WO2018178795A1 - Display device, display module, and electronic apparatus - Google Patents

Display device, display module, and electronic apparatus Download PDF

Info

Publication number
WO2018178795A1
WO2018178795A1 PCT/IB2018/051757 IB2018051757W WO2018178795A1 WO 2018178795 A1 WO2018178795 A1 WO 2018178795A1 IB 2018051757 W IB2018051757 W IB 2018051757W WO 2018178795 A1 WO2018178795 A1 WO 2018178795A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal panel
display device
substrate
electrode
Prior art date
Application number
PCT/IB2018/051757
Other languages
French (fr)
Japanese (ja)
Inventor
山崎舜平
石谷哲二
吉富修平
初見亮
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2018178795A1 publication Critical patent/WO2018178795A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • One embodiment of the present invention relates to a liquid crystal display device, a module, and an electronic device.
  • one embodiment of the present invention is not limited to the above technical field.
  • a semiconductor device, a display device, a light-emitting device, an electronic device, a lighting device, an input / output device (eg, a touch panel), a driving method thereof, or a manufacturing method thereof is given as an example. be able to.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
  • a display device (a liquid crystal display device, a light-emitting display device, or the like), a projection device, a lighting device, an electro-optical device, a power storage device, a memory device, a semiconductor circuit, an imaging device, an electronic device, or the like may be referred to as a semiconductor device.
  • a semiconductor device Alternatively, it may be said that these include semiconductor devices.
  • display devices with high resolution have been demanded.
  • display devices with a large number of pixels such as full high-definition (pixel count 1920 ⁇ 1080), 4K (pixel count 3840 ⁇ 2160 or 4096 ⁇ 2160, etc.) and 8K (pixel count 7680 ⁇ 4320 or 8192 ⁇ 4320 etc.) are popular.
  • full high-definition pixel count 1920 ⁇ 1080
  • 4K pixel count 3840 ⁇ 2160 or 4096 ⁇ 2160, etc.
  • 8K pixel count 7680 ⁇ 4320 or 8192 ⁇ 4320 etc.
  • a flat panel display represented by a liquid crystal display device or a light emitting display device is widely used.
  • Silicon is mainly used as a semiconductor material of transistors constituting these display devices, but in recent years, a technique using a transistor using a metal oxide for a pixel of a display device has also been developed.
  • Patent Document 1 discloses a technique using amorphous silicon as a semiconductor material of a transistor.
  • Patent Documents 2 and 3 disclose a technique using a metal oxide as a semiconductor material of a transistor.
  • An object of one embodiment of the present invention is to provide a display device with a high contrast ratio.
  • An object of one embodiment of the present invention is to provide a display device with a wide viewing angle.
  • An object of one embodiment of the present invention is to provide a display device with high resolution.
  • An object of one embodiment of the present invention is to provide a display device that can operate at a high frame frequency.
  • An object of one embodiment of the present invention is to provide a large display device.
  • An object of one embodiment of the present invention is to provide a highly reliable display device.
  • One embodiment of the present invention is a display device including a first liquid crystal panel and a second liquid crystal panel.
  • the light transmitted through the first liquid crystal panel is incident on the second liquid crystal panel.
  • the second liquid crystal panel displays an image by selectively transmitting light.
  • the first liquid crystal panel and the second liquid crystal panel operate in different modes.
  • the first liquid crystal panel preferably operates in a TN (Twisted Nematic) mode.
  • the second liquid crystal panel preferably operates in an IPS (In-Plane-Switching) mode or an FFS (Fringe Field Switching) mode.
  • the display device of one embodiment of the present invention preferably further includes a first polarizing plate, a second polarizing plate, and a third polarizing plate.
  • the first liquid crystal panel is preferably located between the first polarizing plate and the second polarizing plate.
  • the second liquid crystal panel is preferably located between the second polarizing plate and the third polarizing plate. It is preferable that the light transmitted through the first liquid crystal panel is incident on the second liquid crystal panel via the second polarizing plate.
  • the first polarizing plate and the second polarizing plate preferably have a polarization axis in the first direction.
  • the third polarizing plate preferably has a polarization axis in a second direction that intersects the first direction.
  • the second liquid crystal panel preferably has a touch sensor function.
  • the first liquid crystal panel preferably has a first substrate and a second substrate.
  • the second liquid crystal panel preferably has a third substrate and a fourth substrate.
  • the second polarizing plate is preferably located between the second substrate and the third substrate.
  • the second substrate is preferably located closer to the second liquid crystal panel than the first substrate.
  • the third substrate is preferably located closer to the first liquid crystal panel than the fourth substrate.
  • the thickness of the second substrate is preferably thinner than the thickness of the first substrate.
  • the thickness of the third substrate is preferably thinner than the thickness of the fourth substrate.
  • Each of the second substrate and the third substrate preferably includes a resin.
  • the second liquid crystal panel preferably has a liquid crystal layer between a pair of alignment films.
  • the angle formed by at least one rubbing direction of the pair of alignment films and the electric field direction is preferably greater than 50 ° and less than 80 °.
  • an angle formed by at least one rubbing direction of the pair of alignment films and the electric field direction is greater than 10 ° and less than 40 °. Is preferred.
  • the contrast ratio of the display device is preferably 100,000: 1 or more.
  • the second liquid crystal panel preferably has a resolution of 4K or higher.
  • the second liquid crystal panel preferably has a function of displaying a color of 12 bits or more.
  • the frame frequency of the second liquid crystal panel is preferably 120 Hz or more.
  • the second liquid crystal panel is preferably an active matrix type.
  • the second liquid crystal panel includes a liquid crystal element and a transistor, and the transistor is electrically connected to the liquid crystal element.
  • the channel formation region of the transistor preferably includes a metal oxide.
  • the channel formation region of the transistor preferably includes hydrogenated amorphous silicon.
  • One embodiment of the present invention is a display module having any one of the above structures and a circuit board.
  • One embodiment of the present invention includes a display device having any one of the above structures, and a display module to which a connector such as a flexible printed circuit board (hereinafter referred to as FPC) or a TCP (Tape Carrier Package) is attached.
  • a display module such as a display module in which an IC is mounted by a COG (Chip On Glass) method or a COF (Chip On Film) method.
  • One embodiment of the present invention is an electronic device including the above display module and at least one of an antenna, a battery, a housing, a camera, a speaker, a microphone, and an operation button.
  • a display device with a high contrast ratio can be provided.
  • a display device with a wide viewing angle can be provided.
  • a display device with high resolution can be provided.
  • a display device that can operate at a high frame frequency can be provided.
  • a large display device can be provided.
  • a highly reliable display device can be provided.
  • Sectional drawing which shows an example of a display apparatus Sectional drawing which shows an example of a display apparatus. Sectional drawing which shows an example of a display apparatus. Sectional drawing which shows an example of a display apparatus. Sectional drawing which shows an example of a display apparatus. Sectional drawing which shows an example of a display apparatus. Sectional drawing which shows an example of a display apparatus. Sectional drawing which shows an example of a display apparatus. Sectional drawing which shows an example of a display apparatus. Sectional drawing which shows an example of a display apparatus. Sectional drawing which shows an example of a display apparatus. Sectional drawing which shows an example of a display apparatus.
  • FIG. 10 is a cross-sectional view illustrating an example of a transistor. Sectional drawing which shows an example of arrangement
  • FIG. 4A is a block diagram illustrating an example of a display module.
  • B A circuit diagram showing a pixel.
  • FIG. 4A is a block diagram illustrating an example of a display module.
  • B A circuit diagram showing a pixel.
  • FIG. 6A is a diagram illustrating an example of voltage-transmittance characteristics of a liquid crystal element.
  • B (C) Top view illustrating a rubbing angle.
  • FIG. 5A illustrates a television device.
  • FIG. 14 illustrates an example of an electronic device. The figure which shows the calculation result of Example 1.
  • FIG. The figure which shows the calculation result of Example 1.
  • FIG. The figure which shows the calculation result of Example 1.
  • FIG. The figure which shows the calculation result of Example 1.
  • FIG. The figure which shows the calculation result of Example 1.
  • FIG. The figure which shows the calculation result of Example 1.
  • FIG. The figure which shows the calculation result of
  • film and “layer” can be interchanged with each other depending on the case or circumstances.
  • conductive layer can be changed to the term “conductive film”.
  • insulating film can be changed to the term “insulating layer”.
  • the display device of this embodiment includes a first liquid crystal panel and a second liquid crystal panel.
  • the light transmitted through the first liquid crystal panel is incident on the second liquid crystal panel.
  • the second liquid crystal panel displays an image by selectively transmitting light.
  • the first liquid crystal panel and the second liquid crystal panel operate in different modes.
  • the contrast ratio of the display device is preferably high.
  • the maximum luminance of the display device can be increased by increasing the light amount of the backlight.
  • black may not be displayed correctly and may be white or gray (also referred to as black float).
  • the image of the backlight is displayed through the two liquid crystal panels. For this reason, even if the amount of light from the backlight is large, black floating is unlikely to occur. Therefore, both a low minimum luminance and a high maximum luminance can be achieved, and the contrast ratio can be increased.
  • the contrast ratio of the display device of this embodiment can be 10,000: 1 or more, 100,000: 1 or more, or 1000000: 1 or more.
  • the two liquid crystal panels operate in different modes. Therefore, a mode suitable for each of the two liquid crystal panels can be selected. Thereby, a high-quality display device can be obtained.
  • the first liquid crystal panel is a panel that mainly performs light control, it is preferable to operate in a mode with high transmittance.
  • the second liquid crystal panel is a panel that mainly displays an image, it is preferable to operate in a mode with high viewing angle characteristics. Thereby, a display device having a high contrast ratio and a wide viewing angle can be realized. In view of viewing angle characteristics, the second liquid crystal panel is preferably positioned closer to the display surface than the first liquid crystal panel.
  • the TN mode has higher transmittance than the transverse electric field mode (IPS mode, FFS mode, etc.) and the birefringence mode (VA mode, etc.), and is suitable for the first liquid crystal panel for light control. Furthermore, the TN mode is preferable in that it has merits such as low driving voltage and low cost.
  • the arrangement of the polarizing plates positioned above and below the first liquid crystal panel is preferably parallel Nicols. That is, the polarization axes (also referred to as transmission axes) of the two polarizing plates are preferably parallel to each other.
  • the first liquid crystal panel is normally black (displays black when the voltage is OFF).
  • normally white white display when the voltage is OFF
  • the display device of this embodiment has a structure in which black floating is unlikely to occur because two liquid crystal panels are stacked. Therefore, even when normally black is adopted, black can be displayed well. Further, normally black in TN mode may be better with normally black than with normally white.
  • the display device of this embodiment includes the first liquid crystal panel that functions as a light control panel, light that enters the display panel (second liquid crystal panel) using not only the backlight but also the light control panel.
  • the brightness can be adjusted. Thereby, the contrast ratio of the display device can be increased.
  • the IPS mode or the FFS mode is preferably used for the second liquid crystal panel.
  • the IPS mode and the FFS mode are suitable for the second liquid crystal panel for display because the luminance change and the color change due to the viewing angle are small.
  • the use of the FFS mode is preferable because a capacitance can be formed between the pixel electrode and the common electrode, so that the aperture ratio can be increased.
  • the liquid crystal panel of one embodiment of the present invention described in Embodiment 2 is preferably used.
  • the liquid crystal panel has a characteristic that gradation shift hardly occurs even when a voltage change occurs. Therefore, even if the color depth of the display device is larger than 8 bits (for example, 12 bits), high display quality can be realized.
  • ⁇ Configuration example 1> A cross-sectional view of the display device 100A is shown in FIG.
  • the display device 100A includes a liquid crystal panel 10A, a liquid crystal panel 20A, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • the light 35 emitted from the light source of the backlight unit 30 passes through the polarizing plate 61, the liquid crystal panel 20A, the polarizing plate 62, the liquid crystal panel 10A, and the polarizing plate 63 in this order, and is emitted to the outside of the display device 100A. .
  • a material that transmits visible light is used for the material of these layers through which the light 35 is transmitted.
  • the liquid crystal panel 10A is an active matrix liquid crystal panel to which the FFS mode is applied.
  • the liquid crystal panel 10A is a transmissive liquid crystal panel.
  • the liquid crystal panel 10A functions as a display panel.
  • the liquid crystal panel 10A includes a substrate 11, a substrate 12, a transistor 13, an insulating layer 14, a liquid crystal element 40, and the like.
  • the liquid crystal element 40 includes an electrode 41, a liquid crystal layer 42, and an electrode 43.
  • the electrode 41 functions as a pixel electrode, and the electrode 43 functions as a common electrode.
  • the electrode 41 is provided on the insulating layer 14.
  • the electrode 41 and the transistor 13 are electrically connected through an opening provided in the insulating layer 14.
  • the electrode 41 is covered with an insulating layer 44, and the electrode 43 is provided on the insulating layer 44.
  • the electrode 41 has a region overlapping with the electrode 43 with the insulating layer 44 interposed therebetween.
  • the electrode 41 also has a region that does not overlap with the electrode 43.
  • the liquid crystal layer 42 is sandwiched between the substrate 11 and the substrate 12.
  • the liquid crystal panel 20A is a passive matrix liquid crystal panel to which the TN mode is applied.
  • the liquid crystal panel 20A is a transmissive liquid crystal panel.
  • the liquid crystal panel 20A functions as a light control panel.
  • the light control panel may be a passive matrix type or an active matrix type.
  • the liquid crystal panel 20A includes a substrate 21, a substrate 22, a liquid crystal element 50, and the like.
  • the liquid crystal element 50 includes an electrode 51, a liquid crystal layer 52, and an electrode 53.
  • the electrode 51 functions as a pixel electrode, and the electrode 53 functions as a common electrode.
  • the electrode 51 is provided on the substrate 21 side.
  • the electrode 53 is provided on the substrate 22 side.
  • the liquid crystal layer 52 is sandwiched between the electrode 51 and the electrode 53.
  • a conductive layer 25 formed using the same process and the same material as the electrode 51 is provided on the substrate 21.
  • the conductive layer 25 is electrically connected to the electrode 53 through the connection body 29.
  • the light control panel and the display panel have the same resolution and definition, it is preferable that the light control panel can be used to control the amount of light incident on the display panel in units of sub-pixels of the display panel.
  • the display panel and the light control panel can have different resolution and definition.
  • the resolution of the display panel is extremely high, the cost of the display device may increase if the resolution of the light control panel is made equal to the resolution of the display panel. Therefore, the resolution of the light control panel may be lower than the resolution of the display panel. That is, the resolution of the display panel is preferably equal to or higher than the resolution of the light control panel.
  • the backlight unit 30 may be a direct type backlight, an edge light type backlight, or the like.
  • As the light source an LED (Light Emitting Diode), an organic EL (Electroluminescence) element, or the like can be used.
  • the polarizing plate 61 and the polarizing plate 62 preferably have a polarization axis in the first direction.
  • the polarizing plate 63 preferably has a polarization axis in a second direction that intersects the first direction. That is, the arrangement of the polarizing plate 61 and the polarizing plate 62 is parallel Nicol, and the liquid crystal panel 20A operating in the TN mode is normally black. Further, the arrangement of the polarizing plate 62 and the polarizing plate 63 is crossed Nicol, and the liquid crystal panel 10A operating in the FFS mode is normally black.
  • ⁇ Configuration example 2> A cross-sectional view of the display device 100B is shown in FIG.
  • the display device 100B is different from the display device 100A in that a liquid crystal panel that functions as a display panel operates in the IPS mode.
  • description of the same configuration as the previous configuration example is omitted.
  • the display device 100B includes a liquid crystal panel 10B, a liquid crystal panel 20B, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • the light 35 emitted from the light source of the backlight unit 30 passes through the polarizing plate 61, the liquid crystal panel 20B, the polarizing plate 62, the liquid crystal panel 10B, and the polarizing plate 63 in this order, and is emitted to the outside of the display device 100B. .
  • a material that transmits visible light is used for the material of these layers through which the light 35 is transmitted.
  • the liquid crystal panel 10B is an active matrix liquid crystal panel to which the IPS mode is applied.
  • the liquid crystal panel 10B is a transmissive liquid crystal panel.
  • the liquid crystal panel 10B functions as a display panel.
  • the liquid crystal panel 10B includes a substrate 11, a substrate 12, a transistor 13, an insulating layer 14, a liquid crystal element 45, and the like.
  • the liquid crystal element 45 includes an electrode 46, a liquid crystal layer 47, and an electrode 48.
  • the electrode 46 and the electrode 48 are provided on the insulating layer 14.
  • the electrode 46 and the electrode 48 can be formed using the same process and the same material.
  • the electrode 46 and the transistor 13 are electrically connected through an opening provided in the insulating layer 14.
  • the liquid crystal layer 47 is sandwiched between the substrate 11 and the substrate 12.
  • liquid crystal panel 20B has the same configuration as the liquid crystal panel 20A, detailed description thereof is omitted.
  • the polarizing plate 61 and the polarizing plate 62 preferably have a polarization axis in the first direction.
  • the polarizing plate 63 preferably has a polarization axis in a second direction that intersects the first direction. That is, the arrangement of the polarizing plate 61 and the polarizing plate 62 is parallel Nicol, and the liquid crystal panel 20B operating in the TN mode is normally black. The arrangement of the polarizing plate 62 and the polarizing plate 63 is crossed Nicol, and the liquid crystal panel 10B operating in the IPS mode is normally black.
  • FIG. 2A shows a cross-sectional view of the display device 100C
  • FIG. 2B shows a cross-sectional view of the display device 100D
  • the display device 100C is different from the display device 100A in that a liquid crystal panel that functions as a light control panel is an active matrix type.
  • the display device 100D is different from the display device 100B in that the liquid crystal panel that functions as a light control panel is an active matrix type.
  • the display device 100C includes a liquid crystal panel 10C, a liquid crystal panel 20C, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • liquid crystal panel 10C has the same configuration as the liquid crystal panel 10A, detailed description thereof is omitted.
  • the liquid crystal panel 20C is an active matrix type liquid crystal panel to which the TN mode is applied.
  • the liquid crystal panel 20C is a transmissive liquid crystal panel.
  • the liquid crystal panel 20C functions as a light control panel.
  • the liquid crystal panel 20C includes a substrate 21, a substrate 22, a transistor 23, an insulating layer 24, a liquid crystal element 50, and the like.
  • the liquid crystal element 50 includes an electrode 51, a liquid crystal layer 52, and an electrode 53.
  • the electrode 51 is provided on the insulating layer 24.
  • the electrode 51 and the transistor 23 are electrically connected through an opening provided in the insulating layer 24.
  • the electrode 53 is provided on the substrate 22 side.
  • the liquid crystal layer 52 is sandwiched between the electrode 51 and the electrode 53.
  • a conductive layer 25 formed using the same process and the same material as the electrode 51 is provided on the substrate 21.
  • the conductive layer 25 is electrically connected to the electrode 53 through the connection body 29.
  • the structure and materials of the transistors may be the same or different.
  • the display device 100D includes a liquid crystal panel 10D, a liquid crystal panel 20D, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • liquid crystal panel 10D has the same configuration as the liquid crystal panel 10B, detailed description thereof is omitted.
  • liquid crystal panel 20D has the same configuration as the liquid crystal panel 20C, detailed description thereof is omitted.
  • ⁇ Configuration example 4> Although not shown in Structural Examples 1 to 3, in the display device of this embodiment, one or both of the two liquid crystal panels are provided with a colored layer (such as a color filter). Various colors can be presented by changing the color of the colored layer depending on the sub-pixel. Therefore, the display device of this embodiment can display a color image.
  • the light 35 emitted from the light source included in the backlight unit 30 is absorbed by the colored layer in light other than the specific wavelength region.
  • light emitted from the red sub-pixel to the outside of the display device exhibits red
  • light emitted from the green sub-pixel to the outside of the display device exhibits green
  • the light is emitted from the blue sub-pixel to the display device.
  • the light emitted to the outside exhibits blue.
  • an arrangement example of the colored layer will be described.
  • FIG. 3A is a cross-sectional view of the display device 100E.
  • the display device 100E includes a liquid crystal panel 10E, a liquid crystal panel 20E, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • the liquid crystal panel 10E includes a light shielding layer 38 and a colored layer 39 in addition to the configuration of the liquid crystal panel 10C. Specifically, a light shielding layer 38 and a colored layer 39 are provided on the substrate 12 side. Of the light incident on the liquid crystal panel 10E, only light in a specific wavelength region passes through the colored layer 39 and is emitted to the outside of the display device 100E. By providing the colored layer 39 at a position close to the display surface, color mixing can be suppressed and display quality of the display device can be improved.
  • liquid crystal panel 20E has the same configuration as the liquid crystal panel 20C, detailed description thereof is omitted.
  • FIG. 3B is a cross-sectional view of the display device 100F.
  • the display device 100F includes a liquid crystal panel 10F, a liquid crystal panel 20F, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • the liquid crystal panel 10F includes a light shielding layer 38 in addition to the configuration of the liquid crystal panel 10D. Specifically, a light shielding layer 38 is provided on the substrate 12 side.
  • the liquid crystal panel 20F has a configuration in which the liquid crystal panel 20D is turned upside down.
  • the substrate 21 is positioned on the liquid crystal panel 10F side, and the substrate 22 is positioned on the backlight unit 30 side.
  • the liquid crystal panel 20 ⁇ / b> F includes an insulating layer 27 and a colored layer 39.
  • a colored layer 39 is provided on the substrate 22, an insulating layer 27 is provided on the colored layer 39, and an electrode 53 is provided on the insulating layer 27.
  • the light 35 emitted from the light source of the backlight unit 30 is incident on the liquid crystal panel 20F via the polarizing plate 61.
  • the light 35 passes through the liquid crystal panel 20F in the order of the substrate 22, the colored layer 39, the insulating layer 27, the liquid crystal element 50, the insulating layer 24, and the substrate 21.
  • light other than a specific wavelength region is absorbed by the colored layer 39.
  • only light in a specific wavelength region is incident on the liquid crystal element 50, the insulating layer 24, the substrate 21, the polarizing plate 62, the liquid crystal panel 10F, and the polarizing plate 63, and is emitted outside the display device 100F.
  • the amount of light incident on the liquid crystal layers of the two liquid crystal panels can be reduced as compared with the display device 100E.
  • FIG. 4A is a cross-sectional view of the display device 100G
  • FIG. 4B is a cross-sectional view of the display device 100H.
  • the display device 100G includes a liquid crystal panel 10G, a liquid crystal panel 20G, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • the liquid crystal panel 10G is different from the liquid crystal panel 10E in that it does not have the substrate 11 but has the flexible substrate 16.
  • the liquid crystal panel 20G is different from the liquid crystal panel 20E in that it does not have the substrate 22 but has a flexible substrate 26.
  • the display device 100H includes a liquid crystal panel 10H, a liquid crystal panel 20H, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • the liquid crystal panel 10 ⁇ / b> H has a configuration in which the liquid crystal panel 10 ⁇ / b> F is turned upside down, and does not have the substrate 12 but has the flexible substrate 16. On the flexible substrate 16, a light shielding layer 38 and a colored layer 39 are provided.
  • the liquid crystal panel 20H has the same configuration as the liquid crystal panel 20G.
  • a flexible material can be used for each of the flexible substrate 16 and the flexible substrate 26, and a resin film is preferably used.
  • the display device can be made thinner and lighter than when a hard substrate such as a glass substrate is used.
  • the distance between the liquid crystal elements included in the two liquid crystal panels can be shortened, the occurrence of parallax can be suppressed and the viewing angle of the display device can be widened. This is particularly effective when the number of pixels of the liquid crystal panel 10H and the liquid crystal panel 20H is close or the same.
  • the light 35 emitted from the light source of the backlight unit 30 is incident on the liquid crystal panel 10H via the polarizing plate 61, the liquid crystal panel 20H, and the polarizing plate 62.
  • the light 35 passes through the liquid crystal panel 10H in the order of the flexible substrate 16, the colored layer 39, the liquid crystal element 45, the insulating layer 14, and the substrate 11.
  • light other than a specific wavelength region is absorbed by the colored layer 39.
  • only light in a specific wavelength region enters the liquid crystal element 45, the insulating layer 14, the substrate 11, and further the polarizing plate 63, and is emitted outside the display device 100H.
  • an electrode or a transistor of a liquid crystal element is formed over a hard substrate and bonded to the substrate 12 or the substrate 21, and then the hard substrate is peeled off and transferred to a flexible substrate can be used.
  • the flexible substrate 16 and the flexible substrate 26 may be bonded to the substrate 12 or the substrate 21 with an adhesive or the like, respectively.
  • a hard substrate over which a transistor is formed may have lower peelability than a hard substrate over which only an electrode of a liquid crystal element is formed. Therefore, it is preferable to form one or a plurality of electrodes, colored layers, and light-shielding layers of a liquid crystal element over a hard substrate that is peeled later, and a transistor is formed on a substrate (the substrate 12 or the substrate 21) that is not peeled off. .
  • the transistor 13 is formed on the substrate 11
  • the transistor 23 is formed on the substrate 21
  • the electrode 53, the coloring layer 39, the light shielding layer 38, and the like are located on the flexible substrate side. .
  • the hard substrate can be peeled off with a high yield and transferred to the flexible substrate 26. Further, after the colored layer 39 and the light shielding layer 38 are formed on the hard substrate and bonded to the substrate 11, the hard substrate can be peeled off with a high yield and transferred to the flexible substrate 16.
  • One embodiment of the present invention can be applied to a display device (also referred to as an input / output device or a touch panel) on which a touch sensor is mounted.
  • a display device also referred to as an input / output device or a touch panel
  • the configuration of each display device described above can be applied to a touch panel.
  • a detection element also referred to as a sensor element
  • Various sensors that can detect the proximity or contact of an object to be detected, such as a finger or a stylus, can be applied as the detection element.
  • a sensor method for example, various methods such as a capacitance method, a resistance film method, a surface acoustic wave method, an infrared method, an optical method, and a pressure-sensitive method can be used.
  • a touch panel having a capacitive detection element will be described as an example.
  • Examples of the electrostatic capacity method include a surface electrostatic capacity method and a projection electrostatic capacity method.
  • examples of the projected capacitance method include a self-capacitance method and a mutual capacitance method. The mutual capacitance method is preferable because simultaneous multipoint detection is possible.
  • the touch panel of one embodiment of the present invention includes a structure in which a separately manufactured display panel and a detection element are bonded together, a structure in which an electrode that forms the detection element is provided on one or both of a substrate that supports the display element and a counter substrate, and the like Various configurations can be applied.
  • the touch sensor is preferably mounted on a liquid crystal panel located on the display surface side. Thereby, the sensitivity of a touch sensor can be raised.
  • a display liquid crystal panel is located on the display surface side and has a touch sensor.
  • FIG. 5A shows a cross-sectional view of the touch panel 110A.
  • FIG. 5B is a cross-sectional view of the touch panel 110B.
  • a touch panel 110A illustrated in FIG. 5A includes a liquid crystal panel 111A, a liquid crystal panel 112A, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • the light 35 emitted from the light source of the backlight unit 30 passes through the polarizing plate 61, the liquid crystal panel 112A, the polarizing plate 62, the liquid crystal panel 111A, and the polarizing plate 63 in this order, and is emitted to the outside of the touch panel 110A.
  • a material that transmits visible light is used for the material of these layers through which the light 35 is transmitted.
  • the liquid crystal panel 111A has a function of displaying an image and a function as a touch sensor.
  • the touch panel 110A has a configuration in which an electrode or the like constituting a detection element is provided only on the substrate 11 on which the transistor 13 or the like of the liquid crystal panel 111A is formed.
  • Such a configuration can reduce the thickness or weight of the touch panel or reduce the number of components of the touch panel, compared to a configuration in which the separately manufactured liquid crystal panel and the detection element are bonded.
  • substrate 12 side can be simplified.
  • one or a plurality of FPCs connected to the substrate 11 side can supply both a signal for driving the liquid crystal element and a signal for driving the detection element. Therefore, it is easy to incorporate in an electronic device, and the number of parts can be reduced.
  • the liquid crystal panel 111A is an active matrix liquid crystal panel to which the FFS mode is applied.
  • the liquid crystal panel 111A is a transmissive liquid crystal panel.
  • the liquid crystal panel 111A functions as a display panel.
  • the liquid crystal panel 111A includes a substrate 11, a substrate 12, a transistor 13, an insulating layer 14, a liquid crystal element 40a, a liquid crystal element 40b, and the like.
  • the liquid crystal element 40a includes an electrode 41a, a liquid crystal layer 42, and an electrode 43a.
  • the liquid crystal element 40b includes an electrode 41b, a liquid crystal layer 42, and an electrode 43b.
  • FIG. 5A two transistors 13 are shown.
  • An insulating layer 14 is provided on the two transistors 13, and an electrode 41 a and an electrode 41 b are provided on the insulating layer 14.
  • the electrode 41 a and one of the two transistors 13 are electrically connected through an opening provided in the insulating layer 14.
  • the electrode 41 b and the other of the two transistors 13 are electrically connected through an opening provided in the insulating layer 14.
  • the electrode 41 a and the electrode 41 b are covered with an insulating layer 44, and the electrode 43 a and the electrode 43 b are provided on the insulating layer 44.
  • the electrode 41a has a region overlapping with the electrode 43a with the insulating layer 44 interposed therebetween.
  • the electrode 41a also has a region that does not overlap with the electrode 43a.
  • the electrode 41b has a region overlapping with the electrode 43b with the insulating layer 44 interposed therebetween.
  • the electrode 41b also has a region that does not overlap with the electrode 43b.
  • the liquid crystal layer 42 is sandwiched between the substrate 11 and the substrate 12.
  • the electrode 43a and the electrode 43b are electrically insulated.
  • proximity or contact of the detection target can be detected using a capacitance formed between the electrode 43a and the electrode 43b. That is, in the touch panel 110A, the electrodes 43a and 43b serve as both the common electrode of the liquid crystal element and the electrode of the detection element.
  • the electrode included in the liquid crystal element also serves as the electrode included in the detection element. Therefore, the manufacturing process can be simplified and the manufacturing cost can be reduced. In addition, the touch panel can be reduced in thickness and weight.
  • the liquid crystal panel 112A has the same configuration as the liquid crystal panel 20C (FIG. 2A).
  • the liquid crystal element 50 included in the liquid crystal panel 112A is disposed so as to overlap with two or more liquid crystal elements included in the liquid crystal panel 111A (two liquid crystal elements 40a and 40b in FIG. 5A). That is, it is a configuration that performs dimming of two or more subpixels of the touch panel 110 ⁇ / b> A using one liquid crystal element 50. In other words, dimming of two or more subpixels of the liquid crystal panel 111A is performed using one subpixel of the liquid crystal panel 112A.
  • the display panel and the light control panel can have different resolution and definition.
  • the resolution of the display panel is preferably equal to or higher than the resolution of the light control panel.
  • a touch panel 110B illustrated in FIG. 5B includes a liquid crystal panel 111B, a liquid crystal panel 112B, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • the light 35 emitted from the light source of the backlight unit 30 passes through the polarizing plate 61, the liquid crystal panel 112B, the polarizing plate 62, the liquid crystal panel 111B, and the polarizing plate 63 in this order, and is emitted to the outside of the touch panel 110B.
  • a material that transmits visible light is used for the material of these layers through which the light 35 is transmitted.
  • the liquid crystal panel 111B has a function of displaying an image and a function as a touch sensor.
  • the liquid crystal panel 111B has a configuration in which an electrode or the like constituting a detection element is provided only on the counter substrate (substrate 12). Such a configuration can reduce the thickness or weight of the touch panel or reduce the number of components of the touch panel, compared to a configuration in which a separately manufactured display device and a detection element are bonded.
  • a plurality of electrodes 71 and electrodes 72 are provided on the substrate 12.
  • the electrode 71 and the electrode 72 overlap with the electrode 73 with the insulating layer 74 interposed therebetween.
  • the electrode 71 and the electrode 73 are electrically connected through an opening provided in the insulating layer 74.
  • the two electrodes 71 provided so as to sandwich the electrode 72 are electrically connected by an electrode 73.
  • the electrode 73 overlaps the light shielding layer 38 with the insulating layer 75 interposed therebetween.
  • the visible light transmittance of the electrode 73 does not matter. Since the electrode 71 and the electrode 72 have a portion overlapping the colored layer 39, it is preferable that the visible light transmittance is high.
  • the electrodes constituting the detection element may be arranged only in the non-display area.
  • the visible light transmittance of the material of the electrode is not limited. Therefore, a low resistivity material such as metal can be used.
  • a metal mesh as the wiring and electrodes of the touch sensor. Thereby, the resistance of the wiring and electrodes of the touch sensor can be lowered.
  • metal is a material having a high reflectance, but it can be darkened by performing an oxidation treatment or the like. Therefore, even when viewed from the display surface side, it is possible to suppress a decrease in visibility due to reflection of external light.
  • the wiring and the electrode may be formed using a stack of a metal layer and a layer with low reflectance (also referred to as a “dark color layer”).
  • the dark color layer include a layer containing copper oxide and a layer containing copper chloride or tellurium chloride.
  • the dark color layer is formed using fine metal particles such as Ag particles, Ag fibers, and Cu particles, nanocarbon particles such as carbon nanotubes (CNT) and graphene, and conductive polymers such as PEDOT, polyaniline, and polypyrrole. May be.
  • the components provided on the substrate 11 are the same as those of the liquid crystal panel 10D illustrated in FIG.
  • the liquid crystal panel 112B has a configuration similar to that of the liquid crystal panel 20D illustrated in FIG.
  • an active matrix liquid crystal panel to which the FFS mode is applied is used as the liquid crystal panel for display, and an active matrix liquid crystal panel to which the TN mode is applied is used as the liquid crystal panel for light control.
  • the display device will be described.
  • FIG. 6 shows a cross-sectional view of the display device 200A.
  • the display device 200A includes a liquid crystal panel 80A that is a liquid crystal panel for display and a liquid crystal panel 90A that is a liquid crystal panel for dimming.
  • the display device 200 ⁇ / b> A further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • FIG. 6 can be a specific example of a display device corresponding to the configuration example 3 (the display device 100C illustrated in FIG. 2A) and the configuration example 4 (the display device 100E illustrated in FIG. 3A).
  • the display device 200A includes a display unit 162 and a drive circuit unit 164.
  • the display portion 162 includes a plurality of pixels and has a function of displaying an image.
  • the pixel has a plurality of subpixels.
  • the display unit 162 can perform full-color display by including one pixel including a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the color which a subpixel exhibits is not restricted to red, green, and blue.
  • a sub-pixel exhibiting a color such as white, yellow, magenta, or cyan may be used.
  • the transmission region of the liquid crystal panel 90A and the display region of the liquid crystal panel 80A are stacked.
  • the light emitted from the light source included in the backlight unit 30 is transmitted through the polarizing plate 61, the transmission region of the liquid crystal panel 90A, the polarizing plate 62, the display region of the liquid crystal panel 80A, and the polarizing plate 63 in this order. It is injected outside.
  • a material that transmits visible light is used as a material for these layers through which light is transmitted.
  • the liquid crystal panel 80A and the liquid crystal panel 90A can independently have one or both of a scanning line driving circuit and a signal line driving circuit. Alternatively, the liquid crystal panel 80A and the liquid crystal panel 90A may not include both the scanning line driving circuit and the signal line driving circuit.
  • the liquid crystal panel may include a sensor such as a touch sensor
  • the liquid crystal panel may include a sensor driving circuit.
  • an IC integrated circuit having one or more of a signal line driver circuit, a scan line driver circuit, and a sensor driver circuit may be connected to the liquid crystal panel.
  • the FPC 172b is electrically connected to the liquid crystal panel 80A through the connection body 242b.
  • An FPC 172a is electrically connected to the liquid crystal panel 90A via a connection body 242a.
  • a signal and power are supplied from the outside to the drive circuit unit 164 via each FPC. Signals and power are supplied to the display portion 162 and the driver circuit portion 164 through the conductive layer 251 and the wiring 222c.
  • FIG. 6 illustrates an example in which a portion to which the FPC 172b of the liquid crystal panel 80A is connected and a portion to which the FPC 172a of the liquid crystal panel 90A are connected overlap, but one embodiment of the present invention is not limited thereto, and these portions are It does not have to overlap each other.
  • the liquid crystal panel 90A includes a substrate 21, a transistor 201a, a transistor 23a, a liquid crystal element 50, an alignment film 133a, an alignment film 133b, an adhesive layer 141a, a substrate 22, and the like.
  • the display portion 162 is provided with a transistor 23a.
  • the transistor 23a includes a conductive layer 221 functioning as a gate electrode, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer 231, and a conductive layer 222a and a conductive layer 222b functioning as a source electrode and a drain electrode.
  • the transistor 23 a is covered with an insulating layer 217 and an insulating layer 218.
  • the insulating layer 215 functions as a planarization film.
  • the transistor 23a includes a metal oxide in the semiconductor layer 231.
  • the conductive layer 222b is electrically connected to the electrode 51 through an opening provided in the insulating layer 217, the insulating layer 218, and the insulating layer 215.
  • the driver circuit portion 164 is provided with a transistor 201a.
  • the transistor 201a has a structure similar to that of the transistor 23a.
  • the display unit 162 is provided with a liquid crystal element 50.
  • the liquid crystal element 50 is a liquid crystal element to which the TN mode is applied.
  • the liquid crystal element 50 includes an electrode 51, an electrode 53, and a liquid crystal layer 52.
  • the alignment of the liquid crystal layer 52 can be controlled by an electric field generated between the electrode 51 and the electrode 53.
  • the liquid crystal layer 52 is located between the alignment film 133a and the alignment film 133b.
  • the alignment film can control the alignment of the liquid crystal layer 52.
  • the alignment film 133 a is positioned between the electrode 51 and the liquid crystal layer 52
  • the alignment film 133 b is positioned between the electrode 53 and the liquid crystal layer 52.
  • substrate 22 are bonded together by the contact bonding layer 141a.
  • a liquid crystal layer 52 is sealed in a region surrounded by the substrate 21, the substrate 22, and the adhesive layer 141a.
  • the liquid crystal panel 80A includes a substrate 11, a transistor 201b, a transistor 13a, a liquid crystal element 40, an alignment film 133c, an alignment film 133d, a colored layer 39, a light shielding layer 38, an overcoat 121, an adhesive layer 141b, and a substrate. 12 etc.
  • the laminated structure from the substrate 11 to the electrode 41 is the same as the laminated structure from the substrate 21 to the electrode 51 of the liquid crystal panel 90A, detailed description thereof is omitted.
  • a liquid crystal element 40 is provided in the display unit 162.
  • the liquid crystal element 40 is a liquid crystal element to which the FFS mode is applied.
  • the liquid crystal element 40 includes an electrode 41, an electrode 43, and a liquid crystal layer 42.
  • the alignment of the liquid crystal layer 42 can be controlled by an electric field generated between the electrode 41 and the electrode 43.
  • the liquid crystal layer 42 is located between the alignment film 133c and the alignment film 133d.
  • the alignment film can control the alignment of the liquid crystal layer 42.
  • the alignment film 133 c is positioned between the electrode 43 and the insulating layer 44 and the liquid crystal layer 42
  • the alignment film 133 d is positioned between the overcoat 121 and the liquid crystal layer 42.
  • the electrode 43 has, for example, a comb-like top surface shape (also referred to as a planar shape) or a top surface shape provided with a slit.
  • An insulating layer 44 is provided between the electrode 41 and the electrode 43.
  • the electrode 41 has a portion that overlaps the electrode 43 with the insulating layer 44 interposed therebetween. Further, in a region where the electrode 41 and the colored layer 39 overlap, there is a portion where the electrode 43 is not disposed on the electrode 41.
  • An overcoat 121 is preferably provided between the colored layer 39 and the light shielding layer 38 and the liquid crystal layer 42.
  • the overcoat 121 can suppress the diffusion of impurities contained in the colored layer 39 and the light shielding layer 38 into the liquid crystal layer 42.
  • the material of the substrate included in the display device there is no particular limitation on the material of the substrate included in the display device, and various substrates can be used.
  • a glass substrate, a quartz substrate, a sapphire substrate, a semiconductor substrate, a ceramic substrate, a metal substrate, a plastic substrate, or the like can be used.
  • the display device can be reduced in weight and thickness. Furthermore, a flexible display device can be realized by using a flexible substrate.
  • liquid crystal material there are a positive liquid crystal material having a positive dielectric anisotropy ( ⁇ ) and a negative liquid crystal material having a negative dielectric constant.
  • positive dielectric anisotropy
  • negative liquid crystal material having a negative dielectric constant.
  • either material can be used, and an optimum liquid crystal material can be used depending on a mode to be applied and a design.
  • liquid crystal elements to which various modes are applied can be used.
  • VA Vertical Alignment
  • ASM Axial Symmetrical Aligned Micro-cell
  • OCB Optically Compensated Birefringence LC
  • a liquid crystal element to which an AFLC (Antiferroelectric Liquid Crystal) mode, an ECB (Electrically Controlled Birefringence) mode, a VA-IPS mode, a guest-host mode, a vertical alignment (VA) mode, or the like can be used.
  • MVA Multi-Domain Vertical Alignment
  • PVA Powerned Vertical Alignment
  • ASV Advanced Super View
  • the liquid crystal element is an element that controls transmission or non-transmission of light by an optical modulation action of liquid crystal.
