WO2018177412A1 - 一种天线控制系统、方法及移动终端 - Google Patents
一种天线控制系统、方法及移动终端 Download PDFInfo
- Publication number
- WO2018177412A1 WO2018177412A1 PCT/CN2018/081334 CN2018081334W WO2018177412A1 WO 2018177412 A1 WO2018177412 A1 WO 2018177412A1 CN 2018081334 W CN2018081334 W CN 2018081334W WO 2018177412 A1 WO2018177412 A1 WO 2018177412A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- antenna portion
- tuning
- switch
- working
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/521—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
- H01Q1/523—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/10—Resonant antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/314—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
- H01Q5/328—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0442—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/005—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/026—Details of the structure or mounting of specific components
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/72—Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
- H04M1/724—User interfaces specially adapted for cordless or mobile telephones
- H04M1/72403—User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/72—Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
- H04M1/724—User interfaces specially adapted for cordless or mobile telephones
- H04M1/72448—User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
Definitions
- the present disclosure relates to the field of communications, and in particular to an antenna control system, method, and mobile terminal.
- a monopole, an inverted F-shaped antenna (IFA), a loop antenna (LOOP), etc. are commonly used, and an antenna feed is provided. It is often placed in the left or right corner of the mobile terminal, which is the design of the single resonant arm antenna.
- the single resonant arm antenna resonates to a single branch on the left or right side, the antenna energy is too concentrated on the branch, so that the electric field strengths on the left and right sides of the mobile terminal are greatly different, and the absorption of the antenna branch on the side of the head hand is absorbed. The loss will increase significantly, resulting in a large difference in the performance of the head or the hand.
- an improvement scheme is proposed for a conventional antenna scheme, in which the antenna of the mobile terminal has two antenna branches distributed on both sides of the mobile terminal, and the antenna is short-circuited by the switch actively switching, that is, the antenna is changed.
- the end position allows the antenna energy to concentrate on the other antenna branch to improve left and right head performance.
- the above improvement solution needs to be based on the actual use scenario of the mobile terminal, such as the left-handed scene or the right-handed scene, to perform targeted switching of the left and right antennas, that is, the detection or judgment of the use scene is required, so there is a left and right
- the antenna switching is not sensitive or the problem of poor adaptability.
- the embodiments of the present disclosure provide an antenna control system, method, and mobile terminal to solve or partially solve the problem that the above-mentioned mobile terminal antenna is insensitive or poorly adaptable when improving left and right head performance.
- an embodiment of the present disclosure provides an antenna control system, where the system includes: an antenna, a control module; the antenna includes: a symmetrically distributed first antenna portion and a second antenna portion; and the first antenna portion And the second antenna portion has a plurality of working states respectively corresponding to the plurality of working resonance frequencies; the control module includes: an antenna working state acquiring submodule, configured to acquire a first working state of the first antenna portion; and control a submodule, configured to adjust a second working state of the second antenna portion according to the first working state, such that a difference between a working resonant frequency of the first antenna portion and an operating resonant frequency of the second antenna portion The value is less than the set threshold.
- an embodiment of the present disclosure provides an antenna control method, where the antenna includes: a symmetrically distributed first antenna portion and a second antenna portion; and the first antenna portion and the second antenna portion respectively have a plurality of The working state corresponds to a plurality of working resonance frequencies; the method includes: acquiring a first working state of the first antenna portion; and adjusting a second working state of the second antenna portion according to the first working state The difference between the operating resonant frequency of the first antenna portion and the operating resonant frequency of the second antenna portion is made less than a set threshold.
- an embodiment of the present disclosure further provides a mobile terminal, including the antenna control system of any of the above.
- the symmetrically distributed first antenna portion and the second antenna portion operate simultaneously, and the working resonance frequencies are close to or equal, so that the antenna energy is more evenly distributed on both sides of the antenna without being based on the mobile terminal.
- the actual use scene is used to switch between left and right antennas, which avoids the problem that the antenna of the mobile terminal is insensitive or poorly adaptable when improving the performance of the left and right heads, and achieves the technical effect of balancing the left and right head functions of the antenna.
- 1 is a schematic diagram of a common inverted-F antenna of a mobile terminal
- FIG. 2 is a schematic structural diagram of an antenna control system in some optional embodiments of the present disclosure.
- FIG. 3 is a schematic structural diagram of an antenna control system in some optional embodiments of the present disclosure.
- FIG. 4 is a schematic diagram of tuning of a first antenna in an antenna control system in some alternative embodiments of the present disclosure
- FIG. 5 is a flow chart showing the steps of an antenna control method in some alternative embodiments of the present disclosure.
- FIG. 6 is a flow chart showing the steps of an antenna control method in some alternative embodiments of the present disclosure.
- FIG. 7 is a block diagram of a mobile terminal in some alternative embodiments of the present disclosure.
- FIG. 8 is a block diagram of a mobile terminal in some alternative embodiments of the present disclosure.
- FIG. 9 is a schematic structural diagram of a mobile terminal in some optional embodiments of the present disclosure.
- the inventors have found in a large number of practices that when two antenna branches having the same or similar working resonance frequency are distributed on the left and right sides of the mobile terminal, the two antenna branches can effectively disperse the antenna energy, so that the electric field strengths on the left and right sides are more uniform.
- One of the core concepts of the embodiments of the present disclosure is that the first antenna portion and the second antenna portion symmetrically distributed on the left and right sides of the mobile terminal simultaneously work, and the working resonance frequency is close to each other. Or equal, so that the antenna energy is more evenly distributed on the left and right sides of the mobile terminal, without performing left and right antenna switching according to the actual use scenario of the mobile terminal.
- FIG. 2 a schematic structural diagram of an antenna control system according to an embodiment of the present disclosure is shown, which may specifically include: an antenna 1 and a control module 2; the antenna 1 may specifically include: a symmetrically distributed first antenna portion 11 and The second antenna portion 12; the first antenna portion 11 and the second antenna portion 12 respectively have a plurality of operating states corresponding to a plurality of operating resonant frequencies.
- the control module 2 may include: an antenna working state acquiring sub-module 21, configured to acquire a first working state of the first antenna portion 11, and a control sub-module 22, configured to adjust the second antenna according to the first working state.
- the second operational state of portion 12 is such that the difference between the operational resonant frequency of said first antenna portion 11 and the operational resonant frequency of said second antenna portion 12 is less than a set threshold.
- the antenna 1 is connected to the feeder 3 and receives the RF signal of the feeder 3; and the first antenna portion 11 and the second antenna portion 12 are respectively connected to the motherboard 4.
- the feed line 3 is composed of an antenna feed and an antenna matching circuit connected in series, and the antenna matching circuit is used to match the RF signal of the antenna feed to different working resonance frequencies of the antenna.
- the radio frequency signal of the feed line 3 can be transmitted through the first antenna portion 11 and the second antenna portion 12; similarly, signals can be received through the first antenna portion 11 and the second antenna portion 12.
- the first antenna portion 11 and the second antenna portion 12 may be symmetrically distributed on the left and right sides of the mobile terminal, for example, the first antenna portion 11 is located on the left side of the mobile terminal, The second antenna portion 12 is located on the right side of the corresponding symmetry of the mobile terminal; vice versa. It can be understood that the above symmetry is not an absolute symmetry in the exponential sense, but merely represents a relative position and does not require strict symmetry.
- the control module 2 may be connected to the first antenna portion 11 and the second antenna portion 12 or may be connected by a signal.
- the antenna working state acquiring sub-module 21 of the control module 2 can obtain the working state of the first antenna portion 11 or the second antenna portion 12 and the corresponding working resonant frequency by transmitting signals, for example, the signal during the working state transition can be obtained. , or a signal when in working condition, or other means.
- the control sub-module 22 can adjust the second working state of the second antenna portion 12 according to the first working state, so that the working resonant frequency of the first antenna portion 11 and the working resonant frequency of the second antenna portion 12 are The difference between the difference is less than the set threshold; and the antenna working state obtaining sub-module 21 can also obtain the second working state of the second antenna portion 12, if the second working state corresponds to the first working state, that is, the second If the difference between the current working resonant frequency of the antenna portion 12 and the current operating resonant frequency of the first antenna portion 11 is less than the set threshold, the control sub-module may not switch the working state of the second antenna portion 12.
- the adjustment of the first working state or the second working state may be performed in various manners to change the working resonant frequency of the first antenna portion 11 or the second antenna portion 12, for example, by adjusting the foregoing
- the antenna length of the antenna portion 11 or the second antenna portion 12, that is, the length of the corresponding resonant arm, respectively, adjusts the corresponding working resonant frequency; and the first antenna portion 11 or the second antenna portion 12 can also be adjusted.
- the connection mode with the feeder such as a direct connection or a slot coupling connection; and the connection manner of the first antenna portion 11 or the second antenna portion 12 to the main board ground, such as an open circuit, a path, a slot coupling, and a different circuit.
- the difference between the operational resonance frequency of the first antenna portion 11 and the operational resonance frequency of the second antenna portion 12 is smaller than a set threshold, such that the operation resonance frequency of the first antenna portion 11 and the above
- the working resonance frequencies of the second antenna portion 12 are close to or equal, so that the antenna energy distribution is more evenly distributed in the two antenna portions, and the closer the operating resonance frequency is, the more uniform the distribution is. Therefore, other restrictions may be employed.
- the operational resonance frequency f1 of the first antenna portion 11 and the operational resonance frequency f2 of the second antenna portion 12 satisfy 0.7f1 ⁇ f2 ⁇ 1.3f1, in short, as long as it can
- the operational resonance frequency of the first antenna portion 11 and the operational resonance frequency of the second antenna portion 12 are close or equal are within the scope of the embodiments of the present disclosure.
- first antenna portion 11 or the second antenna portion 12 may be flexible, and may be a monopole antenna, an inverted F antenna, a loop antenna, or a planar inverted F antenna (Planar Inverted F-shaped).
- Antenna, PIFA, etc. may also be a multi-resonant structure such as a G-type or an F-type.
- a part of the metal frame between the first fracture and the second fracture may be adopted as the antenna 1 , and the feeder of the mobile terminal is connected to In the partial metal frame segment, the partial metal frame is connected to the main board ground; wherein the first portion of the metal frame between the first break and the feed line of the mobile terminal is used as the first antenna portion 11, and the remaining second break and A second portion of the metal frame between the feed lines of the mobile terminal is used as the second antenna portion 12.
- the first metal cover may be used as the first antenna 1, and the feed line of the mobile terminal is connected to the middle portion of the first metal cover, a second metal cover is connected to the main board ground, and a gap is disposed between the first metal back cover and the second metal back cover; wherein the first metal cover portions on the left and right sides of the feed line respectively serve as the first antenna portion 11 and the second antenna portion 12 described above.
- the specific embodiments described above are only for the purpose of describing the technical solutions of the embodiments of the present disclosure in detail. The embodiments of the embodiments of the present disclosure are not limited to the foregoing embodiments, and are not limited thereto.
- the symmetrically distributed first antenna portion and the second antenna portion work simultaneously, and the working resonance frequencies are close to or equal, so that the antenna energy is more evenly distributed on both sides of the antenna without moving according to the movement.
- the actual use scenario of the terminal performs left and right antenna switching, which avoids the problem that the mobile terminal antenna is insensitive or poorly adaptable when improving the left and right head performance, and achieves the technical effect of balancing the left and right head functions of the antenna.
- FIG. 3 a schematic structural diagram of an antenna control system according to an embodiment of the present disclosure is shown, which may specifically include an antenna 1 and a control module 2.
- the antenna 1 may specifically include: a symmetrically distributed first antenna portion 11 and a second antenna portion 12; the first antenna portion 11 and the second antenna portion 12 respectively have a plurality of working states corresponding to a plurality of working resonant frequencies;
- the first antenna portion 11 is composed of a first antenna 111, a first switch 112, and a first multi-way tuning circuit 113;
- the second antenna portion 12 is composed of a second antenna 121, a second switch 122, and a second multi-channel tuning circuit 123.
- the first multi-way tuning circuit 113 and the second multi-way tuning circuit 123 are respectively composed of a plurality of tuning branches in parallel.
- the foregoing control module 2 may specifically include an antenna working state acquiring submodule 21 and a control submodule 22.
- the antenna working state acquiring sub-module 21 may include: a first identifier acquiring unit 211, configured to acquire a first identifier of the tuning branch connected to the first switch 112 in the first multi-way tuning circuit 113; the controller
- the module 22 may specifically include: a second identifier acquiring unit 221, configured to obtain, according to the first identifier and the preset correspondence, a second tuner branch in the second multipath tuning circuit 123 corresponding to the first identifier
- the switch control unit 222 is configured to control the second switch 122 to communicate with the tuning branch corresponding to the second identifier in the second multiplexing circuit 123.
