WO2018179285A1 - Control device, sunlight control system, control method and program - Google Patents

Control device, sunlight control system, control method and program Download PDF

Info

Publication number
WO2018179285A1
WO2018179285A1 PCT/JP2017/013432 JP2017013432W WO2018179285A1 WO 2018179285 A1 WO2018179285 A1 WO 2018179285A1 JP 2017013432 W JP2017013432 W JP 2017013432W WO 2018179285 A1 WO2018179285 A1 WO 2018179285A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar radiation
awning
control
opening
power generation
Prior art date
Application number
PCT/JP2017/013432
Other languages
French (fr)
Japanese (ja)
Inventor
正之 小松
聡史 上森
真史 片山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019508062A priority Critical patent/JP6742506B2/en
Priority to PCT/JP2017/013432 priority patent/WO2018179285A1/en
Publication of WO2018179285A1 publication Critical patent/WO2018179285A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/02Shutters, movable grilles, or other safety closing devices, e.g. against burglary
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/56Operating, guiding or securing devices or arrangements for roll-type closures; Spring drums; Tape drums; Counterweighting arrangements therefor
    • E06B9/68Operating devices or mechanisms, e.g. with electric drive

Definitions

  • the present invention relates to a control device, a solar radiation control system, a control method, and a program.
  • ZEB zero energy buildings
  • ZEH zero energy house
  • Patent Document 1 Japanese Patent Application Laid-Open No. H10-228667 describes adjusting the introduction state of sunlight into a building by an electric shutter device using solar radiation information and outside air temperature information. Thereby, the indoor environment of a building can be optimized and energy efficiency can be improved.
  • Patent Document 1 When there are a plurality of shielding devices that block sunlight in one window, it is desirable to shield in consideration of the ease of use and contribution to energy saving that differ depending on the shielding device.
  • the technique described in Patent Document 1 shields sunlight with one shutter device attached to a window, and no consideration is given to the case where a plurality of shielding devices are provided. For this reason, there existed a possibility that a user's comfort could not be ensured, suppressing the increase in energy consumption.
  • the present invention has been made in view of the above circumstances, and an object thereof is to ensure user comfort while suppressing an increase in energy consumption.
  • the control device of the present invention is an awning that blocks sunlight entering a space to be subjected to cooling operation by an air conditioner from an opening of a building, and an awning that is different from the awning.
  • a control device that controls a shielding device that shields solar radiation entering, a first acquisition unit that acquires a power generation amount of the solar power generation device, and a first acquisition unit that acquires information indicating a position and a direction in which the opening is disposed. 2 Out of the awning / shielding device, the solar heat is shielded by controlling the device with high solar heat that is shielded from the space by shielding the solar radiation, which is specified from the power generation amount, position and direction, and the outside air temperature. When the temperature falls below the target temperature of the cooling operation by the air conditioner, control means for controlling the awning to shield the solar radiation.
  • a device having a large amount of solar heat shielded from the space to be cooled is controlled, and the awning is controlled when the outside air temperature falls below the target temperature for the cooling operation by the air conditioner. Is done.
  • the influence of solar heat entering from the opening is relatively small, it is possible to perform daylighting or to secure a view outside the building. Therefore, it is possible to ensure user comfort while suppressing an increase in energy consumption.
  • FIG. The figure which shows the structure of the solar radiation control system which concerns on Embodiment 1.
  • FIG. The figure which shows the hardware constitutions of the control device
  • the figure which shows the example of a shielding apparatus Flow chart showing control processing Diagram showing a request entered by the user Flow chart showing solar heat prediction processing Diagram showing an example of solar radiation data
  • Flow chart showing schedule setting process Flow chart showing energy-saving control processing The figure which shows the control content determined in the schedule setting process The figure which shows the structure of the solar radiation control system which concerns on Embodiment 3. Diagram showing device priority
  • FIG. 1 shows a configuration of a solar radiation control system 100 according to the first embodiment.
  • the solar radiation control system 100 is a HEMS (Home Energy Management System) or a BEMS (Building Energy Management System) that reduces the air conditioning load by introducing or blocking solar radiation in the building 200.
  • the solar radiation control system 100 includes a solar power generation device 30, a measurement device 40 that measures the amount of power generated by the solar power generation device 30, a control device 50 that controls the air conditioning device 60 and the shielding device 70, and air in the space 201.
  • the air conditioner 60 to be harmonized and the shielding device 70 that blocks the solar radiation entering the space 201 from the opening 202 of the building 200 are included.
  • a thin solid line represents a communication line.
  • the building 200 is a house in the present embodiment. However, the building 200 may be a building other than a house.
  • the opening 202 is, for example, a window including a skylight or an entrance / exit. A glass window or door that can be opened and closed is usually attached to the opening 202.
  • FIG. 1 one representative is shown for each of the space 201 and the opening 202, but the building 200 may have a plurality of spaces 201, and solar radiation is introduced into one space 201.
  • the solar power generation device 30 is a distributed power source installed on the site of the building 200 or on the roof of the building 200. In addition, when the building 200 is a ZEH house, the solar power generation device 30 is normally mounted in this ZEH house.
  • the solar power generation device 30 includes, for example, a polycrystalline silicon solar panel, and a power conditioner that converts and outputs electric power generated by the solar panel.
  • the electric power generated by the solar power generation device 30 is supplied into the building 200 and consumed by electric equipment including the air conditioner 60 or stored in a power storage device. Further, if the generated power is excessive, the surplus generated power may be supplied to the commercial power system as reverse power and may be purchased by the power company, for example, at a fixed price.
  • the solar power generation device 30 may perform a self-sustained operation without grid connection, or may supply power to the building 200 with a direct current without providing a power conditioner.
  • the measuring device 40 is a device that measures the generated electric power output from the solar power generation device 30. For example, the current and voltage are detected, and the digital signal processing is performed by the A / D converter. The active power (effective value) is calculated every time.
  • the measuring device 40 calculates a measurement value including an instantaneous power value that is an average value of generated power for one minute and an integrated power amount per hour. The integrated power amount can be obtained by integrating the instantaneous power value every minute. Then, the measurement device 40 repeatedly notifies the control device 50 of the measurement value of the power generation amount.
  • the measurement value notification according to the present embodiment is periodically executed, and the cycle thereof is 1 minute.
  • the control device 50 is a HEMS controller, a BEMS controller, or a centralized controller that controls devices in the building 200 in an integrated manner.
  • the control device 50 monitors the operating states of the air conditioner 60 and the shielding device 70 by periodically acquiring the operating states from the air conditioner 60 and the shielding device 70.
  • the control apparatus 50 changes the operation state of the air conditioning apparatus 60 and the shielding apparatus 70 by transmitting a control command, and controls the air conditioning apparatus 60 and the shielding apparatus 70.
  • FIG. 2 shows the hardware configuration of the control device 50.
  • the control device 50 is configured as a computer having a processor 51, a main storage unit 52, an auxiliary storage unit 53, an input unit 54, an output unit 55, and a communication unit 56.
  • the main storage unit 52, the auxiliary storage unit 53, the input unit 54, the output unit 55, and the communication unit 56 are all connected to the processor 51 via the internal bus 57.
  • the processor 51 includes a CPU (Central Processing Unit).
  • the processor 51 exhibits the functions described later by executing the program 58 stored in the auxiliary storage unit 53.
  • the main storage unit 52 includes a RAM (Random Access Memory).
  • the main storage unit 52 loads the program 58 from the auxiliary storage unit 53.
  • the main storage unit 52 is used as a work area for the processor 51.
  • the auxiliary storage unit 53 includes a nonvolatile memory represented by a flash memory. In addition to the program 58, the auxiliary storage unit 53 stores various data used for the processing of the processor 51.
  • the input unit 54 includes, for example, an input key and a capacitive pointing device.
  • the input unit 54 acquires information input by the user and notifies the processor 51 of the information.
  • the output unit 55 includes a display device represented by an LCD (Liquid Crystal Display), for example.
  • the output unit 55 is formed integrally with a pointing device that configures the input unit 54 to configure a touch screen.
  • the information terminal device represented by the smart phone is the technique which was spread widely now, for example about the structure which a person operates. Therefore, it is possible to utilize such an information terminal device.
  • the control unit 50 may be configured by omitting the input unit 54 and the output unit 55, and a terminal connected to be able to communicate with the control device 50 may be used as a user interface of the control device 50.
  • the communication unit 56 includes a communication interface circuit for communicating with an external device.
  • the communication unit 56 notifies the processor 51 of information included in a signal received from the outside, and transmits a signal for transmitting the information output from the processor 51 to an external device.
  • FIG. 3 shows a functional configuration of the control device 50.
  • the function of the control device 50 shown in FIG. 3 is realized by the above-described hardware configuration operating in cooperation.
  • the control device 50 has, as its functions, a structure information acquisition unit 501 that acquires information indicating the structure of the building 200, and a request reception unit that receives a user's request regarding the presence or absence of light shielding by the shielding device 70.
  • a power generation amount acquisition unit 503 that acquires a measurement value of the power generation amount from the measurement device 40
  • a storage unit 504 that stores various data
  • solar heat that predicts the transition of solar heat that enters the space 201 from the opening 202 It has the prediction part 505, the schedule setting part 506 which sets the schedule which shows the presence or absence of light shielding by the shielding apparatus 70, and the control part 507 which controls the shielding apparatus 70 according to a schedule.
  • the structure information acquisition unit 501 is mainly realized by the processor 51 and the input unit 54.
  • the structure information acquisition unit 501 includes, as information indicating the structure of the building 200, the azimuth angle and inclination angle of the solar panel, the position and direction of the opening 202 associated with each room number, and the opening 202.
  • the information which shows the position of the obstruction which influences the solar radiation invasion of this, the information which defined the adjacent relationship of each room, and the information regarding the solar radiation shielding apparatus installed in each window of the opening part 202 are acquired.
  • the structure information acquisition unit 501 acquires the latitude and longitude indicating the position of the building 200 and the floor plan of the building 200 as the position of the opening 202.
  • the structure information acquisition unit 501 acquires a direction indicated by an azimuth angle or 16 directions as the direction of the opening 202.
  • An obstacle that affects solar intrusion is, for example, a fence or a standing wall.
  • the structure information acquisition unit 501 acquires other information of the opening 202.
  • Other information includes the size of the opening, the installation position on the wall, and the position and size of the top, bottom, left, and right shields.
  • the other information includes whether or not simultaneous use of the plurality of shielding devices 70 is permitted when the plurality of shielding devices 70 are attached to the respective openings 202.
  • the structure information acquisition unit 501 stores the acquired data in the storage unit 504.
  • the request reception unit 502 is realized mainly by the processor 51, the input unit 54, and the output unit 55.
  • the request reception unit 502 displays a request input screen for the user to inquire whether there is a request, and acquires the request.
  • Requests include, for example, lighting to the space 201, ventilation to the space 201, prevention of outsiders' intrusion into the building 200 and prevention of crime including privacy protection, request for disaster prevention including reduction of fire spread, and external
  • the request may specify a date and time.
  • the requested date and time are, for example, a predetermined time zone represented by morning, noon, and evening categories, a time zone specified by the user, weekdays, holidays, and days of the week.
  • the requested date and time may be linked to the user's own outing schedule.
  • the shielding device 70 introduces solar radiation into the space 201. Moreover, if it responds to the request of crime prevention, disaster prevention, and soundproofing, the shielding apparatus 70 will shield solar radiation.
  • the request reception unit 502 stores request data indicating a request input by the user in the storage unit 504. Details of the request input by the user will be described later.
  • the power generation amount acquisition unit 503 is mainly realized by the processor 51 and the communication unit 56.
  • the power generation amount acquisition unit 503 acquires a measurement value of the power generation amount from the measurement device 40 and sequentially stores it in the storage unit 504.
  • data indicating the measurement value of the power generation amount is accumulated.
  • the storage unit 504 is mainly realized by the main storage unit 52 and the auxiliary storage unit 53.
  • the solar heat prediction unit 505 is mainly realized by the processor 51.
  • the solar heat prediction unit 505 is based on the weather determination result determined from the current power generation amount from the data stored in the storage unit 504, and calculates the solar heat heat to the opening 202 from the current time to a predetermined time in the future. Predict the transition of the average value per unit time.
  • the time determined in the future may be, for example, a sunset time determined from the date and the position of the building 200, or may be a correct hour after the sunset time (for example, 19:00, 20:00).
  • the unit time is appropriately 30 minutes or 1 hour, which is used in many cases as the unit time for power management, but it may be shorter.
  • the solar heat prediction unit 505 stores data indicating the predicted change in solar heat in the storage unit 504. Moreover, the solar radiation heat prediction part 505 performs the said process, for example for every hour, and updates a prediction result.
  • the schedule setting unit 506 is mainly realized by the processor 51.
  • the schedule setting unit 506 creates a schedule for shielding solar radiation by the shielding device 70 at a specific time in the future based on the user's request and the predicted value of solar heat, and stores it in the storage unit 504, thereby scheduling the specific time.
  • the specific time may be equal to the time when the solar heat prediction unit 505 predicts the transition of solar heat, or may be 1 hour or 30 minutes.
  • the schedules of the plurality of shielding devices 70 are individually determined. It is also possible to make a plurality of devices and all devices have the same schedule. However, if the same schedule is used, a main device is set in the same group, and the schedule obtained for the device is applied to other devices.
  • the control unit 507 is mainly realized by the processor 51 and the communication unit 56.
  • the control unit 507 controls the shielding device 70 by referring to the schedule stored in the storage unit 504 and transmitting a control instruction to the shielding device 70 according to the schedule.
  • the air conditioner 60 includes an indoor unit and an outdoor unit connected via a refrigerant pipe.
  • the air conditioner 60 exchanges heat between the refrigerant and the outside air to blow out conditioned air having an appropriate temperature into the space 201 and adjust the room temperature to the target temperature designated by the user.
  • the shielding device 70 is, for example, an electric awning, an electric shutter, an electric blind, or an electric curtain. In accordance with a control instruction from the control device 50, the shielding device 70 passes solar radiation inserted into the opening 202 into the space 201 or shields this solar radiation.
  • FIG. 4 shows an electric awning 71, an outdoor electric shutter 72, and an indoor electric blind 73 as specific examples of the shielding device 70.
  • the electric awning 71 is an open / close type device that blocks the solar radiation to the opening 202 and forms a shade around the opening 202.
  • the electric awning 71 does not largely block the visibility and ventilation of the person in the space 201 to the outside of the building 200 in a state where the solar radiation is blocked.
  • the effect of the electric awning 71 preventing the intrusion of people from outside the building 200 is relatively small.
  • the electric shutter 72 is an open / close type device that blocks sunlight from the outdoor side of the glass door 203 attached to the opening 202. In the state where the solar radiation is blocked, the electric shutter 72 blocks the ventilation and the field of view, and the crime prevention effect of the electric shutter 72 becomes relatively high.
  • the electric blind 73 is a device that blocks sunlight from the indoor side of the glass door 203.
  • control process shown in FIG. 5 is executed when the power of the control device 50 is turned on.
  • the structure information acquisition unit 501 acquires structure information including the position and direction in which the opening 202 is disposed (step S1). Specifically, the structure information acquisition unit 501 acquires the structure information by prompting the user to input the above-described structure information indicating the arrangement of the solar panel, the shielding object, the shielding device 70, and the opening 202, and the like. Step S1 is normally executed only when the control device 50 is activated for the first time. The information acquired in step S1 is stored in the storage unit 504, and the stored information is used in subsequent processing unless a setting change request is made.
  • the request receiving unit 502 receives a user request (step S2). Specifically, as illustrated in FIG. 6, the request receiving unit 502 displays a table in which requests for “weekdays”, “holidays”, and “outing” are associated with each other for the entire house and each room. , Prompts the user to input a request other than “energy saving”. However, since “energy saving” is generally desired by the user, it is an initial setting before information is input by the user. By selecting “Lighting”, “Ventilation”, “Crime Prevention”, “Disaster Prevention” or “Soundproof” from the pull-down list displayed by specifying a box for setting a request other than “Energy Saving” Enter your request.
  • step S2 is normally executed only when the control device 50 is activated for the first time.
  • the request received in step S2 is stored in the storage unit 504, and the stored request is used in the subsequent processing unless a setting change request is made.
  • the request reception unit 502 may receive a request at a timing for controlling a device including the shielding device 70, a timing for creating a schedule, or a periodic timing.
  • the power generation amount acquisition unit 503 acquires a measurement value of the power generation amount from the measurement device 40 (step S ⁇ b> 3).
  • step S4 the solar heat prediction unit 505 executes solar heat prediction processing. This solar heat prediction process is demonstrated using FIG.
