as viewed from the front.
  • FIG. 5B is a schematic view of the deformation of the top plate 2 when the article to be heated 17 is heated as viewed from above.
  • the object to be heated 17 when the object to be heated 17 is heated, the object to be heated 17 such as a pan is placed on the cooking surface (upper surface 2b) of the top plate 2.
  • the control part 8 controls an inverter etc., and supplies with electricity to the heating coil 5 (refer FIG. 1).
  • the heating coil 5 generates an eddy current in the object to be heated 17 and heats it.
  • the temperature of the article to be heated 17 rises.
  • the thermal expansion coefficient of the borosilicate glass constituting the top plate 2 is relatively small but not zero. That is, unlike the crystallized glass, the top plate 2 is thermally expanded by heating.
  • the top plate 2 is partially heated. Therefore, the top plate 2 of the heated portion is deformed so as to be lifted upward as shown in FIG. 5A. As a result, a tensile stress 18 is generated in the top plate 2. And the tensile stress 18 is applied also to the end surface part 2a of the top plate 2 as shown in FIG. 5B.
  • the end surface portion 2a of the top plate 2 usually has irregularities such as a crack 19 or a sharp edge portion 20. Therefore, when the tensile stress 18 is applied to the end surface portion 2a, the top plate 2 may be cracked starting from the crack 19 or the edge portion 20.
  • the end surface portion 2a is polished with a fine polishing powder having a small particle diameter. Therefore, the formation of cracks or sharp edge portions on the end surface portion 2a of the top plate 2 is suppressed. As a result, the possibility of occurrence of cracks in the top plate 2 starting from cracks in the end face portion 2a due to the tensile stress 18 can be reduced.
  • the top plate 2 of the present embodiment is made of a heat strengthened borosilicate glass having a surface compressive stress value of 20 MPa to 60 MPa, preferably 25 MPa to 55 MPa. That is, the top plate 2 is composed of borosilicate glass having an increased strength compared to normal borosilicate glass.
  • the top plate 2 of the present embodiment is stronger against the tensile stress 18 than the normal borosilicate glass. Thereby, even if the tensile stress 18 is applied to the top plate 2, it is hard to generate
  • the amount of thermal deformation of the top plate 2 increases as the temperature of the object to be heated 17 increases. Therefore, the tensile stress 18 generated in the end surface portion 2a also increases.
  • the top plate 2 of the present embodiment has a surface compressive stress value of 25 MPa to 55 MPa. Therefore, the top plate 2 has sufficient resistance against the tensile stress 18 generated by heating at about 300 ° C.
  • the induction heating cooker 100 controls heating while constantly detecting the temperature of the object to be heated 17 by the temperature detection unit 6 configured by an infrared sensor.
  • the infrared sensor detects the infrared ray emitted from the heated object 17 and detects the temperature of the heated object 17. Therefore, the temperature detection accuracy is high and the detection speed is also faster than the thermistor that detects the temperature by conduction heat.
  • the infrared sensor quickly detects when the object to be heated 17 is heated to a high temperature, for example. Therefore, the control unit 8 can quickly control the heating stop of the article to be heated 17 based on the detection result of the temperature detection unit 6. Thereby, the rapid rise in the temperature of the top plate 2 due to heat transfer from the object to be heated 17 can be prevented in advance. That is, it is possible to prevent the top plate 2 from being greatly deformed by rapid temperature detection.
  • control unit 8 can control the heating coil 5 so that the temperature of the object to be heated 17 does not fall within a temperature range in which a tensile stress 18 that causes a crack in the end surface portion 2a is generated.
  • the top plate 2 of the present embodiment is further subjected to a heat strengthening process after the end face part 2a is subjected to the polishing process. Therefore, the portion subjected to the polishing treatment is thermally strengthened in the same manner as the other portions. Thereby, the top plate 2 of this Embodiment can make the intensity
  • the top plate 2 of the present embodiment has a high strength against the tensile stress 18, the top plate 2 can be cooked by raising the temperature of the article to be heated 17 to a high temperature range (eg, 250 ° C. to 300 ° C. or higher). Thereby, the user can easily obtain a real feeling that the object to be heated 17 is cooked with high heating power.
  • a high temperature range eg, 250 ° C. to 300 ° C. or higher.
  • the top plate has a large temperature of, for example, 250 ° C. to 300 ° C. when ice water (about 0 ° C.) is applied to the cooking surface of the top plate 2 in heating the object to be heated 17 in a high temperature range. Thermal shock may be applied.
  • the top plate 2 of the present embodiment is configured to have a surface compressive stress of 20 MPa to 60 MPa, preferably 25 MPa to 55 MPa. Therefore, the top plate 2 has a thermal shock resistance of 200 ° C. to 300 ° C. or more. Thereby, the top plate 2 can sufficiently withstand the thermal shock that may be applied by the user.
  • the top plate 2 of the present embodiment is made of an inorganic material on the cooking surface of the upper surface 2b, and a paint that can withstand high temperatures is printed by silk printing. Thereby, it is possible to prevent the cooking surface of the top plate 2 from being scratched and the sliding of the heated object 17 before the heated object 17 is placed.
  • the induction heating cooker 100 of the present embodiment operates and acts.
  • FIG. 6A is a cross-sectional view showing an example of a schematic configuration of the frame 3 that supports the top plate 2 in the present embodiment.
  • FIG. 6B is a cross-sectional view illustrating a comparative example of a schematic configuration of a frame.
  • the end surface portion 2a of the top plate 2 of the present embodiment is disposed so as to surround the side frame 3b as shown in FIG. 6A. At this time, the side frame 3b does not exist at a position above the top plate 2, that is, the upper surface 2b of the top plate 2 is not covered.
  • the upper end portion of the side frame 3b is bent inward (top plate side) and is disposed so as to wrap around the end surface portion 2a of the top plate 2. .
  • the upper surface 2b of the top plate 2 and the end of the side frame 3b come into contact with each other through the contact portion 21.
  • stress concentration occurs in the contact portion 21. Therefore, there is a possibility that the top plate 2 may break from the contact portion 21 as a starting point.
  • the top plate 2 of the present embodiment is configured such that the side frame 3b does not wrap the top plate 2 as shown in FIG. 6A. That is, the side frame 3 b is configured to be disposed at a position above the upper surface 2 b of the top plate 2.
  • the upper surface 2b of the top plate 2 and the side frame 3b are not in contact with each other via the contact portion 21. That is, stress concentration at the contact portion 21 does not occur on the upper surface 2 b of the top plate 2. Thereby, possibility that the top plate 2 will crack is reduced.
  • the top plate 2 of the present embodiment is composed of borosilicate glass that is highly transparent non-crystallized glass. Therefore, a color such as white printed on the top plate 2 can be clearly expressed. Thereby, the design property of the top plate 2 can be improved more.
  • an inexpensive induction heating cooker 100 can be realized.
  • the induction heating cooker 100 according to the present embodiment can effectively reduce cracks in the top plate 2 even in cooking with high thermal power.
  • an induction heating cooker can be obtained in which the user can feel satisfied that the heat treatment is performed with high heat.
  • FIG. 7A is a plan view of the top unit 4 of the induction heating cooker 100 in the present embodiment.
  • FIG. 7B is a cross-sectional view of the top unit 4 of FIG. 7A taken along line 7B-7B.
  • the underframe 3a constituting the bottom surface portion extends from the outer periphery of the top plate 2 to the vicinity of the periphery of the heating area 22 corresponding to the heating coil 5 (see FIG. 1) in the plan view of the top plate 2.
  • the under frame 3a has an opening 3a1 that encloses at least three heating coils 5. Thereby, except for the upper part of the heating coil 5, the under frame 3a is arrange
  • an elastic member such as a silicon adhesive 14 is disposed between the top plate 2 and the vicinity of the inner periphery of the opening 3a1 of the under frame 3a.
  • the elastic member is disposed so as to surround the heating coil 5 in a plan view of the top plate 2.
  • the elastic member fixes the top plate 2 by adhering it to the under frame 3a.
  • the top unit 4 is configured as described above.
  • the top plate 2 according to the present embodiment is bonded and fixed to the under frame 3a through the silicon adhesive 14 at a position surrounding the periphery of the heating area 22. That is, the top plate 2 is restrained by the under frame 3 a at a position surrounding the periphery of the heating area 22.
  • the tensile stress 18 is also distributed to portions other than the end surface portion 2a of the top plate 2.
  • concentration of the tensile stress 18 on the end surface portion 2a of the top plate 2 is suppressed, and cracking of the top plate 2 is prevented.
  • top plate 2 is restrained by the under frame 3a at a position surrounding the periphery of the heating area 22. Therefore, the thermal deformation of the top plate 2 is reduced.
  • the thermal deformation of the top plate 2 can be reduced. Furthermore, the concentration of the tensile stress 18 on the end surface portion 2a of the top plate 2 can be suppressed. Thereby, the top plate 2 can suppress a crack more effectively.
  • top unit 4 The configuration of the top unit 4 described above is useful for any glass that is thermally expanded. Therefore, it is applicable also to glass other than the borosilicate glass mentioned above.
  • FIG. 8 is a flowchart showing a method for manufacturing induction heating cooker 100 of the present embodiment.
  • top plate 2 of the induction heating cooker 100 of this Embodiment is comprised with the borosilicate glass physically strengthened by the heat mentioned above.
  • heating coil 5 that is a heating unit that heats object to be heated 17 shown in FIG. 1 and control unit 8 that controls heating coil 5 are provided inside casing 1. Arranged (step S01).
  • the heating coil 5 and the control part 8 may be arranged in the housing 1 in a state integrated as the top unit 4.
  • step S02 a correlation between the thermal shock resistance of the top plate 2, for example, borosilicate glass and the surface compressive stress value is calculated. Thereby, the correlation between the thermal shock resistance of borosilicate glass and the surface compressive stress value shown in FIG. 3 is obtained. If the correlation is calculated in advance, step S02 can be omitted.
  • the target surface compressive stress value corresponding to the thermal shock resistance required in the induction heating cooker 100 is specified.
  • the top plate 2 is formed from borosilicate glass having the specified target surface compressive stress value, and incorporated in the housing 1 (step S03).
  • the top plate 2 of the present embodiment is required to have a thermal shock resistance of, for example, 300 ° C. or higher. Therefore, the top plate 2 larger than 25 MPa is specified as the target surface compressive stress value.
  • step S04 it is determined by inspecting whether the top plate 2 incorporated in the housing 1 has a desired target surface compressive stress value (step S04).
  • a desired target surface compressive stress value For example, surface compressive stress values at a plurality of locations on the top plate 2 are measured with a measuring device. And it is performed by confirming whether it is more than a target surface compressive stress value in all the some places.
  • the top plate 2 does not have the desired target surface compressive stress value, that is, if the inspection cannot be cleared (N in step S04), the top plate 2 is replaced with another top plate 2 having the target surface compressive stress value. Steps after S03 are executed.
  • the induction heating cooker 100 is manufactured. Thereby, the crack of the top plate 2 is hard to generate
  • the induction cooking device of the present disclosure can reduce cracks in the top plate even when the object to be heated is heated in a high temperature range. Therefore, it is useful not only for the induction heating cooker incorporated in the kitchen, but also for an induction heating cooker of the type installed on a table.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

This induction-heating cooker (100) comprises: a casing (1); a top plate (2) disposed above the casing (1) whereon an object to be heated is placed; a frame (3) holding the top plate (2); a heating coil (5) that is disposed inside the casing (1) and that heats the object to be heated; and a control unit (8) controlling the heating coil (5). The top plate (2) is constituted from glass which has a surface compression stress value of greater than 25 MPa. The induction-heating cooker (100) can thereby be provided with high thermal shock properties, and a top plate that does not crack readily.