  • the optical modulation action of the liquid crystal is controlled by an electric field applied to the liquid crystal (including a horizontal electric field, a vertical electric field, or an oblique electric field).
  • a thermotropic liquid crystal a low molecular liquid crystal
  • a polymer liquid crystal a polymer dispersed liquid crystal (PDLC)
  • PDLC polymer dispersed liquid crystal
  • ferroelectric liquid crystal an antiferroelectric liquid crystal, or the like
  • These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
  • a liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used.
  • the blue phase is one of the liquid crystal phases.
  • a liquid crystal composition mixed with 5% by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range.
  • a liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and exhibits optical isotropy.
  • a liquid crystal composition including a liquid crystal exhibiting a blue phase and a chiral agent does not require alignment treatment and has a small viewing angle dependency. Further, since an alignment film is not necessarily provided, a rubbing process is not necessary, so that electrostatic breakdown caused by the rubbing process can be prevented, and defects or breakage of the display panel during the manufacturing process can be reduced.
  • liquid crystal panel included in the display device of this embodiment is a transmissive liquid crystal panel
  • a conductive material that transmits visible light is used for both of the pair of electrodes.
  • a material containing one or more selected from indium (In), zinc (Zn), and tin (Sn) may be used.
  • indium oxide, indium tin oxide (ITO), indium zinc oxide, indium oxide including tungsten oxide, indium zinc oxide including tungsten oxide, indium oxide including titanium oxide, and titanium oxide are included. Examples thereof include indium tin oxide, indium tin oxide containing silicon oxide (ITSO), zinc oxide, and zinc oxide containing gallium.
  • a film containing graphene can also be used. The film containing graphene can be formed by, for example, reducing a film containing graphene oxide.
  • the conductive film that transmits visible light can be formed using an oxide semiconductor (hereinafter also referred to as an oxide conductive layer).
  • the oxide conductive layer preferably includes, for example, indium, and further includes an In-M-Zn oxide (M is Al, Ti, Ga, Y, Zr, La, Ce, Nd, Sn, or Hf). preferable.
  • An oxide semiconductor is a semiconductor material whose resistance can be controlled by at least one of oxygen vacancies in the film and impurity concentrations of hydrogen, water, and the like in the film. Therefore, the resistivity of the oxide conductive layer is controlled by selecting a treatment in which at least one of oxygen vacancies and impurity concentrations is increased or a treatment in which at least one of oxygen vacancies and impurity concentrations is reduced in the oxide semiconductor layer. be able to.
  • an oxide conductive layer formed using an oxide semiconductor in this manner is an oxide semiconductor layer with high carrier density and low resistance, an oxide semiconductor layer with conductivity, or an oxide semiconductor with high conductivity. It can also be called a layer.
  • the transistor included in the display device of this embodiment may have a top-gate structure or a bottom-gate structure.
  • gate electrodes may be provided above and below the channel.
  • a semiconductor material used for the transistor is not particularly limited, and examples thereof include an oxide semiconductor, silicon, and germanium.
  • crystallinity of the semiconductor material used for the transistor there is no particular limitation on the crystallinity of the semiconductor material used for the transistor, and either an amorphous semiconductor or a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region) is used. May be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
  • a Group 14 element, a compound semiconductor, or an oxide semiconductor can be used for the semiconductor layer.
  • a semiconductor containing silicon, a semiconductor containing gallium arsenide, an oxide semiconductor containing indium, or the like can be used for the semiconductor layer.
  • An oxide semiconductor is preferably used as a semiconductor in which a channel of the transistor is formed.
  • an oxide semiconductor having a larger band gap than silicon is preferably used. It is preferable to use a semiconductor material with a wider band gap and lower carrier density than silicon because current in an off state of the transistor can be reduced.
  • the oxide semiconductor will be described in detail in Embodiment 3.
  • the charge accumulated in the capacitor through the transistor can be held for a long time.
  • the driving circuit can be stopped while maintaining the gradation of the displayed image. As a result, a display device with extremely reduced power consumption can be realized.
  • the transistor preferably includes an oxide semiconductor layer that is highly purified and suppresses formation of oxygen vacancies.
  • the current value (off-current value) in the off state of the transistor can be reduced. Therefore, the holding time of an electric signal such as an image signal can be increased, and the writing interval can be set longer in the power-on state. Therefore, since the frequency of the refresh operation can be reduced, there is an effect of suppressing power consumption.
  • a transistor including an oxide semiconductor can be driven at high speed because a relatively high field-effect mobility can be obtained.
  • the transistor in the display portion and the transistor in the driver circuit portion can be formed over the same substrate. That is, it is not necessary to separately use a semiconductor device formed of a silicon wafer or the like as the drive circuit, so that the number of parts of the display device can be reduced.
  • a high-quality image can be provided by using a transistor that can be driven at high speed.
  • the transistor included in the driver circuit portion 164 and the transistor included in the display portion 162 may have the same structure or different structures.
  • the transistors included in the driver circuit portion 164 may have the same structure, or two or more structures may be used in combination.
  • the transistors included in the display portion 162 may have the same structure, or two or more structures may be used in combination.
  • an organic insulating material or an inorganic insulating material can be used as an insulating material that can be used for each insulating layer, overcoat, or the like included in the display device.
  • the organic insulating material include acrylic resin, epoxy resin, polyimide resin, polyamide resin, polyimide amide resin, siloxane resin, benzocyclobutene resin, and phenol resin.
  • examples thereof include a film, a lanthanum oxide film, a cerium oxide film, and a neodymium oxide film.
  • conductive layers such as various wirings and electrodes of the display device include metals such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, and tungsten.
  • metals such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, and tungsten.
  • an alloy containing this as a main component can be used as a single layer structure or a stacked structure.
  • a two-layer structure in which a titanium film is laminated on an aluminum film a two-layer structure in which a titanium film is laminated on a tungsten film, a two-layer structure in which a copper film is laminated on a molybdenum film, or an alloy film containing molybdenum and tungsten
  • Two-layer structure in which a copper film is laminated two-layer structure in which a copper film is laminated on a copper-magnesium-aluminum alloy film, a titanium film or a titanium nitride film, and an aluminum film or copper layered on the titanium film or titanium nitride film
  • the first and third layers include titanium, titanium nitride, molybdenum, tungsten, an alloy containing molybdenum and tungsten, an alloy containing molybdenum and zirconium, or a film made of molybdenum nitride.
  • a film made of a low resistance material such as copper, aluminum, gold or silver, or an alloy of copper and manganese is preferably formed.
  • ITO indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, ITSO, etc. You may use the electroconductive material which has.
  • the oxide conductive layer may be formed by controlling the resistivity of the oxide semiconductor.
  • a curable resin such as a thermosetting resin, a photocurable resin, or a two-component mixed curable resin
  • a curable resin such as a thermosetting resin, a photocurable resin, or a two-component mixed curable resin
  • an acrylic resin, a urethane resin, an epoxy resin, a siloxane resin, or the like can be used.
  • an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), or the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Conductive Paste
  • the colored layer 39 is a colored layer that transmits light in a specific wavelength range.
  • materials that can be used for the colored layer 39 include metal materials, resin materials, and resin materials containing pigments or dyes.
  • the light shielding layer 38 is provided, for example, between the adjacent colored layers 39 of different colors.
  • a black matrix formed using a metal material or a resin material containing a pigment or dye can be used as the light shielding layer 38.
  • the light shielding layer 38 is preferably provided in a region other than the display portion 162 such as the drive circuit portion 164 because light leakage due to guided light or the like can be suppressed.
  • Thin films (insulating film, semiconductor film, conductive film, etc.) constituting the display device are respectively formed by sputtering, chemical vapor deposition (CVD), vacuum evaporation, and pulsed laser deposition (PLD: Pulsed Laser Deposition).
  • CVD chemical vapor deposition
  • PLD Pulsed Laser Deposition
  • Method atomic layer deposition
  • ALD Atomic Layer Deposition
  • the CVD method include a plasma enhanced chemical vapor deposition (PECVD) method, a thermal chemical vapor deposition (PECVD) method, a thermal CVD method, and the like.
  • An example of the thermal CVD method is a metal organic chemical vapor deposition (MOCVD) method.
  • Thin films (insulating films, semiconductor films, conductive films, etc.) that constitute display devices are spin coat, dip, spray coating, ink jet printing, dispensing, screen printing, offset printing, doctor knife, slit coat, roll coat, curtain, respectively. It can be formed by a method such as coating or knife coating.
  • a thin film included in the display device can be processed using a photolithography method or the like.
  • an island-shaped thin film may be formed by a film formation method using a shielding mask.
  • the thin film may be processed by a nanoimprint method, a sand blast method, a lift-off method, or the like.
  • a photolithography method a resist mask is formed on a thin film to be processed, the thin film is processed by etching or the like, and the resist mask is removed. After forming a photosensitive thin film, exposure and development are performed. And a method for processing the thin film into a desired shape.
  • Examples of the light used for exposure in the photolithography method include i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), and light obtained by mixing these.
  • ultraviolet light, KrF laser light, ArF laser light, or the like can be used.
  • exposure may be performed by an immersion exposure technique.
  • Examples of light used for exposure include extreme ultraviolet light (EUV: Extreme-violet) and X-rays.
  • EUV Extreme-violet
  • an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible. Note that a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
  • etching the thin film For etching the thin film, a dry etching method, a wet etching method, a sand blasting method, or the like can be used.
  • FIG. 7 shows a cross-sectional view of the display device 200B.
  • the display device 200B includes a liquid crystal panel 80B that is a liquid crystal panel for display and a liquid crystal panel 90B that is a liquid crystal panel for dimming.
  • the display device 200B further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • the position of the colored layer 39 is different from the display device 200A.
  • Other configurations are the same as those of the display device 200A.
  • FIG. 7 can be said to be a specific example of a display device corresponding to the configuration example 3 (the display device 100C shown in FIG. 2A).
  • the colored layer 39 is provided on the insulating layer 218 included in the liquid crystal panel 90B. Therefore, the light from the backlight unit 30 is incident on the liquid crystal element 50 and the liquid crystal element 40 after passing through the colored layer 39. Thereby, only light in a specific wavelength region is incident on the liquid crystal element 50 and the liquid crystal element 40. Even if the amount of light of the backlight is increased in order to increase the luminance of the display device 200B, the amount of light incident on the liquid crystal element can be reduced, so that a decrease in the reliability of the liquid crystal element can be suppressed and the liquid crystal element can be stabilized. Can be operated.
  • FIG. 8 shows a cross-sectional view of the display device 200C.
  • the display device 200C includes a liquid crystal panel 80C that is a liquid crystal panel for display and a liquid crystal panel 90C that is a liquid crystal panel for dimming.
  • the display device 200 ⁇ / b> C further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • the display device 200C does not include the substrate 11 and the substrate 22, but includes the flexible substrate 16, the flexible substrate 26, the adhesive layer 81a, the adhesive layer 81b, the insulating layer 82a, and the insulating layer 82b. Different from 200A. Other configurations are the same as those of the display device 200A.
  • FIG. 8 can be said to be a specific example of a display device corresponding to Configuration Example 5 (display device 100G shown in FIG. 4A).
  • FIG. 8 illustrates an example in which the liquid crystal panel 80C and the liquid crystal panel 90C have the same number of pixels (one liquid crystal element 50 is provided for one liquid crystal element 40).
  • the number of pixels of the two liquid crystal panels is close or the same, parallax is particularly likely to occur. Therefore, it is effective to shorten the distance between the two liquid crystal elements using a flexible substrate. .
  • a method for transferring an element manufactured on a hard substrate to a flexible substrate will be described.
  • an insulating layer 82a is formed on a hard substrate with a peeling layer interposed therebetween, and a stacked structure from the transistor 13a to the alignment film 133c is formed.
  • the liquid crystal layer 42 is sandwiched between the substrate 12 on which the laminated structure from the light shielding layer 38 to the alignment film 133d is formed and the hard substrate, and the substrate 12 and the hard substrate are bonded together using the adhesive layer 141b.
  • the hard substrate is peeled off using the peeling layer, and the insulating layer 82a and the flexible substrate 16 are bonded together using the adhesive layer 81a.
  • the insulating layer 82b is formed on the hard substrate through the peeling layer, and the electrode 53 and the alignment film 133b are further formed. Then, the liquid crystal layer 52 is sandwiched between the substrate 21 on which the stacked structure from the transistor 23a to the alignment film 133a is formed and the hard substrate, and the substrate 21 and the hard substrate are bonded together using the adhesive layer 141a. Thereafter, the hard substrate is peeled off using the peeling layer, and the insulating layer 82b and the flexible substrate 26 are bonded together using the adhesive layer 81b.
  • FIG. 9 shows a cross-sectional view of the display device 200D.
  • the display device 200D includes a liquid crystal panel 80D that is a liquid crystal panel for display and a liquid crystal panel 90D that is a liquid crystal panel for dimming.
  • the display device 200D further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • the display device 200D is different from the display device 200C in that the liquid crystal panel 80D has a configuration in which a part of the liquid crystal panel 80C (an element between the insulating layer 82a and the substrate 12) is turned upside down. Other configurations are the same as those of the display device 200C.
  • the display device 200D illustrated in FIG. 9 can be regarded as a modification of the configuration example 5 (the display device 100H illustrated in FIG. 4B).
  • the light from the backlight unit 30 is incident on the liquid crystal element 40 after passing through the colored layer 39.
  • the amount of light of the backlight is increased in order to increase the luminance of the display device 200D, the amount of light incident on the liquid crystal element 40 can be reduced, so that a decrease in the reliability of the liquid crystal element 40 can be suppressed, and the liquid crystal element 40 can be operated stably.
  • Configuration Example 8 an active matrix liquid crystal panel to which the IPS mode is applied is used as the display liquid crystal panel, and an active matrix liquid crystal panel to which the TN mode is applied is used as the light control liquid crystal panel.
  • the display device will be described.
  • FIG. 10 shows a cross-sectional view of the display device 200E.
  • the display device 200E includes a liquid crystal panel 80E that is a liquid crystal panel for display and a liquid crystal panel 90E that is a liquid crystal panel for dimming.
  • the display device 200E further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • FIG. 10 can be said to be a specific example of a display device corresponding to Configuration Example 3 (display device 100D shown in FIG. 2B).
  • the liquid crystal panel 90E is different from the liquid crystal panel 90A in the transistor structure. Other than that, it has the same configuration as the liquid crystal panel 90A.
  • the display portion 162 is provided with a transistor 23b.
  • the transistor 23b includes a conductive layer 221 functioning as a gate electrode, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer 231, an impurity semiconductor layer 232, a conductive layer 222a functioning as a source electrode and a drain electrode, and a conductive layer 222b.
  • the transistor 23b is covered with an insulating layer 212.
  • the transistor 23 b includes hydrogenated amorphous silicon in the semiconductor layer 231.
  • the driver circuit portion 164 is provided with a transistor 201c.
  • the transistor 201c has a structure similar to that of the transistor 23b.
  • the liquid crystal panel 80E is different from the liquid crystal panel 80A in the structure of the transistor and the structure of the liquid crystal element. Other than that, it has the same configuration as the liquid crystal panel 80A.
  • the transistor 13b and the transistor 201d have a structure similar to that of the transistor 23b and the transistor 201c.
  • the display portion 162 is provided with a liquid crystal element 45.
  • the liquid crystal element 45 is a liquid crystal element to which the IPS mode is applied.
  • the liquid crystal element 45 includes an electrode 46, an electrode 48, and a liquid crystal layer 47.
  • the alignment of the liquid crystal layer 47 can be controlled by an electric field generated between the electrode 46 and the electrode 48.
  • the liquid crystal layer 47 is located between the alignment film 133c and the alignment film 133d.
  • the alignment film can control the alignment of the liquid crystal layer 47.
  • an alignment film 133c is provided so as to cover the electrode 46 and the electrode 48, and the alignment film 133d is located between the overcoat 121 and the liquid crystal layer 47.
  • the electrode 46 and the electrode 48 have, for example, a comb-like upper surface shape (also referred to as a planar shape) or an upper surface shape provided with a slit.
  • FIG. 11 is a cross-sectional view of the display device 200F.
  • the display device 200F includes a liquid crystal panel 80F that is a liquid crystal panel for display and a liquid crystal panel 90F that is a liquid crystal panel for light control.
  • the display device 200F further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • the position of the colored layer 39 is different from that of the display device 200E. Furthermore, the display device 200F is different from the display device 200E in that the liquid crystal panel 90F has a configuration in which the liquid crystal panel 90E is turned upside down. Note that the liquid crystal panel 90F has a colored layer 39 and an overcoat 121a in contact with the substrate 22. The other configuration is the same as that of the display device 200E.
  • FIG. 11 can be said to be a specific example of a display device corresponding to Configuration Example 4 (display device 100F shown in FIG. 3B).
  • the light from the backlight unit 30 passes through the colored layer 39 and then enters the liquid crystal element 50 and the liquid crystal element 45.
  • the amount of light from the backlight is increased in order to increase the brightness of the display device, the amount of light incident on the liquid crystal element can be reduced, so that a decrease in the reliability of the liquid crystal element can be suppressed and the liquid crystal element can be stabilized. It can be operated.
  • a transistor illustrated in FIG. 12A includes a conductive layer 221 functioning as a gate electrode, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer 231, a conductive layer 222a functioning as a source electrode and a drain electrode, and a conductive layer. 222b.
  • the transistor illustrated in FIG. 12A includes low-temperature polysilicon (also referred to as low temperature poly-silicon or LTPS) in the semiconductor layer 231.
  • low-temperature polysilicon also referred to as low temperature poly-silicon or LTPS
  • the transistor illustrated in FIG. 12B functions as a conductive layer 221 functioning as a first gate electrode, an insulating layer 211 functioning as a first gate insulating layer, a semiconductor layer 231, and a source electrode and a drain electrode.
  • the conductive layer 222a and the conductive layer 222b include a conductive layer 223 that functions as a second gate electrode, and an insulating layer 225 that functions as a second gate insulating layer.
  • the semiconductor layer 231 includes a channel region and a low resistance region.
  • a semiconductor layer 231 of the transistor illustrated in FIG. 12B includes a metal oxide. The channel region overlaps with the conductive layer 223 with the insulating layer 225 provided therebetween.
  • the low resistance region includes a portion connected to the conductive layer 222a and a portion connected to the conductive layer 222b.
  • the transistor illustrated in FIG. 12B has gates above and below a channel.
  • the two gates are preferably electrically connected.
  • a transistor in which two gates are electrically connected can have higher field-effect mobility than another transistor, and can increase on-state current.
  • the area occupied by the circuit portion can be reduced.
  • signal delay in each wiring can be reduced and display unevenness can be suppressed even if the number of wirings is increased by increasing the size or definition of the display device. Is possible.
  • the display device can be narrowed.
  • a highly reliable transistor can be realized.
  • An insulating layer 212 and an insulating layer 213 are provided over the conductive layer 223, and a conductive layer 222a and a conductive layer 222b are provided thereover.
  • the physical distance between the conductive layer 221 and the conductive layer 222a or the conductive layer 222b can be easily separated; thus, parasitic capacitance between them can be reduced. is there.
  • ⁇ Configuration example of liquid crystal element> In the liquid crystal element 40 illustrated in FIG. 1 and the like, an example in which the electrode 41 functioning as a pixel electrode is not provided with a slit or an opening is described; however, one embodiment of the present invention is not limited thereto. As shown in FIGS. 13A to 13C, slits (or openings) may be provided in both the pixel electrode and the common electrode.
  • the end of the slit of the electrode 41 and the end of the electrode 43 may be aligned.
  • a cross-sectional view in this case is shown in FIG.
  • the electrode 41 and the electrode 43 may have a portion where they overlap each other when viewed from above.
  • a cross-sectional view in this case is shown in FIG.
  • the electrode 41 and the electrode 43 may not be provided.
  • a cross-sectional view in this case is shown in FIG.
  • the configuration example illustrated in FIGS. 13A to 13C may be referred to as a kind of IPS mode.
  • a configuration in which the pixel electrode and the common electrode are provided on the same plane is referred to as an IPS mode
  • a configuration in which the pixel electrode and the common electrode are stacked via an insulating layer is described as an FFS mode.
  • the configuration example shown in FIGS. 13A to 13C is also exemplified as a kind of FFS mode.
  • an electrode 41 functioning as a pixel electrode may be provided over the electrode 43 functioning as a common electrode with an insulating layer 44 interposed therebetween.
  • the electrode 41 and the transistor 13 are electrically connected through the opening of the electrode 43 and the insulating layer 44.
  • Configuration Example 9 an active matrix liquid crystal panel to which the FFS mode is applied is used as the display liquid crystal panel, and an active matrix liquid crystal panel to which the TN mode is applied is used as the light control liquid crystal panel.
  • the touch panel will be described.
  • FIG. 14 shows a cross-sectional view of the touch panel 210A.
  • the touch panel 210A includes a liquid crystal panel 85A that is a liquid crystal panel for display and a liquid crystal panel 86A that is a liquid crystal panel for dimming.
  • the touch panel 210 ⁇ / b> A further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • FIG. 14 can be said to be a specific example of a touch panel corresponding to Configuration Example 6 (touch panel 110A shown in FIG. 5A).
  • the liquid crystal panel 85A has a function of displaying an image and a function as a touch sensor.
  • the liquid crystal panel 85A is an active matrix liquid crystal panel to which the FFS mode is applied.
  • the liquid crystal panel 85A is a transmissive liquid crystal panel.
  • the liquid crystal panel 85A functions as a display panel.
  • the liquid crystal panel 85A includes a substrate 11, a substrate 12, a transistor 13a, a transistor 13b, a liquid crystal element 40a, a liquid crystal element 40b, a light shielding layer 38, a colored layer 39, and the like.
  • the liquid crystal element 40a includes an electrode 41a, a liquid crystal layer 42, and an electrode 43a.
  • the liquid crystal element 40b includes an electrode 41b, a liquid crystal layer 42, and an electrode 43b.
  • the source or drain of the transistor 13a is electrically connected to the electrode 41a.
  • the source or drain of the transistor 13b is electrically connected to the electrode 41b.
  • the electrode 41 a and the electrode 41 b are covered with an insulating layer 44, and the electrode 43 a and the electrode 43 b are provided on the insulating layer 44.
  • the electrode 41a has a region overlapping with the electrode 43a with the insulating layer 44 interposed therebetween.
  • the electrode 41a also has a region that does not overlap with the electrode 43a.
  • the electrode 41b has a region overlapping with the electrode 43b with the insulating layer 44 interposed therebetween.
  • the electrode 41b also has a region that does not overlap with the electrode 43b.
  • the liquid crystal layer 42 is sandwiched between the alignment film 133c and the alignment film 133d.
  • the electrode 43a and the electrode 43b are electrically insulated.
  • the touch panel 210A can detect the proximity or contact of the detection target using a capacitance formed between the electrode 43a and the electrode 43b.
  • the electrodes 43a and 43b serve as both the common electrode of the liquid crystal element and the electrode of the detection element.
  • the liquid crystal panel 86A has the same configuration as the liquid crystal panel 90A (FIG. 6).
  • the liquid crystal element 50 included in the liquid crystal panel 86A is placed so as to overlap with two or more liquid crystal elements included in the liquid crystal panel 85A (two liquid crystal elements 40a and 40b in FIG. 14). That is, dimming of two or more subpixels included in the touch panel 210 ⁇ / b> A can be performed using one liquid crystal element 50.
  • Configuration Example 10 an active matrix liquid crystal panel to which the IPS mode is applied is used as the display liquid crystal panel, and an active matrix liquid crystal panel to which the TN mode is applied is used as the light control liquid crystal panel.
  • the touch panel will be described.
  • FIG. 15 shows a cross-sectional view of the touch panel 210B.
  • the touch panel 210B includes a liquid crystal panel 85B that is a liquid crystal panel for display and a liquid crystal panel 86B that is a liquid crystal panel for light control.
  • the touch panel 210 ⁇ / b> B further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
  • FIG. 15 can be said to be a specific example of a touch panel corresponding to Configuration Example 6 (touch panel 110B shown in FIG. 5B).
  • the liquid crystal panel 85B has a function of displaying an image and a function as a touch sensor.
  • the liquid crystal panel 85B has a configuration in which an electrode or the like constituting a detection element is provided only on the counter substrate (substrate 12).
  • the configuration of the liquid crystal panel 111B illustrated in FIG. 5 can be referred to.
  • the liquid crystal panel 86B has the same configuration as the liquid crystal panel 90A shown in FIG.
  • the liquid crystal panel 85B and the liquid crystal panel 86B have different transistor structures and semiconductor materials.
  • the structure, material, and the like of a transistor can be selected for each panel according to a difference in resolution of a liquid crystal panel, a difference in liquid crystal element, and the like.
  • a large display module with high resolution can be manufactured using the display device of this embodiment.
  • the resolution of an 8K4K display device is very high, with a horizontal resolution of 7680 and a vertical resolution of 4320.
  • Recommendation ITU-R BT. 2020-2 As an international standard for 8K4K display devices, Recommendation ITU-R BT. 2020-2.
  • the driving method is a progressive method, and the maximum frame frequency is 120 Hz.
  • the image rewriting operation may not be in time during the frame period, and may not be driven.
  • a structure in which a pixel region is divided into a plurality of (for example, four) pixels and a scan line driver circuit (also referred to as a gate driver) and a signal line driver circuit (also referred to as a source driver) are provided for each pixel region can be used.
  • a scan line driver circuit also referred to as a gate driver
  • a signal line driver circuit also referred to as a source driver
  • two or more (typically two, three, or four) gate lines are simultaneously applied.
  • a configuration in which a selection signal is supplied and two or more pixels adjacent in the column direction are simultaneously selected can be applied. Two or more pixels selected at the same time are connected to different source lines. That is, two or more source lines are arranged for each column.
  • Such a configuration is preferable because it is less expensive than a configuration in which the pixel region is divided. From the fact that a circuit that synchronizes the divided pixel areas is unnecessary, the boundary portion of the divided pixel areas is not visually recognized, and the image processing for dividing the input image data is unnecessary. A configuration in which the pixel region is not divided is preferable.
  • a display module having a configuration in which the pixel region is not divided will be described in detail.
  • a display module having a structure in which a selection signal is supplied to each gate line and pixels are selected one by one will be described with reference to FIGS.
  • a display module having a structure in which a selection signal is supplied to each of two gate lines and two pixels are selected will be described with reference to FIGS.
  • FIG. 16A is a block diagram illustrating a structure of a display module.
  • a selection signal is supplied to each gate line, and pixels are selected one by one.
  • Both the gate driver GD and the source driver SD can be externally attached.
  • One or both of the gate driver GD and the source driver SD may be built in the display device.
  • the same signal is supplied to the gate line from the two gate drivers GD.
  • a signal is supplied from one source driver SD to the source line.
  • the pixel area (Pixel Area) is not divided.
  • FIG. 16B shows a circuit diagram of the pixel PIX (i, j).
  • the pixel PIX (i, j) includes a transistor M1, a capacitor C1, and a liquid crystal element LC.
  • the gate of the transistor M1 is connected to the gate line GL (i).
  • One of the source and the drain of the transistor M1 is connected to the source line SL (j), and the other is connected to one electrode of the capacitor C1 and one electrode of the liquid crystal element LC.
  • the other electrode of the capacitive element C1 is connected to the wiring CSCOM.
  • the other electrode of the liquid crystal element LC is connected to the wiring TCOM.
  • FIG. 17A is a block diagram illustrating a structure of a display module.
  • selection signals are simultaneously supplied to two gate lines, and two adjacent pixels in the column direction are simultaneously selected.
  • Both the gate driver GD and the source driver SD can be externally attached.
  • One or both of the gate driver GD and the source driver SD may be built in the display device.
  • the same signal is supplied to the gate line from the two gate drivers GD.
  • the gate line GL 0 (i) is electrically connected to the gate line GL (i) and the gate line GL (i + 1), and the i-th and (i + 1) -th rows are driven simultaneously.
  • a signal is supplied from one source driver SD to the source line.
  • the pixel area is not divided.
  • FIG. 17B is a circuit diagram of the pixel PIX (i, j) and the pixel PIX (i + 1, j).
  • the pixel PIX (i, j) includes a transistor M1, a capacitor C1, and a liquid crystal element LC.
  • the gate of the transistor M1 is connected to the gate line GL (i).
  • One of the source and the drain of the transistor M1 is connected to the source line SL 1 (j), and the other is connected to one electrode of the capacitor C1 and one electrode of the liquid crystal element LC.
  • the other electrode of the capacitive element C1 is connected to the wiring CSCOM.
  • the other electrode of the liquid crystal element LC is connected to the wiring TCOM.
  • the pixel PIX (i + 1, j) includes a transistor M2, a capacitor element C2, and a liquid crystal element LC.
  • the gate of the transistor M2 is connected to the gate line GL (i + 1).
  • One of the source and the drain of the transistor M2 is connected to the source line SL 2 (j), and the other is connected to one electrode of the capacitor C2 and one electrode of the liquid crystal element LC.
  • the other electrode of the capacitive element C2 is connected to the wiring CSCOM.
  • the other electrode of the liquid crystal element LC is connected to the wiring TCOM.
  • a liquid crystal panel for light control and a liquid crystal panel for display are used, and by applying liquid crystal elements and transistors suitable for the two liquid crystal panels, contrast, viewing angle characteristics, In addition, a display device with high reliability can be realized.
  • each color is represented by a luminance of 256 gradations.
  • each color is expressed by a luminance of 4096 gradations.
  • FIG. 18A shows an example of VT characteristics (voltage-transmittance characteristics) of a liquid crystal element.
  • shaft of FIG. 18 (A) shows the normalized transmittance
  • 8 bits the transmittance from black to white is divided into 256 gradations.
  • 12 bits it is divided into 4096 gradations. Therefore, when the voltage changes by the same value, in the case of 12 bits, a gradation change of about 16 times that of 8 bits occurs. In order to suppress the gradation shift, it is important to suppress the change in voltage.
  • an oxide semiconductor is used for a semiconductor layer of a transistor.
  • a transistor using an oxide semiconductor can have a much lower leakage current (off-state current) in a non-conduction state than a transistor using silicon or the like.
  • increasing the resistivity of the liquid crystal material can be given.
  • the specific resistivity of the liquid crystal material is preferably 1.0 ⁇ 10 14 ⁇ ⁇ cm or more, and more preferably 1.0 ⁇ 10 15 ⁇ ⁇ cm or more.
  • the transmittance change amount ⁇ T per voltage change amount ⁇ V it is possible to reduce the transmittance change amount ⁇ T per voltage change amount ⁇ V. That is, it is preferable to reduce the inclination of the VT characteristic in the liquid crystal element.
  • the inclination of the VT characteristic is reduced by controlling the rubbing angle of the alignment film.
  • 18B1, (B2), (B3), (C1), (C2), and (C3) are schematic views of the electrodes of the liquid crystal element as viewed from above. Furthermore, in each of these figures, liquid crystal molecules 42m located on the electrodes are shown.
  • the electrode 41 and the electrode 43 illustrated in FIGS. 18B1, (B2), (C1), and (C2) can be regarded as a pixel electrode and a common electrode included in an IPS mode liquid crystal element.
  • an IPS mode liquid crystal element will be described as an example.
  • the electrode 43 may be replaced with an electrode 41 to be applied to an FFS mode liquid crystal element.
  • Can do. 18B3 and 18C can be regarded as a pixel electrode included in an FFS mode liquid crystal element, and the distance S can be regarded as a slit width of the electrode 41.
  • the common electrode included in the FFS mode liquid crystal element is provided at a position overlapping the pixel electrode with the insulating layer interposed therebetween.
  • FIG. 18B1 shows the direction of the liquid crystal molecules 42m when the voltage is OFF.
  • FIG. 18B2 shows the direction of the liquid crystal molecules 42m and the direction of the electric field when the voltage is ON.
  • Angle theta p shown in FIG. 18 (B1) is said the direction of the electric field, the orientation of the long axis of the liquid crystal molecules 42m when the voltage OFF, the the angle formed.
  • the direction of the major axis of the liquid crystal molecules 42m when the voltage is OFF is substantially equal to the rubbing direction of the alignment film.
  • the angle theta p may be referred to as the rubbing direction and the angle formed by the direction of the electric field of the alignment film.
  • Angle theta p is preferably less than 80 ° greater than 50 °, more preferably less than 60 ° or 80 °, more preferably 60 ° to 70 ° or less.
  • the inclination of VT characteristic can be made small and a high maximum transmittance can be maintained.
  • the response speed can be increased.
  • the transmittance variation can be reduced even when a voltage change occurs, and gradation shift can be suppressed.
  • FIG. 18C1 shows the direction of the liquid crystal molecules 42m when the voltage is OFF.
  • FIG. 18C2 shows the direction of the liquid crystal molecules 42m and the direction of the electric field when the voltage is ON.
  • the angle ⁇ n shown in FIG. 18C1 can be said to be an angle formed by the direction of the electric field and the direction of the major axis of the liquid crystal molecules 42m when the voltage is OFF.
  • the direction of the major axis of the liquid crystal molecules 42m when the voltage is OFF is substantially equal to the rubbing direction of the alignment film. That is, the angle ⁇ n can be rephrased as an angle formed by the rubbing direction of the alignment film and the electric field direction.
  • the angle ⁇ n is preferably greater than 10 ° and less than 40 °, more preferably 20 ° or more and less than 40 °, and still more preferably 20 ° or more and 30 ° or less.
  • the inclination of VT characteristic can be made small and a high maximum transmittance can be maintained.
  • the response speed can be increased.
  • the transmittance variation can be reduced even when a voltage change occurs, and gradation shift can be suppressed.
  • An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor.
  • a non-single-crystal oxide semiconductor a CAAC-OS (c-axis-aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), a pseudo-amorphous oxide semiconductor (a-like oxide OS) : Amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
  • CAC-OS Cloud-Aligned Composite Oxide Semiconductor
  • non-single-crystal oxide semiconductor or CAC-OS can be preferably used for the semiconductor layer of the transistor disclosed in one embodiment of the present invention.
  • non-single-crystal oxide semiconductor nc-OS or CAAC-OS can be preferably used.
  • a CAC-OS is preferably used as the semiconductor layer of the transistor.
  • the CAC-OS high electrical characteristics or high reliability can be imparted to the transistor.
  • CAC-OS Details of the CAC-OS will be described below.
  • the CAC-OS or the CAC-metal oxide has a conductive function in part of the material and an insulating function in part of the material, and has a function as a semiconductor in the whole material.
  • the conductive function is a function of flowing electrons (or holes) serving as carriers
  • the insulating function is a carrier. This function prevents electrons from flowing.
  • a function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily. In CAC-OS or CAC-metal oxide, by separating each function, both functions can be maximized.
  • the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region.
  • the conductive region has the above-described conductive function
  • the insulating region has the above-described insulating function.
  • the conductive region and the insulating region may be separated at the nanoparticle level.
  • the conductive region and the insulating region may be unevenly distributed in the material, respectively.
  • the conductive region may be observed with the periphery blurred and connected in a cloud shape.
  • the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
  • CAC-OS or CAC-metal oxide is composed of components having different band gaps.
  • CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region.
  • the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
  • the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
  • CAC-OS or CAC-metal oxide can also be referred to as a matrix composite (metal matrix composite) or a metal matrix composite (metal matrix composite).
  • the CAC-OS is one structure of a material in which an element constituting a metal oxide is unevenly distributed with a size of 0.5 nm to 10 nm, preferably, 1 nm to 2 nm or near.
  • an element constituting a metal oxide is unevenly distributed with a size of 0.5 nm to 10 nm, preferably, 1 nm to 2 nm or near.
  • a metal oxide one or more metal elements are unevenly distributed, and a region having the metal element has a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm or near.
  • the mixed state is also called mosaic or patch.
  • the metal oxide preferably contains at least indium.
  • One kind or plural kinds selected from may be included.
  • a CAC-OS in In-Ga-Zn oxide is an indium oxide (hereinafter referred to as InO).
  • X1 (X1 is greater real than 0) and.), or indium zinc oxide (hereinafter, in X2 Zn Y2 O Z2 ( X2, Y2, and Z2 is larger real than 0) and a.), gallium An oxide (hereinafter referred to as GaO X3 (X3 is a real number greater than 0)) or a gallium zinc oxide (hereinafter referred to as Ga X4 Zn Y4 O Z4 (where X4, Y4, and Z4 are greater than 0)) to.) and the like, the material becomes mosaic by separate into, mosaic InO X1 or in X2 Zn Y2 O Z2, is a configuration in which uniformly distributed in the film (hereinafter, click Also called Udo-like.) A.
  • CAC-OS includes a region GaO X3 is the main component, and In X2 Zn Y2 O Z2, or InO X1 is the main component region is a composite metal oxide having a structure that is mixed.
  • the first region indicates that the atomic ratio of In to the element M in the first region is larger than the atomic ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that in the second region.
  • IGZO is a common name and sometimes refers to one compound of In, Ga, Zn, and O.
  • ZnO ZnO
  • the crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC (c-axis aligned crystal) structure.
  • the CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented in the ab plane.
  • CAC-OS relates to a material structure of a metal oxide.
  • CAC-OS refers to a region that is observed in the form of nanoparticles mainly composed of Ga in a material structure including In, Ga, Zn, and O, and nanoparticles that are partially composed mainly of In.
  • the region observed in a shape is a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in the CAC-OS, the crystal structure is a secondary element.
  • the CAC-OS does not include a stacked structure of two or more kinds of films having different compositions.
  • a structure composed of two layers of a film mainly containing In and a film mainly containing Ga is not included.
  • a region GaO X3 is the main component, and In X2 Zn Y2 O Z2 or InO X1 is the main component region, in some cases clear boundary can not be observed.
  • the CAC-OS includes a region that is observed in a part of a nanoparticle mainly including the metal element and a nanoparticle mainly including In.
  • the region observed in the form of particles refers to a configuration in which each region is randomly dispersed in a mosaic shape.
  • the CAC-OS can be formed by a sputtering method under a condition where the substrate is not intentionally heated, for example.
  • a CAC-OS is formed by a sputtering method
  • any one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. Good.
  • the flow rate ratio of the oxygen gas to the total flow rate of the deposition gas during film formation is preferably as low as possible. .
  • the CAC-OS has a feature that a clear peak is not observed when measurement is performed using a ⁇ / 2 ⁇ scan by an out-of-plane method, which is one of X-ray diffraction (XRD) measurement methods. Have. That is, it can be seen from X-ray diffraction that no orientation in the ab plane direction and c-axis direction of the measurement region is observed.
  • XRD X-ray diffraction
  • an electron diffraction pattern obtained by irradiating an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam electron beam) has a ring-like region having a high luminance and a plurality of bright regions in the ring region. A point is observed. Therefore, it can be seen from the electron beam diffraction pattern that the crystal structure of the CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
  • a region in which GaO X3 is a main component is obtained by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component is unevenly distributed and mixed.
  • EDX energy dispersive X-ray spectroscopy
  • the CAC-OS has a structure different from that of the IGZO compound in which the metal element is uniformly distributed, and has a property different from that of the IGZO compound. That, CAC-OS includes a region which is the main component such as GaO X3, In X2 Zn Y2 O Z2 or InO X1 is phase-separated from each other in a region which is the main component, and a region mainly composed of the elements It has a mosaic structure.
  • the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is a region having higher conductivity than a region containing GaO X3 or the like as a main component. That, In X2 Zn Y2 O Z2 or InO X1, is an area which is the main component, by carriers flow, expressed the conductivity of the oxide semiconductor. Accordingly, a region where In X2 Zn Y2 O Z2 or InO X1 is a main component is distributed in a cloud shape in the oxide semiconductor, whereby high field-effect mobility ( ⁇ ) can be realized.
  • areas such as GaO X3 is the main component, as compared to the In X2 Zn Y2 O Z2 or InO X1 is the main component area, it is highly regions insulating. That is, a region containing GaO X3 or the like as a main component is distributed in the oxide semiconductor, whereby leakage current can be suppressed and good switching operation can be realized.
  • CAC-OS when CAC-OS is used for a semiconductor element, the insulating property caused by GaO X3 and the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act in a complementary manner, resulting in high An on-current (I on ) and high field effect mobility ( ⁇ ) can be realized.
  • CAC-OS is optimal for various semiconductor devices including a display.
  • FIG. 19A shows a block diagram of a television device 600.
  • the television apparatus 600 includes a control unit 601, a storage unit 602, a communication control unit 603, an image processing circuit 604, a decoder circuit 605, a video signal receiving unit 606, a timing controller 607, a source driver 608, a gate driver 609, a display panel 620, A timing controller 647, a source driver 648, a gate driver 649, a dimming panel 650, and the like are included.
  • the display panel included in the display device described in Embodiment 1 can be applied to the display panel 620 in FIG.
  • the light control panel included in the display device illustrated in Embodiment 1 can be applied to the light control panel 650 in FIG. Accordingly, it is possible to realize a television device 600 that is large and has high resolution and high display quality.
  • the control unit 601 can function as, for example, a central processing unit (CPU: Central Processing Unit).
  • CPU Central Processing Unit
  • the control unit 601 has a function of controlling components such as the storage unit 602, the communication control unit 603, the image processing circuit 604, the decoder circuit 605, and the video signal receiving unit 606 via the system bus 630.
  • a signal is transmitted between the control unit 601 and each component via the system bus 630.
  • the control unit 601 has a function of processing a signal input from each component connected via the system bus 630, a function of generating a signal output to each component, and the like, thereby being connected to the system bus 630.