  • the solar heat prediction unit 505 first determines the weather from the measurement value of the power generation amount (step S41). Specifically, the solar heat prediction unit 505 calculates the average power generation amount for a certain time immediately before the current time, and compares the average power generation amount with predetermined thresholds Ta, Tb, Tc, so that the weather is Judged as clear, clear, cloudy, or rainy.
  • the certain time is, for example, 30 minutes. Specifically, if the average power generation amount is equal to or greater than the threshold value Ta, it is determined that the current weather is clear, and if the average power generation amount is equal to or greater than Tb and less than the threshold value Ta, it is determined that the current weather is clear.
  • Ta, Tb, and Tc are values corresponding to, for example, 80%, 50%, and 20% of the maximum power generation amount of the solar power generation device 30, respectively.
  • the solar heat prediction unit 505 calculates the amount of solar radiation from the weather (step S42). Specifically, the solar heat prediction unit 505 obtains the transition of the elevation angle, azimuth angle, and intensity of sunlight at a specific time in the future from the latitude and longitude of the building 200 and the current date and time.
  • FIG. 8 illustrates the change in the amount of solar radiation calculated by the solar heat prediction unit 505. As shown in FIG. 8, the transition of the amount of solar radiation including the elevation angle, azimuth angle, and intensity every minute is predicted.
  • the amount of solar radiation is equal to a value obtained by multiplying the intensity and the weather coefficient.
  • the weather coefficient is set as follows based on the threshold value.
  • the coefficient when clear is set to 1, and the coefficient when clear is ⁇ (Ta + Tb) / 2 ⁇ / (rated generated power) or ⁇ (Ta + Tb) / 2 ⁇ / (maximum generated power).
  • the coefficient when cloudy is set to ⁇ (Tb + Tc) / 2 ⁇ / (rated generated power) or ⁇ (Tb + Tc) / 2 ⁇ / (maximum generated power), and the coefficient when raining is , Set to zero.
  • the maximum generated power is the maximum value in the past year of the average power value per fixed time.
  • the solar radiation heat prediction unit 505 calculates the solar radiation amount that enters the space 201 from each of the openings 202 from the calculated solar radiation amount data, and predicts the solar heat heat that enters the space 201 at a specific time (step S43). ). Specifically, the solar heat prediction unit 505 calculates, as the solar radiation acquisition area (m 2 ), the area of the area where the solar radiation is not shielded by walls, fences, and roofs as the solar radiation area of the opening 202 at each time, The solar radiation acquisition efficiency (%) is calculated from the altitude, and the solar heat amount (kW) is obtained for each opening 202 for each time. The amount of solar heat (kW) that enters each space 201 is obtained by calculating the value of each window in the same time zone.
  • the solar radiation acquisition efficiency can be easily obtained using an arithmetic expression of reference solar heat quantity (1 kW / m 2 ) ⁇ sin (solar altitude).
  • the amount of solar heat (kW) of each of the openings 202 is obtained using an arithmetic expression of solar radiation acquisition efficiency (kW / m 2 ) ⁇ sunlight acquisition area (m 2 ).
  • required by these arithmetic expressions are the average values per unit time.
  • the solar heat prediction unit 505 divides the opening 202 into a 10 mm square mesh, and positions of the opening 202 and the wall and the incident angle of solar radiation. Therefore, when solar radiation reaches each mesh, “1” is assigned, and when solar radiation does not reach, “zero” is assigned.
  • FIG. 10 shows a case where a part of the sunlight 21 is blocked by the ridge 204 provided on the upper part of the opening 202.
  • FIG. 11 shows a case where a part of the sunlight 21 is blocked by the wall 205. Accordingly, as shown in FIG.
  • step S43 ends, the process executed by the control device 50 returns to the control process shown in FIG.
  • step S5 When the solar heat prediction process (step S4) is completed, the schedule setting unit 506 executes the schedule setting process (step S5). This schedule setting process will be described with reference to FIG.
  • the schedule setting unit 506 determines whether or not the user's request has been accepted (step S51). Specifically, the schedule setting unit 506 determines whether any request other than “energy saving” has been received. When it is determined that no request has been received (step S51; No), the schedule setting unit 506 determines to execute the energy saving control for all the shielding devices 70 (step S52). Thereafter, the processing by the schedule setting unit 506 proceeds to step S60.
  • the control device 50 causes the shielding device 70 to shield the solar radiation before the time when the direct sunlight enters. It should be noted that after the time when the direct irradiation stops, the shielding of the solar radiation by the shielding device 70 may be stopped or the user operation may be followed while the shielding state is maintained.
  • the control device 50 performs the energy saving control processing shown in FIG. Execute.
  • the schedule setting unit 506 determines whether or not the user is in the building 200 (step S101).
  • the schedule setting unit 506 may determine whether there is a user from the output of the human sensor, or refers to the user's schedule registered in the control device 50, so that the user is in the building 200 at the current time. It may be determined whether or not.
  • the schedule setting unit 506 determines whether or not the air conditioner 60 is in the cooling operation (step S102).
  • step S101; No When it is determined that the user is not in the building 200 (step S101; No) and when it is determined that the air conditioner 60 is not in the cooling operation (step S102; No), the schedule setting unit 506 is a device to be controlled. The energy saving control process is terminated without selecting.
  • the schedule setting unit 506 determines whether or not the outside air temperature is lower than a predetermined threshold (step S103).
  • step S103 When it is determined that the outside air temperature is lower than a predetermined threshold (step S103; Yes), the schedule setting unit 506 selects awning as a control target (step S104). Thereafter, the schedule setting unit 506 executes Step S106.
  • the schedule setting unit 506 selects a device with a large amount of solar heat to be cut off between the awning and the other shielding devices 70. It selects as a control object (step S105). Specifically, the schedule setting unit 506 gives a high priority to a device with a large amount of solar heat to block, and gives a low priority to a device with a low sun heat to block.
  • the assigned priority order is referred to by the control unit 507 that controls the awning and the other shielding device 70.
  • the schedule setting unit 506 determines to execute the energy saving control of the selected device (step S106). Thereafter, the schedule setting unit 506 ends the energy saving control process.
  • the control device 50 acquires the outside air temperature from the air conditioner 60, the solar power generation device 30, or the hot water storage type water heater (not shown), and the outside air Only when the temperature is higher than the threshold, the shielding device 70 may be controlled to introduce solar radiation. Furthermore, the control device 50 compares the amount of heat loss transmitted from the opening 202 to the outdoors and the amount of solar heat, and controls the shielding device 70 to generate solar radiation only when the amount of solar heat is greater than the amount of heat loss. It may be introduced.
  • the indoor temperature is increased and the comfort is increased unless the solar radiation is shielded on a warm day.
  • the use of awning suppresses room temperature rise and glare.
  • the control device 50 controls the shielding device 70 in a time zone in which the outside air temperature exceeds the threshold and the solar heat exceeds the threshold. To block out solar radiation. Moreover, the control apparatus 50 controls the shielding apparatus 70 and introduces solar radiation in the time slot
  • the shielding device 70 executes either one of shielding or introducing solar radiation. However, depending on the type of the shielding device 70, part of the solar radiation may be shielded. For example, if the shielding device 70 is a blind, part of solar radiation may be shielded by adjusting the slat angle.
  • the outside air temperature a predicted value of the outside temperature obtained from past weather information may be used, or a predicted value of the outside temperature of the day obtained from an external weather forecast server on the previous day may be used.
  • the cooling period means a time when the target temperature of air conditioning is lower than the predicted value of the outside air temperature, and corresponds to, for example, June to September in the northern hemisphere.
  • the heating period means a time when the target temperature of air conditioning is higher than the predicted value of the outside air temperature, and corresponds to, for example, November to February in the northern hemisphere.
  • step S ⁇ b> 51 if it is determined in step S ⁇ b> 51 that some user request has been received (step S ⁇ b> 51; Yes), the schedule setting unit 506, if there is a shielding device 70 that is not related to the request, about the shielding device 70. It is determined to execute the energy saving control (step S53). For example, when only the lighting in the living room is accepted as the user's request, it is determined to execute the energy saving control on the shielding device 70 provided in the opening 202 that introduces solar radiation into a space other than the living room.
  • the schedule setting unit 506 ranks the shielding devices 70 in descending order of the blocking solar radiation heat (step S54). Specifically, the shielding devices 70 are ranked in descending order of the solar radiation heat shielded from the space 201 by the shielding of the solar radiation by the shielding device 70. For example, a shutter attached to a large window is given “1” as a rank, and an awning attached to a small window is given a rank higher than “1”.
  • the schedule setting unit 506 selects one unselected shielding device 70 having a large shielding solar heat (step S55).
  • the schedule setting unit 506 determines whether or not the solar heat that becomes the air conditioning load when the selected shielding device 70 is controlled as desired is greater than the threshold (step S56). For example, when solar radiation is introduced into the space 201 in accordance with a request for “lighting”, it is determined whether or not the solar heat as a cooling load is larger than a predetermined magnitude. Further, when the solar heat is blocked from the space 201 in accordance with the request for “soundproofing”, it is determined whether or not the solar heat that becomes a heating load is larger than a predetermined size.
  • step S56 determines to control the shielding device 70 with priority given to energy saving by introducing or blocking solar heat (step S57). . Thereafter, the schedule setting unit 506 executes the processing after step S55.
  • step S56 determines to control the shielding device 70 according to the request (step S58).
  • the schedule setting unit 506 determines to execute the energy saving control of the shielding device 70 (step S59).
  • the schedule setting unit 506 sets a schedule at a specific time according to the contents determined in steps S51 to S59 (step S60).
  • FIG. 15 shows an example of the contents determined in steps S51 to S59 in accordance with the request shown in FIG.
  • the control unit 507 controls the shielding device 70 according to the schedule (step S6).
  • the control unit 507 changes the schedule set in the processing of steps S103 to S105 in FIG. 14 according to the current actual environment.
  • the control unit 507 determines that the current outside air temperature is the cooling operation of the air conditioner 60.
  • the temperature exceeds the target temperature, it is preferable to control the device to which the high priority is given in step S105 according to the schedule, and when the current outside air temperature is lower than the target temperature of the cooling operation, it is preferable to control the awning.
  • control device 50 determines whether or not there is a direct operation by the user (step S7). When it determines with there being no direct operation by a user (step S7; No), the control apparatus 50 repeats the process after step S3.
  • step S7 when it determines with there being a direct operation by a user (step S7; Yes), the control apparatus 50 controls the shielding apparatus 70 according to a user operation (step S8).
  • This operation is usually an operation different from the energy saving control.
  • the control device 50 displays the loss amount of the energy saving effect caused by the control according to the user operation on the output unit 55 (step S9). Thereby, the user can recognize the energy consumption increased by his operation.
  • the loss of the energy saving effect may be solar heat that becomes an air conditioning load, or may be power consumption of the air conditioner 60 that increases by processing the solar heat.
  • control device 50 repeats the processing after step S3.
  • the control device 50 executes the energy saving control process shown in FIG.
  • the control device 50 executes the energy saving control process shown in FIG.
  • the influence of solar heat entering from the opening 202 is relatively small, it is possible to perform daylighting or to secure a field of view outside the building. Therefore, it is possible to ensure user comfort while suppressing an increase in energy consumption.
  • the control apparatus 50 controls the shielding device 70 in preference to the user's request to introduce or block solar heat, while the solar heat is smaller than the threshold value.
  • the shielding device 70 was controlled according to the demand.
  • energy consumption corresponds to an electricity rate
  • the shielding device 70 is controlled for energy saving.
  • the control device 50 can appropriately control the shielding device 70 in accordance with such a request. As a result, user comfort can be improved.
  • control device 50 calculated solar radiation heat from the amount of power generated by the solar power generation device 30. Therefore, if it is the building 200 provided with the solar power generation device 30, the air-conditioning driving
  • Embodiment 2 FIG. Next, the second embodiment will be described focusing on the differences from the first embodiment.
  • the description is abbreviate
  • the control device 50 according to the present embodiment is different from that according to the first embodiment in that a control pattern according to the weather is set in advance.
  • control device 50 refers to the control pattern according to the weather without executing the calculation of the solar radiation amount and the calculation of the solar radiation acquisition amount to each space 201, and each time The control of the shielding device 70 is determined.
  • the control pattern according to the weather is set by selecting an open state, a closed state, and a half-open state of the shielding device 70 so that an optimum effect can be obtained from the result of obtaining the thermal environment by simulation.
  • the control device 50 can reduce the amount of data to be held. Further, by executing the simulation using the structural information as a simulation model, it is possible to omit detailed structural information input by the user. Furthermore, it becomes easy to change the control content by the control apparatus 50 according to a user's need by changing a control pattern.
  • control device 50 may develop a schedule as a control pattern for the day including the weather. That is, the control patterns of rain, cloudy, clear, and clear cases may be developed in parallel. Thereby, the control apparatus 50 can acquire weather information from the outside, and can change a control pattern easily according to the change of a weather. In this case, what is necessary is just to plan the time until the next weather information is acquired.
  • the weather information includes information indicating current weather and weather forecast.
  • Embodiment 3 FIG. Subsequently, the third embodiment will be described focusing on differences from the above-described second embodiment. In addition, about the structure same or equivalent to the said Embodiment 2, while using an equivalent code
  • the control device 50 according to the present embodiment is connected to a server 80 via a communication network represented by the Internet, and the server 80 executes a simulation of a thermal environment. It is different from that according to Form 2.
  • SIM-HEAT can be used as software for executing a simulation of a thermal environment. According to such software, it is possible to calculate changes in the air conditioning load and the room temperature from the structure information of the building 200, the information of the air conditioner 60, and the environmental information including the solar radiation and the temperature.
  • the server 80 receives data indicating the power generation amount and the estimated solar radiation amount from the control device 50, determines the current weather from the power generation amount, obtains a weather forecast indicating the future weather, and simulates the thermal environment, An operation schedule of the shielding device 70 by the control device 50 is created. Then, the server 80 transmits the created schedule to the control device 50, and the control device 50 controls the shielding device 70 according to the received schedule.
  • the server 80 may have some functions of the control device 50 according to the first and second embodiments.
  • the server 80 may include at least one of the solar heat prediction unit 505 and the schedule setting unit 506 (see FIG. 3) of the control device 50.
  • the user's request may be received together with a level indicating the degree of the request.
  • the threshold value used in the determination in step S56 in the schedule setting process is changed according to the request level, control according to the degree of user's request can be executed. Specifically, if the threshold value is increased when the demand is strong and the level is high, it is considered that the number of shielding devices 70 controlled according to the demand increases as compared with the case where the demand is weak and the level is low.
  • the awning is selected as a control target when the level is high, and the level When the temperature is low, an apparatus having a high energy saving effect may be selected in accordance with solar heat.
  • the shutter is closed when the level is high, and the awning is periodically performed when the level is low. May be operated automatically.
  • the periodic operation means, for example, that the transition between the state where the solar radiation is shielded and the state where the solar radiation is introduced is repeatedly executed at a cycle of 5 minutes.
  • control apparatus 50 acquired the electric power generation amount of the solar power generation device 30 installed in the building 200, it is not limited to this.
  • the control device 50 may acquire the power generation amount of the solar power generation device 30 installed in another building from a server on the Internet. In this case, it is desirable that the building 200 and other buildings are in a small area.
  • the control apparatus 50 may acquire the solar radiation amount data shown in FIG. 8 from a server on the Internet.
  • control device 50 preferentially executes the energy saving control with respect to the shielding device 70 having a large cut-off solar heat.
  • control device 50 may cause the shielding device 70 to execute the energy saving control preferentially from a time zone having a large energy saving effect. .
  • the device to be controlled is selected by comparing the outside air temperature with the threshold value, but the present invention is not limited to this.
  • a table associating the conditions shown in FIG. 17 with the priority order of the devices may be set in advance, and the device to be controlled may be selected by referring to this table.
  • awning is selected first.
  • control device 50 can be realized by dedicated hardware or by a normal computer system.
  • the program 58 stored in the auxiliary storage unit 53 is stored in a computer-readable recording medium such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and distributed.
  • a computer-readable recording medium such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and distributed.
  • the program 58 may be stored in a disk device included in a server device on a communication network represented by the Internet, and may be downloaded onto a computer while being superimposed on a carrier wave, for example.
  • the above-described processing can also be achieved by starting and executing the program 58 while transferring it via the communication network.
  • processing can also be achieved by executing all or part of the program 58 on the server device and executing the program 58 while the computer transmits / receives information related to the processing via the communication network. .
  • control device 50 is not limited to software, and part or all of the means may be realized by dedicated hardware including a circuit.
  • the present invention is suitable for efficient use of energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Operating, Guiding And Securing Of Roll- Type Closing Members (AREA)
  • Blinds (AREA)
  • Building Awnings And Sunshades (AREA)