Description

誘導加熱調理器および誘導加熱調理器の製造方法Induction heating cooker and method of manufacturing induction heating cooker
 本開示は、一般家庭などで使用される、調理物を調理する加熱調理器に関する。 The present disclosure relates to a cooking device for cooking food used in general households.
 被調理物を加熱調理する調理器として、電磁誘導により加熱調理を行う誘導加熱調理器が普及している。誘導加熱調理器は、加熱源として火を用いずに、被加熱物である鍋などの調理容器に渦電流を流して、調理容器自体を発熱させる。これにより、被調理物を調理する。そのため、誘導加熱調理器は、安全性が高く、かつ清掃性に優れている。 As induction cookers that cook food to be cooked, induction cookers that perform cooking using electromagnetic induction have become widespread. An induction heating cooker causes an eddy current to flow through a cooking container such as a pan, which is an object to be heated, without using fire as a heating source, thereby causing the cooking container itself to generate heat. Thereby, a to-be-cooked object is cooked. Therefore, the induction heating cooker has high safety and excellent cleaning properties.
 誘導加熱調理器のトッププレートは、上面が平坦に形成される。トッププレートは、被加熱物である鍋などの調理容器が載置される。通常、トッププレートとして、ガラス製のトッププレートが採用されている。これにより、高い意匠性や、清掃性を実現している。 The top plate of the induction heating cooker has a flat top surface. On the top plate, a cooking container such as a pan that is an object to be heated is placed. Usually, a glass top plate is employed as the top plate. Thereby, high designability and cleanability are realized.
 また、誘導加熱調理器として、誘導加熱コイルおよびラジエントヒータの二種類の加熱源が搭載された加熱調理器なども普及している。ラジエントヒータは、ラジエントヒータ自体が発熱し、熱伝導により被加熱物を加熱する方式の加熱調理器である。従って、ラジエントヒータを使用する加熱調理器の場合、トッププレートの温度が、500℃以上になる。そのため、トッププレートの材料として、熱衝撃性に優れ、かつ、熱膨張率がほぼゼロに近い、結晶化ガラスが、一般的に用いられる(例えば、特許文献1、2参照)。 In addition, as an induction heating cooker, a heating cooker equipped with two types of heating sources such as an induction heating coil and a radiant heater is also widespread. The radiant heater is a heating cooker of a type in which the radiant heater itself generates heat and heats an object to be heated by heat conduction. Therefore, in the case of a heating cooker using a radiant heater, the temperature of the top plate is 500 ° C. or higher. For this reason, crystallized glass that is excellent in thermal shock and has a coefficient of thermal expansion close to zero is generally used as a material for the top plate (see, for example, Patent Documents 1 and 2).
 近年、加熱源としてラジエントヒータを用いず、すべての加熱源を誘導加熱コイルで構成した誘導加熱調理器も普及してきている。 In recent years, induction heating cookers that do not use a radiant heater as a heating source and all the heating sources are configured by induction heating coils have become widespread.
 なお、トッププレートに用いられる結晶化ガラスは、熱膨張率がほぼゼロなどの特別な特性を有するように、特別な製法によって製造される。そのため、結晶化ガラスは、非常に高価である。 Note that the crystallized glass used for the top plate is manufactured by a special manufacturing method so as to have special characteristics such as a coefficient of thermal expansion of almost zero. Therefore, crystallized glass is very expensive.
 また、結晶化ガラスは、ガラスの生地自体が、黄色を帯びている。そのため、ガラスに印刷を施して、トッププレート上に表示する場合、白などの色味がきれいに出ない。そこで、トッププレートのデザイン性を向上させるために、非結晶化ガラスを使用する誘導加熱調理器が提案されている(例えば、特許文献3参照)。 Also, crystallized glass has a yellowish glass fabric itself. For this reason, when the glass is printed and displayed on the top plate, colors such as white do not appear clearly. Then, in order to improve the design property of a top plate, the induction heating cooking appliance which uses non-crystallized glass is proposed (for example, refer patent document 3).
 さらに、特に耐熱性の観点から、熱膨張係数が低い非結晶化ガラスを採用した誘導加熱調理器も提案されている(例えば、特許文献4参照)。 Furthermore, particularly from the viewpoint of heat resistance, an induction heating cooker employing non-crystallized glass having a low coefficient of thermal expansion has also been proposed (see, for example, Patent Document 4).
 また、加熱調理器のトッププレートには、高い温度に加熱されてから急激に冷却された場合のガラスの性能である、耐熱衝撃性も要求される。そこで、非結晶化ガラスを、さらに強化したガラス材料を採用した誘導加熱調理器が提案されている(例えば、特許文献5参照)。 Also, the top plate of the cooking device is required to have thermal shock resistance, which is the performance of glass when it is rapidly cooled after being heated to a high temperature. Then, the induction heating cooking appliance which employ | adopted the glass material which further strengthened the non-crystallized glass is proposed (for example, refer patent document 5).
 しかしながら、従来の構成の誘導加熱調理器は、安全性の向上において、さらに改善する余地がある。 However, the induction heating cooker having the conventional configuration has room for further improvement in improving safety.
特開平11-100229号公報Japanese Patent Laid-Open No. 11-100289 特開2014-76945号公報JP 2014-76945 A 特開2016-103385号公報JP 2016-103385 A 国際公開第2016/088778号International Publication No. 2016/088778 特表2014-519464号公報JP-T-2014-519464
 本開示は、高い耐熱衝撃性を有し、割れなどに強いトッププレートを有する誘導加熱調理器を提供する。 The present disclosure provides an induction heating cooker having a top plate that has high thermal shock resistance and is resistant to cracking.
 本開示の誘導加熱調理器は、筐体と、筐体の上部に配置され、被加熱物が載置されるトッププレートと、トッププレートを保持するフレームと、筐体の内部に配置され、被加熱物を加熱する加熱部および加熱部を制御する制御部を備える。そして、トッププレートは、表面圧縮応力値が25MPaよりも大きいガラスで構成される。 An induction heating cooker according to the present disclosure is disposed in an upper portion of a housing, a top plate on which an object to be heated is placed, a frame that holds the top plate, an interior of the housing, A heating unit for heating the heated object and a control unit for controlling the heating unit are provided. The top plate is made of glass having a surface compressive stress value larger than 25 MPa.
 本開示の誘導加熱調理器は、強度および耐熱衝撃性が向上されたガラスからなるトッププレートを備える。これにより、トッププレートの割れを抑制して、より高い安全性を有する誘導加熱調理器を提供できる。 The induction cooking device of the present disclosure includes a top plate made of glass with improved strength and thermal shock resistance. Thereby, the crack of a top plate can be suppressed and the induction heating cooking appliance which has higher safety | security can be provided.
図1は、本開示の実施の形態における誘導加熱調理器の全体構成の概略を示す分解斜視図である。FIG. 1 is an exploded perspective view illustrating an outline of the overall configuration of the induction heating cooker according to the embodiment of the present disclosure. 図2Aは、本開示の実施の形態における誘導加熱調理器のトップユニットの分解斜視図である。FIG. 2A is an exploded perspective view of the top unit of the induction heating cooker according to the embodiment of the present disclosure. 図2Bは、同トップユニットの平面図である。FIG. 2B is a plan view of the top unit. 図2Cは、同トップユニットの斜視図である。FIG. 2C is a perspective view of the top unit. 図2Dは、図2Bに示すトップユニットを2D-2D線で切断した断面図である。2D is a cross-sectional view of the top unit shown in FIG. 2B taken along line 2D-2D. 図3は、ホウケイ酸ガラスの表面圧縮応力値と耐熱衝撃性との相関関係を示す図である。FIG. 3 is a diagram showing the correlation between the surface compressive stress value and thermal shock resistance of borosilicate glass. 図4Aは、被加熱物が加熱される際の様子を前方から見た概略図である。FIG. 4A is a schematic view of the state of the object to be heated as viewed from the front. 図4Bは、被加熱物が加熱される際の様子を上方から見た概略図である。FIG. 4B is a schematic view of the state of the object to be heated as viewed from above. 図5Aは、被加熱物が加熱された際のトッププレートの変形の様子を前方から見た概略図である。FIG. 5A is a schematic view of the top plate as viewed from the front when the object to be heated is heated. 図5Bは、被加熱物が加熱された際のトッププレートの変形の様子を上方から見た概略図である。FIG. 5B is a schematic view of the deformation of the top plate when the object to be heated is heated, as viewed from above. 図6Aは、本実施の形態における誘導加熱調理器のフレームの概略構成の例を示す断面図である。FIG. 6A is a cross-sectional view showing an example of a schematic configuration of a frame of the induction heating cooker in the present embodiment. 図6Bは、フレームの概略構成の比較例を示す断面図である。FIG. 6B is a cross-sectional view illustrating a comparative example of a schematic configuration of a frame. 図7Aは、本実施の形態における誘導加熱調理器のトップユニットの平面図である。FIG. 7A is a plan view of the top unit of the induction heating cooker in the present embodiment. 図7Bは、図7Aのトップユニットの7B-7B線で切断した断面図である。7B is a cross-sectional view taken along line 7B-7B of the top unit of FIG. 7A. 図8は、本実施の形態の誘導加熱調理器の製造方法を示すフローチャートである。FIG. 8 is a flowchart showing a method for manufacturing the induction heating cooker of the present embodiment.
 (本開示の基礎となった知見)
 発明者らは、誘導加熱調理器の安全性をさらに向上させるため、鋭意検討した結果、以下の知見を得た。
(Knowledge that became the basis of this disclosure)
As a result of intensive studies to further improve the safety of induction heating cookers, the inventors have obtained the following knowledge.
 従来の構成の誘導加熱調理器は、膨張係数が小さい非結晶化ガラスを採用している。しかし、膨張係数が小さい非結晶化ガラスでも、高い温度帯においては熱変形が大きくなる。そのため、高温で被加熱物を加熱調理する場合、非結晶化ガラスの熱変形により、トッププレートに割れが発生する虞がある。そこで、従来の誘導加熱調理器は、低い温度帯で温度制御しながら、被加熱物を調理している。そのため、使用者は、被加熱物を高火力で調理しているという満足感が得られない。 The conventional induction heating cooker employs non-crystallized glass with a small expansion coefficient. However, even non-crystallized glass having a small expansion coefficient has a large thermal deformation in a high temperature range. For this reason, when the object to be heated is cooked at a high temperature, the top plate may be cracked due to thermal deformation of the non-crystallized glass. Therefore, the conventional induction heating cooker cooks the object to be heated while controlling the temperature in a low temperature range. Therefore, the user cannot obtain the satisfaction that the object to be heated is cooked with high heating power.
 また、ガラスの有する、高温から急激に冷却された際の耐熱衝撃性と表面圧縮応力値との関係は、これまで不明であった。つまり、実際の調理状況において要求される耐熱衝撃性に対して、ガラスの有する特性が十分でない、可能性がある。 In addition, the relationship between the thermal shock resistance of glass when it is rapidly cooled from high temperature and the surface compressive stress value has been unknown. That is, there is a possibility that the characteristics of the glass are not sufficient for the thermal shock resistance required in actual cooking conditions.
 これらの新規な知見に基づいて、本発明者らは、以下の開示をするに至った。 Based on these new findings, the present inventors have made the following disclosure.
 本開示の第1の態様の誘導加熱調理器は、筐体と、筐体の上部に配置され、被加熱物が載置されるトッププレートと、トッププレートを保持するフレームと、筐体の内部に配置され、被加熱物を加熱する加熱部および加熱部を制御する制御部を備える。そして、トッププレートは、表面圧縮応力値が25MPaよりも大きいガラスで構成される。 An induction heating cooker according to a first aspect of the present disclosure includes a housing, a top plate that is disposed on an upper portion of the housing, on which an object to be heated is placed, a frame that holds the top plate, and an interior of the housing And a control section for controlling the heating section and a heating section for heating the object to be heated. The top plate is made of glass having a surface compressive stress value larger than 25 MPa.
 この構成によれば、トッププレートは、表面圧縮応力値が25MPaよりも大きいガラスで構成される。これにより、トッププレートは、高い強度および耐熱衝撃性を有する。その結果、トッププレートの割れを抑制できる。さらに、高い温度域まで温度を上昇させて、被加熱物を調理できる。これにより、使用者は、被加熱物を高火力で調理しているという満足感が得られる。 According to this configuration, the top plate is made of glass having a surface compressive stress value larger than 25 MPa. Thereby, the top plate has high strength and thermal shock resistance. As a result, cracking of the top plate can be suppressed. Furthermore, the object to be heated can be cooked by raising the temperature to a high temperature range. Thereby, the user can be satisfied that the object to be heated is cooked with high heating power.
 本開示の第2の態様の誘導加熱調理器は、トッププレートを構成するガラスを、ホウケイ酸ガラスで構成してもよい。 In the induction heating cooker according to the second aspect of the present disclosure, the glass constituting the top plate may be composed of borosilicate glass.
 この構成によれば、トッププレートを、透明性が高い非結晶化ガラスであるホウケイ酸ガラスで構成する。そのため、トッププレートに印刷される色が、きれいに表現できる。これにより、トッププレートのデザイン性が向上する。 According to this configuration, the top plate is made of borosilicate glass which is non-crystallized glass having high transparency. Therefore, the color printed on the top plate can be expressed beautifully. Thereby, the design property of a top plate improves.
 本開示の第3の態様における誘導加熱調理器は、トッププレートを構成するガラスが、熱によって物理強化されていてもよい。 In the induction heating cooker according to the third aspect of the present disclosure, the glass constituting the top plate may be physically strengthened by heat.
 この構成によれば、トッププレートの強度および耐熱衝撃性を強化できる。これにより、高温調理時におけるトッププレートの割れの発生を抑制できる。 This configuration can enhance the strength and thermal shock resistance of the top plate. Thereby, generation | occurrence | production of the crack of a top plate at the time of high temperature cooking can be suppressed.
 本開示の第4の態様における誘導加熱調理器は、トッププレートを構成するガラスが、300℃以上の耐熱衝撃性を有していてもよい。 In the induction heating cooker according to the fourth aspect of the present disclosure, the glass constituting the top plate may have a thermal shock resistance of 300 ° C. or higher.
 この構成によれば、炒め物などの調理において、使用者は、高火力での調理感が得られる温度域まで温度を上昇させて、被加熱物を調理できる。 According to this configuration, in cooking a fried food or the like, the user can cook the object to be heated by raising the temperature to a temperature range where a cooking feeling can be obtained with high heating power.
 本開示の第5の態様における誘導加熱調理器は、トッププレートを構成するガラスが、55MPa以下の表面圧縮応力値を有してもよい。 In the induction heating cooker according to the fifth aspect of the present disclosure, the glass constituting the top plate may have a surface compressive stress value of 55 MPa or less.