  • Each component can be controlled centrally.
  • the storage unit 602 functions as a register, a cache memory, a main memory, a secondary memory, or the like that can be accessed by the control unit 601 and the image processing circuit 604.
  • a storage device that can be used as the secondary memory for example, a storage device to which a rewritable nonvolatile storage element is applied can be used.
  • a flash memory an MRAM (Magnetostatic Random Access Memory), a PRAM (Phase change RAM), a ReRAM (Resistive RAM), an FeRAM (Ferroelectric RAM), or the like can be used.
  • a storage device that can be used as a temporary memory such as a register, a cache memory, or a main memory
  • a volatile storage element such as a DRAM (Dynamic RAM) or an SRAM (Static Random Access Memory) may be used.
  • a RAM provided in the main memory for example, a DRAM is used, and a memory space is virtually allocated and used as a work space of the control unit 601.
  • the operating system, application program, program module, program data, etc. stored in the storage unit 602 are loaded into the RAM for execution. These data, programs, and program modules loaded in the RAM are directly accessed and operated by the control unit 601.
  • the ROM can store BIOS (Basic Input / Output System), firmware and the like that do not require rewriting.
  • BIOS Basic Input / Output System
  • ROM mask ROM, OTPROM (One Time Programmable Read Only Memory), EPROM (Erasable Programmable Read Only Memory), etc. can be used.
  • EPROM include UV-EPROM (Ultra-Violet Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), etc. that can erase stored data by ultraviolet irradiation.
  • a removable storage device may be connected.
  • a terminal for connecting to a recording medium drive such as a hard disk drive (Hard Disk Drive: HDD) or a solid state drive (SSD) that functions as a storage device, a recording medium such as a flash memory, a Blu-ray disc, or a DVD.
  • a recording medium such as a flash memory, a Blu-ray disc, or a DVD.
  • the communication control unit 603 has a function of controlling communication performed via a computer network.
  • the control signal for connecting to the computer network is controlled in accordance with a command from the control unit 601, and the signal is transmitted to the computer network.
  • the Internet, intranet, extranet, PAN (Personal Area Network), LAN (Local Area Network), CAN (Campus Area Network), and MAN (MetroApoNetwork) are the foundations of the World Wide Web (WWW).
  • Communication can be performed by connecting to a computer network such as Wide Area Network (GA) or GAN (Global Area Network).
  • the communication control unit 603 has a function of communicating with a computer network or other electronic devices using a communication standard such as Wi-Fi (registered trademark), Bluetooth (registered trademark), or ZigBee (registered trademark). Also good.
  • a communication standard such as Wi-Fi (registered trademark), Bluetooth (registered trademark), or ZigBee (registered trademark). Also good.
  • the communication control unit 603 may have a function of communicating wirelessly.
  • an antenna and a high frequency circuit may be provided to transmit and receive an RF signal.
  • the high-frequency circuit is a circuit for mutually converting an electromagnetic signal and an electric signal in a frequency band determined by the legislation of each country and performing communication with other communication devices wirelessly using the electromagnetic signal. Several tens of kHz to several tens of GHz is generally used as a practical frequency band.
  • the high-frequency circuit connected to the antenna includes a high-frequency circuit unit corresponding to a plurality of frequency bands, and the high-frequency circuit unit includes an amplifier (amplifier), a mixer, a filter, a DSP, an RF transceiver, and the like. it can.
  • the video signal receiving unit 606 includes, for example, an antenna, a demodulation circuit, an A / D conversion circuit (analog-digital conversion circuit), and the like.
  • the demodulation circuit has a function of demodulating a signal input from the antenna.
  • the A-D conversion circuit has a function of converting the demodulated analog signal into a digital signal.
  • the signal processed by the video signal receiving unit 606 is sent to the decoder circuit 605.
  • the decoder circuit 605 has a function of decoding video data included in a digital signal input from the video signal receiving unit 606 in accordance with the specification of a broadcast standard to be transmitted, and generating a signal to be transmitted to the image processing circuit.
  • a broadcasting standard in 8K broadcasting H.264 is used.
  • H.265 MPEG-H High Efficiency Video Coding (abbreviation: HEVC).
  • broadcast radio waves that can be received by the antenna included in the video signal receiving unit 606 include ground waves or radio waves transmitted from satellites.
  • Broadcast radio waves that can be received by an antenna include analog broadcast and digital broadcast, and also includes video and audio, or audio-only broadcast.
  • broadcast radio waves transmitted in a specific frequency band in the UHF band (about 300 MHz to 3 GHz) or the VHF band (30 MHz to 300 MHz) can be received.
  • the transfer rate can be increased and more information can be obtained. Accordingly, an image having a resolution exceeding full high-definition can be displayed on the display panel 620. For example, an image having a resolution of 4K2K, 8K4K, 16K8K, or higher can be displayed.
  • the video signal receiving unit 606 and the decoder circuit 605 may be configured to generate a signal to be transmitted to the image processing circuit 604 using broadcast data transmitted by a data transmission technique via a computer network.
  • the video signal receiving unit 606 may not include a demodulation circuit, an A-D conversion circuit, and the like.
  • the image processing circuit 604 has a function of generating a video signal to be output to the timing controller 607 based on the video signal input from the decoder circuit 605.
  • the image processing circuit 604 has a function of generating a signal to be output to the timing controller 647 based on the video signal input from the decoder circuit 605.
  • the image processing circuit 604 may further have a function of generating a signal to be output to the backlight unit based on the video signal input from the decoder circuit 605.
  • the timing controller 607 generates a signal (a signal such as a clock signal or a start pulse signal) to be output to the gate driver 609 and the source driver 608 based on the synchronization signal included in the video signal processed by the image processing circuit 604. It has the function to do.
  • the timing controller 607 has a function of generating a video signal to be output to the source driver 608 in addition to the above signals.
  • the display panel 620 includes a plurality of pixels 621. Each pixel 621 is driven by signals supplied from the gate driver 609 and the source driver 608.
  • a display panel having a resolution according to the 8K4K standard having the number of pixels of 7680 ⁇ 4320 is shown. Note that the resolution of the display panel 620 is not limited to this, and may be a resolution according to a standard such as full high-definition (pixel number 1920 ⁇ 1080) or 4K2K (pixel number 3840 ⁇ 2160).
  • the timing controller 647 has a function of generating signals to be output to the gate driver 649 and the source driver 648 based on a synchronization signal included in the signal processed by the image processing circuit 604.
  • the timing controller 647 has a function of generating a video signal to be output to the source driver 648 in addition to the above signals.
  • One timing controller may generate a signal for driving both the display panel 620 and the light control panel 650.
  • the light control panel 650 includes a plurality of pixels 651. Each pixel 651 is driven by signals supplied from the gate driver 649 and the source driver 648. The number of pixels of the light control panel 650 may be the same as or different from that of the display panel 620.
  • control unit 601 and the image processing circuit 604 illustrated in FIG. 19A can include a processor.
  • the control unit 601 can use a processor that functions as a CPU.
  • image processing circuit 604 other processors such as a DSP (Digital Signal Processor) and a GPU (Graphics Processing Unit) can be used.
  • the control unit 601 and the image processing circuit 604 may have a configuration in which the processor is realized by a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array) or an FPAA (Field Programmable Analog Array).
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • FPAA Field Programmable Analog Array
  • the processor performs various data processing and program control by interpreting and executing instructions from various programs.
  • the program that can be executed by the processor may be stored in a memory area of the processor, or may be stored in a storage device provided separately.
  • control unit 601, the storage unit 602, the communication control unit 603, the image processing circuit 604, the decoder circuit 605, the video signal receiving unit 606, the timing controller 607, and the timing controller 647 are provided. These functions may be integrated into one IC chip to constitute a system LSI.
  • a system LSI including a processor, a decoder circuit, a tuner circuit, an A / D conversion circuit, a DRAM, and an SRAM may be used.
  • a transistor in which an oxide semiconductor is used for a channel formation region and an extremely low off-state current is realized can be used for the controller 601, an IC included in another component, or the like. Since the transistor has extremely low off-state current, the use of the transistor as a switch for holding charge (data) flowing into the capacitor functioning as a memory element can ensure a data holding period for a long time. it can. By using this characteristic for a register such as the control unit 601 or a cache memory, the control unit 601 is operated only when necessary, and in other cases, information on the immediately preceding process is saved in the storage element, so that it is normally. Off-computing becomes possible. Thereby, the power consumption of the television apparatus 600 can be reduced.
  • the structure of the television device 600 in FIG. 19A is just an example, and it is not necessary to include all of the components.
  • the television set 600 only needs to include necessary components from among the components illustrated in FIG.
  • the television device 600 may include a component other than the components illustrated in FIG.
  • the television device 600 may include an external interface, an audio output unit, a touch panel unit, a sensor unit, a camera unit, and the like in addition to the configuration illustrated in FIG.
  • an external interface for example, a USB (Universal Serial Bus) terminal, a LAN (Local Area Network) connection terminal, a power receiving terminal, an audio output terminal, an audio input terminal, an image output terminal, an image input terminal, etc.
  • the sound input / output unit includes a sound controller, a microphone, a speaker, and the like.
  • the image processing circuit 604 preferably has a function of executing image processing based on the video signal input from the decoder circuit 605.
  • Examples of image processing include noise removal processing, gradation conversion processing, color tone correction processing, and luminance correction processing.
  • Examples of the color tone correction process and the brightness correction process include gamma correction.
  • the image processing circuit 604 preferably has a function of executing processing such as inter-pixel interpolation processing accompanying resolution up-conversion and inter-frame interpolation processing accompanying frame frequency up-conversion.
  • noise removal processing various noises such as mosquito noise generated around the outline of characters, block noise generated in high-speed moving images, flickering random noise, and dot noise generated by resolution up-conversion are removed.
  • the gradation conversion process is a process for converting the gradation of an image into a gradation corresponding to the output characteristics of the display panel 620. For example, when the number of gradations is increased, a process for smoothing the histogram can be performed by interpolating and assigning gradation values corresponding to each pixel to an image input with a small number of gradations. Further, a high dynamic range (HDR) process for expanding the dynamic range is also included in the gradation conversion process.
  • HDR high dynamic range
  • the inter-pixel interpolation process interpolates data that does not originally exist when the resolution is up-converted. For example, referring to pixels around the target pixel, the data is interpolated so as to display the intermediate colors.
  • the color tone correction process is a process for correcting the color tone of an image.
  • the brightness correction process is a process for correcting the brightness (brightness contrast) of the image. For example, the type, brightness, or color purity of the illumination in the space where the television apparatus 600 is provided is detected, and the brightness and color tone of the image displayed on the display panel 620 are corrected accordingly. Or, it has a function to compare the image to be displayed with the images of various scenes in the image list stored in advance, and to correct the image displayed with brightness and color tone suitable for the image of the closest scene. May be.
  • Interframe interpolation generates an image of a frame (interpolation frame) that does not originally exist when the frame frequency of a video to be displayed is increased.
  • an interpolation frame image to be inserted between two images is generated from the difference between two images.
  • an image of a plurality of interpolation frames can be generated between two images.
  • the frame frequency of the video signal input from the decoder circuit 605 is 60 Hz
  • the frame frequency of the video signal output to the timing controller 607 is doubled by 120 Hz by generating a plurality of interpolation frames, or It can be increased to 4 times 240 Hz or 8 times 480 Hz.
  • the image processing circuit 604 preferably has a function of executing image processing using a neural network.
  • FIG. 19A shows an example in which the image processing circuit 604 includes a neural network 610.
  • the neural network 610 can perform feature extraction from image data included in a video, for example.
  • the image processing circuit 604 can select an optimal correction method according to the extracted features, or can select parameters used for correction.
  • the neural network 610 itself may have a function of performing image processing. That is, the image data that has been subjected to image processing may be output by inputting the image data before being subjected to image processing to the neural network 610.
  • weight coefficient data used for the neural network 610 is stored in the storage unit 602 as a data table.
  • the data table including the weighting coefficient can be updated to the latest one via the computer network by the communication control unit 603, for example.
  • the image processing circuit 604 may have a learning function so that a data table including a weighting factor can be updated.
  • the image processing circuit 604 preferably has a function of generating a signal indicating the transmittance distribution in the transmission region of the light control panel 650 based on the video signal input from the decoder circuit 605. It is preferable to use a neural network 610 for generating the signal.
  • the image processing circuit 604 preferably has a function of generating a signal indicating luminance in the backlight unit based on the video signal input from the decoder circuit 605. It is preferable to use a neural network 610 for generating the signal.
  • FIG. 19B shows a schematic diagram of a neural network 610 included in the image processing circuit 604.
  • a neural network refers to a general model that imitates a biological neural network, determines the connection strength between neurons by learning, and has problem solving ability.
  • the neural network has an input layer, an intermediate layer (also referred to as a hidden layer), and an output layer.
  • a neural network having two or more intermediate layers is called a deep neural network (DNN), and learning by the deep neural network is called “deep learning”.
  • determining the connection strength (also referred to as a weighting factor) between neurons from existing information may be referred to as “learning”.
  • “inference” refers to constructing a neural network using the connection strength obtained by learning and deriving a new conclusion therefrom.
  • the neural network 610 includes an input layer 611, one or more intermediate layers 612, and an output layer 613. Input data is input to the input layer 611. Output data is output from the output layer 613.
  • the input layer 611, the intermediate layer 612, and the output layer 613 each have a neuron 615.
  • the neuron 615 indicates a circuit element (product-sum operation element) capable of realizing product-sum operation.
  • FIG. 19B the input / output direction of data between two neurons 615 included in two layers is indicated by arrows.
  • f (x) is an activation function, and a sigmoid function, a threshold function, or the like can be used.
  • the output of the neuron 615 of each layer is a value obtained by calculating the activation function on the product-sum operation result of the output of the neuron 615 of the previous layer and the weight coefficient.
  • the connection between layers may be a total connection in which all neurons are connected, or a partial connection in which some neurons are connected.
  • FIG. 19B illustrates an example having three intermediate layers 612. Note that the number of the intermediate layers 612 is not limited to this, and it is only necessary to include one or more intermediate layers. In addition, the number of neurons included in one intermediate layer 612 may be changed as appropriate according to specifications. For example, the number of neurons 615 included in one intermediate layer 612 may be larger or smaller than the number of neurons 615 included in the input layer 611 or the output layer 613.
  • a weighting factor that is an index of the strength of connection between the neurons 615 is determined by learning.
  • the learning may be executed by a processor included in the television apparatus 600, but is preferably executed by a computer having an excellent arithmetic processing capability such as a dedicated server or a cloud.
  • the weighting coefficient determined by learning is stored in the storage unit 602 as a table and is used by being read out by the image processing circuit 604.
  • the table can be updated via a computer network as necessary.
  • the electronic device of this embodiment includes the display device of one embodiment of the present invention in the display portion. Therefore, the electronic device has a high contrast ratio. In addition, the electronic device can achieve both a high contrast ratio and a large screen.
  • full high vision, 4K2K, 8K4K, 16K8K, or higher resolution video can be displayed on the display portion of the electronic device of this embodiment.
  • the screen size of the display unit can be 20 inches or more diagonal, 30 inches or more, 50 inches or more, 60 inches or more, or 70 inches or more.
  • the frame frequency of the display unit can be 60 Hz or higher or 120 Hz or higher, and specifically 240 Hz.
  • the gradation of the image displayed on the display unit can be 8 bits or more or 12 bits or more.
  • Examples of electronic devices include relatively large screens such as television devices, desktop or notebook personal computers, monitors for computers, digital signage (digital signage), and large game machines such as pachinko machines.
  • a digital camera, a digital video camera, a digital photo frame, a mobile phone, a portable game machine, a portable information terminal, a sound reproduction device, and the like can be given.
  • the electronic device of this embodiment can be incorporated along a curved surface of an inner wall or an outer wall of a house or a building, or an interior or exterior of an automobile.
  • the electronic device of this embodiment may include an antenna. By receiving a signal with an antenna, video, information, and the like can be displayed on the display unit.
  • the antenna may be used for non-contact power transmission.
  • the electronic device of this embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage. , Power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared measurement function).
  • the electronic device of this embodiment can have various functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, a function for executing various software (programs), and wireless communication A function, a function of reading a program or data recorded on a recording medium, and the like can be provided.
  • FIG. 20A illustrates an example of a television set.
  • a display portion 7000 is incorporated in a housing 7101.
  • a structure in which the housing 7101 is supported by a stand 7103 is shown.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000.
  • Operation of the television device 7100 illustrated in FIG. 20A can be performed with an operation switch included in the housing 7101 or a separate remote controller 7111.
  • the display unit 7000 may be provided with a touch sensor, and may be operated by touching the display unit 7000 with a finger or the like.
  • the remote controller 7111 may include a display unit that displays information output from the remote controller 7111. Channels and volume can be operated with an operation key or a touch panel included in the remote controller 7111, and an image displayed on the display portion 7000 can be operated.
  • the television device 7100 is provided with a receiver, a modem, and the like.
  • a general television broadcast can be received by the receiver.
  • information communication is performed in one direction (from the sender to the receiver) or in two directions (between the sender and the receiver or between the receivers). It is also possible.
  • FIG. 20B illustrates an example of a laptop personal computer.
  • a laptop personal computer 7200 includes a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • a display portion 7000 is incorporated in the housing 7211.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000.
  • FIGS. 20C and 20D show examples of digital signage.
  • a digital signage 7300 illustrated in FIG. 20C includes a housing 7301, a display portion 7000, a speaker 7303, and the like. Furthermore, an LED lamp, operation keys (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like can be provided.
  • FIG. 20D illustrates a digital signage 7400 attached to a columnar column 7401.
  • the digital signage 7400 includes a display portion 7000 provided along the curved surface of the column 7401.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000.
  • the wider the display unit 7000 the more information can be provided at one time.
  • the wider the display unit 7000 the more easily noticeable to the human eye.
  • the advertising effect can be enhanced.
  • a touch panel By applying a touch panel to the display unit 7000, not only an image or a moving image is displayed on the display unit 7000, but also a user can operate intuitively, which is preferable. In addition, when it is used for providing information such as route information or traffic information, usability can be improved by an intuitive operation.
  • the digital signage 7300 or the digital signage 7400 can be linked with the information terminal 7311 or the information terminal 7411 such as a smartphone possessed by the user by wireless communication. Is preferred.
  • advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411. Further, the display on the display unit 7000 can be switched by operating the information terminal 7311 or the information terminal 7411.
  • the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation means (controller). Thereby, an unspecified number of users can participate and enjoy the game at the same time.
  • the liquid crystal panel is less likely to cause gradation shift even when the voltage changes.
  • the width L of the electrode 41 shown in FIG. 18B3 is 3 ⁇ m, and the slit width (distance S) of the electrode 41 is 4 ⁇ m. Note that the thickness of the insulating layer sandwiched between the electrode 41 and the common electrode was 600 nm.
  • the width L of the electrode 41 shown in FIG. 18 (C3) was 3 ⁇ m, and the slit width (distance S) of the electrode 41 was 4 ⁇ m. Note that the thickness of the insulating layer sandwiched between the electrode 41 and the common electrode was 600 nm.
  • the width L of the electrode 41 and the electrode 43 shown in FIG. 18B1 is 3 ⁇ m, and the distance S between the electrode 41 and the electrode 43 is 7 ⁇ m.
  • the preferable range of the angle formed by the rubbing direction of the alignment film and the direction of the electric field was examined in consideration of the slope of the VT characteristic, the driving voltage, the response speed, and the like.
  • the angle theta p is preferably less than 80 ° greater than 50 °, more preferably less than 60 ° or 80 °, more preferably 60 ° to 70 ° or less.
  • the angle ⁇ n is preferably greater than 10 ° and less than 40 °, more preferably 20 ° or more and less than 40 °, and further preferably 20 ° or more and 30 ° or less.

Abstract

Provided is a display device having a high contrast ratio. The display device includes a first liquid crystal panel (20A) and a second liquid crystal panel (10A). Light that has passed through the first liquid crystal panel (20A) is incident to the second liquid crystal panel (10A). The second liquid crystal panel (10A) displays an image by selectively allowing light to pass therethrough. The first liquid crystal panel (20A) and the second liquid crystal panel (10A) operate in mutually different modes. For example, the first liquid crystal panel (20A) operates in TN mode, and the second liquid crystal panel (10A) operates in IPS mode or FFS mode.

Description

表示装置、表示モジュール、及び電子機器Display device, display module, and electronic device
本発明の一態様は、液晶表示装置、モジュール、及び電子機器に関する。 One embodiment of the present invention relates to a liquid crystal display device, a module, and an electronic device.
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、電子機器、照明装置、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、またはそれらの製造方法を一例として挙げることができる。 Note that one embodiment of the present invention is not limited to the above technical field. As a technical field of one embodiment of the present invention, a semiconductor device, a display device, a light-emitting device, an electronic device, a lighting device, an input / output device (eg, a touch panel), a driving method thereof, or a manufacturing method thereof is given as an example. be able to.
なお、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、及び電子機器などは、半導体装置といえる場合がある。もしくは、これらは半導体装置を有するといえる場合がある。 Note that in this specification and the like, a semiconductor device refers to any device that can function by utilizing semiconductor characteristics. A display device (a liquid crystal display device, a light-emitting display device, or the like), a projection device, a lighting device, an electro-optical device, a power storage device, a memory device, a semiconductor circuit, an imaging device, an electronic device, or the like may be referred to as a semiconductor device. Alternatively, it may be said that these include semiconductor devices.
近年、解像度の高い表示装置が求められている。例えば、フルハイビジョン(画素数1920×1080)、4K(画素数3840×2160もしくは4096×2160等)、さらには8K(画素数7680×4320もしくは8192×4320等)といった画素数の多い表示装置が盛んに開発されている。 In recent years, display devices with high resolution have been demanded. For example, display devices with a large number of pixels such as full high-definition (pixel count 1920 × 1080), 4K (pixel count 3840 × 2160 or 4096 × 2160, etc.) and 8K (pixel count 7680 × 4320 or 8192 × 4320 etc.) are popular. Has been developed.
表示装置としては、液晶表示装置や発光表示装置に代表されるフラットパネルディスプレイが広く用いられている。これらの表示装置を構成するトランジスタの半導体材料には主にシリコンが用いられているが、近年、金属酸化物を用いたトランジスタを表示装置の画素に用いる技術も開発されている。 As a display device, a flat panel display represented by a liquid crystal display device or a light emitting display device is widely used. Silicon is mainly used as a semiconductor material of transistors constituting these display devices, but in recent years, a technique using a transistor using a metal oxide for a pixel of a display device has also been developed.
特許文献1には、トランジスタの半導体材料に非晶質シリコンを用いる技術が開示されている。特許文献2及び特許文献3には、トランジスタの半導体材料に金属酸化物を用いる技術が開示されている。 Patent Document 1 discloses a technique using amorphous silicon as a semiconductor material of a transistor. Patent Documents 2 and 3 disclose a technique using a metal oxide as a semiconductor material of a transistor.
特開2001−53283号公報JP 2001-53283 A 特開2007−123861号公報JP 2007-123861 A 特開2007−96055号公報JP 2007-96055 A
本発明の一態様は、コントラスト比が高い表示装置を提供することを課題の一とする。本発明の一態様は、視野角の広い表示装置を提供することを課題の一とする。本発明の一態様は、解像度の高い表示装置を提供することを課題の一とする。本発明の一態様は、高いフレーム周波数で動作可能な表示装置を提供することを課題の一とする。本発明の一態様は、大型の表示装置を提供することを課題の一とする。本発明の一態様は、信頼性の高い表示装置を提供することを目的の一とする。 An object of one embodiment of the present invention is to provide a display device with a high contrast ratio. An object of one embodiment of the present invention is to provide a display device with a wide viewing angle. An object of one embodiment of the present invention is to provide a display device with high resolution. An object of one embodiment of the present invention is to provide a display device that can operate at a high frame frequency. An object of one embodiment of the present invention is to provide a large display device. An object of one embodiment of the present invention is to provide a highly reliable display device.
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。 Note that the description of these problems does not disturb the existence of other problems. One embodiment of the present invention does not necessarily have to solve all of these problems. Issues other than these can be extracted from the description, drawings, and claims.
本発明の一態様は、第1の液晶パネルと第2の液晶パネルとを有する表示装置である。第2の液晶パネルには、第1の液晶パネルを透過した光が入射する。第2の液晶パネルは、光を選択的に透過することで、画像を表示する。第1の液晶パネルと第2の液晶パネルとは、互いに異なるモードで動作する。 One embodiment of the present invention is a display device including a first liquid crystal panel and a second liquid crystal panel. The light transmitted through the first liquid crystal panel is incident on the second liquid crystal panel. The second liquid crystal panel displays an image by selectively transmitting light. The first liquid crystal panel and the second liquid crystal panel operate in different modes.
第1の液晶パネルは、TN(Twisted Nematic)モードで動作することが好ましい。第2の液晶パネルは、IPS(In−Plane−Switching)モードまたはFFS(Fringe Field Switching)モードで動作することが好ましい。 The first liquid crystal panel preferably operates in a TN (Twisted Nematic) mode. The second liquid crystal panel preferably operates in an IPS (In-Plane-Switching) mode or an FFS (Fringe Field Switching) mode.
なお、本明細書等では、画素電極と共通電極とが同一平面上に設けられる構成をIPSモードとし、画素電極と共通電極とが絶縁層を介して積層される構成をFFSモードとして説明する。 Note that in this specification and the like, a configuration in which the pixel electrode and the common electrode are provided on the same plane is described as an IPS mode, and a configuration in which the pixel electrode and the common electrode are stacked with an insulating layer interposed therebetween is described as an FFS mode.
本発明の一態様の表示装置は、さらに、第1の偏光板、第2の偏光板、及び第3の偏光板を有することが好ましい。第1の液晶パネルは、第1の偏光板と第2の偏光板の間に位置することが好ましい。第2の液晶パネルは、第2の偏光板と第3の偏光板の間に位置することが好ましい。第2の液晶パネルには、第1の液晶パネルを透過した光が、第2の偏光板を介して入射することが好ましい。第1の偏光板と第2の偏光板とは、第1の方向の偏光軸を有することが好ましい。第3の偏光板は、第1の方向と交差する第2の方向の偏光軸を有することが好ましい。 The display device of one embodiment of the present invention preferably further includes a first polarizing plate, a second polarizing plate, and a third polarizing plate. The first liquid crystal panel is preferably located between the first polarizing plate and the second polarizing plate. The second liquid crystal panel is preferably located between the second polarizing plate and the third polarizing plate. It is preferable that the light transmitted through the first liquid crystal panel is incident on the second liquid crystal panel via the second polarizing plate. The first polarizing plate and the second polarizing plate preferably have a polarization axis in the first direction. The third polarizing plate preferably has a polarization axis in a second direction that intersects the first direction.
第2の液晶パネルは、タッチセンサの機能を有することが好ましい。 The second liquid crystal panel preferably has a touch sensor function.
第1の液晶パネルは、第1の基板及び第2の基板を有することが好ましい。第2の液晶パネルは、第3の基板及び第4の基板を有することが好ましい。第2の偏光板は、第2の基板と第3の基板との間に位置することが好ましい。第2の基板は、第1の基板よりも、第2の液晶パネル側に位置することが好ましい。第3の基板は、第4の基板よりも、第1の液晶パネル側に位置することが好ましい。第2の基板の厚さは、第1の基板の厚さよりも薄いことが好ましい。第3の基板の厚さは、第4の基板の厚さよりも薄いことが好ましい。第2の基板及び第3の基板は、それぞれ、樹脂を有することが好ましい。 The first liquid crystal panel preferably has a first substrate and a second substrate. The second liquid crystal panel preferably has a third substrate and a fourth substrate. The second polarizing plate is preferably located between the second substrate and the third substrate. The second substrate is preferably located closer to the second liquid crystal panel than the first substrate. The third substrate is preferably located closer to the first liquid crystal panel than the fourth substrate. The thickness of the second substrate is preferably thinner than the thickness of the first substrate. The thickness of the third substrate is preferably thinner than the thickness of the fourth substrate. Each of the second substrate and the third substrate preferably includes a resin.
第2の液晶パネルは、一対の配向膜の間に液晶層を有することが好ましい。液晶層が、誘電異方性が正である液晶材料を有するとき、一対の配向膜の少なくとも一方のラビング方向と電界の方向とがなす角度は、50°より大きく80°未満であることが好ましい。また、液晶層が、誘電異方性が負である液晶材料を有するとき、一対の配向膜の少なくとも一方のラビング方向と電界の方向とがなす角度は、10°より大きく40°未満であることが好ましい。 The second liquid crystal panel preferably has a liquid crystal layer between a pair of alignment films. When the liquid crystal layer includes a liquid crystal material having positive dielectric anisotropy, the angle formed by at least one rubbing direction of the pair of alignment films and the electric field direction is preferably greater than 50 ° and less than 80 °. . In addition, when the liquid crystal layer includes a liquid crystal material having negative dielectric anisotropy, an angle formed by at least one rubbing direction of the pair of alignment films and the electric field direction is greater than 10 ° and less than 40 °. Is preferred.
表示装置のコントラスト比は、100000:1以上であることが好ましい。 The contrast ratio of the display device is preferably 100,000: 1 or more.
第2の液晶パネルは、4K以上の解像度を有することが好ましい。 The second liquid crystal panel preferably has a resolution of 4K or higher.
第2の液晶パネルは、12ビット以上のカラーを表示する機能を有することが好ましい。 The second liquid crystal panel preferably has a function of displaying a color of 12 bits or more.
第2の液晶パネルのフレーム周波数は、120Hz以上であることが好ましい。 The frame frequency of the second liquid crystal panel is preferably 120 Hz or more.
第2の液晶パネルは、アクティブマトリクス型であることが好ましい。第2の液晶パネルは、液晶素子とトランジスタとを有し、トランジスタは、液晶素子と電気的に接続される。トランジスタのチャネル形成領域は、金属酸化物を有することが好ましい。または、トランジスタのチャネル形成領域は、水素化アモルファスシリコンを有することが好ましい。 The second liquid crystal panel is preferably an active matrix type. The second liquid crystal panel includes a liquid crystal element and a transistor, and the transistor is electrically connected to the liquid crystal element. The channel formation region of the transistor preferably includes a metal oxide. Alternatively, the channel formation region of the transistor preferably includes hydrogenated amorphous silicon.
本発明の一態様は、上記いずれかの構成の表示装置と、回路基板を有する表示モジュールである。 One embodiment of the present invention is a display module having any one of the above structures and a circuit board.
本発明の一態様は、上記いずれかの構成の表示装置を有し、フレキシブルプリント回路基板(Flexible printed circuit、以下、FPCと記す)もしくはTCP(Tape Carrier Package)等のコネクタが取り付けられた表示モジュール、またはCOG(Chip On Glass)方式もしくはCOF(Chip On Film)方式等によりICが実装された表示モジュール等の表示モジュールである。 One embodiment of the present invention includes a display device having any one of the above structures, and a display module to which a connector such as a flexible printed circuit board (hereinafter referred to as FPC) or a TCP (Tape Carrier Package) is attached. Or a display module such as a display module in which an IC is mounted by a COG (Chip On Glass) method or a COF (Chip On Film) method.
本発明の一態様は、上記の表示モジュールと、アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、または操作ボタンの少なくともいずれか一と、を有する電子機器である。 One embodiment of the present invention is an electronic device including the above display module and at least one of an antenna, a battery, a housing, a camera, a speaker, a microphone, and an operation button.
本発明の一態様により、コントラスト比が高い表示装置を提供できる。本発明の一態様により、視野角の広い表示装置を提供できる。本発明の一態様により、解像度の高い表示装置を提供できる。本発明の一態様により、高いフレーム周波数で動作可能な表示装置を提供できる。本発明の一態様により、大型の表示装置を提供できる。本発明の一態様により、信頼性の高い表示装置を提供できる。 According to one embodiment of the present invention, a display device with a high contrast ratio can be provided. According to one embodiment of the present invention, a display device with a wide viewing angle can be provided. According to one embodiment of the present invention, a display device with high resolution can be provided. According to one embodiment of the present invention, a display device that can operate at a high frame frequency can be provided. According to one embodiment of the present invention, a large display device can be provided. According to one embodiment of the present invention, a highly reliable display device can be provided.
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。 Note that the description of these effects does not disturb the existence of other effects. One embodiment of the present invention need not necessarily have all of these effects. Effects other than these can be extracted from the description, drawings, and claims.
表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. トランジスタの一例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a transistor. 液晶素子の電極の配置の一例を示す断面図。Sectional drawing which shows an example of arrangement | positioning of the electrode of a liquid crystal element. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. (A)表示モジュールの一例を示すブロック図。(B)画素を示す回路図。FIG. 4A is a block diagram illustrating an example of a display module. (B) A circuit diagram showing a pixel. (A)表示モジュールの一例を示すブロック図。(B)画素を示す回路図。FIG. 4A is a block diagram illustrating an example of a display module. (B) A circuit diagram showing a pixel. (A)液晶素子の電圧−透過率特性の一例を示す図。(B)(C)ラビング角度を説明する上面図。FIG. 6A is a diagram illustrating an example of voltage-transmittance characteristics of a liquid crystal element. (B) (C) Top view illustrating a rubbing angle. (A)テレビジョン装置を説明する図。(B)ニューラルネットワークを説明する図。FIG. 5A illustrates a television device. (B) The figure explaining a neural network. 電子機器の一例を示す図。FIG. 14 illustrates an example of an electronic device. 実施例1の計算結果を示す図。The figure which shows the calculation result of Example 1. FIG. 実施例1の計算結果を示す図。The figure which shows the calculation result of Example 1. FIG. 実施例1の計算結果を示す図。The figure which shows the calculation result of Example 1. FIG.
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Embodiments will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。 Note that in structures of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated. In addition, in the case where the same function is indicated, the hatch pattern is the same, and there is a case where no reference numeral is given.
また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。 In addition, the position, size, range, and the like of each component illustrated in the drawings may not represent the actual position, size, range, or the like for easy understanding. Therefore, the disclosed invention is not necessarily limited to the position, size, range, or the like disclosed in the drawings.
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。 Note that the terms “film” and “layer” can be interchanged with each other depending on the case or circumstances. For example, the term “conductive layer” can be changed to the term “conductive film”. Alternatively, for example, the term “insulating film” can be changed to the term “insulating layer”.
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置について図1~図17を用いて説明する。
(Embodiment 1)
In this embodiment, a display device of one embodiment of the present invention will be described with reference to FIGS.
<表示装置の概要>
本実施の形態の表示装置は、第1の液晶パネルと第2の液晶パネルとを有する。第2の液晶パネルには、第1の液晶パネルを透過した光が入射する。第2の液晶パネルは、光を選択的に透過することで、画像を表示する。第1の液晶パネルと第2の液晶パネルとは、互いに異なるモードで動作する。
<Outline of display device>
The display device of this embodiment includes a first liquid crystal panel and a second liquid crystal panel. The light transmitted through the first liquid crystal panel is incident on the second liquid crystal panel. The second liquid crystal panel displays an image by selectively transmitting light. The first liquid crystal panel and the second liquid crystal panel operate in different modes.
表示装置のコントラスト比は高いことが好ましい。例えば、バックライトの光量を増やすことで、表示装置の最大輝度を高めることができる。一方で、バックライトの光量を増やし過ぎると、黒色が正しく表示されず、白色または灰色を帯びることがある(黒浮きともいう)。 The contrast ratio of the display device is preferably high. For example, the maximum luminance of the display device can be increased by increasing the light amount of the backlight. On the other hand, if the amount of light of the backlight is increased too much, black may not be displayed correctly and may be white or gray (also referred to as black float).
本実施の形態の表示装置では、バックライトの光が2つの液晶パネルを透過することで画像を表示する。そのため、バックライトの光量が多くても黒浮きが生じにくい。したがって、低い最小輝度と高い最大輝度を両立でき、コントラスト比を高めることができる。 In the display device of the present embodiment, the image of the backlight is displayed through the two liquid crystal panels. For this reason, even if the amount of light from the backlight is large, black floating is unlikely to occur. Therefore, both a low minimum luminance and a high maximum luminance can be achieved, and the contrast ratio can be increased.
例えば、本実施の形態の表示装置のコントラスト比は、10000:1以上、100000:1以上、または1000000:1以上とすることができる。 For example, the contrast ratio of the display device of this embodiment can be 10,000: 1 or more, 100,000: 1 or more, or 1000000: 1 or more.
また、本実施の形態の表示装置では、2つの液晶パネルが、異なるモードで動作する。そのため、2つの液晶パネルそれぞれに適したモードを選択することができる。これにより、高品質の表示装置を得ることができる。 In the display device of this embodiment, the two liquid crystal panels operate in different modes. Therefore, a mode suitable for each of the two liquid crystal panels can be selected. Thereby, a high-quality display device can be obtained.
第1の液晶パネルは、主に調光を行うパネルであるため、透過率の高いモードで動作することが好ましい。第2の液晶パネルは、主に画像を表示するパネルであるため、視野角特性の高いモードで動作することが好ましい。これにより、コントラスト比が高く、視野角の広い表示装置を実現できる。また、視野角特性の観点から、第2の液晶パネルは、第1の液晶パネルよりも表示面側に位置することが好ましい。 Since the first liquid crystal panel is a panel that mainly performs light control, it is preferable to operate in a mode with high transmittance. Since the second liquid crystal panel is a panel that mainly displays an image, it is preferable to operate in a mode with high viewing angle characteristics. Thereby, a display device having a high contrast ratio and a wide viewing angle can be realized. In view of viewing angle characteristics, the second liquid crystal panel is preferably positioned closer to the display surface than the first liquid crystal panel.
具体的には、第1の液晶パネルには、TNモードを用いることが好ましい。TNモードは、横電界モード(IPSモード、FFSモードなど)及び複屈折モード(VAモードなど)よりも透過率が高く、調光用の第1の液晶パネルに好適である。さらに、TNモードは、駆動電圧が低い、コストが低い等のメリットを有する点でも好ましい。 Specifically, it is preferable to use a TN mode for the first liquid crystal panel. The TN mode has higher transmittance than the transverse electric field mode (IPS mode, FFS mode, etc.) and the birefringence mode (VA mode, etc.), and is suitable for the first liquid crystal panel for light control. Furthermore, the TN mode is preferable in that it has merits such as low driving voltage and low cost.
第1の液晶パネルがTNモードで動作する場合、第1の液晶パネルの上下に位置する偏光板の配置は、パラレルニコルであることが好ましい。つまり、2枚の偏光板の偏光軸(透過軸ともいう)は互いに平行であることが好ましい。これにより、第1の液晶パネルは、ノーマリーブラック(電圧OFF時に黒表示)となる。TNモードにおける黒表示は、ノーマリーブラックに比べて、ノーマリーホワイト(電圧OFF時に白表示)の方が良好となることがある。しかし、本実施の形態の表示装置は、2つの液晶パネルを積層して有することから黒浮きが生じにくい構成である。そのため、ノーマリーブラックを採用しても、良好に黒色を表示することができる。また、TNモードにおける白表示は、ノーマリーホワイトに比べて、ノーマリーブラックの方が良好となる場合がある。 When the first liquid crystal panel operates in the TN mode, the arrangement of the polarizing plates positioned above and below the first liquid crystal panel is preferably parallel Nicols. That is, the polarization axes (also referred to as transmission axes) of the two polarizing plates are preferably parallel to each other. As a result, the first liquid crystal panel is normally black (displays black when the voltage is OFF). In black display in the TN mode, normally white (white display when the voltage is OFF) may be better than normally black. However, the display device of this embodiment has a structure in which black floating is unlikely to occur because two liquid crystal panels are stacked. Therefore, even when normally black is adopted, black can be displayed well. Further, normally black in TN mode may be better with normally black than with normally white.
本実施の形態の表示装置は、調光パネルとして機能する第1の液晶パネルを有するため、バックライトだけでなく、調光パネルも用いて、表示パネル(第2の液晶パネル)に入射する光の輝度を調整することができる。これにより、表示装置のコントラスト比を高めることができる。 Since the display device of this embodiment includes the first liquid crystal panel that functions as a light control panel, light that enters the display panel (second liquid crystal panel) using not only the backlight but also the light control panel. The brightness can be adjusted. Thereby, the contrast ratio of the display device can be increased.
一方、第2の液晶パネルには、IPSモードまたはFFSモードを用いることが好ましい。IPSモード及びFFSモードは、視野角による輝度変化及び色変化が少ないため、表示用の第2の液晶パネルに好適である。FFSモードを用いると、画素電極と共通電極との間で容量を形成することができるため、開口率を高めることができ、好ましい。 On the other hand, the IPS mode or the FFS mode is preferably used for the second liquid crystal panel. The IPS mode and the FFS mode are suitable for the second liquid crystal panel for display because the luminance change and the color change due to the viewing angle are small. The use of the FFS mode is preferable because a capacitance can be formed between the pixel electrode and the common electrode, so that the aperture ratio can be increased.
また、第2の液晶パネルとしては、実施の形態2で説明する本発明の一態様の液晶パネルを適用することが好ましい。当該液晶パネルは、電圧変化が生じても階調ズレが生じにくい特徴を有する。そのため、表示装置の色深度を8ビットより大きくしても(例えば12ビットとしても)、高い表示品位を実現することができる。 As the second liquid crystal panel, the liquid crystal panel of one embodiment of the present invention described in Embodiment 2 is preferably used. The liquid crystal panel has a characteristic that gradation shift hardly occurs even when a voltage change occurs. Therefore, even if the color depth of the display device is larger than 8 bits (for example, 12 bits), high display quality can be realized.