Abstract

This control device (50) controls an awning which blocks sunlight entering through an opening in a building into a space subject to cooling operation by an air conditioner, and a blocking device which, a different device from the awning, blocks sunlight entering into the space from the opening. The control device (50) is provided with: a power generation amount acquisition unit (503) which acquires the amount of power generated by a solar power generator, a structural information acquisition unit (501) which acquires information indicating the position and direction in which the opening is arranged; and a control unit (507) which blocks sunlight by controlling whichever of the awning and the blocking device shields the space from more solar heat by blocking sunlight, identified from the power generation amount and the position and direction, and controls the awning to block sunlight if the outside temperature falls below a target temperature of the cooling operation by the air conditioner.

Description

制御装置、日射制御システム、制御方法及びプログラムControl device, solar radiation control system, control method and program
 本発明は、制御装置、日射制御システム、制御方法及びプログラムに関する。 The present invention relates to a control device, a solar radiation control system, a control method, and a program.
 近年、いわゆるゼロエネルギービルディング(ZEB)に代表されるように、エネルギーを効率的に利用する建物が注目されている。特に日本では、ゼロエネルギーハウス(ZEH)の普及が進められている。ZEB及びZEHは、建物の断熱性能が高いため、日射熱により室内が暑くなりやすい。このため、従来の冷房しない期間では熱中症の発生リスクが高くなったり、従来の冷房期間では冷房負荷の増加により冷房の消費電力が増加したりするおそれがある。一方で、暖房期間では日射熱を取り込む事で暖房消費電力を削減する事ができるが、天候によっては暑くなってしまう場合がある。 In recent years, buildings that efficiently use energy, such as so-called zero energy buildings (ZEB), are attracting attention. Especially in Japan, the spread of zero energy house (ZEH) is being promoted. Since ZEB and ZEH have high heat insulation performance of buildings, the room tends to become hot due to solar heat. For this reason, there is a possibility that the risk of occurrence of heat stroke increases during a conventional non-cooling period, or the power consumption of the cooling increases due to an increase in cooling load during the conventional cooling period. On the other hand, heating power consumption can be reduced by taking solar heat in the heating period, but it may become hot depending on the weather.
 そこで、日射を遮蔽する日射遮蔽装置を用いて、空調に要するエネルギーを低減する技術を用いることが考えられる(例えば、特許文献1を参照)。特許文献1には、日射情報及び外気温情報を用いて、電動シャッタ装置により建物内への太陽光の導入状況を調整することが記載されている。これにより、建物の屋内環境を適正化してエネルギー効率を改善することができる。 Therefore, it is conceivable to use a technology that reduces the energy required for air conditioning by using a solar shading device that shields solar radiation (see, for example, Patent Document 1). Japanese Patent Application Laid-Open No. H10-228667 describes adjusting the introduction state of sunlight into a building by an electric shutter device using solar radiation information and outside air temperature information. Thereby, the indoor environment of a building can be optimized and energy efficiency can be improved.
特開2007-277833号公報JP 2007-277833 A
 1つの窓に太陽光を遮る遮蔽装置が複数設けられる場合には、遮蔽装置によって異なる使い勝手及び省エネルギーへの寄与を勘案して遮蔽することが望ましい。しかしながら、特許文献1に記載の技術は、窓に取り付けられた1つのシャッタ装置によって太陽光を遮蔽するものであり、遮蔽装置が複数設けられる場合については何ら考慮されていなかった。このため、消費エネルギーの増加を抑制しつつユーザの快適性を確保することができないおそれがあった。 When there are a plurality of shielding devices that block sunlight in one window, it is desirable to shield in consideration of the ease of use and contribution to energy saving that differ depending on the shielding device. However, the technique described in Patent Document 1 shields sunlight with one shutter device attached to a window, and no consideration is given to the case where a plurality of shielding devices are provided. For this reason, there existed a possibility that a user's comfort could not be ensured, suppressing the increase in energy consumption.
 本発明は、上記の事情に鑑みてなされたもので、消費エネルギーの増加を抑制しつつユーザの快適性を確保することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to ensure user comfort while suppressing an increase in energy consumption.
 上記目的を達成するため、本発明の制御装置は、建物の開口部から空調装置による冷房運転の対象となる空間に入る日射を遮るオーニングと、該オーニングとは異なる装置であって開口部から空間に入る日射を遮る遮蔽装置と、を制御する制御装置であって、太陽光発電装置の発電量を取得する第1取得手段と、開口部が配置された位置及び方向を示す情報を取得する第2取得手段と、オーニング及び遮蔽装置のうち、発電量と位置及び方向とから特定される、日射を遮蔽することで空間から遮断する日射熱が大きい装置を制御して日射を遮蔽させ、外気温度が空調装置による冷房運転の目標温度を下回ると、オーニングを制御して日射を遮蔽させる制御手段と、を備える。 In order to achieve the above-described object, the control device of the present invention is an awning that blocks sunlight entering a space to be subjected to cooling operation by an air conditioner from an opening of a building, and an awning that is different from the awning. A control device that controls a shielding device that shields solar radiation entering, a first acquisition unit that acquires a power generation amount of the solar power generation device, and a first acquisition unit that acquires information indicating a position and a direction in which the opening is disposed. 2 Out of the awning / shielding device, the solar heat is shielded by controlling the device with high solar heat that is shielded from the space by shielding the solar radiation, which is specified from the power generation amount, position and direction, and the outside air temperature. When the temperature falls below the target temperature of the cooling operation by the air conditioner, control means for controlling the awning to shield the solar radiation.
 本発明によれば、オーニング及び遮蔽装置のうち、冷房運転の対象となる空間から遮断する日射熱が大きい装置が制御され、外気温度が空調装置による冷房運転の目標温度を下回ると、オーニングが制御される。これにより、開口部から侵入する日射熱の影響が比較的小さいときには、採光したり建物外への視界を確保したりすることが可能になる。したがって、消費エネルギーの増加を抑制しつつユーザの快適性を確保することができる。 According to the present invention, among the awning and shielding devices, a device having a large amount of solar heat shielded from the space to be cooled is controlled, and the awning is controlled when the outside air temperature falls below the target temperature for the cooling operation by the air conditioner. Is done. Thus, when the influence of solar heat entering from the opening is relatively small, it is possible to perform daylighting or to secure a view outside the building. Therefore, it is possible to ensure user comfort while suppressing an increase in energy consumption.
実施の形態1に係る日射制御システムの構成を示す図The figure which shows the structure of the solar radiation control system which concerns on Embodiment 1. FIG. 制御装置のハードウェア構成を示す図The figure which shows the hardware constitutions of the control device 制御装置の機能的な構成を示す図The figure which shows the functional structure of a control apparatus 遮蔽装置の例を示す図The figure which shows the example of a shielding apparatus 制御処理を示すフロー図Flow chart showing control processing ユーザによって入力される要望を示す図Diagram showing a request entered by the user 日射熱予測処理を示すフロー図Flow chart showing solar heat prediction processing 日射量のデータの一例を示す図Diagram showing an example of solar radiation data 開口部をメッシュ状に分割した状態を示す図The figure which shows the state which divided | segmented the opening part into mesh shape 開口部から侵入する日射の算出を説明するための第1の図1st figure for demonstrating the calculation of the solar radiation which penetrates from an opening part 開口部から侵入する日射の算出を説明するための第2の図2nd figure for demonstrating calculation of the solar radiation which penetrates from an opening part 開口部のうち遮蔽領域と太陽光が入射する領域とを示す図The figure which shows the shielding area | region and the area | region where sunlight injects among openings. スケジュール設定処理を示すフロー図Flow chart showing schedule setting process 省エネ制御処理を示すフロー図Flow chart showing energy-saving control processing スケジュール設定処理において決定された制御内容を示す図The figure which shows the control content determined in the schedule setting process 実施の形態3に係る日射制御システムの構成を示す図The figure which shows the structure of the solar radiation control system which concerns on Embodiment 3. 装置の優先順位を示す図Diagram showing device priority
 以下、本発明の実施の形態を、図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 実施の形態1.
 図1には、実施の形態1に係る日射制御システム100の構成が示されている。この日射制御システム100は、日射を建物200内に導入したり遮ったりすることで空調負荷を低減するHEMS(Home Energy Management System)又はBEMS(Building Energy Management System)である。日射制御システム100は、太陽光発電装置30と、太陽光発電装置30の発電量を計測する計測装置40と、空調装置60及び遮蔽装置70を制御する制御装置50と、空間201内の空気を調和する空調装置60と、建物200の開口部202から空間201に入る日射を遮る遮蔽装置70と、を有している。なお、図1において、細い実線は、通信線を表す。
Embodiment 1 FIG.
FIG. 1 shows a configuration of a solar radiation control system 100 according to the first embodiment. The solar radiation control system 100 is a HEMS (Home Energy Management System) or a BEMS (Building Energy Management System) that reduces the air conditioning load by introducing or blocking solar radiation in the building 200. The solar radiation control system 100 includes a solar power generation device 30, a measurement device 40 that measures the amount of power generated by the solar power generation device 30, a control device 50 that controls the air conditioning device 60 and the shielding device 70, and air in the space 201. The air conditioner 60 to be harmonized and the shielding device 70 that blocks the solar radiation entering the space 201 from the opening 202 of the building 200 are included. In FIG. 1, a thin solid line represents a communication line.
 建物200は、本実施の形態では、住宅である。ただし、建物200は、住宅以外のビルディングであってもよい。また、開口部202は、例えば、天窓を含む窓、又は出入口である。開口部202には、通常、開閉可能なガラス窓又は扉が取り付けられている。なお、図1では、空間201及び開口部202それぞれについて、代表的に1つを示しているが、建物200は複数の空間201を有していてもよいし、1つの空間201に日射を導入する開口部202が複数あってもよいし、1つの開口部202に複数の遮蔽装置70が取り付けられてもよい。 The building 200 is a house in the present embodiment. However, the building 200 may be a building other than a house. The opening 202 is, for example, a window including a skylight or an entrance / exit. A glass window or door that can be opened and closed is usually attached to the opening 202. In FIG. 1, one representative is shown for each of the space 201 and the opening 202, but the building 200 may have a plurality of spaces 201, and solar radiation is introduced into one space 201. There may be a plurality of openings 202 to be opened, or a plurality of shielding devices 70 may be attached to one opening 202.
 太陽光発電装置30は、建物200の敷地内又は建物200の屋根に設置された分散型電源である。なお、建物200がZEH住宅である場合には、このZEH住宅には、通常、太陽光発電装置30が搭載される。太陽光発電装置30は、例えば多結晶シリコン型のソーラーパネルと、ソーラーパネルにより発電された電力を変換して出力するパワーコンディショナと、を有している。太陽光発電装置30によって発電された電力は、建物200内に供給されて、空調装置60を含む電気機器によって消費されたり蓄電装置に蓄えられたりする。また、発電された電力が過剰であれば、発電電力の余剰分が逆潮電力として商用電力系統に供給され、電力会社によって例えば固定価格で買い取られてもよい。また、太陽光発電装置30は、系統連系することなく自立運転をしてもよいし、パワーコンディショナを備えることなく直流のまま建物200内に電力を供給してもよい。 The solar power generation device 30 is a distributed power source installed on the site of the building 200 or on the roof of the building 200. In addition, when the building 200 is a ZEH house, the solar power generation device 30 is normally mounted in this ZEH house. The solar power generation device 30 includes, for example, a polycrystalline silicon solar panel, and a power conditioner that converts and outputs electric power generated by the solar panel. The electric power generated by the solar power generation device 30 is supplied into the building 200 and consumed by electric equipment including the air conditioner 60 or stored in a power storage device. Further, if the generated power is excessive, the surplus generated power may be supplied to the commercial power system as reverse power and may be purchased by the power company, for example, at a fixed price. Moreover, the solar power generation device 30 may perform a self-sustained operation without grid connection, or may supply power to the building 200 with a direct current without providing a power conditioner.
 計測装置40は、太陽光発電装置30から出力される発電電力を計測する装置であり、例えば電流と電圧を検出し、A/D変換器によりデジタル信号処理をした上で交流の場合は1周期毎に有効電力(実効値)を計算する。計測装置40は、発電電力の1分間の平均値である瞬時電力値と、1時間あたりの積算電力量と、を含む計測値を算出する。積算電力量は、1分毎に瞬時電力値の値を積算することで得ることができる。そして、計測装置40は、発電量の計測値を繰り返し制御装置50に通知する。本実施の形態に係る計測値の通知は、定期的に実行され、その周期は、1分間である。 The measuring device 40 is a device that measures the generated electric power output from the solar power generation device 30. For example, the current and voltage are detected, and the digital signal processing is performed by the A / D converter. The active power (effective value) is calculated every time. The measuring device 40 calculates a measurement value including an instantaneous power value that is an average value of generated power for one minute and an integrated power amount per hour. The integrated power amount can be obtained by integrating the instantaneous power value every minute. Then, the measurement device 40 repeatedly notifies the control device 50 of the measurement value of the power generation amount. The measurement value notification according to the present embodiment is periodically executed, and the cycle thereof is 1 minute.
 制御装置50は、建物200内の機器を統合的に制御するHEMSコントローラ、BEMSコントローラ又は集中コントローラである。制御装置50は、空調装置60及び遮蔽装置70から、それらの稼働状態を定期的に取得することにより、空調装置60及び遮蔽装置70の稼働状態を監視する。また、制御装置50は、制御指令を送信することにより空調装置60及び遮蔽装置70の稼働状態を変化させて、空調装置60及び遮蔽装置70を制御する。 The control device 50 is a HEMS controller, a BEMS controller, or a centralized controller that controls devices in the building 200 in an integrated manner. The control device 50 monitors the operating states of the air conditioner 60 and the shielding device 70 by periodically acquiring the operating states from the air conditioner 60 and the shielding device 70. Moreover, the control apparatus 50 changes the operation state of the air conditioning apparatus 60 and the shielding apparatus 70 by transmitting a control command, and controls the air conditioning apparatus 60 and the shielding apparatus 70.
 図2には、制御装置50のハードウェア構成が示されている。図2に示されるように、制御装置50は、プロセッサ51、主記憶部52、補助記憶部53、入力部54、出力部55、及び通信部56を有するコンピュータとして構成される。主記憶部52、補助記憶部53、入力部54、出力部55、及び通信部56はいずれも、内部バス57を介してプロセッサ51に接続されている。 FIG. 2 shows the hardware configuration of the control device 50. As shown in FIG. 2, the control device 50 is configured as a computer having a processor 51, a main storage unit 52, an auxiliary storage unit 53, an input unit 54, an output unit 55, and a communication unit 56. The main storage unit 52, the auxiliary storage unit 53, the input unit 54, the output unit 55, and the communication unit 56 are all connected to the processor 51 via the internal bus 57.
 プロセッサ51は、CPU(Central Processing Unit)を含んで構成される。プロセッサ51は、補助記憶部53に記憶されるプログラム58を実行することにより、後述の機能を発揮する。 The processor 51 includes a CPU (Central Processing Unit). The processor 51 exhibits the functions described later by executing the program 58 stored in the auxiliary storage unit 53.
 主記憶部52は、RAM(Random Access Memory)を含んで構成される。主記憶部52は、補助記憶部53からプログラム58をロードする。そして、主記憶部52は、プロセッサ51の作業領域として用いられる。 The main storage unit 52 includes a RAM (Random Access Memory). The main storage unit 52 loads the program 58 from the auxiliary storage unit 53. The main storage unit 52 is used as a work area for the processor 51.
 補助記憶部53は、フラッシュメモリに代表される不揮発性メモリを含んで構成される。補助記憶部53は、プログラム58の他に、プロセッサ51の処理に用いられる種々のデータを記憶する。 The auxiliary storage unit 53 includes a nonvolatile memory represented by a flash memory. In addition to the program 58, the auxiliary storage unit 53 stores various data used for the processing of the processor 51.
 入力部54は、例えば入力キー及び静電容量式のポインティングデバイスを含んで構成される。入力部54は、ユーザによって入力された情報を取得して、プロセッサ51に通知する。 The input unit 54 includes, for example, an input key and a capacitive pointing device. The input unit 54 acquires information input by the user and notifies the processor 51 of the information.
 出力部55は、例えばLCD(Liquid Crystal Display)に代表される表示デバイスを含んで構成される。出力部55は、入力部54を構成するポインティングデバイスと一体的に形成されることで、タッチスクリーンを構成する。なお、入力部54及び出力部55として、人が操作するためのハードウェア構成を示したが、例えば人が操作する構成については、スマートフォンに代表される情報端末機器が現在広く普及した技術であることから、このような情報端末機器を活用することも可能である。すなわち、入力部54及び出力部55を省略して制御装置50を構成して、制御装置50と通信可能に接続された端末を制御装置50のユーザインタフェースとして利用してもよい。 The output unit 55 includes a display device represented by an LCD (Liquid Crystal Display), for example. The output unit 55 is formed integrally with a pointing device that configures the input unit 54 to configure a touch screen. In addition, although the hardware structure for a person to operate as the input part 54 and the output part 55 was shown, the information terminal device represented by the smart phone is the technique which was spread widely now, for example about the structure which a person operates. Therefore, it is possible to utilize such an information terminal device. In other words, the control unit 50 may be configured by omitting the input unit 54 and the output unit 55, and a terminal connected to be able to communicate with the control device 50 may be used as a user interface of the control device 50.
 通信部56は、外部の機器と通信するための通信インタフェース回路を含んで構成される。通信部56は、外部から受信した信号に含まれる情報をプロセッサ51に通知して、プロセッサ51から出力された情報を伝送するための信号を外部の機器に送信する。 The communication unit 56 includes a communication interface circuit for communicating with an external device. The communication unit 56 notifies the processor 51 of information included in a signal received from the outside, and transmits a signal for transmitting the information output from the processor 51 to an external device.
 図3には、制御装置50の機能的な構成が示されている。図3に示される制御装置50の機能は、上述のハードウェア構成が連携して動作することで実現される。図3に示されるように、制御装置50は、その機能として、建物200の構造を示す情報を取得する構造情報取得部501と、遮蔽装置70による遮光の有無に関するユーザの要望を受け付ける要望受付部502と、計測装置40から発電量の計測値を取得する発電量取得部503と、種々のデータを記憶する記憶部504と、開口部202から空間201に入る日射熱の推移を予測する日射熱予測部505と、遮蔽装置70による遮光の有無を示すスケジュールを設定するスケジュール設定部506と、スケジュールに従って遮蔽装置70を制御する制御部507と、を有している。 FIG. 3 shows a functional configuration of the control device 50. The function of the control device 50 shown in FIG. 3 is realized by the above-described hardware configuration operating in cooperation. As shown in FIG. 3, the control device 50 has, as its functions, a structure information acquisition unit 501 that acquires information indicating the structure of the building 200, and a request reception unit that receives a user's request regarding the presence or absence of light shielding by the shielding device 70. 502, a power generation amount acquisition unit 503 that acquires a measurement value of the power generation amount from the measurement device 40, a storage unit 504 that stores various data, and solar heat that predicts the transition of solar heat that enters the space 201 from the opening 202 It has the prediction part 505, the schedule setting part 506 which sets the schedule which shows the presence or absence of light shielding by the shielding apparatus 70, and the control part 507 which controls the shielding apparatus 70 according to a schedule.