 この構成によれば、トッププレートは、実際の使用状況(例えば、被加熱物の温度)を考慮した際に必要な、高い強度および耐熱衝撃性を有する。そのため、使用者の調理感を満足させる誘導加熱調理器を提供できる。 According to this configuration, the top plate has high strength and thermal shock resistance that are necessary when considering the actual use situation (for example, the temperature of the object to be heated). Therefore, the induction heating cooking appliance which satisfies a user's cooking feeling can be provided.
 本開示の第6の態様における誘導加熱調理器は、フレームが、トッププレートの平面視において、トッププレートの端面部を囲むように、トッププレートの外周に沿って配置される周囲部を、有し、周囲部は、トッププレートの上面の位置に配置しないように構成してもよい。 The induction heating cooker according to the sixth aspect of the present disclosure has a peripheral portion arranged along the outer periphery of the top plate so that the frame surrounds the end surface portion of the top plate in a plan view of the top plate. The peripheral portion may be configured not to be disposed at the position of the upper surface of the top plate.
 この構成によれば、トッププレートの熱変形に起因するトッププレートの端面部とフレームとの接触が抑制される。これにより、接触する部分に起因するトッププレートの割れを抑制できる。 According to this configuration, contact between the end surface of the top plate and the frame due to thermal deformation of the top plate is suppressed. Thereby, the crack of the top plate resulting from the part which contacts can be suppressed.
 本開示の第7の態様における誘導加熱調理器は、フレームが、トッププレートの下方に位置する底面部を有し、トッププレートと底面部との間には、トッププレートを底面部に接着させる弾性部材が設けられ、弾性部材は、トッププレートの平面視において、加熱部の周囲を囲むように配置されていてもよい。 In the induction heating cooker according to the seventh aspect of the present disclosure, the frame has a bottom surface portion located below the top plate, and the top plate is bonded to the bottom surface between the top plate and the bottom surface. A member may be provided, and the elastic member may be arranged so as to surround the periphery of the heating unit in a plan view of the top plate.
 この構成によれば、熱変形の際に、トッププレートの端面部に加わる応力を、トッププレートの端面部以外の部分に分散させることができる。これにより、トッププレートの割れを抑制できる。 According to this configuration, the stress applied to the end surface portion of the top plate during thermal deformation can be distributed to portions other than the end surface portion of the top plate. Thereby, the crack of a top plate can be suppressed.
 本開示の第8の態様は、熱によって物理強化されたガラスから構成されるトッププレートを用いた誘導加熱調理器の製造方法である。そして、誘導加熱調理器の製造方法は、筐体の内部に、被加熱物を加熱する加熱部および加熱部を制御する制御部を配置するステップと、ガラスにおける耐熱衝撃性と表面圧縮応力値との相関関係に基づいて、誘導加熱調理器において必要とされる耐熱衝撃性に対応する目標表面圧縮応力値を特定し、特定した目標表面圧縮応力値を有するトッププレートを、筐体に組み込むステップと、を含む。 8th aspect of this indication is a manufacturing method of the induction heating cooking appliance using the top plate comprised from the glass physically strengthened with the heat | fever. And the manufacturing method of an induction heating cooker arrange | positions the heating part which heats a to-be-heated object, and the control part which controls a heating part in the inside of a housing | casing, and the thermal shock resistance and surface compressive stress value in glass Identifying a target surface compressive stress value corresponding to the thermal shock resistance required in the induction heating cooker based on the correlation, and incorporating a top plate having the specified target surface compressive stress value into the housing; ,including.
 この製造方法によれば、割れ難いトッププレートを備え、かつ、高いデザイン性を有する誘導加熱調理器を作製できる。 According to this manufacturing method, it is possible to produce an induction heating cooker having a top plate that is difficult to break and having high design.
 本開示の第9の態様における誘導加熱調理器の製造方法は、さらに、耐熱衝撃性と表面圧縮応力値との相関関係を算出するステップを含んでいてもよい。 The method for manufacturing the induction heating cooker according to the ninth aspect of the present disclosure may further include a step of calculating a correlation between the thermal shock resistance and the surface compressive stress value.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、実施の形態では、誘導加熱調理器を使用する使用者側を前側(正面側または前面側)、誘導加熱調理器の使用者側と反対側を後側(背面側)として説明する。また、以下の実施の形態は例示であり、適宜変更が可能である。つまり、以下の実施の形態によって本開示が限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In addition, in embodiment, the user side which uses an induction heating cooking appliance is demonstrated as a front side (front side or front side), and the opposite side to the user side of an induction heating cooking appliance is set as a back side (back side). Moreover, the following embodiment is an illustration and can be changed suitably. That is, the present disclosure is not limited by the following embodiments.
 (実施の形態)
 [1.誘導加熱調理器の全体構成]
 以下、本実施の形態における誘導加熱装置の構成について、図1を用いて、説明する。
(Embodiment)
[1. Overall configuration of induction heating cooker]
Hereinafter, the structure of the induction heating apparatus in this Embodiment is demonstrated using FIG.
 図1は、本実施の形態における誘導加熱調理器100の全体構成の概略を示す分解斜視図である。 FIG. 1 is an exploded perspective view showing an outline of the overall configuration of induction heating cooker 100 in the present embodiment.
 以下では、誘導加熱調理器の一例として、システムキッチンのキャビネットに組み込まれて使用される、組み込み型の誘導加熱調理器100を例に説明する。 Hereinafter, a built-in induction heating cooker 100 that is used by being incorporated in a cabinet of a system kitchen will be described as an example of the induction heating cooker.
 なお、本開示は、キッチン台の上に置いて使用される据置タイプ、または、食卓テーブルなどの卓上に置いて使用される卓上タイプなどの誘導加熱調理器にも適用可能である。 Note that the present disclosure can also be applied to an induction heating cooker such as a stationary type that is used by being placed on a kitchen table or a desktop type that is used by being placed on a table such as a table.
 図1に示すように、本実施の形態の誘導加熱調理器100は、筐体1と、トッププレート2およびフレーム3から構成されるトップユニット4などを備える。筐体1は、上方に開口を有し、後述する制御部8、冷却ファン9、グリル調理庫12などを収納する。トッププレート2は、筐体1に形成される上方の開口を覆うように設けられ、上面側に被加熱物が載置される。フレーム3は、トッププレート2を支持する。筐体1およびトッププレート2は、誘導加熱調理器100の外郭を構成する。 As shown in FIG. 1, the induction heating cooker 100 of the present embodiment includes a casing 1, a top unit 4 including a top plate 2 and a frame 3. The housing 1 has an opening on the upper side, and stores a control unit 8, a cooling fan 9, a grill cooking chamber 12, and the like which will be described later. The top plate 2 is provided so as to cover an upper opening formed in the housing 1, and an object to be heated is placed on the upper surface side. The frame 3 supports the top plate 2. The housing 1 and the top plate 2 constitute an outer shell of the induction heating cooker 100.
 トッププレート2は、後述するように、熱で強化されたホウケイ酸ガラスなどのガラスから構成される。トッププレート2は、例えばシリコン接着剤などの弾性部材によって、フレーム3に接着、固定される。これにより、トッププレート2は、フレーム3によって支持される。 The top plate 2 is made of glass such as borosilicate glass strengthened by heat, as will be described later. The top plate 2 is bonded and fixed to the frame 3 by an elastic member such as a silicon adhesive. Thereby, the top plate 2 is supported by the frame 3.
 筐体1は、内部に、加熱コイル5、制御部8、冷却ファン9およびグリル調理庫12などを収納する。 The housing 1 accommodates a heating coil 5, a control unit 8, a cooling fan 9, a grill cooking chamber 12, and the like.
 加熱コイル5は、トッププレート2の上面2bに載置される被加熱物を、電磁誘導により加熱する。図1に示す誘導加熱調理器100は、3つの加熱コイル5を有する3口の加熱調理器で図示している。なお、加熱コイル5の個数は、3つに限られず、例えば1つ、2つまたは4つ以上でもよい。 The heating coil 5 heats an object to be heated placed on the upper surface 2b of the top plate 2 by electromagnetic induction. The induction heating cooker 100 shown in FIG. 1 is illustrated as a three-hole heating cooker having three heating coils 5. The number of heating coils 5 is not limited to three, and may be one, two, four or more, for example.
 また、誘導加熱調理器100は、被加熱物の温度を検知する温度検知部6(例えば、赤外線センサなど)を備える。なお、図1に示す誘導加熱調理器100では、温度検知部6は、加熱コイル5に取り付けられる。温度検知部6と加熱コイル5は、加熱コイルユニットを構成する。 Moreover, the induction heating cooker 100 includes a temperature detection unit 6 (for example, an infrared sensor) that detects the temperature of the object to be heated. In the induction heating cooker 100 shown in FIG. 1, the temperature detection unit 6 is attached to the heating coil 5. The temperature detector 6 and the heating coil 5 constitute a heating coil unit.
 温度検知部6は、1つの加熱コイル5に対して、複数個設けてもよい。これにより、被加熱物の温度の検知精度が向上する。さらに、温度検知部6は、赤外線を検知する赤外線センサに限定されず、温度差による起電力から温度を検知するサーミスタなどで構成してもよい。 A plurality of temperature detection units 6 may be provided for one heating coil 5. Thereby, the detection precision of the temperature of a to-be-heated material improves. Furthermore, the temperature detection part 6 is not limited to the infrared sensor which detects infrared rays, You may comprise the thermistor etc. which detect temperature from the electromotive force by a temperature difference.
 なお、本実施の形態では、前側の2つの加熱コイル5に温度検知部6を取り付ける構成を例に説明したが、これに限られない。例えば、全ての加熱コイル5に温度検知部6を取り付けてもよい。この場合、例えば前側の2つの加熱コイル5の温度検知部6を赤外線センサで構成し、後側の加熱コイル5の温度検知部6をサーミスタで構成してもよい。また、上記とは、逆の構成としてもよい。 In addition, in this Embodiment, although the structure which attaches the temperature detection part 6 to the two heating coils 5 of the front side was demonstrated to the example, it is not restricted to this. For example, the temperature detectors 6 may be attached to all the heating coils 5. In this case, for example, the temperature detection unit 6 of the two heating coils 5 on the front side may be configured by an infrared sensor, and the temperature detection unit 6 of the heating coil 5 on the rear side may be configured by a thermistor. Moreover, it is good also as a structure contrary to the above.
 また、図1に示すように、筐体1は、前面側に、使用者により入力操作がされる、操作ユニット7が配設される。使用者は、操作ユニット7を操作して、例えば被加熱物の加熱条件、加熱時間などを入力する。これにより、加熱コイル5を介して、被加熱物を、所望の条件で誘導加熱する。 Further, as shown in FIG. 1, the casing 1 is provided with an operation unit 7 on the front side, which is operated by the user. The user operates the operation unit 7 and inputs, for example, the heating condition and the heating time of the object to be heated. Thereby, the to-be-heated object is induction-heated on desired conditions via the heating coil 5. FIG.
 そして、使用者が操作ユニット7を介して入力した情報、および、温度検知部6で検知された温度の情報は、制御部8へ伝えられる。制御部8は、制御基板上に搭載されたインバータによって、加熱コイル5に流れる電流などを制御する。これにより、制御部8は、被加熱物に対する加熱状態を制御する。 Then, information input by the user via the operation unit 7 and information on the temperature detected by the temperature detection unit 6 are transmitted to the control unit 8. The control unit 8 controls the current flowing through the heating coil 5 by an inverter mounted on the control board. Thereby, the control part 8 controls the heating state with respect to a to-be-heated material.
 なお、上記では、操作ユニット7を筐体1の前面側に設ける構成を例に説明したが、これに限られない。例えば、操作ユニット7を、トップユニット4上、またはトップユニット4の下方に設置して、使用者がトップユニット4の上方側から操作ユニット7を操作する構成としてもよい。この場合、トッププレート2を介して、静電容量を検知する方式で、操作ユニット7を構成してもよい。具体的には、上記静電容量を検知する方式の操作ユニット7の場合、トッププレート2の材質に適した抵抗値に基づいて、静電容量の変化を検知する。これにより、操作ユニット7は、使用者による入力情報を検知する。 In the above description, the configuration in which the operation unit 7 is provided on the front side of the housing 1 has been described as an example, but the present invention is not limited to this. For example, the operation unit 7 may be installed on the top unit 4 or below the top unit 4 so that the user operates the operation unit 7 from above the top unit 4. In this case, the operation unit 7 may be configured by detecting the capacitance via the top plate 2. Specifically, in the case of the operation unit 7 that detects the electrostatic capacity, a change in the electrostatic capacity is detected based on a resistance value suitable for the material of the top plate 2. Thereby, the operation unit 7 detects the input information by the user.
 制御部8は、筐体1の内部に収納される冷却ファン9によって冷却される。 The control unit 8 is cooled by a cooling fan 9 housed in the housing 1.
 制御部8および冷却ファン9を収納する筐体1は、キッチンキャビネット10に組み込まれる。これにより、冷却ファン9は、筐体1に形成された吸気穴11を通して、キッチンキャビネット10の内側の空気を吸気し、制御部8などを冷却する。 The housing 1 that houses the control unit 8 and the cooling fan 9 is incorporated in a kitchen cabinet 10. As a result, the cooling fan 9 draws in air inside the kitchen cabinet 10 through the intake holes 11 formed in the housing 1 and cools the control unit 8 and the like.
 また、筐体1は、前面側で、キッチンキャビネット10の前面側の開口部10aに対応する位置に、開口部(図示せず)を備える。そのため、冷却ファン9は、筐体1の開口部を通して、さらにキッチンキャビネット10の外側の空気を吸気し、制御部8などを冷却する。 Moreover, the housing | casing 1 is equipped with an opening part (not shown) in the position corresponding to the opening part 10a of the front side of the kitchen cabinet 10 by the front side. Therefore, the cooling fan 9 draws in air outside the kitchen cabinet 10 through the opening of the housing 1 and cools the control unit 8 and the like.
 なお、冷却ファン9は、制御部8だけではなく、加熱コイル5、および、誘導加熱調理器100の外郭を形成する筐体1なども、同時に冷却する。 The cooling fan 9 simultaneously cools not only the control unit 8 but also the heating coil 5 and the casing 1 that forms the outer shell of the induction heating cooker 100.