以下では、表示装置の構成例について、図面を用いて説明する。 Below, the structural example of a display apparatus is demonstrated using drawing.
<構成例1>
図1(A)に表示装置100Aの断面図を示す。
<Configuration example 1>
A cross-sectional view of the display device 100A is shown in FIG.
表示装置100Aは、液晶パネル10A、液晶パネル20A、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 The display device 100A includes a liquid crystal panel 10A, a liquid crystal panel 20A, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
バックライトユニット30が有する光源から発せられた光35は、偏光板61、液晶パネル20A、偏光板62、液晶パネル10A、偏光板63をこの順に透過して、表示装置100Aの外部に射出される。光35が透過するこれらの層の材料には、可視光を透過する材料を用いる。 The light 35 emitted from the light source of the backlight unit 30 passes through the polarizing plate 61, the liquid crystal panel 20A, the polarizing plate 62, the liquid crystal panel 10A, and the polarizing plate 63 in this order, and is emitted to the outside of the display device 100A. . A material that transmits visible light is used for the material of these layers through which the light 35 is transmitted.
液晶パネル10Aは、FFSモードが適用されたアクティブマトリクス型の液晶パネルである。液晶パネル10Aは、透過型の液晶パネルである。液晶パネル10Aは、表示パネルとして機能する。 The liquid crystal panel 10A is an active matrix liquid crystal panel to which the FFS mode is applied. The liquid crystal panel 10A is a transmissive liquid crystal panel. The liquid crystal panel 10A functions as a display panel.
液晶パネル10Aは、基板11、基板12、トランジスタ13、絶縁層14、液晶素子40等を有する。 The liquid crystal panel 10A includes a substrate 11, a substrate 12, a transistor 13, an insulating layer 14, a liquid crystal element 40, and the like.
液晶素子40は、電極41、液晶層42、及び電極43を有する。電極41は、画素電極として機能し、電極43は、共通電極として機能する。電極41は絶縁層14上に設けられる。絶縁層14に設けられた開口を介して、電極41とトランジスタ13とは電気的に接続される。電極41は絶縁層44に覆われており、絶縁層44上に電極43が設けられている。電極41は、絶縁層44を介して電極43と重なる領域を有する。また、電極41は、電極43と重ならない領域も有する。液晶層42は、基板11と基板12の間に挟持される。 The liquid crystal element 40 includes an electrode 41, a liquid crystal layer 42, and an electrode 43. The electrode 41 functions as a pixel electrode, and the electrode 43 functions as a common electrode. The electrode 41 is provided on the insulating layer 14. The electrode 41 and the transistor 13 are electrically connected through an opening provided in the insulating layer 14. The electrode 41 is covered with an insulating layer 44, and the electrode 43 is provided on the insulating layer 44. The electrode 41 has a region overlapping with the electrode 43 with the insulating layer 44 interposed therebetween. The electrode 41 also has a region that does not overlap with the electrode 43. The liquid crystal layer 42 is sandwiched between the substrate 11 and the substrate 12.
液晶パネル20Aは、TNモードが適用されたパッシブマトリクス型の液晶パネルである。液晶パネル20Aは、透過型の液晶パネルである。液晶パネル20Aは、調光パネルとして機能する。調光パネルは、パッシブマトリクス型であってもアクティブマトリクス型であってもよい。 The liquid crystal panel 20A is a passive matrix liquid crystal panel to which the TN mode is applied. The liquid crystal panel 20A is a transmissive liquid crystal panel. The liquid crystal panel 20A functions as a light control panel. The light control panel may be a passive matrix type or an active matrix type.
液晶パネル20Aは、基板21、基板22、液晶素子50等を有する。 The liquid crystal panel 20A includes a substrate 21, a substrate 22, a liquid crystal element 50, and the like.
液晶素子50は、電極51、液晶層52、及び電極53を有する。電極51は、画素電極として機能し、電極53は、共通電極として機能する。電極51は基板21側に設けられる。電極53は基板22側に設けられる。液晶層52は、電極51と電極53の間に挟持される。基板21上には、電極51と同一の工程及び同一の材料を用いて形成された導電層25が設けられている。導電層25は、接続体29を介して、電極53と電気的に接続されている。 The liquid crystal element 50 includes an electrode 51, a liquid crystal layer 52, and an electrode 53. The electrode 51 functions as a pixel electrode, and the electrode 53 functions as a common electrode. The electrode 51 is provided on the substrate 21 side. The electrode 53 is provided on the substrate 22 side. The liquid crystal layer 52 is sandwiched between the electrode 51 and the electrode 53. A conductive layer 25 formed using the same process and the same material as the electrode 51 is provided on the substrate 21. The conductive layer 25 is electrically connected to the electrode 53 through the connection body 29.
調光パネルと表示パネルが同じ解像度及び精細度である場合、調光パネルを用いて、表示パネルに入射する光の量を、表示パネルの副画素単位で制御することができ、好ましい。または、表示パネルと調光パネルは、互いに異なる解像度及び精細度とすることができる。表示パネルの解像度が極めて高い場合、調光パネルの解像度を表示パネルの解像度と同等にすると、表示装置のコストが高くなることがある。そのため、調光パネルの解像度は、表示パネルの解像度よりも低くてもよい。つまり、表示パネルの解像度は、調光パネルの解像度以上であることが好ましい。 When the light control panel and the display panel have the same resolution and definition, it is preferable that the light control panel can be used to control the amount of light incident on the display panel in units of sub-pixels of the display panel. Alternatively, the display panel and the light control panel can have different resolution and definition. When the resolution of the display panel is extremely high, the cost of the display device may increase if the resolution of the light control panel is made equal to the resolution of the display panel. Therefore, the resolution of the light control panel may be lower than the resolution of the display panel. That is, the resolution of the display panel is preferably equal to or higher than the resolution of the light control panel.
バックライトユニット30には、直下型のバックライト、エッジライト型のバックライト等を用いることができる。光源には、LED(Light Emitting Diode)、有機EL(Electroluminescence)素子等を用いることができる。 The backlight unit 30 may be a direct type backlight, an edge light type backlight, or the like. As the light source, an LED (Light Emitting Diode), an organic EL (Electroluminescence) element, or the like can be used.
偏光板61と偏光板62は、第1の方向の偏光軸を有することが好ましい。偏光板63は、第1の方向と交差する第2の方向の偏光軸を有することが好ましい。つまり、偏光板61と偏光板62の配置はパラレルニコルであり、TNモードで動作する液晶パネル20Aは、ノーマリーブラックである。また、偏光板62と偏光板63の配置はクロスニコルであり、FFSモードで動作する液晶パネル10Aは、ノーマリーブラックである。 The polarizing plate 61 and the polarizing plate 62 preferably have a polarization axis in the first direction. The polarizing plate 63 preferably has a polarization axis in a second direction that intersects the first direction. That is, the arrangement of the polarizing plate 61 and the polarizing plate 62 is parallel Nicol, and the liquid crystal panel 20A operating in the TN mode is normally black. Further, the arrangement of the polarizing plate 62 and the polarizing plate 63 is crossed Nicol, and the liquid crystal panel 10A operating in the FFS mode is normally black.
なお、本実施の形態の表示装置に用いることができる各種材料については、構成例7にて詳述する。 Note that various materials that can be used for the display device of this embodiment are described in Structure Example 7.
<構成例2>
図1(B)に表示装置100Bの断面図を示す。表示装置100Bは、表示パネルとして機能する液晶パネルがIPSモードで動作する点で、表示装置100Aと異なる。以降の構成例では、先の構成例と同様の構成については説明を省略する。
<Configuration example 2>
A cross-sectional view of the display device 100B is shown in FIG. The display device 100B is different from the display device 100A in that a liquid crystal panel that functions as a display panel operates in the IPS mode. In the subsequent configuration examples, description of the same configuration as the previous configuration example is omitted.
表示装置100Bは、液晶パネル10B、液晶パネル20B、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 The display device 100B includes a liquid crystal panel 10B, a liquid crystal panel 20B, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
バックライトユニット30が有する光源から発せられた光35は、偏光板61、液晶パネル20B、偏光板62、液晶パネル10B、偏光板63をこの順に透過して、表示装置100Bの外部に射出される。光35が透過するこれらの層の材料には、可視光を透過する材料を用いる。 The light 35 emitted from the light source of the backlight unit 30 passes through the polarizing plate 61, the liquid crystal panel 20B, the polarizing plate 62, the liquid crystal panel 10B, and the polarizing plate 63 in this order, and is emitted to the outside of the display device 100B. . A material that transmits visible light is used for the material of these layers through which the light 35 is transmitted.
液晶パネル10Bは、IPSモードが適用されたアクティブマトリクス型の液晶パネルである。液晶パネル10Bは、透過型の液晶パネルである。液晶パネル10Bは、表示パネルとして機能する。 The liquid crystal panel 10B is an active matrix liquid crystal panel to which the IPS mode is applied. The liquid crystal panel 10B is a transmissive liquid crystal panel. The liquid crystal panel 10B functions as a display panel.
液晶パネル10Bは、基板11、基板12、トランジスタ13、絶縁層14、液晶素子45等を有する。 The liquid crystal panel 10B includes a substrate 11, a substrate 12, a transistor 13, an insulating layer 14, a liquid crystal element 45, and the like.
液晶素子45は、電極46、液晶層47、及び電極48を有する。電極46及び電極48は絶縁層14上に設けられる。電極46と電極48は、同一の工程及び同一の材料を用いて形成することができる。絶縁層14に設けられた開口を介して、電極46とトランジスタ13とは電気的に接続される。液晶層47は、基板11と基板12の間に挟持される。 The liquid crystal element 45 includes an electrode 46, a liquid crystal layer 47, and an electrode 48. The electrode 46 and the electrode 48 are provided on the insulating layer 14. The electrode 46 and the electrode 48 can be formed using the same process and the same material. The electrode 46 and the transistor 13 are electrically connected through an opening provided in the insulating layer 14. The liquid crystal layer 47 is sandwiched between the substrate 11 and the substrate 12.
液晶パネル20Bは、液晶パネル20Aと同様の構成であるため、詳細な説明は省略する。 Since the liquid crystal panel 20B has the same configuration as the liquid crystal panel 20A, detailed description thereof is omitted.
偏光板61と偏光板62は、第1の方向の偏光軸を有することが好ましい。偏光板63は、第1の方向と交差する第2の方向の偏光軸を有することが好ましい。つまり、偏光板61と偏光板62の配置はパラレルニコルであり、TNモードで動作する液晶パネル20Bは、ノーマリーブラックである。また、偏光板62と偏光板63の配置はクロスニコルであり、IPSモードで動作する液晶パネル10Bは、ノーマリーブラックである。 The polarizing plate 61 and the polarizing plate 62 preferably have a polarization axis in the first direction. The polarizing plate 63 preferably has a polarization axis in a second direction that intersects the first direction. That is, the arrangement of the polarizing plate 61 and the polarizing plate 62 is parallel Nicol, and the liquid crystal panel 20B operating in the TN mode is normally black. The arrangement of the polarizing plate 62 and the polarizing plate 63 is crossed Nicol, and the liquid crystal panel 10B operating in the IPS mode is normally black.
<構成例3>
図2(A)に表示装置100Cの断面図を示し、図2(B)に表示装置100Dの断面図を示す。表示装置100Cは、調光パネルとして機能する液晶パネルがアクティブマトリクス型である点で、表示装置100Aと異なる。同様に、表示装置100Dは、調光パネルとして機能する液晶パネルがアクティブマトリクス型である点で、表示装置100Bと異なる。
<Configuration example 3>
2A shows a cross-sectional view of the display device 100C, and FIG. 2B shows a cross-sectional view of the display device 100D. The display device 100C is different from the display device 100A in that a liquid crystal panel that functions as a light control panel is an active matrix type. Similarly, the display device 100D is different from the display device 100B in that the liquid crystal panel that functions as a light control panel is an active matrix type.
表示装置100Cは、液晶パネル10C、液晶パネル20C、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 The display device 100C includes a liquid crystal panel 10C, a liquid crystal panel 20C, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
液晶パネル10Cは、液晶パネル10Aと同様の構成であるため、詳細な説明は省略する。 Since the liquid crystal panel 10C has the same configuration as the liquid crystal panel 10A, detailed description thereof is omitted.
液晶パネル20Cは、TNモードが適用されたアクティブマトリクス型の液晶パネルである。液晶パネル20Cは、透過型の液晶パネルである。液晶パネル20Cは、調光パネルとして機能する。 The liquid crystal panel 20C is an active matrix type liquid crystal panel to which the TN mode is applied. The liquid crystal panel 20C is a transmissive liquid crystal panel. The liquid crystal panel 20C functions as a light control panel.
液晶パネル20Cは、基板21、基板22、トランジスタ23、絶縁層24、液晶素子50等を有する。 The liquid crystal panel 20C includes a substrate 21, a substrate 22, a transistor 23, an insulating layer 24, a liquid crystal element 50, and the like.
液晶素子50は、電極51、液晶層52、及び電極53を有する。電極51は絶縁層24上に設けられる。絶縁層24に設けられた開口を介して、電極51とトランジスタ23とは電気的に接続される。電極53は基板22側に設けられる。液晶層52は、電極51と電極53の間に挟持される。基板21上には、電極51と同一の工程及び同一の材料を用いて形成された導電層25が設けられている。導電層25は、接続体29を介して、電極53と電気的に接続されている。 The liquid crystal element 50 includes an electrode 51, a liquid crystal layer 52, and an electrode 53. The electrode 51 is provided on the insulating layer 24. The electrode 51 and the transistor 23 are electrically connected through an opening provided in the insulating layer 24. The electrode 53 is provided on the substrate 22 side. The liquid crystal layer 52 is sandwiched between the electrode 51 and the electrode 53. A conductive layer 25 formed using the same process and the same material as the electrode 51 is provided on the substrate 21. The conductive layer 25 is electrically connected to the electrode 53 through the connection body 29.
表示パネルと調光パネルの双方がアクティブマトリクス型である場合、トランジスタの構造及び材料等は、同一の構成としてもよく、異なる構成としてもよい。 In the case where both the display panel and the light control panel are active matrix types, the structure and materials of the transistors may be the same or different.
表示装置100Dは、液晶パネル10D、液晶パネル20D、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 The display device 100D includes a liquid crystal panel 10D, a liquid crystal panel 20D, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
液晶パネル10Dは、液晶パネル10Bと同様の構成であるため、詳細な説明は省略する。 Since the liquid crystal panel 10D has the same configuration as the liquid crystal panel 10B, detailed description thereof is omitted.
液晶パネル20Dは、液晶パネル20Cと同様の構成であるため、詳細な説明は省略する。 Since the liquid crystal panel 20D has the same configuration as the liquid crystal panel 20C, detailed description thereof is omitted.
<構成例4>
構成例1~3では図示しなかったが、本実施の形態の表示装置において、2つの液晶パネルのうち一方または双方に、着色層(カラーフィルタなど)が設けられる。副画素によって着色層の色を変えることで、様々な色を呈することができる。よって、本実施の形態の表示装置は、カラー画像を表示することができる。バックライトユニット30が有する光源から発せられた光35は、着色層によって特定の波長領域以外の光が吸収される。これにより、例えば、赤色の副画素から表示装置の外部に射出される光は赤色を呈し、緑色の副画素から表示装置の外部に射出される光は緑色を呈し、青色の副画素から表示装置の外部に射出される光は青色を呈する。本構成例では、着色層の配置例について説明する。
<Configuration example 4>
Although not shown in Structural Examples 1 to 3, in the display device of this embodiment, one or both of the two liquid crystal panels are provided with a colored layer (such as a color filter). Various colors can be presented by changing the color of the colored layer depending on the sub-pixel. Therefore, the display device of this embodiment can display a color image. The light 35 emitted from the light source included in the backlight unit 30 is absorbed by the colored layer in light other than the specific wavelength region. Thus, for example, light emitted from the red sub-pixel to the outside of the display device exhibits red, light emitted from the green sub-pixel to the outside of the display device exhibits green, and the light is emitted from the blue sub-pixel to the display device. The light emitted to the outside exhibits blue. In this configuration example, an arrangement example of the colored layer will be described.
図3(A)に表示装置100Eの断面図を示す。 FIG. 3A is a cross-sectional view of the display device 100E.
表示装置100Eは、液晶パネル10E、液晶パネル20E、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 The display device 100E includes a liquid crystal panel 10E, a liquid crystal panel 20E, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
液晶パネル10Eは、液晶パネル10Cの構成に加えて、遮光層38及び着色層39を有する。具体的には、基板12側に遮光層38及び着色層39が設けられている。液晶パネル10Eに入射された光のうち、特定の波長領域の光のみが着色層39を透過し、表示装置100Eの外部に射出される。着色層39を表示面に近い位置に設けることで、混色を抑制し、表示装置の表示品位を高めることができる。 The liquid crystal panel 10E includes a light shielding layer 38 and a colored layer 39 in addition to the configuration of the liquid crystal panel 10C. Specifically, a light shielding layer 38 and a colored layer 39 are provided on the substrate 12 side. Of the light incident on the liquid crystal panel 10E, only light in a specific wavelength region passes through the colored layer 39 and is emitted to the outside of the display device 100E. By providing the colored layer 39 at a position close to the display surface, color mixing can be suppressed and display quality of the display device can be improved.
液晶パネル20Eは、液晶パネル20Cと同様の構成であるため、詳細な説明は省略する。 Since the liquid crystal panel 20E has the same configuration as the liquid crystal panel 20C, detailed description thereof is omitted.
図3(B)に表示装置100Fの断面図を示す。 FIG. 3B is a cross-sectional view of the display device 100F.
表示装置100Fは、液晶パネル10F、液晶パネル20F、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 The display device 100F includes a liquid crystal panel 10F, a liquid crystal panel 20F, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
液晶パネル10Fは、液晶パネル10Dの構成に加えて、遮光層38を有する。具体的には、基板12側に遮光層38が設けられている。 The liquid crystal panel 10F includes a light shielding layer 38 in addition to the configuration of the liquid crystal panel 10D. Specifically, a light shielding layer 38 is provided on the substrate 12 side.
液晶パネル20Fは、液晶パネル20Dの上下を反転した構成であり、液晶パネル10F側に基板21が位置し、バックライトユニット30側に基板22が位置する。さらに、液晶パネル20Fは、絶縁層27及び着色層39を有する。基板22上に着色層39が設けられており、着色層39上に絶縁層27が設けられており、絶縁層27上に電極53が設けられている。 The liquid crystal panel 20F has a configuration in which the liquid crystal panel 20D is turned upside down. The substrate 21 is positioned on the liquid crystal panel 10F side, and the substrate 22 is positioned on the backlight unit 30 side. Further, the liquid crystal panel 20 </ b> F includes an insulating layer 27 and a colored layer 39. A colored layer 39 is provided on the substrate 22, an insulating layer 27 is provided on the colored layer 39, and an electrode 53 is provided on the insulating layer 27.
バックライトユニット30が有する光源から発せられた光35は、偏光板61を介して、液晶パネル20Fに入射される。光35は、液晶パネル20F内を、基板22、着色層39、絶縁層27、液晶素子50、絶縁層24、基板21の順に透過する。光35のうち、特定の波長領域の光以外は着色層39によって吸収される。そして、特定の波長領域の光のみが、液晶素子50、絶縁層24、基板21、さらには偏光板62、液晶パネル10F、及び偏光板63に入射され、表示装置100Fの外部に射出される。 The light 35 emitted from the light source of the backlight unit 30 is incident on the liquid crystal panel 20F via the polarizing plate 61. The light 35 passes through the liquid crystal panel 20F in the order of the substrate 22, the colored layer 39, the insulating layer 27, the liquid crystal element 50, the insulating layer 24, and the substrate 21. Of the light 35, light other than a specific wavelength region is absorbed by the colored layer 39. Then, only light in a specific wavelength region is incident on the liquid crystal element 50, the insulating layer 24, the substrate 21, the polarizing plate 62, the liquid crystal panel 10F, and the polarizing plate 63, and is emitted outside the display device 100F.
つまり、表示装置100Fでは、表示装置100Eに比べて、2つの液晶パネルが有する液晶層に入射される光の量を減らすことができる。 That is, in the display device 100F, the amount of light incident on the liquid crystal layers of the two liquid crystal panels can be reduced as compared with the display device 100E.
表示装置の最大輝度を高めるためにバックライトの光量を増やすと、液晶層に強い光が入射されることになる。よって、液晶素子を安定に動作させるために、耐光性の高い液晶材料が求められる。着色層39を、2つの液晶素子よりも、バックライトユニット30側に設けることで、2つの液晶素子に、特定の波長領域の光のみが入射する。これにより、液晶層に入射される光を弱くすることができるため、液晶素子の信頼性の低下を抑制でき、液晶素子を安定に動作させることができる。 When the amount of light from the backlight is increased to increase the maximum luminance of the display device, strong light is incident on the liquid crystal layer. Therefore, a liquid crystal material with high light resistance is required to stably operate the liquid crystal element. By providing the colored layer 39 closer to the backlight unit 30 than the two liquid crystal elements, only light in a specific wavelength region enters the two liquid crystal elements. Thereby, since the light incident on the liquid crystal layer can be weakened, a decrease in the reliability of the liquid crystal element can be suppressed, and the liquid crystal element can be stably operated.
<構成例5>
図4(A)に表示装置100Gの断面図を示し、図4(B)に表示装置100Hの断面図を示す。
<Configuration example 5>
4A is a cross-sectional view of the display device 100G, and FIG. 4B is a cross-sectional view of the display device 100H.
表示装置100Gは、液晶パネル10G、液晶パネル20G、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 The display device 100G includes a liquid crystal panel 10G, a liquid crystal panel 20G, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
液晶パネル10Gは、基板11を有さず、可撓性基板16を有する点で、液晶パネル10Eと異なる。液晶パネル20Gは、基板22を有さず、可撓性基板26を有する点で、液晶パネル20Eと異なる。 The liquid crystal panel 10G is different from the liquid crystal panel 10E in that it does not have the substrate 11 but has the flexible substrate 16. The liquid crystal panel 20G is different from the liquid crystal panel 20E in that it does not have the substrate 22 but has a flexible substrate 26.
表示装置100Hは、液晶パネル10H、液晶パネル20H、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 The display device 100H includes a liquid crystal panel 10H, a liquid crystal panel 20H, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
液晶パネル10Hは、液晶パネル10Fの上下を反転した構成であり、かつ、基板12を有さず、可撓性基板16を有する。可撓性基板16上には、遮光層38及び着色層39が設けられている。液晶パネル20Hは、液晶パネル20Gと同様の構成である。 The liquid crystal panel 10 </ b> H has a configuration in which the liquid crystal panel 10 </ b> F is turned upside down, and does not have the substrate 12 but has the flexible substrate 16. On the flexible substrate 16, a light shielding layer 38 and a colored layer 39 are provided. The liquid crystal panel 20H has the same configuration as the liquid crystal panel 20G.
可撓性基板16及び可撓性基板26には、それぞれ、可撓性を有する材料を用いることができ、樹脂フィルムを用いることが好ましい。本構成例は、可撓性基板16及び可撓性基板26を用いるため、ガラス基板等の硬質基板を用いる場合に比べて、表示装置の薄型化及び軽量化が可能となる。さらに、2つの液晶パネルが有する液晶素子間の距離を短くできるため、視差が生じることを抑制し、表示装置の視野角を広くすることができる。これは、液晶パネル10Hと液晶パネル20Hの画素数が近いまたは同じであるときに特に有効である。 A flexible material can be used for each of the flexible substrate 16 and the flexible substrate 26, and a resin film is preferably used. In this configuration example, since the flexible substrate 16 and the flexible substrate 26 are used, the display device can be made thinner and lighter than when a hard substrate such as a glass substrate is used. Furthermore, since the distance between the liquid crystal elements included in the two liquid crystal panels can be shortened, the occurrence of parallax can be suppressed and the viewing angle of the display device can be widened. This is particularly effective when the number of pixels of the liquid crystal panel 10H and the liquid crystal panel 20H is close or the same.
また、表示装置100Hにおいて、バックライトユニット30が有する光源から発せられた光35は、偏光板61、液晶パネル20H、及び偏光板62を介して液晶パネル10Hに入射される。光35は、液晶パネル10H内を、可撓性基板16、着色層39、液晶素子45、絶縁層14、基板11の順に透過する。光35のうち、特定の波長領域の光以外は着色層39によって吸収される。そして、特定の波長領域の光のみが、液晶素子45、絶縁層14、基板11、さらには偏光板63に入射され、表示装置100Hの外部に射出される。 In the display device 100H, the light 35 emitted from the light source of the backlight unit 30 is incident on the liquid crystal panel 10H via the polarizing plate 61, the liquid crystal panel 20H, and the polarizing plate 62. The light 35 passes through the liquid crystal panel 10H in the order of the flexible substrate 16, the colored layer 39, the liquid crystal element 45, the insulating layer 14, and the substrate 11. Of the light 35, light other than a specific wavelength region is absorbed by the colored layer 39. Then, only light in a specific wavelength region enters the liquid crystal element 45, the insulating layer 14, the substrate 11, and further the polarizing plate 63, and is emitted outside the display device 100H.
つまり、液晶パネル10Hの液晶層47は、液晶パネル10Gの液晶層42に比べて、弱い光が入射される。したがって、表示パネルが有する液晶素子の信頼性の低下を抑制でき、液晶素子を安定に動作させることができる。 That is, weak light is incident on the liquid crystal layer 47 of the liquid crystal panel 10H compared to the liquid crystal layer 42 of the liquid crystal panel 10G. Therefore, a decrease in reliability of the liquid crystal element included in the display panel can be suppressed, and the liquid crystal element can be stably operated.
また、耐熱性などの観点から、可撓性基板上に、液晶素子の電極やトランジスタを直接形成することは困難な場合がある。そこで、硬質基板上に液晶素子の電極やトランジスタを形成し、基板12または基板21と貼り合わせた後、硬質基板を剥離し、可撓性基板に転置する方法を用いることができる。本構成例において、可撓性基板16及び可撓性基板26は、それぞれ、接着剤等によって、基板12または基板21と貼り合わされていてもよい。 In addition, from the viewpoint of heat resistance and the like, it may be difficult to directly form electrodes and transistors of liquid crystal elements on a flexible substrate. Therefore, a method in which an electrode or a transistor of a liquid crystal element is formed over a hard substrate and bonded to the substrate 12 or the substrate 21, and then the hard substrate is peeled off and transferred to a flexible substrate can be used. In this configuration example, the flexible substrate 16 and the flexible substrate 26 may be bonded to the substrate 12 or the substrate 21 with an adhesive or the like, respectively.
なお、トランジスタを形成した硬質基板は、液晶素子の電極のみを形成した硬質基板に比べて、剥離性が低い場合がある。そのため、後に剥離する硬質基板上には、液晶素子の電極、着色層、及び遮光層のうち一つまたは複数を作製し、剥離しない基板(基板12または基板21)にトランジスタを形成することが好ましい。例えば、表示装置100Hにおいて、トランジスタ13は基板11に形成され、トランジスタ23は基板21に形成されており、可撓性基板側には、電極53、着色層39、及び遮光層38などが位置する。そのため、硬質基板に電極53などを作製し、基板21と貼り合わせた後、硬質基板を歩留まり良く剥離し、可撓性基板26に転置することができる。また、硬質基板に着色層39及び遮光層38などを作製し、基板11と貼り合わせた後、硬質基板を歩留まり良く剥離し、可撓性基板16に転置することができる。 Note that a hard substrate over which a transistor is formed may have lower peelability than a hard substrate over which only an electrode of a liquid crystal element is formed. Therefore, it is preferable to form one or a plurality of electrodes, colored layers, and light-shielding layers of a liquid crystal element over a hard substrate that is peeled later, and a transistor is formed on a substrate (the substrate 12 or the substrate 21) that is not peeled off. . For example, in the display device 100H, the transistor 13 is formed on the substrate 11, the transistor 23 is formed on the substrate 21, and the electrode 53, the coloring layer 39, the light shielding layer 38, and the like are located on the flexible substrate side. . Therefore, after the electrodes 53 and the like are formed on the hard substrate and bonded to the substrate 21, the hard substrate can be peeled off with a high yield and transferred to the flexible substrate 26. Further, after the colored layer 39 and the light shielding layer 38 are formed on the hard substrate and bonded to the substrate 11, the hard substrate can be peeled off with a high yield and transferred to the flexible substrate 16.
<構成例6>
本発明の一態様は、タッチセンサが搭載された表示装置(入出力装置またはタッチパネルともいう)に適用することができる。上述の各表示装置の構成を、タッチパネルに適用することができる。
<Configuration Example 6>
One embodiment of the present invention can be applied to a display device (also referred to as an input / output device or a touch panel) on which a touch sensor is mounted. The configuration of each display device described above can be applied to a touch panel.
本発明の一態様のタッチパネルが有する検知素子(センサ素子ともいう)に限定は無い。指やスタイラスなどの被検知体の近接または接触を検知することのできる様々なセンサを、検知素子として適用することができる。 There is no limitation on a detection element (also referred to as a sensor element) included in the touch panel of one embodiment of the present invention. Various sensors that can detect the proximity or contact of an object to be detected, such as a finger or a stylus, can be applied as the detection element.
センサの方式としては、例えば、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、光学方式、感圧方式など様々な方式を用いることができる。 As a sensor method, for example, various methods such as a capacitance method, a resistance film method, a surface acoustic wave method, an infrared method, an optical method, and a pressure-sensitive method can be used.
本実施の形態では、静電容量方式の検知素子を有するタッチパネルを例に挙げて説明する。 In this embodiment, a touch panel having a capacitive detection element will be described as an example.
静電容量方式としては、表面型静電容量方式、投影型静電容量方式等がある。また、投影型静電容量方式としては、自己容量方式、相互容量方式等がある。相互容量方式を用いると、同時多点検知が可能となるため好ましい。 Examples of the electrostatic capacity method include a surface electrostatic capacity method and a projection electrostatic capacity method. In addition, examples of the projected capacitance method include a self-capacitance method and a mutual capacitance method. The mutual capacitance method is preferable because simultaneous multipoint detection is possible.
本発明の一態様のタッチパネルは、別々に作製された表示パネルと検知素子とを貼り合わせる構成、表示素子を支持する基板及び対向基板の一方または双方に検知素子を構成する電極等を設ける構成等、様々な構成を適用することができる。 The touch panel of one embodiment of the present invention includes a structure in which a separately manufactured display panel and a detection element are bonded together, a structure in which an electrode that forms the detection element is provided on one or both of a substrate that supports the display element and a counter substrate, and the like Various configurations can be applied.
2つの液晶パネルのうち、タッチセンサは、表示面側に位置する液晶パネルに搭載されていることが好ましい。これにより、タッチセンサの感度を高めることができる。本構成例では、表示用の液晶パネルが表示面側に位置し、かつ、タッチセンサを有する場合について説明する。 Of the two liquid crystal panels, the touch sensor is preferably mounted on a liquid crystal panel located on the display surface side. Thereby, the sensitivity of a touch sensor can be raised. In this configuration example, a case where a display liquid crystal panel is located on the display surface side and has a touch sensor will be described.
図5(A)にタッチパネル110Aの断面図を示す。図5(B)にタッチパネル110Bの断面図を示す。 FIG. 5A shows a cross-sectional view of the touch panel 110A. FIG. 5B is a cross-sectional view of the touch panel 110B.
図5(A)に示すタッチパネル110Aは、液晶パネル111A、液晶パネル112A、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 A touch panel 110A illustrated in FIG. 5A includes a liquid crystal panel 111A, a liquid crystal panel 112A, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
バックライトユニット30が有する光源から発せられた光35は、偏光板61、液晶パネル112A、偏光板62、液晶パネル111A、偏光板63をこの順に透過して、タッチパネル110Aの外部に射出される。光35が透過するこれらの層の材料には、可視光を透過する材料を用いる。 The light 35 emitted from the light source of the backlight unit 30 passes through the polarizing plate 61, the liquid crystal panel 112A, the polarizing plate 62, the liquid crystal panel 111A, and the polarizing plate 63 in this order, and is emitted to the outside of the touch panel 110A. A material that transmits visible light is used for the material of these layers through which the light 35 is transmitted.
液晶パネル111Aは、画像を表示する機能と、タッチセンサとしての機能と、を有する。タッチパネル110Aは、液晶パネル111Aのトランジスタ13等を形成する基板11のみに、検知素子を構成する電極等を設けた構成である。このような構成は、別々に作製された液晶パネルと検知素子とを貼り合わせる構成に比べて、タッチパネルを薄型化もしくは軽量化することができる、または、タッチパネルの部品点数を少なくすることができる。また、基板12側に設ける構成要素を簡素化することができる。また、基板11側に接続された1つまたは複数のFPCによって、液晶素子を駆動する信号と、検知素子を駆動する信号の双方を供給することができる。そのため、電子機器に組み込みやすく、部品点数を削減することができる。 The liquid crystal panel 111A has a function of displaying an image and a function as a touch sensor. The touch panel 110A has a configuration in which an electrode or the like constituting a detection element is provided only on the substrate 11 on which the transistor 13 or the like of the liquid crystal panel 111A is formed. Such a configuration can reduce the thickness or weight of the touch panel or reduce the number of components of the touch panel, compared to a configuration in which the separately manufactured liquid crystal panel and the detection element are bonded. Moreover, the component provided in the board | substrate 12 side can be simplified. In addition, one or a plurality of FPCs connected to the substrate 11 side can supply both a signal for driving the liquid crystal element and a signal for driving the detection element. Therefore, it is easy to incorporate in an electronic device, and the number of parts can be reduced.
液晶パネル111Aは、FFSモードが適用されたアクティブマトリクス型の液晶パネルである。液晶パネル111Aは、透過型の液晶パネルである。液晶パネル111Aは、表示パネルとして機能する。 The liquid crystal panel 111A is an active matrix liquid crystal panel to which the FFS mode is applied. The liquid crystal panel 111A is a transmissive liquid crystal panel. The liquid crystal panel 111A functions as a display panel.
液晶パネル111Aは、基板11、基板12、トランジスタ13、絶縁層14、液晶素子40a、液晶素子40b等を有する。 The liquid crystal panel 111A includes a substrate 11, a substrate 12, a transistor 13, an insulating layer 14, a liquid crystal element 40a, a liquid crystal element 40b, and the like.
液晶素子40aは、電極41a、液晶層42、及び電極43aを有する。液晶素子40bは、電極41b、液晶層42、及び電極43bを有する。 The liquid crystal element 40a includes an electrode 41a, a liquid crystal layer 42, and an electrode 43a. The liquid crystal element 40b includes an electrode 41b, a liquid crystal layer 42, and an electrode 43b.
図5(A)では、2つのトランジスタ13を示す。2つのトランジスタ13上に絶縁層14が設けられ、絶縁層14上に電極41a及び電極41bが設けられている。絶縁層14に設けられた開口を介して、電極41aと2つのトランジスタ13の一方とは電気的に接続される。絶縁層14に設けられた開口を介して、電極41bと2つのトランジスタ13の他方とは電気的に接続される。電極41a及び電極41bは絶縁層44に覆われており、絶縁層44上に電極43a及び電極43bが設けられている。電極41aは、絶縁層44を介して電極43aと重なる領域を有する。また、電極41aは、電極43aと重ならない領域も有する。電極41bは、絶縁層44を介して電極43bと重なる領域を有する。また、電極41bは、電極43bと重ならない領域も有する。液晶層42は、基板11と基板12の間に挟持される。電極43aと電極43bとは電気的に絶縁されている。 In FIG. 5A, two transistors 13 are shown. An insulating layer 14 is provided on the two transistors 13, and an electrode 41 a and an electrode 41 b are provided on the insulating layer 14. The electrode 41 a and one of the two transistors 13 are electrically connected through an opening provided in the insulating layer 14. The electrode 41 b and the other of the two transistors 13 are electrically connected through an opening provided in the insulating layer 14. The electrode 41 a and the electrode 41 b are covered with an insulating layer 44, and the electrode 43 a and the electrode 43 b are provided on the insulating layer 44. The electrode 41a has a region overlapping with the electrode 43a with the insulating layer 44 interposed therebetween. The electrode 41a also has a region that does not overlap with the electrode 43a. The electrode 41b has a region overlapping with the electrode 43b with the insulating layer 44 interposed therebetween. The electrode 41b also has a region that does not overlap with the electrode 43b. The liquid crystal layer 42 is sandwiched between the substrate 11 and the substrate 12. The electrode 43a and the electrode 43b are electrically insulated.
タッチパネル110Aでは、電極43aと電極43bとの間に形成される容量を利用して、被検知体の近接または接触等を検知することができる。すなわちタッチパネル110Aにおいて、電極43a、43bは、液晶素子の共通電極と、検知素子の電極と、の両方を兼ねる。 In the touch panel 110A, proximity or contact of the detection target can be detected using a capacitance formed between the electrode 43a and the electrode 43b. That is, in the touch panel 110A, the electrodes 43a and 43b serve as both the common electrode of the liquid crystal element and the electrode of the detection element.
このように、本発明の一態様のタッチパネルでは、液晶素子を構成する電極が、検知素子を構成する電極を兼ねるため、作製工程を簡略化でき、かつ作製コストを低減できる。また、タッチパネルの薄型化、軽量化を図ることができる。 As described above, in the touch panel of one embodiment of the present invention, the electrode included in the liquid crystal element also serves as the electrode included in the detection element. Therefore, the manufacturing process can be simplified and the manufacturing cost can be reduced. In addition, the touch panel can be reduced in thickness and weight.
液晶パネル112Aは、液晶パネル20C(図2(A))と同様の構成を有する。液晶パネル112Aが有する液晶素子50は、液晶パネル111Aが有する2以上の液晶素子(図5(A)では液晶素子40a及び液晶素子40bの2つ)と重ねて配置される。つまり、1つの液晶素子50を用いて、タッチパネル110Aが有する2以上の副画素の調光を行う構成である。また、液晶パネル112Aの1つの副画素を用いて、液晶パネル111Aの2以上の副画素の調光を行う、と言い換えることもできる。このように、表示パネルと調光パネルは、互いに異なる解像度及び精細度とすることができる。表示パネルの解像度は、調光パネルの解像度以上であることが好ましい。 The liquid crystal panel 112A has the same configuration as the liquid crystal panel 20C (FIG. 2A). The liquid crystal element 50 included in the liquid crystal panel 112A is disposed so as to overlap with two or more liquid crystal elements included in the liquid crystal panel 111A (two liquid crystal elements 40a and 40b in FIG. 5A). That is, it is a configuration that performs dimming of two or more subpixels of the touch panel 110 </ b> A using one liquid crystal element 50. In other words, dimming of two or more subpixels of the liquid crystal panel 111A is performed using one subpixel of the liquid crystal panel 112A. In this way, the display panel and the light control panel can have different resolution and definition. The resolution of the display panel is preferably equal to or higher than the resolution of the light control panel.
図5(B)に示すタッチパネル110Bは、液晶パネル111B、液晶パネル112B、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 A touch panel 110B illustrated in FIG. 5B includes a liquid crystal panel 111B, a liquid crystal panel 112B, a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
バックライトユニット30が有する光源から発せられた光35は、偏光板61、液晶パネル112B、偏光板62、液晶パネル111B、偏光板63をこの順に透過して、タッチパネル110Bの外部に射出される。光35が透過するこれらの層の材料には、可視光を透過する材料を用いる。 The light 35 emitted from the light source of the backlight unit 30 passes through the polarizing plate 61, the liquid crystal panel 112B, the polarizing plate 62, the liquid crystal panel 111B, and the polarizing plate 63 in this order, and is emitted to the outside of the touch panel 110B. A material that transmits visible light is used for the material of these layers through which the light 35 is transmitted.
液晶パネル111Bは、画像を表示する機能と、タッチセンサとしての機能と、を有する。 The liquid crystal panel 111B has a function of displaying an image and a function as a touch sensor.
液晶パネル111Bは、対向基板(基板12)にのみに、検知素子を構成する電極等を設けた構成である。このような構成は、別々に作製された表示装置と検知素子とを貼り合わせる構成に比べて、タッチパネルを薄型化もしくは軽量化することができる、または、タッチパネルの部品点数を少なくすることができる。 The liquid crystal panel 111B has a configuration in which an electrode or the like constituting a detection element is provided only on the counter substrate (substrate 12). Such a configuration can reduce the thickness or weight of the touch panel or reduce the number of components of the touch panel, compared to a configuration in which a separately manufactured display device and a detection element are bonded.
検知素子とその周囲の構成について説明する。基板12には、電極71及び電極72が複数設けられている。電極71及び電極72は、絶縁層74を介して、電極73と重なる。絶縁層74に設けられた開口を介して、電極71と電極73とは電気的に接続される。電極72を挟むように設けられる2つの電極71は、電極73によって電気的に接続される。電極73は絶縁層75を介して遮光層38と重なる。電極73の可視光の透過性は問わない。電極71及び電極72は着色層39と重なる部分を有するため、可視光の透過性が高いことが好ましい。 The configuration of the detection element and its surroundings will be described. A plurality of electrodes 71 and electrodes 72 are provided on the substrate 12. The electrode 71 and the electrode 72 overlap with the electrode 73 with the insulating layer 74 interposed therebetween. The electrode 71 and the electrode 73 are electrically connected through an opening provided in the insulating layer 74. The two electrodes 71 provided so as to sandwich the electrode 72 are electrically connected by an electrode 73. The electrode 73 overlaps the light shielding layer 38 with the insulating layer 75 interposed therebetween. The visible light transmittance of the electrode 73 does not matter. Since the electrode 71 and the electrode 72 have a portion overlapping the colored layer 39, it is preferable that the visible light transmittance is high.