 構造情報取得部501は、主としてプロセッサ51及び入力部54によって実現される。構造情報取得部501は、建物200の構造を示す情報として、ソーラーパネルの方位角及び傾斜角、各部屋番号に紐づけられた開口部202の配置された位置及び方向、並びに、開口部202からの日射侵入に影響する遮蔽物の位置を示す情報、各部屋の隣接関係を定義した情報、並びに、開口部202の各窓に設置された日射遮蔽機器に関する情報を取得する。構造情報取得部501は、開口部202の位置として、建物200の位置を示す緯度及び経度と、建物200の間取りとを取得する。また、構造情報取得部501は、開口部202の方向として、方位角又は16方位で示される方向を取得する。日射侵入に影響する障害物は、例えば、庇、又は立壁である。さらに、構造情報取得部501は、開口部202の他の情報を取得する。他の情報には、開口部の大きさ、壁における設置位置、上下左右の遮蔽物の位置及び大きさが含まれる。また、他の情報には、開口部202それぞれに複数の遮蔽装置70が取り付けられている場合に、複数の遮蔽装置70の同時使用を許可するか否かが含まれる。構造情報取得部501は、取得したデータを記憶部504に格納する。 The structure information acquisition unit 501 is mainly realized by the processor 51 and the input unit 54. The structure information acquisition unit 501 includes, as information indicating the structure of the building 200, the azimuth angle and inclination angle of the solar panel, the position and direction of the opening 202 associated with each room number, and the opening 202. The information which shows the position of the obstruction which influences the solar radiation invasion of this, the information which defined the adjacent relationship of each room, and the information regarding the solar radiation shielding apparatus installed in each window of the opening part 202 are acquired. The structure information acquisition unit 501 acquires the latitude and longitude indicating the position of the building 200 and the floor plan of the building 200 as the position of the opening 202. In addition, the structure information acquisition unit 501 acquires a direction indicated by an azimuth angle or 16 directions as the direction of the opening 202. An obstacle that affects solar intrusion is, for example, a fence or a standing wall. Furthermore, the structure information acquisition unit 501 acquires other information of the opening 202. Other information includes the size of the opening, the installation position on the wall, and the position and size of the top, bottom, left, and right shields. Further, the other information includes whether or not simultaneous use of the plurality of shielding devices 70 is permitted when the plurality of shielding devices 70 are attached to the respective openings 202. The structure information acquisition unit 501 stores the acquired data in the storage unit 504.
 要望受付部502は、主としてプロセッサ51、入力部54及び出力部55によって実現される。要望受付部502は、ユーザに対して要望の入力画面を表示することにより要望の有無を問い合わせて、要望を取得する。要望は、例えば、空間201への採光、空間201への通風、又は、部外者の建物200への侵入の予防及びプライバシー保護を含む防犯の要望、延焼の軽減を含む防災の要望、外部からの音の侵入の防止及び空間201からの音漏れの防止を含む防音の要望である。要望は、日時を指定したものであってもよい。要望の日時は、例えば、朝、昼、夕方の区分に代表される予め定められた時間帯、ユーザによって指定された時間帯、平日及び休日、曜日である。さらに、要望の日時は、ユーザ自身の外出スケジュールと連動するものであってもよい。採光及び通風の要望に応えると、遮蔽装置70が日射を空間201に導入することとなる。また、防犯、防災及び防音の要望に応えると、遮蔽装置70が日射を遮蔽することとなる。要望受付部502は、ユーザによって入力された要望を示す要望データを記憶部504に格納する。ユーザによって入力される要望の詳細については、後述する。 The request reception unit 502 is realized mainly by the processor 51, the input unit 54, and the output unit 55. The request reception unit 502 displays a request input screen for the user to inquire whether there is a request, and acquires the request. Requests include, for example, lighting to the space 201, ventilation to the space 201, prevention of outsiders' intrusion into the building 200 and prevention of crime including privacy protection, request for disaster prevention including reduction of fire spread, and external This is a request for sound insulation including prevention of sound intrusion and prevention of sound leakage from the space 201. The request may specify a date and time. The requested date and time are, for example, a predetermined time zone represented by morning, noon, and evening categories, a time zone specified by the user, weekdays, holidays, and days of the week. Further, the requested date and time may be linked to the user's own outing schedule. In response to the demand for lighting and ventilation, the shielding device 70 introduces solar radiation into the space 201. Moreover, if it responds to the request of crime prevention, disaster prevention, and soundproofing, the shielding apparatus 70 will shield solar radiation. The request reception unit 502 stores request data indicating a request input by the user in the storage unit 504. Details of the request input by the user will be described later.
 発電量取得部503は、主としてプロセッサ51及び通信部56によって実現される。発電量取得部503は、計測装置40から発電量の計測値を取得して記憶部504に順次格納する。記憶部504には、発電量の計測値を示すデータが蓄積される。 The power generation amount acquisition unit 503 is mainly realized by the processor 51 and the communication unit 56. The power generation amount acquisition unit 503 acquires a measurement value of the power generation amount from the measurement device 40 and sequentially stores it in the storage unit 504. In the storage unit 504, data indicating the measurement value of the power generation amount is accumulated.
 記憶部504は、主として主記憶部52及び補助記憶部53によって実現される。 The storage unit 504 is mainly realized by the main storage unit 52 and the auxiliary storage unit 53.
 日射熱予測部505は、主としてプロセッサ51によって実現される。日射熱予測部505は、記憶部504に記憶されているデータから、現時点の発電量から決定した気象判定結果に基づき、現在時刻から将来の定められた時刻までにおける開口部202への日射熱の単位時間毎の平均値の推移を予測する。将来の定められた時刻は、例えば日付と建物200の位置とから定まる日没時刻としてもよいし、日没時刻より後の正時(例えば19時00分、20時00分)としてもよい。また、単位時間は、電力量の管理の単位時間として多くの場合に用いられる30分間或いは1時間が適当であるが、さらに短くてもよい。ただし、太陽光による発電電力の電力量データを収集する周期の2倍以上の長さの時間である必要がある。日射熱予測部505は、予測した日射熱の推移を示すデータを記憶部504に格納する。また、日射熱予測部505は例えば1時間毎に上記処理を行い、予測結果を更新する。 The solar heat prediction unit 505 is mainly realized by the processor 51. The solar heat prediction unit 505 is based on the weather determination result determined from the current power generation amount from the data stored in the storage unit 504, and calculates the solar heat heat to the opening 202 from the current time to a predetermined time in the future. Predict the transition of the average value per unit time. The time determined in the future may be, for example, a sunset time determined from the date and the position of the building 200, or may be a correct hour after the sunset time (for example, 19:00, 20:00). The unit time is appropriately 30 minutes or 1 hour, which is used in many cases as the unit time for power management, but it may be shorter. However, it is necessary that the time is at least twice as long as the period of collecting the power amount data of the power generated by sunlight. The solar heat prediction unit 505 stores data indicating the predicted change in solar heat in the storage unit 504. Moreover, the solar radiation heat prediction part 505 performs the said process, for example for every hour, and updates a prediction result.
 スケジュール設定部506は、主としてプロセッサ51によって実現される。スケジュール設定部506は、ユーザの要望と日射熱の予測値とに基づいて将来の特定時間における遮蔽装置70による日射の遮蔽のスケジュールを立案して記憶部504に格納することにより、特定時間のスケジュールを設定する。特定時間は、日射熱予測部505によって日射熱の推移が予測された時間と同等であってもよいし、1時間又は30分間であってもよい。なお、複数の遮蔽装置70のスケジュールはそれぞれ個別に決定される。また、複数及び全ての装置を同一のスケジュールとすることも可能である。ただし、同一のスケジュールとする場合は、同一グループ内で主とする装置を設定し、その装置に対して求めたスケジュールを他の装置に適用する。 The schedule setting unit 506 is mainly realized by the processor 51. The schedule setting unit 506 creates a schedule for shielding solar radiation by the shielding device 70 at a specific time in the future based on the user's request and the predicted value of solar heat, and stores it in the storage unit 504, thereby scheduling the specific time. Set. The specific time may be equal to the time when the solar heat prediction unit 505 predicts the transition of solar heat, or may be 1 hour or 30 minutes. Note that the schedules of the plurality of shielding devices 70 are individually determined. It is also possible to make a plurality of devices and all devices have the same schedule. However, if the same schedule is used, a main device is set in the same group, and the schedule obtained for the device is applied to other devices.
 制御部507は、主としてプロセッサ51及び通信部56によって実現される。制御部507は、記憶部504に格納されているスケジュールを参照して、スケジュールに従って遮蔽装置70に制御指示を送信することにより、遮蔽装置70を制御する。 The control unit 507 is mainly realized by the processor 51 and the communication unit 56. The control unit 507 controls the shielding device 70 by referring to the schedule stored in the storage unit 504 and transmitting a control instruction to the shielding device 70 according to the schedule.
 図1に戻り、空調装置60は、冷媒配管を介して接続された室内機と室外機とを含んで構成される。空調装置60は、冷媒と外気との間で熱交換をすることにより、適当な温度の空調空気を空間201内に吹き出して、室温がユーザによって指定された目標温度となるように調整する。 Returning to FIG. 1, the air conditioner 60 includes an indoor unit and an outdoor unit connected via a refrigerant pipe. The air conditioner 60 exchanges heat between the refrigerant and the outside air to blow out conditioned air having an appropriate temperature into the space 201 and adjust the room temperature to the target temperature designated by the user.
 遮蔽装置70は、例えば、電動オーニング、電動シャッタ、電動ブラインド、又は、電動カーテンである。遮蔽装置70は、制御装置50からの制御指示に従って、開口部202に差し込む日射を空間201に通したり、この日射を遮ったりする。図4には、遮蔽装置70の具体例として、電動オーニング71、屋外の電動シャッタ72、及び屋内の電動ブラインド73が示されている。 The shielding device 70 is, for example, an electric awning, an electric shutter, an electric blind, or an electric curtain. In accordance with a control instruction from the control device 50, the shielding device 70 passes solar radiation inserted into the opening 202 into the space 201 or shields this solar radiation. FIG. 4 shows an electric awning 71, an outdoor electric shutter 72, and an indoor electric blind 73 as specific examples of the shielding device 70.
 図4に示されるように、電動オーニング71は、開口部202への日射を遮って開口部202の周囲に日陰を形成する開閉式の装置である。電動オーニング71は、日射を遮る状態において、空間201に居る人の建物200外への視界及び通風を大きく遮ることはない。電動オーニング71が建物200外からの人の侵入を防止する効果は、比較的小さい。また、電動シャッタ72は、開口部202に取り付けられたガラス戸203の屋外側で日射を遮る開閉式の装置である。日射を遮る状態では、電動シャッタ72が通風及び視界を遮ることとなり、電動シャッタ72の防犯効果が比較的高くなる。また、電動ブラインド73は、ガラス戸203の屋内側で日射を遮る装置である。 As shown in FIG. 4, the electric awning 71 is an open / close type device that blocks the solar radiation to the opening 202 and forms a shade around the opening 202. The electric awning 71 does not largely block the visibility and ventilation of the person in the space 201 to the outside of the building 200 in a state where the solar radiation is blocked. The effect of the electric awning 71 preventing the intrusion of people from outside the building 200 is relatively small. The electric shutter 72 is an open / close type device that blocks sunlight from the outdoor side of the glass door 203 attached to the opening 202. In the state where the solar radiation is blocked, the electric shutter 72 blocks the ventilation and the field of view, and the crime prevention effect of the electric shutter 72 becomes relatively high. The electric blind 73 is a device that blocks sunlight from the indoor side of the glass door 203.
 続いて、制御装置50によって実行される制御処理の一例について、図5~15を用いて説明する。図5に示される制御処理は、制御装置50の電源が投入されると実行される。 Subsequently, an example of a control process executed by the control device 50 will be described with reference to FIGS. The control process shown in FIG. 5 is executed when the power of the control device 50 is turned on.
 まず、構造情報取得部501は、開口部202が配置された位置及び方向を含む構造情報を取得する(ステップS1)。具体的には、構造情報取得部501は、ソーラーパネル、遮蔽物、遮蔽装置70及び開口部202の配置等を示す上述の構造情報の入力をユーザに促すことにより、構造情報を取得する。ステップS1は、通常は制御装置50の初回起動時のみに実行される。ステップS1で取得された情報は記憶部504に保存され、設定変更の要求がない限りは保存された情報が以降の処理で用いられる。 First, the structure information acquisition unit 501 acquires structure information including the position and direction in which the opening 202 is disposed (step S1). Specifically, the structure information acquisition unit 501 acquires the structure information by prompting the user to input the above-described structure information indicating the arrangement of the solar panel, the shielding object, the shielding device 70, and the opening 202, and the like. Step S1 is normally executed only when the control device 50 is activated for the first time. The information acquired in step S1 is stored in the storage unit 504, and the stored information is used in subsequent processing unless a setting change request is made.
 次に、要望受付部502は、ユーザの要望を受け付ける(ステップS2)。具体的には、要望受付部502は、図6に例示されるように、住宅全体と各部屋について、「平日」、「休日」及び「外出」それぞれの要望を対応付けた表を表示して、「省エネ」以外の要望の入力をユーザに促す。ただし、「省エネ」は、ユーザが一般的に希望するものであるため、ユーザにより情報が入力される前の初期設定とされている。ユーザは、「省エネ」以外の要望を設定するためのボックスを指定することで表示されるプルダウンリストから「採光」、「通風」、「防犯」、「防災」又は「防音」を選択することにより、要望を入力する。なお、ここで、住宅は建物200を意味し、各部屋は空間201を意味する。ステップS2についても、ステップS1と同様に、通常は制御装置50の初回起動時のみに実行される。ステップS2で受け付けられた要望は記憶部504に保存され、設定変更の要求がない限りは保存された要望が以降の処理で用いられる。要望受付部502は、日射制御システム100の運用において、遮蔽装置70を含む機器を制御するタイミング、スケジュールを立案するタイミング、又は定期的なタイミングに、要望を受け付けてもよい。 Next, the request receiving unit 502 receives a user request (step S2). Specifically, as illustrated in FIG. 6, the request receiving unit 502 displays a table in which requests for “weekdays”, “holidays”, and “outing” are associated with each other for the entire house and each room. , Prompts the user to input a request other than “energy saving”. However, since “energy saving” is generally desired by the user, it is an initial setting before information is input by the user. By selecting “Lighting”, “Ventilation”, “Crime Prevention”, “Disaster Prevention” or “Soundproof” from the pull-down list displayed by specifying a box for setting a request other than “Energy Saving” Enter your request. Here, the house means the building 200, and each room means the space 201. Similarly to step S1, step S2 is normally executed only when the control device 50 is activated for the first time. The request received in step S2 is stored in the storage unit 504, and the stored request is used in the subsequent processing unless a setting change request is made. In the operation of the solar radiation control system 100, the request reception unit 502 may receive a request at a timing for controlling a device including the shielding device 70, a timing for creating a schedule, or a periodic timing.
 図5に戻り、発電量取得部503は、計測装置40から発電量の計測値を取得する(ステップS3)。 Returning to FIG. 5, the power generation amount acquisition unit 503 acquires a measurement value of the power generation amount from the measurement device 40 (step S <b> 3).
 次に、日射熱予測部505は、日射熱予測処理を実行する(ステップS4)。この日射熱予測処理について、図7を用いて説明する。 Next, the solar heat prediction unit 505 executes solar heat prediction processing (step S4). This solar heat prediction process is demonstrated using FIG.
 日射熱予測処理において、日射熱予測部505は、まず、発電量の計測値から天候を判定する(ステップS41)。具体的には、日射熱予測部505は、現在時刻の直前の一定時間における平均発電量を算出して、平均発電量を予め定められた閾値Ta,Tb,Tcと比較することにより、天候が快晴、晴、曇、及び雨のいずれかであると判定する。一定時間は、例えば30分間である。詳細には、平均発電量が閾値Ta以上であれば現在の天候が快晴であると判定され、平均発電量がTb以上であって閾値Ta未満であれば現在の天候が晴であると判定され、平均発電量がTc以上であって閾値Tb未満であれば現在の天候は曇であると判定され、平均発電量が閾値Tc未満であれば現在の天候が雨であると判定される。Ta,Tb,Tcはそれぞれ、例えば、太陽光発電装置30の最大発電量の80%,50%,20%に相当する値である。 In the solar heat prediction process, the solar heat prediction unit 505 first determines the weather from the measurement value of the power generation amount (step S41). Specifically, the solar heat prediction unit 505 calculates the average power generation amount for a certain time immediately before the current time, and compares the average power generation amount with predetermined thresholds Ta, Tb, Tc, so that the weather is Judged as clear, clear, cloudy, or rainy. The certain time is, for example, 30 minutes. Specifically, if the average power generation amount is equal to or greater than the threshold value Ta, it is determined that the current weather is clear, and if the average power generation amount is equal to or greater than Tb and less than the threshold value Ta, it is determined that the current weather is clear. If the average power generation amount is equal to or greater than Tc and less than the threshold value Tb, it is determined that the current weather is cloudy. If the average power generation amount is less than the threshold value Tc, it is determined that the current weather is rainy. Ta, Tb, and Tc are values corresponding to, for example, 80%, 50%, and 20% of the maximum power generation amount of the solar power generation device 30, respectively.
 次に、日射熱予測部505は、天候から日射量を算出する(ステップS42)。具体的には、日射熱予測部505は、建物200の緯度及び経度、並びに現在の日時から、将来の特定時間における太陽光の仰角、方位角及び強度の推移を求める。図8には、日射熱予測部505によって算出された日射量の推移が例示されている。図8に示されるように、1分間毎の仰角、方位角及び強度を含む日射量の推移が予測される。なお、日射量の光量は、強度と天候係数とを乗じて得る値に等しい。天候係数は、上記閾値に基づき、以下の通り設定される。すなわち、快晴のときの係数は、1に設定され、晴れのときの係数は、{(Ta+Tb)/2}/(定格発電電力)、又は、{(Ta+Tb)/2}/(最大発電電力)に設定され、曇りのときの係数は、{(Tb+Tc)/2}/(定格発電電力)、又は、{(Tb+Tc)/2}/(最大発電電力)に設定され、雨のときの係数は、ゼロに設定される。なお、最大発電電力は、一定時間あたりの平均電力値の過去1年間における最大値である。 Next, the solar heat prediction unit 505 calculates the amount of solar radiation from the weather (step S42). Specifically, the solar heat prediction unit 505 obtains the transition of the elevation angle, azimuth angle, and intensity of sunlight at a specific time in the future from the latitude and longitude of the building 200 and the current date and time. FIG. 8 illustrates the change in the amount of solar radiation calculated by the solar heat prediction unit 505. As shown in FIG. 8, the transition of the amount of solar radiation including the elevation angle, azimuth angle, and intensity every minute is predicted. The amount of solar radiation is equal to a value obtained by multiplying the intensity and the weather coefficient. The weather coefficient is set as follows based on the threshold value. That is, the coefficient when clear is set to 1, and the coefficient when clear is {(Ta + Tb) / 2} / (rated generated power) or {(Ta + Tb) / 2} / (maximum generated power). The coefficient when cloudy is set to {(Tb + Tc) / 2} / (rated generated power) or {(Tb + Tc) / 2} / (maximum generated power), and the coefficient when raining is , Set to zero. The maximum generated power is the maximum value in the past year of the average power value per fixed time.