 また、図1に示すように、本実施の形態の組み込み型の誘導加熱調理器100の筐体1は、通常、内部に、グリル調理庫12が収納される。グリル調理庫12は、前面側に、開口12aを有し、開口12aを覆うようにグリルドア13が設けられる。これにより、使用者は、グリルドア13を開けて、グリル調理庫12の内部に、例えば魚などの調理物の出し入れが可能になる。 Further, as shown in FIG. 1, the casing 1 of the built-in induction heating cooker 100 according to the present embodiment normally contains a grill cooking chamber 12 therein. The grill cooking chamber 12 has an opening 12a on the front side, and a grill door 13 is provided so as to cover the opening 12a. As a result, the user can open the grill door 13 and put a food such as fish into and out of the grill cooking chamber 12.
 以上のように、本実施の形態の誘導加熱装置は構成される。 As described above, the induction heating apparatus of the present embodiment is configured.
 [2.トップユニットの構成]
 つぎに、本実施の形態の誘導加熱調理器100のトップユニット4の構成について、図2Aから図2Dを用いて、説明する。
[2. Configuration of top unit]
Next, the configuration of the top unit 4 of the induction heating cooker 100 according to the present embodiment will be described with reference to FIGS. 2A to 2D.
 図2Aから図2Cは、それぞれ、トップユニット4の分解斜視図、平面図および斜視図である。図2Dは、図2Bに示すトップユニット4を2D-2D線で切断した断面図である。 2A to 2C are an exploded perspective view, a plan view, and a perspective view of the top unit 4, respectively. 2D is a cross-sectional view of the top unit 4 shown in FIG. 2B taken along line 2D-2D.
 トップユニット4は、図2Aに示すように、主に、トッププレート2と、トッププレート2を保持するフレーム3などから構成される。 The top unit 4 is mainly composed of a top plate 2 and a frame 3 for holding the top plate 2 as shown in FIG. 2A.
 フレーム3は、アンダーフレーム3a(底面部)と、サイドフレーム3b(周囲部)と、バックフレーム3cなどから構成される。 The frame 3 includes an under frame 3a (bottom surface portion), a side frame 3b (peripheral portion), a back frame 3c, and the like.
 アンダーフレーム3aは、フレーム3の底面部を構成し、トッププレート2の下面を保持する。サイドフレーム3bは、フレーム3の周囲部を構成し、トッププレート2の外周を囲むように配置される。バックフレーム3cは、トップユニット4の上面の後方側に配置される。 The under frame 3 a constitutes the bottom surface of the frame 3 and holds the lower surface of the top plate 2. The side frame 3 b constitutes a peripheral portion of the frame 3 and is disposed so as to surround the outer periphery of the top plate 2. The back frame 3 c is disposed on the rear side of the top surface of the top unit 4.
 バックフレーム3cは、図2Bに示すように、冷却ファン9(図1参照)からの冷却風などを排気する排気口15を備える。排気口15には、上方に、複数の穴が形成された、バックグリル16が配置される。バックグリル16は、排気口15からの排気を、上方に向けて排出する。 2B, the back frame 3c includes an exhaust port 15 that exhausts cooling air from the cooling fan 9 (see FIG. 1). A back grille 16 having a plurality of holes formed thereon is disposed at the exhaust port 15. The back grill 16 discharges the exhaust from the exhaust port 15 upward.
 トッププレート2は、図2Aおよび図2Cに示すように、アンダーフレーム3aの上に載置され、例えばシリコン接着剤14などの弾性部材を介して、アンダーフレーム3aに接着、固定される。 2A and 2C, the top plate 2 is placed on the under frame 3a and bonded and fixed to the under frame 3a through an elastic member such as a silicon adhesive 14, for example.
 また、トッププレート2の端面部2aは、図2Dに示すように、サイドフレーム3bによって囲まれ、例えばシリコン接着剤14などの弾性部材を介して、サイドフレーム3bに接着、固定される。 Further, as shown in FIG. 2D, the end surface 2a of the top plate 2 is surrounded by the side frame 3b, and is bonded and fixed to the side frame 3b through an elastic member such as a silicon adhesive 14, for example.
 アンダーフレーム3aとサイドフレーム3bとは、例えば嵌合爪などを用いて、簡易的に嵌合される。 The under frame 3a and the side frame 3b are simply fitted using, for example, fitting claws.
 また、トッププレート2とバックフレーム3cとは、同様に、例えばシリコン接着剤14などの弾性部材を介して、互いに接着、固定される。 Also, the top plate 2 and the back frame 3c are similarly bonded and fixed to each other via an elastic member such as a silicon adhesive 14, for example.
 さらに、バックフレーム3cとアンダーフレーム3aとは、サイドフレーム3bと同様に、嵌合爪などを用いて、簡易的に嵌合される。なお、アンダーフレーム3aとバックフレーム3cとは、上記嵌合爪以外に、例えばネジなどによって組み付ける構成としてもよい。 Further, the back frame 3c and the under frame 3a are simply fitted using fitting claws or the like, similarly to the side frame 3b. The under frame 3a and the back frame 3c may be configured to be assembled with, for example, screws other than the fitting claws.
 以上のように、トップユニット4は構成される。 As described above, the top unit 4 is configured.
 以下に、トッププレート2の形成方法について、説明する。 Hereinafter, a method for forming the top plate 2 will be described.
 まず、ガラスを、トッププレート2に相当する所定の大きさに、切り出す。その後、切り出したガラスの端面部2aを、研磨して、トッププレート2を形成する。このとき、トッププレート2の端面部2aは、特に、粒子径の細かい、例えば粒度#100~#240以上の研磨微粉を用いて、研磨することが好ましい。これにより、割れの起点となり易い、例えばクラックや凹凸を無くし、トッププレート2の端面部2aを、きれいな面で仕上げることができる。 First, the glass is cut into a predetermined size corresponding to the top plate 2. Thereafter, the cut end face 2 a of the glass is polished to form the top plate 2. At this time, it is preferable that the end surface portion 2a of the top plate 2 is polished with a fine polishing particle having a small particle diameter, for example, a particle size # 100 to # 240 or more. Thereby, for example, cracks and unevenness that are likely to be the starting point of cracking can be eliminated, and the end surface portion 2a of the top plate 2 can be finished with a clean surface.
 つぎに、端面部2aを研磨したトッププレート2の上面2b、被加熱物が載置される調理面に、例えばエナメル(琺瑯)などの無機物から構成される塗料でシルク印刷する。 Next, silk printing is performed on the upper surface 2b of the top plate 2 whose end surface 2a has been polished and the cooking surface on which the object to be heated is placed with a paint composed of an inorganic material such as enamel.
 その後、トッププレート2は、後述する、例えば熱などによる強化処理が施される。これにより、トッププレート2の強化およびシルク印刷の焼成が行われる。 Thereafter, the top plate 2 is subjected to a strengthening process by heat, for example, which will be described later. Thereby, reinforcement | strengthening of the top plate 2 and baking of silk printing are performed.
 以上により、所定の強度を有するトッププレート2が形成される。 Thus, the top plate 2 having a predetermined strength is formed.
 [3.トッププレートの表面圧縮応力値と耐熱衝撃性]
 つぎに、本実施の形態における誘導加熱調理器100のトッププレート2を構成するガラスの表面圧縮応力値と耐熱衝撃性との相関関係について、図3を用いて、説明する。なお、以下では、トッププレート2を構成するガラスとして、ホウケイ酸ガラスを例に、説明する。
[3. Surface plate stress and thermal shock resistance]
Next, the correlation between the surface compressive stress value and the thermal shock resistance of the glass constituting the top plate 2 of the induction heating cooker 100 in the present embodiment will be described with reference to FIG. Hereinafter, borosilicate glass will be described as an example of the glass constituting the top plate 2.
 図3は、ホウケイ酸ガラスの表面圧縮応力値と耐熱衝撃性との相関関係を示す図である。 FIG. 3 is a diagram showing the correlation between the surface compressive stress value and thermal shock resistance of borosilicate glass.
 表面圧縮応力値と耐熱衝撃性との相関関係は、上述したように、従来不明であったが、発明者らの知見に基づいて検討した試験結果から見出したものである。 As described above, the correlation between the surface compressive stress value and the thermal shock resistance has been unknown in the past, but has been found from the test results studied based on the knowledge of the inventors.
 まず、試験方法および試験結果について、具体的に説明する。 First, the test method and test results will be specifically described.
 [3.1 試験方法]
 ガラスとして、上述したように、いわゆるホウケイ酸ガラスと呼ばれる非結晶化ガラスを用いた。ホウケイ酸ガラスは、SiO、Al、B、およびNaなどによって組成され、それらの組成成分率が所定の範囲を有するガラスである。
[3.1 Test method]
As described above, non-crystallized glass called so-called borosilicate glass was used as the glass. Borosilicate glass is a glass that is composed of SiO 2 , Al 2 O 3 , B 2 O 5 , Na 2 O 3 , and the like and has a composition ratio of these components within a predetermined range.
 まず、ホウケイ酸ガラスに対して、熱による、所定の物理強化処理を加えて、試験に使用する試験片を作製した。 First, a predetermined physical strengthening treatment by heat was applied to borosilicate glass to prepare a test piece used for the test.
 つまり、ホウケイ酸ガラスに、所定の熱処理を施して、表面圧縮応力を強化して試験片を作製した。具体的には、ホウケイ酸ガラスを、最大700℃程度の温度で焼成し、急冷させる処理により、物理強化処理を実施した。 That is, a predetermined heat treatment was performed on the borosilicate glass to strengthen the surface compressive stress, thereby preparing a test piece. Specifically, the physical strengthening treatment was performed by firing the borosilicate glass at a temperature of about 700 ° C. at maximum and quenching it.
 つまり、焼成温度を変えることにより、異なる表面圧縮応力値を有する複数のガラスを準備した。具体的には、ホウケイ酸ガラスの熱強化処理条件として、例えば焼成温度や焼成時間などを変化させて、異なる表面圧縮応力値を有するホウケイ酸ガラスの試験片を作製した。 That is, a plurality of glasses having different surface compressive stress values were prepared by changing the firing temperature. Specifically, borosilicate glass test pieces having different surface compressive stress values were produced by changing, for example, the firing temperature and firing time as the heat strengthening treatment conditions for the borosilicate glass.
 このとき、サイズは250mm角、厚みは約4mmで、試験片のガラスを作製した。また、作製した試験片のガラスの端面は、研磨処理した後の熱処理により、耐熱衝撃性などの特性が強化されている。 At this time, a glass of a test piece having a size of 250 mm square and a thickness of about 4 mm was produced. In addition, the end face of the glass of the produced test piece is enhanced in characteristics such as thermal shock resistance by heat treatment after polishing.
 以下に、耐熱衝撃性の試験方法について、説明する。 The thermal shock resistance test method will be described below.
 まず、上述のようにして作製した、表面圧縮応力値が異なる複数のガラスの試験片を準備する。 First, a plurality of glass test pieces having different surface compressive stress values prepared as described above are prepared.
 つぎに、準備したそれぞれの試験片を、所定温度に維持された恒温槽に入れ、試験片の温度が一定になるまで、恒温槽内に保持する。 Next, each prepared test piece is put in a thermostat maintained at a predetermined temperature, and held in the thermostat until the temperature of the test piece becomes constant.
 つぎに、試験片の温度が一定(所定の温度)になったところで、試験片を恒温槽から取り出す。 Next, when the temperature of the test piece becomes constant (predetermined temperature), the test piece is taken out from the thermostatic bath.
 その後、15℃の水500mlを、取り出したそれぞれの試験片の中央に注水する。このとき、試験片の温度は、恒温槽における所定温度から15℃まで一気に低下する。これにより、試験片に、熱衝撃(温度変化)が加えられる。 Thereafter, 500 ml of water at 15 ° C. is poured into the center of each taken out test piece. At this time, the temperature of a test piece falls at a stretch from the predetermined temperature in a thermostat to 15 degreeC. Thereby, a thermal shock (temperature change) is applied to the test piece.
 つぎに、複数の試験片に対して、同様に、それぞれ熱衝撃を加えて、各試験片が割れを起こす前の最大の熱衝撃(温度変化)を測定した。 Next, a plurality of test pieces were similarly subjected to thermal shock, and the maximum thermal shock (temperature change) before each test piece was cracked was measured.
 そして、測定した結果を、異なる表面圧縮応力値に対する耐熱衝撃性ΔT(℃)としてプロットした。これにより、図3に示すような、表面圧縮応力値と耐熱衝撃性との相関関係の結果が得られた。 The measured results were plotted as thermal shock resistance ΔT (° C.) for different surface compressive stress values. As a result, a correlation result between the surface compressive stress value and the thermal shock resistance as shown in FIG. 3 was obtained.
 なお、一般的に、熱強化処理により、一旦、表面圧縮応力が加えられたガラスは、長時間、高温の状態に晒されると、いわゆる応力緩和を起こす。そこで、上記試験においては、一旦、熱強化処理したホウケイ酸ガラスを、意図的に、高温の状態に晒して、応力緩和させている。 In general, glass once subjected to surface compressive stress by heat strengthening treatment is subjected to so-called stress relaxation when exposed to a high temperature state for a long time. Therefore, in the above test, the heat-strengthened borosilicate glass is intentionally exposed to a high temperature state to relieve stress.
 つまり、上記試験は、応力緩和させた後の、ホウケイ酸ガラスの試験片を用いて、上記表面圧縮応力値を測定している。そして、測定された表面圧縮応力値のホウケイ酸ガラスに対する耐熱衝撃性を測定して、図3に示す結果を得ている。 That is, in the above test, the surface compressive stress value is measured using a test piece of borosilicate glass after stress relaxation. And the thermal shock resistance with respect to the borosilicate glass of the measured surface compressive stress value was measured, and the result shown in FIG. 3 is obtained.
 [3.2 試験結果]
 図3に示すように、熱強化処理されたホウケイ酸ガラスの表面圧縮応力値(MPa)と、耐熱衝撃性ΔT(℃)とは、実質的に線形の関係を有することが見出された。
[3.2 Test results]
As shown in FIG. 3, it was found that the surface compressive stress value (MPa) of the heat strengthened borosilicate glass and the thermal shock resistance ΔT (° C.) have a substantially linear relationship.
 つまり、ホウケイ酸ガラスの表面圧縮応力値が大きくなるに従って、耐熱衝撃性が高くなる関係を有する。 That is, the thermal shock resistance increases as the surface compressive stress value of the borosilicate glass increases.
 一般的に、誘導加熱調理器で加熱される被加熱物は、約140℃~300℃の温度範囲で加熱制御される。このとき、被加熱物を200℃以上の温度で加熱すると、使用者は、高火力で調理している感覚を得やすい。また、炒め物などの場合は、例えば250℃~300℃以上の温度で、使用者は、より高い火力で調理している感覚を得やすい。 Generally, an object to be heated by an induction heating cooker is controlled to be heated in a temperature range of about 140 ° C to 300 ° C. At this time, when the object to be heated is heated at a temperature of 200 ° C. or higher, the user can easily obtain a sense of cooking with high heating power. In the case of fried foods, for example, at a temperature of 250 ° C. to 300 ° C. or higher, the user can easily get a sense of cooking with a higher heating power.
 つまり、使用者は、上記の温度範囲で被加熱物を加熱する傾向が強い。 That is, the user has a strong tendency to heat the object to be heated in the above temperature range.
 そのため、上記の温度範囲での被加熱物の加熱中に、氷水(約0℃)などがトッププレート2にかけられ、熱衝撃が加えられても、トッププレート2には、割れが発生しない耐熱衝撃が必要となる。 Therefore, even when ice water (about 0 ° C.) is applied to the top plate 2 during heating of the object to be heated in the above temperature range and a thermal shock is applied, the top plate 2 does not crack. Is required.