- the antenna 1 is connected to the feeder 3 and receives the radio frequency signal of the feeder 3; and the first antenna portion 11 and the second antenna portion 12 are respectively connected to the main board ground 4.
- the feed line 3 is composed of an antenna feed 31 and an antenna matching circuit 32 connected in series.
- the antenna matching circuit 32 is used to match the RF signal of the antenna feed 31 to different operating resonance frequencies of the antenna.
- the first multi-way tuning circuit 113 is composed of a tuning branch T1, a tuning branch T2, a tuning branch T3, and the like. One end of each tuning branch is respectively connected to the main board ground 4, and the other end is suspended or The switching end of the first switch 112 is connected; similarly, the second multiplexing circuit 123 is composed of a tuning branch T4, a tuning branch T5, a tuning branch T6, etc.; one end of each tuning branch is connected to the main board 4 The other end is suspended or connected to the switching end of the second switch 122.
- the first antenna 111 and the second antenna 121 may respectively be regarded as two symmetric arms of the antenna 1 symmetrically distributed, but the working resonant frequency of the first antenna portion 111 is first.
- the tuning branch of the antenna 111, the first switch 112, and the first multi-way tuning circuit 113 that is in communication with the first switch 112 is related, wherein the length of the first antenna 111, and the first multi-way tuning circuit 113 described above
- the electrical characteristics of the tuning branch in communication with the first switch 112 have a large effect on the above-mentioned operating resonant frequency, and the specific correlation can be determined experimentally or theoretically.
- the first switch 111 can be adjusted to adjust the electrical characteristics of the tuning branch of the corresponding first multi-way tuning circuit 113 that is in communication with the first switch 112 because of different tuning.
- the electrical characteristics of the branch are different.
- the electrical characteristics of the tuning branch can be equivalent to an inductance of 5nH (n is 10 -9 , H is the inductance unit) or 1.2pF (p is 10 -12 , F is the capacitance unit)
- the capacitance or the like is equivalent to adjusting the operating state of the first antenna portion 11 and the corresponding operating resonant frequency.
- the second antenna portion reference may be made to the above description of the first antenna portion.
- the first switch 112 when the antenna 1 is in operation, the first switch 112 must be in communication with a certain tuning branch of the first multi-way tuning circuit 113, and only communicate with one tuning branch; likewise, the second switch 122 is inevitable. It is in communication with a certain tuning branch of the second multi-way tuning circuit 123 and is only in communication with one tuning branch.
- the multi-way tuning branch of the first multi-way tuning circuit 113 there is a preset correspondence between the multi-way tuning branch of the first multi-way tuning circuit 113 and the multi-tuning branch of the second multi-way tuning circuit 123; in the first multi-way tuning circuit 113
- the tuning branch of the second multiplexing circuit 123 having the predetermined correspondence relationship is in communication with the second switch 122, the operating resonant frequency of the first antenna portion 11
- the difference from the operational resonance frequency of the second antenna portion 12 described above is less than a set threshold.
- the communication state of the first switch 112 and the second switch 122 may be respectively adjusted, that is, respectively connected to a certain tuning branch of the corresponding multi-way tuning circuit.
- the operation resonance frequency of the first antenna portion 11 and the second antenna portion can be ensured as long as there is a preset correspondence between the tuning branch that is connected to the first switch 112 and the second branch 122.
- the difference in the working resonance frequency of 12 is less than the set threshold.
- the above preset correspondence can be obtained at least by experimental measurement. For example, for the first antenna portion 11 that has been fixed, at least the length of the first antenna 111 and the electrical characteristics of the respective tuning branches of the first multi-way tuning circuit 113 are already fixed, then for each of the above-mentioned tuning branches For the tuning branch A, when the first switch 112 communicates with the tuning branch A, the operating resonant frequency of the first antenna portion 11 is fixed. Assuming that the length of the second antenna 121 is also fixed, it can be experimentally determined, for example, the second switch is connected to the tuning branch B of the second multi-way tuning circuit 123, if the experimental operation of the first antenna portion 11 is performed at this time.
- the tuning branch of the first multiplexing circuit 113 and the tuning branch of the second multiplexing circuit 123 are present.
- the updated tuning branch B is used as the tuning branch of the second multi-way tuning circuit 123 that has been designed, and the first multi-channel tuning is performed.
- Jia branched tuning circuit 113 and said tuning branch of the second multiplexer 123 of the tuning circuit the presence of the preset correspondence relationship acetate.
- the preset correspondence may be summarized as a correspondence between a tuning branch that is connected to the first switch 112 and a tuning branch that is connected to the second switch 122, or a connected state of the first switch 112 and the second switch 122.
- the connected state, or other means, actually corresponds to the corresponding relationship of the connected tuning branches.
- the length of the first antenna 111 is 50 mm
- the first multi-way tuning circuit 113 is composed of four tuning branches
- the electrical characteristics of the four-way tuning branch are 82nH, 18nH, respectively.
- the first antenna portion 11 can resonate with LB1 (0.7G to 0.746GHz), LB2 (0.824G to 0.96GHz), MB (1.71G to 2.17GHz), and HB (2.3G to 2.69GHz);
- the second antenna 121 has a length of 35 mm
- the second multi-channel tuning circuit 123 is composed of four tuning branches.
- the electrical characteristics of the four tuning branches are 1.2 pf, 47 nH, 6 nH, and 3 nH, respectively, and can resonate with LB1 (0.7).
- the four-way tuning branch of the first multi-way tuning circuit 113 and the four-way tuning branch of the second multi-way tuning circuit 123 have a one-to-one correspondence in the order of the respective electrical characteristics, and have a preset correspondence relationship; for example, when the first switch 112 is connected to the above-mentioned 2nH tuning branch of the first multi-way tuning circuit 113, and the second switch 122 is connected to the above-mentioned 3nH tuning branch of the second multi-way tuning circuit 123, the operation of the first antenna portion 11 is performed.
- Both the resonance frequency and the operational resonance frequency of the second antenna portion 12 are located at the above HB (2.3G to 2.69G), that is, the operational resonance frequency of the first antenna portion 11 and the operational resonance frequency of the second antenna portion 12 are close to or equal to each other. .
- HB 2.3G to 2.69G
- the specific embodiments described above are only for the purpose of describing the technical solutions of the embodiments of the present disclosure in detail.
- the embodiments of the embodiments of the present disclosure are not limited to the foregoing embodiments, and are not limited thereto.
- the first switch 112 and the second switch 122 may be a single-pole multi-throw switch, a single-pole single-throw switch, an electronic switch, a photoelectric switch, or the like; It can be controlled by a switch drive module, and other forms are also possible.
- the first identifier is only used to identify the tuning branch of the first multi-way tuning circuit 113 that is in communication with the first switch 112, or to identify the connected state of the first switch 112.
- the driving unit connected to the first switch 112 can receive the driving unit of the first switch 112 when the first switch 112 is driven to communicate with a certain tuning branch.
- the communication signal may be used as the first identifier of the tuning branch in the first multi-way tuning circuit 113 that communicates with the first switch 112, because the communication signal is used to know which of the first switches 112 is connected. All the way to the tuning branch.
- the first identifier acquiring unit 211 may further search for the identifier of the tuning branch that is connected by the default first switch 112.
- the tuning branch connected to the first switch 112 is changed compared to the default connected state, then the inevitable existence For the driving of the first switch 112, the identifier of the tuning branch that the stored last drive first switch 112 is connected to is stored.
- the second antenna portion reference may be made to the above description of the first antenna portion.
- the foregoing preset correspondence is pre-stored, and may be stored in the second identifier obtaining unit 221, or may be stored in other locations, as long as the second identifier acquiring unit 221 can acquire.
- the second identifier acquiring unit 221 is configured to obtain the foregoing first identifier, and the second identifier corresponding to the first identifier may be directly found according to the preset correspondence.
- the second identifier of the tuning branch in the tuning circuit 123 is equivalent to knowing which of the second tuning circuits 123 the second switch 122 should communicate with; wherein the switch control unit 222 can be based on the second identifier.
- the switch driving signal is sent to the driving unit of the second switch 122, and the driving unit drives the second switch 122 to communicate with the tuning branch in the second multiplexing circuit 123 corresponding to the second identifier.
- the second identifier obtaining unit 221 can also search for the identifier of the tuning branch that the previously stored second switch 122 communicates with or the identifier of the tuning branch that the default second switch 122 communicates with, if the identifier is the same as the above If the identifier has already existed in the preset correspondence, the second identifier acquiring unit 221 does not change the connected state of the second switch 122.
- the first antenna 111 is connected to the feed line 3 and has a length of 50 mm.
- the first switch 112 is a single-pole three-throw switch, and the first multi-channel tuning circuit 113 is connected to the main board.
- the first multi-way tuning circuit 113 is composed of a tuning branch T1, a tuning branch T2, and a tuning branch T3.
- the tuning branch T1 is composed of an 82nH inductive component
- the tuning branch T2 is composed of an 18nH inductive component.
- the tuning branch T3 is composed of a 5nH inductive component; the switching end of the first switch 112 is connected to the tuning branch T1, and the first antenna portion 11 operates at a resonant frequency of 0.7G to 0.746 GHz; the switching end of the first switch 112 Connected to the tuning branch T2, the first antenna portion 11 operates at a resonant frequency of 0.824G to 0.96G Hz; and the switching end of the first switch 112 is connected to the tuning branch T3, and the first antenna portion 11 operates at a resonant frequency of 1.71. G ⁇ 2.17G Hz.
- the second antenna 121 is connected to the feed line 3 and has a length of 35 mm
- the second switch 122 is a single-pole three-throw switch
- the second multi-way tuning circuit 123 is connected to the main board ground 4, wherein the second multi-way tuning circuit 123 is
- the tuning branch T4 is composed of 6nH inductive components
- the tuning branch T5 is composed of 47nH inductive components
- the tuning branch T6 is composed of 1.2pf capacitive components.
- the switching end of the second switch 122 is connected to the tuning branch T4, and the second antenna portion 12 operates at a resonant frequency of 1.71 G to 2.17 G Hz; and the switching end of the second switch 122 is connected to the tuning branch T5.
- the two antenna portions 12 have a working resonance frequency of 0.824 G to 0.96 G Hz; and the switching end of the second switch 122 is connected to the tuning branch T6, and the second antenna portion 12 operates at a resonance frequency of 0.7 G to 0.746 G Hz.
- the tuning branch T1 and the tuning branch T6, the tuning branch T2 and the tuning branch T5, the tuning branch T3 and the tuning branch T4 respectively have the above-mentioned preset correspondence.
- the first identifier acquiring unit 211 receives the communication signal sent by the driving unit of the first switch 112 when driving the first switch 112 to communicate with the tuning branch T1 by the driving unit connected to the first switch 112.
- the second identifier obtaining unit 221 finds a second identifier T6 corresponding to the first identifier T1 according to the preset correspondence relationship; the switch control unit 222 sends a specific driving signal to the driving unit of the second switch 122, and drives The second switch 122 is connected to the tuning branch T6 corresponding to the second identifier T6.
- the working resonant frequencies of the first antenna portion and the second antenna portion are both located at 0.7G to 0.746G Hz, and the difference satisfies the set threshold.
- the energy is more evenly distributed in the first antenna portion and the second antenna portion, and the performance of the left and right heads of the antenna is balanced.
- the length of the first antenna 111 is 50 mm, which is applied to an all-metal slot appearance model, that is, a mobile terminal model having at least two metal cover plates, and a gap is formed between the two metal cover plates. .
- the 0.7G, 0.96G, 1.9G, and 2.5G units are Hz
- the first switch 112 of the first antenna portion 11 respectively communicates with the four-way tuning branch of the first multi-channel tuning circuit 113
- the first antenna portion The center frequency of the frequency band of the working resonance frequency of 11 and from left to right, the first solid line curve represents the corresponding schematic diagram of the working resonance frequency and the standing wave ratio corresponding to the tuning branch of 82nH, and it can be seen that the standing wave is at 0.7 GHz.
- the ratio is the smallest, that is, the radiation performance is optimal at this time; correspondingly, the three dotted curves from left to right respectively correspond to the tuning branches of 18nH, 5nH, and 2nH.
- the measured antenna darkroom active data is shown, and the antenna radiation performance is compared with the conventional IFA antenna and the embodiment of the dual resonant arm antenna in some alternative embodiments of the present disclosure, using TRP (Total Radiated Power, total radiated power) as a performance indicator, in dbm (decibel milli X, can represent decibel millivolts, or decibel milliwatts), can be used to divide the power of the entire radiating sphere of the test antenna, and the entire radiating sphere The area is averaged to reflect the overall transmit power of the mobile terminal using the test antenna.
- TRP Total Radiated Power, total radiated power
- dbm decibel milli X, can represent decibel millivolts, or decibel milliwatts
- the BHHR (Beside Head and Hand at Right side) represents a right-handed head model, that is, a model in which the mobile terminal including the antenna system described above is operated on the right side of the human head; correspondingly, BHHL (Beside Head and Hand at Right) Side) indicates a left-handed head model, that is, a model in which the mobile terminal including the antenna system described above is operated on the left side of the head of the human head;
- GSM Global System for Mobile Communication
- GSM1800 Global System for Mobile Communication
- LTE Long Term Evolution (Long Term Evolution) B40 and LTE B41 are different frequency bands of different standards.
- GSM900 is the 900 frequency band in the GSM system, that is, the uplink frequency is 880-915MHz, and the downlink frequency is 925MHz-960MHz.
- Table 1 it can be seen from Table 1 that the difference between the total radiated power of BHHR and BHHL is significantly smaller than that of the conventional IFA antenna in the embodiment of the present disclosure, that is, the performance of the left and right heads is more balanced.
- each of the tuning branches is an open circuit or is composed of an inductive component and/or a capacitive component connected in series/parallel.
- the tuning branch can be an open circuit, can be grounded for an inductive component, can be grounded for a capacitive component, and the like.
- the distance between the first connection point A and the open end of the first antenna 111, that is, the end of the first antenna 111 away from the extension of the feed line 3 is less than equal
- the first connection point A is a connection point between the first switch 112 and the first antenna 111; the second connection point B and the open end of the second antenna 121, that is, the end of the extension of the second antenna 121 away from the feed line 3 , the distance is less than or equal to
- the second connection point B is a connection point between the second switch 122 and the second antenna 121;
- the c is a wave speed when electromagnetic waves propagate in the air, and the fm1 is a maximum operating resonance frequency of the first antenna portion 11
- the above fm2 is the maximum operating resonance frequency of the second antenna portion 12 described above.
- the actual working resonance frequency of the first antenna portion 11 cannot reach the maximum working resonance frequency fm1, and is limited by the distance between the first connection point A and the open end of the first antenna 111. It will be appreciated that the above description is equally applicable to the second antenna portion 12.
- the difference between the length of the first antenna 111 and the length of the second antenna 121 is less than a set difference, that is, the length of the first antenna 111 and the second antenna 121.
- the difference in length cannot be too large, for example, the ratio of the length of the two is less than 2:1 and greater than 1:2. Because if the length of the first antenna 111 and the length of the second antenna 121 are different, then when the working resonant frequency of the first antenna portion 11 is in the high frequency band, the operating resonant frequency of the second antenna portion 12 is also located in the high frequency band.
- the antenna energy is slightly biased toward the antenna portion having a higher working resonance frequency, but the bias is not obvious, that is, the left and right head performance. More balanced; but when the operating resonant frequency of the first antenna portion 11 is in the low frequency band, the operating resonant frequency of the second antenna portion 12 is also in the low frequency band, even if the operating resonant frequency of the first antenna portion 11 is the same as that of the second antenna portion 12.
- the antenna energy will be obviously biased toward the part of the antenna whose working resonance frequency is higher, that is, it is biased to one side, so that the left and right heads have unbalanced performance and the equalization effect is poor.
- the symmetrically distributed first antenna portion and the second antenna portion work simultaneously, and the working resonance frequencies are close to or equal, so that the antenna energy is more evenly distributed on both sides of the antenna without moving according to the movement.
- the actual use scenario of the terminal performs left and right antenna switching, which avoids the problem that the mobile terminal antenna is insensitive or poorly adaptable when improving the left and right head performance, and achieves the technical effect of balancing the left and right head functions of the antenna; meanwhile, switching through the switch
- Different tuning branches can effectively change the working resonance frequency of the first antenna portion or the second antenna portion to achieve wideband coverage; the first antenna portion or the second antenna portion can be automatically adjusted according to a preset correspondence relationship. It can automatically ensure the balance of the left and right head performance of the antenna when changing the working resonance frequency.
- each tuning branch can be composed of different circuit components, it is convenient to adjust the operable working resonance frequency of the antenna portion corresponding to each tuning branch.
- the distance between the switch and the open end of the corresponding antenna is limited, so that the corresponding antenna portion can be operated at the maximum working resonance frequency to avoid occurrence of control defects.
- the lengths of the first antenna and the second antenna are limited, which avoids the problem that the performance difference between the left and right heads is large and the equalization effect is poor.
- the antenna may specifically include: a symmetrically distributed first antenna portion and a second antenna portion; the first antenna portion and the foregoing The second antenna portions respectively have a plurality of working states corresponding to the plurality of working resonant frequencies; and the method may specifically include the steps 501-502.
- Step 501 Acquire a first working state of the first antenna portion.
- Step 502 Adjust a second working state of the second antenna portion according to the first working state, so that a difference between an operating resonant frequency of the first antenna portion and an operating resonant frequency of the second antenna portion is less than a set threshold.
- the symmetrically distributed first antenna portion and the second antenna portion work simultaneously, and the working resonance frequencies are close to or equal, so that the antenna energy is more evenly distributed on both sides of the antenna without moving according to the movement.
- the actual use scenario of the terminal performs left and right antenna switching, which avoids the problem that the mobile terminal antenna is insensitive or poorly adaptable when improving the left and right head performance, and achieves the technical effect of balancing the left and right head functions of the antenna.
- an embodiment of the present disclosure provides an antenna control method.
- the antenna may specifically include: a symmetrically distributed first antenna portion and a second antenna portion; and the first antenna portion and the second antenna portion respectively have a plurality of working states corresponding to a plurality of working resonance frequencies; the first antenna portion is composed of a first antenna, a first switch, and a first multi-way tuning circuit connected in series; and the second antenna portion is configured by a second antenna, a second switch, and a second antenna
- the two multi-way tuning circuits are formed in series; the first multi-channel tuning circuit and the second multi-channel tuning circuit are respectively composed of a plurality of tuning branches; the multi-tuning branch of the first multi-channel tuning circuit and the second A preset correspondence relationship exists between the multiple tuning branches of the multi-channel tuning circuit; any tuning branch of the first multi-channel tuning circuit is connected to the first switch, and the second preset having a preset correspondence relationship
- Step 601 Acquire a first identifier of the tuning branch in the first multi-way tuning circuit that is in communication with the first switch.
- Step 602 Obtain a second identifier of the tuning branch in the second multiplexing circuit corresponding to the first identifier according to the first identifier and the preset correspondence.
- Step 603 Control the second switch to communicate with the tuning branch corresponding to the second identifier in the second multiplexing circuit.
- the foregoing step 601 is an optional manner of the foregoing step 501; the foregoing steps 602 and 603 are an optional manner of the foregoing step 502.
- the description of the above steps 601-603 refer to the description in the foregoing embodiment, and details are not described herein again.
- the symmetrically distributed first antenna portion and the second antenna portion work simultaneously, and the working resonance frequencies are close to or equal, so that the antenna energy is more evenly distributed on both sides of the antenna without moving according to the movement.
- the actual use scenario of the terminal performs left and right antenna switching, which avoids the problem that the mobile terminal antenna is insensitive or poorly adaptable when improving the left and right head performance, and achieves the technical effect of balancing the left and right head functions of the antenna; meanwhile, switching through the switch
- Different tuning branches can effectively change the working resonance frequency of the first antenna portion or the second antenna portion to achieve wideband coverage; the first antenna portion or the second antenna portion can be automatically adjusted according to a preset correspondence relationship. It can automatically ensure the balance of the left and right head performance of the antenna when changing the working resonance frequency.
- FIG. 7 is a block diagram of a mobile terminal according to an embodiment of the present disclosure.
- the mobile terminal 700 shown in FIG. 7 may specifically include an antenna 701 and a control module 702.
- the antenna 701 may specifically include: a symmetrically distributed first antenna portion and a second antenna portion; and the first antenna portion and the second antenna portion respectively have
- the control module 702 may include: an antenna working state acquiring sub-module 70201, configured to acquire a first working state of the first antenna portion; and a control sub-module 70202, configured to be used according to the foregoing In the first working state, the second operating state of the second antenna portion is adjusted such that a difference between the operating resonant frequency of the first antenna portion and the operating resonant frequency of the second antenna portion is less than a set threshold.
- the first antenna portion is composed of a first antenna, a first switch, and a first multi-channel tuning circuit; the second antenna portion is configured by a second antenna, a second switch, and a second multi-channel.
- the tuning circuit is formed in series; the first multi-channel tuning circuit and the second multi-channel tuning circuit are respectively composed of a plurality of tuning branches; the multi-tuning branch of the first multi-channel tuning circuit and the second multi-channel tuning There is a preset correspondence relationship between the multiple tuning branches of the circuit; any tuning branch of the first multi-way tuning circuit is in communication with the first switch, and the second multi-way tuning circuit having the preset correspondence relationship When the tuning branch is in communication with the second switch, the difference between the operating resonant frequency of the first antenna portion and the operating resonant frequency of the second antenna portion is less than a set threshold.
- the antenna working state obtaining sub-module 70201 may include: a first identifier acquiring unit, configured to acquire a tuning branch of the first multi-way tuning circuit that is in communication with the first switch The first identifier; the control sub-module 70202 may include: a second identifier obtaining unit, configured to obtain, according to the first identifier and the preset correspondence, the tuning in the second multi-channel tuning circuit corresponding to the first identifier a second identifier of the branch; a switch control unit, configured to control the second switch to communicate with the tuning branch corresponding to the second identifier in the second multiple tuning circuit.
- the mobile terminal 700 can implement the various processes implemented by the mobile terminal in the method embodiments of FIG. 5 to FIG. 6. To avoid repetition, details are not described herein again.
- the symmetrically distributed first antenna portion and the second antenna portion work simultaneously, and the working resonance frequencies are close to or equal, so that the antenna energy is more evenly distributed on both sides of the antenna without moving according to the movement.
- the actual use scenario of the terminal performs left and right antenna switching, which avoids the problem that the mobile terminal antenna is insensitive or poorly adaptable when improving the left and right head performance, and achieves the technical effect of balancing the left and right head functions of the antenna.
- the switching frequency of the first antenna portion or the second antenna portion can be effectively changed by switching different tuning branches through the switch, thereby achieving wideband coverage;
- the corresponding relationship is automatically adjusted to adjust the first antenna portion or the second antenna portion, so that the balance of the performance of the left and right heads of the antenna can be automatically ensured when the working resonance frequency is changed.
- FIG. 8 is a block diagram of a mobile terminal according to another embodiment of the present disclosure.
- the mobile terminal 800 shown in FIG. 8 includes at least one processor 801, a memory 802, at least one network interface 804, other user interfaces 803, and an antenna 806.
- the various components in mobile terminal 800 are coupled together by a bus system 805.
- bus system 805 is used to implement connection communication between these components.
- bus system 805 includes a power bus, a control bus, and a status signal bus.
- various buses are labeled as bus system 805 in FIG.
- the user interface 803 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
- a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
- the antenna 806 may include: a symmetrically distributed first antenna portion and a second antenna portion; the first antenna portion and the second antenna portion respectively have multiple working states, corresponding to multiple working resonant frequencies.
- the memory 802 in an embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
- the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
- RAM Random Access Memory
- many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
- SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
- DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
- ESDRAM Enhanced Synchronous Dynamic Random Access Memory
- SDRAM Synchronous Connection Dynamic Random Access Memory
- DRRAM direct memory bus random access memory
- memory 802 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 8021 and application 8022.
- the operating system 8021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
- the application 8022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
- a program implementing the method of the embodiments of the present disclosure may be included in the application 8022.
- the program or the instruction stored in the memory 802 may be a program or an instruction stored in the application 8022, and the processor 801 is configured to acquire the first working state of the first antenna portion, according to In the first working state, the second operating state of the second antenna portion is adjusted such that a difference between the operating resonant frequency of the first antenna portion and the operating resonant frequency of the second antenna portion is less than a set threshold.
- Processor 801 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 801 or an instruction in a form of software.
- the processor 801 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in memory 802, and processor 801 reads the information in memory 802 and, in conjunction with its hardware, performs the steps of the above method.
- the embodiments described in the embodiments of the present disclosure may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
- the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
- ASICs Application Specific Integrated Circuits
- DSP Digital Signal Processing
- DSP Device Digital Signal Processing Equipment
- PLD programmable Programmable Logic Device
- FPGA Field-Programmable Gate Array
- the techniques described in the embodiments of the present disclosure may be implemented by modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
- the software code can be stored in memory and executed by the processor.
- the memory can be implemented in the processor or external to the processor.
- the first antenna portion is composed of a first antenna, a first switch, and a first multi-channel tuning circuit; the second antenna portion is configured by a second antenna and a second switch.
- the second multi-way tuning circuit is formed in series; the first multi-channel tuning circuit and the second multi-channel tuning circuit are respectively composed of a plurality of tuning branches; the multi-tuning branch of the first multi-channel tuning circuit and the above a preset correspondence relationship exists between the multiple tuning branches of the second multi-way tuning circuit; any tuning branch of the first multi-way tuning circuit is connected to the first switch, and the foregoing preset correspondence relationship exists
- the tuning branch of the two-way tuning circuit is in communication with the second switch, the difference between the operating resonant frequency of the first antenna portion and the operating resonant frequency of the second antenna portion is less than a set threshold.
- the processor 801 is configured to acquire a first identifier of the tuning branch in the first multi-way tuning circuit that is in communication with the first switch, and then, according to the first identifier and the memory stored in the memory 802. And the preset correspondence, obtaining a second identifier of the tuning branch in the second multi-channel tuning circuit corresponding to the first identifier; and controlling the second switch to communicate with the second identifier in the second multi-channel tuning circuit Tuning branch.
- each of the tuning branches is open or consists of an inductive component and/or a capacitive component in series/parallel.
- the distance between the first connection point and the open end of the first antenna is less than or equal to
- the first connection point is a connection point between the first switch and the first antenna; the distance between the second connection point and the open end of the second antenna is less than or equal to
- the second connection point is a connection point between the second switch and the second antenna;
- the c is a wave velocity when the electromagnetic wave propagates in the air
- the fm1 is a maximum operating resonance frequency of the first antenna portion
- the fm2 is the above The maximum operating resonant frequency of the two antenna sections.
- the difference between the length of the first antenna and the length of the second antenna is less than a set difference.
- the mobile terminal 800 can implement the various processes implemented by the mobile terminal in the foregoing embodiment. To avoid repetition, details are not described herein again.
- the symmetrically distributed first antenna portion and the second antenna portion work simultaneously, and the working resonance frequencies are close to or equal, so that the antenna energy is more evenly distributed on both sides of the antenna without moving according to the movement.
- the actual use scenario of the terminal performs left and right antenna switching, which avoids the problem that the mobile terminal antenna is insensitive or poorly adaptable when improving the left and right head performance, and achieves the technical effect of balancing the left and right head functions of the antenna.
- the switching frequency of the first antenna portion or the second antenna portion can be effectively changed by switching different tuning branches through the switch, thereby achieving wideband coverage;
- the corresponding relationship is automatically adjusted to adjust the first antenna portion or the second antenna portion, so that the balance of the performance of the left and right heads of the antenna can be automatically ensured when the working resonance frequency is changed.
- each tuning branch can be composed of different circuit components, it is convenient to adjust the operable working resonance frequency of the antenna portion corresponding to each tuning branch.
- the distance between the switch and the open end of the corresponding antenna is limited, so that the corresponding antenna portion can be operated at the maximum working resonance frequency to avoid occurrence of control defects.
- the lengths of the first antenna and the second antenna are limited, which avoids the problem that the performance difference between the left and right heads is large and the equalization effect is poor.
- FIG. 9 is a schematic structural diagram of a mobile terminal according to another embodiment of the present disclosure.
- the mobile terminal 900 in FIG. 9 may be a mobile phone, a tablet computer, a personal digital assistant (PDA), or a car computer.
- PDA personal digital assistant
- the mobile terminal 900 in FIG. 9 includes a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a display unit 940, a processor 960, an audio circuit 970, a WiFi (Wireless Fidelity) module 980, and a power supply 990.
- RF radio frequency
- the input unit 930 can be configured to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the mobile terminal 900.
- the input unit 930 may include a touch panel 931.
- the touch panel 931 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory such as a finger or a stylus on the touch panel 931), and according to the preset The programmed program drives the corresponding connection device.
- the touch panel 931 can include two parts: a touch detection device and a touch controller.
- the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
- the processor 960 is provided and can receive commands from the processor 960 and execute them.
- the touch panel 931 can be implemented in various types such as a resistive type, a capacitive type, an infrared line, and a surface acoustic wave.
- the input unit 930 may further include other input devices 932, which may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
- other input devices 932 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
- the display unit 940 can be used to display information input by the user or information provided to the user and various menu interfaces of the mobile terminal 900.
- the display unit 940 can include a display panel 941.
- the display panel 941 can be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
- the touch panel 931 can cover the display panel 941 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 960 to determine the type of the touch event, and then the processor The 960 provides a corresponding visual output on the touch display depending on the type of touch event.
- the touch display includes an application interface display area and a common control display area.
- the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
- the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
- the application interface display area can also be an empty interface that does not contain any content.
- the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
- the processor 960 is a control center of the mobile terminal 900, and connects various parts of the entire mobile phone by using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 921, and calling the second storage.
- the data in the memory 922 performs various functions and processing data of the mobile terminal 900, thereby performing overall monitoring of the mobile terminal 900.
- processor 960 can include one or more processing units.
- the radio frequency circuit 910 may include at least an antenna, where the antenna may specifically include: a symmetrically distributed first antenna portion and a second antenna portion; the first antenna portion and the second antenna portion respectively have multiple working states, corresponding to multiple Working resonance frequency.
- the processor 960 is configured to acquire the first work of the first antenna portion by calling a software program and/or a module stored in the first memory 921 and/or data in the second memory 922. a state, according to the first working state, adjusting a second working state of the second antenna portion such that a difference between an operating resonant frequency of the first antenna portion and an operating resonant frequency of the second antenna portion is less than a set threshold.
- the first antenna portion is composed of a first antenna, a first switch, and a first multi-channel tuning circuit; the second antenna portion is configured by a second antenna and a second switch.
- the second multi-way tuning circuit is formed in series; the first multi-channel tuning circuit and the second multi-channel tuning circuit are respectively composed of a plurality of tuning branches; the multi-tuning branch of the first multi-channel tuning circuit and the above a preset correspondence relationship exists between the multiple tuning branches of the second multi-way tuning circuit; any tuning branch of the first multi-way tuning circuit is connected to the first switch, and the foregoing preset correspondence relationship exists
- the tuning branch of the two-way tuning circuit is in communication with the second switch, the difference between the operating resonant frequency of the first antenna portion and the operating resonant frequency of the second antenna portion is less than a set threshold.
- the processor 960 is configured to obtain a first identifier of the tuning branch in the first multi-way tuning circuit that is in communication with the first switch; and then, according to the first identifier and the memory stored in the memory 920. And the preset correspondence, obtaining a second identifier of the tuning branch in the second multi-channel tuning circuit corresponding to the first identifier; and controlling the second switch to communicate with the second identifier in the second multi-channel tuning circuit Tuning branch.
- each of the tuning branches is open or consists of an inductive component and/or a capacitive component in series/parallel.
- the distance between the first connection point and the open end of the first antenna is less than or equal to
- the first connection point is a connection point between the first switch and the first antenna; the distance between the second connection point and the open end of the second antenna is less than or equal to
- the second connection point is a connection point between the second switch and the second antenna;
- the c is a wave velocity when the electromagnetic wave propagates in the air
- the fm1 is a maximum operating resonance frequency of the first antenna portion
- the fm2 is the above The maximum operating resonant frequency of the two antenna sections.
- the difference between the length of the first antenna and the length of the second antenna is less than a set difference.
- the symmetrically distributed first antenna portion and the second antenna portion work simultaneously, and the working resonance frequencies are close to or equal, so that the antenna energy is more evenly distributed on both sides of the antenna without being based on the mobile terminal.
- the actual use scenario performs left and right antenna switching, which avoids the problem that the mobile terminal antenna is insensitive or poorly adaptable when improving the left and right head performance, and achieves the technical effect of balancing the left and right head functions of the antenna.
- the switching frequency of the first antenna portion or the second antenna portion can be effectively changed by switching different tuning branches through the switch, thereby achieving wideband coverage;
- the corresponding relationship is automatically adjusted to adjust the first antenna portion or the second antenna portion, so that the balance of the performance of the left and right heads of the antenna can be automatically ensured when the working resonance frequency is changed.
- each tuning branch can be composed of different circuit components, it is convenient to adjust the operable working resonance frequency of the antenna portion corresponding to each tuning branch.
- the distance between the switch and the open end of the corresponding antenna is limited, so that the corresponding antenna portion can be operated at the maximum working resonance frequency to avoid occurrence of control defects.
- the lengths of the first antenna and the second antenna are limited, which avoids the problem that the performance difference between the left and right heads is large and the equalization effect is poor.
- the disclosed apparatus and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
- the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Human Computer Interaction (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本公开涉及一种天线控制系统、方法及移动终端,上述系统包括:天线、控制模块;上述天线包括:对称分布的第一天线部分和第二天线部分;上述第一天线部分和上述第二天线部分分别具有多种工作状态,对应多种工作共振频率;上述控制模块包括:天线工作状态获取子模块,用于获取上述第一天线部分的第一工作状态;控制子模块,用于根据上述第一工作状态,调整上述第二天线部分的第二工作状态,使得上述第一天线部分的工作共振频率和上述第二天线部分的工作共振频率的差值小于设定阈值。
Description
相关申请的交叉引用
本申请主张在2017年3月31日在中国提交的中国专利申请号No.201710209662.3的优先权,其全部内容通过引用包含于此。
本公开涉及通信领域,具体地涉及一种天线控制系统、方法及移动终端。
参照图1所示,当前用于移动终端的天线技术中,常见的有单极天线(monopole)、倒F型天线(IFA,Inverted F-shaped Antenna)、环形天线(LOOP)等,天线馈源常放置于移动终端左侧或者右侧的角落,即为单共振臂天线设计方式。然而单共振臂天线因为天线共振于左侧或右侧的单个分支,导致天线能量过于集中该分支,使得移动终端左右两侧的电场强度差异很大,而且偏向人头手一侧的天线分支的吸收损耗会显著增加,导致人头或者人手的性能出现左右差异很大的问题。
相关技术中,针对传统天线方案提出一种改善方案,该方案中,移动终端的天线具有两个天线分支,分布于上述移动终端两侧,通过开关主动切换使某一天线分支短路,即改变天线末端位置,使得天线能量集中于另一天线分支,来改善左右头手性能。然而,上述改善方案需要基于移动终端的实际使用场景,例如左头手场景或者右头手场景,进行针对性的切换左右天线,也就是说,需要进行使用场景的侦测或者判断,因此存在左右天线切换不灵敏或者适应性差的问题。
发明内容
本公开实施例提供一种天线控制系统、方法及移动终端,以解决或部分解决上述的移动终端天线在改善左右头手性能时左右天线切换不灵敏或者适应性差的问题。
第一方面,本公开实施例提供了一种天线控制系统,所述系统包括:天线、控制模块;所述天线包括:对称分布的第一天线部分和第二天线部分;所述第一天线部分和所述第二天线部分分别具有多种工作状态,对应多种工 作共振频率;所述控制模块包括:天线工作状态获取子模块,用于获取所述第一天线部分的第一工作状态;控制子模块,用于根据所述第一工作状态,调整所述第二天线部分的第二工作状态,使得所述第一天线部分的工作共振频率和所述第二天线部分的工作共振频率的差值小于设定阈值。
另一方面,本公开实施例提供了一种天线控制方法,所述天线包括:对称分布的第一天线部分和第二天线部分;所述第一天线部分和所述第二天线部分分别具有多种工作状态,对应多种工作共振频率;则所述方法包括:获取所述第一天线部分的第一工作状态;根据所述第一工作状态,调整所述第二天线部分的第二工作状态,使得所述第一天线部分的工作共振频率和所述第二天线部分的工作共振频率的差值小于设定阈值。
再一方面,本公开实施例还提供了一种移动终端,包括上述任一所述的天线控制系统。
这样,本公开实施例中,通过对称分布的第一天线部分和第二天线部分同时工作,且工作共振频率接近或相等,使得天线能量更均匀地分布于天线两侧,而无需根据移动终端的实际使用场景进行左右天线切换,避免了移动终端天线在改善左右头手性能时左右天线切换不灵敏或者适应性差的问题,达到了平衡天线左右头手功能的技术效果。
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是移动终端的常见的倒F型天线的示意图;
图2是本公开一些可选的实施例中的一种天线控制系统的结构示意图;
图3是本公开一些可选的实施例中的一种天线控制系统的结构示意图;
图4是本公开一些可选的实施例中的一种天线控制系统中第一天线的调谐示意图;
图5是本公开一些可选的实施例中的一种天线控制方法的步骤流程图;
图6是本公开一些可选的实施例中的一种天线控制方法的步骤流程图;
图7是本公开一些可选的实施例中的一种移动终端的框图;
图8是本公开一些可选的实施例中的一种移动终端的框图;
图9是本公开一些可选的实施例中的一种移动终端的结构示意图。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
发明人在大量实践中发现,具有相同或者相近工作共振频率的两个天线分支分布于移动终端的左右两侧时,两个天线分支可以有效的分散天线能量,使得左右两侧的电场强度更加均匀,能使得左右人头或人手性能更加均衡,因此本公开实施例的核心构思之一在于,通过对称分布于移动终端左右两侧的第一天线部分和第二天线部分同时工作,且工作共振频率接近或相等,使得天线能量更均匀地分布于上述移动终端左右两侧,而无需根据移动终端的实际使用场景进行左右天线切换。
参照图2所示,示出了本公开实施例的一种天线控制系统的结构示意图,具体可以包括:天线1、控制模块2;上述天线1具体可以包括:对称分布的第一天线部分11和第二天线部分12;上述第一天线部分11和上述第二天线部分12分别具有多种工作状态,对应多种工作共振频率。上述控制模块2具体可以包括:天线工作状态获取子模块21,用于获取上述第一天线部分11的第一工作状态;控制子模块22,用于根据上述第一工作状态,调整上述第二天线部分12的第二工作状态,使得上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率的差值小于设定阈值。
在实际应用中,参照图2所示,上述天线1与馈线3连接,并接收馈线3的射频信号;而且上述第一天线部分11与上述第二天线部分12分别与主板地4连接。一般地,上述馈线3由天线馈源和天线匹配电路串联组成,天线匹配电路用于使天线馈源的射频信号匹配天线的不同工作共振频率。如此,上述馈线3的射频信号可以通过上述第一天线部分11和上述第二天线部分12发射出去;同样地,可以通过上述第一天线部分11和上述第二天线部分 12接收信号。
在应用于移动终端的一种实施例中,上述第一天线部分11和第二天线部分12可以对称分布于移动终端的左右两侧,例如上述第一天线部分11位于上述移动终端左侧,上述第二天线部分12位于上述移动终端的相应对称的右侧;反之亦可。可以理解的是,上述对称并不是指数学意义上的绝对对称,而仅是表示一种相对位置,并不要求严格对称。
上述控制模块2可以分别与上述第一天线部分11、上述第二天线部分12连接或者通过信号连接。上述控制模块2的天线工作状态获取子模块21可以通过信号的传递获取上述第一天线部分11或上述第二天线部分12的工作状态和对应的工作共振频率,例如可以获取工作状态转换时的信号,或者处于工作状态时的信号,或者其他方式。而上述控制子模块22,可以根据上述第一工作状态,调整上述第二天线部分12的第二工作状态,使得上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率的差值小于设定阈值;而上述天线工作状态获取子模块21还可以获取上述第二天线部分12的第二工作状态,如果上述第二工作状态与上述第一工作状态对应,即上述第二天线部分12的当前工作共振频率已经与上述第一天线部分11的当前工作共振频率的差值小于上述设定阈值,则上述控制子模块可以不对上述第二天线部分12进行工作状态的切换。
可以理解的是,上述第一工作状态或第二工作状态的调整可以通过多种方式进行,以改变上述第一天线部分11或上述第二天线部分12的工作共振频率,例如可以通过调节上述第一天线部分11或上述第二天线部分12的天线长度,即分别对应的共振臂的长度的方式来调节对应的工作共振频率;还可以通过调整上述第一天线部分11或上述第二天线部分12与馈线的连接方式,如直接连接或者缝隙耦合连接等;还可以通过调整上述第一天线部分11或上述第二天线部分12与主板地的连接方式,如开路、通路、缝隙耦合、通过不同电路元件连接等各种方式;总之,本公开实施例对此不做限制。
此外,上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率的差值小于设定阈值,这样的限制,是为了使得上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率接近或相等, 这样天线能量的分布就会较为均匀的分布于这两个天线部分,工作共振频率越接近,则分布越均匀。因此,还可以采用其它限制方式,例如,上述第一天线部分11的工作共振频率f1和上述第二天线部分12的工作共振频率f2,满足0.7f1≤f2≤1.3f1,总之,只要是能够使得上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率接近或相等的特征,都在本公开实施例的范围之内。
需要说明的是,上述第一天线部分11或上述第二天线部分12的形状可以灵活多变,可以是单极天线、倒F型天线、环形天线、平面倒F型天线(Planar Inverted F-shaped Antenna,PIFA)等,也可以是G型、F型等多谐振结构。
具体地,在应用于具有第一断口和第二断口的金属框的移动终端中,可以采用上述第一断口和第二断口之间的部分金属框作为上述天线1,上述移动终端的馈线连接于上述部分金属框中段,上述部分金属框与主板地连接;其中,以上述第一断口和上述移动终端的馈线之间的第一部分金属框作为上述第一天线部分11,剩余的上述第二断口和上述移动终端的馈线之间的第二部分金属框作为上述第二天线部分12。类似地,在应用于具有第一金属盖和第二金属盖的移动终端中,可以采用上述第一金属盖作为上述第一天线1,上述移动终端的馈线连接于上述第一金属盖中段,上述第二金属盖与主板地连接,且上述第一金属后盖与上述第二金属后盖之间设置有缝隙;其中,以上述馈线左右两侧的第一金属盖部分分别作为上述第一天线部分11和上述第二天线部分12。上述具体的实施方式仅是为了更详细的描述本公开实施例的技术方案,本公开实施例的实施方式并不限于上述实施方式,对此不加以限制。
综上,在本公开实施例中,通过对称分布的第一天线部分和第二天线部分同时工作,且工作共振频率接近或相等,使得天线能量更均匀地分布于天线两侧,而无需根据移动终端的实际使用场景进行左右天线切换,避免了移动终端天线在改善左右头手性能时左右天线切换不灵敏或者适应性差的问题,达到了平衡天线左右头手功能的技术效果。
参照图3所示,示出了本公开实施例的一种天线控制系统的结构示意图,具体可以包括:天线1、控制模块2。
上述天线1具体可以包括:对称分布的第一天线部分11和第二天线部分12;上述第一天线部分11和上述第二天线部分12分别具有多种工作状态,对应多种工作共振频率;上述第一天线部分11由第一天线111、第一开关112、第一多路调谐电路113串联组成;上述第二天线部分12由第二天线121、第二开关122、第二多路调谐电路123串联组成;上述第一多路调谐电路113和上述第二多路调谐电路123分别由多路调谐支路并列组成。上述第一多路调谐电路113的多路调谐支路与上述第二多路调谐电路123的多路调谐支路之间存在预设对应关系;在上述第一多路调谐电路113的任一调谐支路与上述第一开关112连通,且上述存在预设对应关系的第二多路调谐电路123的调谐支路与上述第二开关122连通时,上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率的差值小于设定阈值。上述控制模块2具体可以包括天线工作状态获取子模块21和控制子模块22。上述天线工作状态获取子模块21具体可以包括:第一标识获取单元211,用于获取上述第一多路调谐电路113中与上述第一开关112连通的调谐支路的第一标识;上述控制子模块22具体可以包括:第二标识获取单元221,用于根据上述第一标识和上述预设对应关系,获得与上述第一标识对应的上述第二多路调谐电路123中调谐支路的第二标识;开关控制单元222,用于控制上述第二开关122连通上述第二多路调谐电路123中上述第二标识对应的调谐支路。
在实际应用中,参照图3所示,上述天线1与馈线3连接,并接收馈线3的射频信号;而且上述第一天线部分11与上述第二天线部分12分别与主板地4连接。一般地,上述馈线3由天线馈源31和天线匹配电路32串联组成,天线匹配电路32用于使天线馈源31的射频信号匹配天线的不同工作共振频率。
参照图3所示,上述第一多路调谐电路113由调谐支路T1、调谐支路T2、调谐支路T3等并列组成;各调谐支路的一端分别接主板地4,另一端悬空或者与第一开关112的切换端连接;同样地,上述第二多路调谐电路123由调谐支路T4、调谐支路T5、调谐支路T6等并列组成;各调谐支路的一端分别接主板地4,另一端悬空或者与第二开关122的切换端连接。
参照图3所示,在本公开实施例中,第一天线111和第二天线121可以 分别看作天线1的对称分布的两个共振臂,但是第一天线部分111的工作共振频率与第一天线111、第一开关112、以及第一多路调谐电路113中与第一开关112连通的调谐支路都是相关的,其中,第一天线111的长度、以及上述第一多路调谐电路113中与第一开关112连通的调谐支路的电学特性,这二者对上述工作共振频率的影响很大,具体的相关性可以通过实验测定或者通过理论估计。而在第一天线111的长度固定的情况下,至少可以调节第一开关111,调节对应的上述第一多路调谐电路113中与第一开关112连通的调谐支路的电学特性,因为不同调谐支路的电学特性不同,例如调谐支路的电学特性可以相当于一个5nH(n为10
-9,H为电感单位)的电感或者相当于1.2pF(p为10
-12,F为电容单位)的电容之类的,相当于调整第一天线部分11的工作状态以及对应的工作共振频率。针对第二天线部分的描述可以参照上述对第一天线部分的描述。
需要说明的是,在上述天线1工作时,第一开关112必然与第一多路调谐电路113中某一路调谐支路连通,且仅与一路调谐支路连通;同样地,第二开关122必然与第二多路调谐电路123中某一路调谐支路连通,且仅与一路调谐支路连通。
而且,上述第一多路调谐电路113的多路调谐支路与上述第二多路调谐电路123的多路调谐支路之间存在预设对应关系;在上述第一多路调谐电路113的任一调谐支路与上述第一开关112连通,且上述存在预设对应关系的第二多路调谐电路123的调谐支路与上述第二开关122连通时,上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率的差值小于设定阈值。那么,在本公开实施例的一种实施方式中,可以通过分别调整上述第一开关112与上述第二开关122的连通状态,即分别与对应的多路调谐电路中某一路调谐支路连通的方式,只要保证上述第一开关112连通的调谐支路与上述第二开关122连通的调谐支路存在预设对应关系,则可以保证上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率的差值小于设定阈值。
上述预设对应关系至少可以通过实验测定来获得。例如,对于已经固定的第一天线部分11,至少第一天线111的长度、以及上述第一多路调谐电路 113的各路调谐支路的电学特性已经固定,那么对于上述各路调谐支路中的调谐支路甲而言,当上述第一开关112连通上述调谐支路甲时,第一天线部分11的工作共振频率是固定的。假设上述第二天线121的长度也已经固定,那么可以通过实验测定,例如第二开关连通第二多路调谐电路123的调谐支路乙,如果此时实验测定的上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率的差值小于设定阈值,则上述第一多路调谐电路113的调谐支路甲与上述第二多路调谐电路123的调谐支路乙存在上述预设对应关系;如果此时实验测定的上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率的差值不小于设定阈值,则逐渐调整调谐支路乙的电学特性,例如增加或减小电容、增加或减小电感等方式,直至实验测定的上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率的差值小于设定阈值,那么此时更新的调谐支路乙作为已经设计好的第二多路调谐电路123的调谐支路,则上述第一多路调谐电路113的调谐支路甲与上述第二多路调谐电路123的调谐支路乙存在上述预设对应关系。那么,如此设计出的第一多路调谐电路113的多路调谐支路与上述第二多路调谐电路123的多路调谐支路之间存在预设对应关系。针对第二天线部分的描述可以参照上述对第一天线部分的描述。
在实际应用中,上述预设对应关系可以归纳为第一开关112连通的调谐支路与第二开关122连通的调谐支路的对应关系,或者第一开关112的连通状态与第二开关122的连通状态,或者其他方式,实际还是对应于连通的调谐支路的对应关系。
在本公开实施例的一种实施方式中,第一天线111的长度为50mm,第一多路调谐电路113由四路调谐支路并列组成,四路调谐支路的电学特性分别为82nH,18nH,5nH,2nH,则第一天线部分11可以共振于LB1(0.7G~0.746GHz),LB2(0.824G~0.96GHz),MB(1.71G~2.17GHz),HB(2.3G~2.69GHz);第二天线121长度为35mm,第二多路调谐电路123由四路调谐支路并列组成,四路调谐支路的电学特性分别为1.2pf,47nH,6nH,3nH,则可共振于LB1(0.7G~0.746G),LB2(0.824G~0.96G),MB(1.71G~2.17G),HB(2.3G~2.69G),其中LB1代表低频频段1,LB2代表 低频频段2,MB代表中频频段,HB代表高频频段,G为10
9,Hz为频率单位。其中,上述第一多路调谐电路113的四路调谐支路与上述第二多路调谐电路123的四路调谐支路按上述各自电学特性的顺序一一对应,具有预设对应关系;例如当第一开关112连通第一多路调谐电路113的上述2nH的调谐支路,且第二开关122连通第二多路调谐电路123的上述3nH的调谐支路时,上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率都位于上述HB(2.3G~2.69G),即上述第一天线部分11的工作共振频率和上述第二天线部分12的工作共振频率接近或相等。上述具体的实施方式仅是为了更详细的描述本公开实施例的技术方案,本公开实施例的实施方式并不限于上述实施方式,对此不加以限制。
在本公开实施例的一种实施方式中,第一开关112与第二开关122可以为单刀多掷开关、单刀单掷开关、电子开关、光电开关或者其它类型;可以采用开合控制、也可以采用开关驱动模块来控制,也可以采用其他形式。
需要说明的是,上述第一标识仅用来标识上述第一多路调谐电路113中与上述第一开关112连通的调谐支路,或者标识上述第一开关112的连通状态。
一般地,在本公开实施例的一种实施方式中,可以通过连接第一开关112的驱动单元,接收上述第一开关112的驱动单元在驱动第一开关112连通某一路调谐支路时发出的连通信号,上述连通信号就可以作为上述第一多路调谐电路113中与上述第一开关112连通的调谐支路的第一标识,因为可以通过上述连通信号获知上述第一开关112连通的是哪一路调谐支路。当然,上述第一标识获取单元211还可以查找默认的第一开关112连通的调谐支路的标识,如果相比于默认连通状态,第一开关112连通的调谐支路进行过改变,那么必然存在对上述第一开关112的驱动,查找储存的最后一次驱动第一开关112连通的调谐支路的标识。针对第二天线部分的描述可以参照上述对第一天线部分的描述。
可以理解的是,上述预设对应关系是预先存储的,可以储存于第二标识获取单元221,也可以存储于其他位置,只要第二标识获取单元221可以获取即可。参照本公开实施例的上一种实施方式,第二标识获取单元221获知 上述连通信号相当于获知上述第一标识,根据预设对应关系,可以直接找到对应上述第一标识的上述第二多路调谐电路123中调谐支路的第二标识,其实相当于获知了第二开关122应该与第二多路调谐电路123中哪一路调谐支路连通;上述开关控制单元222可以根据上述第二标识,发送开关驱动信号给上述第二开关122的驱动单元,通过该驱动单元驱动上述第二开关122与上述第二标识对应的第二多路调谐电路123中的调谐支路连通。
当然,上述第二标识获取单元221还可以查找之前储存的最后一次驱动第二开关122连通的调谐支路的标识或者默认的第二开关122连通的调谐支路的标识,如果该标识与上述第一标识已经存在上述预设对应关系,则上述第二标识获取单元221不改变第二开关122的连通状态。
具体的一种实施方式中,参照图3所示,第一天线111与馈线3连接,且长度为50mm,第一开关112为一单刀三掷开关,第一多路调谐电路113接主板地4,其中,第一多路调谐电路113由调谐支路T1、调谐支路T2、调谐支路T3并列组成,调谐支路T1由82nH的电感元件组成,调谐支路T2由18nH的电感元件组成,调谐支路T3由5nH的电感元件组成;将第一开关112的切换端与调谐支路T1连通,则第一天线部分11工作共振频率位于0.7G~0.746GHz;将第一开关112的切换端与调谐支路T2连通,则第一天线部分11工作共振频率位于0.824G~0.96G Hz;将第一开关112的切换端与调谐支路T3连通,则第一天线部分11工作共振频率位于1.71G~2.17G Hz。
相应地,第二天线121与馈线3连接,且长度为35mm,第二开关122为一单刀三掷开关,第二多路调谐电路123接主板地4,其中,第二多路调谐电路123由调谐支路T4、调谐支路T5、调谐支路T6并列组成,调谐支路T4由6nH的电感元件组成,调谐支路T5由47nH的电感元件组成,调谐支路T6由1.2pf的电容元件组成;将第二开关122的切换端与调谐支路T4连通,则第二天线部分12工作共振频率位于1.71G~2.17G Hz;将第二开关122的切换端与调谐支路T5连通,则第二天线部分12工作共振频率位于0.824G~0.96G Hz;将第二开关122的切换端与调谐支路T6连通,则第二天线部分12工作共振频率位于0.7G~0.746G Hz。
那么,可以理解的是,调谐支路T1与调谐支路T6,调谐支路T2与调谐 支路T5,调谐支路T3与调谐支路T4,分别具有上述预设对应关系。在具体的一种实施方式中,第一标识获取单元211通过连接第一开关112的驱动单元,接收第一开关112的驱动单元在驱动第一开关112连通调谐支路T1时发出的连通信号,获得第一标识T1;第二标识获取单元221,根据预设对应关系,找到对应第一标识T1的第二标识T6;开关控制单元222,发送特定驱动信号给第二开关122的驱动单元,驱动第二开关122与第二标识T6对应的调谐支路T6连通,则此时第一天线部分与第二天线部分的工作共振频率均位于0.7G~0.746G Hz,差值满足设定阈值,天线能量较为均匀的分布于第一天线部分与第二天线部分,则该天线左右头手性能均衡。上述具体的实施方式仅是为了更详细的描述本公开实施例的技术方案,本公开实施例的实施方式并不限于上述实施方式,对此不加以限制。
参照图4所示,示出了本公开实施例中第一天线的调谐示意图。在本公开实施例中,例如第一天线111的长度为50mm,应用于全金属缝隙外观机型,即具有至少两个金属盖板的移动终端机型,两个金属盖板之间设置有缝隙。其中,0.7G、0.96G、1.9G、2.5G单位为Hz,为第一天线部分11的第一开关112分别连通上述第一多路调谐电路113的四路调谐支路时,第一天线部分11的工作共振频率的频段的中心频率,且由左到右,第一个实线曲线表示82nH的调谐支路对应的工作共振频率与驻波比的对应示意图,可见在0.7GHz时,驻波比最小,即此时辐射性能最佳;相应的,由左到右的三个虚线曲线分别对应18nH,5nH,2nH的调谐支路。
参照表1所示,示出了实测的天线暗室有源数据,将传统IFA天线与本公开一些可选的实施例中个双共振臂天线的实施例进行了天线辐射性能比较,采用TRP(Total Radiated Power,总辐射功率)作为性能指标,单位为dbm(分贝毫X,可以表示分贝毫伏,或者分贝毫瓦),可以对测试天线的整个辐射球面的功率进行面积分,并对整个辐射球面的面积取平均得到,能够反映使用测试天线的移动终端的整机发射功率情况。其中,BHHR(Beside Head and Hand at Right side)表示右人头手模型,即包括有上述天线系统的移动终端在右手持于人头右侧工作时的模型;相应的,BHHL(Beside Head and Hand at Right side)表示左人头手模型,即包括有上述天线系统的移动终端在左手持 于人头左侧工作时的模型;其中,GSM(Global System for Mobile Communication,全球移动通信系统)900、GSM1800、LTE(Long Term Evolution,长期演进)B40、LTE B41为不同制式的不同频段,例如GSM900为GSM制式下的900频段,即上行频率为880-915MHz,下行频率为925MHz-960MHz。显然,从表1可以看出,本公开实施例中的双共振臂天线相比传统IFA天线而言,BHHR和BHHL的总辐射功率的差异明显变小,即左右头手性能更加均衡。
表1
本公开实施例的一种可选方式中,各上述调谐支路为开路,或者由电感元件和/或电容元件串联/并联组成。简单的,在实际应用中,上述调谐支路可以为开路,可以为一个电感元件接地,可以为一个电容元件接地,等等。
参照图3所示,本公开实施例的一种可选方式中,第一连接点A与上述第一天线111的开路端,即第一天线111远离馈线3的延伸段的末端,的距离小于等于
上述第一连接点A为上述第一开关112与上述第一天线111的连接点;第二连接点B与上述第二天线121的开路端,即第二天线121远离馈线3的延伸段的末端,的距离小于等于
上述第二连接点B为上述第二开关122与上述第二天线的121的连接点;上述c为电磁波在空气中传播时的波速,上述fm1为上述第一天线部分11的最大工作共振频率,上述fm2为上述第二天线部分12的最大工作共振频率。因为在实践过程中发现,例如对于上述第一天线部分11而言,如果第一连接点A与上述第一天线111的开路端的距离大于
则第一天线部分11实际工作共振频率不能达到最大工作共振频率fm1,受限于上述第一连接点A与上述第一天线111的开路端的距离。可以理解的是,上述描述对第二天线部分12同样适用。
本公开实施例的一种可选方式中,上述第一天线111的长度和上述第二 天线121的长度的差值小于设定差值,即上述第一天线111的长度和上述第二天线121的长度差异不能太大,例如二者长度的比值小于2:1且大于1:2。因为如果第一天线111的长度和上述第二天线121的长度差异较大,那么当第一天线部分11的工作共振频率位于高频频段,第二天线部分12的工作共振频率同样位于高频频段时,第一天线部分11的工作共振频率与第二天线部分12的工作共振频率接近,那么天线能量会稍微偏向工作共振频率更高的那一天线部分,但偏向不明显,即左右头手性能较均衡;但是当第一天线部分11的工作共振频率位于低频频段,第二天线部分12的工作共振频率同样位于低频频段时,即使第一天线部分11的工作共振频率与第二天线部分12的工作共振频率接近,那么天线能量会明显偏向工作共振频率更高的那一天线部分,即偏向一侧,使得左右头手性能不均衡,均衡效果差。
综上,在本公开实施例中,通过对称分布的第一天线部分和第二天线部分同时工作,且工作共振频率接近或相等,使得天线能量更均匀地分布于天线两侧,而无需根据移动终端的实际使用场景进行左右天线切换,避免了移动终端天线在改善左右头手性能时左右天线切换不灵敏或者适应性差的问题,达到了平衡天线左右头手功能的技术效果;同时,通过开关切换不同的调谐支路,可以有效的改变上述第一天线部分或第二天线部分的工作共振频率,从而实现宽频带覆盖;可以根据预设对应关系自动调节上述第一天线部分或第二天线部分,使得在改变工作共振频率时仍能自动保证天线左右头手性能的均衡。
因为在本公开实施例的可选方式中,可以通过不同电路元件组成各调谐支路,便于调整各调谐支路对应的天线部分的可工作的工作共振频率。
因为在本公开实施例的可选方式中,对开关与对应天线开路端的距离进行限定,可以使得对应天线部分工作于最大工作共振频率,避免出现控制缺陷。
因为在本公开实施例的可选方式中,对第一天线和第二天线的长度进行限定,避免了低频时左右头手性能差距大,均衡效果差的问题。
参照图5所示,示出了本公开实施例的一种天线控制方法的步骤流程图,上述天线具体可以包括:对称分布的第一天线部分和第二天线部分;上述第 一天线部分和上述第二天线部分分别具有多种工作状态,对应多种工作共振频率;则上述方法具体可以包括步骤501-502。
步骤501:获取上述第一天线部分的第一工作状态。
步骤502:根据上述第一工作状态,调整上述第二天线部分的第二工作状态,使得上述第一天线部分的工作共振频率和上述第二天线部分的工作共振频率的差值小于设定阈值。
上述步骤501-502的描述可以参见上述实施例中的描述,在此不再赘述。
综上,在本公开实施例中,通过对称分布的第一天线部分和第二天线部分同时工作,且工作共振频率接近或相等,使得天线能量更均匀地分布于天线两侧,而无需根据移动终端的实际使用场景进行左右天线切换,避免了移动终端天线在改善左右头手性能时左右天线切换不灵敏或者适应性差的问题,达到了平衡天线左右头手功能的技术效果。
参照图6所示,本公开实施例提供了一种天线控制方法,上述天线具体可以包括:对称分布的第一天线部分和第二天线部分;上述第一天线部分和上述第二天线部分分别具有多种工作状态,对应多种工作共振频率;上述第一天线部分由第一天线、第一开关、第一多路调谐电路串联组成;上述第二天线部分由第二天线、第二开关、第二多路调谐电路串联组成;上述第一多路调谐电路和上述第二多路调谐电路分别由多路调谐支路并列组成;上述第一多路调谐电路的多路调谐支路与上述第二多路调谐电路的多路调谐支路之间存在预设对应关系;在上述第一多路调谐电路的任一调谐支路与上述第一开关连通,且上述存在预设对应关系的第二多路调谐电路的调谐支路与上述第二开关连通时,上述第一天线部分的工作共振频率和上述第二天线部分的工作共振频率的差值小于设定阈值;则上述方法具体可以包括步骤601-603:
步骤601:获取上述第一多路调谐电路中与上述第一开关连通的调谐支路的第一标识。
步骤602:根据上述第一标识和上述预设对应关系,获得与上述第一标识对应的上述第二多路调谐电路中调谐支路的第二标识。
步骤603:控制上述第二开关连通上述第二多路调谐电路中上述第二标识对应的调谐支路。
其中,上述步骤601为上述步骤501的一种可选方式;上述步骤602和603为上述步骤502的一种可选方式。上述步骤601-603的描述可以参见上述实施例中的描述,在此不再赘述。
综上,在本公开实施例中,通过对称分布的第一天线部分和第二天线部分同时工作,且工作共振频率接近或相等,使得天线能量更均匀地分布于天线两侧,而无需根据移动终端的实际使用场景进行左右天线切换,避免了移动终端天线在改善左右头手性能时左右天线切换不灵敏或者适应性差的问题,达到了平衡天线左右头手功能的技术效果;同时,通过开关切换不同的调谐支路,可以有效的改变上述第一天线部分或第二天线部分的工作共振频率,从而实现宽频带覆盖;可以根据预设对应关系自动调节上述第一天线部分或第二天线部分,使得在改变工作共振频率时仍能自动保证天线左右头手性能的均衡。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开实施例并不受所描述的动作顺序的限制,因为依据本公开实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本公开实施例所必须的。对于方法实施例而言,由于其与装置实施例基本相似,所以描述的比较简单,相关之处参见装置实施例的部分说明即可。
图7是本公开一个实施例的一种移动终端的框图。图7所示的移动终端700具体可以包括天线701、控制模块702;天线701具体可以包括:对称分布的第一天线部分和第二天线部分;上述第一天线部分和上述第二天线部分分别具有多种工作状态,对应多种工作共振频率;控制模块702具体可以包括:天线工作状态获取子模块70201,用于获取上述第一天线部分的第一工作状态;控制子模块70202,用于根据上述第一工作状态,调整上述第二天线部分的第二工作状态,使得上述第一天线部分的工作共振频率和上述第二天线部分的工作共振频率的差值小于设定阈值。
在一些可选的实施例中,上述第一天线部分由第一天线、第一开关、第一多路调谐电路串联组成;上述第二天线部分由第二天线、第二开关、第二 多路调谐电路串联组成;上述第一多路调谐电路和上述第二多路调谐电路分别由多路调谐支路并列组成;上述第一多路调谐电路的多路调谐支路与上述第二多路调谐电路的多路调谐支路之间存在预设对应关系;在上述第一多路调谐电路的任一调谐支路与上述第一开关连通,且上述存在预设对应关系的第二多路调谐电路的调谐支路与上述第二开关连通时,上述第一天线部分的工作共振频率和上述第二天线部分的工作共振频率的差值小于设定阈值。
在一些可选的实施例中,其中,上述天线工作状态获取子模块70201可以包括:第一标识获取单元,用于获取上述第一多路调谐电路中与上述第一开关连通的调谐支路的第一标识;则上述控制子模块70202可以包括:第二标识获取单元,用于根据上述第一标识和上述预设对应关系,获得与上述第一标识对应的上述第二多路调谐电路中调谐支路的第二标识;开关控制单元,用于控制上述第二开关连通上述第二多路调谐电路中上述第二标识对应的调谐支路。
移动终端700能够实现图5至图6的方法实施例中移动终端实现的各个过程,为避免重复,这里不再赘述。
综上,在本公开实施例中,通过对称分布的第一天线部分和第二天线部分同时工作,且工作共振频率接近或相等,使得天线能量更均匀地分布于天线两侧,而无需根据移动终端的实际使用场景进行左右天线切换,避免了移动终端天线在改善左右头手性能时左右天线切换不灵敏或者适应性差的问题,达到了平衡天线左右头手功能的技术效果。
因为在本公开实施例的可选方式中,可以通过开关切换不同的调谐支路,可以有效的改变上述第一天线部分或第二天线部分的工作共振频率,从而实现宽频带覆盖;可以根据预设对应关系自动调节上述第一天线部分或第二天线部分,使得在改变工作共振频率时仍能自动保证天线左右头手性能的均衡。
图8是本公开另一个实施例的一种移动终端的框图。图8所示的移动终端800包括:至少一个处理器801、存储器802、至少一个网络接口804、其他用户接口803,以及天线806。移动终端800中的各个组件通过总线系统805耦合在一起。可理解,总线系统805用于实现这些组件之间的连接通信。总线系统805除包括数据总线之外,还包括电源总线、控制总线和状态信号 总线。但是为了清楚说明起见,在图8中将各种总线都标为总线系统805。
其中,用户接口803可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
其中,天线806可以包括:对称分布的第一天线部分和第二天线部分;上述第一天线部分和上述第二天线部分分别具有多种工作状态,对应多种工作共振频率。
可以理解,本公开实施例中的存储器802可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器802旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器802存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统8021和应用程序8022。
其中,操作系统8021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序8022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序8022中。
在本公开实施例中,通过调用存储器802存储的程序或指令,具体的,可以是应用程序8022中存储的程序或指令,处理器801用于获取上述第一天线部分的第一工作状态,根据上述第一工作状态,调整上述第二天线部分的第二工作状态,使得上述第一天线部分的工作共振频率和上述第二天线部分的工作共振频率的差值小于设定阈值。
上述本公开实施例揭示的方法可以应用于处理器801中,或者由处理器801实现。处理器801可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器801中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器801可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器802,处理器801读取存储器802中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
在一些可选的实施例中,在天线806中,上述第一天线部分由第一天线、第一开关、第一多路调谐电路串联组成;上述第二天线部分由第二天线、第二开关、第二多路调谐电路串联组成;上述第一多路调谐电路和上述第二多路调谐电路分别由多路调谐支路并列组成;上述第一多路调谐电路的多路调谐支路与上述第二多路调谐电路的多路调谐支路之间存在预设对应关系;在上述第一多路调谐电路的任一调谐支路与上述第一开关连通,且上述存在预设对应关系的第二多路调谐电路的调谐支路与上述第二开关连通时,上述第一天线部分的工作共振频率和上述第二天线部分的工作共振频率的差值小于设定阈值。
在一些可选的实施例中,处理器801用于获取上述第一多路调谐电路中与上述第一开关连通的调谐支路的第一标识;然后根据存储器802中存储的上述第一标识和上述预设对应关系,获得与上述第一标识对应的上述第二多路调谐电路中调谐支路的第二标识;并控制上述第二开关连通上述第二多路调谐电路中上述第二标识对应的调谐支路。
在一些可选的实施例中,各上述调谐支路为开路,或者由电感元件和/或电容元件串联/并联组成。
在一些可选的实施例中,第一连接点与上述第一天线的开路端的距离小于等于
上述第一连接点为上述第一开关与上述第一天线的连接点;第二连接点与上述第二天线的开路端的距离小于等于
上述第二连接点为上述第二开关与上述第二天线的连接点;上述c为电磁波在空气中传播时的波速,上述fm1为上述第一天线部分的最大工作共振频率,上述fm2为上述第二天线部分的最大工作共振频率。
在一些可选的实施例中,上述第一天线的长度和上述第二天线的长度的差值小于设定差值。
移动终端800能够实现前述实施例中移动终端实现的各个过程,为避免重复,这里不再赘述。
综上,在本公开实施例中,通过对称分布的第一天线部分和第二天线部分同时工作,且工作共振频率接近或相等,使得天线能量更均匀地分布于天线两侧,而无需根据移动终端的实际使用场景进行左右天线切换,避免了移 动终端天线在改善左右头手性能时左右天线切换不灵敏或者适应性差的问题,达到了平衡天线左右头手功能的技术效果。
因为在本公开实施例的可选方式中,可以通过开关切换不同的调谐支路,可以有效的改变上述第一天线部分或第二天线部分的工作共振频率,从而实现宽频带覆盖;可以根据预设对应关系自动调节上述第一天线部分或第二天线部分,使得在改变工作共振频率时仍能自动保证天线左右头手性能的均衡。
因为在本公开实施例的可选方式中,可以通过不同电路元件组成各调谐支路,便于调整各调谐支路对应的天线部分的可工作的工作共振频率。
因为在本公开实施例的可选方式中,对开关与对应天线开路端的距离进行限定,可以使得对应天线部分工作于最大工作共振频率,避免出现控制缺陷。
因为在本公开实施例的可选方式中,对第一天线和第二天线的长度进行限定,避免了低频时左右头手性能差距大,均衡效果差的问题。
图9是本公开另一个实施例的一种移动终端的结构示意图。具体地,图9中的移动终端900可以为手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或车载电脑等。
图9中的移动终端900包括射频(Radio Frequency,RF)电路910、存储器920、输入单元930、显示单元940、处理器960、音频电路970、WiFi(Wireless Fidelity)模块980和电源990。
其中,输入单元930可用于接收用户输入的数字或字符信息,以及产生与移动终端900的用户设置以及功能控制有关的信号输入。具体地,本公开实施例中,该输入单元930可以包括触控面板931。触控面板931,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板931上的操作),并根据预先设定的程式驱动相应的连接装置。在一些可选的实施例中,触控面板931可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器960,并能接收处理器960发来的命令并加以执行。此外,可以采用电阻式、电容式、红 外线以及表面声波等多种类型实现触控面板931。除了触控面板931,输入单元930还可以包括其他输入设备932,其他输入设备932可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元940可用于显示由用户输入的信息或提供给用户的信息以及移动终端900的各种菜单界面。显示单元940可包括显示面板941,在一些可选的实施例中,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板941。
应注意,触控面板931可以覆盖显示面板941,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器960以确定触摸事件的类型,随后处理器960根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器960是移动终端900的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器921内的软件程序和/或模块,以及调用存储在第二存储器922内的数据,执行移动终端900的各种功能和处理数据,从而对移动终端900进行整体监控。在一些可选的实施例中,处理器960可包括一个或多个处理单元。
其中,射频电路910至少可以包括天线,上述天线具体可以包括:对称分布的第一天线部分和第二天线部分;上述第一天线部分和上述第二天线部分分别具有多种工作状态,对应多种工作共振频率。
在本公开实施例中,通过调用存储该第一存储器921内的软件程序和/或模块和/或该第二存储器922内的数据,处理器960用于获取上述第一天线部 分的第一工作状态,根据上述第一工作状态,调整上述第二天线部分的第二工作状态,使得上述第一天线部分的工作共振频率和上述第二天线部分的工作共振频率的差值小于设定阈值。
在一些可选的实施例中,在天线906中,上述第一天线部分由第一天线、第一开关、第一多路调谐电路串联组成;上述第二天线部分由第二天线、第二开关、第二多路调谐电路串联组成;上述第一多路调谐电路和上述第二多路调谐电路分别由多路调谐支路并列组成;上述第一多路调谐电路的多路调谐支路与上述第二多路调谐电路的多路调谐支路之间存在预设对应关系;在上述第一多路调谐电路的任一调谐支路与上述第一开关连通,且上述存在预设对应关系的第二多路调谐电路的调谐支路与上述第二开关连通时,上述第一天线部分的工作共振频率和上述第二天线部分的工作共振频率的差值小于设定阈值。
在一些可选的实施例中,处理器960用于获取上述第一多路调谐电路中与上述第一开关连通的调谐支路的第一标识;然后根据存储器920中存储的上述第一标识和上述预设对应关系,获得与上述第一标识对应的上述第二多路调谐电路中调谐支路的第二标识;并控制上述第二开关连通上述第二多路调谐电路中上述第二标识对应的调谐支路。
在一些可选的实施例中,各上述调谐支路为开路,或者由电感元件和/或电容元件串联/并联组成。
在一些可选的实施例中,第一连接点与上述第一天线的开路端的距离小于等于
上述第一连接点为上述第一开关与上述第一天线的连接点;第二连接点与上述第二天线的开路端的距离小于等于
上述第二连接点为上述第二开关与上述第二天线的连接点;上述c为电磁波在空气中传播时的波速,上述fm1为上述第一天线部分的最大工作共振频率,上述fm2为上述第二天线部分的最大工作共振频率。
在一些可选的实施例中,上述第一天线的长度和上述第二天线的长度的差值小于设定差值。
可见,在本公开实施例中,通过对称分布的第一天线部分和第二天线部分同时工作,且工作共振频率接近或相等,使得天线能量更均匀地分布于天 线两侧,而无需根据移动终端的实际使用场景进行左右天线切换,避免了移动终端天线在改善左右头手性能时左右天线切换不灵敏或者适应性差的问题,达到了平衡天线左右头手功能的技术效果。
因为在本公开实施例的可选方式中,可以通过开关切换不同的调谐支路,可以有效的改变上述第一天线部分或第二天线部分的工作共振频率,从而实现宽频带覆盖;可以根据预设对应关系自动调节上述第一天线部分或第二天线部分,使得在改变工作共振频率时仍能自动保证天线左右头手性能的均衡。
因为在本公开实施例的可选方式中,可以通过不同电路元件组成各调谐支路,便于调整各调谐支路对应的天线部分的可工作的工作共振频率。
因为在本公开实施例的可选方式中,对开关与对应天线开路端的距离进行限定,可以使得对应天线部分工作于最大工作共振频率,避免出现控制缺陷。
因为在本公开实施例的可选方式中,对第一天线和第二天线的长度进行限定,避免了低频时左右头手性能差距大,均衡效果差的问题。
本领域普通技术人员可以意识到,结合本公开实施例中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
Claims (10)
- 一种天线控制系统,包括:天线、控制模块;所述天线包括:对称分布的第一天线部分和第二天线部分;所述第一天线部分和所述第二天线部分分别具有多种工作状态,对应多种工作共振频率;所述控制模块包括:天线工作状态获取子模块,用于获取所述第一天线部分的第一工作状态;控制子模块,用于根据所述第一工作状态,调整所述第二天线部分的第二工作状态,使得所述第一天线部分的工作共振频率和所述第二天线部分的工作共振频率的差值小于设定阈值。
- 根据权利要求1所述的系统,其中,所述第一天线部分由第一天线、第一开关、第一多路调谐电路串联组成;所述第二天线部分由第二天线、第二开关、第二多路调谐电路串联组成;所述第一多路调谐电路和所述第二多路调谐电路分别由多路调谐支路并列组成;所述第一多路调谐电路的多路调谐支路与所述第二多路调谐电路的多路调谐支路之间存在预设对应关系;在所述第一多路调谐电路的任一调谐支路与所述第一开关连通,且所述存在预设对应关系的第二多路调谐电路的调谐支路与所述第二开关连通时,所述第一天线部分的工作共振频率和所述第二天线部分的工作共振频率的差值小于设定阈值。
- 根据权利要求2所述的系统,其中,其中,所述天线工作状态获取子模块包括:第一标识获取单元,用于获取所述第一多路调谐电路中与所述第一开关连通的调谐支路的第一标识;则所述控制子模块包括:第二标识获取单元,用于根据所述第一标识和所述预设对应关系,获得与所述第一标识对应的所述第二多路调谐电路中调谐支路的第二标识;开关控制单元,用于控制所述第二开关连通所述第二多路调谐电路中所述第二标识对应的调谐支路。
- 根据权利要求2所述的系统,其中,各所述调谐支路为开路,或者由 电感元件和/或电容元件串联/并联组成。
- 根据权利要求2所述的系统,其中,所述第一天线的长度和所述第二天线的长度的差值小于设定差值。
- 一种天线控制方法,包括:对称分布的第一天线部分和第二天线部分;所述第一天线部分和所述第二天线部分分别具有多种工作状态,对应多种工作共振频率;则所述方法包括:获取所述第一天线部分的第一工作状态;根据所述第一工作状态,调整所述第二天线部分的第二工作状态,使得所述第一天线部分的工作共振频率和所述第二天线部分的工作共振频率的差值小于设定阈值。
- 根据权利要求7所述的方法,其中,所述第一天线部分由第一天线、第一开关、第一多路调谐电路串联组成;所述第二天线部分由第二天线、第二开关、第二多路调谐电路串联组成;所述第一多路调谐电路和所述第二多路调谐电路分别由多路调谐支路并列组成;所述第一多路调谐电路的多路调谐支路与所述第二多路调谐电路的多路调谐支路之间存在预设对应关系;在所述第一多路调谐电路的任一调谐支路与所述第一开关连通,且所述存在预设对应关系的第二多路调谐电路的调谐支路与所述第二开关连通时,所述第一天线部分的工作共振频率和所述第二天线部分的工作共振频率的差值小于设定阈值。
- 根据权利要求8所述的方法,其中,其中,所述获取所述第一天线部分的第一工作状态的步骤包括:获取所述第一多路调谐电路中与所述第一开关连通的调谐支路的第一标 识;则所述根据所述第一工作状态,调整所述第二天线部分的第二工作状态,使得所述第一天线部分的工作共振频率和所述第二天线部分的工作共振频率的差值小于设定阈值的步骤包括:根据所述第一标识和所述预设对应关系,获得与所述第一标识对应的所述第二多路调谐电路中调谐支路的第二标识;控制所述第二开关连通所述第二多路调谐电路中所述第二标识对应的调谐支路。
- 一种移动终端,包括上述权利要求1-6中任一所述的天线控制系统。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/499,613 US11367950B2 (en) | 2017-03-31 | 2018-03-30 | Antenna control system, method and mobile terminal |
ES18777189T ES2867396T3 (es) | 2017-03-31 | 2018-03-30 | Sistema y método de control de antena y terminal móvil |
EP18777189.4A EP3605731B1 (en) | 2017-03-31 | 2018-03-30 | Antenna control system and method and mobile terminal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710209662.3A CN106921041B (zh) | 2017-03-31 | 2017-03-31 | 一种天线控制系统、方法及移动终端 |
CN201710209662.3 | 2017-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018177412A1 true WO2018177412A1 (zh) | 2018-10-04 |
Family
ID=59568717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/081334 WO2018177412A1 (zh) | 2017-03-31 | 2018-03-30 | 一种天线控制系统、方法及移动终端 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11367950B2 (zh) |
EP (1) | EP3605731B1 (zh) |
CN (1) | CN106921041B (zh) |
ES (1) | ES2867396T3 (zh) |
WO (1) | WO2018177412A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106921041B (zh) * | 2017-03-31 | 2020-09-25 | 维沃移动通信有限公司 | 一种天线控制系统、方法及移动终端 |
CN111076707B (zh) * | 2018-10-22 | 2022-09-27 | 中国移动通信有限公司研究院 | 一种天线姿态测量方法、装置、系统和存储介质 |
CN111130591B (zh) * | 2018-10-30 | 2022-02-15 | Oppo(重庆)智能科技有限公司 | 天线调谐方法、天线调谐装置及终端设备 |
CN110048756A (zh) * | 2019-04-24 | 2019-07-23 | 闽江学院 | 一种改善移动通信终端手握性能的天线方法 |
CN113193332B (zh) * | 2021-04-29 | 2024-08-16 | 维沃移动通信有限公司 | 天线激励功率的调整方法及电子设备 |
CN113395084B (zh) * | 2021-06-11 | 2022-09-16 | 维沃移动通信有限公司 | 天线切换方法、装置和电子设备 |
CN114464984A (zh) * | 2022-03-04 | 2022-05-10 | Oppo广东移动通信有限公司 | 一种天线装置及电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203466294U (zh) * | 2013-08-22 | 2014-03-05 | 深圳富泰宏精密工业有限公司 | 可调式天线及具有该可调式天线的无线通信装置 |
CN203984424U (zh) * | 2014-07-21 | 2014-12-03 | 联想(北京)有限公司 | 无线终端 |
CN105656509A (zh) * | 2014-11-14 | 2016-06-08 | 联想(北京)有限公司 | 一种控制方法及电子设备 |
US9369187B1 (en) * | 2015-04-21 | 2016-06-14 | Amazon Technologies, Inc. | Antenna switching in an antenna system |
CN106033840A (zh) * | 2015-03-16 | 2016-10-19 | 联想(北京)有限公司 | 天线装置、用于其的控制方法和电子设备 |
CN106921041A (zh) * | 2017-03-31 | 2017-07-04 | 维沃移动通信有限公司 | 一种天线控制系统、方法及移动终端 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE433606T1 (de) * | 2002-11-20 | 2009-06-15 | Nokia Corp | Abstimmbare antennenanordung |
CN101167215A (zh) * | 2005-04-27 | 2008-04-23 | Nxp股份有限公司 | 具有适合工作在多个频带上的天线配置的无线电设备 |
CN201616502U (zh) * | 2009-12-21 | 2010-10-27 | 普尔思(苏州)无线通讯产品有限公司 | 天线 |
US8531344B2 (en) | 2010-06-28 | 2013-09-10 | Blackberry Limited | Broadband monopole antenna with dual radiating structures |
CN102623791A (zh) * | 2011-01-28 | 2012-08-01 | 深圳富泰宏精密工业有限公司 | 通讯设备及其天线特性调整方法 |
KR101357724B1 (ko) * | 2011-12-29 | 2014-02-03 | 주식회사 바켄 | 다중 대역 안테나 장치 |
US9178270B2 (en) * | 2012-05-17 | 2015-11-03 | Futurewei Technologies, Inc. | Wireless communication device with a multiband antenna, and methods of making and using thereof |
US20140015719A1 (en) * | 2012-07-13 | 2014-01-16 | Pulse Finland Oy | Switched antenna apparatus and methods |
US9466872B2 (en) * | 2012-11-09 | 2016-10-11 | Futurewei Technologies, Inc. | Tunable dual loop antenna system |
CN103915675A (zh) * | 2013-01-05 | 2014-07-09 | 华为终端有限公司 | 天线装置 |
US10141655B2 (en) * | 2014-02-25 | 2018-11-27 | Ethertronics, Inc. | Switch assembly with integrated tuning capability |
CN104022354B (zh) * | 2014-06-18 | 2017-04-05 | 广东工业大学 | 窄间距的低sar高隔离的mimo天线 |
CN104577340B (zh) * | 2014-12-31 | 2017-07-04 | 上海新微技术研发中心有限公司 | 多波段可调天线和无线通信装置 |
CN106486771A (zh) * | 2015-08-28 | 2017-03-08 | 中兴通讯股份有限公司 | 多频带微线条天线 |
CN105826652B (zh) * | 2015-11-02 | 2018-10-16 | 维沃移动通信有限公司 | 一种移动终端的天线装置和移动终端 |
CN105826685B (zh) * | 2015-11-06 | 2017-10-13 | 维沃移动通信有限公司 | 一种天线系统、终端及射频信号的控制方法 |
CN105826654B (zh) | 2016-04-29 | 2017-10-27 | 维沃移动通信有限公司 | 一种移动终端、应用于移动终端的天线切换方法及装置 |
KR20170136292A (ko) * | 2016-06-01 | 2017-12-11 | 엘지전자 주식회사 | 이동 단말기 |
CN106252888A (zh) * | 2016-07-29 | 2016-12-21 | 宇龙计算机通信科技(深圳)有限公司 | 一种天线系统、终端和天线频段调整方法 |
US11289811B2 (en) * | 2017-08-24 | 2022-03-29 | Mediatek Inc. | Closed-loop antenna with multiple grounding points |
CN109088152B (zh) * | 2018-08-03 | 2020-11-20 | 瑞声科技(南京)有限公司 | 天线系统及移动终端 |
-
2017
- 2017-03-31 CN CN201710209662.3A patent/CN106921041B/zh active Active
-
2018
- 2018-03-30 WO PCT/CN2018/081334 patent/WO2018177412A1/zh active Application Filing
- 2018-03-30 ES ES18777189T patent/ES2867396T3/es active Active
- 2018-03-30 US US16/499,613 patent/US11367950B2/en active Active
- 2018-03-30 EP EP18777189.4A patent/EP3605731B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203466294U (zh) * | 2013-08-22 | 2014-03-05 | 深圳富泰宏精密工业有限公司 | 可调式天线及具有该可调式天线的无线通信装置 |
CN203984424U (zh) * | 2014-07-21 | 2014-12-03 | 联想(北京)有限公司 | 无线终端 |
CN105656509A (zh) * | 2014-11-14 | 2016-06-08 | 联想(北京)有限公司 | 一种控制方法及电子设备 |
CN106033840A (zh) * | 2015-03-16 | 2016-10-19 | 联想(北京)有限公司 | 天线装置、用于其的控制方法和电子设备 |
US9369187B1 (en) * | 2015-04-21 | 2016-06-14 | Amazon Technologies, Inc. | Antenna switching in an antenna system |
CN106921041A (zh) * | 2017-03-31 | 2017-07-04 | 维沃移动通信有限公司 | 一种天线控制系统、方法及移动终端 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3605731A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20200044330A1 (en) | 2020-02-06 |
EP3605731B1 (en) | 2021-03-03 |
CN106921041B (zh) | 2020-09-25 |
ES2867396T3 (es) | 2021-10-20 |
EP3605731A4 (en) | 2020-03-11 |
CN106921041A (zh) | 2017-07-04 |
US11367950B2 (en) | 2022-06-21 |
EP3605731A1 (en) | 2020-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018177412A1 (zh) | 一种天线控制系统、方法及移动终端 | |
AU2023200001B2 (en) | Electronic device with metal frame antenna | |
KR102226173B1 (ko) | 외부 금속 프레임을 이용한 안테나 및 이를 구비한 전자 장치 | |
WO2018233420A1 (zh) | 一种天线电路及移动终端 | |
CN104752831B (zh) | 无线通信装置及其天线切换系统 | |
KR102175750B1 (ko) | 안테나 장치 및 이를 구비하는 전자 장치 | |
KR102178485B1 (ko) | 안테나 장치 및 그것을 포함하는 전자 장치 | |
KR102151056B1 (ko) | 안테나 및 이를 구비한 전자 장치 | |
CN109119758B (zh) | 天线组件和电子设备 | |
US10403960B2 (en) | System and method for antenna optimization | |
WO2018177413A1 (zh) | 一种移动终端和天线连接方法 | |
KR20140130785A (ko) | 다중 대역 안테나 장치 및 다중 대역 안테나를 포함하는 무선 통신 장치 | |
WO2018233421A1 (zh) | 一种天线电路及移动终端 | |
US10665937B2 (en) | Antenna system and wireless communication device having a secondary conductive structure which extends into an area forming a loop | |
CN107483694B (zh) | 一种天线控制方法和移动终端 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18777189 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018777189 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018777189 Country of ref document: EP Effective date: 20191031 |