 次に、日射熱予測部505は、算出した日射量のデータから、開口部202それぞれから空間201に入る日射量を算出して、特定時間において空間201に侵入する日射熱を予測する(ステップS43)。具体的には、日射熱予測部505は、各時刻における開口部202の日射面積として、日射が壁、庇及び屋根によって遮蔽されない領域の面積を日射取得面積(m)として算出し、さらに太陽高度から日射取得効率(%)を算出し、各時間について開口部202毎に日射熱量(kW)を求める。各空間201に侵入する日射熱量(kW)は、同一時間帯の各窓の値を算出することで求められる。日射取得効率は、基準日射熱量(1kW/m)×sin(太陽高度)の演算式を用いて簡易的に求められる。開口部202それぞれの日射熱量(kW)は、日射取得効率(kW/m)×日射取得面積(m)の演算式を用いて求められる。なお、これらの演算式によって求められる日射取得効率及び日射熱量は、単位時間あたりの平均値である。 Next, the solar radiation heat prediction unit 505 calculates the solar radiation amount that enters the space 201 from each of the openings 202 from the calculated solar radiation amount data, and predicts the solar heat heat that enters the space 201 at a specific time (step S43). ). Specifically, the solar heat prediction unit 505 calculates, as the solar radiation acquisition area (m 2 ), the area of the area where the solar radiation is not shielded by walls, fences, and roofs as the solar radiation area of the opening 202 at each time, The solar radiation acquisition efficiency (%) is calculated from the altitude, and the solar heat amount (kW) is obtained for each opening 202 for each time. The amount of solar heat (kW) that enters each space 201 is obtained by calculating the value of each window in the same time zone. The solar radiation acquisition efficiency can be easily obtained using an arithmetic expression of reference solar heat quantity (1 kW / m 2 ) × sin (solar altitude). The amount of solar heat (kW) of each of the openings 202 is obtained using an arithmetic expression of solar radiation acquisition efficiency (kW / m 2 ) × sunlight acquisition area (m 2 ). In addition, the solar radiation acquisition efficiency and solar heat amount which are calculated | required by these arithmetic expressions are the average values per unit time.
 日射面積について、詳細には、日射熱予測部505は、図9に示されるように、開口部202を10mm角のメッシュ状に分割して、開口部202と壁等の位置と日射の入射角との関係から、各メッシュについて日射が到達するときには「1」を割り当てて、日射が到達しないときには「ゼロ」を割り当てる。図10には、太陽光線21の一部が開口部202の上部に設けられた庇204によって遮られる場合が示されている。また、図11には、太陽光線21の一部が壁205によって遮られる場合が示されている。これにより、図12に示されるように、開口部202のうち、庇204によって遮蔽される領域と壁205による遮蔽領域が求められるとともに、日射が入射する領域を得ることができる。そして、日射熱予測部505は、各メッシュの値を合算することにより、開口部202の日射面積を得る。 As for the solar radiation area, in detail, as shown in FIG. 9, the solar heat prediction unit 505 divides the opening 202 into a 10 mm square mesh, and positions of the opening 202 and the wall and the incident angle of solar radiation. Therefore, when solar radiation reaches each mesh, “1” is assigned, and when solar radiation does not reach, “zero” is assigned. FIG. 10 shows a case where a part of the sunlight 21 is blocked by the ridge 204 provided on the upper part of the opening 202. FIG. 11 shows a case where a part of the sunlight 21 is blocked by the wall 205. Accordingly, as shown in FIG. 12, in the opening 202, a region shielded by the ridge 204 and a shield region by the wall 205 are obtained, and a region in which solar radiation is incident can be obtained. And the solar radiation heat estimation part 505 adds the value of each mesh, and obtains the solar radiation area of the opening part 202. FIG.
 ステップS43が終了すると、制御装置50によって実行される処理は、図5に示される制御処理に戻る。 When step S43 ends, the process executed by the control device 50 returns to the control process shown in FIG.
 日射熱予測処理(ステップS4)が終了すると、スケジュール設定部506は、スケジュール設定処理を実行する(ステップS5)。このスケジュール設定処理について、図13を用いて説明する。 When the solar heat prediction process (step S4) is completed, the schedule setting unit 506 executes the schedule setting process (step S5). This schedule setting process will be described with reference to FIG.
 スケジュール設定処理において、スケジュール設定部506は、ユーザの要望が受け付けられたか否かを判定する(ステップS51)。具体的には、スケジュール設定部506は、「省エネ」以外の何らかの要望が受け付けられたか否かを判定する。何らの要望も受け付けられていないと判定した場合(ステップS51;No)、スケジュール設定部506は、すべての遮蔽装置70について省エネ制御を実行することを決定する(ステップS52)。その後、スケジュール設定部506による処理は、ステップS60に進む。 In the schedule setting process, the schedule setting unit 506 determines whether or not the user's request has been accepted (step S51). Specifically, the schedule setting unit 506 determines whether any request other than “energy saving” has been received. When it is determined that no request has been received (step S51; No), the schedule setting unit 506 determines to execute the energy saving control for all the shielding devices 70 (step S52). Thereafter, the processing by the schedule setting unit 506 proceeds to step S60.
 ここで、省エネ制御の詳細について説明する。例えば、外気温度が高く空調装置60が冷房運転を行う時期には、制御装置50は、太陽光の直射が入る時刻より前に遮蔽装置70に日射を遮蔽させる。なお、直射が入らなくなる時刻以降は、遮蔽装置70による日射の遮蔽を中止してもよいし遮蔽する状態を維持したままユーザ操作に従ってもよい。また、1つの開口部202にオーニングである遮蔽装置70とオーニングとは異なる他の遮蔽装置70との双方が取り付けられている場合には、制御装置50は、図14に示される省エネ制御処理を実行する。 Here, the details of energy-saving control will be explained. For example, when the outside air temperature is high and the air conditioner 60 performs the cooling operation, the control device 50 causes the shielding device 70 to shield the solar radiation before the time when the direct sunlight enters. It should be noted that after the time when the direct irradiation stops, the shielding of the solar radiation by the shielding device 70 may be stopped or the user operation may be followed while the shielding state is maintained. When both the awning shielding device 70 and another shielding device 70 different from the awning are attached to one opening 202, the control device 50 performs the energy saving control processing shown in FIG. Execute.
 省エネ制御処理において、スケジュール設定部506は、ユーザが建物200内にいるか否かを判定する(ステップS101)。スケジュール設定部506は、人感センサの出力からユーザがいるか否かを判定してもよいし、制御装置50に登録されているユーザの予定表を参照して、現在時刻においてユーザが建物200内にいるか否かを判定してもよい。 In the energy saving control process, the schedule setting unit 506 determines whether or not the user is in the building 200 (step S101). The schedule setting unit 506 may determine whether there is a user from the output of the human sensor, or refers to the user's schedule registered in the control device 50, so that the user is in the building 200 at the current time. It may be determined whether or not.
 ユーザが建物200内にいると判定した場合(ステップS101;Yes)、スケジュール設定部506は、空調装置60が冷房運転中であるか否かを判定する(ステップS102)。 When it is determined that the user is in the building 200 (step S101; Yes), the schedule setting unit 506 determines whether or not the air conditioner 60 is in the cooling operation (step S102).
 ユーザが建物200内にいないと判定した場合(ステップS101;No)、及び空調装置60が冷房運転中ではないと判定した場合(ステップS102;No)、スケジュール設定部506は、制御対象とする装置を選択することなく省エネ制御処理を終了する。 When it is determined that the user is not in the building 200 (step S101; No) and when it is determined that the air conditioner 60 is not in the cooling operation (step S102; No), the schedule setting unit 506 is a device to be controlled. The energy saving control process is terminated without selecting.
 空調装置60が冷房運転中であると判定した場合(ステップS102;Yes)、スケジュール設定部506は、外気温度が予め定められた閾値より低いか否かを判定する(ステップS103)。 When it is determined that the air conditioner 60 is in the cooling operation (step S102; Yes), the schedule setting unit 506 determines whether or not the outside air temperature is lower than a predetermined threshold (step S103).
 外気温度が予め定められた閾値より低いと判定した場合(ステップS103;Yes)、スケジュール設定部506は、オーニングを制御対象として選択する(ステップS104)。その後、スケジュール設定部506は、ステップS106を実行する。 When it is determined that the outside air temperature is lower than a predetermined threshold (step S103; Yes), the schedule setting unit 506 selects awning as a control target (step S104). Thereafter, the schedule setting unit 506 executes Step S106.
 一方、外気温度が予め定められた閾値より低くはないと判定した場合(ステップS103;No)、スケジュール設定部506は、オーニングと他の遮蔽装置70とのうち、遮断する日射熱が大きい装置を制御対象として選択する(ステップS105)。具体的には、スケジュール設定部506は、遮断する日射熱が大きい装置に高い優先順位を付与して、遮断する日射熱が低い装置に低い優先順位を付与する。付与した優先順位は、オーニングと他の遮蔽装置70とを制御する制御部507によって参照される。 On the other hand, when it is determined that the outside air temperature is not lower than a predetermined threshold value (step S103; No), the schedule setting unit 506 selects a device with a large amount of solar heat to be cut off between the awning and the other shielding devices 70. It selects as a control object (step S105). Specifically, the schedule setting unit 506 gives a high priority to a device with a large amount of solar heat to block, and gives a low priority to a device with a low sun heat to block. The assigned priority order is referred to by the control unit 507 that controls the awning and the other shielding device 70.
 次に、スケジュール設定部506は、選択した装置の省エネ制御を実行することを決定する(ステップS106)。その後、スケジュール設定部506は、省エネ制御処理を終了する。 Next, the schedule setting unit 506 determines to execute the energy saving control of the selected device (step S106). Thereafter, the schedule setting unit 506 ends the energy saving control process.
 また、外気温度が低く空調装置60が暖房運転を行う時期には、制御装置50は、外気温度を空調装置60、太陽光発電装置30又は貯湯式給湯機(不図示)から取得して、外気温度が閾値より高い場合に限って、遮蔽装置70を制御して日射を導入させてもよい。さらに、制御装置50は、開口部202から屋外へ伝達される熱損失量と日射熱とを比較して、日射熱が熱損失量より大きい場合に限って、遮蔽装置70を制御して日射を導入させてもよい。また、1つの開口部202にオーニングである遮蔽装置70とオーニングとは異なる他の遮蔽装置70との双方が取り付けられている場合において、暖かい日で日射を遮蔽しないと室内温度が高くなり快適性を損ねるときには、オーニングを用いることで室温上昇と眩しさとを抑制する。 In addition, when the outside air temperature is low and the air conditioner 60 performs the heating operation, the control device 50 acquires the outside air temperature from the air conditioner 60, the solar power generation device 30, or the hot water storage type water heater (not shown), and the outside air Only when the temperature is higher than the threshold, the shielding device 70 may be controlled to introduce solar radiation. Furthermore, the control device 50 compares the amount of heat loss transmitted from the opening 202 to the outdoors and the amount of solar heat, and controls the shielding device 70 to generate solar radiation only when the amount of solar heat is greater than the amount of heat loss. It may be introduced. In addition, when both the shielding device 70 that is an awning and another shielding device 70 that is different from the awning are attached to one opening 202, the indoor temperature is increased and the comfort is increased unless the solar radiation is shielded on a warm day. When damaging, the use of awning suppresses room temperature rise and glare.
 また、外気温度がおおよそ快適な温度であって空調運転の必要がない時期において、制御装置50は、外気温度が閾値を超えて、かつ日射熱が閾値を超える時間帯に、遮蔽装置70を制御して日射を遮蔽させる。また、制御装置50は、外気温度が閾値を下回り、かつ日射熱が閾値を超える時間帯に、遮蔽装置70を制御して日射を導入させる。 Further, at a time when the outside air temperature is a comfortable temperature and the air conditioning operation is not necessary, the control device 50 controls the shielding device 70 in a time zone in which the outside air temperature exceeds the threshold and the solar heat exceeds the threshold. To block out solar radiation. Moreover, the control apparatus 50 controls the shielding apparatus 70 and introduces solar radiation in the time slot | zone when external temperature is less than a threshold value and solar radiation heat exceeds a threshold value.
 なお、説明の理解のため、遮蔽装置70は日射を遮蔽するか導入するかのいずれかを実行するものとしているが、遮蔽装置70の種類によっては、日射の一部を遮蔽してもよい。例えば、遮蔽装置70がブラインドであれば、スラット角を調整することで日射の一部を遮蔽してもよい。 In addition, for the understanding of the explanation, the shielding device 70 executes either one of shielding or introducing solar radiation. However, depending on the type of the shielding device 70, part of the solar radiation may be shielded. For example, if the shielding device 70 is a blind, part of solar radiation may be shielded by adjusting the slat angle.
 また、外気温度としては、過去の気象情報から得る外気温度の予測値を用いてもよいし、前日に外部の気象予報サーバから得た当日の外気温度の予測値を用いてもよい。冷房期は、空調の目標温度が外気温度の予測値より低いときを意味し、北半球では例えば6月~9月に相当する。また、暖房期は、空調の目標温度が外気温度の予測値より高いときを意味し、北半球では例えば11月~2月に相当する。 Also, as the outside air temperature, a predicted value of the outside temperature obtained from past weather information may be used, or a predicted value of the outside temperature of the day obtained from an external weather forecast server on the previous day may be used. The cooling period means a time when the target temperature of air conditioning is lower than the predicted value of the outside air temperature, and corresponds to, for example, June to September in the northern hemisphere. The heating period means a time when the target temperature of air conditioning is higher than the predicted value of the outside air temperature, and corresponds to, for example, November to February in the northern hemisphere.
 図13に戻り、ステップS51にて、ユーザの何らかの要望が受け付けられたと判定した場合(ステップS51;Yes)、スケジュール設定部506は、要望に関連しない遮蔽装置70があれば、その遮蔽装置70について省エネ制御を実行することを決定する(ステップS53)。例えば、リビングの採光のみがユーザの要望として受け付けられた場合には、リビング以外の空間に日射を導入する開口部202に設けられた遮蔽装置70について、省エネ制御を実行することを決定する。 Returning to FIG. 13, if it is determined in step S <b> 51 that some user request has been received (step S <b> 51; Yes), the schedule setting unit 506, if there is a shielding device 70 that is not related to the request, about the shielding device 70. It is determined to execute the energy saving control (step S53). For example, when only the lighting in the living room is accepted as the user's request, it is determined to execute the energy saving control on the shielding device 70 provided in the opening 202 that introduces solar radiation into a space other than the living room.
 次に、スケジュール設定部506は、遮断日射熱の大きい順に遮蔽装置70を順位付ける(ステップS54)。具体的には、遮蔽装置70による日射の遮蔽により空間201から遮断される日射熱が大きい順に、遮蔽装置70を順位付ける。例えば、大きい窓に取り付けられたシャッタには、順位として「1」が付与されて、小さい窓に取り付けられたオーニングには、「1」より大きい順位が付与される。 Next, the schedule setting unit 506 ranks the shielding devices 70 in descending order of the blocking solar radiation heat (step S54). Specifically, the shielding devices 70 are ranked in descending order of the solar radiation heat shielded from the space 201 by the shielding of the solar radiation by the shielding device 70. For example, a shutter attached to a large window is given “1” as a rank, and an awning attached to a small window is given a rank higher than “1”.
 次に、スケジュール設定部506は、遮断日射熱の大きい未選択の遮蔽装置70を1つ選択する(ステップS55)。 Next, the schedule setting unit 506 selects one unselected shielding device 70 having a large shielding solar heat (step S55).
 次に、スケジュール設定部506は、選択した遮蔽装置70を要望に従って制御した場合に空調負荷となる日射熱が閾値より大きいか否かを判定する(ステップS56)。例えば、「採光」の要望に従って空間201内に日射を導入した場合に、冷房負荷となる日射熱が予め定められた大きさより大きいか否かを判定する。また、「防音」の要望に従って空間201から日射熱を遮断した場合に、暖房負荷となる日射熱が予め定められた大きさより大きいか否かを判定する。 Next, the schedule setting unit 506 determines whether or not the solar heat that becomes the air conditioning load when the selected shielding device 70 is controlled as desired is greater than the threshold (step S56). For example, when solar radiation is introduced into the space 201 in accordance with a request for “lighting”, it is determined whether or not the solar heat as a cooling load is larger than a predetermined magnitude. Further, when the solar heat is blocked from the space 201 in accordance with the request for “soundproofing”, it is determined whether or not the solar heat that becomes a heating load is larger than a predetermined size.
 ステップS56の判定が肯定された場合(ステップS56;Yes)、スケジュール設定部506は、日射熱の導入又は遮断による省エネを要望より優先して遮蔽装置70を制御することを決定する(ステップS57)。その後、スケジュール設定部506は、ステップS55以降の処理を実行する。 If the determination in step S56 is affirmative (step S56; Yes), the schedule setting unit 506 determines to control the shielding device 70 with priority given to energy saving by introducing or blocking solar heat (step S57). . Thereafter, the schedule setting unit 506 executes the processing after step S55.
 一方、ステップS56の判定が否定された場合(ステップS56;No)、スケジュール設定部506は、要望に従って遮蔽装置70を制御することを決定する(ステップS58)。 On the other hand, when the determination in step S56 is negative (step S56; No), the schedule setting unit 506 determines to control the shielding device 70 according to the request (step S58).
 次に、スケジュール設定部506は、未選択の遮蔽装置70があれば、その遮蔽装置70の省エネ制御を実行することを決定する(ステップS59)。 Next, if there is an unselected shielding device 70, the schedule setting unit 506 determines to execute the energy saving control of the shielding device 70 (step S59).
 次に、スケジュール設定部506は、ステップS51~S59で決定した内容に従って、特定時間におけるスケジュールを設定する(ステップS60)。図15には、図6に示される要望に従ってステップS51~S59で決定した内容の一例が示されている。 Next, the schedule setting unit 506 sets a schedule at a specific time according to the contents determined in steps S51 to S59 (step S60). FIG. 15 shows an example of the contents determined in steps S51 to S59 in accordance with the request shown in FIG.
 スケジュール設定処理が終了すると、制御装置50によって実行される処理は、図5に示される制御処理に戻る。 When the schedule setting process ends, the process executed by the control device 50 returns to the control process shown in FIG.
 スケジュール設定処理(ステップS5)が終了すると、制御部507は、スケジュールに従って遮蔽装置70を制御する(ステップS6)。ただし、制御部507は、図14中のステップS103~S105の処理で設定されたスケジュールを、現在の実際の環境に応じて変更することが好ましい。具体的には、空調装置60による冷房運転が実行される空間201にオーニングと他の遮蔽装置70とが設置される場合において、制御部507は、現在の外気温度が空調装置60の冷房運転の目標温度を上回るときには、ステップS105にて高い優先順位が付与された装置をスケジュールに従って制御し、現在の外気温度が冷房運転の目標温度を下回るときには、オーニングを制御することが好ましい。 When the schedule setting process (step S5) ends, the control unit 507 controls the shielding device 70 according to the schedule (step S6). However, it is preferable that the control unit 507 changes the schedule set in the processing of steps S103 to S105 in FIG. 14 according to the current actual environment. Specifically, when the awning and another shielding device 70 are installed in the space 201 where the cooling operation by the air conditioner 60 is performed, the control unit 507 determines that the current outside air temperature is the cooling operation of the air conditioner 60. When the temperature exceeds the target temperature, it is preferable to control the device to which the high priority is given in step S105 according to the schedule, and when the current outside air temperature is lower than the target temperature of the cooling operation, it is preferable to control the awning.