 そこで、本実施の形態では、トッププレート2を、図3に示す耐熱衝撃性と表面圧縮応力値との相関関係に基づいて、少なくとも20MPa以上の表面圧縮応力値を有するガラスで構成している。具体的には、ガラスとして、上述した熱強化処理を施したホウケイ酸ガラスを用いて、トッププレート2を構成している。 Therefore, in the present embodiment, the top plate 2 is made of glass having a surface compressive stress value of at least 20 MPa or more based on the correlation between the thermal shock resistance and the surface compressive stress value shown in FIG. Specifically, the top plate 2 is configured using borosilicate glass subjected to the above-described heat strengthening treatment as glass.
 なお、被加熱物が加熱される可能性のある最大の温度を考慮すれば、トッププレート2は、外挿する60MPa程度(図示せず)の表面圧縮応力値を有することが好ましい。60MPa程度の表面圧縮応力値を有するトッププレート2であれば、誘導加熱調理器100の使用時における耐熱衝撃性としては十分余裕がある。 In consideration of the maximum temperature at which the object to be heated is likely to be heated, the top plate 2 preferably has a surface compressive stress value of about 60 MPa (not shown) to be extrapolated. If the top plate 2 has a surface compressive stress value of about 60 MPa, the thermal shock resistance when using the induction heating cooker 100 has a sufficient margin.
 また、被加熱物が300℃までの高温で加熱される可能性がある場合、トッププレート2は、25MPaより大きい表面圧縮応力値を有することが好ましい。つまり、25MPaより大きい表面圧縮応力値の場合、図3に示すように、トッププレート2は、300℃以上の耐熱衝撃性を有する。 In addition, when there is a possibility that the object to be heated is heated at a high temperature up to 300 ° C., the top plate 2 preferably has a surface compressive stress value larger than 25 MPa. That is, in the case of a surface compressive stress value greater than 25 MPa, the top plate 2 has a thermal shock resistance of 300 ° C. or higher as shown in FIG.
 また、トッププレート2の表面圧縮応力値としては、55MPa程度であれば、被加熱物が加熱される可能性のある最大の温度(例えば、300℃)を考慮しても余裕がある。 Further, if the surface compressive stress value of the top plate 2 is about 55 MPa, there is a margin even in consideration of the maximum temperature (for example, 300 ° C.) at which the object to be heated can be heated.
 つまり、本実施の形態のトッププレート2は、加熱温度が、最大300℃程度の場合、少なくとも25MPaよりも大きく、55MPa以下の表面圧縮応力値を有するガラス(例えば、ホウケイ酸ガラスなど)で構成することが好ましい。 That is, the top plate 2 of the present embodiment is made of glass (for example, borosilicate glass) having a surface compressive stress value of at least greater than 25 MPa and less than 55 MPa when the heating temperature is about 300 ° C. at the maximum. It is preferable.
 [4.誘導加熱調理器の動作、作用]
 以下に、上述のように構成される本実施の形態の誘導加熱調理器100の動作および作用について、図4Aから図5Bを用いて、説明する。
[4. Operation and action of induction heating cooker]
Below, operation | movement and an effect | action of the induction heating cooking appliance 100 of this Embodiment comprised as mentioned above are demonstrated using FIG. 4A to FIG. 5B.
 図4Aは、被加熱物17が加熱される際の様子を前方から見た概略図である。図4Bは、被加熱物17が加熱される際の様子を上方から見た概略図である。図5Aは、被加熱物17が加熱された際のトッププレート2の変形の様子を前方から見た概略図である。図5Bは、被加熱物17が加熱された際のトッププレート2の変形の様子を上方から見た概略図である。 FIG. 4A is a schematic view of the heated object 17 as viewed from the front. FIG. 4B is a schematic view of the heated object 17 as viewed from above. FIG. 5A is a schematic view of the deformation of the top plate 2 when the article to be heated 17 is heated as viewed from the front. FIG. 5B is a schematic view of the deformation of the top plate 2 when the article to be heated 17 is heated as viewed from above.
 図4Aおよび図4Bに示すように、被加熱物17を加熱する際、トッププレート2の調理面(上面2b)に、鍋などの被加熱物17が載置される。そして、制御部8は、インバータなどを制御して、加熱コイル5(図1参照)に通電する。これにより、加熱コイル5は、被加熱物17自体に渦電流を発生させて加熱する。その結果、被加熱物17の温度が上昇する。 4A and 4B, when the object to be heated 17 is heated, the object to be heated 17 such as a pan is placed on the cooking surface (upper surface 2b) of the top plate 2. And the control part 8 controls an inverter etc., and supplies with electricity to the heating coil 5 (refer FIG. 1). Thereby, the heating coil 5 generates an eddy current in the object to be heated 17 and heats it. As a result, the temperature of the article to be heated 17 rises.
 なお、トッププレート2を構成するホウケイ酸ガラスの熱膨張係数は、比較的小さいが、ゼロではない。つまり、トッププレート2は、結晶化ガラスと異なり、加熱により、熱膨張する。 Note that the thermal expansion coefficient of the borosilicate glass constituting the top plate 2 is relatively small but not zero. That is, unlike the crystallized glass, the top plate 2 is thermally expanded by heating.
 このとき、被加熱物17が加熱されると、トッププレート2は、部分的に加熱される。そのため、主に加熱された部分のトッププレート2が、図5Aに示すように、上方に持ち上がるように変形する。これにより、トッププレート2には、引張応力18が発生する。そして、トッププレート2の端面部2aにも、図5Bに示すように、引張応力18が加えられることになる。 At this time, when the article to be heated 17 is heated, the top plate 2 is partially heated. Therefore, the top plate 2 of the heated portion is deformed so as to be lifted upward as shown in FIG. 5A. As a result, a tensile stress 18 is generated in the top plate 2. And the tensile stress 18 is applied also to the end surface part 2a of the top plate 2 as shown in FIG. 5B.
 このとき、トッププレート2の端面部2aには、通常、クラック19または鋭利なエッジ部20などの凹凸がある。そのため、端面部2aに引張応力18が加えられると、クラック19またはエッジ部20を起点として、トッププレート2が割れる虞がある。 At this time, the end surface portion 2a of the top plate 2 usually has irregularities such as a crack 19 or a sharp edge portion 20. Therefore, when the tensile stress 18 is applied to the end surface portion 2a, the top plate 2 may be cracked starting from the crack 19 or the edge portion 20.
 そこで、本実施の形態のトッププレート2は、端面部2aを、粒子径の細かい研磨微粉で研磨処理している。これにより、トッププレート2の端面部2aには、クラックまたは鋭利なエッジ部の形成が抑制される。その結果、引張応力18による端面部2aのクラックなどを起点とする、トッププレート2の割れの発生の可能性を低減できる。 Therefore, in the top plate 2 of the present embodiment, the end surface portion 2a is polished with a fine polishing powder having a small particle diameter. Thereby, the formation of cracks or sharp edge portions on the end surface portion 2a of the top plate 2 is suppressed. As a result, the possibility of occurrence of cracks in the top plate 2 starting from cracks in the end face portion 2a due to the tensile stress 18 can be reduced.
 また、本実施の形態のトッププレート2は、20MPa~60MPa、好ましくは25MPa~55MPaの表面圧縮応力値を有する、熱強化処理されたホウケイ酸ガラスで構成される。つまり、トッププレート2は、通常のホウケイ酸ガラスよりも、強度が増加されたホウケイ酸ガラスで構成される。 Further, the top plate 2 of the present embodiment is made of a heat strengthened borosilicate glass having a surface compressive stress value of 20 MPa to 60 MPa, preferably 25 MPa to 55 MPa. That is, the top plate 2 is composed of borosilicate glass having an increased strength compared to normal borosilicate glass.
 そのため、本実施の形態のトッププレート2は、通常のホウケイ酸ガラスと比較して、引張応力18に対して強い。これにより、トッププレート2に引張応力18が加えられても、割れが発生しにくい。 Therefore, the top plate 2 of the present embodiment is stronger against the tensile stress 18 than the normal borosilicate glass. Thereby, even if the tensile stress 18 is applied to the top plate 2, it is hard to generate | occur | produce a crack.
 さらに、トッププレート2の熱変形量は、被加熱物17の温度が上昇すればするほど、大きくなる。そのため、端面部2aに発生する引張応力18も大きくなる。しかし、本実施の形態のトッププレート2は、25MPa~55MPaの表面圧縮応力値を有する。そのため、トッププレート2は、300℃程度の加熱で発生する引張応力18に対しても、充分な耐性を備える。 Furthermore, the amount of thermal deformation of the top plate 2 increases as the temperature of the object to be heated 17 increases. Therefore, the tensile stress 18 generated in the end surface portion 2a also increases. However, the top plate 2 of the present embodiment has a surface compressive stress value of 25 MPa to 55 MPa. Therefore, the top plate 2 has sufficient resistance against the tensile stress 18 generated by heating at about 300 ° C.
 また、本実施の形態の誘導加熱調理器100は、赤外線センサで構成された温度検知部6で、常に被加熱物17の温度を検知しながら、加熱を制御する。赤外線センサは、被加熱物17から出される赤外線を検知して、被加熱物17の温度を検出する。そのため、伝導熱により温度を検知するサーミスタに比べて、温度の検知精度が高く、かつ、検知速度も速い。 Further, the induction heating cooker 100 according to the present embodiment controls heating while constantly detecting the temperature of the object to be heated 17 by the temperature detection unit 6 configured by an infrared sensor. The infrared sensor detects the infrared ray emitted from the heated object 17 and detects the temperature of the heated object 17. Therefore, the temperature detection accuracy is high and the detection speed is also faster than the thermistor that detects the temperature by conduction heat.
 つまり、赤外線センサは、例えば被加熱物17が空焼きされるなどして高温になった場合、すばやく検知する。そのため、制御部8は、温度検知部6の検知結果に基づいて、被加熱物17に対する加熱の停止などを、すばやく制御できる。これにより、被加熱物17からの伝熱によるトッププレート2の温度の急上昇を、未然に防止できる。つまり、迅速な温度検知により、トッププレート2が大きく熱変形することを抑制できる。 That is, the infrared sensor quickly detects when the object to be heated 17 is heated to a high temperature, for example. Therefore, the control unit 8 can quickly control the heating stop of the article to be heated 17 based on the detection result of the temperature detection unit 6. Thereby, the rapid rise in the temperature of the top plate 2 due to heat transfer from the object to be heated 17 can be prevented in advance. That is, it is possible to prevent the top plate 2 from being greatly deformed by rapid temperature detection.
 また、制御部8は、被加熱物17の温度が、端面部2aに割れが発生するような引張応力18が発生する温度域にならないように、加熱コイル5を制御することができる。 Further, the control unit 8 can control the heating coil 5 so that the temperature of the object to be heated 17 does not fall within a temperature range in which a tensile stress 18 that causes a crack in the end surface portion 2a is generated.
 また、本実施の形態のトッププレート2は、端面部2aに研磨処理が施された後、さらに熱強化処理を加えている。そのため、研磨処理を施した部分も、他の部分と同様に、熱強化される。これにより、本実施の形態のトッププレート2は、端面部2aを熱強化処理していないトッププレートと比較して、引張応力18に対する強度を高くできる。 Further, the top plate 2 of the present embodiment is further subjected to a heat strengthening process after the end face part 2a is subjected to the polishing process. Therefore, the portion subjected to the polishing treatment is thermally strengthened in the same manner as the other portions. Thereby, the top plate 2 of this Embodiment can make the intensity | strength with respect to the tensile stress 18 high compared with the top plate which does not heat-treat the end surface part 2a.
 さらに、本実施の形態のトッププレート2は、引張応力18に対する強度が高いため、高い温度領域(例えば、250℃~300℃以上)まで、被加熱物17の温度を上げて加熱調理できる。これにより、使用者は、被加熱物17を高火力で調理しているという実感を容易に得ることができる。 Furthermore, since the top plate 2 of the present embodiment has a high strength against the tensile stress 18, the top plate 2 can be cooked by raising the temperature of the article to be heated 17 to a high temperature range (eg, 250 ° C. to 300 ° C. or higher). Thereby, the user can easily obtain a real feeling that the object to be heated 17 is cooked with high heating power.
 なお、トッププレートは、上述したように、高い温度領域での被加熱物17の加熱において、氷水(約0℃)がトッププレート2の調理面にかけられた場合、例えば250℃~300℃という大きな熱衝撃が加えられる可能性がある。 As described above, the top plate has a large temperature of, for example, 250 ° C. to 300 ° C. when ice water (about 0 ° C.) is applied to the cooking surface of the top plate 2 in heating the object to be heated 17 in a high temperature range. Thermal shock may be applied.
 そこで、本実施の形態のトッププレート2は、20MPa~60MPa、好ましくは25MPa~55MPaの表面圧縮応力を有するように構成している。そのため、トッププレート2は、200℃~300℃以上の耐熱衝撃性を備える。これにより、トッププレート2は、使用者によって加えられる可能性のある熱衝撃性に、充分、耐えることができる。 Therefore, the top plate 2 of the present embodiment is configured to have a surface compressive stress of 20 MPa to 60 MPa, preferably 25 MPa to 55 MPa. Therefore, the top plate 2 has a thermal shock resistance of 200 ° C. to 300 ° C. or more. Thereby, the top plate 2 can sufficiently withstand the thermal shock that may be applied by the user.
 また、本実施の形態のトッププレート2は、上面2bの調理面に、無機物で構成され、高温においても耐え得る塗料がシルク印刷により印刷される。これにより、被加熱物17の載置時などのトッププレート2の調理面の傷の防止や、被加熱物17の滑りを、未然に防止できる。 Also, the top plate 2 of the present embodiment is made of an inorganic material on the cooking surface of the upper surface 2b, and a paint that can withstand high temperatures is printed by silk printing. Thereby, it is possible to prevent the cooking surface of the top plate 2 from being scratched and the sliding of the heated object 17 before the heated object 17 is placed.
 以上のように、本実施の形態の誘導加熱調理器100は、動作および作用する。 As described above, the induction heating cooker 100 of the present embodiment operates and acts.
 以下に、誘導加熱調理器100のフレーム3によるトッププレート2の支持構成について、図6Aおよび図6Bを用いて、説明する。 Hereinafter, the support structure of the top plate 2 by the frame 3 of the induction heating cooker 100 will be described with reference to FIGS. 6A and 6B.
 図6Aは、本実施の形態におけるトッププレート2を支持するフレーム3の概略構成の一例を示す断面図である。図6Bは、フレームの概略構成の比較例を示す断面図である。 FIG. 6A is a cross-sectional view showing an example of a schematic configuration of the frame 3 that supports the top plate 2 in the present embodiment. FIG. 6B is a cross-sectional view illustrating a comparative example of a schematic configuration of a frame.
 本実施の形態のトッププレート2の端面部2aは、図6Aに示すように、サイドフレーム3bが囲むように配置される。このとき、サイドフレーム3bは、トッププレート2の上方の位置には存在しない、つまり、トッププレート2の上面2bは覆わないように配設される。 The end surface portion 2a of the top plate 2 of the present embodiment is disposed so as to surround the side frame 3b as shown in FIG. 6A. At this time, the side frame 3b does not exist at a position above the top plate 2, that is, the upper surface 2b of the top plate 2 is not covered.