検知素子を構成する電極を、非表示領域にのみ配置してもよい。検知素子を構成する電極を表示領域と重ねない構成とすることで、当該電極の材料の可視光の透過性が限定されない。そのため、金属等の抵抗率の低い材料を用いることができる。例えば、タッチセンサの配線及び電極として、メタルメッシュを用いることが好ましい。これにより、タッチセンサの配線及び電極の抵抗を下げることができる。また、大型の表示装置のタッチセンサとして好適である。なお、一般的に金属は反射率が大きい材料であるが、酸化処理などを施すことにより暗色にすることができる。したがって、表示面側から視認した場合においても、外光の反射による視認性の低下を抑えることができる。 The electrodes constituting the detection element may be arranged only in the non-display area. By making the electrode constituting the detection element not overlap with the display region, the visible light transmittance of the material of the electrode is not limited. Therefore, a low resistivity material such as metal can be used. For example, it is preferable to use a metal mesh as the wiring and electrodes of the touch sensor. Thereby, the resistance of the wiring and electrodes of the touch sensor can be lowered. Moreover, it is suitable as a touch sensor for a large display device. In general, metal is a material having a high reflectance, but it can be darkened by performing an oxidation treatment or the like. Therefore, even when viewed from the display surface side, it is possible to suppress a decrease in visibility due to reflection of external light.
また、当該配線及び当該電極を、金属層と反射率の小さい層(「暗色層」ともいう。)の積層で形成してもよい。暗色層の一例としては、酸化銅を含む層、塩化銅または塩化テルルを含む層などがある。また、暗色層を、Ag粒子、Agファイバー、Cu粒子等の金属微粒子、カーボンナノチューブ(CNT)、グラフェン等のナノ炭素粒子、並びに、PEDOT、ポリアニリン、ポリピロールなどの導電性高分子などを用いて形成してもよい。 Alternatively, the wiring and the electrode may be formed using a stack of a metal layer and a layer with low reflectance (also referred to as a “dark color layer”). Examples of the dark color layer include a layer containing copper oxide and a layer containing copper chloride or tellurium chloride. In addition, the dark color layer is formed using fine metal particles such as Ag particles, Ag fibers, and Cu particles, nanocarbon particles such as carbon nanotubes (CNT) and graphene, and conductive polymers such as PEDOT, polyaniline, and polypyrrole. May be.
基板11上に設けられる構成要素は、図2(B)に示す液晶パネル10Dと同様である。 The components provided on the substrate 11 are the same as those of the liquid crystal panel 10D illustrated in FIG.
液晶パネル112Bは、図2(B)に示す液晶パネル20Dと同様の構成を有する。 The liquid crystal panel 112B has a configuration similar to that of the liquid crystal panel 20D illustrated in FIG.
<構成例7>
以降の構成例では、表示装置のより具体的な断面構造について説明する。
<Configuration example 7>
In the following configuration examples, a more specific cross-sectional structure of the display device will be described.
構成例7では、表示用の液晶パネルに、FFSモードが適用されたアクティブマトリクス型の液晶パネルを用い、調光用の液晶パネルに、TNモードが適用されたアクティブマトリクス型の液晶パネルを用いた表示装置について説明する。 In the configuration example 7, an active matrix liquid crystal panel to which the FFS mode is applied is used as the liquid crystal panel for display, and an active matrix liquid crystal panel to which the TN mode is applied is used as the liquid crystal panel for light control. The display device will be described.
図6に、表示装置200Aの断面図を示す。表示装置200Aは、表示用の液晶パネルである液晶パネル80Aと、調光用の液晶パネルである液晶パネル90Aとを有する。表示装置200Aは、さらに、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 FIG. 6 shows a cross-sectional view of the display device 200A. The display device 200A includes a liquid crystal panel 80A that is a liquid crystal panel for display and a liquid crystal panel 90A that is a liquid crystal panel for dimming. The display device 200 </ b> A further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
図6は、構成例3(図2(A)に示す表示装置100C)及び構成例4(図3(A)に示す表示装置100E)に対応する表示装置の具体例といえる。 6 can be a specific example of a display device corresponding to the configuration example 3 (the display device 100C illustrated in FIG. 2A) and the configuration example 4 (the display device 100E illustrated in FIG. 3A).
表示装置200Aは、表示部162及び駆動回路部164を有する。 The display device 200A includes a display unit 162 and a drive circuit unit 164.
表示部162は複数の画素を有し、画像を表示する機能を有する。 The display portion 162 includes a plurality of pixels and has a function of displaying an image.
画素は、複数の副画素を有する。例えば、赤色を呈する副画素、緑色を呈する副画素、及び青色を呈する副画素によって1つの画素が構成されることで、表示部162ではフルカラーの表示を行うことができる。なお、副画素が呈する色は、赤、緑、及び青に限られない。画素には、例えば、白、黄、マゼンタ、またはシアン等の色を呈する副画素を用いてもよい。 The pixel has a plurality of subpixels. For example, the display unit 162 can perform full-color display by including one pixel including a red sub-pixel, a green sub-pixel, and a blue sub-pixel. In addition, the color which a subpixel exhibits is not restricted to red, green, and blue. As the pixel, for example, a sub-pixel exhibiting a color such as white, yellow, magenta, or cyan may be used.
表示部162では、液晶パネル90Aの透過領域と、液晶パネル80Aの表示領域とが積層される。バックライトユニット30が有する光源から発せられた光は、偏光板61、液晶パネル90Aの透過領域、偏光板62、液晶パネル80Aの表示領域、偏光板63をこの順に透過して、表示装置200Aの外部に射出される。光が透過するこれらの層の材料には、可視光を透過する材料を用いる。 In the display unit 162, the transmission region of the liquid crystal panel 90A and the display region of the liquid crystal panel 80A are stacked. The light emitted from the light source included in the backlight unit 30 is transmitted through the polarizing plate 61, the transmission region of the liquid crystal panel 90A, the polarizing plate 62, the display region of the liquid crystal panel 80A, and the polarizing plate 63 in this order. It is injected outside. A material that transmits visible light is used as a material for these layers through which light is transmitted.
液晶パネル80A及び液晶パネル90Aは、それぞれ独立に、走査線駆動回路及び信号線駆動回路のうち一方または双方を有することができる。または、液晶パネル80A及び液晶パネル90Aは、走査線駆動回路及び信号線駆動回路の双方を有していなくてもよい。液晶パネルが、タッチセンサ等のセンサを有する場合、当該液晶パネルは、センサ駆動回路を有していてもよい。また、液晶パネルには、信号線駆動回路、走査線駆動回路、及びセンサ駆動回路のうち、一つ又は複数を有するIC(集積回路)が接続されていてもよい。 The liquid crystal panel 80A and the liquid crystal panel 90A can independently have one or both of a scanning line driving circuit and a signal line driving circuit. Alternatively, the liquid crystal panel 80A and the liquid crystal panel 90A may not include both the scanning line driving circuit and the signal line driving circuit. When the liquid crystal panel includes a sensor such as a touch sensor, the liquid crystal panel may include a sensor driving circuit. In addition, an IC (integrated circuit) having one or more of a signal line driver circuit, a scan line driver circuit, and a sensor driver circuit may be connected to the liquid crystal panel.
液晶パネル80Aには、接続体242bを介して、FPC172bが電気的に接続されている。液晶パネル90Aには、接続体242aを介して、FPC172aが電気的に接続されている。各FPCを介して、駆動回路部164に外部から信号及び電力が供給される。表示部162及び駆動回路部164には、導電層251及び配線222cを介して、信号及び電力が供給される。なお、図6では、液晶パネル80AのFPC172bが接続される部分と液晶パネル90AのFPC172aが接続される部分とが重なる例を示すが、本発明の一態様はこれに限られず、これらの部分は互いに重ならなくてもよい。 The FPC 172b is electrically connected to the liquid crystal panel 80A through the connection body 242b. An FPC 172a is electrically connected to the liquid crystal panel 90A via a connection body 242a. A signal and power are supplied from the outside to the drive circuit unit 164 via each FPC. Signals and power are supplied to the display portion 162 and the driver circuit portion 164 through the conductive layer 251 and the wiring 222c. Note that FIG. 6 illustrates an example in which a portion to which the FPC 172b of the liquid crystal panel 80A is connected and a portion to which the FPC 172a of the liquid crystal panel 90A are connected overlap, but one embodiment of the present invention is not limited thereto, and these portions are It does not have to overlap each other.
まず、液晶パネル90Aの構成について説明する。 First, the configuration of the liquid crystal panel 90A will be described.
図6に示すように、液晶パネル90Aは、基板21、トランジスタ201a、トランジスタ23a、液晶素子50、配向膜133a、配向膜133b、接着層141a、基板22等を有する。 As shown in FIG. 6, the liquid crystal panel 90A includes a substrate 21, a transistor 201a, a transistor 23a, a liquid crystal element 50, an alignment film 133a, an alignment film 133b, an adhesive layer 141a, a substrate 22, and the like.
表示部162には、トランジスタ23aが設けられている。トランジスタ23aは、ゲート電極として機能する導電層221と、ゲート絶縁層として機能する絶縁層211と、半導体層231と、ソース電極及びドレイン電極として機能する導電層222a及び導電層222bと、を有する。トランジスタ23aは、絶縁層217及び絶縁層218に覆われている。絶縁層215は、平坦化膜として機能する。トランジスタ23aは、半導体層231に、金属酸化物を有する。導電層222bは、絶縁層217、絶縁層218、及び絶縁層215に設けられた開口を介して、電極51と電気的に接続されている。 The display portion 162 is provided with a transistor 23a. The transistor 23a includes a conductive layer 221 functioning as a gate electrode, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer 231, and a conductive layer 222a and a conductive layer 222b functioning as a source electrode and a drain electrode. The transistor 23 a is covered with an insulating layer 217 and an insulating layer 218. The insulating layer 215 functions as a planarization film. The transistor 23a includes a metal oxide in the semiconductor layer 231. The conductive layer 222b is electrically connected to the electrode 51 through an opening provided in the insulating layer 217, the insulating layer 218, and the insulating layer 215.
駆動回路部164には、トランジスタ201aが設けられている。トランジスタ201aは、トランジスタ23aと同様の構成を有する。 The driver circuit portion 164 is provided with a transistor 201a. The transistor 201a has a structure similar to that of the transistor 23a.
表示部162には、液晶素子50が設けられている。液晶素子50は、TNモードが適用された液晶素子である。 The display unit 162 is provided with a liquid crystal element 50. The liquid crystal element 50 is a liquid crystal element to which the TN mode is applied.
液晶素子50は、電極51、電極53、及び液晶層52を有する。電極51と電極53との間に生じる電界により、液晶層52の配向を制御することができる。液晶層52は、配向膜133aと配向膜133bの間に位置する。配向膜は、液晶層52の配向を制御することができる。液晶パネル90Aでは、電極51と液晶層52との間に配向膜133aが位置し、電極53と液晶層52との間に配向膜133bが位置している。 The liquid crystal element 50 includes an electrode 51, an electrode 53, and a liquid crystal layer 52. The alignment of the liquid crystal layer 52 can be controlled by an electric field generated between the electrode 51 and the electrode 53. The liquid crystal layer 52 is located between the alignment film 133a and the alignment film 133b. The alignment film can control the alignment of the liquid crystal layer 52. In the liquid crystal panel 90 </ b> A, the alignment film 133 a is positioned between the electrode 51 and the liquid crystal layer 52, and the alignment film 133 b is positioned between the electrode 53 and the liquid crystal layer 52.
基板21及び基板22は、接着層141aによって貼り合わされている。基板21、基板22、及び接着層141aに囲まれた領域に、液晶層52が封止されている。 The board | substrate 21 and the board | substrate 22 are bonded together by the contact bonding layer 141a. A liquid crystal layer 52 is sealed in a region surrounded by the substrate 21, the substrate 22, and the adhesive layer 141a.
次に、液晶パネル80Aの構成について説明する。 Next, the configuration of the liquid crystal panel 80A will be described.
図6に示すように、液晶パネル80Aは、基板11、トランジスタ201b、ランジスタ13a、液晶素子40、配向膜133c、配向膜133d、着色層39、遮光層38、オーバーコート121、接着層141b、基板12等を有する。 As shown in FIG. 6, the liquid crystal panel 80A includes a substrate 11, a transistor 201b, a transistor 13a, a liquid crystal element 40, an alignment film 133c, an alignment film 133d, a colored layer 39, a light shielding layer 38, an overcoat 121, an adhesive layer 141b, and a substrate. 12 etc.
基板11から電極41までの積層構造は、液晶パネル90Aの基板21から電極51までの積層構造と同様であるため、詳細な説明は省略する。 Since the laminated structure from the substrate 11 to the electrode 41 is the same as the laminated structure from the substrate 21 to the electrode 51 of the liquid crystal panel 90A, detailed description thereof is omitted.
表示部162には、液晶素子40が設けられている。液晶素子40は、FFSモードが適用された液晶素子である。 A liquid crystal element 40 is provided in the display unit 162. The liquid crystal element 40 is a liquid crystal element to which the FFS mode is applied.
液晶素子40は、電極41、電極43、及び液晶層42を有する。電極41と電極43との間に生じる電界により、液晶層42の配向を制御することができる。液晶層42は、配向膜133cと配向膜133dの間に位置する。配向膜は、液晶層42の配向を制御することができる。液晶パネル80Aでは、電極43及び絶縁層44と液晶層42との間に配向膜133cが位置し、オーバーコート121と液晶層42との間に配向膜133dが位置している。 The liquid crystal element 40 includes an electrode 41, an electrode 43, and a liquid crystal layer 42. The alignment of the liquid crystal layer 42 can be controlled by an electric field generated between the electrode 41 and the electrode 43. The liquid crystal layer 42 is located between the alignment film 133c and the alignment film 133d. The alignment film can control the alignment of the liquid crystal layer 42. In the liquid crystal panel 80 </ b> A, the alignment film 133 c is positioned between the electrode 43 and the insulating layer 44 and the liquid crystal layer 42, and the alignment film 133 d is positioned between the overcoat 121 and the liquid crystal layer 42.
電極43は、例えば、櫛歯状の上面形状(平面形状ともいう)、またはスリットが設けられた上面形状を有する。 The electrode 43 has, for example, a comb-like top surface shape (also referred to as a planar shape) or a top surface shape provided with a slit.
電極41と電極43の間には、絶縁層44が設けられている。電極41は、絶縁層44を介して電極43と重なる部分を有する。また、電極41と着色層39とが重なる領域において、電極41上に電極43が配置されていない部分を有する。 An insulating layer 44 is provided between the electrode 41 and the electrode 43. The electrode 41 has a portion that overlaps the electrode 43 with the insulating layer 44 interposed therebetween. Further, in a region where the electrode 41 and the colored layer 39 overlap, there is a portion where the electrode 43 is not disposed on the electrode 41.
着色層39及び遮光層38と、液晶層42と、の間には、オーバーコート121を設けることが好ましい。オーバーコート121は、着色層39及び遮光層38等に含まれる不純物が液晶層42に拡散することを抑制できる。 An overcoat 121 is preferably provided between the colored layer 39 and the light shielding layer 38 and the liquid crystal layer 42. The overcoat 121 can suppress the diffusion of impurities contained in the colored layer 39 and the light shielding layer 38 into the liquid crystal layer 42.
次に、本実施の形態の表示装置の各構成要素に用いることができる材料等の詳細について、説明を行う。 Next, details of materials and the like that can be used for each component of the display device of this embodiment will be described.
表示装置が有する基板の材質などに大きな制限はなく、様々な基板を用いることができる。例えば、ガラス基板、石英基板、サファイア基板、半導体基板、セラミック基板、金属基板、またはプラスチック基板等を用いることができる。 There is no particular limitation on the material of the substrate included in the display device, and various substrates can be used. For example, a glass substrate, a quartz substrate, a sapphire substrate, a semiconductor substrate, a ceramic substrate, a metal substrate, a plastic substrate, or the like can be used.
厚さの薄い基板を用いることで、表示装置の軽量化及び薄型化を図ることができる。さらに、可撓性を有する程度の厚さの基板を用いることで、可撓性を有する表示装置を実現できる。 By using a thin substrate, the display device can be reduced in weight and thickness. Furthermore, a flexible display device can be realized by using a flexible substrate.
液晶材料には、誘電率の異方性(Δε)が正であるポジ型の液晶材料と、負であるネガ型の液晶材料がある。本発明の一態様では、どちらの材料を用いることもでき、適用するモード及び設計に応じて最適な液晶材料を用いることができる。 As the liquid crystal material, there are a positive liquid crystal material having a positive dielectric anisotropy (Δε) and a negative liquid crystal material having a negative dielectric constant. In one embodiment of the present invention, either material can be used, and an optimum liquid crystal material can be used depending on a mode to be applied and a design.
本実施の形態の表示装置では、様々なモードが適用された液晶素子を用いることができる。上述したFFSモード、IPSモード、TNモードのほかに、例えば、VA(Vertical Alignment)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード、ECB(Electrically Controlled Birefringence)モード、VA−IPSモード、ゲストホストモード、垂直配向(VA)モード等が適用された液晶素子を用いることができる。垂直配向モードとしては、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASV(Advanced Super View)モードなどを用いることができる。 In the display device in this embodiment, liquid crystal elements to which various modes are applied can be used. In addition to the FFS mode, IPS mode, and TN mode described above, for example, VA (Vertical Alignment) mode, ASM (Axial Symmetrical Aligned Micro-cell) mode, OCB (Optically Compensated Birefringence LC) mode. A liquid crystal element to which an AFLC (Antiferroelectric Liquid Crystal) mode, an ECB (Electrically Controlled Birefringence) mode, a VA-IPS mode, a guest-host mode, a vertical alignment (VA) mode, or the like can be used. As the vertical alignment mode, MVA (Multi-Domain Vertical Alignment) mode, PVA (Patterned Vertical Alignment) mode, ASV (Advanced Super View) mode, or the like can be used.
なお、液晶素子は、液晶の光学変調作用によって光の透過または非透過を制御する素子である。液晶の光学的変調作用は、液晶にかかる電界(横方向の電界、縦方向の電界または斜め方向の電界を含む)によって制御される。液晶素子に用いる液晶としては、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。 Note that the liquid crystal element is an element that controls transmission or non-transmission of light by an optical modulation action of liquid crystal. The optical modulation action of the liquid crystal is controlled by an electric field applied to the liquid crystal (including a horizontal electric field, a vertical electric field, or an oblique electric field). As the liquid crystal used in the liquid crystal element, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal (PDLC), a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used. . These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
また、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために5重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性を示す。また、ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の表示パネルの不良または破損を軽減することができる。 In the case of employing a horizontal electric field method, a liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used. The blue phase is one of the liquid crystal phases. When the temperature of the cholesteric liquid crystal is increased, the blue phase appears immediately before the transition from the cholesteric phase to the isotropic phase. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition mixed with 5% by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range. A liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and exhibits optical isotropy. In addition, a liquid crystal composition including a liquid crystal exhibiting a blue phase and a chiral agent does not require alignment treatment and has a small viewing angle dependency. Further, since an alignment film is not necessarily provided, a rubbing process is not necessary, so that electrostatic breakdown caused by the rubbing process can be prevented, and defects or breakage of the display panel during the manufacturing process can be reduced.
本実施の形態の表示装置が有する液晶パネルは、透過型の液晶パネルであるため、一対の電極の双方に、可視光を透過する導電性材料を用いる。 Since the liquid crystal panel included in the display device of this embodiment is a transmissive liquid crystal panel, a conductive material that transmits visible light is used for both of the pair of electrodes.
可視光を透過する導電性材料としては、例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中から選ばれた一種以上を含む材料を用いるとよい。具体的には、酸化インジウム、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、酸化シリコンを含むインジウム錫酸化物(ITSO)、酸化亜鉛、ガリウムを含む酸化亜鉛などが挙げられる。なお、グラフェンを含む膜を用いることもできる。グラフェンを含む膜は、例えば酸化グラフェンを含む膜を還元して形成することができる。 As the conductive material that transmits visible light, for example, a material containing one or more selected from indium (In), zinc (Zn), and tin (Sn) may be used. Specifically, indium oxide, indium tin oxide (ITO), indium zinc oxide, indium oxide including tungsten oxide, indium zinc oxide including tungsten oxide, indium oxide including titanium oxide, and titanium oxide are included. Examples thereof include indium tin oxide, indium tin oxide containing silicon oxide (ITSO), zinc oxide, and zinc oxide containing gallium. Note that a film containing graphene can also be used. The film containing graphene can be formed by, for example, reducing a film containing graphene oxide.
また、可視光を透過する導電膜は、酸化物半導体を用いて形成することができる(以下、酸化物導電層ともいう)。酸化物導電層は、例えば、インジウムを含むことが好ましく、In−M−Zn酸化物(MはAl、Ti、Ga、Y、Zr、La、Ce、Nd、SnまたはHf)を含むことがさらに好ましい。 The conductive film that transmits visible light can be formed using an oxide semiconductor (hereinafter also referred to as an oxide conductive layer). The oxide conductive layer preferably includes, for example, indium, and further includes an In-M-Zn oxide (M is Al, Ti, Ga, Y, Zr, La, Ce, Nd, Sn, or Hf). preferable.
酸化物半導体は、膜中の酸素欠損、及び膜中の水素、水等の不純物濃度のうち少なくとも一方によって、抵抗を制御することができる半導体材料である。そのため、酸化物半導体層へ酸素欠損及び不純物濃度の少なくとも一方が増加する処理、または酸素欠損及び不純物濃度の少なくとも一方が低減する処理を選択することによって、酸化物導電層の有する抵抗率を制御することができる。 An oxide semiconductor is a semiconductor material whose resistance can be controlled by at least one of oxygen vacancies in the film and impurity concentrations of hydrogen, water, and the like in the film. Therefore, the resistivity of the oxide conductive layer is controlled by selecting a treatment in which at least one of oxygen vacancies and impurity concentrations is increased or a treatment in which at least one of oxygen vacancies and impurity concentrations is reduced in the oxide semiconductor layer. be able to.
なお、このように、酸化物半導体を用いて形成された酸化物導電層は、キャリア密度が高く低抵抗な酸化物半導体層、導電性を有する酸化物半導体層、または導電性の高い酸化物半導体層ということもできる。 Note that an oxide conductive layer formed using an oxide semiconductor in this manner is an oxide semiconductor layer with high carrier density and low resistance, an oxide semiconductor layer with conductivity, or an oxide semiconductor with high conductivity. It can also be called a layer.
本実施の形態の表示装置が有するトランジスタは、トップゲート型またはボトムゲート型のいずれの構造としてもよい。または、チャネルの上下にゲート電極が設けられていてもよい。トランジスタに用いる半導体材料は特に限定されず、例えば、酸化物半導体、シリコン、ゲルマニウム等が挙げられる。 The transistor included in the display device of this embodiment may have a top-gate structure or a bottom-gate structure. Alternatively, gate electrodes may be provided above and below the channel. A semiconductor material used for the transistor is not particularly limited, and examples thereof include an oxide semiconductor, silicon, and germanium.
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。 There is no particular limitation on the crystallinity of the semiconductor material used for the transistor, and either an amorphous semiconductor or a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region) is used. May be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
例えば、第14族の元素、化合物半導体または酸化物半導体を半導体層に用いることができる。代表的には、シリコンを含む半導体、ガリウムヒ素を含む半導体またはインジウムを含む酸化物半導体などを半導体層に適用できる。 For example, a Group 14 element, a compound semiconductor, or an oxide semiconductor can be used for the semiconductor layer. Typically, a semiconductor containing silicon, a semiconductor containing gallium arsenide, an oxide semiconductor containing indium, or the like can be used for the semiconductor layer.
トランジスタのチャネルが形成される半導体に、酸化物半導体を適用することが好ましい。特にシリコンよりもバンドギャップの大きな酸化物半導体を適用することが好ましい。シリコンよりもバンドギャップが広く、且つキャリア密度の小さい半導体材料を用いると、トランジスタのオフ状態における電流を低減できるため好ましい。 An oxide semiconductor is preferably used as a semiconductor in which a channel of the transistor is formed. In particular, an oxide semiconductor having a larger band gap than silicon is preferably used. It is preferable to use a semiconductor material with a wider band gap and lower carrier density than silicon because current in an off state of the transistor can be reduced.
酸化物半導体については、実施の形態3で詳述する。 The oxide semiconductor will be described in detail in Embodiment 3.
酸化物半導体を用いることで、電気特性の変動が抑制され、信頼性の高いトランジスタを実現できる。 By using an oxide semiconductor, a change in electrical characteristics is suppressed and a highly reliable transistor can be realized.
また、その低いオフ電流により、トランジスタを介して容量に蓄積した電荷を長期間に亘って保持することが可能である。このようなトランジスタを画素に適用することで、表示した画像の階調を維持しつつ、駆動回路を停止することも可能となる。その結果、極めて消費電力の低減された表示装置を実現できる。 In addition, due to the low off-state current, the charge accumulated in the capacitor through the transistor can be held for a long time. By applying such a transistor to a pixel, the driving circuit can be stopped while maintaining the gradation of the displayed image. As a result, a display device with extremely reduced power consumption can be realized.
トランジスタは、高純度化し、酸素欠損の形成を抑制した酸化物半導体層を有することが好ましい。これにより、トランジスタのオフ状態における電流値(オフ電流値)を低くすることができる。よって、画像信号等の電気信号の保持時間を長くすることができ、電源オン状態では書き込み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なくすることができるため、消費電力を抑制する効果を奏する。 The transistor preferably includes an oxide semiconductor layer that is highly purified and suppresses formation of oxygen vacancies. Thus, the current value (off-current value) in the off state of the transistor can be reduced. Therefore, the holding time of an electric signal such as an image signal can be increased, and the writing interval can be set longer in the power-on state. Therefore, since the frequency of the refresh operation can be reduced, there is an effect of suppressing power consumption.
また、酸化物半導体を用いたトランジスタは、比較的高い電界効果移動度が得られるため、高速駆動が可能である。このような高速駆動が可能なトランジスタを表示装置に用いることで、表示部のトランジスタと、駆動回路部のトランジスタを同一基板上に形成することができる。すなわち、駆動回路として、別途、シリコンウェハ等により形成された半導体装置を用いる必要がないため、表示装置の部品点数を削減することができる。また、表示部においても、高速駆動が可能なトランジスタを用いることで、高画質な画像を提供することができる。 A transistor including an oxide semiconductor can be driven at high speed because a relatively high field-effect mobility can be obtained. By using such a transistor capable of high-speed driving for a display device, the transistor in the display portion and the transistor in the driver circuit portion can be formed over the same substrate. That is, it is not necessary to separately use a semiconductor device formed of a silicon wafer or the like as the drive circuit, so that the number of parts of the display device can be reduced. In the display portion, a high-quality image can be provided by using a transistor that can be driven at high speed.
駆動回路部164が有するトランジスタと表示部162が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。駆動回路部164が有するトランジスタは、全て同じ構造であってもよく、2種類以上の構造が組み合わせて用いられていてもよい。同様に、表示部162が有するトランジスタは、全て同じ構造であってもよく、2種類以上の構造が組み合わせて用いられていてもよい。 The transistor included in the driver circuit portion 164 and the transistor included in the display portion 162 may have the same structure or different structures. The transistors included in the driver circuit portion 164 may have the same structure, or two or more structures may be used in combination. Similarly, the transistors included in the display portion 162 may have the same structure, or two or more structures may be used in combination.
表示装置が有する各絶縁層、オーバーコート等に用いることのできる絶縁材料としては、有機絶縁材料または無機絶縁材料を用いることができる。有機絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、及びフェノール樹脂等が挙げられる。無機絶縁層としては、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等が挙げられる。 As an insulating material that can be used for each insulating layer, overcoat, or the like included in the display device, an organic insulating material or an inorganic insulating material can be used. Examples of the organic insulating material include acrylic resin, epoxy resin, polyimide resin, polyamide resin, polyimide amide resin, siloxane resin, benzocyclobutene resin, and phenol resin. As the inorganic insulating layer, silicon oxide film, silicon oxynitride film, silicon nitride oxide film, silicon nitride film, aluminum oxide film, hafnium oxide film, yttrium oxide film, zirconium oxide film, gallium oxide film, tantalum oxide film, magnesium oxide Examples thereof include a film, a lanthanum oxide film, a cerium oxide film, and a neodymium oxide film.
トランジスタのゲート、ソース、ドレインのほか、表示装置が有する各種配線及び電極等の導電層には、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金を単層構造または積層構造として用いることができる。例えば、アルミニウム膜上にチタン膜を積層する二層構造、タングステン膜上にチタン膜を積層する二層構造、モリブデン膜上に銅膜を積層した二層構造、モリブデンとタングステンを含む合金膜上に銅膜を積層した二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。例えば、導電層を三層構造とする場合、一層目及び三層目には、チタン、窒化チタン、モリブデン、タングステン、モリブデンとタングステンを含む合金、モリブデンとジルコニウムを含む合金、または窒化モリブデンでなる膜を形成し、二層目には、銅、アルミニウム、金または銀、或いは銅とマンガンの合金等の低抵抗材料でなる膜を形成することが好ましい。なお、ITO、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、ITSO等の透光性を有する導電性材料を用いてもよい。なお、酸化物半導体の抵抗率を制御することで、酸化物導電層を形成してもよい。 In addition to the gate, source, and drain of the transistor, conductive layers such as various wirings and electrodes of the display device include metals such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, and tungsten. Alternatively, an alloy containing this as a main component can be used as a single layer structure or a stacked structure. For example, a two-layer structure in which a titanium film is laminated on an aluminum film, a two-layer structure in which a titanium film is laminated on a tungsten film, a two-layer structure in which a copper film is laminated on a molybdenum film, or an alloy film containing molybdenum and tungsten Two-layer structure in which a copper film is laminated, two-layer structure in which a copper film is laminated on a copper-magnesium-aluminum alloy film, a titanium film or a titanium nitride film, and an aluminum film or copper layered on the titanium film or titanium nitride film A three-layer structure in which a film is stacked and a titanium film or a titanium nitride film is further formed thereon, a molybdenum film or a molybdenum nitride film, and an aluminum film or a copper film is stacked on the molybdenum film or the molybdenum nitride film, Further, there is a three-layer structure on which a molybdenum film or a molybdenum nitride film is formed. For example, when the conductive layer has a three-layer structure, the first and third layers include titanium, titanium nitride, molybdenum, tungsten, an alloy containing molybdenum and tungsten, an alloy containing molybdenum and zirconium, or a film made of molybdenum nitride. In the second layer, a film made of a low resistance material such as copper, aluminum, gold or silver, or an alloy of copper and manganese is preferably formed. In addition, ITO, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, ITSO, etc. You may use the electroconductive material which has. Note that the oxide conductive layer may be formed by controlling the resistivity of the oxide semiconductor.
接着層141a、接着層141bとしては、熱硬化樹脂、光硬化樹脂、または2液混合型の硬化性樹脂などの硬化性樹脂を用いることができる。例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、またはシロキサン樹脂などを用いることができる。 As the adhesive layer 141a and the adhesive layer 141b, a curable resin such as a thermosetting resin, a photocurable resin, or a two-component mixed curable resin can be used. For example, an acrylic resin, a urethane resin, an epoxy resin, a siloxane resin, or the like can be used.
接続体242a、接続体242bとしては、例えば、異方性導電フィルム(ACF:Anisotropic Conductive Film)、または異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。 As the connecting body 242a and the connecting body 242b, for example, an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), or the like can be used.
着色層39は特定の波長域の光を透過する有色層である。着色層39に用いることのできる材料としては、金属材料、樹脂材料、及び顔料または染料が含まれた樹脂材料などが挙げられる。 The colored layer 39 is a colored layer that transmits light in a specific wavelength range. Examples of materials that can be used for the colored layer 39 include metal materials, resin materials, and resin materials containing pigments or dyes.
遮光層38は、例えば、隣接する異なる色の着色層39の間に設けられる。例えば、金属材料、または、顔料もしくは染料を含む樹脂材料を用いて形成されたブラックマトリクスを遮光層38として用いることができる。なお、遮光層38は、駆動回路部164など、表示部162以外の領域にも設けると、導波光などによる光漏れを抑制できるため好ましい。 The light shielding layer 38 is provided, for example, between the adjacent colored layers 39 of different colors. For example, a black matrix formed using a metal material or a resin material containing a pigment or dye can be used as the light shielding layer 38. Note that the light shielding layer 38 is preferably provided in a region other than the display portion 162 such as the drive circuit portion 164 because light leakage due to guided light or the like can be suppressed.
表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、それぞれ、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、原子層成膜(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法の例として、プラズマ化学気相堆積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法及び熱CVD法等が挙げられる。熱CVD法の例として、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法が挙げられる。 Thin films (insulating film, semiconductor film, conductive film, etc.) constituting the display device are respectively formed by sputtering, chemical vapor deposition (CVD), vacuum evaporation, and pulsed laser deposition (PLD: Pulsed Laser Deposition). ) Method, atomic layer deposition (ALD: Atomic Layer Deposition) method, or the like. Examples of the CVD method include a plasma enhanced chemical vapor deposition (PECVD) method, a thermal chemical vapor deposition (PECVD) method, a thermal CVD method, and the like. An example of the thermal CVD method is a metal organic chemical vapor deposition (MOCVD) method.
表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、それぞれ、スピンコート、ディップ、スプレー塗布、インクジェット印刷、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。 Thin films (insulating films, semiconductor films, conductive films, etc.) that constitute display devices are spin coat, dip, spray coating, ink jet printing, dispensing, screen printing, offset printing, doctor knife, slit coat, roll coat, curtain, respectively. It can be formed by a method such as coating or knife coating.
表示装置を構成する薄膜は、フォトリソグラフィ法等を用いて加工することができる。または、遮蔽マスクを用いた成膜方法により、島状の薄膜を形成してもよい。または、ナノインプリント法、サンドブラスト法、もしくはリフトオフ法などにより薄膜を加工してもよい。フォトリソグラフィ法としては、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法と、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法と、がある。 A thin film included in the display device can be processed using a photolithography method or the like. Alternatively, an island-shaped thin film may be formed by a film formation method using a shielding mask. Alternatively, the thin film may be processed by a nanoimprint method, a sand blast method, a lift-off method, or the like. As a photolithography method, a resist mask is formed on a thin film to be processed, the thin film is processed by etching or the like, and the resist mask is removed. After forming a photosensitive thin film, exposure and development are performed. And a method for processing the thin film into a desired shape.
フォトリソグラフィ法において、露光に用いる光としては、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、及びこれらを混合させた光が挙げられる。そのほか、紫外線、KrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。露光に用いる光としては、極端紫外光(EUV:Extreme Ultra−violet)及びX線等が挙げられる。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。 Examples of the light used for exposure in the photolithography method include i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), and light obtained by mixing these. In addition, ultraviolet light, KrF laser light, ArF laser light, or the like can be used. Further, exposure may be performed by an immersion exposure technique. Examples of light used for exposure include extreme ultraviolet light (EUV: Extreme-violet) and X-rays. Further, an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible. Note that a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
薄膜のエッチングには、ドライエッチング法、ウエットエッチング法、サンドブラスト法などを用いることができる。 For etching the thin film, a dry etching method, a wet etching method, a sand blasting method, or the like can be used.
図7に表示装置200Bの断面図を示す。表示装置200Bは、表示用の液晶パネルである液晶パネル80Bと、調光用の液晶パネルである液晶パネル90Bとを有する。表示装置200Bは、さらに、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 FIG. 7 shows a cross-sectional view of the display device 200B. The display device 200B includes a liquid crystal panel 80B that is a liquid crystal panel for display and a liquid crystal panel 90B that is a liquid crystal panel for dimming. The display device 200B further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
表示装置200Bは、着色層39の位置が表示装置200Aと異なる。それ以外の構成は、表示装置200Aと同様である。 In the display device 200B, the position of the colored layer 39 is different from the display device 200A. Other configurations are the same as those of the display device 200A.
図7は、構成例3(図2(A)に示す表示装置100C)に対応する表示装置の具体例といえる。 FIG. 7 can be said to be a specific example of a display device corresponding to the configuration example 3 (the display device 100C shown in FIG. 2A).
表示装置200Bでは、着色層39が、液晶パネル90Bが有する絶縁層218上に設けられている。そのため、バックライトユニット30からの光は、着色層39を透過した後に、液晶素子50及び液晶素子40に入射される。これにより、特定の波長領域の光のみが、液晶素子50及び液晶素子40に入射される。表示装置200Bの輝度を高めるためにバックライトの光量を増やしても、液晶素子に入射される光の量を弱くすることができるため、液晶素子の信頼性の低下を抑制でき、液晶素子を安定に動作させることができる。 In the display device 200B, the colored layer 39 is provided on the insulating layer 218 included in the liquid crystal panel 90B. Therefore, the light from the backlight unit 30 is incident on the liquid crystal element 50 and the liquid crystal element 40 after passing through the colored layer 39. Thereby, only light in a specific wavelength region is incident on the liquid crystal element 50 and the liquid crystal element 40. Even if the amount of light of the backlight is increased in order to increase the luminance of the display device 200B, the amount of light incident on the liquid crystal element can be reduced, so that a decrease in the reliability of the liquid crystal element can be suppressed and the liquid crystal element can be stabilized. Can be operated.
図8に表示装置200Cの断面図を示す。表示装置200Cは、表示用の液晶パネルである液晶パネル80Cと、調光用の液晶パネルである液晶パネル90Cとを有する。表示装置200Cは、さらに、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 FIG. 8 shows a cross-sectional view of the display device 200C. The display device 200C includes a liquid crystal panel 80C that is a liquid crystal panel for display and a liquid crystal panel 90C that is a liquid crystal panel for dimming. The display device 200 </ b> C further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
表示装置200Cは、基板11及び基板22を有さず、可撓性基板16、可撓性基板26、接着層81a、接着層81b、絶縁層82a、及び絶縁層82bを有する点で、表示装置200Aと異なる。それ以外の構成は、表示装置200Aと同様である。 The display device 200C does not include the substrate 11 and the substrate 22, but includes the flexible substrate 16, the flexible substrate 26, the adhesive layer 81a, the adhesive layer 81b, the insulating layer 82a, and the insulating layer 82b. Different from 200A. Other configurations are the same as those of the display device 200A.
図8は、構成例5(図4(A)に示す表示装置100G)に対応する表示装置の具体例といえる。 FIG. 8 can be said to be a specific example of a display device corresponding to Configuration Example 5 (display device 100G shown in FIG. 4A).
可撓性基板16及び可撓性基板26を用いることで、薄型かつ軽量な表示装置を作製することができる。また、液晶素子40と液晶素子50との間の距離を短くできるため、視差が生じることを抑制し、表示装置200Cの視野角を広くすることができる。特に、図8では、液晶パネル80Cと液晶パネル90Cの画素数が同じである(1つの液晶素子40に対して1つの液晶素子50が設けられている)例を示している。このように、2つの液晶パネルの画素数が近いまたは同じである場合、特に視差が生じやすいため、可撓性基板を用いて、2つの液晶素子間の距離を短くすることは効果的である。 By using the flexible substrate 16 and the flexible substrate 26, a thin and lightweight display device can be manufactured. In addition, since the distance between the liquid crystal element 40 and the liquid crystal element 50 can be shortened, the occurrence of parallax can be suppressed and the viewing angle of the display device 200C can be widened. In particular, FIG. 8 illustrates an example in which the liquid crystal panel 80C and the liquid crystal panel 90C have the same number of pixels (one liquid crystal element 50 is provided for one liquid crystal element 40). Thus, when the number of pixels of the two liquid crystal panels is close or the same, parallax is particularly likely to occur. Therefore, it is effective to shorten the distance between the two liquid crystal elements using a flexible substrate. .
硬質基板上に作製した素子を可撓性基板に転置する方法について説明する。まず、硬質基板上に剥離層を介して、絶縁層82aを形成し、さらに、トランジスタ13aから配向膜133cまでの積層構造を形成する。そして、遮光層38から配向膜133dまでの積層構造が形成された基板12と、硬質基板とで、液晶層42を挟持し、基板12と硬質基板とを接着層141bを用いて貼り合わせる。その後、剥離層を用いて硬質基板を剥離し、接着層81aを用いて絶縁層82aと可撓性基板16とを貼り合わせる。また、硬質基板上に剥離層を介して、絶縁層82bを形成し、さらに、電極53及び配向膜133bを形成する。そして、トランジスタ23aから配向膜133aまでの積層構造が形成された基板21と、硬質基板とで、液晶層52を挟持し、基板21と硬質基板とを接着層141aを用いて貼り合わせる。その後、剥離層を用いて硬質基板を剥離し、接着層81bを用いて絶縁層82bと可撓性基板26とを貼り合わせる。 A method for transferring an element manufactured on a hard substrate to a flexible substrate will be described. First, an insulating layer 82a is formed on a hard substrate with a peeling layer interposed therebetween, and a stacked structure from the transistor 13a to the alignment film 133c is formed. Then, the liquid crystal layer 42 is sandwiched between the substrate 12 on which the laminated structure from the light shielding layer 38 to the alignment film 133d is formed and the hard substrate, and the substrate 12 and the hard substrate are bonded together using the adhesive layer 141b. Thereafter, the hard substrate is peeled off using the peeling layer, and the insulating layer 82a and the flexible substrate 16 are bonded together using the adhesive layer 81a. In addition, the insulating layer 82b is formed on the hard substrate through the peeling layer, and the electrode 53 and the alignment film 133b are further formed. Then, the liquid crystal layer 52 is sandwiched between the substrate 21 on which the stacked structure from the transistor 23a to the alignment film 133a is formed and the hard substrate, and the substrate 21 and the hard substrate are bonded together using the adhesive layer 141a. Thereafter, the hard substrate is peeled off using the peeling layer, and the insulating layer 82b and the flexible substrate 26 are bonded together using the adhesive layer 81b.