 次に、制御装置50は、ユーザによる直接の操作があるか否かを判定する(ステップS7)。ユーザによる直接の操作がないと判定した場合(ステップS7;No)、制御装置50は、ステップS3以降の処理を繰り返す。 Next, the control device 50 determines whether or not there is a direct operation by the user (step S7). When it determines with there being no direct operation by a user (step S7; No), the control apparatus 50 repeats the process after step S3.
 一方、ユーザによる直接の操作があると判定した場合(ステップS7;Yes)、制御装置50は、ユーザ操作に従って遮蔽装置70を制御する(ステップS8)。この操作は、通常、省エネ制御とは異なる操作である。 On the other hand, when it determines with there being a direct operation by a user (step S7; Yes), the control apparatus 50 controls the shielding apparatus 70 according to a user operation (step S8). This operation is usually an operation different from the energy saving control.
 次に、制御装置50は、ユーザ操作に従った制御によって生じた省エネ効果の損失分を出力部55に表示する(ステップS9)。これにより、ユーザは、自身の操作によって増加した消費エネルギーを認識することができる。なお、省エネ効果の損失分は、空調負荷となる日射熱であってもよいし、この日射熱を処理することで増加する空調装置60の消費電力であってもよい。 Next, the control device 50 displays the loss amount of the energy saving effect caused by the control according to the user operation on the output unit 55 (step S9). Thereby, the user can recognize the energy consumption increased by his operation. The loss of the energy saving effect may be solar heat that becomes an air conditioning load, or may be power consumption of the air conditioner 60 that increases by processing the solar heat.
 その後、制御装置50は、ステップS3以降の処理を繰り返す。 Thereafter, the control device 50 repeats the processing after step S3.
 以上、説明したように、制御装置50は、図14に示される省エネ制御処理を実行した。これにより、日射を遮るだけのオーニングと、開口部202との気密性が高い他の遮蔽装置70が1つの開口部202に取り付けられる場合において、気温の高い真夏の昼間は熱貫流による熱負荷の侵入を他の遮蔽装置70で防止するとともに、朝方で外気温度が室温相当の場合にはオーニングを制御して採光を優先することができる。これにより、断熱性が高い建物200においても室温の上昇を抑制することができる。また、開口部202から侵入する日射熱の影響が比較的小さいときには、採光したり建物外への視界を確保したりすることが可能になる。したがって、消費エネルギーの増加を抑制しつつユーザの快適性を確保することができる。 As described above, the control device 50 executes the energy saving control process shown in FIG. As a result, when an awning that only blocks solar radiation and another shielding device 70 that is highly airtight with the opening 202 is attached to one opening 202, the heat load due to heat flow is reduced during midsummer days when the temperature is high. Intrusion can be prevented by another shielding device 70, and lighting can be prioritized by controlling the awning when the outside air temperature is equivalent to room temperature in the morning. Thereby, the rise of room temperature can be suppressed also in the building 200 with high heat insulation. In addition, when the influence of solar heat entering from the opening 202 is relatively small, it is possible to perform daylighting or to secure a field of view outside the building. Therefore, it is possible to ensure user comfort while suppressing an increase in energy consumption.
 また、制御装置50は、空調負荷となる日射熱が閾値より大きい場合には、日射熱の導入又は遮断をユーザの要望より優先して遮蔽装置70を制御する一方、日射熱が閾値より小さい場合には、要望に従って遮蔽装置70を制御した。一般的に消費エネルギーは電気料金に対応するため、省エネルギーはユーザが一般的に希望するものといえるが、消費エネルギーの増加量が著しいものでなければ、遮蔽装置70に対して省エネルギーのための制御とは異なる操作をしたいという要望がある。制御装置50は、このような要望に従って遮蔽装置70を適当に制御することができる。ひいては、ユーザの快適性を向上させることができる。 Moreover, when the solar heat used as an air-conditioning load is larger than a threshold value, the control apparatus 50 controls the shielding device 70 in preference to the user's request to introduce or block solar heat, while the solar heat is smaller than the threshold value. In this case, the shielding device 70 was controlled according to the demand. Generally, since energy consumption corresponds to an electricity rate, it can be said that energy saving is generally desired by the user. However, if the amount of increase in energy consumption is not significant, the shielding device 70 is controlled for energy saving. There is a desire to operate differently. The control device 50 can appropriately control the shielding device 70 in accordance with such a request. As a result, user comfort can be improved.
 また、制御装置50は、太陽光発電装置30の発電量から日射熱を算出した。これにより、太陽光発電装置30を備える建物200であれば、照度センサに代表されるセンサを取り付けることなく日射熱を加味した空調運転を実現することができる。 Moreover, the control device 50 calculated solar radiation heat from the amount of power generated by the solar power generation device 30. Thereby, if it is the building 200 provided with the solar power generation device 30, the air-conditioning driving | operation which considered the solar radiation heat | fever can be implement | achieved, without attaching the sensor represented by the illumination intensity sensor.
 実施の形態2.
 続いて、実施の形態2について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。本実施の形態に係る制御装置50は、天候に応じた制御パターンが予め設定される点で、実施の形態1に係るものと異なっている。
Embodiment 2. FIG.
Next, the second embodiment will be described focusing on the differences from the first embodiment. In addition, about the structure which is the same as that of the said Embodiment 1, or equivalent, while using an equivalent code | symbol, the description is abbreviate | omitted or simplified. The control device 50 according to the present embodiment is different from that according to the first embodiment in that a control pattern according to the weather is set in advance.
 具体的には、本実施の形態に係る制御装置50は、日射量の算出及び各空間201への日射取得量の算出を実行することなく、天候に応じた制御パターンを参照して、各時刻における遮蔽装置70の制御を決定する。天候に応じた制御パターンは、温熱環境をシミュレーションにより求めた結果から最適な効果が得られるように、遮蔽装置70の開状態、閉状態、半開状態を選択することで設定される。 Specifically, the control device 50 according to the present embodiment refers to the control pattern according to the weather without executing the calculation of the solar radiation amount and the calculation of the solar radiation acquisition amount to each space 201, and each time The control of the shielding device 70 is determined. The control pattern according to the weather is set by selecting an open state, a closed state, and a half-open state of the shielding device 70 so that an optimum effect can be obtained from the result of obtaining the thermal environment by simulation.
 本実施形態に係る制御装置50は、保持すべきデータの量を削減することができる。また、構造情報をシミュレーションモデルとしてシミュレーションを実行することで、ユーザによる詳細な構造情報の入力を省略することができる。さらに、制御パターンを変更することで、制御装置50による制御内容をユーザの必要に応じて変更することが容易になる。 The control device 50 according to the present embodiment can reduce the amount of data to be held. Further, by executing the simulation using the structural information as a simulation model, it is possible to omit detailed structural information input by the user. Furthermore, it becomes easy to change the control content by the control apparatus 50 according to a user's need by changing a control pattern.
 なお、制御装置50は、天候も含めた当日の制御パターンとして、スケジュールを展開してもよい。すなわち、雨、曇り、晴れ、快晴それぞれのケースの制御パターンを並行に展開しておいてもよい。これにより、制御装置50は、気象情報を外部から取得して、天候の変化に対応して制御パターンを容易に変更することができる。この場合、気象情報を次に取得するまでの時間のスケジュールを立案すればよい。なお、気象情報には、現在の気象を示す情報、及び気象の予報が含まれる。 Note that the control device 50 may develop a schedule as a control pattern for the day including the weather. That is, the control patterns of rain, cloudy, clear, and clear cases may be developed in parallel. Thereby, the control apparatus 50 can acquire weather information from the outside, and can change a control pattern easily according to the change of a weather. In this case, what is necessary is just to plan the time until the next weather information is acquired. The weather information includes information indicating current weather and weather forecast.
 実施の形態3.
 続いて、実施の形態3について、上述の実施の形態2との相違点を中心に説明する。なお、上記実施の形態2と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。本実施の形態に係る制御装置50は、図16に示されるように、インターネットに代表される通信ネットワークを介してサーバ80に接続され、サーバ80が温熱環境のシミュレーションを実行する点で、実施の形態2に係るものと異なっている。
Embodiment 3 FIG.
Subsequently, the third embodiment will be described focusing on differences from the above-described second embodiment. In addition, about the structure same or equivalent to the said Embodiment 2, while using an equivalent code | symbol, the description is abbreviate | omitted or simplified. As shown in FIG. 16, the control device 50 according to the present embodiment is connected to a server 80 via a communication network represented by the Internet, and the server 80 executes a simulation of a thermal environment. It is different from that according to Form 2.
 温熱環境のシミュレーションを実行するソフトウェアとしては、例えば、「SIM-HEAT」を用いることができる。このようなソフトウェアによれば、建物200の構造情報、空調装置60の情報並びに日射及び気温を含む環境情報から、空調負荷及び室温の変化を計算することができる。 For example, “SIM-HEAT” can be used as software for executing a simulation of a thermal environment. According to such software, it is possible to calculate changes in the air conditioning load and the room temperature from the structure information of the building 200, the information of the air conditioner 60, and the environmental information including the solar radiation and the temperature.
 サーバ80は、発電量と日射推定量とを示すデータを制御装置50から受信して、発電量から現在の天候を判定するとともに将来の天候を示す気象予報を得て、温熱環境のシミュレーションにより、制御装置50による遮蔽装置70の稼働スケジュールを作成する。そして、サーバ80は、作成したスケジュールを制御装置50に送信して、制御装置50は、受信したスケジュールに従って遮蔽装置70を制御する。 The server 80 receives data indicating the power generation amount and the estimated solar radiation amount from the control device 50, determines the current weather from the power generation amount, obtains a weather forecast indicating the future weather, and simulates the thermal environment, An operation schedule of the shielding device 70 by the control device 50 is created. Then, the server 80 transmits the created schedule to the control device 50, and the control device 50 controls the shielding device 70 according to the received schedule.
 また、サーバ80は、上記実施の形態1,2に係る制御装置50の一部の機能を有してもよい。例えば、サーバ80は、制御装置50の日射熱予測部505とスケジュール設定部506(図3参照)との少なくとも一方を有してもよい。 Further, the server 80 may have some functions of the control device 50 according to the first and second embodiments. For example, the server 80 may include at least one of the solar heat prediction unit 505 and the schedule setting unit 506 (see FIG. 3) of the control device 50.
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態によって限定されるものではない。 As mentioned above, although embodiment of this invention was described, this invention is not limited by the said embodiment.
 例えば、ユーザの要望を、その要望の度合いを示すレベルとともに受け付けてもよい。この場合、スケジュール設定処理(図13参照)中のステップS56の判定で用いられる閾値を要望レベルに応じて変更すれば、ユーザの要望の度合いに応じた制御を実行することができる。具体的には、要望が強くレベルが高い場合に閾値を大きくすれば、要望に従って制御される遮蔽装置70の数が、要望が弱くレベルが低い場合よりも増加すると考えられる。 For example, the user's request may be received together with a level indicating the degree of the request. In this case, if the threshold value used in the determination in step S56 in the schedule setting process (see FIG. 13) is changed according to the request level, control according to the degree of user's request can be executed. Specifically, if the threshold value is increased when the demand is strong and the level is high, it is considered that the number of shielding devices 70 controlled according to the demand increases as compared with the case where the demand is weak and the level is low.
 また、オーニングと他の遮蔽装置70とが1つの開口部202に取り付けられている状況で「採光」の要望が受け付けられた場合には、そのレベルが高いときにはオーニングを制御対象として選択し、レベルが低いときには日射熱に応じて省エネ効果が高い装置を選択してもよい。 Further, when a request for “lighting” is received in a situation where the awning and the other shielding device 70 are attached to one opening 202, the awning is selected as a control target when the level is high, and the level When the temperature is low, an apparatus having a high energy saving effect may be selected in accordance with solar heat.
 また、オーニングとシャッターとが1つの開口部202に取り付けられている状況で「防犯」の要望が受け付けられた場合には、レベルが高いときにシャッターを閉じて、レベルが低いときにオーニングを定期的に動作させてもよい。定期的な動作は、例えば、日射を遮蔽する状態と導入する状態との相互への遷移を5分間の周期で繰り返し実行させることを意味する。これにより、防犯の要望レベルが予め定められた値に等しい場合又はこの値より高いときには、開口部202からの侵入者を確実に防ぐとともに、プライバシーを厳重に保護することができる。また、防犯の要望レベルが予め定められた値より低いときには、オーニングを操作する人がいるように建物200外に対して見せかけることで、ある程度の防犯効果が期待できる。 In addition, when a request for “crime prevention” is received in a situation where the awning and the shutter are attached to one opening 202, the shutter is closed when the level is high, and the awning is periodically performed when the level is low. May be operated automatically. The periodic operation means, for example, that the transition between the state where the solar radiation is shielded and the state where the solar radiation is introduced is repeatedly executed at a cycle of 5 minutes. Thereby, when the desired level of crime prevention is equal to a predetermined value or higher than this value, an intruder from the opening 202 can be surely prevented and privacy can be strictly protected. Further, when the crime prevention request level is lower than a predetermined value, it is possible to expect a certain crime prevention effect by making it appear to the outside of the building 200 as if there is a person operating the awning.
 また、制御装置50は、建物200に設置された太陽光発電装置30の発電量を取得したが、これには限定されない。制御装置50は、インターネット上のサーバから、他の建物に設置された太陽光発電装置30の発電量を取得してもよい。この場合には、建物200と他の建物とがある程度狭い地域にあることが望ましい。また、制御装置50は、インターネット上のサーバから、図8に示された日射量のデータを取得してもよい。 Moreover, although the control apparatus 50 acquired the electric power generation amount of the solar power generation device 30 installed in the building 200, it is not limited to this. The control device 50 may acquire the power generation amount of the solar power generation device 30 installed in another building from a server on the Internet. In this case, it is desirable that the building 200 and other buildings are in a small area. Moreover, the control apparatus 50 may acquire the solar radiation amount data shown in FIG. 8 from a server on the Internet.
 また、制御装置50は、遮断日射熱の大きい遮蔽装置70を優先して省エネ制御を実行させたが、さらに省エネ効果の大きい時間帯から優先して遮蔽装置70に省エネ制御を実行させてもよい。 Further, the control device 50 preferentially executes the energy saving control with respect to the shielding device 70 having a large cut-off solar heat. However, the control device 50 may cause the shielding device 70 to execute the energy saving control preferentially from a time zone having a large energy saving effect. .
 また、図14に示される省エネ制御処理では、外気温度と閾値とを比較することにより制御対象とする装置が選択されたが、これには限定されない。例えば、図17に示されるような条件と装置との優先順位とを対応付けたテーブルを予め設定しておいて、このテーブルを参照することで制御対象とする装置を選択してもよい。図17に示される例では、ユーザが在で、Ta<26で、防犯の要望がなしであれば、オーニングが最初に選択される。 In the energy saving control process shown in FIG. 14, the device to be controlled is selected by comparing the outside air temperature with the threshold value, but the present invention is not limited to this. For example, a table associating the conditions shown in FIG. 17 with the priority order of the devices may be set in advance, and the device to be controlled may be selected by referring to this table. In the example shown in FIG. 17, if there is a user, Ta <26, and there is no crime prevention request, awning is selected first.
 上記実施の形態に係る制御装置50の機能は、専用のハードウェアによっても、また、通常のコンピュータシステムによっても実現することができる。 The functions of the control device 50 according to the above embodiment can be realized by dedicated hardware or by a normal computer system.
 例えば、補助記憶部53に記憶されているプログラム58を、フレキシブルディスク、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)等のコンピュータ読み取り可能な記録媒体に格納して配布し、そのプログラム58をコンピュータにインストールすることにより、上述の処理を実行する装置を構成することができる。 For example, the program 58 stored in the auxiliary storage unit 53 is stored in a computer-readable recording medium such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and distributed. By installing the program 58 in a computer, a device that executes the above-described processing can be configured.
 また、プログラム58をインターネットに代表される通信ネットワーク上のサーバ装置が有するディスク装置に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロードするようにしてもよい。 Further, the program 58 may be stored in a disk device included in a server device on a communication network represented by the Internet, and may be downloaded onto a computer while being superimposed on a carrier wave, for example.
 また、通信ネットワークを介してプログラム58を転送しながら起動実行することによっても、上述の処理を達成することができる。 The above-described processing can also be achieved by starting and executing the program 58 while transferring it via the communication network.
 更に、プログラム58の全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラム58を実行することによっても、上述の処理を達成することができる。 Furthermore, the above-described processing can also be achieved by executing all or part of the program 58 on the server device and executing the program 58 while the computer transmits / receives information related to the processing via the communication network. .
 なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合には、OS以外の部分のみを媒体に格納して配布してもよく、また、コンピュータにダウンロードしてもよい。 Note that when the above functions are realized by sharing an OS (Operating System), or when the functions are realized by cooperation between the OS and an application, only the part other than the OS may be stored in a medium and distributed. It may also be downloaded to a computer.
 また、制御装置50の機能を実現する手段は、ソフトウェアに限られず、その一部又は全部を、回路を含む専用のハードウェアによって実現してもよい。 Further, the means for realizing the function of the control device 50 is not limited to software, and part or all of the means may be realized by dedicated hardware including a circuit.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本発明は、エネルギーの効率的な利用に適している。 The present invention is suitable for efficient use of energy.
 100 日射制御システム、 21 太陽光線、 30 太陽光発電装置、 40 計測装置、 50 制御装置、 51 プロセッサ、 52 主記憶部、 53 補助記憶部、 54 入力部、 55 出力部、 56 通信部、 57 内部バス、 58 プログラム、 60 空調装置、 70 遮蔽装置、 71 電動オーニング、 72 電動シャッタ、 73 電動ブラインド、 80 サーバ、 200 建物、 201 空間、 202 開口部、 203 ガラス戸、 204 庇、 205 壁、 501 構造情報取得部、 502 要望受付部、 503 発電量取得部、 504 記憶部、 505 日射熱予測部、 506 スケジュール設定部、 507 制御部。 100 solar radiation control system, 21 solar rays, 30 solar power generation devices, 40 measurement devices, 50 control devices, 51 processors, 52 main storage units, 53 auxiliary storage units, 54 input units, 55 output units, 56 communication units, 57 internals Bus, 58 program, 60 air conditioner, 70 shielding device, 71 electric awning, 72 electric shutter, 73 electric blind, 80 server, 200 building, 201 space, 202 opening, 203 glass door, 204 庇, 205 wall, 501 structure Information acquisition unit, 502 request reception unit, 503 power generation amount acquisition unit, 504 storage unit, 505 solar heat prediction unit, 506 schedule setting unit, 507 control unit.