 一方、図6Bの比較例に示すトッププレート2の場合、サイドフレーム3bの上方側の端部が内側(トッププレート側)に折り曲げられ、トッププレート2の端面部2aを包み込むように配設される。この場合、トッププレート2が加熱され、熱変形すると、トッププレート2の上面2bとサイドフレーム3bの端部とが接触部21を介して接触する。これにより、接触部21に応力集中が起きる。そのため、接触部21を起点にトッププレート2が割れる虞がある。 On the other hand, in the case of the top plate 2 shown in the comparative example of FIG. 6B, the upper end portion of the side frame 3b is bent inward (top plate side) and is disposed so as to wrap around the end surface portion 2a of the top plate 2. . In this case, when the top plate 2 is heated and thermally deformed, the upper surface 2b of the top plate 2 and the end of the side frame 3b come into contact with each other through the contact portion 21. Thereby, stress concentration occurs in the contact portion 21. Therefore, there is a possibility that the top plate 2 may break from the contact portion 21 as a starting point.
 しかし、本実施の形態のトッププレート2は、図6Aに示すように、サイドフレーム3bがトッププレート2を包み込まないように構成している。つまり、サイドフレーム3bは、トッププレート2の上面2bの上方の位置には配置されように構成される。 However, the top plate 2 of the present embodiment is configured such that the side frame 3b does not wrap the top plate 2 as shown in FIG. 6A. That is, the side frame 3 b is configured to be disposed at a position above the upper surface 2 b of the top plate 2.
 そのため、図6Bに示すように、接触部21を介して、トッププレート2の上面2bと、サイドフレーム3bとは、接触しない。つまり、接触部21における応力集中が、トッププレート2の上面2b上で発生しない。これにより、トッププレート2が割れる可能性が低減される。 Therefore, as shown in FIG. 6B, the upper surface 2b of the top plate 2 and the side frame 3b are not in contact with each other via the contact portion 21. That is, stress concentration at the contact portion 21 does not occur on the upper surface 2 b of the top plate 2. Thereby, possibility that the top plate 2 will crack is reduced.
 また、本実施の形態のトッププレート2は、透明性の高い非結晶化ガラスであるホウケイ酸ガラスで構成される。そのため、トッププレート2上に印刷される、例えば白色などの色をきれいに表現できる。これにより、トッププレート2のデザイン性を、より高めることができる。 Further, the top plate 2 of the present embodiment is composed of borosilicate glass that is highly transparent non-crystallized glass. Therefore, a color such as white printed on the top plate 2 can be clearly expressed. Thereby, the design property of the top plate 2 can be improved more.
 また、トッププレート2を非結晶化ガラスで構成することにより、安価な誘導加熱調理器100を実現できる。 Further, by constructing the top plate 2 with non-crystallized glass, an inexpensive induction heating cooker 100 can be realized.
 以上のように、本実施の形態の誘導加熱調理器100は、高い火力での加熱調理においても、トッププレート2の割れを、効果的に低減できる。 As described above, the induction heating cooker 100 according to the present embodiment can effectively reduce cracks in the top plate 2 even in cooking with high thermal power.
 さらに、使用者が、高い火力で加熱処理しているとの満足感を実感できる誘導加熱調理器が得られる。 Furthermore, an induction heating cooker can be obtained in which the user can feel satisfied that the heat treatment is performed with high heat.
 [5.トップユニットの構成例]
 以下に、トップユニット4の構成例について、図7Aおよび図7Bを用いて、説明する。
[5. Top unit configuration example]
Below, the structural example of the top unit 4 is demonstrated using FIG. 7A and FIG. 7B.
 図7Aは、本実施の形態における誘導加熱調理器100のトップユニット4の平面図である。図7Bは、図7Aのトップユニット4を7B-7B線で切断した断面図である。 FIG. 7A is a plan view of the top unit 4 of the induction heating cooker 100 in the present embodiment. FIG. 7B is a cross-sectional view of the top unit 4 of FIG. 7A taken along line 7B-7B.
 図7Aに示すように、底面部を構成するアンダーフレーム3aは、トッププレート2の平面視において、トッププレート2の外周から加熱コイル5(図1参照)に対応する加熱エリア22の周囲近傍まで延在するように形成される。つまり、アンダーフレーム3aは、少なくとも3つの加熱コイル5を内包する開口3a1を有する。これにより、加熱コイル5の上方を除いて、アンダーフレーム3aが配設される。 As shown in FIG. 7A, the underframe 3a constituting the bottom surface portion extends from the outer periphery of the top plate 2 to the vicinity of the periphery of the heating area 22 corresponding to the heating coil 5 (see FIG. 1) in the plan view of the top plate 2. Formed to exist. That is, the under frame 3a has an opening 3a1 that encloses at least three heating coils 5. Thereby, except for the upper part of the heating coil 5, the under frame 3a is arrange | positioned.
 トッププレート2とアンダーフレーム3aの開口3a1の内周近傍との間には、図7Bに示すように、例えばシリコン接着剤14などの弾性部材が配設される。弾性部材は、トッププレート2の平面視において、加熱コイル5の周囲を囲むように配置される。そして、弾性部材は、トッププレート2をアンダーフレーム3aに接着させて、固定する。 As shown in FIG. 7B, an elastic member such as a silicon adhesive 14 is disposed between the top plate 2 and the vicinity of the inner periphery of the opening 3a1 of the under frame 3a. The elastic member is disposed so as to surround the heating coil 5 in a plan view of the top plate 2. The elastic member fixes the top plate 2 by adhering it to the under frame 3a.
 上述のように、トップユニット4は構成される。 The top unit 4 is configured as described above.
 上記構成において、トッププレート2の上面2b上の被加熱物17の温度が上昇すると、トッププレート2の温度も上昇する。そのため、トッププレート2を構成するホウケイ酸ガラスが膨張し、トッププレート2に引張応力18が発生する(図5A参照)。このとき、引張応力18は、トッププレート2の端面部2aに集中する(図5B参照)。 In the above configuration, when the temperature of the heated object 17 on the upper surface 2b of the top plate 2 rises, the temperature of the top plate 2 also rises. Therefore, the borosilicate glass constituting the top plate 2 expands, and a tensile stress 18 is generated in the top plate 2 (see FIG. 5A). At this time, the tensile stress 18 is concentrated on the end surface portion 2a of the top plate 2 (see FIG. 5B).
 そこで、本実施の形態のトッププレート2は、加熱エリア22の周囲を囲む位置を、シリコン接着剤14を介して、アンダーフレーム3aに接着、固定される。つまり、トッププレート2は、加熱エリア22の周囲を囲む位置において、アンダーフレーム3aに拘束される。 Therefore, the top plate 2 according to the present embodiment is bonded and fixed to the under frame 3a through the silicon adhesive 14 at a position surrounding the periphery of the heating area 22. That is, the top plate 2 is restrained by the under frame 3 a at a position surrounding the periphery of the heating area 22.
 そのため、図7Bに示すように、トッププレート2に加わる引張応力18に対する反力23が、加熱エリア22の周囲に発生する。 Therefore, as shown in FIG. 7B, a reaction force 23 against the tensile stress 18 applied to the top plate 2 is generated around the heating area 22.
 これにより、トッププレート2の端面部2a以外の部分にも、引張応力18が分散される。その結果、トッププレート2の端面部2aへの引張応力18の集中が抑制され、トッププレート2の割れが防止される。 Thereby, the tensile stress 18 is also distributed to portions other than the end surface portion 2a of the top plate 2. As a result, concentration of the tensile stress 18 on the end surface portion 2a of the top plate 2 is suppressed, and cracking of the top plate 2 is prevented.
 また、トッププレート2は、加熱エリア22の周囲を囲む位置において、アンダーフレーム3aに拘束される。そのため、トッププレート2の熱変形が低減される。 Further, the top plate 2 is restrained by the under frame 3a at a position surrounding the periphery of the heating area 22. Therefore, the thermal deformation of the top plate 2 is reduced.
 以上のように、本実施の形態のトップユニット4の構成によれば、トッププレート2の熱変形を低減できる。さらに、トッププレート2の端面部2aへの引張応力18の集中を抑制できる。これにより、トッププレート2が割れを、さらに効果的に抑制できる。 As described above, according to the configuration of the top unit 4 of the present embodiment, the thermal deformation of the top plate 2 can be reduced. Furthermore, the concentration of the tensile stress 18 on the end surface portion 2a of the top plate 2 can be suppressed. Thereby, the top plate 2 can suppress a crack more effectively.
 なお、上述のトップユニット4の構成は、熱膨張するガラスであれば、何れにおいても有用である。そのため、上述したホウケイ酸ガラス以外のガラスにも適用可能である。 The configuration of the top unit 4 described above is useful for any glass that is thermally expanded. Therefore, it is applicable also to glass other than the borosilicate glass mentioned above.
 [6.誘導加熱調理器の製造方法]
 以下に、本実施の形態の誘導加熱調理器の製造方法について、図8を用いて、説明する。
[6. Induction heating cooker manufacturing method]
Below, the manufacturing method of the induction heating cooking appliance of this Embodiment is demonstrated using FIG.
 図8は、本実施の形態の誘導加熱調理器100の製造方法を示すフローチャートである。 FIG. 8 is a flowchart showing a method for manufacturing induction heating cooker 100 of the present embodiment.
 なお、本実施の形態の誘導加熱調理器100のトッププレート2は、上述した熱によって物理強化されたホウケイ酸ガラスで構成される。 In addition, the top plate 2 of the induction heating cooker 100 of this Embodiment is comprised with the borosilicate glass physically strengthened by the heat mentioned above.
 まず、本実施の形態の誘導加熱調理器100は、筐体1の内部に、図1に示す被加熱物17を加熱する加熱部である加熱コイル5および加熱コイル5を制御する制御部8が配置される(ステップS01)。 First, in induction heating cooker 100 of the present embodiment, heating coil 5 that is a heating unit that heats object to be heated 17 shown in FIG. 1 and control unit 8 that controls heating coil 5 are provided inside casing 1. Arranged (step S01).
 なお、加熱コイル5および制御部8は、筐体1の内部に積み上げて配置する積み上げ方式で配置してもよい。また、トップユニット4として一体化された状態で、加熱コイル5および制御部8を筐体1に配置してもよい。 In addition, you may arrange | position the heating coil 5 and the control part 8 by the pile-up system which piles up and arrange | positions inside the housing | casing 1. FIG. Further, the heating coil 5 and the control unit 8 may be arranged in the housing 1 in a state integrated as the top unit 4.
 つぎに、トッププレート2を構成する、例えばホウケイ酸ガラスの耐熱衝撃性と表面圧縮応力値との相関関係を算出する(ステップS02)。これにより、図3に示す、ホウケイ酸ガラスの耐熱衝撃性と表面圧縮応力値との相関関係が得られる。なお、予め相関関係が算出されている場合、上記ステップS02を省略することが可能である。 Next, a correlation between the thermal shock resistance of the top plate 2, for example, borosilicate glass and the surface compressive stress value is calculated (step S02). Thereby, the correlation between the thermal shock resistance of borosilicate glass and the surface compressive stress value shown in FIG. 3 is obtained. If the correlation is calculated in advance, step S02 can be omitted.
 つぎに、上述の耐熱衝撃性と表面圧縮応力値との相関関係に基づいて、誘導加熱調理器100において必要とされる耐熱衝撃性に対応する目標表面圧縮応力値を特定する。 Next, based on the correlation between the thermal shock resistance and the surface compressive stress value, the target surface compressive stress value corresponding to the thermal shock resistance required in the induction heating cooker 100 is specified.
 そして、特定した目標表面圧縮応力値を有するホウケイ酸ガラスでトッププレート2を形成し、筐体1に組み込む(ステップS03)。なお、本実施の形態のトッププレート2は、例えば300℃以上の耐熱衝撃性が必要とされる。そのため、目標表面圧縮応力値としては、25MPaよりも大きいトッププレート2を特定する。 Then, the top plate 2 is formed from borosilicate glass having the specified target surface compressive stress value, and incorporated in the housing 1 (step S03). Note that the top plate 2 of the present embodiment is required to have a thermal shock resistance of, for example, 300 ° C. or higher. Therefore, the top plate 2 larger than 25 MPa is specified as the target surface compressive stress value.
 つぎに、筐体1に組み込まれたトッププレート2が、所望の目標表面圧縮応力値を有するか否を検査して判定する(ステップS04)。なお、トッププレート2の検査は、はじめに、例えばトッププレート2上の複数箇所の表面圧縮応力値を、測定機器で測定する。そして、複数箇所の全てにおいて、目標表面圧縮応力値以上かどうか確認することにより行われる。 Next, it is determined by inspecting whether the top plate 2 incorporated in the housing 1 has a desired target surface compressive stress value (step S04). In the inspection of the top plate 2, first, for example, surface compressive stress values at a plurality of locations on the top plate 2 are measured with a measuring device. And it is performed by confirming whether it is more than a target surface compressive stress value in all the some places.
 このとき、トッププレート2が、所望の目標表面圧縮応力値を有する場合(ステップS04のY)、誘導加熱調理器100の製造を終了する。 At this time, when the top plate 2 has a desired target surface compressive stress value (Y in step S04), the production of the induction heating cooker 100 is finished.
 一方、トッププレート2が、所望の目標表面圧縮応力値を有さない、すなわち、検査をクリアできない場合(ステップS04のN)、目標表面圧縮応力値を有する別のトッププレート2と取替えて、ステップS03以降のステップを実行する。 On the other hand, if the top plate 2 does not have the desired target surface compressive stress value, that is, if the inspection cannot be cleared (N in step S04), the top plate 2 is replaced with another top plate 2 having the target surface compressive stress value. Steps after S03 are executed.
 以上のように、誘導加熱調理器100が製造される。これにより、トッププレート2の割れが発生しにくく、高いデザイン性を備える誘導加熱調理器100を作製できる。 As described above, the induction heating cooker 100 is manufactured. Thereby, the crack of the top plate 2 is hard to generate | occur | produce and the induction heating cooking appliance 100 provided with high design property can be produced.
 本開示の誘導加熱調理器は、高温の温度域で被加熱物を加熱しても、トッププレートの割れを低減できる。そのため、キッチンに組み込む誘導加熱調理器に限らず、テーブル上に据え置くタイプの誘導加熱調理器に対しても有用である。 The induction cooking device of the present disclosure can reduce cracks in the top plate even when the object to be heated is heated in a high temperature range. Therefore, it is useful not only for the induction heating cooker incorporated in the kitchen, but also for an induction heating cooker of the type installed on a table.
 1  筐体
 2  トッププレート
 2a  端面部
 2b  上面
 3  フレーム
 3a  アンダーフレーム(底面部)
 3a1,12a  開口
 3b  サイドフレーム(周囲部)
 3c  バックフレーム
 4  トップユニット
 5  加熱コイル
 6  温度検知部
 7  操作ユニット
 8  制御部
 9  冷却ファン
 10  キッチンキャビネット
 10a  開口部
 11  吸気穴
 12  グリル調理庫
 13  グリルドア
 14  シリコン接着剤(弾性部材)
 15  排気口
 16  バックグリル
 17  被加熱物
 18  引張応力
 19  クラック
 20  エッジ部
 21  接触部
 22  加熱エリア
 23  反力
 100  誘導加熱調理器
DESCRIPTION OF SYMBOLS 1 Housing | casing 2 Top plate 2a End surface part 2b Upper surface 3 Frame 3a Under frame (bottom part)
3a1, 12a Opening 3b Side frame (peripheral part)
3c Back frame 4 Top unit 5 Heating coil 6 Temperature detection part 7 Operation unit 8 Control part 9 Cooling fan 10 Kitchen cabinet 10a Opening part 11 Intake hole 12 Grill cooking chamber 13 Grill door 14 Silicone adhesive (elastic member)
DESCRIPTION OF SYMBOLS 15 Exhaust port 16 Back grill 17 To-be-heated object 18 Tensile stress 19 Crack 20 Edge part 21 Contact part 22 Heating area 23 Reaction force 100 Induction heating cooker