図9に表示装置200Dの断面図を示す。表示装置200Dは、表示用の液晶パネルである液晶パネル80Dと、調光用の液晶パネルである液晶パネル90Dとを有する。表示装置200Dは、さらに、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 FIG. 9 shows a cross-sectional view of the display device 200D. The display device 200D includes a liquid crystal panel 80D that is a liquid crystal panel for display and a liquid crystal panel 90D that is a liquid crystal panel for dimming. The display device 200D further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
表示装置200Dは、液晶パネル80Dが、液晶パネル80Cの一部(絶縁層82aと基板12の間の要素)の上下を反転した構成である点で、表示装置200Cと異なる。それ以外の構成は、表示装置200Cと同様である。 The display device 200D is different from the display device 200C in that the liquid crystal panel 80D has a configuration in which a part of the liquid crystal panel 80C (an element between the insulating layer 82a and the substrate 12) is turned upside down. Other configurations are the same as those of the display device 200C.
図9に示す表示装置200Dは、構成例5(図4(B)に示す表示装置100H)の変形例ということができる。 The display device 200D illustrated in FIG. 9 can be regarded as a modification of the configuration example 5 (the display device 100H illustrated in FIG. 4B).
表示装置200Dでは、バックライトユニット30からの光は、着色層39を透過した後に、液晶素子40に入射される。これにより、特定の波長領域の光のみが、液晶素子40に入射される。表示装置200Dの輝度を高めるためにバックライトの光量を増やしても、液晶素子40に入射される光の量を弱くすることができるため、液晶素子40の信頼性の低下を抑制でき、液晶素子40を安定に動作させることができる。 In the display device 200 </ b> D, the light from the backlight unit 30 is incident on the liquid crystal element 40 after passing through the colored layer 39. As a result, only light in a specific wavelength region is incident on the liquid crystal element 40. Even if the amount of light of the backlight is increased in order to increase the luminance of the display device 200D, the amount of light incident on the liquid crystal element 40 can be reduced, so that a decrease in the reliability of the liquid crystal element 40 can be suppressed, and the liquid crystal element 40 can be operated stably.
<構成例8>
構成例8では、表示用の液晶パネルに、IPSモードが適用されたアクティブマトリクス型の液晶パネルを用い、調光用の液晶パネルに、TNモードが適用されたアクティブマトリクス型の液晶パネルを用いた表示装置について説明する。
<Configuration example 8>
In Configuration Example 8, an active matrix liquid crystal panel to which the IPS mode is applied is used as the display liquid crystal panel, and an active matrix liquid crystal panel to which the TN mode is applied is used as the light control liquid crystal panel. The display device will be described.
図10に、表示装置200Eの断面図を示す。表示装置200Eは、表示用の液晶パネルである液晶パネル80Eと、調光用の液晶パネルである液晶パネル90Eとを有する。表示装置200Eは、さらに、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 FIG. 10 shows a cross-sectional view of the display device 200E. The display device 200E includes a liquid crystal panel 80E that is a liquid crystal panel for display and a liquid crystal panel 90E that is a liquid crystal panel for dimming. The display device 200E further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
図10は、構成例3(図2(B)に示す表示装置100D)に対応する表示装置の具体例といえる。 FIG. 10 can be said to be a specific example of a display device corresponding to Configuration Example 3 (display device 100D shown in FIG. 2B).
まず、液晶パネル90Eの構成について説明する。 First, the configuration of the liquid crystal panel 90E will be described.
液晶パネル90Eは、トランジスタの構造が、液晶パネル90Aと異なる。それ以外は、液晶パネル90Aと同様の構成を有する。 The liquid crystal panel 90E is different from the liquid crystal panel 90A in the transistor structure. Other than that, it has the same configuration as the liquid crystal panel 90A.
表示部162には、トランジスタ23bが設けられている。トランジスタ23bは、ゲート電極として機能する導電層221と、ゲート絶縁層として機能する絶縁層211と、半導体層231と、不純物半導体層232と、ソース電極及びドレイン電極として機能する導電層222a及び導電層222bと、を有する。トランジスタ23bは、絶縁層212に覆われている。トランジスタ23bは、半導体層231に、水素化アモルファスシリコンを有する。 The display portion 162 is provided with a transistor 23b. The transistor 23b includes a conductive layer 221 functioning as a gate electrode, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer 231, an impurity semiconductor layer 232, a conductive layer 222a functioning as a source electrode and a drain electrode, and a conductive layer 222b. The transistor 23b is covered with an insulating layer 212. The transistor 23 b includes hydrogenated amorphous silicon in the semiconductor layer 231.
駆動回路部164には、トランジスタ201cが設けられている。トランジスタ201cは、トランジスタ23bと同様の構成を有する。 The driver circuit portion 164 is provided with a transistor 201c. The transistor 201c has a structure similar to that of the transistor 23b.
次に、液晶パネル80Eの構成について説明する。 Next, the configuration of the liquid crystal panel 80E will be described.
液晶パネル80Eは、トランジスタの構造及び液晶素子の構造が、液晶パネル80Aと異なる。それ以外は、液晶パネル80Aと同様の構成を有する。 The liquid crystal panel 80E is different from the liquid crystal panel 80A in the structure of the transistor and the structure of the liquid crystal element. Other than that, it has the same configuration as the liquid crystal panel 80A.
トランジスタ13b及びトランジスタ201dは、トランジスタ23b及びトランジスタ201cと同様の構成を有する。 The transistor 13b and the transistor 201d have a structure similar to that of the transistor 23b and the transistor 201c.
表示部162には、液晶素子45が設けられている。液晶素子45は、IPSモードが適用された液晶素子である。 The display portion 162 is provided with a liquid crystal element 45. The liquid crystal element 45 is a liquid crystal element to which the IPS mode is applied.
液晶素子45は、電極46、電極48、及び液晶層47を有する。電極46と電極48との間に生じる電界により、液晶層47の配向を制御することができる。液晶層47は、配向膜133cと配向膜133dの間に位置する。配向膜は、液晶層47の配向を制御することができる。液晶パネル80Eでは、電極46及び電極48を覆うように配向膜133cが設けられ、オーバーコート121と液晶層47との間に配向膜133dが位置している。 The liquid crystal element 45 includes an electrode 46, an electrode 48, and a liquid crystal layer 47. The alignment of the liquid crystal layer 47 can be controlled by an electric field generated between the electrode 46 and the electrode 48. The liquid crystal layer 47 is located between the alignment film 133c and the alignment film 133d. The alignment film can control the alignment of the liquid crystal layer 47. In the liquid crystal panel 80E, an alignment film 133c is provided so as to cover the electrode 46 and the electrode 48, and the alignment film 133d is located between the overcoat 121 and the liquid crystal layer 47.
電極46及び電極48は、例えば、櫛歯状の上面形状(平面形状ともいう)、またはスリットが設けられた上面形状を有する。 The electrode 46 and the electrode 48 have, for example, a comb-like upper surface shape (also referred to as a planar shape) or an upper surface shape provided with a slit.
図11に、表示装置200Fの断面図を示す。表示装置200Fは、表示用の液晶パネルである液晶パネル80Fと、調光用の液晶パネルである液晶パネル90Fとを有する。表示装置200Fは、さらに、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 FIG. 11 is a cross-sectional view of the display device 200F. The display device 200F includes a liquid crystal panel 80F that is a liquid crystal panel for display and a liquid crystal panel 90F that is a liquid crystal panel for light control. The display device 200F further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
表示装置200Fは、着色層39の位置が表示装置200Eと異なる。さらに、表示装置200Fは、液晶パネル90Fが、液晶パネル90Eの上下を反転した構成である点で、表示装置200Eと異なる。なお、液晶パネル90Fは、基板22に接して着色層39及びオーバーコート121aを有する。それ以外の構成は、表示装置200Eと同様である。 In the display device 200F, the position of the colored layer 39 is different from that of the display device 200E. Furthermore, the display device 200F is different from the display device 200E in that the liquid crystal panel 90F has a configuration in which the liquid crystal panel 90E is turned upside down. Note that the liquid crystal panel 90F has a colored layer 39 and an overcoat 121a in contact with the substrate 22. The other configuration is the same as that of the display device 200E.
図11は、構成例4(図3(B)に示す表示装置100F)に対応する表示装置の具体例といえる。 FIG. 11 can be said to be a specific example of a display device corresponding to Configuration Example 4 (display device 100F shown in FIG. 3B).
表示装置200Fでは、バックライトユニット30からの光は、着色層39を透過した後に、液晶素子50及び液晶素子45に入射される。これにより、特定の波長領域の光のみが、液晶素子50及び液晶素子45に入射される。表示装置の輝度を高めるためにバックライトの光量を増やしても、液晶素子に入射される光の量を弱くすることができるため、液晶素子の信頼性の低下を抑制でき、液晶素子を安定に動作させることができる。 In the display device 200 </ b> F, the light from the backlight unit 30 passes through the colored layer 39 and then enters the liquid crystal element 50 and the liquid crystal element 45. As a result, only light in a specific wavelength region is incident on the liquid crystal element 50 and the liquid crystal element 45. Even if the amount of light from the backlight is increased in order to increase the brightness of the display device, the amount of light incident on the liquid crystal element can be reduced, so that a decrease in the reliability of the liquid crystal element can be suppressed and the liquid crystal element can be stabilized. It can be operated.
<トランジスタの構成例>
本実施の形態の表示装置には、様々なトランジスタを適用することができる。図12(A)、(B)にトランジスタの構成例を示す。
<Example of transistor structure>
Various transistors can be applied to the display device in this embodiment. 12A and 12B illustrate structural examples of transistors.
図12(A)に示すトランジスタは、ゲート電極として機能する導電層221と、ゲート絶縁層として機能する絶縁層211と、半導体層231と、ソース電極及びドレイン電極として機能する導電層222a及び導電層222bと、を有する。 A transistor illustrated in FIG. 12A includes a conductive layer 221 functioning as a gate electrode, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer 231, a conductive layer 222a functioning as a source electrode and a drain electrode, and a conductive layer. 222b.
図12(A)に示すトランジスタは、半導体層231に、低温ポリシリコン(Low Temperature Poly−Silicon、LTPSともいう)を有する。 The transistor illustrated in FIG. 12A includes low-temperature polysilicon (also referred to as low temperature poly-silicon or LTPS) in the semiconductor layer 231.
図12(B)に示すトランジスタは、第1のゲート電極として機能する導電層221と、第1のゲート絶縁層として機能する絶縁層211と、半導体層231と、ソース電極及びドレイン電極として機能する導電層222a及び導電層222bと、第2のゲート電極として機能する導電層223と、第2のゲート絶縁層として機能する絶縁層225と、を有する。半導体層231は、チャネル領域と低抵抗領域とを有する。図12(B)に示すトランジスタの半導体層231は、金属酸化物を有する。チャネル領域は、絶縁層225を介して導電層223と重なる。低抵抗領域は、導電層222aと接続される部分、及び、導電層222bと接続される部分を有する。 The transistor illustrated in FIG. 12B functions as a conductive layer 221 functioning as a first gate electrode, an insulating layer 211 functioning as a first gate insulating layer, a semiconductor layer 231, and a source electrode and a drain electrode. The conductive layer 222a and the conductive layer 222b include a conductive layer 223 that functions as a second gate electrode, and an insulating layer 225 that functions as a second gate insulating layer. The semiconductor layer 231 includes a channel region and a low resistance region. A semiconductor layer 231 of the transistor illustrated in FIG. 12B includes a metal oxide. The channel region overlaps with the conductive layer 223 with the insulating layer 225 provided therebetween. The low resistance region includes a portion connected to the conductive layer 222a and a portion connected to the conductive layer 222b.
図12(B)に示すトランジスタは、チャネルの上下にゲートを有する。2つのゲートは、電気的に接続されていることが好ましい。2つのゲートが電気的に接続されている構成のトランジスタは、他のトランジスタと比較して電界効果移動度を高めることが可能であり、オン電流を増大させることができる。その結果、高速動作が可能な回路を作製することができる。さらには回路部の占有面積を縮小することが可能となる。オン電流の大きなトランジスタを適用することで、表示装置を大型化、または高精細化して配線数が増大したとしても、各配線における信号遅延を低減することが可能であり、表示ムラを抑制することが可能である。また、回路部の占有面積を縮小できるため、表示装置の狭額縁化が可能である。また、このような構成を適用することで、信頼性の高いトランジスタを実現することができる。 The transistor illustrated in FIG. 12B has gates above and below a channel. The two gates are preferably electrically connected. A transistor in which two gates are electrically connected can have higher field-effect mobility than another transistor, and can increase on-state current. As a result, a circuit capable of high speed operation can be manufactured. Furthermore, the area occupied by the circuit portion can be reduced. By applying a transistor with a large on-state current, signal delay in each wiring can be reduced and display unevenness can be suppressed even if the number of wirings is increased by increasing the size or definition of the display device. Is possible. In addition, since the area occupied by the circuit portion can be reduced, the display device can be narrowed. In addition, by applying such a structure, a highly reliable transistor can be realized.
導電層223上には絶縁層212及び絶縁層213が設けられており、その上に、導電層222a及び導電層222bが設けられている。図12(B)に示すトランジスタの構造は、導電層221と導電層222aまたは導電層222bとの物理的な距離を離すことが容易なため、これらの間の寄生容量を低減することが可能である。 An insulating layer 212 and an insulating layer 213 are provided over the conductive layer 223, and a conductive layer 222a and a conductive layer 222b are provided thereover. In the structure of the transistor illustrated in FIG. 12B, the physical distance between the conductive layer 221 and the conductive layer 222a or the conductive layer 222b can be easily separated; thus, parasitic capacitance between them can be reduced. is there.
<液晶素子の構成例>
図1等に示す液晶素子40では、画素電極として機能する電極41にはスリットまたは開口が設けられていない例を示したが、本発明の一態様はこれに限られない。図13(A)~(C)に示すように、画素電極と共通電極との双方にスリット(または開口)が設けられていてもよい。
<Configuration example of liquid crystal element>
In the liquid crystal element 40 illustrated in FIG. 1 and the like, an example in which the electrode 41 functioning as a pixel electrode is not provided with a slit or an opening is described; however, one embodiment of the present invention is not limited thereto. As shown in FIGS. 13A to 13C, slits (or openings) may be provided in both the pixel electrode and the common electrode.
例えば、上面から見て、電極41のスリットの端部と、電極43の端部が揃っている形状であってもよい。この場合の断面図を図13(A)に示す。 For example, when viewed from above, the end of the slit of the electrode 41 and the end of the electrode 43 may be aligned. A cross-sectional view in this case is shown in FIG.
または、上面から見て、電極41と電極43とが互いに重なる部分を有していてもよい。この場合の断面図を図13(B)に示す。 Alternatively, the electrode 41 and the electrode 43 may have a portion where they overlap each other when viewed from above. A cross-sectional view in this case is shown in FIG.
または、上面から見て、電極41及び電極43の双方が設けられていない部分を有していてもよい。この場合の断面図を図13(C)に示す。 Alternatively, when viewed from the top, the electrode 41 and the electrode 43 may not be provided. A cross-sectional view in this case is shown in FIG.
なお、図13(A)~(C)に示す構成例は、IPSモードの一種と呼ばれることもある。上述の通り、本明細書等では、画素電極と共通電極とが同一平面上に設けられる構成をIPSモードとし、画素電極と共通電極とが絶縁層を介して積層される構成をFFSモードとして説明する。そのため、図13(A)~(C)に示す構成例もFFSモードの一種として例示する。 Note that the configuration example illustrated in FIGS. 13A to 13C may be referred to as a kind of IPS mode. As described above, in this specification and the like, a configuration in which the pixel electrode and the common electrode are provided on the same plane is referred to as an IPS mode, and a configuration in which the pixel electrode and the common electrode are stacked via an insulating layer is described as an FFS mode. To do. Therefore, the configuration example shown in FIGS. 13A to 13C is also exemplified as a kind of FFS mode.
また、図1等に示す液晶素子40では、画素電極として機能する電極41上に、絶縁層44を介して、共通電極として機能する電極43が設けられている例を示したが、本発明の一態様は、これに限られない。図13(D)に示すように、共通電極として機能する電極43上に、絶縁層44を介して、画素電極として機能する電極41が設けられていてもよい。図13(D)に示すように、電極43と絶縁層44の開口を介して、電極41とトランジスタ13とは電気的に接続される。 Further, in the liquid crystal element 40 illustrated in FIG. 1 and the like, the example in which the electrode 43 functioning as the common electrode is provided on the electrode 41 functioning as the pixel electrode through the insulating layer 44 is described. One aspect is not limited to this. As shown in FIG. 13D, an electrode 41 functioning as a pixel electrode may be provided over the electrode 43 functioning as a common electrode with an insulating layer 44 interposed therebetween. As shown in FIG. 13D, the electrode 41 and the transistor 13 are electrically connected through the opening of the electrode 43 and the insulating layer 44.
<構成例9>
構成例9では、表示用の液晶パネルに、FFSモードが適用されたアクティブマトリクス型の液晶パネルを用い、調光用の液晶パネルに、TNモードが適用されたアクティブマトリクス型の液晶パネルを用いたタッチパネルについて説明する。
<Configuration example 9>
In Configuration Example 9, an active matrix liquid crystal panel to which the FFS mode is applied is used as the display liquid crystal panel, and an active matrix liquid crystal panel to which the TN mode is applied is used as the light control liquid crystal panel. The touch panel will be described.
図14に、タッチパネル210Aの断面図を示す。タッチパネル210Aは、表示用の液晶パネルである液晶パネル85Aと、調光用の液晶パネルである液晶パネル86Aとを有する。タッチパネル210Aは、さらに、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 FIG. 14 shows a cross-sectional view of the touch panel 210A. The touch panel 210A includes a liquid crystal panel 85A that is a liquid crystal panel for display and a liquid crystal panel 86A that is a liquid crystal panel for dimming. The touch panel 210 </ b> A further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
図14は、構成例6(図5(A)に示すタッチパネル110A)に対応するタッチパネルの具体例といえる。 FIG. 14 can be said to be a specific example of a touch panel corresponding to Configuration Example 6 (touch panel 110A shown in FIG. 5A).
液晶パネル85Aは、画像を表示する機能と、タッチセンサとしての機能と、を有する。 The liquid crystal panel 85A has a function of displaying an image and a function as a touch sensor.
液晶パネル85Aは、FFSモードが適用されたアクティブマトリクス型の液晶パネルである。液晶パネル85Aは、透過型の液晶パネルである。液晶パネル85Aは、表示パネルとして機能する。 The liquid crystal panel 85A is an active matrix liquid crystal panel to which the FFS mode is applied. The liquid crystal panel 85A is a transmissive liquid crystal panel. The liquid crystal panel 85A functions as a display panel.
液晶パネル85Aは、基板11、基板12、トランジスタ13a、トランジスタ13b、液晶素子40a、液晶素子40b、遮光層38、着色層39等を有する。 The liquid crystal panel 85A includes a substrate 11, a substrate 12, a transistor 13a, a transistor 13b, a liquid crystal element 40a, a liquid crystal element 40b, a light shielding layer 38, a colored layer 39, and the like.
液晶素子40aは、電極41a、液晶層42、及び電極43aを有する。液晶素子40bは、電極41b、液晶層42、及び電極43bを有する。 The liquid crystal element 40a includes an electrode 41a, a liquid crystal layer 42, and an electrode 43a. The liquid crystal element 40b includes an electrode 41b, a liquid crystal layer 42, and an electrode 43b.
トランジスタ13aのソースまたはドレインは、電極41aと電気的に接続されている。トランジスタ13bのソースまたはドレインは、電極41bと電気的に接続されている。電極41a及び電極41bは絶縁層44に覆われており、絶縁層44上に電極43a及び電極43bが設けられている。電極41aは、絶縁層44を介して電極43aと重なる領域を有する。また、電極41aは、電極43aと重ならない領域も有する。電極41bは、絶縁層44を介して電極43bと重なる領域を有する。また、電極41bは、電極43bと重ならない領域も有する。液晶層42は、配向膜133cと配向膜133dとの間に挟持される。電極43aと電極43bとは電気的に絶縁されている。 The source or drain of the transistor 13a is electrically connected to the electrode 41a. The source or drain of the transistor 13b is electrically connected to the electrode 41b. The electrode 41 a and the electrode 41 b are covered with an insulating layer 44, and the electrode 43 a and the electrode 43 b are provided on the insulating layer 44. The electrode 41a has a region overlapping with the electrode 43a with the insulating layer 44 interposed therebetween. The electrode 41a also has a region that does not overlap with the electrode 43a. The electrode 41b has a region overlapping with the electrode 43b with the insulating layer 44 interposed therebetween. The electrode 41b also has a region that does not overlap with the electrode 43b. The liquid crystal layer 42 is sandwiched between the alignment film 133c and the alignment film 133d. The electrode 43a and the electrode 43b are electrically insulated.
タッチパネル210Aでは、電極43aと電極43bとの間に形成される容量を利用して、被検知体の近接または接触等を検知することができる。すなわちタッチパネル210Aにおいて、電極43a、43bは、液晶素子の共通電極と、検知素子の電極と、の両方を兼ねる。 The touch panel 210A can detect the proximity or contact of the detection target using a capacitance formed between the electrode 43a and the electrode 43b. In other words, in the touch panel 210A, the electrodes 43a and 43b serve as both the common electrode of the liquid crystal element and the electrode of the detection element.
液晶パネル86Aは、液晶パネル90A(図6)と同様の構成を有する。液晶パネル86Aが有する液晶素子50は、液晶パネル85Aが有する2以上の液晶素子(図14では液晶素子40a及び液晶素子40bの2つ)と重ねて配置される。つまり、1つの液晶素子50を用いて、タッチパネル210Aが有する2以上の副画素の調光を行うことができる。 The liquid crystal panel 86A has the same configuration as the liquid crystal panel 90A (FIG. 6). The liquid crystal element 50 included in the liquid crystal panel 86A is placed so as to overlap with two or more liquid crystal elements included in the liquid crystal panel 85A (two liquid crystal elements 40a and 40b in FIG. 14). That is, dimming of two or more subpixels included in the touch panel 210 </ b> A can be performed using one liquid crystal element 50.
<構成例10>
構成例10では、表示用の液晶パネルに、IPSモードが適用されたアクティブマトリクス型の液晶パネルを用い、調光用の液晶パネルに、TNモードが適用されたアクティブマトリクス型の液晶パネルを用いたタッチパネルについて説明する。
<Configuration Example 10>
In Configuration Example 10, an active matrix liquid crystal panel to which the IPS mode is applied is used as the display liquid crystal panel, and an active matrix liquid crystal panel to which the TN mode is applied is used as the light control liquid crystal panel. The touch panel will be described.
図15に、タッチパネル210Bの断面図を示す。タッチパネル210Bは、表示用の液晶パネルである液晶パネル85Bと、調光用の液晶パネルである液晶パネル86Bとを有する。タッチパネル210Bは、さらに、バックライトユニット30、偏光板61、偏光板62、及び偏光板63を有する。 FIG. 15 shows a cross-sectional view of the touch panel 210B. The touch panel 210B includes a liquid crystal panel 85B that is a liquid crystal panel for display and a liquid crystal panel 86B that is a liquid crystal panel for light control. The touch panel 210 </ b> B further includes a backlight unit 30, a polarizing plate 61, a polarizing plate 62, and a polarizing plate 63.
図15は、構成例6(図5(B)に示すタッチパネル110B)に対応するタッチパネルの具体例といえる。 FIG. 15 can be said to be a specific example of a touch panel corresponding to Configuration Example 6 (touch panel 110B shown in FIG. 5B).
液晶パネル85Bは、画像を表示する機能と、タッチセンサとしての機能と、を有する。 The liquid crystal panel 85B has a function of displaying an image and a function as a touch sensor.
液晶パネル85Bは、対向基板(基板12)にのみに、検知素子を構成する電極等を設けた構成である。液晶パネル85Bの構成は、図5に示す液晶パネル111Bの構成を参照することができる。 The liquid crystal panel 85B has a configuration in which an electrode or the like constituting a detection element is provided only on the counter substrate (substrate 12). For the configuration of the liquid crystal panel 85B, the configuration of the liquid crystal panel 111B illustrated in FIG. 5 can be referred to.
液晶パネル86Bは、図6に示す液晶パネル90Aと同様の構成を有する。 The liquid crystal panel 86B has the same configuration as the liquid crystal panel 90A shown in FIG.
液晶パネル85Bと液晶パネル86Bでは、トランジスタの構造及び半導体材料が互いに異なる。例えば、液晶パネルの解像度の違い、液晶素子の違いなどに応じて、パネルそれぞれで、トランジスタの構造、材料などを選択することができる。 The liquid crystal panel 85B and the liquid crystal panel 86B have different transistor structures and semiconductor materials. For example, the structure, material, and the like of a transistor can be selected for each panel according to a difference in resolution of a liquid crystal panel, a difference in liquid crystal element, and the like.
<表示モジュールの構成例>
本実施の形態の表示装置を用いて、高解像度で大型の表示モジュールを作製することができる。例えば、8K4Kの表示装置の解像度は水平解像度が7680、垂直解像度が4320と、極めて高解像度である。また、8K4Kの表示装置に関する国際規格として、Recommendation ITU−R BT.2020−2がある。この規格において、駆動方法はプログレッシブ方式であり、フレーム周波数は最大120Hzとされている。
<Configuration example of display module>
A large display module with high resolution can be manufactured using the display device of this embodiment. For example, the resolution of an 8K4K display device is very high, with a horizontal resolution of 7680 and a vertical resolution of 4320. As an international standard for 8K4K display devices, Recommendation ITU-R BT. 2020-2. In this standard, the driving method is a progressive method, and the maximum frame frequency is 120 Hz.
高解像度で大型の表示モジュールに、電界効果移動度の低いトランジスタを用いる場合、フレーム期間中に画像の書き換え動作が間に合わず、駆動できないことがある。 When a transistor with low field-effect mobility is used for a large display module with high resolution, the image rewriting operation may not be in time during the frame period, and may not be driven.
このとき、画素領域を複数(例えば4つ)に分断し、それぞれに走査線駆動回路(ゲートドライバともいう)及び信号線駆動回路(ソースドライバともいう)を配置する構成を適用することができる。このような構成は、複数の画素領域で同時に画像を書き換えることで、電界効果移動度の低いトランジスタを適用した場合でも、フレーム期間中の画像の書き換えを実現するものである。 At this time, a structure in which a pixel region is divided into a plurality of (for example, four) pixels and a scan line driver circuit (also referred to as a gate driver) and a signal line driver circuit (also referred to as a source driver) are provided for each pixel region can be used. Such a configuration realizes rewriting of an image during a frame period even when a transistor with low field effect mobility is applied by rewriting the image simultaneously in a plurality of pixel regions.
また、ゲート線1本ずつに選択信号を供給し、画素が1つずつ選択される構成に加えて、2本以上(代表的には2本、3本、または4本)のゲート線に同時に選択信号を供給し、列方向に隣接する2つ以上の画素が同時に選択される構成を適用することができる。同時に選択される2つ以上の画素は、それぞれ異なるソース線と接続される。すなわち列ごとに2本以上のソース線が配列される。このような構成は、画素領域を分割する構成に比べ、低コストであり、好ましい。分割された画素領域間を同期させる回路が不要であること、分割された画素領域の境界部が視認されないこと、入力される画像データを分割するための画像処理が不要であること等からも、画素領域を分割しない構成は好ましい。 In addition to a configuration in which a selection signal is supplied to each gate line and pixels are selected one by one, two or more (typically two, three, or four) gate lines are simultaneously applied. A configuration in which a selection signal is supplied and two or more pixels adjacent in the column direction are simultaneously selected can be applied. Two or more pixels selected at the same time are connected to different source lines. That is, two or more source lines are arranged for each column. Such a configuration is preferable because it is less expensive than a configuration in which the pixel region is divided. From the fact that a circuit that synchronizes the divided pixel areas is unnecessary, the boundary portion of the divided pixel areas is not visually recognized, and the image processing for dividing the input image data is unnecessary. A configuration in which the pixel region is not divided is preferable.
以下では、画素領域を分割しない構成の表示モジュールについて詳述する。図16(A)、(B)を用いて、ゲート線1本ずつに選択信号を供給し、画素が1つずつ選択される構成の表示モジュールについて説明する。図17(A)、(B)を用いて、ゲート線2本ずつに選択信号を供給し、画素が2つずつ選択される構成の表示モジュールについて説明する。 Hereinafter, a display module having a configuration in which the pixel region is not divided will be described in detail. A display module having a structure in which a selection signal is supplied to each gate line and pixels are selected one by one will be described with reference to FIGS. A display module having a structure in which a selection signal is supplied to each of two gate lines and two pixels are selected will be described with reference to FIGS.
図16(A)は、表示モジュールの構成を示すブロック図である。当該構成では、ゲート線1本ずつに選択信号が供給され、画素が1つずつ選択される。ゲートドライバGD及びソースドライバSDはともに外付けとすることができる。また、ゲートドライバGD及びソースドライバSDのうち一方又は双方は、表示装置に内蔵されていてもよい。ゲート線には、2つのゲートドライバGDから同じ信号が供給される。ソース線には、1つのソースドライバSDから信号が供給される。画素領域(Pixel Area)は分割されていない。 FIG. 16A is a block diagram illustrating a structure of a display module. In this configuration, a selection signal is supplied to each gate line, and pixels are selected one by one. Both the gate driver GD and the source driver SD can be externally attached. One or both of the gate driver GD and the source driver SD may be built in the display device. The same signal is supplied to the gate line from the two gate drivers GD. A signal is supplied from one source driver SD to the source line. The pixel area (Pixel Area) is not divided.
図16(B)に、画素PIX(i,j)の回路図を示す。画素PIX(i,j)は、トランジスタM1、容量素子C1、及び液晶素子LCを有する。トランジスタM1のゲートは、ゲート線GL(i)と接続されている。トランジスタM1のソース及びドレインのうち一方は、ソース線SL(j)と接続され、他方は、容量素子C1の一方の電極、及び液晶素子LCの一方の電極と接続されている。容量素子C1の他方の電極は、配線CSCOMと接続されている。液晶素子LCの他方の電極は、配線TCOMと接続されている。 FIG. 16B shows a circuit diagram of the pixel PIX (i, j). The pixel PIX (i, j) includes a transistor M1, a capacitor C1, and a liquid crystal element LC. The gate of the transistor M1 is connected to the gate line GL (i). One of the source and the drain of the transistor M1 is connected to the source line SL (j), and the other is connected to one electrode of the capacitor C1 and one electrode of the liquid crystal element LC. The other electrode of the capacitive element C1 is connected to the wiring CSCOM. The other electrode of the liquid crystal element LC is connected to the wiring TCOM.
図17(A)は、表示モジュールの構成を示すブロック図である。当該構成では、2本のゲート線に同時に選択信号が供給され、列方向に隣接する画素が2つ同時に選択される。ゲートドライバGD及びソースドライバSDはともに外付けとすることができる。また、ゲートドライバGD及びソースドライバSDのうち一方又は双方は、表示装置に内蔵されていてもよい。ゲート線には、2つのゲートドライバGDから同じ信号が供給される。ゲート線GL(i)は、ゲート線GL(i)及びゲート線GL(i+1)と電気的に接続されており、i行目と(i+1)行目は2行同時に駆動する。ソース線には、1つのソースドライバSDから信号が供給される。画素領域は分割されていない。 FIG. 17A is a block diagram illustrating a structure of a display module. In this configuration, selection signals are simultaneously supplied to two gate lines, and two adjacent pixels in the column direction are simultaneously selected. Both the gate driver GD and the source driver SD can be externally attached. One or both of the gate driver GD and the source driver SD may be built in the display device. The same signal is supplied to the gate line from the two gate drivers GD. The gate line GL 0 (i) is electrically connected to the gate line GL (i) and the gate line GL (i + 1), and the i-th and (i + 1) -th rows are driven simultaneously. A signal is supplied from one source driver SD to the source line. The pixel area is not divided.
図17(B)に、画素PIX(i,j)及び画素PIX(i+1,j)の回路図を示す。 FIG. 17B is a circuit diagram of the pixel PIX (i, j) and the pixel PIX (i + 1, j).
まず、画素PIX(i,j)の構成について説明する。画素PIX(i,j)は、トランジスタM1、容量素子C1、及び液晶素子LCを有する。トランジスタM1のゲートは、ゲート線GL(i)と接続されている。トランジスタM1のソース及びドレインのうち一方は、ソース線SL(j)と接続され、他方は、容量素子C1の一方の電極、及び液晶素子LCの一方の電極と接続されている。容量素子C1の他方の電極は、配線CSCOMと接続されている。液晶素子LCの他方の電極は、配線TCOMと接続されている。 First, the configuration of the pixel PIX (i, j) will be described. The pixel PIX (i, j) includes a transistor M1, a capacitor C1, and a liquid crystal element LC. The gate of the transistor M1 is connected to the gate line GL (i). One of the source and the drain of the transistor M1 is connected to the source line SL 1 (j), and the other is connected to one electrode of the capacitor C1 and one electrode of the liquid crystal element LC. The other electrode of the capacitive element C1 is connected to the wiring CSCOM. The other electrode of the liquid crystal element LC is connected to the wiring TCOM.
次に、画素PIX(i+1,j)の構成について説明する。画素PIX(i+1,j)は、トランジスタM2、容量素子C2、及び液晶素子LCを有する。トランジスタM2のゲートは、ゲート線GL(i+1)と接続されている。トランジスタM2のソース及びドレインのうち一方は、ソース線SL(j)と接続され、他方は、容量素子C2の一方の電極、及び液晶素子LCの一方の電極と接続されている。容量素子C2の他方の電極は、配線CSCOMと接続されている。液晶素子LCの他方の電極は、配線TCOMと接続されている。 Next, the configuration of the pixel PIX (i + 1, j) will be described. The pixel PIX (i + 1, j) includes a transistor M2, a capacitor element C2, and a liquid crystal element LC. The gate of the transistor M2 is connected to the gate line GL (i + 1). One of the source and the drain of the transistor M2 is connected to the source line SL 2 (j), and the other is connected to one electrode of the capacitor C2 and one electrode of the liquid crystal element LC. The other electrode of the capacitive element C2 is connected to the wiring CSCOM. The other electrode of the liquid crystal element LC is connected to the wiring TCOM.
以上のように、本実施の形態では、調光用の液晶パネルと表示用の液晶パネルを用い、2つの液晶パネルそれぞれに適した液晶素子及びトランジスタを適用することで、コントラスト、視野角特性、及び信頼性がそれぞれ高い表示装置を実現することができる。 As described above, in this embodiment, a liquid crystal panel for light control and a liquid crystal panel for display are used, and by applying liquid crystal elements and transistors suitable for the two liquid crystal panels, contrast, viewing angle characteristics, In addition, a display device with high reliability can be realized.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。 This embodiment can be combined with any of the other embodiments as appropriate. In this specification, in the case where a plurality of structure examples are given in one embodiment, any of the structure examples can be combined as appropriate.
(実施の形態2)
本実施の形態では、本発明の一態様の液晶パネルについて図18を用いて説明する。
(Embodiment 2)
In this embodiment, a liquid crystal panel of one embodiment of the present invention will be described with reference to FIGS.
表示パネルにおいて、色深度が大きいほど、表現可能な色が多くなり、好ましい。例えば、RGBそれぞれの輝度を8ビットで表す場合、各色は256階調の輝度で表現される。そして、RGBそれぞれの輝度を12ビットで表す場合、各色は4096階調の輝度で表現される。 In the display panel, the larger the color depth, the more colors that can be expressed, which is preferable. For example, when each luminance of RGB is represented by 8 bits, each color is represented by a luminance of 256 gradations. When the luminance of each RGB is expressed by 12 bits, each color is expressed by a luminance of 4096 gradations.
液晶素子の明るさは、液晶素子にかかる電圧に応じて変化する。そのため、フレーム期間中の電圧の変動が、透過率の変動となって現れる。図18(A)に液晶素子のV−T特性(電圧−透過率特性)の例を示す。図18(A)の縦軸は規格化透過率を示す。8ビットの場合、黒から白までの透過率を256階調に分割する。それに対して、12ビットの場合は、4096階調に分割する。そのため、電圧が同じ値だけ変化する際、12ビットの場合は、8ビットの約16倍の階調変化が生じることとなる。階調ズレを抑制するためには、電圧の変化を抑制することが重要である。電圧の変化を抑制する方法として、例えば、トランジスタの半導体層に酸化物半導体を用いることが挙げられる。酸化物半導体を用いたトランジスタは、シリコンなどを用いたトランジスタよりも、非導通状態時のリーク電流(オフ電流)を極めて低くすることができる。また、電圧の変化を抑制する方法として、液晶材料の抵抗率を高くすることが挙げられる。液晶材料の固有抵抗率は、1.0×1014Ω・cm以上が好ましく、1.0×1015Ω・cm以上がより好ましい。 The brightness of the liquid crystal element changes according to the voltage applied to the liquid crystal element. Therefore, voltage fluctuations during the frame period appear as fluctuations in transmittance. FIG. 18A shows an example of VT characteristics (voltage-transmittance characteristics) of a liquid crystal element. The vertical axis | shaft of FIG. 18 (A) shows the normalized transmittance | permeability. In the case of 8 bits, the transmittance from black to white is divided into 256 gradations. On the other hand, in the case of 12 bits, it is divided into 4096 gradations. Therefore, when the voltage changes by the same value, in the case of 12 bits, a gradation change of about 16 times that of 8 bits occurs. In order to suppress the gradation shift, it is important to suppress the change in voltage. As a method for suppressing a change in voltage, for example, an oxide semiconductor is used for a semiconductor layer of a transistor. A transistor using an oxide semiconductor can have a much lower leakage current (off-state current) in a non-conduction state than a transistor using silicon or the like. Further, as a method for suppressing a change in voltage, increasing the resistivity of the liquid crystal material can be given. The specific resistivity of the liquid crystal material is preferably 1.0 × 10 14 Ω · cm or more, and more preferably 1.0 × 10 15 Ω · cm or more.
また、電圧が変化しても階調ズレを生じにくくさせる方法として、電圧の変化量ΔVあたりの透過率の変化量ΔTを小さくすることが挙げられる。つまり、液晶素子におけるV−T特性の傾きを小さくすることが好ましい。本実施の形態では、配向膜のラビング角度を制御することで、V−T特性の傾きを小さくする。 Further, as a method for making it difficult to cause gradation shift even when the voltage changes, it is possible to reduce the transmittance change amount ΔT per voltage change amount ΔV. That is, it is preferable to reduce the inclination of the VT characteristic in the liquid crystal element. In this embodiment, the inclination of the VT characteristic is reduced by controlling the rubbing angle of the alignment film.
以下では、横電界方式の液晶素子について説明する。図18(B1)、(B2)、(B3)、(C1)、(C2)、(C3)は、それぞれ液晶素子が有する電極を上から見た模式図である。さらに、これらの図それぞれにおいて、電極上に位置する液晶分子42mを示す。 Hereinafter, a horizontal electric field liquid crystal element will be described. 18B1, (B2), (B3), (C1), (C2), and (C3) are schematic views of the electrodes of the liquid crystal element as viewed from above. Furthermore, in each of these figures, liquid crystal molecules 42m located on the electrodes are shown.
図18(B1)、(B2)、(C1)、(C2)に示す電極41及び電極43は、IPSモードの液晶素子が有する画素電極及び共通電極とみなすことができる。以下では、IPSモードの液晶素子を例に挙げて説明するが、図18(B3)、(C3)に示すように、電極43を電極41に置き換えることで、FFSモードの液晶素子に適用することができる。図18(B3)、(C3)に示す電極41は、FFSモードの液晶素子が有する画素電極をみなすことができ、距離Sは、電極41のスリット幅とみなすことができる。FFSモードの液晶素子が有する共通電極は、絶縁層を介して画素電極と重なる位置に設けられる。 The electrode 41 and the electrode 43 illustrated in FIGS. 18B1, (B2), (C1), and (C2) can be regarded as a pixel electrode and a common electrode included in an IPS mode liquid crystal element. Hereinafter, an IPS mode liquid crystal element will be described as an example. However, as shown in FIGS. 18B3 and 18C3, the electrode 43 may be replaced with an electrode 41 to be applied to an FFS mode liquid crystal element. Can do. 18B3 and 18C can be regarded as a pixel electrode included in an FFS mode liquid crystal element, and the distance S can be regarded as a slit width of the electrode 41. The common electrode included in the FFS mode liquid crystal element is provided at a position overlapping the pixel electrode with the insulating layer interposed therebetween.