Claims (6)

  1.  建物の開口部から空調装置による冷房運転の対象となる空間に入る日射を遮るオーニングと、該オーニングとは異なる装置であって前記開口部から前記空間に入る日射を遮る遮蔽装置と、を制御する制御装置であって、
     太陽光発電装置の発電量を取得する第1取得手段と、
     前記開口部が配置された位置及び方向を示す情報を取得する第2取得手段と、
     前記オーニング及び前記遮蔽装置のうち、前記発電量と前記位置及び前記方向とから特定される、日射を遮蔽することで前記空間から遮断する日射熱が大きい装置を制御して日射を遮蔽させ、外気温度が前記空調装置による冷房運転の目標温度を下回ると、前記オーニングを制御して日射を遮蔽させる制御手段と、
     を備える制御装置。
    An awning that blocks sunlight entering a space to be cooled by an air conditioner from an opening of a building, and a shielding device that is different from the awning and blocks sunlight from entering the space from the opening. A control device,
    First acquisition means for acquiring the power generation amount of the solar power generation device;
    Second acquisition means for acquiring information indicating the position and direction in which the opening is disposed;
    Among the awning and the shielding device, the solar radiation is shielded by controlling a device, which is identified from the power generation amount, the position, and the direction, and shields the solar radiation from the space so as to shield the solar radiation. When the temperature falls below the target temperature of the cooling operation by the air conditioner, control means for controlling the awning to shield solar radiation,
    A control device comprising:
  2.  前記日射熱を前記発電量の計測値と前記位置及び前記方向とから予測する予測手段と、
     前記オーニング及び前記遮蔽装置のうち、前記予測手段によって予測された前記日射熱が大きい装置の優先順位を高く設定する設定手段と、を備え、
     前記制御手段は、現在の外気温度が前記目標温度を上回ると、前記優先順位が高く設定された装置を制御して日射を遮蔽させ、現在の外気温度が前記目標温度を下回ると、前記オーニングを制御して日射を遮蔽させる、
     請求項1に記載の制御装置。
    Prediction means for predicting the solar radiation heat from the measured value of the power generation amount and the position and the direction;
    Among the awning and the shielding device, comprising a setting means for setting a high priority of the device having a large solar heat predicted by the prediction means,
    When the current outside air temperature exceeds the target temperature, the control means controls the device with the higher priority set to shield solar radiation, and when the current outside air temperature falls below the target temperature, the awning is controlled. To control solar radiation,
    The control device according to claim 1.
  3.  防犯の要望と該要望の度合いを示す情報とを受け付ける受付手段、をさらに備え、
     前記遮蔽装置は、シャッターであって、
     前記制御手段は、前記受付手段によって前記要望が受け付けられた場合において、前記度合いが予め定められた値であるときには、前記シャッターを制御して日射を遮蔽させて、前記度合いが前記予め定められた値より小さいときには、前記オーニングを制御して日射の遮蔽と導入とを繰り返し実行させる、
     請求項1又は2に記載の制御装置。
    Receiving means for receiving a crime prevention request and information indicating the degree of the request;
    The shielding device is a shutter,
    When the request is received by the receiving means and the degree is a predetermined value, the control means controls the shutter to shield solar radiation, and the degree is determined in advance. When the value is smaller than the value, the awning is controlled so that the solar radiation is shielded and introduced repeatedly.
    The control device according to claim 1 or 2.
  4.  建物の開口部から空調装置による冷房運転の対象となる空間に入る日射を遮るオーニングと、
     前記オーニングとは異なる装置であって前記開口部から前記空間に入る日射を遮る遮蔽装置と、
     前記オーニングと前記遮蔽装置とを制御する制御装置と、
     を備える日射制御システムであって、
     前記制御装置は、
     太陽光発電装置の発電量を取得する第1取得手段と、
     前記開口部が配置された位置及び方向を示す情報を取得する第2取得手段と、
     前記オーニング及び前記遮蔽装置のうち、前記発電量と前記位置及び前記方向とから特定される、日射を遮蔽することで前記空間から遮断する日射熱が大きい装置を制御して日射を遮蔽させ、外気温度が前記空調装置による冷房運転の目標温度を下回ると、前記オーニングを制御して日射を遮蔽させる制御手段と、
     を有する、日射制御システム。
    An awning that blocks sunlight from entering the space that is subject to cooling operation by the air conditioner from the opening of the building,
    A shield device that is different from the awning and shields the solar radiation entering the space from the opening;
    A control device for controlling the awning and the shielding device;
    A solar radiation control system comprising:
    The control device includes:
    First acquisition means for acquiring the power generation amount of the solar power generation device;
    Second acquisition means for acquiring information indicating the position and direction in which the opening is disposed;
    Among the awning and the shielding device, the solar radiation is shielded by controlling a device, which is identified from the power generation amount, the position, and the direction, and shields the solar radiation from the space so as to shield the solar radiation. When the temperature falls below the target temperature of the cooling operation by the air conditioner, control means for controlling the awning to shield solar radiation,
    Having a solar radiation control system.
  5.  建物の開口部から空調装置による冷房運転の対象となる空間に入る日射を遮るオーニングと、該オーニングとは異なる装置であって前記開口部から前記空間に入る日射を遮る遮蔽装置と、を制御する制御方法であって、
     前記オーニング及び前記遮蔽装置のうち、太陽光発電装置の発電量と前記開口部が配置された位置及び方向とから特定される、日射を遮蔽することで前記空間から遮断する日射熱が大きい装置を制御して日射を遮蔽させ、外気温度が前記空調装置による冷房運転の目標温度を下回ると、前記オーニングを制御して日射を遮蔽させる、制御方法。
    An awning that blocks sunlight entering a space to be cooled by an air conditioner from an opening of a building, and a shielding device that is different from the awning and blocks sunlight from entering the space from the opening. A control method,
    Among the awning and the shielding device, a device having a large amount of solar heat to be shielded from the space by shielding the solar radiation, which is specified from the power generation amount of the photovoltaic power generation device and the position and direction in which the opening is disposed. A control method that controls solar radiation and controls the awning to shield solar radiation when the outside air temperature falls below a target temperature for cooling operation by the air conditioner.
  6.  建物の開口部から空調装置による冷房運転の対象となる空間に入る日射を遮るオーニングと、該オーニングとは異なる装置であって前記開口部から前記空間に入る日射を遮る遮蔽装置と、を制御するコンピュータに、
     前記オーニング及び前記遮蔽装置のうち、太陽光発電装置の発電量と前記開口部が配置された位置及び方向とから特定される、日射を遮蔽することで前記空間から遮断する日射熱が大きい装置を制御して日射を遮蔽させ、外気温度が前記空調装置による冷房運転の目標温度を下回ると、前記オーニングを制御して日射を遮蔽させる、
     ことを実行させるためのプログラム。
    An awning that blocks sunlight entering a space to be cooled by an air conditioner from an opening of a building, and a shielding device that is different from the awning and blocks sunlight from entering the space from the opening. On the computer,
    Among the awning and the shielding device, a device having a large amount of solar heat to be shielded from the space by shielding the solar radiation, which is specified from the power generation amount of the photovoltaic power generation device and the position and direction in which the opening is disposed. Control to block solar radiation, and control the awning to block solar radiation when the outside air temperature falls below the target temperature for cooling operation by the air conditioner.
    A program to make things happen.
PCT/JP2017/013432 2017-03-30 2017-03-30 Control device, sunlight control system, control method and program WO2018179285A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019508062A JP6742506B2 (en) 2017-03-30 2017-03-30 Control device, solar radiation control system, control method and program
PCT/JP2017/013432 WO2018179285A1 (en) 2017-03-30 2017-03-30 Control device, sunlight control system, control method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013432 WO2018179285A1 (en) 2017-03-30 2017-03-30 Control device, sunlight control system, control method and program