Claims (9)

  1. 筐体と、
    前記筐体の上部に配置され、被加熱物が載置されるトッププレートと、
    前記トッププレートを保持するフレームと、
    前記筐体の内部に配置され、前記被加熱物を加熱する加熱部および前記加熱部を制御する制御部と、を備え、
    前記トッププレートは、表面圧縮応力値が25MPaよりも大きいガラスで構成される、
    誘導加熱調理器。
    A housing,
    A top plate disposed at the top of the housing and on which an object to be heated is placed;
    A frame for holding the top plate;
    A heating unit that is disposed inside the casing and that heats the object to be heated and a control unit that controls the heating unit;
    The top plate is made of glass having a surface compressive stress value larger than 25 MPa,
    Induction heating cooker.
  2. 前記トッププレートを構成する前記ガラスは、ホウケイ酸ガラスである請求項1に記載の誘導加熱調理器。 The induction heating cooker according to claim 1, wherein the glass constituting the top plate is borosilicate glass.
  3. 前記トッププレートを構成する前記ガラスは、熱によって物理強化される、
    請求項1に記載の誘導加熱調理器。
    The glass constituting the top plate is physically strengthened by heat.
    The induction heating cooker according to claim 1.
  4. 前記トッププレートを構成する前記ガラスは、300℃以上の耐熱衝撃性を有する、
    請求項1に記載の誘導加熱調理器。
    The glass constituting the top plate has a thermal shock resistance of 300 ° C. or higher.
    The induction heating cooker according to claim 1.
  5. 前記トッププレートを構成する前記ガラスは、55MPa以下の表面圧縮応力値を有する、
    請求項1に記載の誘導加熱調理器。
    The glass constituting the top plate has a surface compressive stress value of 55 MPa or less,
    The induction heating cooker according to claim 1.
  6. 前記フレームは、前記トッププレートの平面視において、前記トッププレートの端面部を囲むように、前記トッププレートの外周に沿って配置される周囲部を、有し、
    前記周囲部は、前記トッププレートの上面の位置に配置しない、
    請求項1に記載の誘導加熱調理器。
    The frame has a peripheral portion arranged along an outer periphery of the top plate so as to surround an end surface portion of the top plate in a plan view of the top plate;
    The peripheral portion is not arranged at the position of the upper surface of the top plate.
    The induction heating cooker according to claim 1.
  7. 前記フレームは、前記トッププレートの下方に位置する底面部を有し、
    前記トッププレートと前記底面部との間には、前記トッププレートを前記底面部に接着させる弾性部材が設けられ、
    前記弾性部材は、前記トッププレートの平面視において、前記加熱部の周囲を囲むように配置される、
    請求項1に記載の誘導加熱調理器。
    The frame has a bottom surface located below the top plate;
    Between the top plate and the bottom surface portion, an elastic member for bonding the top plate to the bottom surface portion is provided,
    The elastic member is arranged so as to surround the periphery of the heating unit in a plan view of the top plate.
    The induction heating cooker according to claim 1.
  8. 熱によって物理強化されたガラスから構成されるトッププレートを用いた誘導加熱調理器の製造方法であって、
    筐体の内部に、被加熱物を加熱する加熱部および前記加熱部を制御する制御部を配置するステップと、
    前記ガラスにおける耐熱衝撃性と表面圧縮応力値との相関関係に基づいて、前記誘導加熱調理器において必要とされる前記耐熱衝撃性に対応する目標表面圧縮応力値を特定し、特定した前記目標表面圧縮応力値を有する前記トッププレートを、前記筐体に組み込むステップと、を含む、
    誘導加熱調理器の製造方法。
    A method of manufacturing an induction heating cooker using a top plate composed of glass physically strengthened by heat,
    Arranging a heating unit for heating an object to be heated and a control unit for controlling the heating unit inside the housing;
    Based on the correlation between the thermal shock resistance and the surface compressive stress value in the glass, the target surface compressive stress value corresponding to the thermal shock resistance required in the induction heating cooker is specified, and the specified target surface is specified Incorporating the top plate having a compressive stress value into the housing;
    A method for manufacturing an induction heating cooker.
  9. 前記相関関係を算出するステップを、さらに含む、
    請求項8に記載の誘導加熱調理器の製造方法。
    Further comprising calculating the correlation.
    The manufacturing method of the induction heating cooking appliance of Claim 8.
PCT/JP2017/027205 2017-03-30 2017-07-27 Induction-heating cooker and induction-heating cooker production method WO2018179473A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780088010.7A CN110383943B (en) 2017-03-30 2017-07-27 Induction heating cooking device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017066966A JP6876902B2 (en) 2017-03-30 2017-03-30 Manufacturing method of induction heating cooker and induction heating cooker
JP2017-066966 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018179473A1 true WO2018179473A1 (en) 2018-10-04