まず、液晶材料がポジ型である(誘電異方性が正である)場合について、図18(B1)、(B2)を用いて説明する。 First, the case where the liquid crystal material is positive (dielectric anisotropy is positive) will be described with reference to FIGS. 18B1 and 18B2.
図18(B1)に、電圧がOFFのときの液晶分子42mの向きを示す。図18(B2)に、電圧がONのときの液晶分子42mの向きと電界の方向を示す。 FIG. 18B1 shows the direction of the liquid crystal molecules 42m when the voltage is OFF. FIG. 18B2 shows the direction of the liquid crystal molecules 42m and the direction of the electric field when the voltage is ON.
図18(B1)に示す角度θは、電界の方向と、電圧がOFFのときの液晶分子42mの長軸の向きと、がなす角度といえる。ここで、電圧がOFFのときの液晶分子42mの長軸の向きは、配向膜のラビング方向と概略等しくなる。つまり、角度θは、配向膜のラビング方向と電界の方向とがなす角度と言い換えることができる。 Angle theta p shown in FIG. 18 (B1) is said the direction of the electric field, the orientation of the long axis of the liquid crystal molecules 42m when the voltage OFF, the the angle formed. Here, the direction of the major axis of the liquid crystal molecules 42m when the voltage is OFF is substantially equal to the rubbing direction of the alignment film. In other words, the angle theta p may be referred to as the rubbing direction and the angle formed by the direction of the electric field of the alignment film.
液晶分子42mの長軸が電界方向に対して垂直な場合(角度θ=90°)、Freedericksz転移が存在するため、液晶素子は明確なしきい値電圧をもつ。一方、角度θが小さくなるほど、転移が不明瞭となり、透過率は電圧に対して緩やかに変化する。角度θを小さくすることで、V−T特性の傾きを小さくすることができる。また、角度θを小さくすることで、応答速度を速くすることができる。一方で、角度θが小さすぎると、最大透過率が小さくなってしまう。 When the major axis of the liquid crystal molecules 42m is perpendicular to the electric field direction (angle θ p = 90 °), the Freedericksz transition exists, so that the liquid crystal element has a clear threshold voltage. On the other hand, as the angle theta p decreases, metastasis is unclear, the transmittance gently changes with respect to voltage. By reducing the angle theta p, it is possible to reduce the inclination of the V-T characteristic. Further, by decreasing the angle theta p, it is possible to increase the response speed. On the other hand, if the angle theta p is too small, the maximum transmittance is reduced.
角度θは、50°より大きく80°未満が好ましく、60°以上80°未満がより好ましく、60°以上70°以下がさらに好ましい。このような範囲とすることで、V−T特性の傾きを小さくすることができ、かつ、高い最大透過率を維持することができる。また、応答速度を速くすることができる。これにより、8ビット以上、さらには12ビット以上の色深度の表示パネルにおいて、電圧変化が生じても透過率変動を小さくでき、階調ズレを抑制することができる。 Angle theta p is preferably less than 80 ° greater than 50 °, more preferably less than 60 ° or 80 °, more preferably 60 ° to 70 ° or less. By setting it as such a range, the inclination of VT characteristic can be made small and a high maximum transmittance can be maintained. In addition, the response speed can be increased. As a result, in a display panel having a color depth of 8 bits or more, or even 12 bits or more, the transmittance variation can be reduced even when a voltage change occurs, and gradation shift can be suppressed.
次に、液晶材料がネガ型である(誘電異方性が負である)場合について、図18(C1)、(C2)を用いて説明する。 Next, the case where the liquid crystal material is a negative type (dielectric anisotropy is negative) will be described with reference to FIGS. 18C1 and 18C2.
図18(C1)に、電圧がOFFのときの液晶分子42mの向きを示す。図18(C2)に、電圧がONのときの液晶分子42mの向きと電界の方向を示す。 FIG. 18C1 shows the direction of the liquid crystal molecules 42m when the voltage is OFF. FIG. 18C2 shows the direction of the liquid crystal molecules 42m and the direction of the electric field when the voltage is ON.
図18(C1)に示す角度θは、電界の方向と、電圧がOFFのときの液晶分子42mの長軸の向きと、がなす角度といえる。ここで、電圧がOFFのときの液晶分子42mの長軸の向きは、配向膜のラビング方向と概略等しくなる。つまり、角度θは、配向膜のラビング方向と電界の方向とがなす角度と言い換えることができる。 The angle θ n shown in FIG. 18C1 can be said to be an angle formed by the direction of the electric field and the direction of the major axis of the liquid crystal molecules 42m when the voltage is OFF. Here, the direction of the major axis of the liquid crystal molecules 42m when the voltage is OFF is substantially equal to the rubbing direction of the alignment film. That is, the angle θ n can be rephrased as an angle formed by the rubbing direction of the alignment film and the electric field direction.
液晶分子42mの長軸が電界方向に対して平行な場合(角度θ=0°)、Freedericksz転移が存在するため、液晶素子は明確なしきい値電圧をもつ。一方、角度θが大きくなるほど、転移が不明瞭となり、透過率は電圧に対して緩やかに変化する。角度θを大きくすることで、V−T特性の傾きを小さくすることができる。また、角度θを大きくすることで、応答速度を速くすることができる。一方で、角度θが大きすぎると、最大透過率が小さくなってしまう。 When the major axis of the liquid crystal molecules 42m is parallel to the electric field direction (angle θ n = 0 °), the Freedericksz transition exists, so that the liquid crystal element has a clear threshold voltage. On the other hand, as the angle θ n increases, the transition becomes unclear and the transmittance changes gradually with respect to the voltage. By increasing the angle theta n, you are possible to reduce the inclination of the V-T characteristic. Moreover, the response speed can be increased by increasing the angle θ n . On the other hand, if the angle θ n is too large, the maximum transmittance is reduced.
角度θは、10°より大きく40°未満が好ましく、20°以上40°未満がより好ましく、20°以上30°以下がさらに好ましい。このような範囲とすることで、V−T特性の傾きを小さくすることができ、かつ、高い最大透過率を維持することができる。また、応答速度を速くすることができる。これにより、8ビット以上、さらには12ビット以上の色深度の表示パネルにおいて、電圧変化が生じても透過率変動を小さくでき、階調ズレを抑制することができる。 The angle θ n is preferably greater than 10 ° and less than 40 °, more preferably 20 ° or more and less than 40 °, and still more preferably 20 ° or more and 30 ° or less. By setting it as such a range, the inclination of VT characteristic can be made small and a high maximum transmittance can be maintained. In addition, the response speed can be increased. As a result, in a display panel having a color depth of 8 bits or more, or even 12 bits or more, the transmittance variation can be reduced even when a voltage change occurs, and gradation shift can be suppressed.
以上のように、液晶パネルにおいて、配向膜のラビング方向と電界の方向とがなす角度を制御することで、電圧変化が生じても階調ズレを生じにくくすることができる。 As described above, in the liquid crystal panel, by controlling the angle formed by the rubbing direction of the alignment film and the direction of the electric field, it is possible to make it difficult to cause a gradation shift even if a voltage change occurs.
当該構成は、実施の形態1で例示した表示パネルとして機能する各液晶パネル(液晶パネル10A~10H、111A、111Bなど)に適用することができる。 This structure can be applied to each liquid crystal panel (liquid crystal panels 10A to 10H, 111A, 111B, etc.) functioning as the display panel exemplified in Embodiment 1.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with any of the other embodiments as appropriate.
(実施の形態3)
本実施の形態では、本発明の一態様で開示されるトランジスタの半導体層に用いることができる金属酸化物について説明する。なお、トランジスタの半導体層に金属酸化物を用いる場合、当該金属酸化物を酸化物半導体と読み替えてもよい。
(Embodiment 3)
In this embodiment, a metal oxide that can be used for the semiconductor layer of the transistor disclosed in one embodiment of the present invention will be described. Note that in the case where a metal oxide is used for the semiconductor layer of the transistor, the metal oxide may be read as an oxide semiconductor.
酸化物半導体は、単結晶酸化物半導体と、非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、CAAC−OS(c−axis−aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、及び非晶質酸化物半導体などがある。 An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor. As the non-single-crystal oxide semiconductor, a CAAC-OS (c-axis-aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), a pseudo-amorphous oxide semiconductor (a-like oxide OS) : Amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
また、本発明の一態様で開示されるトランジスタの半導体層には、CAC−OS(Cloud−Aligned Composite oxide semiconductor)を用いてもよい。 Alternatively, a CAC-OS (Cloud-Aligned Composite Oxide Semiconductor) may be used for the semiconductor layer of the transistor disclosed in one embodiment of the present invention.
なお、本発明の一態様で開示されるトランジスタの半導体層は、上述した非単結晶酸化物半導体またはCAC−OSを好適に用いることができる。また、非単結晶酸化物半導体としては、nc−OSまたはCAAC−OSを好適に用いることができる。 Note that the above-described non-single-crystal oxide semiconductor or CAC-OS can be preferably used for the semiconductor layer of the transistor disclosed in one embodiment of the present invention. As the non-single-crystal oxide semiconductor, nc-OS or CAAC-OS can be preferably used.
なお、本発明の一態様では、トランジスタの半導体層として、CAC−OSを用いると好ましい。CAC−OSを用いることで、トランジスタに高い電気特性または高い信頼性を付与することができる。 Note that in one embodiment of the present invention, a CAC-OS is preferably used as the semiconductor layer of the transistor. With the use of the CAC-OS, high electrical characteristics or high reliability can be imparted to the transistor.
以下では、CAC−OSの詳細について説明する。 Details of the CAC-OS will be described below.
CAC−OSまたはCAC−metal oxideは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタのチャネル形成領域に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。 The CAC-OS or the CAC-metal oxide has a conductive function in part of the material and an insulating function in part of the material, and has a function as a semiconductor in the whole material. Note that in the case where a CAC-OS or a CAC-metal oxide is used for a channel formation region of a transistor, the conductive function is a function of flowing electrons (or holes) serving as carriers, and the insulating function is a carrier. This function prevents electrons from flowing. A function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily. In CAC-OS or CAC-metal oxide, by separating each function, both functions can be maximized.
また、CAC−OSまたはCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。 In addition, the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region. The conductive region has the above-described conductive function, and the insulating region has the above-described insulating function. In the material, the conductive region and the insulating region may be separated at the nanoparticle level. In addition, the conductive region and the insulating region may be unevenly distributed in the material, respectively. In addition, the conductive region may be observed with the periphery blurred and connected in a cloud shape.
また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。 In CAC-OS or CAC-metal oxide, the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。 Further, CAC-OS or CAC-metal oxide is composed of components having different band gaps. For example, CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region. In the case of the configuration, when the carrier flows, the carrier mainly flows in the component having the narrow gap. In addition, the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)または金属マトリックス複合材(metal matrix composite)と呼称することもできる。 That is, CAC-OS or CAC-metal oxide can also be referred to as a matrix composite (metal matrix composite) or a metal matrix composite (metal matrix composite).
CAC−OSは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下またはその近傍のサイズで混合した状態をモザイク状またはパッチ状ともいう。 The CAC-OS is one structure of a material in which an element constituting a metal oxide is unevenly distributed with a size of 0.5 nm to 10 nm, preferably, 1 nm to 2 nm or near. In the following, in a metal oxide, one or more metal elements are unevenly distributed, and a region having the metal element has a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm or near. The mixed state is also called mosaic or patch.
なお、金属酸化物は、少なくともインジウムを含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種または複数種が含まれていてもよい。 Note that the metal oxide preferably contains at least indium. In particular, it is preferable to contain indium and zinc. In addition, aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. One kind or plural kinds selected from may be included.
例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、及びZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、及びZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。 For example, a CAC-OS in In-Ga-Zn oxide (In-Ga-Zn oxide among CAC-OSs may be referred to as CAC-IGZO in particular) is an indium oxide (hereinafter referred to as InO). X1 (X1 is greater real than 0) and.), or indium zinc oxide (hereinafter, in X2 Zn Y2 O Z2 ( X2, Y2, and Z2 is larger real than 0) and a.), gallium An oxide (hereinafter referred to as GaO X3 (X3 is a real number greater than 0)) or a gallium zinc oxide (hereinafter referred to as Ga X4 Zn Y4 O Z4 (where X4, Y4, and Z4 are greater than 0)) to.) and the like, the material becomes mosaic by separate into, mosaic InO X1 or in X2 Zn Y2 O Z2, is a configuration in which uniformly distributed in the film (hereinafter, click Also called Udo-like.) A.
つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、混合している構成を有する複合金属酸化物である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。 That, CAC-OS includes a region GaO X3 is the main component, and In X2 Zn Y2 O Z2, or InO X1 is the main component region is a composite metal oxide having a structure that is mixed. Note that in this specification, for example, the first region indicates that the atomic ratio of In to the element M in the first region is larger than the atomic ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that in the second region.
なお、IGZOは通称であり、In、Ga、Zn、及びOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。 Note that IGZO is a common name and sometimes refers to one compound of In, Ga, Zn, and O. As a typical example, InGaO 3 (ZnO) m1 (m1 is a natural number) or In (1 + x0) Ga (1-x0) O 3 (ZnO) m0 (−1 ≦ x0 ≦ 1, m0 is an arbitrary number) A crystalline compound may be mentioned.
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC(c−axis aligned crystal)構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。 The crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC (c-axis aligned crystal) structure. The CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented in the ab plane.
一方、CAC−OSは、金属酸化物の材料構成に関する。CAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。従って、CAC−OSにおいて、結晶構造は副次的な要素である。 On the other hand, CAC-OS relates to a material structure of a metal oxide. CAC-OS refers to a region that is observed in the form of nanoparticles mainly composed of Ga in a material structure including In, Ga, Zn, and O, and nanoparticles that are partially composed mainly of In. The region observed in a shape is a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in the CAC-OS, the crystal structure is a secondary element.
なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。 Note that the CAC-OS does not include a stacked structure of two or more kinds of films having different compositions. For example, a structure composed of two layers of a film mainly containing In and a film mainly containing Ga is not included.
なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。 Incidentally, a region GaO X3 is the main component, and In X2 Zn Y2 O Z2 or InO X1 is the main component region, in some cases clear boundary can not be observed.
なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC−OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。 Instead of gallium, selected from aluminum, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. In the case where one or a plurality of types are included, the CAC-OS includes a region that is observed in a part of a nanoparticle mainly including the metal element and a nanoparticle mainly including In. The region observed in the form of particles refers to a configuration in which each region is randomly dispersed in a mosaic shape.
CAC−OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。 The CAC-OS can be formed by a sputtering method under a condition where the substrate is not intentionally heated, for example. In the case where a CAC-OS is formed by a sputtering method, any one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. Good. Further, the flow rate ratio of the oxygen gas to the total flow rate of the deposition gas during film formation is preferably as low as possible. .
CAC−OSは、X線回折(XRD:X−ray diffraction)測定法のひとつであるOut−of−plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折から、測定領域のa−b面方向、及びc軸方向の配向は見られないことが分かる。 The CAC-OS has a feature that a clear peak is not observed when measurement is performed using a θ / 2θ scan by an out-of-plane method, which is one of X-ray diffraction (XRD) measurement methods. Have. That is, it can be seen from X-ray diffraction that no orientation in the ab plane direction and c-axis direction of the measurement region is observed.
またCAC−OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域と、該リング領域に複数の輝点が観測される。従って、電子線回折パターンから、CAC−OSの結晶構造が、平面方向、及び断面方向において、配向性を有さないnc(nano−crystal)構造を有することがわかる。 In addition, in the CAC-OS, an electron diffraction pattern obtained by irradiating an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam electron beam) has a ring-like region having a high luminance and a plurality of bright regions in the ring region. A point is observed. Therefore, it can be seen from the electron beam diffraction pattern that the crystal structure of the CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
また例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。 Further, for example, in a CAC-OS in an In—Ga—Zn oxide, a region in which GaO X3 is a main component is obtained by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component is unevenly distributed and mixed.
CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とに互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。 The CAC-OS has a structure different from that of the IGZO compound in which the metal element is uniformly distributed, and has a property different from that of the IGZO compound. That, CAC-OS includes a region which is the main component such as GaO X3, In X2 Zn Y2 O Z2 or InO X1 is phase-separated from each other in a region which is the main component, and a region mainly composed of the elements It has a mosaic structure.
ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。従って、InX2ZnY2Z2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。 Here, the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is a region having higher conductivity than a region containing GaO X3 or the like as a main component. That, In X2 Zn Y2 O Z2 or InO X1, is an area which is the main component, by carriers flow, expressed the conductivity of the oxide semiconductor. Accordingly, a region where In X2 Zn Y2 O Z2 or InO X1 is a main component is distributed in a cloud shape in the oxide semiconductor, whereby high field-effect mobility (μ) can be realized.
一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。 On the other hand, areas such as GaO X3 is the main component, as compared to the In X2 Zn Y2 O Z2 or InO X1 is the main component area, it is highly regions insulating. That is, a region containing GaO X3 or the like as a main component is distributed in the oxide semiconductor, whereby leakage current can be suppressed and good switching operation can be realized.
従って、CAC−OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、及び高い電界効果移動度(μ)を実現することができる。 Therefore, when CAC-OS is used for a semiconductor element, the insulating property caused by GaO X3 and the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act in a complementary manner, resulting in high An on-current (I on ) and high field effect mobility (μ) can be realized.
また、CAC−OSを用いた半導体素子は、信頼性が高い。従って、CAC−OSは、ディスプレイをはじめとするさまざまな半導体装置に最適である。 In addition, a semiconductor element using a CAC-OS has high reliability. Therefore, the CAC-OS is optimal for various semiconductor devices including a display.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with any of the other embodiments as appropriate.
(実施の形態4)
本実施の形態では、本発明の一態様のテレビジョン装置について、図19を用いて説明する。
(Embodiment 4)
In this embodiment, a television device of one embodiment of the present invention will be described with reference to FIGS.
図19(A)に、テレビジョン装置600のブロック図を示す。 FIG. 19A shows a block diagram of a television device 600.
なお、本明細書に添付した図面では、構成要素を機能ごとに分類し、互いに独立したブロックとしてブロック図を示しているが、実際の構成要素は機能ごとに完全に切り分けることが難しく、一つの構成要素が複数の機能に係わることもあり得る。 In the drawings attached to the present specification, the components are classified by function and the block diagram is shown as an independent block. However, it is difficult to completely separate actual components by function. A component may be involved in multiple functions.
テレビジョン装置600は、制御部601、記憶部602、通信制御部603、画像処理回路604、デコーダ回路605、映像信号受信部606、タイミングコントローラ607、ソースドライバ608、ゲートドライバ609、表示パネル620、タイミングコントローラ647、ソースドライバ648、ゲートドライバ649、及び調光パネル650等を有する。 The television apparatus 600 includes a control unit 601, a storage unit 602, a communication control unit 603, an image processing circuit 604, a decoder circuit 605, a video signal receiving unit 606, a timing controller 607, a source driver 608, a gate driver 609, a display panel 620, A timing controller 647, a source driver 648, a gate driver 649, a dimming panel 650, and the like are included.
実施の形態1で例示した表示装置が有する表示パネルは、図19(A)における表示パネル620に適用することができる。実施の形態1で例示した表示装置が有する調光パネルは、図19(A)における調光パネル650に適用することができる。これにより、大型かつ高解像度であって、高い表示品位を有するテレビジョン装置600を実現できる。 The display panel included in the display device described in Embodiment 1 can be applied to the display panel 620 in FIG. The light control panel included in the display device illustrated in Embodiment 1 can be applied to the light control panel 650 in FIG. Accordingly, it is possible to realize a television device 600 that is large and has high resolution and high display quality.
制御部601は、例えば中央演算装置(CPU:Central Processing Unit)として機能することができる。例えば制御部601は、システムバス630を介して記憶部602、通信制御部603、画像処理回路604、デコーダ回路605、及び映像信号受信部606等のコンポーネントを制御する機能を有する。 The control unit 601 can function as, for example, a central processing unit (CPU: Central Processing Unit). For example, the control unit 601 has a function of controlling components such as the storage unit 602, the communication control unit 603, the image processing circuit 604, the decoder circuit 605, and the video signal receiving unit 606 via the system bus 630.
制御部601と各コンポーネントとは、システムバス630を介して信号の伝達が行われる。また制御部601は、システムバス630を介して接続された各コンポーネントから入力される信号を処理する機能、各コンポーネントへ出力する信号を生成する機能等を有し、これによりシステムバス630に接続された各コンポーネントを統括的に制御することができる。 A signal is transmitted between the control unit 601 and each component via the system bus 630. In addition, the control unit 601 has a function of processing a signal input from each component connected via the system bus 630, a function of generating a signal output to each component, and the like, thereby being connected to the system bus 630. Each component can be controlled centrally.
記憶部602は、制御部601及び画像処理回路604がアクセス可能なレジスタ、キャッシュメモリ、メインメモリ、二次メモリなどとして機能する。 The storage unit 602 functions as a register, a cache memory, a main memory, a secondary memory, or the like that can be accessed by the control unit 601 and the image processing circuit 604.
二次メモリとして用いることのできる記憶装置としては、例えば書き換え可能な不揮発性の記憶素子が適用された記憶装置を用いることができる。例えば、フラッシュメモリ、MRAM(Magnetoresistive Random Access Memory)、PRAM(Phase change RAM)、ReRAM(Resistive RAM)、FeRAM(Ferroelectric RAM)などを用いることができる。 As a storage device that can be used as the secondary memory, for example, a storage device to which a rewritable nonvolatile storage element is applied can be used. For example, a flash memory, an MRAM (Magnetostatic Random Access Memory), a PRAM (Phase change RAM), a ReRAM (Resistive RAM), an FeRAM (Ferroelectric RAM), or the like can be used.
また、レジスタ、キャッシュメモリ、メインメモリなどの一時メモリとして用いることのできる記憶装置としては、DRAM(Dynamic RAM)や、SRAM(Static Random Access Memory)等の揮発性の記憶素子を用いてもよい。 Further, as a storage device that can be used as a temporary memory such as a register, a cache memory, or a main memory, a volatile storage element such as a DRAM (Dynamic RAM) or an SRAM (Static Random Access Memory) may be used.
例えば、メインメモリに設けられるRAMとしては、例えばDRAMが用いられ、制御部601の作業空間として仮想的にメモリ空間が割り当てられ利用される。記憶部602に格納されたオペレーティングシステム、アプリケーションプログラム、プログラムモジュール、プログラムデータ等は、実行のためにRAMにロードされる。RAMにロードされたこれらのデータやプログラム、プログラムモジュールは、制御部601に直接アクセスされ、操作される。 For example, as a RAM provided in the main memory, for example, a DRAM is used, and a memory space is virtually allocated and used as a work space of the control unit 601. The operating system, application program, program module, program data, etc. stored in the storage unit 602 are loaded into the RAM for execution. These data, programs, and program modules loaded in the RAM are directly accessed and operated by the control unit 601.
一方、ROMには書き換えを必要としないBIOS(Basic Input/Output System)やファームウェア等を格納することができる。ROMとしては、マスクROMや、OTPROM(One Time Programmable Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)等を用いることができる。EPROMとしては、紫外線照射により記憶データの消去を可能とするUV−EPROM(Ultra−Violet Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、フラッシュメモリなどが挙げられる。 On the other hand, the ROM can store BIOS (Basic Input / Output System), firmware and the like that do not require rewriting. As ROM, mask ROM, OTPROM (One Time Programmable Read Only Memory), EPROM (Erasable Programmable Read Only Memory), etc. can be used. Examples of EPROM include UV-EPROM (Ultra-Violet Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), etc. that can erase stored data by ultraviolet irradiation.
また、記憶部602の他に、取り外し可能な記憶装置を接続可能な構成としてもよい。例えばストレージデバイスとして機能するハードディスクドライブ(Hard Disk Drive:HDD)やソリッドステートドライブ(Solid State Drive:SSD)などの記録メディアドライブ、フラッシュメモリ、ブルーレイディスク、DVDなどの記録媒体と接続する端子を有することが好ましい。これにより、映像を記録することができる。 In addition to the storage unit 602, a removable storage device may be connected. For example, it has a terminal for connecting to a recording medium drive such as a hard disk drive (Hard Disk Drive: HDD) or a solid state drive (SSD) that functions as a storage device, a recording medium such as a flash memory, a Blu-ray disc, or a DVD. Is preferred. Thereby, a video can be recorded.
通信制御部603は、コンピュータネットワークを介して行われる通信を制御する機能を有する。例えば、制御部601からの命令に応じてコンピュータネットワークに接続するための制御信号を制御し、当該信号をコンピュータネットワークに発信する。これによって、World Wide Web(WWW)の基盤であるインターネット、イントラネット、エクストラネット、PAN(Personal Area Network)、LAN(Local Area Network)、CAN(Campus Area Network)、MAN(Metropolitan Area Network)、WAN(Wide Area Network)、GAN(Global Area Network)等のコンピュータネットワークに接続し、通信を行うことができる。 The communication control unit 603 has a function of controlling communication performed via a computer network. For example, the control signal for connecting to the computer network is controlled in accordance with a command from the control unit 601, and the signal is transmitted to the computer network. As a result, the Internet, intranet, extranet, PAN (Personal Area Network), LAN (Local Area Network), CAN (Campus Area Network), and MAN (MetroApoNetwork) are the foundations of the World Wide Web (WWW). Communication can be performed by connecting to a computer network such as Wide Area Network (GA) or GAN (Global Area Network).
 また、通信制御部603は、Wi−Fi(登録商標)、Bluetooth(登録商標)、ZigBee(登録商標)等の通信規格を用いてコンピュータネットワークまたは他の電子機器と通信する機能を有していてもよい。 The communication control unit 603 has a function of communicating with a computer network or other electronic devices using a communication standard such as Wi-Fi (registered trademark), Bluetooth (registered trademark), or ZigBee (registered trademark). Also good.
通信制御部603は、無線により通信する機能を有していてもよい。例えばアンテナと高周波回路(RF回路)を設け、RF信号の送受信を行えばよい。高周波回路は、各国法制により定められた周波数帯域の電磁信号と電気信号とを相互に変換し、当該電磁信号を用いて無線で他の通信機器との間で通信を行うための回路である。実用的な周波数帯域として数10kHz~数10GHzが一般に用いられている。アンテナと接続される高周波回路には、複数の周波数帯域に対応した高周波回路部を有し、高周波回路部は、増幅器(アンプ)、ミキサ、フィルタ、DSP、RFトランシーバ等を有する構成とすることができる。 The communication control unit 603 may have a function of communicating wirelessly. For example, an antenna and a high frequency circuit (RF circuit) may be provided to transmit and receive an RF signal. The high-frequency circuit is a circuit for mutually converting an electromagnetic signal and an electric signal in a frequency band determined by the legislation of each country and performing communication with other communication devices wirelessly using the electromagnetic signal. Several tens of kHz to several tens of GHz is generally used as a practical frequency band. The high-frequency circuit connected to the antenna includes a high-frequency circuit unit corresponding to a plurality of frequency bands, and the high-frequency circuit unit includes an amplifier (amplifier), a mixer, a filter, a DSP, an RF transceiver, and the like. it can.
映像信号受信部606は、例えばアンテナ、復調回路、及びA−D変換回路(アナログ−デジタル変換回路)等を有する。復調回路は、アンテナから入力した信号を復調する機能を有する。またA−D変換回路は、復調されたアナログ信号をデジタル信号に変換する機能を有する。映像信号受信部606で処理された信号は、デコーダ回路605に送られる。 The video signal receiving unit 606 includes, for example, an antenna, a demodulation circuit, an A / D conversion circuit (analog-digital conversion circuit), and the like. The demodulation circuit has a function of demodulating a signal input from the antenna. The A-D conversion circuit has a function of converting the demodulated analog signal into a digital signal. The signal processed by the video signal receiving unit 606 is sent to the decoder circuit 605.
デコーダ回路605は、映像信号受信部606から入力されるデジタル信号に含まれる映像データを、送信される放送規格の仕様に従ってデコードし、画像処理回路に送信する信号を生成する機能を有する。例えば8K放送における放送規格としては、H.265 | MPEG−H High Efficiency Video Coding(略称:HEVC)などがある。 The decoder circuit 605 has a function of decoding video data included in a digital signal input from the video signal receiving unit 606 in accordance with the specification of a broadcast standard to be transmitted, and generating a signal to be transmitted to the image processing circuit. For example, as a broadcasting standard in 8K broadcasting, H.264 is used. H.265 | MPEG-H High Efficiency Video Coding (abbreviation: HEVC).
映像信号受信部606が有するアンテナにより受信できる放送電波としては、地上波、または衛星から送信される電波などが挙げられる。またアンテナにより受信できる放送電波として、アナログ放送、デジタル放送などがあり、また映像及び音声、または音声のみの放送などがある。例えばUHF帯(約300MHz~3GHz)またはVHF帯(30MHz~300MHz)のうちの特定の周波数帯域で送信される放送電波を受信することができる。また例えば、複数の周波数帯域で受信した複数のデータを用いることで、転送レートを高くすることができ、より多くの情報を得ることができる。これによりフルハイビジョンを超える解像度を有する映像を、表示パネル620に表示させることができる。例えば、4K2K、8K4K、16K8K、またはそれ以上の解像度を有する映像を表示させることができる。 Examples of broadcast radio waves that can be received by the antenna included in the video signal receiving unit 606 include ground waves or radio waves transmitted from satellites. Broadcast radio waves that can be received by an antenna include analog broadcast and digital broadcast, and also includes video and audio, or audio-only broadcast. For example, broadcast radio waves transmitted in a specific frequency band in the UHF band (about 300 MHz to 3 GHz) or the VHF band (30 MHz to 300 MHz) can be received. In addition, for example, by using a plurality of data received in a plurality of frequency bands, the transfer rate can be increased and more information can be obtained. Accordingly, an image having a resolution exceeding full high-definition can be displayed on the display panel 620. For example, an image having a resolution of 4K2K, 8K4K, 16K8K, or higher can be displayed.
また、映像信号受信部606及びデコータ回路605は、コンピュータネットワークを介したデータ伝送技術により送信された放送のデータを用いて、画像処理回路604に送信する信号を生成する構成としてもよい。このとき、受信する信号がデジタル信号の場合には、映像信号受信部606は復調回路及びA−D変換回路等を有していなくてもよい。 Further, the video signal receiving unit 606 and the decoder circuit 605 may be configured to generate a signal to be transmitted to the image processing circuit 604 using broadcast data transmitted by a data transmission technique via a computer network. At this time, when the signal to be received is a digital signal, the video signal receiving unit 606 may not include a demodulation circuit, an A-D conversion circuit, and the like.
画像処理回路604は、デコーダ回路605から入力される映像信号に基づいて、タイミングコントローラ607に出力する映像信号を生成する機能を有する。また、画像処理回路604は、デコーダ回路605から入力される映像信法に基づいて、タイミングコントローラ647に出力する信号を生成する機能を有する。なお、画像処理回路604は、さらに、デコーダ回路605から入力される映像信号に基づいて、バックライトユニットに出力する信号を生成する機能を有していてもよい。 The image processing circuit 604 has a function of generating a video signal to be output to the timing controller 607 based on the video signal input from the decoder circuit 605. The image processing circuit 604 has a function of generating a signal to be output to the timing controller 647 based on the video signal input from the decoder circuit 605. Note that the image processing circuit 604 may further have a function of generating a signal to be output to the backlight unit based on the video signal input from the decoder circuit 605.
タイミングコントローラ607は、画像処理回路604が処理を施した映像信号等に含まれる同期信号を基に、ゲートドライバ609及びソースドライバ608に出力する信号(クロック信号、スタートパルス信号などの信号)を生成する機能を有する。また、タイミングコントローラ607は、上記信号に加え、ソースドライバ608に出力するビデオ信号を生成する機能を有する。 The timing controller 607 generates a signal (a signal such as a clock signal or a start pulse signal) to be output to the gate driver 609 and the source driver 608 based on the synchronization signal included in the video signal processed by the image processing circuit 604. It has the function to do. The timing controller 607 has a function of generating a video signal to be output to the source driver 608 in addition to the above signals.
表示パネル620は、複数の画素621を有する。各画素621は、ゲートドライバ609及びソースドライバ608から供給される信号により駆動される。ここでは、画素数が7680×4320である、8K4K規格に応じた解像度を有する表示パネルの例を示している。なお、表示パネル620の解像度はこれに限られず、フルハイビジョン(画素数1920×1080)または4K2K(画素数3840×2160)等の規格に応じた解像度であってもよい。 The display panel 620 includes a plurality of pixels 621. Each pixel 621 is driven by signals supplied from the gate driver 609 and the source driver 608. Here, an example of a display panel having a resolution according to the 8K4K standard having the number of pixels of 7680 × 4320 is shown. Note that the resolution of the display panel 620 is not limited to this, and may be a resolution according to a standard such as full high-definition (pixel number 1920 × 1080) or 4K2K (pixel number 3840 × 2160).
タイミングコントローラ647は、画像処理回路604が処理を施した信号に含まれる同期信号を基に、ゲートドライバ649及びソースドライバ648に出力する信号を生成する機能を有する。また、タイミングコントローラ647は、上記信号に加え、ソースドライバ648に出力するビデオ信号を生成する機能を有する。なお、1つのタイミングコントローラが、表示パネル620と調光パネル650の双方を駆動するための信号を生成してもよい。 The timing controller 647 has a function of generating signals to be output to the gate driver 649 and the source driver 648 based on a synchronization signal included in the signal processed by the image processing circuit 604. The timing controller 647 has a function of generating a video signal to be output to the source driver 648 in addition to the above signals. One timing controller may generate a signal for driving both the display panel 620 and the light control panel 650.
調光パネル650は、複数の画素651を有する。各画素651は、ゲートドライバ649及びソースドライバ648から供給される信号により駆動される。調光パネル650の画素数は、表示パネル620と同じであってもよく異なっていてもよい。 The light control panel 650 includes a plurality of pixels 651. Each pixel 651 is driven by signals supplied from the gate driver 649 and the source driver 648. The number of pixels of the light control panel 650 may be the same as or different from that of the display panel 620.
図19(A)に示す制御部601や画像処理回路604としては、例えばプロセッサを有する構成とすることができる。例えば、制御部601は、CPUとして機能するプロセッサを用いることができる。また、画像処理回路604として、例えばDSP(Digital Signal Processor)、GPU(Graphics Processing Unit)等の他のプロセッサを用いることができる。また制御部601や画像処理回路604に、上記プロセッサをFPGA(Field Programmable Gate Array)やFPAA(Field Programmable Analog Array)といったPLD(Programmable Logic Device)によって実現した構成としてもよい。 For example, the control unit 601 and the image processing circuit 604 illustrated in FIG. 19A can include a processor. For example, the control unit 601 can use a processor that functions as a CPU. In addition, as the image processing circuit 604, other processors such as a DSP (Digital Signal Processor) and a GPU (Graphics Processing Unit) can be used. Further, the control unit 601 and the image processing circuit 604 may have a configuration in which the processor is realized by a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array) or an FPAA (Field Programmable Analog Array).
プロセッサは、種々のプログラムからの命令を解釈し実行することで、各種のデータ処理やプログラム制御を行う。プロセッサにより実行しうるプログラムは、プロセッサが有するメモリ領域に格納されていてもよいし、別途設けられる記憶装置に格納されていてもよい。 The processor performs various data processing and program control by interpreting and executing instructions from various programs. The program that can be executed by the processor may be stored in a memory area of the processor, or may be stored in a storage device provided separately.
また、制御部601、記憶部602、通信制御部603、画像処理回路604、デコーダ回路605、及び映像信号受信部606、タイミングコントローラ607、及びタイミングコントローラ647のそれぞれが有する機能のうち、2つ以上の機能を1つのICチップに集約させ、システムLSIを構成してもよい。例えば、プロセッサ、デコーダ回路、チューナ回路、A−D変換回路、DRAM、及びSRAM等を有するシステムLSIとしてもよい。 Two or more of the functions of the control unit 601, the storage unit 602, the communication control unit 603, the image processing circuit 604, the decoder circuit 605, the video signal receiving unit 606, the timing controller 607, and the timing controller 647 are provided. These functions may be integrated into one IC chip to constitute a system LSI. For example, a system LSI including a processor, a decoder circuit, a tuner circuit, an A / D conversion circuit, a DRAM, and an SRAM may be used.
なお、制御部601や、他のコンポーネントが有するIC等に、チャネル形成領域に酸化物半導体を用い、極めて低いオフ電流が実現されたトランジスタを利用することもできる。当該トランジスタは、オフ電流が極めて低いため、当該トランジスタを記憶素子として機能する容量素子に流入した電荷(データ)を保持するためのスイッチとして用いることで、データの保持期間を長期にわたり確保することができる。この特性を制御部601等のレジスタやキャッシュメモリに用いることで、必要なときだけ制御部601を動作させ、他の場合には直前の処理の情報を当該記憶素子に待避させることにより、ノーマリーオフコンピューティングが可能となる。これにより、テレビジョン装置600の低消費電力化を図ることができる。 Note that a transistor in which an oxide semiconductor is used for a channel formation region and an extremely low off-state current is realized can be used for the controller 601, an IC included in another component, or the like. Since the transistor has extremely low off-state current, the use of the transistor as a switch for holding charge (data) flowing into the capacitor functioning as a memory element can ensure a data holding period for a long time. it can. By using this characteristic for a register such as the control unit 601 or a cache memory, the control unit 601 is operated only when necessary, and in other cases, information on the immediately preceding process is saved in the storage element, so that it is normally. Off-computing becomes possible. Thereby, the power consumption of the television apparatus 600 can be reduced.
なお、図19(A)のテレビジョン装置600の構成は一例であり、全ての構成要素を含む必要はない。テレビジョン装置600は、図19(A)に示す構成要素のうち必要な構成要素を有していればよい。また、テレビジョン装置600は、図19(A)に示す構成要素以外の構成要素を有していてもよい。 Note that the structure of the television device 600 in FIG. 19A is just an example, and it is not necessary to include all of the components. The television set 600 only needs to include necessary components from among the components illustrated in FIG. In addition, the television device 600 may include a component other than the components illustrated in FIG.
例えば、テレビジョン装置600は、図19(A)に示す構成のほか、外部インターフェース、音声出力部、タッチパネルユニット、センサユニット、カメラユニットなどを有していてもよい。例えば外部インターフェースとしては、例えばUSB(Universal Serial Bus)端子、LAN(Local Area Network)接続用端子、電源受給用端子、音声出力用端子、音声入力用端子、映像出力用端子、映像入力用端子などの外部接続端子、赤外線、可視光、紫外線などを用いた光通信用の送受信機、筐体に設けられた物理ボタンなどがある。また、例えば音声入出力部としては、サウンドコントローラ、マイクロフォン、スピーカなどがある。 For example, the television device 600 may include an external interface, an audio output unit, a touch panel unit, a sensor unit, a camera unit, and the like in addition to the configuration illustrated in FIG. For example, as an external interface, for example, a USB (Universal Serial Bus) terminal, a LAN (Local Area Network) connection terminal, a power receiving terminal, an audio output terminal, an audio input terminal, an image output terminal, an image input terminal, etc. External connection terminals, transceivers for optical communication using infrared rays, visible light, ultraviolet rays, etc., physical buttons provided on the housing, and the like. For example, the sound input / output unit includes a sound controller, a microphone, a speaker, and the like.
以下では、画像処理回路604についてより詳細な説明を行う。 Hereinafter, the image processing circuit 604 will be described in more detail.
画像処理回路604は、デコーダ回路605から入力される映像信号に基づいて、画像処理を実行する機能を有することが好ましい。 The image processing circuit 604 preferably has a function of executing image processing based on the video signal input from the decoder circuit 605.
画像処理としては、例えばノイズ除去処理、階調変換処理、色調補正処理、輝度補正処理などが挙げられる。色調補正処理や輝度補正処理としては、例えばガンマ補正などがある。 Examples of image processing include noise removal processing, gradation conversion processing, color tone correction processing, and luminance correction processing. Examples of the color tone correction process and the brightness correction process include gamma correction.
また、画像処理回路604は、解像度のアップコンバートに伴う画素間補間処理や、フレーム周波数のアップコンバートに伴うフレーム間補間などの処理を実行する機能を有していることが好ましい。 Further, the image processing circuit 604 preferably has a function of executing processing such as inter-pixel interpolation processing accompanying resolution up-conversion and inter-frame interpolation processing accompanying frame frequency up-conversion.
例えば、ノイズ除去処理としては、文字などの輪郭の周辺に生じるモスキートノイズ、高速の動画で生じるブロックノイズ、ちらつきを生じるランダムノイズ、解像度のアップコンバートにより生じるドットノイズなどのさまざまなノイズを除去する。 For example, as noise removal processing, various noises such as mosquito noise generated around the outline of characters, block noise generated in high-speed moving images, flickering random noise, and dot noise generated by resolution up-conversion are removed.
階調変換処理は、画像の階調を表示パネル620の出力特性に対応した階調へ変換する処理である。例えば階調数を大きくする場合、小さい階調数で入力された画像に対して、各画素に対応する階調値を補間して割り当てることで、ヒストグラムを平滑化する処理を行うことができる。また、ダイナミックレンジを広げる、ハイダイナミックレンジ(HDR)処理も、階調変換処理に含まれる。 The gradation conversion process is a process for converting the gradation of an image into a gradation corresponding to the output characteristics of the display panel 620. For example, when the number of gradations is increased, a process for smoothing the histogram can be performed by interpolating and assigning gradation values corresponding to each pixel to an image input with a small number of gradations. Further, a high dynamic range (HDR) process for expanding the dynamic range is also included in the gradation conversion process.