Publications (1)

Publication Number Publication Date
WO2018179285A1 true WO2018179285A1 (en) 2018-10-04

Family

ID=63674488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013432 WO2018179285A1 (en) 2017-03-30 2017-03-30 Control device, sunlight control system, control method and program

Country Status (2)

Country Link
JP (1) JP6742506B2 (en)
WO (1) WO2018179285A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143507A (en) * 2019-03-07 2020-09-10 三菱電機株式会社 Setting system, setting device, setting method, and program
JP2021055334A (en) * 2019-09-28 2021-04-08 立川ブラインド工業株式会社 Cloaking device control system
CN115964780A (en) * 2022-12-14 2023-04-14 中国建筑设计研究院有限公司 Building energy consumption simulation method, device, medium and equipment based on sun shading system
JP7346798B2 (en) 2019-12-10 2023-09-20 株式会社竹中工務店 Light transmission amount control device and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282106A (en) * 2004-03-29 2005-10-13 Kyocera Corp Dimming glass window system
JP2007277833A (en) * 2006-04-03 2007-10-25 Toyota Motor Corp Motor-driven shutter control device and building having this control device
JP2007297864A (en) * 2006-05-02 2007-11-15 Bunka Shutter Co Ltd Control system for opening and closing device and electric awning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282106A (en) * 2004-03-29 2005-10-13 Kyocera Corp Dimming glass window system
JP2007277833A (en) * 2006-04-03 2007-10-25 Toyota Motor Corp Motor-driven shutter control device and building having this control device
JP2007297864A (en) * 2006-05-02 2007-11-15 Bunka Shutter Co Ltd Control system for opening and closing device and electric awning device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143507A (en) * 2019-03-07 2020-09-10 三菱電機株式会社 Setting system, setting device, setting method, and program
JP7300852B2 (en) 2019-03-07 2023-06-30 三菱電機株式会社 Setting system and setting method
JP2021055334A (en) * 2019-09-28 2021-04-08 立川ブラインド工業株式会社 Cloaking device control system
JP7346798B2 (en) 2019-12-10 2023-09-20 株式会社竹中工務店 Light transmission amount control device and program
CN115964780A (en) * 2022-12-14 2023-04-14 中国建筑设计研究院有限公司 Building energy consumption simulation method, device, medium and equipment based on sun shading system

Also Published As

Publication number Publication date
JP6742506B2 (en) 2020-08-19
JPWO2018179285A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US10174546B2 (en) Shade adjustment notification system and method
JP6742506B2 (en) Control device, solar radiation control system, control method and program
Van Moeseke et al. Impact of control rules on the efficiency of shading devices and free cooling for office buildings
JP5967918B2 (en) Living environment management system
US8890456B2 (en) Automated shade control system utilizing brightness modeling
JP4784259B2 (en) Solar radiation shielding control device
CA2889978C (en) Automated shade control system utilizing brightness modeling
US20190179275A1 (en) Targeted illumination system
JP4867286B2 (en) Solar radiation shielding control device
JP2007120861A (en) Ventilation/temperature conditioning control device and method
KR101237787B1 (en) Smart-grid control device being connected with the Internet, and control method for the same
US20220357714A1 (en) Control of shadow and light on an object
EP2722600A1 (en) Energy saving method, particularly for buildings
Bennet et al. Effect of window blind use in residential buildings: Observation and simulation study
Verma et al. Optimized automatic lighting control in a hotel building for energy efficiency
JP6815484B2 (en) Control device, solar radiation control system, control method and program
KR20120030183A (en) Blind control system being interlocked with natural light and control method thereof
Parys et al. Implementing realistic occupant behavior in building energy simulations–the effect on the results of an optimization of office buildings
JP5192862B2 (en) Demand control system
Ascione et al. Summer overheating in a new multi-storey building in Berlin: numerical study for improving the indoor microclimate
WO2018179350A1 (en) Control apparatus, air conditioning system, air conditioning control method, and program
JP5440872B2 (en) Environment-linked control device
JP2020200675A (en) Control device, control system, control method, and program
JP6126792B2 (en) Living environment management system
JP2016196983A (en) Equipment management device, equipment management method, program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508062

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903424

Country of ref document: EP

Kind code of ref document: A1