Family

ID=63674544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027205 WO2018179473A1 (en) 2017-03-30 2017-07-27 Induction-heating cooker and induction-heating cooker production method

Country Status (3)

Country Link
JP (1) JP6876902B2 (en)
CN (1) CN110383943B (en)
WO (1) WO2018179473A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4296772A3 (en) * 2017-05-31 2024-03-20 Canon Kabushiki Kaisha Camera, interchangeable lens device, adapter device, control method, and imaging control program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364945A (en) * 1991-06-12 1992-12-17 Inax Corp High strength polycrystalline sintered ceramic laminate
JP2008267638A (en) * 2007-04-17 2008-11-06 Mitsubishi Electric Corp Heating cooker
JP2016500642A (en) * 2012-10-30 2016-01-14 ユーロケラ ソシエテ オン ノームコレクティフ Glass plate for induction cooking equipment
WO2016088778A1 (en) * 2014-12-02 2016-06-09 旭硝子株式会社 Glass plate and heater using same

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60207749T3 (en) * 2001-06-12 2013-12-24 Nippon Electric Glass Co., Ltd. Cooking plate top for cooking appliance with electromagnetic induction heating unit
US7208703B2 (en) * 2002-05-16 2007-04-24 Nippon Electric Glass Co., Ltd. Cooking top plate
FR2889580B1 (en) * 2005-08-02 2013-11-22 Eurokera COOKING PLATE, COOKING APPARATUS, AND PLATE MANUFACTURING METHOD
FR2894328B1 (en) * 2005-12-05 2017-10-06 Eurokera TRANSPARENT OR TRANSLUCENT VITROCERAMIC PLATE AND METHOD FOR MANUFACTURING THE SAME
CN101500956B (en) * 2006-08-14 2013-05-08 旭硝子株式会社 Heat-resistant tempered glass and process for producing the same
TWI487682B (en) * 2007-03-02 2015-06-11 Nippon Electric Glass Co Reinforced plate glass and manufacturing method thereof
EP2258989A1 (en) * 2008-03-11 2010-12-08 Panasonic Corporation Heating cooker
US8766147B2 (en) * 2008-05-20 2014-07-01 Kenyon International, Inc. Induction cook-top apparatus
KR20100083201A (en) * 2009-01-13 2010-07-22 허종목 Induction range
JP2010272459A (en) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp Induction heating cooker
JP2011216323A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp Induction heating cooker
FR2962192B1 (en) * 2010-06-30 2014-02-07 Eurokera COOKING DEVICE COMPRISING A GLASS OR VITROCERAMIC PLATE OF THE TYPE HAVING AT LEAST ONE MEANS OF MASKING INTERNAL ELEMENTS COVERED BY THE PLATE
DE102010032113B9 (en) * 2010-07-23 2017-06-22 Schott Ag Transparent or transparent colored lithium aluminum silicate glass-ceramic with adjustable thermal expansion and its use
CN201766733U (en) * 2010-07-29 2011-03-16 杭州海良节能科技有限公司 Electromagnetic induction heating coil
FR2969460B1 (en) * 2010-12-17 2012-12-28 Eurokera INDUCTION COOKING DEVICE
CN102659305A (en) * 2012-04-18 2012-09-12 无锡海达安全玻璃有限公司 Novel semi-tempering process for back plate glass of thin-film solar cells
FR3015470B1 (en) * 2013-12-20 2018-03-16 Eurokera S.N.C. INDUCTION COOKTOP AND METHOD OF OBTAINING
KR102208812B1 (en) * 2014-05-30 2021-01-28 삼성전자주식회사 Induction heating cooker
CN204534706U (en) * 2015-03-31 2015-08-05 浙江绍兴苏泊尔生活电器有限公司 Heating system of electromagnetic oven
CN105384336B (en) * 2015-11-02 2018-07-27 河南安彩高科股份有限公司 A kind of silicate glass composition and its ultra-thin glass made and preparation method and application
CN205232486U (en) * 2015-11-30 2016-05-11 深圳市鑫汇科股份有限公司 Modularization combination formula heating furnace
CN205425051U (en) * 2015-12-09 2016-08-03 浙江绍兴苏泊尔生活电器有限公司 Electromagnetic oven

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364945A (en) * 1991-06-12 1992-12-17 Inax Corp High strength polycrystalline sintered ceramic laminate
JP2008267638A (en) * 2007-04-17 2008-11-06 Mitsubishi Electric Corp Heating cooker
JP2016500642A (en) * 2012-10-30 2016-01-14 ユーロケラ ソシエテ オン ノームコレクティフ Glass plate for induction cooking equipment
WO2016088778A1 (en) * 2014-12-02 2016-06-09 旭硝子株式会社 Glass plate and heater using same

Also Published As

Publication number Publication date
CN110383943B (en) 2022-11-29
CN110383943A (en) 2019-10-25
JP6876902B2 (en) 2021-05-26
JP2018170178A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6289602B2 (en) Cooker
JP5345122B2 (en) Induction heating cooker
AU2018318597B2 (en) Heating apparatus and cooking apparatus including same
KR20150136893A (en) Induction range
WO2018179473A1 (en) Induction-heating cooker and induction-heating cooker production method
JP2009295457A (en) Induction heating cooker
JP4259492B2 (en) Cooker
JP5459080B2 (en) Induction heating cooker
KR101656571B1 (en) cooking appliance
JP5890506B2 (en) Cooker
US9414707B2 (en) System and method of cooking using infrared radiant energy
JP2000002425A (en) Heating cooker
JP2005276584A (en) Top plate
JP2019186130A (en) Induction heating cooker
JP2008021473A (en) Induction heating cooking oven
JP6072951B2 (en) Cooker
CN215892471U (en) Electric ceramic stove with double heat source function
JP2016091868A (en) Induction heating cooker
JP5889130B2 (en) Induction heating cooker and control method thereof
CN207543363U (en) A kind of heat-generating disc is external can thermometric electric furnace
JP2005108586A (en) Electric cooker
JP2010113971A (en) Induction heating cooker
JP6640648B2 (en) Induction heating cooker
WO2007148404A1 (en) Electromagnetic induction heating device
CN106123051A (en) A kind of microwave oven

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903545

Country of ref document: EP

Kind code of ref document: A1