また、画素間補間処理は、解像度をアップコンバートした際に、本来存在しないデータを補間する。例えば、目的の画素の周囲の画素を参照し、それらの中間色を表示するようにデータを補間する。 The inter-pixel interpolation process interpolates data that does not originally exist when the resolution is up-converted. For example, referring to pixels around the target pixel, the data is interpolated so as to display the intermediate colors.
また、色調補正処理は、画像の色調を補正する処理である。また輝度補正処理は、画像の明るさ(輝度コントラスト)を補正する処理である。例えば、テレビジョン装置600が設けられる空間の照明の種類や輝度、または色純度などを検知し、それに応じて表示パネル620に表示する画像の輝度や色調が最適となるように補正する。または、表示する画像と、あらかじめ保存してある画像リスト内の様々な場面の画像と、を照合し、最も近い場面の画像に適した輝度や色調に表示する画像を補正する機能を有していてもよい。 The color tone correction process is a process for correcting the color tone of an image. The brightness correction process is a process for correcting the brightness (brightness contrast) of the image. For example, the type, brightness, or color purity of the illumination in the space where the television apparatus 600 is provided is detected, and the brightness and color tone of the image displayed on the display panel 620 are corrected accordingly. Or, it has a function to compare the image to be displayed with the images of various scenes in the image list stored in advance, and to correct the image displayed with brightness and color tone suitable for the image of the closest scene. May be.
フレーム間補間は、表示する映像のフレーム周波数を増大させる場合に、本来存在しないフレーム(補間フレーム)の画像を生成する。例えば、ある2枚の画像の差分から2枚の画像の間に挿入する補間フレームの画像を生成する。または2枚の画像の間に複数枚の補間フレームの画像を生成することもできる。例えばデコーダ回路605から入力される映像信号のフレーム周波数が60Hzであったとき、複数枚の補間フレームを生成することで、タイミングコントローラ607に出力する映像信号のフレーム周波数を、2倍の120Hz、または4倍の240Hz、または8倍の480Hzなどに増大させることができる。 Interframe interpolation generates an image of a frame (interpolation frame) that does not originally exist when the frame frequency of a video to be displayed is increased. For example, an interpolation frame image to be inserted between two images is generated from the difference between two images. Alternatively, an image of a plurality of interpolation frames can be generated between two images. For example, when the frame frequency of the video signal input from the decoder circuit 605 is 60 Hz, the frame frequency of the video signal output to the timing controller 607 is doubled by 120 Hz by generating a plurality of interpolation frames, or It can be increased to 4 times 240 Hz or 8 times 480 Hz.
また、画像処理回路604は、ニューラルネットワークを利用して、画像処理を実行する機能を有していることが好ましい。図19(A)では、画像処理回路604がニューラルネットワーク610を有している例を示している。 The image processing circuit 604 preferably has a function of executing image processing using a neural network. FIG. 19A shows an example in which the image processing circuit 604 includes a neural network 610.
例えば、ニューラルネットワーク610により、例えば映像に含まれる画像データから特徴抽出を行うことができる。また画像処理回路604は、抽出された特徴に応じて最適な補正方法を選択することや、または補正に用いるパラメータを選択することができる。 For example, the neural network 610 can perform feature extraction from image data included in a video, for example. The image processing circuit 604 can select an optimal correction method according to the extracted features, or can select parameters used for correction.
または、ニューラルネットワーク610自体に画像処理を行う機能を持たせてもよい。すなわち、画像処理を施す前の画像データをニューラルネットワーク610に入力することで、画像処理が施された画像データを出力させる構成としてもよい。 Alternatively, the neural network 610 itself may have a function of performing image processing. That is, the image data that has been subjected to image processing may be output by inputting the image data before being subjected to image processing to the neural network 610.
また、ニューラルネットワーク610に用いる重み係数のデータは、データテーブルとして記憶部602に格納される。当該重み係数を含むデータテーブルは、例えば通信制御部603により、コンピュータネットワークを介して最新のものに更新することができる。または、画像処理回路604が学習機能を有し、重み係数を含むデータテーブルを更新可能な構成としてもよい。 In addition, weight coefficient data used for the neural network 610 is stored in the storage unit 602 as a data table. The data table including the weighting coefficient can be updated to the latest one via the computer network by the communication control unit 603, for example. Alternatively, the image processing circuit 604 may have a learning function so that a data table including a weighting factor can be updated.
また、画像処理回路604は、デコーダ回路605から入力される映像信号に基づいて、調光パネル650の透過領域における透過率分布を示す信号を生成する機能を有することが好ましい。当該信号の生成に、ニューラルネットワーク610を利用することが好ましい。 The image processing circuit 604 preferably has a function of generating a signal indicating the transmittance distribution in the transmission region of the light control panel 650 based on the video signal input from the decoder circuit 605. It is preferable to use a neural network 610 for generating the signal.
また、画像処理回路604は、デコーダ回路605から入力される映像信号に基づいて、バックライトユニットにおける輝度を示す信号を生成する機能を有することが好ましい。当該信号の生成に、ニューラルネットワーク610を利用することが好ましい。 The image processing circuit 604 preferably has a function of generating a signal indicating luminance in the backlight unit based on the video signal input from the decoder circuit 605. It is preferable to use a neural network 610 for generating the signal.
図19(B)に、画像処理回路604が有するニューラルネットワーク610の概略図を示す。 FIG. 19B shows a schematic diagram of a neural network 610 included in the image processing circuit 604.
なお、本明細書等においてニューラルネットワークとは、生物の神経回路網を模し、学習によってニューロンどうしの結合強度を決定し、問題解決能力を持たせるモデル全般を指す。ニューラルネットワークは入力層、中間層(隠れ層ともいう)、出力層を有する。ニューラルネットワークのうち、2層以上の中間層を有するものをディープニューラルネットワーク(DNN)と呼称し、ディープニューラルネットワークによる学習を「ディープラーニング」と呼称する。 In this specification and the like, a neural network refers to a general model that imitates a biological neural network, determines the connection strength between neurons by learning, and has problem solving ability. The neural network has an input layer, an intermediate layer (also referred to as a hidden layer), and an output layer. A neural network having two or more intermediate layers is called a deep neural network (DNN), and learning by the deep neural network is called “deep learning”.
また、本明細書等において、ニューラルネットワークについて述べる際に、既にある情報からニューロンとニューロンの結合強度(重み係数とも言う)を決定することを「学習」と呼ぶ場合がある。また、本明細書等において、学習によって得られた結合強度を用いてニューラルネットワークを構成し、そこから新たな結論を導くことを「推論」と呼ぶ場合がある。 In this specification and the like, when describing a neural network, determining the connection strength (also referred to as a weighting factor) between neurons from existing information may be referred to as “learning”. Further, in this specification and the like, there is a case where “inference” refers to constructing a neural network using the connection strength obtained by learning and deriving a new conclusion therefrom.
ニューラルネットワーク610は、入力層611、1つ以上の中間層612、及び出力層613を有する。入力層611には入力データが入力される。出力層613からは出力データが出力される。 The neural network 610 includes an input layer 611, one or more intermediate layers 612, and an output layer 613. Input data is input to the input layer 611. Output data is output from the output layer 613.
入力層611、中間層612、及び出力層613は、それぞれニューロン615を有する。ここでニューロン615は、積和演算を実現しうる回路素子(積和演算素子)を指す。図19(B)では、2つの層が有する2つのニューロン615間におけるデータの入出力方向を矢印で示している。 The input layer 611, the intermediate layer 612, and the output layer 613 each have a neuron 615. Here, the neuron 615 indicates a circuit element (product-sum operation element) capable of realizing product-sum operation. In FIG. 19B, the input / output direction of data between two neurons 615 included in two layers is indicated by arrows.
それぞれの層における演算処理は、前層が有するニューロン615の出力と重み係数との積和演算により実行される。例えば、入力層611の第i番目のニューロンの出力をxとし、出力xと次の中間層612の第jニューロンとの結合強度(重み係数)をwjiとすると、当該中間層の第jニューロンの出力はy=f(Σwji・x)である。なお、i、jは1以上の整数とする。ここで、f(x)は活性化関数でシグモイド関数、閾値関数などを用いることができる。以下同様に、各層のニューロン615の出力は、前段層のニューロン615の出力と重み係数の積和演算結果に活性化関数を演算した値となる。また、層と層との結合は、全てのニューロン同士が結合する全結合としてもよいし、一部のニューロン同士が結合する部分結合としてもよい。 Arithmetic processing in each layer is executed by a product-sum operation between the output of the neuron 615 included in the previous layer and the weight coefficient. For example, if the output of the i-th neuron of the input layer 611 is x i and the coupling strength (weighting coefficient) between the output x i and the j-th neuron of the next intermediate layer 612 is w ji , The output of the j neuron is y j = f (Σw ji · x i ). Note that i and j are integers of 1 or more. Here, f (x) is an activation function, and a sigmoid function, a threshold function, or the like can be used. Similarly, the output of the neuron 615 of each layer is a value obtained by calculating the activation function on the product-sum operation result of the output of the neuron 615 of the previous layer and the weight coefficient. The connection between layers may be a total connection in which all neurons are connected, or a partial connection in which some neurons are connected.
図19(B)では、3つの中間層612を有する例を示している。なお、中間層612の数はこれに限られず、1つ以上の中間層を有していればよい。また、1つの中間層612が有するニューロンの数も、仕様に応じて適宜変更すればよい。例えば1つの中間層612が有するニューロン615の数は、入力層611または出力層613が有するニューロン615の数よりも多くてもよいし、少なくてもよい。 FIG. 19B illustrates an example having three intermediate layers 612. Note that the number of the intermediate layers 612 is not limited to this, and it is only necessary to include one or more intermediate layers. In addition, the number of neurons included in one intermediate layer 612 may be changed as appropriate according to specifications. For example, the number of neurons 615 included in one intermediate layer 612 may be larger or smaller than the number of neurons 615 included in the input layer 611 or the output layer 613.
ニューロン615同士の結合強度の指標となる重み係数は、学習によって決定される。学習は、テレビジョン装置600が有するプロセッサにより実行してもよいが、専用サーバーやクラウドなどの演算処理能力の優れた計算機で実行することが好ましい。学習により決定された重み係数は、テーブルとして上記記憶部602に格納され、画像処理回路604により読み出されることにより使用される。また、当該テーブルは、必要に応じてコンピュータネットワークを介して更新することができる。 A weighting factor that is an index of the strength of connection between the neurons 615 is determined by learning. The learning may be executed by a processor included in the television apparatus 600, but is preferably executed by a computer having an excellent arithmetic processing capability such as a dedicated server or a cloud. The weighting coefficient determined by learning is stored in the storage unit 602 as a table and is used by being read out by the image processing circuit 604. The table can be updated via a computer network as necessary.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with any of the other embodiments as appropriate.
(実施の形態5)
本実施の形態では、本発明の一態様の電子機器について、図20を用いて説明する。
(Embodiment 5)
In this embodiment, electronic devices of one embodiment of the present invention will be described with reference to FIGS.
本実施の形態の電子機器は、表示部に本発明の一態様の表示装置を有する。したがって、高いコントラスト比が実現された電子機器である。また、高いコントラスト比と、大きな画面が両立された電子機器とすることができる。 The electronic device of this embodiment includes the display device of one embodiment of the present invention in the display portion. Therefore, the electronic device has a high contrast ratio. In addition, the electronic device can achieve both a high contrast ratio and a large screen.
本実施の形態の電子機器の表示部には、例えばフルハイビジョン、4K2K、8K4K、16K8K、またはそれ以上の解像度を有する映像を表示させることができる。また、表示部の画面サイズとしては、対角20インチ以上、対角30インチ以上、対角50インチ以上、対角60インチ以上、または対角70インチ以上とすることができる。また、表示部のフレーム周波数としては、60Hz以上または120Hz以上とすることができ、具体的には240Hzとしてもよい。また、表示部が表示する画像の階調は、8ビット以上または12ビット以上とすることができる。 For example, full high vision, 4K2K, 8K4K, 16K8K, or higher resolution video can be displayed on the display portion of the electronic device of this embodiment. The screen size of the display unit can be 20 inches or more diagonal, 30 inches or more, 50 inches or more, 60 inches or more, or 70 inches or more. The frame frequency of the display unit can be 60 Hz or higher or 120 Hz or higher, and specifically 240 Hz. Further, the gradation of the image displayed on the display unit can be 8 bits or more or 12 bits or more.
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。 Examples of electronic devices include relatively large screens such as television devices, desktop or notebook personal computers, monitors for computers, digital signage (digital signage), and large game machines such as pachinko machines. In addition to the electronic devices provided, a digital camera, a digital video camera, a digital photo frame, a mobile phone, a portable game machine, a portable information terminal, a sound reproduction device, and the like can be given.
本実施の形態の電子機器は、家屋もしくはビルの内壁もしくは外壁、または、自動車の内装もしくは外装の曲面に沿って組み込むことができる。 The electronic device of this embodiment can be incorporated along a curved surface of an inner wall or an outer wall of a house or a building, or an interior or exterior of an automobile.
本実施の形態の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。 The electronic device of this embodiment may include an antenna. By receiving a signal with an antenna, video, information, and the like can be displayed on the display unit. In the case where the electronic device has an antenna and a secondary battery, the antenna may be used for non-contact power transmission.
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。 The electronic device of this embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage. , Power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared measurement function).
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。 The electronic device of this embodiment can have various functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, a function for executing various software (programs), and wireless communication A function, a function of reading a program or data recorded on a recording medium, and the like can be provided.
図20(A)にテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。 FIG. 20A illustrates an example of a television set. In the television device 7100, a display portion 7000 is incorporated in a housing 7101. Here, a structure in which the housing 7101 is supported by a stand 7103 is shown.
表示部7000に、本発明の一態様の表示装置を適用することができる。 The display device of one embodiment of the present invention can be applied to the display portion 7000.
図20(A)に示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることで操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。 Operation of the television device 7100 illustrated in FIG. 20A can be performed with an operation switch included in the housing 7101 or a separate remote controller 7111. Alternatively, the display unit 7000 may be provided with a touch sensor, and may be operated by touching the display unit 7000 with a finger or the like. The remote controller 7111 may include a display unit that displays information output from the remote controller 7111. Channels and volume can be operated with an operation key or a touch panel included in the remote controller 7111, and an image displayed on the display portion 7000 can be operated.
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。 Note that the television device 7100 is provided with a receiver, a modem, and the like. A general television broadcast can be received by the receiver. In addition, by connecting to a wired or wireless communication network via a modem, information communication is performed in one direction (from the sender to the receiver) or in two directions (between the sender and the receiver or between the receivers). It is also possible.
図20(B)に、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。 FIG. 20B illustrates an example of a laptop personal computer. A laptop personal computer 7200 includes a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like. A display portion 7000 is incorporated in the housing 7211.
表示部7000に、本発明の一態様の表示装置を適用することができる。 The display device of one embodiment of the present invention can be applied to the display portion 7000.
図20(C)、(D)に、デジタルサイネージの一例を示す。 FIGS. 20C and 20D show examples of digital signage.
図20(C)に示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。 A digital signage 7300 illustrated in FIG. 20C includes a housing 7301, a display portion 7000, a speaker 7303, and the like. Furthermore, an LED lamp, operation keys (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like can be provided.
図20(D)は円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。 FIG. 20D illustrates a digital signage 7400 attached to a columnar column 7401. The digital signage 7400 includes a display portion 7000 provided along the curved surface of the column 7401.
図20(C)、(D)において、表示部7000に、本発明の一態様の表示装置を適用することができる。 20C and 20D, the display device of one embodiment of the present invention can be applied to the display portion 7000.
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。 The wider the display unit 7000, the more information can be provided at one time. In addition, the wider the display unit 7000, the more easily noticeable to the human eye. For example, the advertising effect can be enhanced.
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。 By applying a touch panel to the display unit 7000, not only an image or a moving image is displayed on the display unit 7000, but also a user can operate intuitively, which is preferable. In addition, when it is used for providing information such as route information or traffic information, usability can be improved by an intuitive operation.
また、図20(C)、(D)に示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。 20C and 20D, the digital signage 7300 or the digital signage 7400 can be linked with the information terminal 7311 or the information terminal 7411 such as a smartphone possessed by the user by wireless communication. Is preferred. For example, advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411. Further, the display on the display unit 7000 can be switched by operating the information terminal 7311 or the information terminal 7411.
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。 Further, the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation means (controller). Thereby, an unspecified number of users can participate and enjoy the game at the same time.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with any of the other embodiments as appropriate.
本実施例では、液晶パネルのV−T特性について、計算ソフトを用いて評価した結果について説明する。 In this embodiment, the results of evaluating the VT characteristics of a liquid crystal panel using calculation software will be described.
実施の形態2で説明した通り、液晶パネルは、電圧が変化しても階調ズレが生じにくいことが好ましい。その対策として、液晶素子における、電圧の変化量あたりの透過率の変化量を小さくすることが挙げられる。つまり、液晶素子におけるV−T特性の傾きを小さくすることが好ましい。 As described in Embodiment Mode 2, it is preferable that the liquid crystal panel is less likely to cause gradation shift even when the voltage changes. As a countermeasure, it is possible to reduce the change amount of transmittance per change amount of voltage in the liquid crystal element. That is, it is preferable to reduce the inclination of the VT characteristic in the liquid crystal element.
本実施例では、Shintech社製LCDMaster 2Dを用いて計算を行った。 In this example, calculation was performed using LCDMaster 2D manufactured by Shintech.
<評価1>
まず、液晶パネルの動作モードがFFSモード、液晶材料がポジ型である場合について評価した。
<Evaluation 1>
First, the case where the operation mode of the liquid crystal panel was the FFS mode and the liquid crystal material was a positive type was evaluated.
図18(B3)に示す電極41の幅Lを3μmとし、電極41のスリット幅(距離S)を4μmとした。なお、電極41と共通電極に挟持される絶縁層の厚さは、600nmとした。 The width L of the electrode 41 shown in FIG. 18B3 is 3 μm, and the slit width (distance S) of the electrode 41 is 4 μm. Note that the thickness of the insulating layer sandwiched between the electrode 41 and the common electrode was 600 nm.
図18(B3)に示す、配向膜のラビング方向と電界の方向とがなす角度θが、それぞれ、50°、60°、70°、80°の場合のV−T特性を計算により求めた。 VT characteristics obtained when the angles θ p formed by the rubbing direction of the alignment film and the direction of the electric field shown in FIG. 18B3 are 50 °, 60 °, 70 °, and 80 °, respectively, were calculated. .
図21に示すように、角度θが小さいほど、V−T特性の傾きは小さくなる傾向が確認された。また、角度θが小さすぎると、最大透過率が小さくなってしまうことが確認された。 As shown in FIG. 21, as the angle theta p is small, the slope of the V-T characteristic is reduced tendency was confirmed. Further, it was confirmed that the maximum transmittance is reduced when the angle θ p is too small.
<評価2>
次に、液晶パネルの動作モードがFFSモード、液晶材料がネガ型である場合について評価した。
<Evaluation 2>
Next, the case where the operation mode of the liquid crystal panel was the FFS mode and the liquid crystal material was a negative type was evaluated.
図18(C3)に示す電極41の幅Lを3μmとし、電極41のスリット幅(距離S)を4μmとした。なお、電極41と共通電極とに挟持される絶縁層の厚さは、600nmとした。 The width L of the electrode 41 shown in FIG. 18 (C3) was 3 μm, and the slit width (distance S) of the electrode 41 was 4 μm. Note that the thickness of the insulating layer sandwiched between the electrode 41 and the common electrode was 600 nm.
図18(C3)に示す、配向膜のラビング方向と電界の方向とがなす角度θが、それぞれ、10°、20°、30°、40°の場合のV−T特性を計算により求めた。 VT characteristics obtained when the angles θ n formed by the rubbing direction of the alignment film and the direction of the electric field shown in FIG. 18C3 are 10 °, 20 °, 30 °, and 40 °, respectively, were calculated. .
図22に示すように、角度θが大きいほど、V−T特性の傾きは小さくなる傾向が確認された。また、角度θが大きすぎると、最大透過率が小さくなってしまうことが確認された。 As shown in FIG. 22, as the angle theta n is large, the gradient of V-T characteristic is reduced tendency was confirmed. In addition, it was confirmed that the maximum transmittance is reduced when the angle θ n is too large.
<評価3>
次に、液晶パネルの動作モードがIPSモード、液晶材料がポジ型である場合について評価した。
<Evaluation 3>
Next, the case where the operation mode of the liquid crystal panel was an IPS mode and the liquid crystal material was a positive type was evaluated.
図18(B1)に示す電極41及び電極43の幅Lをそれぞれ3μmとし、電極41と電極43との間の距離Sを7μmとした。 The width L of the electrode 41 and the electrode 43 shown in FIG. 18B1 is 3 μm, and the distance S between the electrode 41 and the electrode 43 is 7 μm.
図18(B1)に示す、配向膜のラビング方向と電界の方向とがなす角度θが、それぞれ、50°、60°、70°、80°の場合のV−T特性を計算により求めた。 VT characteristics obtained when the angles θ p formed by the rubbing direction of the alignment film and the direction of the electric field shown in FIG. 18B1 are 50 °, 60 °, 70 °, and 80 °, respectively, were calculated. .
図23に示すように、角度θが小さいほど、V−T特性の傾きは小さくなる傾向が確認された。また、角度θが小さすぎると、最大透過率が小さくなってしまうことが確認された。 As shown in FIG. 23, as the angle theta p is small, the slope of the V-T characteristic is reduced tendency was confirmed. Further, it was confirmed that the maximum transmittance is reduced when the angle θ p is too small.
本実施例の結果から、V−T特性の傾き、駆動電圧、応答速度等を考慮し、配向膜のラビング方向と電界の方向とがなす角度の好ましい範囲を検討した。液晶材料がポジ型である場合、角度θは、50°より大きく80°未満が好ましく、60°以上80°未満がより好ましく、60°以上70°以下がさらに好ましい。液晶材料がネガ型である場合、角度θは、10°より大きく40°未満が好ましく、20°以上40°未満がより好ましく、20°以上30°以下がさらに好ましい。 From the results of this example, the preferable range of the angle formed by the rubbing direction of the alignment film and the direction of the electric field was examined in consideration of the slope of the VT characteristic, the driving voltage, the response speed, and the like. When the liquid crystal material is a positive type, the angle theta p is preferably less than 80 ° greater than 50 °, more preferably less than 60 ° or 80 °, more preferably 60 ° to 70 ° or less. When the liquid crystal material is a negative type, the angle θ n is preferably greater than 10 ° and less than 40 °, more preferably 20 ° or more and less than 40 °, and further preferably 20 ° or more and 30 ° or less.
10A  液晶パネル
10B  液晶パネル
10C  液晶パネル
10D  液晶パネル
10E  液晶パネル
10F  液晶パネル
10G  液晶パネル
10H  液晶パネル
11  基板
12  基板
13  トランジスタ
13a  トランジスタ
13b  トランジスタ
14  絶縁層
16  可撓性基板
20A  液晶パネル
20B  液晶パネル
20C  液晶パネル
20D  液晶パネル
20E  液晶パネル
20F  液晶パネル
20G  液晶パネル
20H  液晶パネル
21  基板
22  基板
23  トランジスタ
23a  トランジスタ
23b  トランジスタ
24  絶縁層
25  導電層
26  可撓性基板
27  絶縁層
29  接続体
30  バックライトユニット
35  光
38  遮光層
39  着色層
40  液晶素子
40a  液晶素子
40b  液晶素子
41  電極
41a  電極
41b  電極
42  液晶層
42m  液晶分子
43  電極
43a  電極
43b  電極
44  絶縁層
45  液晶素子
46  電極
47  液晶層
48  電極
50  液晶素子
51  電極
52  液晶層
53  電極
61  偏光板
62  偏光板
63  偏光板
71  電極
72  電極
73  電極
74  絶縁層
75  絶縁層
80A  液晶パネル
80B  液晶パネル
80C  液晶パネル
80D  液晶パネル
80E  液晶パネル
80F  液晶パネル
81a  接着層
81b  接着層
82a  絶縁層
82b  絶縁層
85A  液晶パネル
85B  液晶パネル
86A  液晶パネル
86B  液晶パネル
90A  液晶パネル
90B  液晶パネル
90C  液晶パネル
90D  液晶パネル
90E  液晶パネル
90F  液晶パネル
100A  表示装置
100B  表示装置
100C  表示装置
100D  表示装置
100E  表示装置
100F  表示装置
100G  表示装置
100H  表示装置
110A  タッチパネル
110B  タッチパネル
111A  液晶パネル
111B  液晶パネル
112A  液晶パネル
112B  液晶パネル
121  オーバーコート
133a  配向膜
133b  配向膜
133c  配向膜
133d  配向膜
141a  接着層
141b  接着層
162  表示部
164  駆動回路部
172a  FPC
172b  FPC
200A  表示装置
200B  表示装置
200C  表示装置
200D  表示装置
200E  表示装置
200F  表示装置
201a  トランジスタ
201b  トランジスタ
201c  トランジスタ
201d  トランジスタ
210A  タッチパネル
210B  タッチパネル
211  絶縁層
212  絶縁層
213  絶縁層
215  絶縁層
217  絶縁層
218  絶縁層
221  導電層
222a  導電層
222b  導電層
222c  配線
223  導電層
225  絶縁層
231  半導体層
232  不純物半導体層
242a  接続体
242b  接続体
251  導電層
600  テレビジョン装置
601  制御部
602  記憶部
603  通信制御部
604  画像処理回路
605  デコーダ回路
606  映像信号受信部
607  タイミングコントローラ
608  ソースドライバ
609  ゲートドライバ
610  ニューラルネットワーク
611  入力層
612  中間層
613  出力層
615  ニューロン
620  表示パネル
621  画素
630  システムバス
647  タイミングコントローラ
648  ソースドライバ
649  ゲートドライバ
650  調光パネル
651  画素
7000  表示部
7100  テレビジョン装置
7101  筐体
7103  スタンド
7111  リモコン操作機
7200  ノート型パーソナルコンピュータ
7211  筐体
7212  キーボード
7213  ポインティングデバイス
7214  外部接続ポート
7300  デジタルサイネージ
7301  筐体
7303  スピーカ
7311  情報端末機
7400  デジタルサイネージ
7401  柱
7411  情報端末機
10A liquid crystal panel 10B liquid crystal panel 10C liquid crystal panel 10D liquid crystal panel 10E liquid crystal panel 10F liquid crystal panel 10G liquid crystal panel 10H liquid crystal panel 11 substrate 12 substrate 13 transistor 13a transistor 13b transistor 14 insulating layer 16 flexible substrate 20A liquid crystal panel 20B liquid crystal panel 20C liquid crystal Panel 20D Liquid crystal panel 20E Liquid crystal panel 20F Liquid crystal panel 20G Liquid crystal panel 20H Liquid crystal panel 21 Substrate 22 Substrate 22 Substrate 23 Transistor 23a Transistor 23b Transistor 24 Insulating layer 25 Conductive layer 26 Flexible substrate 27 Insulating layer 29 Connector 30 Backlight unit 35 Light 38 Light shielding layer 39 Colored layer 40 Liquid crystal element 40a Liquid crystal element 40b Liquid crystal element 41 Electrode 41a Electrode 41b Electrode 42 Liquid crystal layer 42m Liquid Molecule 43 electrode 43a electrode 43b electrode 44 insulating layer 45 liquid crystal element 46 electrode 47 liquid crystal layer 48 electrode 50 liquid crystal element 51 electrode 52 liquid crystal layer 53 electrode 61 polarizing plate 62 polarizing plate 63 polarizing plate 71 electrode 72 electrode 73 electrode 74 insulating layer 75 insulating Layer 80A liquid crystal panel 80B liquid crystal panel 80C liquid crystal panel 80D liquid crystal panel 80E liquid crystal panel 80F liquid crystal panel 81a adhesive layer 81b adhesive layer 82a insulating layer 82b liquid crystal panel 85B liquid crystal panel 86A liquid crystal panel 86B liquid crystal panel 90A liquid crystal panel 90B liquid crystal panel 90C Liquid crystal panel 90D Liquid crystal panel 90E Liquid crystal panel 90F Liquid crystal panel 100A Display device 100B Display device 100C Display device 100D Display device 100E Display device 100F Display device 100G Table Apparatus 100H display device 110A touch panel 110B panel 111A crystal panel 111B crystal panel 112A crystal panel 112B crystal panel 121 overcoat 133a alignment film 133b alignment film 133c alignment film 133d alignment film 141a adhesive layer 141b adhesive layer 162 display unit 164 the driver circuit portion 172a FPC
172b FPC
200A display device 200B display device 200C display device 200D display device 200E display device 200F display device 201a transistor 201b transistor 201c transistor 201d transistor 210A touch panel 210B touch panel 211 insulating layer 212 insulating layer 213 insulating layer 215 insulating layer 217 insulating layer 218 insulating layer 221 conductive Layer 222a conductive layer 222b conductive layer 222c wiring 223 conductive layer 225 insulating layer 231 semiconductor layer 232 impurity semiconductor layer 242a connector 242b connector 251 conductive layer 600 television device 601 controller 602 storage 603 communication controller 604 image processing circuit 605 Decoder circuit 606 Video signal receiver 607 Timing controller 608 Source driver 609 Gate Driver 610 Neural network 611 Input layer 612 Intermediate layer 613 Output layer 615 Neuron 620 Display panel 621 Pixel 630 System bus 647 Timing controller 648 Source driver 649 Gate driver 650 Dimming panel 651 Pixel 7000 Display unit 7100 Television apparatus 7101 Housing 7103 Stand 7111 Remote controller 7200 Notebook personal computer 7211 Case 7212 Keyboard 7213 Pointing device 7214 External connection port 7300 Digital signage 7301 Case 7303 Speaker 7311 Information terminal 7400 Digital signage 7401 Pillar 7411 Information terminal

Claims (15)

  1.  第1の液晶パネル、第2の液晶パネル、第1の偏光板、第2の偏光板、及び第3の偏光板を有し、
     前記第1の液晶パネルは、前記第1の偏光板と前記第2の偏光板の間に位置し、
     前記第2の液晶パネルは、前記第2の偏光板と前記第3の偏光板の間に位置し、
     前記第2の液晶パネルには、前記第1の液晶パネルを透過した光が、前記第2の偏光板を介して入射し、
     前記第2の液晶パネルは、前記光を選択的に透過することで、画像を表示し、
     前記第1の液晶パネルと前記第2の液晶パネルとは、互いに異なるモードで動作し、
     前記第1の偏光板と前記第2の偏光板とは、第1の方向の偏光軸を有し、
     前記第3の偏光板は、前記第1の方向と交差する第2の方向の偏光軸を有する、表示装置。
    Having a first liquid crystal panel, a second liquid crystal panel, a first polarizing plate, a second polarizing plate, and a third polarizing plate;
    The first liquid crystal panel is located between the first polarizing plate and the second polarizing plate,
    The second liquid crystal panel is located between the second polarizing plate and the third polarizing plate,
    The light transmitted through the first liquid crystal panel is incident on the second liquid crystal panel through the second polarizing plate,
    The second liquid crystal panel displays an image by selectively transmitting the light,
    The first liquid crystal panel and the second liquid crystal panel operate in different modes,
    The first polarizing plate and the second polarizing plate have a polarization axis in a first direction,
    The display device, wherein the third polarizing plate has a polarization axis in a second direction intersecting the first direction.
  2.  請求項1において、
     前記第1の液晶パネルは、TNモードで動作し、
     前記第2の液晶パネルは、IPSモードまたはFFSモードで動作する、表示装置。
    In claim 1,
    The first liquid crystal panel operates in a TN mode,
    The display device in which the second liquid crystal panel operates in an IPS mode or an FFS mode.
  3.  請求項1または2において、
     前記第2の液晶パネルは、タッチセンサの機能を有する、表示装置。
    In claim 1 or 2,
    The second liquid crystal panel is a display device having a touch sensor function.
  4.  請求項1または2において、
     前記第1の液晶パネルは、第1の基板及び第2の基板を有し、
     前記第2の液晶パネルは、第3の基板及び第4の基板を有し、
     前記第2の偏光板は、前記第2の基板と前記第3の基板との間に位置し、
     前記第2の基板は、前記第1の基板よりも、前記第2の液晶パネル側に位置し、
     前記第3の基板は、前記第4の基板よりも、前記第1の液晶パネル側に位置し、
     前記第2の基板の厚さは、前記第1の基板の厚さよりも薄く、
     前記第3の基板の厚さは、前記第4の基板の厚さよりも薄い、表示装置。
    In claim 1 or 2,
    The first liquid crystal panel has a first substrate and a second substrate,
    The second liquid crystal panel has a third substrate and a fourth substrate,
    The second polarizing plate is located between the second substrate and the third substrate,
    The second substrate is located closer to the second liquid crystal panel than the first substrate,
    The third substrate is located closer to the first liquid crystal panel than the fourth substrate,
    The thickness of the second substrate is thinner than the thickness of the first substrate,
    The display device, wherein a thickness of the third substrate is thinner than a thickness of the fourth substrate.
  5.  請求項4において、
     前記第2の基板及び前記第3の基板は、それぞれ、樹脂を有する、表示装置。
    In claim 4,
    Each of the second substrate and the third substrate includes a resin.
  6.  請求項1または2において、
     前記第2の液晶パネルは、一対の配向膜の間に液晶層を有し、
     前記液晶層は、誘電異方性が正である液晶材料を有し、
     前記一対の配向膜の少なくとも一方のラビング方向と電界の方向とがなす角度は、50°より大きく80°未満である、表示装置。
    In claim 1 or 2,
    The second liquid crystal panel has a liquid crystal layer between a pair of alignment films,
    The liquid crystal layer has a liquid crystal material having positive dielectric anisotropy,
    The display device, wherein an angle formed by at least one rubbing direction of the pair of alignment films and an electric field direction is greater than 50 ° and less than 80 °.
  7.  請求項1または2において、
     前記第2の液晶パネルは、一対の配向膜の間に液晶層を有し、
     前記液晶層は、誘電異方性が負である液晶材料を有し、
     前記一対の配向膜の少なくとも一方のラビング方向と電界の方向とがなす角度は、10°より大きく40°未満である、表示装置。
    In claim 1 or 2,
    The second liquid crystal panel has a liquid crystal layer between a pair of alignment films,
    The liquid crystal layer has a liquid crystal material having negative dielectric anisotropy,
    The display device, wherein an angle formed by at least one rubbing direction of the pair of alignment films and an electric field direction is greater than 10 ° and less than 40 °.
  8.  請求項1または2において、
     前記表示装置のコントラスト比は、100000:1以上である、表示装置。
    In claim 1 or 2,
    The display device has a contrast ratio of 100,000: 1 or more.
  9.  請求項1または2において、
     前記第2の液晶パネルは、4K以上の解像度を有する、表示装置。
    In claim 1 or 2,
    The second liquid crystal panel is a display device having a resolution of 4K or more.
  10.  請求項1または2において、
     前記第2の液晶パネルは、12ビット以上のカラーを表示する機能を有する、表示装置。
    In claim 1 or 2,
    The second liquid crystal panel is a display device having a function of displaying a color of 12 bits or more.
  11.  請求項1または2において、
     前記第2の液晶パネルのフレーム周波数は、120Hz以上である、表示装置。
    In claim 1 or 2,
    The display device, wherein a frame frequency of the second liquid crystal panel is 120 Hz or more.
  12.  請求項1または2において、
     前記第2の液晶パネルは、アクティブマトリクス型であり、
     前記第2の液晶パネルは、液晶素子とトランジスタとを有し、
     前記トランジスタは、前記液晶素子と電気的に接続され、
     前記トランジスタのチャネル形成領域は、金属酸化物を有する、表示装置。
    In claim 1 or 2,
    The second liquid crystal panel is an active matrix type,
    The second liquid crystal panel has a liquid crystal element and a transistor,
    The transistor is electrically connected to the liquid crystal element;
    The display device in which a channel formation region of the transistor includes a metal oxide.
  13.  請求項1または2において、
     前記第2の液晶パネルは、アクティブマトリクス型であり、
     前記第2の液晶パネルは、液晶素子とトランジスタとを有し、
     前記トランジスタは、前記液晶素子と電気的に接続され、
     前記トランジスタのチャネル形成領域は、水素化アモルファスシリコンを有する、表示装置。
    In claim 1 or 2,
    The second liquid crystal panel is an active matrix type,
    The second liquid crystal panel has a liquid crystal element and a transistor,
    The transistor is electrically connected to the liquid crystal element;
    The display device, wherein a channel formation region of the transistor includes hydrogenated amorphous silicon.
  14.  請求項1または2に記載の表示装置と、
     回路基板と、を有する表示モジュール。
    A display device according to claim 1 or 2,
    A display module.
  15.  請求項14に記載の表示モジュールと、
     アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、または操作ボタンの少なくともいずれか一と、を有する、電子機器。
    A display module according to claim 14;
    An electronic device having at least one of an antenna, a battery, a housing, a camera, a speaker, a microphone, and an operation button.
PCT/IB2018/051757 2017-03-27 2018-03-16 Display device, display module, and electronic apparatus WO2018178795A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-060455 2017-03-27
JP2017060455 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018178795A1 true WO2018178795A1 (en) 2018-10-04

Family

ID=63675374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/051757 WO2018178795A1 (en) 2017-03-27 2018-03-16 Display device, display module, and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2018178795A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075812A (en) * 2020-07-27 2021-07-06 友达光电股份有限公司 Display device
WO2022083312A1 (en) * 2020-10-19 2022-04-28 京东方科技集团股份有限公司 Display module and manufacturing method therefor, and display device
US20230339297A1 (en) * 2019-12-23 2023-10-26 Oviation B.V. Transparent sun visor for vehicles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221288A (en) * 1999-01-29 2000-08-11 Citizen Watch Co Ltd Time piece
JP2001330842A (en) * 2000-05-19 2001-11-30 Nec Corp Active matrix type liquid crystal display device
JP2003322867A (en) * 2002-05-08 2003-11-14 Hitachi Ltd Active matrix type liquid crystal display
JP2004070069A (en) * 2002-08-07 2004-03-04 Ricoh Co Ltd Manufacturing method of laminated substrate, and manufacturing method of laminated liquid crystal display element
WO2007040127A1 (en) * 2005-09-30 2007-04-12 Sharp Kabushiki Kaisha Liquid crystal display and television receiver
JP2008282051A (en) * 2004-02-26 2008-11-20 Seiko Epson Corp Liquid crystal display device and electronic equipment
JP2010113269A (en) * 2008-11-10 2010-05-20 Nec Lcd Technologies Ltd Liquid crystal display, liquid crystal display controller, electronic equipment and method of driving liquid crystal display
US20150310810A1 (en) * 2013-12-31 2015-10-29 Shenzhen China Star Optoelectronics Technology Co., Ltd. Display assembly and lcd device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221288A (en) * 1999-01-29 2000-08-11 Citizen Watch Co Ltd Time piece
JP2001330842A (en) * 2000-05-19 2001-11-30 Nec Corp Active matrix type liquid crystal display device
JP2003322867A (en) * 2002-05-08 2003-11-14 Hitachi Ltd Active matrix type liquid crystal display
JP2004070069A (en) * 2002-08-07 2004-03-04 Ricoh Co Ltd Manufacturing method of laminated substrate, and manufacturing method of laminated liquid crystal display element
JP2008282051A (en) * 2004-02-26 2008-11-20 Seiko Epson Corp Liquid crystal display device and electronic equipment
WO2007040127A1 (en) * 2005-09-30 2007-04-12 Sharp Kabushiki Kaisha Liquid crystal display and television receiver
JP2010113269A (en) * 2008-11-10 2010-05-20 Nec Lcd Technologies Ltd Liquid crystal display, liquid crystal display controller, electronic equipment and method of driving liquid crystal display
US20150310810A1 (en) * 2013-12-31 2015-10-29 Shenzhen China Star Optoelectronics Technology Co., Ltd. Display assembly and lcd device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230339297A1 (en) * 2019-12-23 2023-10-26 Oviation B.V. Transparent sun visor for vehicles
CN113075812A (en) * 2020-07-27 2021-07-06 友达光电股份有限公司 Display device
US11231613B1 (en) * 2020-07-27 2022-01-25 Au Optronics Corporation Display apparatus
WO2022083312A1 (en) * 2020-10-19 2022-04-28 京东方科技集团股份有限公司 Display module and manufacturing method therefor, and display device

Similar Documents

Publication Publication Date Title
KR102643613B1 (en) Display device, display module, and electronic device
US10241373B2 (en) Display device comprising first and second transistors wherein gates of the first and second transistors are supplied with a same selection signal
US11803089B2 (en) Display device
TW201826353A (en) Display device, display module, and electronic device
US20180182355A1 (en) Display device and display method
WO2018178795A1 (en) Display device, display module, and electronic apparatus
WO2019135147A1 (en) Display device, display module, and electronic apparatus
CN110226219B (en) Semiconductor device and method for manufacturing semiconductor device
JP2022103303A (en) Display, and electronic apparatus
WO2019186332A1 (en) Display device operation method
JP6925819B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP