WO2018177223A1 - 资源配置、确定部分带宽及指示部分带宽的方法及设备 - Google Patents

资源配置、确定部分带宽及指示部分带宽的方法及设备 Download PDF

Info

Publication number
WO2018177223A1
WO2018177223A1 PCT/CN2018/080331 CN2018080331W WO2018177223A1 WO 2018177223 A1 WO2018177223 A1 WO 2018177223A1 CN 2018080331 W CN2018080331 W CN 2018080331W WO 2018177223 A1 WO2018177223 A1 WO 2018177223A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
base station
terminal device
indication information
partial
Prior art date
Application number
PCT/CN2018/080331
Other languages
English (en)
French (fr)
Inventor
李新县
黄雯雯
唐浩
唐臻飞
栗忠峰
周国华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18775061.7A priority Critical patent/EP3585118B1/en
Publication of WO2018177223A1 publication Critical patent/WO2018177223A1/zh
Priority to US16/580,927 priority patent/US11184139B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present invention relate to the field of data communications technologies, and in particular, to a resource configuration, a method for determining a part of bandwidth, and a method for indicating a part of bandwidth.
  • the Long Term Evolution (LTE) system standard developed by the 3rd Generation Partnership Project (3GPP) is considered to be the fourth generation wireless access system standard.
  • the basic unit in the frequency domain is one sub-carrier.
  • the uplink and downlink subcarrier spacing are both 15 kHz.
  • the base station configures a system bandwidth through the MIB.
  • the system bandwidth can be understood as a carrier bandwidth, and the base station and the UE can perform data transmission on the full bandwidth of the carrier bandwidth.
  • next generation of communication systems such as the New Radio (NR) system, or the fifth generation (5G) wireless access system
  • NR New Radio
  • 5G fifth generation
  • Multiple seed carrier spacing that is, one user equipment can support multiple subcarrier spacings, and different user equipments can also use different or the same subcarrier spacing.
  • For a carrier bandwidth with multiple subcarrier spacings how to configure resources, how to determine part of the bandwidth, and how to indicate part of the bandwidth is an urgent problem to be solved.
  • Embodiments of the present application provide a resource configuration, a method for determining a partial bandwidth, and a method for indicating a partial bandwidth, for indicating a partial bandwidth.
  • a method of resource configuration is provided, which can be applied to a base station.
  • the base station determines, according to a mapping relationship between the carrier bandwidth and the subcarrier spacing, a first subcarrier spacing for resource configuration in the first carrier bandwidth; wherein, mapping between the carrier bandwidth and the subcarrier spacing The relationship includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is different from the second subcarrier spacing, and then, the base station determines according to the determined A subcarrier interval performs resource configuration to the terminal device.
  • the base station is pre-configured with a mapping relationship between the carrier bandwidth and the sub-carrier spacing, where the mapping relationship includes multiple different sub-carrier spacings, and the base station may select an appropriate sub-carrier spacing according to the carrier bandwidth to perform resource configuration.
  • the carrier bandwidth of the base station is set to be the first carrier bandwidth, and the base station determines the subcarrier spacing used for resource configuration in the first carrier bandwidth according to the pre-configured mapping relationship, thereby avoiding using a small sub-carrier under a large carrier bandwidth.
  • the carrier interval is used to perform signaling overhead caused by resource configuration, thereby reducing the signaling overhead required for resource configuration.
  • the subcarrier spacing used by the terminal device in resource configuration may be implicitly or displayed.
  • the first carrier bandwidth belongs to the first carrier bandwidth interval
  • the subcarrier spacing used for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier interval.
  • the mapping relationship between the carrier bandwidth and the subcarrier spacing may be a mapping relationship between a carrier bandwidth interval and a subcarrier interval, where a carrier bandwidth interval includes multiple carrier bandwidths or carrier bandwidths and subcarriers.
  • the mapping relationship of the interval may be a mapping relationship between a carrier bandwidth and a subcarrier spacing.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the multiple subcarrier spacing includes the first subcarrier spacing.
  • the supported subcarrier spacing in the carrier bandwidth is a finite set, so that the mapping relationship between the carrier bandwidth and the subcarrier spacing may be one carrier bandwidth corresponding to one subcarrier spacing.
  • the set, when determining the subcarrier spacing the base station may determine from the corresponding subcarrier spacing set according to actual conditions, for example, to minimize the signaling overhead, select the largest subcarrier spacing from the subcarrier spacing set; or according to the actual The service type selects the appropriate subcarrier spacing so that the subcarrier spacing can be flexibly configured.
  • a method of determining a portion of a bandwidth is provided, the method being applicable to a base station.
  • the base station determines a partial bandwidth according to a mapping relationship between the first carrier bandwidth and the first partial bandwidth set and/or a mapping relationship between the capability bandwidth of the terminal device and the second partial bandwidth set, where the first partial bandwidth
  • the plurality of partial bandwidths included in the first partial bandwidth set include a part of the bandwidth determined by the base station, and the second partial bandwidth set includes a plurality of partial bandwidths, and the second part
  • the plurality of partial bandwidths included in the bandwidth set include a partial bandwidth determined by the base station; after the base station determines the partial bandwidth, the base station sends first indication information to the terminal device, where the first indication information is used to indicate the base station Determine the partial bandwidth.
  • the base station is pre-configured with a mapping relationship between a carrier bandwidth and a partial bandwidth set and/or a mapping relationship between a capability bandwidth of the terminal device and a partial bandwidth set, where the mapping relationship may include a carrier bandwidth and a partial bandwidth set.
  • the mapping relationship includes a mapping relationship between the capability bandwidth of the terminal device and the partial bandwidth set or includes two mapping relationships, where the mapping relationship between the carrier bandwidth and the partial bandwidth set includes multiple carrier bandwidths, where each carrier The bandwidth corresponds to a partial bandwidth set; the mapping between the capability bandwidth of the terminal device and the partial bandwidth set includes the capability bandwidth of multiple terminal devices, and each of the terminal devices has a partial bandwidth set corresponding to the capability bandwidth.
  • the partial bandwidth set includes a plurality of partial bandwidths, so that a plurality of partial bandwidths are pre-configured for different carrier bandwidths and different capability bandwidths of the terminal devices, and the base station determines the partial bandwidth according to the pre-configured mapping relationship.
  • the base station can determine the bandwidth from the multiple parts, which is beneficial for the base station to adaptively adjust part of the bandwidth according to actual requirements, such as adjusting part of the bandwidth according to different service types.
  • the method further includes: the base station receiving the second indication information sent by the terminal device; wherein the second indication information is used to indicate the capability bandwidth of the terminal device.
  • the capability bandwidth of the terminal device represents the maximum part of the bandwidth that the terminal device can support.
  • the base station may acquire the capability bandwidth that the terminal device can support through RRC signaling, or acquire the capability that the terminal device can support in the random access process established with the terminal device.
  • the bandwidth is then indicated in a different way depending on the acquisition method. If the base station obtains the capability bandwidth of the terminal device by using the preamble information sent by the terminal device, the base station may indicate the determined partial bandwidth by using the RAR; the base station acquires the capability bandwidth of the terminal device by using the MSG3 of the random access procedure, and then the base station may determine by using the MSG4 indication. Part of the bandwidth, so that the base station can flexibly adjust the indication mode.
  • the base station determines a part of the bandwidth of the terminal device according to the mapping relationship between the first carrier bandwidth and the first partial bandwidth set, including: determining, by the base station, part of the bandwidth of the terminal device from the first partial bandwidth set, where The part of the bandwidth of the terminal device is less than or equal to the capability bandwidth of the terminal device and a smaller value of the first carrier bandwidth.
  • the carrier bandwidth of the base station is set to be the first carrier bandwidth
  • the base station corresponds to the first carrier bandwidth according to the capability bandwidth of the terminal device.
  • part of the bandwidth of the terminal device is determined, so that part of the bandwidth of the terminal device can be adapted to the carrier bandwidth and the capability of the terminal device, respectively.
  • the base station determines a part of the bandwidth of the terminal device according to the mapping relationship between the capability bandwidth of the terminal device and the second part of the bandwidth set, and the base station determines that the bandwidth of any part of the second part of the bandwidth set is the terminal. Part of the bandwidth of the device.
  • the base station may Select one of the two partial bandwidth sets as the partial bandwidth of the terminal device. Thereby, part of the bandwidth of the terminal device can be adapted to the capabilities of the terminal device.
  • the base station sends the first indication information to the terminal device, where the base station sends the third indication information to the terminal device, where the third indication information is used to indicate to the terminal device that the partial bandwidth is in the first carrier bandwidth.
  • the frequency domain location, the partial bandwidth is composed of a plurality of partial bandwidth units; and the base station sends the fourth indication information to the terminal device; wherein the fourth indication information is used to indicate the frequency domain location of the physical resource block scheduled in the partial bandwidth.
  • the third indication information and the fourth indication information are sent to the terminal device, where the third indication information is used to indicate that part of the bandwidth of the terminal device is in the carrier.
  • the frequency domain location in the bandwidth but when the base station transmits data to the terminal device, part of the bandwidth may not be used at all. Therefore, the fourth indication information is also needed to indicate the frequency domain of the physical resource block scheduled in the partial bandwidth. position.
  • the third indication information and the fourth indication information may be included in the same signaling, or may be separately sent in two separate transmissions.
  • the third indication information may be a valid value of each frequency domain position in the RIV value or the bit mapping manner; if part of the bandwidth is in the frequency domain position in the carrier bandwidth
  • the third indication information may be an r value in a manner of assigning type 1 to the uplink resource or a valid value of each frequency domain position in the bit mapping manner. Therefore, part of the bandwidth of the terminal device is composed of several partial bandwidth units, and part of the bandwidth unit is used to flexibly indicate part of the bandwidth.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • a part of the bandwidth unit may be determined according to an actual situation. For example, in a method for indicating user resource allocation in two levels, when a resource block specifically scheduled in the part of the bandwidth is indicated, the resource block group is used as a scheduling unit, In order to be more compatible with the second step of resource allocation, the resource block group is selected as a partial bandwidth unit, thereby obtaining different degrees of flexibility by adopting partial bandwidth units of different granularities.
  • the third indication information is carried in a resource location of a common search space of the control channel or a resource location of the terminal device-specific search space, and the part of the bandwidth is in a frequency domain position in the first carrier bandwidth.
  • the frequency domain location in the first carrier bandwidth does not overlap with the resource of the common search space, and the frequency domain location of the partial bandwidth in the first carrier bandwidth and the resource of the terminal device-specific search space are The frequency domain location in the first carrier bandwidth does not overlap, and the base station sends the third indication information to the terminal device, where the base station sends the third indication information to the terminal device through the control channel in the first time domain location;
  • the method further includes: the base station transmitting data to the terminal device by using the determined partial bandwidth in the second time domain location.
  • the frequency domain location indicated in the third indication information may not overlap with the resource location of the common search space or the resource location of the UE-specific search space, so that the frequency domain location of the third indication information is sent and the terminal device actually The frequency domain location of the received data is different.
  • the terminal device needs to switch the frequency domain location when receiving the data sent by the base station.
  • the base station sends the third indication information in the time domain position. A certain time domain location sends data to the terminal device. Therefore, it can effectively ensure that the terminal receives the data in the time domain location where the base station transmits data, and ensures the integrity of the received data.
  • the fourth indication information is carried in a resource location of a common search space of the control channel or a resource location of the terminal device-specific search space, and the frequency domain location of the partial bandwidth in the first carrier bandwidth is The resources of the common search space do not overlap in the frequency domain position in the first carrier bandwidth, and the frequency domain location of the partial bandwidth in the first carrier bandwidth and the resource of the terminal device-specific search space are in the The frequency domain location in a carrier bandwidth does not overlap, and the base station sends the fourth indication information to the terminal device, where the base station sends the fourth indication information to the terminal device through the control channel in the first time domain location, and sends the fourth indication information to the terminal device in the base station.
  • the method further includes: the base station transmitting data to the terminal device by using the determined partial bandwidth in the second time domain location.
  • the frequency domain location indicated in the fourth indication information may not overlap with the resource location of the common search space or the resource location of the UE-specific search space, so that the frequency domain location of the fourth indication information is sent and the terminal device actually The frequency domain location of the received data is different.
  • the terminal device needs to switch the frequency domain location when receiving the data sent by the base station.
  • the base station sends the time domain location of the fourth indication information. A certain time domain location sends data to the terminal device. Therefore, it can effectively ensure that the terminal receives the data in the time domain location where the base station transmits data, and ensures the integrity of the received data.
  • the first time domain location and the second time domain location are located in one scheduling unit in the time domain, and the last orthogonal frequency division multiplexing OFDM symbol and the second included in the first time domain location
  • the first OFDM symbols included in the time domain location are separated by M OFDM symbols, and M is an integer greater than or equal to 1.
  • the time domain location difference between the first time domain location of the second indication information and the second time domain location when the data is sent may be set to one or more OFDM symbols, such as two symbols.
  • the base station after determining, by the base station, the common search space resource location or the symbol number occupied by the UE-specific search space resource location in the time domain, the base station can accurately determine the starting position of the data channel in the time domain, thereby facilitating the improvement of the base station and the terminal. The accuracy of the device for data interaction.
  • the method before the base station sends the first indication information to the terminal device, the method further includes: determining, by the base station, the resource in the first carrier bandwidth according to the mapping relationship between the carrier bandwidth and the subcarrier spacing. a first subcarrier spacing configured, wherein the mapping relationship between the carrier bandwidth and the subcarrier spacing includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, The first subcarrier spacing is different from the second subcarrier spacing; the base station determines, according to the determined first subcarrier spacing, a frequency domain location of a partial bandwidth of the terminal device in the first carrier bandwidth.
  • the base station is pre-configured with a mapping relationship between a carrier bandwidth and a subcarrier spacing, where the mapping relationship includes multiple different subcarrier spacings, and for multiple base stations having different carrier bandwidths, each The base station can select the appropriate sub-carrier spacing according to its own carrier bandwidth to perform resource configuration, thereby avoiding the signaling overhead caused by resource allocation using small sub-carrier spacing under a large carrier bandwidth, thereby reducing resource allocation. Signaling overhead.
  • the subcarrier spacing used by the terminal device when determining the frequency domain location may be implicitly indicated.
  • the first carrier bandwidth belongs to the first carrier bandwidth interval
  • the subcarrier spacing used for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier interval.
  • the mapping relationship between the carrier bandwidth and the subcarrier spacing may be a mapping relationship between a carrier bandwidth interval and a subcarrier spacing, where a carrier bandwidth interval includes multiple carrier bandwidths, thereby reducing the mapping relationship.
  • the amount of information reduces the load on the base station.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the multiple subcarrier spacing includes the first subcarrier spacing.
  • the supported subcarrier spacing in the carrier bandwidth is a finite set, so that the mapping relationship between the carrier bandwidth and the subcarrier spacing may be one carrier bandwidth corresponding to one subcarrier spacing.
  • the set, when determining the subcarrier spacing the base station may determine from the corresponding subcarrier spacing set according to actual conditions, for example, to minimize the signaling overhead, select the largest subcarrier spacing from the subcarrier spacing set; or according to the actual The service type selects the appropriate subcarrier spacing so that the subcarrier spacing can be flexibly configured.
  • a method of indicating a partial bandwidth is provided, which method can be applied to a base station.
  • the base station after determining the partial bandwidth of the terminal device, the base station sends the first indication information to the terminal device, where the first indication information is used to indicate to the terminal device that the determined partial bandwidth is in the frequency domain of the first carrier bandwidth.
  • the location, the partial bandwidth is composed of a plurality of partial bandwidth units; then, the base station sends the second indication information to the terminal device; wherein the second indication information is used to indicate the frequency domain location of the physical resource block scheduled in the partial bandwidth.
  • the base station determines that part of the bandwidth of the terminal device may be determined according to the preset bandwidth value, or may be a mapping relationship between the carrier bandwidth and the partial bandwidth set, and/or a capability bandwidth of the terminal device and a partial bandwidth set. The mapping relationship between the two is determined.
  • the first indication information and the second indication information are sent to the terminal device, where the first indication information is used to indicate that the partial bandwidth of the terminal device is in the frequency domain position in the carrier bandwidth. A series of bits, but part of the bandwidth may not be used at all.
  • the second indication information is also required to indicate the frequency domain position of the physical resource block in which the base station transmits data to the terminal device in a part of the bandwidth.
  • the first indication information and the second indication information may be included in the same signaling, or may be separately sent in two separate transmissions. If the first indication information is a valid value of each frequency domain location in the RIV value or the bit mapping manner, the partial bandwidth is continuously distributed in the frequency domain position in the carrier bandwidth; the first indication information may be uplink resource allocation.
  • the r value in the mode of type 1 or the effective value of each frequency domain position in the bit mapping mode to show that the partial bandwidth is discontinuously distributed in the frequency domain position in the carrier bandwidth. Therefore, part of the bandwidth of the terminal device is composed of several partial bandwidth units, and part of the bandwidth unit is used to flexibly indicate part of the bandwidth.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • a part of the bandwidth unit may be determined according to an actual situation. For example, in a method for indicating user resource allocation in two levels, when a resource block specifically scheduled in the part of the bandwidth is indicated, the resource block group is used as a scheduling unit, In order to be more compatible with the second step of resource allocation, the resource block group is selected as a partial bandwidth unit, thereby obtaining different degrees of flexibility by adopting partial bandwidth units of different granularities.
  • the first indication information is carried in a resource of a common search space of the control channel or in a resource of the terminal device-specific search space, and a frequency bandwidth location and a common search of the partial bandwidth in the first carrier bandwidth
  • the frequency domain locations of the resources in the first carrier bandwidth do not overlap, and the frequency domain locations of the partial bandwidths in the first carrier bandwidth do not overlap with the frequency domain locations of the resources in the terminal device-specific search space in the first carrier bandwidth.
  • the base station sends the first indication information to the terminal device, where the base station sends the first indication information to the terminal device by using the control channel in the first time domain location. After the base station sends the first indication information to the terminal device, the method further includes: Transmitting data to the terminal device through the determining portion of the bandwidth at the second time domain location.
  • the frequency domain location indicated in the first indication information may not overlap with the common search space resource location of the control channel or the UE-specific search space resource location, so that the frequency domain location of the first indication information and the terminal device are sent.
  • the frequency domain location of the actual received data is different.
  • the terminal device needs to switch the frequency domain location when receiving the data sent by the base station.
  • the base station sends the first indication information in the time domain location.
  • the latter time domain location sends data to the terminal device. Therefore, it can effectively ensure that the terminal receives the data in the time domain location where the base station transmits data, and ensures the integrity of the received data.
  • the second indication information is carried in a resource of a common search space of the control channel or in a resource of the terminal device-specific search space, and a frequency bandwidth location and a common search of the partial bandwidth in the first carrier bandwidth
  • the frequency domain locations of the resources in the first carrier bandwidth do not overlap, and the frequency domain locations of the partial bandwidths in the first carrier bandwidth do not overlap with the frequency domain locations of the resources in the terminal device-specific search space in the first carrier bandwidth.
  • the base station sends the first indication information to the terminal device, where the base station sends the second indication information to the terminal device by using the control channel in the first time domain location.
  • the method further includes: Transmitting data to the terminal device through the determining portion of the bandwidth at the second time domain location.
  • the frequency domain location indicated in the second indication information may not overlap with the common search space resource location of the control channel or the UE-specific search space resource location, so that the frequency domain location of the second indication information and the terminal device are sent.
  • the frequency domain location of the actual received data is different.
  • the terminal device needs to switch the frequency domain location when receiving the data sent by the base station.
  • the base station sends the second indication information in the time domain location.
  • the latter time domain location sends data to the terminal device. Therefore, it can effectively ensure that the terminal receives the data in the time domain location where the base station transmits data, and ensures the integrity of the received data.
  • the first time domain location and the second time domain location are located in one scheduling unit in the time domain, and the last OFDM symbol included in the first time domain location and the second time domain location are included
  • the first Orthogonal Frequency Division Multiplexing OFDM symbol is separated by M OFDM symbols, and M is an integer greater than or equal to 1.
  • the time domain location difference between the first time domain location of the second indication information and the second time domain location when the data is sent may be set to one or more OFDM symbols, such as two symbols.
  • the base station after determining, by the base station, the common search space resource location or the symbol number occupied by the UE-specific search space resource location in the time domain, the base station can accurately determine the starting position of the data channel in the time domain, thereby facilitating the improvement of the base station and the terminal. The accuracy of the device for data interaction.
  • the method before the base station sends the first indication information to the terminal device, the method further includes: the base station according to the mapping relationship between the first carrier bandwidth and the first partial bandwidth set and/or the capability bandwidth of the terminal device
  • the second part of the bandwidth set includes a plurality of partial bandwidths, where the first partial bandwidth set includes the determined partial bandwidth, and the second partial bandwidth set includes multiple Part of the bandwidth, the second part of the bandwidth set includes the determined partial bandwidth.
  • the base station is pre-configured with a mapping relationship between a carrier bandwidth and a partial bandwidth set and/or a mapping relationship between a capability bandwidth of the terminal device and a partial bandwidth set.
  • the mapping relationship between the carrier bandwidth and the partial bandwidth set may include the mapping relationship between the capability bandwidth of the terminal device and the partial bandwidth set or include two mapping relationships, where the mapping between the carrier bandwidth and the partial bandwidth set is performed.
  • the relationship includes multiple carrier bandwidths, each of which has a partial bandwidth set; the mapping between the capability bandwidth of the terminal device and the partial bandwidth set includes the capability bandwidth of multiple terminal devices, where The capability bandwidth of each terminal device corresponds to a partial bandwidth set, and a part of the bandwidth set includes multiple partial bandwidths, thereby pre-configuring a plurality of partial bandwidths for different carrier bandwidths and different terminal device capability bandwidths.
  • a part of the bandwidth is determined, it is determined according to the pre-configured mapping relationship, thereby solving the problem of adaptively selecting part of the bandwidth of different carrier bandwidths or different UE capabilities, and improving the flexibility of determining part of the bandwidth of the terminal device.
  • the base station can determine the bandwidth from the multiple parts, which is beneficial for the base station to adaptively adjust part of the bandwidth according to actual requirements, such as adjusting part of the bandwidth according to different service types.
  • the method before the base station determines the part of the bandwidth, the method further includes: the base station receiving the third indication information sent by the terminal device; wherein the third indication information is used to indicate the capability bandwidth of the terminal device.
  • the base station may obtain the capability bandwidth of the terminal device through RRC signaling, or obtain the capability bandwidth of the terminal device in the random access process established with the terminal device, and then according to Different ways of obtaining different parts of the bandwidth are indicated in different ways. If the base station obtains the capability bandwidth of the terminal device by using the preamble information sent by the terminal device, the base station may indicate the determined partial bandwidth by using the RAR; the base station acquires the capability bandwidth of the terminal device by using the MSG3 of the random access procedure, and then the base station may determine by using the MSG4 indication. Part of the bandwidth, so that the base station can flexibly adjust the indication mode.
  • the base station determines a part of the bandwidth of the terminal device according to the mapping relationship between the first carrier bandwidth and the first partial bandwidth set, including: determining, by the base station, part of the bandwidth of the terminal device from the first partial bandwidth set, where The bandwidth of the part is less than or equal to the capability bandwidth of the terminal device.
  • the carrier bandwidth of the base station is set to be the first carrier bandwidth
  • the base station corresponds to the first carrier bandwidth according to the capability bandwidth of the terminal device.
  • part of the bandwidth of the terminal device is determined, so that part of the bandwidth of the terminal device can be adapted to the carrier bandwidth and the capability of the terminal device, respectively.
  • the base station determines a part of the bandwidth of the terminal device according to the mapping relationship between the capability bandwidth of the terminal device and the second part of the bandwidth set, and the base station determines that the bandwidth of any part of the second part of the bandwidth set is the terminal. Part of the bandwidth of the device.
  • the base station may be the second Any part of the bandwidth is selected as part of the bandwidth of the terminal device. Thereby, part of the bandwidth of the terminal device can be adapted to the capabilities of the terminal device.
  • the method further includes: determining, by the base station, a first subcarrier spacing for resource configuration in a first carrier bandwidth according to a mapping relationship between a carrier bandwidth and a subcarrier spacing; wherein the mapping The relationship includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is different from the second subcarrier spacing; the base station is determined according to the first subcarrier.
  • the carrier spacing determines the frequency domain location of the portion of the bandwidth in the first carrier bandwidth.
  • the base station is pre-configured with a mapping relationship between a carrier bandwidth and a subcarrier interval, where the mapping relationship includes multiple different subcarrier spacings, and for multiple base stations having different carrier bandwidths, each The base station can select a suitable sub-carrier spacing according to its own carrier bandwidth to perform resource configuration, thereby avoiding the signaling overhead caused by resource allocation using a small sub-carrier spacing under a large carrier bandwidth, thereby reducing resource allocation. Signaling overhead.
  • the subcarrier spacing used by the terminal device in resource configuration can be implicitly indicated.
  • the first carrier bandwidth belongs to the first carrier bandwidth interval
  • the subcarrier spacing used for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier interval.
  • the mapping relationship between the carrier bandwidth and the subcarrier spacing may be a mapping relationship between a carrier bandwidth interval and a subcarrier spacing, where a carrier bandwidth interval includes multiple carrier bandwidths, thereby reducing the mapping relationship.
  • the amount of information reduces the load on the base station.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the multiple subcarrier spacing includes the first subcarrier spacing.
  • the supported subcarrier spacing in the carrier bandwidth is a finite set, so that the mapping relationship between the carrier bandwidth and the subcarrier spacing may be one carrier bandwidth corresponding to one subcarrier spacing.
  • the set, when determining the subcarrier spacing the base station may determine from the corresponding subcarrier spacing set according to actual conditions, for example, to minimize the signaling overhead, select the largest subcarrier spacing from the subcarrier spacing set; or according to the actual The service type selects the appropriate subcarrier spacing so that the subcarrier spacing can be flexibly configured.
  • a method for resource configuration is provided, and the method can be applied to a terminal device.
  • the terminal device determines, according to a mapping relationship between the carrier bandwidth and the subcarrier spacing, a first subcarrier spacing for resource configuration in the first carrier bandwidth, where the carrier bandwidth and the subcarrier spacing are The mapping relationship between the first carrier bandwidth and the first subcarrier spacing and the mapping relationship between the second carrier bandwidth and the second subcarrier spacing, the first subcarrier spacing and the second sub The carrier spacing is different, the first carrier bandwidth is a carrier bandwidth indicated by the base station to the terminal device; and then the terminal device determines, according to the determined first subcarrier interval, the resource allocated by the base station to the terminal device position.
  • the terminal device is pre-configured with a mapping relationship between a carrier bandwidth and a subcarrier interval, where the mapping relationship includes multiple different subcarrier spacings, and for multiple base stations having different carrier bandwidths, each The base station can select the appropriate subcarrier spacing according to its own carrier bandwidth to configure the resource, and set the carrier bandwidth of the base station to be the first carrier bandwidth, and the terminal device determines to use in the first carrier bandwidth according to the pre-configured mapping relationship.
  • the sub-carrier spacing of the resource configuration avoids the signaling overhead caused by resource allocation using a small sub-carrier spacing under a large carrier bandwidth, thereby reducing the signaling overhead required for resource configuration.
  • the terminal device can implicitly determine the subcarrier spacing used in resource configuration.
  • the first carrier bandwidth belongs to a first carrier bandwidth interval, and a subcarrier spacing for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier. Carrier spacing.
  • the mapping relationship between the carrier bandwidth and the subcarrier spacing may be a mapping relationship between a carrier bandwidth interval and a subcarrier spacing, where a carrier bandwidth interval includes multiple carrier bandwidths, thereby reducing the mapping relationship.
  • the amount of information reduces the load on the terminal equipment.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the first subcarrier spacing is included in the multiple subcarrier spacings.
  • the supported subcarrier spacing in the carrier bandwidth is a finite set, so that the mapping relationship between the carrier bandwidth and the subcarrier spacing may be one carrier bandwidth corresponding to one subcarrier spacing.
  • the set when determining the subcarrier spacing, the terminal device may determine from the corresponding subcarrier spacing set according to actual conditions, for example, to minimize the signaling overhead, select the largest subcarrier spacing from the subcarrier spacing set; or according to the actual The service type selects the appropriate subcarrier spacing so that the subcarrier spacing can be flexibly configured.
  • a method of determining a partial bandwidth is provided, which can be applied to a terminal device.
  • the terminal device receives the first indication information that is sent by the base station, where the first indication information is used to indicate a part of the bandwidth determined by the base station, where the part of the bandwidth determined by the base station is the first carrier according to the first carrier.
  • the first partial bandwidth set includes a plurality of partial bandwidths
  • the plurality of partial bandwidths included in the first partial bandwidth set include a partial bandwidth determined by the base station
  • the second partial bandwidth set includes a plurality of partial bandwidths
  • the second partial bandwidth set includes the multiple Part of the bandwidth includes a part of the bandwidth determined by the base station, where the first carrier bandwidth is a carrier bandwidth indicated by the base station to the terminal device, and then the terminal device determines the base station according to the first indication information. Determine the partial bandwidth.
  • the terminal device determines the partial bandwidth according to the indication information of the base station.
  • the method before the terminal device receives the first indication information sent by the base station, the method further includes:
  • the terminal device sends second indication information for indicating a capability bandwidth of the terminal device to the base station.
  • the terminal device may report the capability bandwidth of the terminal device, that is, the maximum part of the bandwidth that the terminal device can support, or the random access procedure established with the base station, by using RRC signaling. Report the capability bandwidth of the terminal device.
  • the terminal device receives the first indication information sent by the base station, including:
  • the terminal device Receiving, by the terminal device, third indication information that is sent by the base station, where the third indication information is used to indicate a frequency domain location of a part of the bandwidth determined by the base station in the first carrier bandwidth, where the base station determines Part of the bandwidth is composed of multiple partial bandwidth units;
  • the terminal device receives fourth indication information that is sent by the base station, where the fourth indication information is used to indicate a frequency domain location of a physical resource block that is scheduled in the determined partial bandwidth.
  • the terminal device determines a part of the bandwidth according to the indication information sent by the base station
  • the third indication information and the fourth indication information are obtained from the base station, where the third indication information is used to indicate a part of the bandwidth of the terminal device.
  • a series of bits in the frequency domain position in the carrier bandwidth also requires the fourth indication information to indicate the frequency domain location of the specific physical resource block in the partial bandwidth.
  • the third indication information and the fourth indication information may be included in the same signaling, or may be separately sent in two separate transmissions.
  • the first indication information may be a valid value of each frequency domain position in the RIV value or the bit mapping manner; if part of the bandwidth is in the frequency domain position in the carrier bandwidth
  • the first indication information may be an r value in a manner of assigning type 1 to the uplink resource or a valid value of each frequency domain position in the bit mapping manner.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB, but the application is not limited thereto.
  • a part of the bandwidth unit may be determined according to an actual situation. For example, in a method for indicating user resource allocation in two levels, when a resource block specifically scheduled in the part of the bandwidth is indicated, the resource block group is used as a scheduling unit, In order to be more compatible with the second step of resource allocation, the resource block group is selected as a partial bandwidth unit, thereby obtaining different degrees of flexibility by adopting partial bandwidth units of different granularities.
  • the third indication information is carried in a resource of a common search space of a control channel or a resource of a terminal device-specific search space, and the part of the bandwidth is in a frequency domain of the first carrier bandwidth.
  • the location and the resource of the common search space do not overlap in the frequency domain location in the first carrier bandwidth, the frequency domain location of the partial bandwidth in the first carrier bandwidth and the resource of the terminal device-specific search space
  • the location information does not overlap, and the terminal device receives the third indication information sent by the base station, including:
  • the method also includes:
  • the terminal device receives data transmitted by the base station through the determined partial bandwidth in a second time domain location.
  • the frequency domain location indicated in the third indication information may not overlap with the resource location of the common search space or the resource location of the UE-specific search space, so that the frequency domain location of the second indication information is sent and the terminal device actually The frequency domain location of the received data is different.
  • the terminal device needs to switch the frequency domain location when receiving the data sent by the base station.
  • the base station sends the second indication information in the time domain position. A certain time domain location transmits data to the terminal device, so that the terminal device receives the data transmitted by the base station in the second time domain location.
  • the first time domain location and the second time domain location are in a scheduling unit in a time domain, and the last orthogonal frequency division multiplexing OFDM included in the first time domain location
  • the symbol is spaced apart from the first OFDM symbol included in the second time domain position by M OFDM symbols, and M is an integer greater than or equal to 1.
  • the time domain location difference between the first time domain location of the second indication information and the second time domain location when the data is sent may be set to one or more OFDM symbols, such as 2 symbols, such that After determining, by the terminal device, the common search space resource location or the symbol number occupied by the UE-specific search space resource location in the time domain, the terminal position of the data channel in the time domain can be accurately determined, thereby facilitating the improvement of the base station and the terminal device. Accuracy when performing data interactions.
  • the method further includes: determining, by the terminal device, a first subcarrier for resource configuration in the first carrier bandwidth according to a mapping relationship between a carrier bandwidth and a subcarrier interval.
  • the mapping relationship includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between a second carrier bandwidth and a second subcarrier spacing, where the first subcarrier spacing The second subcarrier spacing is different;
  • the terminal device is pre-configured with a mapping relationship between a carrier bandwidth and a subcarrier interval, where the mapping relationship includes multiple different subcarrier spacings, and for multiple base stations having different carrier bandwidths, each The base station can select the appropriate subcarrier spacing according to its own carrier bandwidth to configure the resource, and set the carrier bandwidth of the base station to be the first carrier bandwidth, and the terminal device determines to use in the first carrier bandwidth according to the pre-configured mapping relationship.
  • the subcarrier spacing of the resource configuration is pre-configured with a mapping relationship between a carrier bandwidth and a subcarrier interval, where the mapping relationship includes multiple different subcarrier spacings, and for multiple base stations having different carrier bandwidths, each The base station can select the appropriate subcarrier spacing according to its own carrier bandwidth to configure the resource, and set the carrier bandwidth of the base station to be the first carrier bandwidth, and the terminal device determines to use in the first carrier bandwidth according to the pre-configured mapping relationship.
  • the subcarrier spacing of the resource configuration is pre-configured with a mapping relationship between
  • the first carrier bandwidth belongs to a first carrier bandwidth interval, and a subcarrier spacing for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier. Carrier spacing.
  • the mapping relationship between the carrier bandwidth and the subcarrier spacing may be a mapping relationship between a carrier bandwidth interval and a subcarrier spacing, where a carrier bandwidth interval includes multiple carrier bandwidths, thereby reducing the mapping relationship.
  • the amount of information reduces the load on the terminal equipment.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the first subcarrier spacing is included in the multiple subcarrier spacings.
  • the supported subcarrier spacing in the carrier bandwidth is a finite set, so that the mapping relationship between the carrier bandwidth and the subcarrier spacing may be one carrier bandwidth corresponding to one subcarrier spacing.
  • the set when determining the subcarrier spacing, the terminal device may determine from the corresponding subcarrier spacing set according to actual conditions, for example, to minimize the signaling overhead, select the largest subcarrier spacing from the subcarrier spacing set; or according to the actual The service type selects the appropriate subcarrier spacing so that the subcarrier spacing can be flexibly configured.
  • a method of indicating a partial bandwidth is provided, and the method can be applied to a terminal device.
  • the terminal device receives the first indication information sent by the base station, where the first indication information is used to indicate to the terminal device, a frequency domain location of the partial bandwidth determined by the base station in the first carrier bandwidth,
  • the first carrier bandwidth is a carrier bandwidth indicated by the base station to the terminal device, and the partial bandwidth is composed of a plurality of partial bandwidth units;
  • the terminal device receives second indication information sent by the base station;
  • the second indication information is used to indicate a frequency domain location of the physical resource block scheduled in the partial bandwidth.
  • the terminal device obtains the first indication information and the second indication information from the base station when determining the partial bandwidth according to the indication information sent by the base station, where the first indication information is used to indicate the terminal device.
  • the frequency information of the partial bandwidth in the carrier bandwidth, and the fourth indication information indicates the frequency domain location of the physical resource block in which the base station transmits data to the terminal device in a part of the bandwidth.
  • the first indication information and the second indication information may be included in the same signaling, or may be separately sent in two separate transmissions.
  • the first indication information may be a valid value of each frequency domain position in the RIV value or the bit mapping manner; if part of the bandwidth is in the frequency domain position in the carrier bandwidth Continuously distributed, the first indication information may be an r value in a manner of assigning type 1 to the uplink resource.
  • the partial bandwidth unit is a resource block group or a synchronous bandwidth or a physical resource block.
  • a part of the bandwidth unit may be determined according to an actual situation. For example, in a method for indicating user resource allocation in two levels, when a resource block specifically scheduled in the part of the bandwidth is indicated, the resource block group is used as a scheduling unit, In order to be more compatible with the second step of resource allocation, the resource block group is selected as a partial bandwidth unit, thereby obtaining different degrees of flexibility by adopting partial bandwidth units of different granularities.
  • the first indication information is carried in a resource of a common search space of a control channel or a resource of a terminal device-specific search space, and the part of the bandwidth is in a frequency domain of the first carrier bandwidth.
  • the location and the resource of the common search space do not overlap in the frequency domain location in the first carrier bandwidth, the frequency domain location of the partial bandwidth in the first carrier bandwidth and the resource of the terminal device-specific search space.
  • the first indication information sent by the base station is received by the terminal device, where the frequency domain location in the first carrier bandwidth does not overlap, and the
  • the method further includes:
  • the terminal device receives data transmitted by the base station through a data channel at a second time domain location.
  • the frequency domain location indicated in the first indication information may not overlap with the resource location of the common search space or the resource location of the UE-specific search space, such that the frequency domain location of the first indication information is sent and the terminal device actually The frequency domain location of the received data is different.
  • the terminal device needs to switch the frequency domain location when receiving the data sent by the base station.
  • the base station sends the first indication information in the time domain position.
  • a certain time domain location transmits data to the terminal device, so that the terminal device receives the data transmitted by the base station in the second time domain location. It ensures that the terminal receives data in the time domain location where the base station transmits data, and effectively guarantees the integrity of the received data.
  • the first time domain location and the second time domain location are located in one scheduling unit in the time domain, and the last OFDM symbol included in the first time domain location and the second The first OFDM symbols included in the time domain location are separated by M OFDM symbols, and M is an integer greater than or equal to 1.
  • the time domain location difference between the first time domain location of the second indication information and the second time domain location when the data is sent may be set to one or more OFDM symbols, such as 2 symbols, such that After determining, by the terminal device, the common search space resource location or the symbol number occupied by the UE-specific search space resource location in the time domain, the terminal position of the data channel in the time domain can be accurately determined, thereby facilitating the improvement of the base station and the terminal device. Accuracy when performing data interactions.
  • the part of the bandwidth determined by the base station is a mapping relationship between the first carrier bandwidth and the first partial bandwidth set and/or between the capability bandwidth of the terminal device and the second partial bandwidth set. Determining a mapping relationship, wherein the first partial bandwidth set includes a plurality of partial bandwidths, and the plurality of partial bandwidths included in the first partial bandwidth set include a partial bandwidth determined by the base station, and the second The partial bandwidth set includes a plurality of partial bandwidths, and the plurality of partial bandwidths included in the second partial bandwidth set include a partial bandwidth determined by the base station.
  • the method further includes: the terminal device sending, to the base station, third indication information indicating a capability bandwidth of the terminal device.
  • the terminal device may report the capability bandwidth of the terminal device by using RRC signaling, where the RRC signaling carries the third indication information, where the third indication information is specifically used to indicate The capability bandwidth of the terminal device, or the capability bandwidth of the terminal device is reported in the random access procedure established with the base station, that is, the third indication information is carried by the random access signaling in the random access procedure.
  • the method further includes: determining, by the terminal device, a first subcarrier for resource configuration in the first carrier bandwidth according to a mapping relationship between a carrier bandwidth and a subcarrier interval.
  • the mapping relationship includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between a second carrier bandwidth and a second subcarrier spacing, where the first subcarrier spacing The second subcarrier spacing is different; the terminal device determines a frequency domain location of the partial bandwidth in the first carrier bandwidth according to the determined first subcarrier spacing.
  • the terminal device is pre-configured with a mapping relationship between a carrier bandwidth and a subcarrier interval, where the mapping relationship includes multiple different subcarrier spacings, and for multiple base stations having different carrier bandwidths, each The base station can select the appropriate subcarrier spacing according to its own carrier bandwidth to configure the resource, and set the carrier bandwidth of the base station to be the first carrier bandwidth, and the terminal device determines to use in the first carrier bandwidth according to the pre-configured mapping relationship.
  • the sub-carrier spacing of the resource configuration avoids the signaling overhead caused by resource allocation using a small sub-carrier spacing under a large carrier bandwidth, thereby reducing the signaling overhead required for resource configuration.
  • the terminal device can implicitly determine the subcarrier spacing used in resource configuration.
  • the first carrier bandwidth belongs to a first carrier bandwidth interval, and a subcarrier spacing for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier. Carrier spacing.
  • the mapping relationship between the carrier bandwidth and the subcarrier spacing may be a mapping relationship between a carrier bandwidth interval and a subcarrier spacing, where a carrier bandwidth interval includes multiple carrier bandwidths, thereby reducing the mapping relationship.
  • the amount of information reduces the load on the terminal equipment.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the first subcarrier spacing is included in the multiple subcarrier spacings.
  • the supported subcarrier spacing in the carrier bandwidth is a finite set, so that the mapping relationship between the carrier bandwidth and the subcarrier spacing may be one carrier bandwidth corresponding to one subcarrier spacing.
  • the set when determining the subcarrier spacing, the terminal device may determine from the corresponding subcarrier spacing set according to actual conditions, for example, to minimize the signaling overhead, select the largest subcarrier spacing from the subcarrier spacing set; or according to the actual The service type selects the appropriate subcarrier spacing so that the subcarrier spacing can be flexibly configured.
  • a base station comprising a processing module, the module included in the device is configured to perform the method for resource configuration in the first aspect.
  • a base station comprising a processing module and a sending module, the device comprising a module for performing the method for determining a partial bandwidth according to the second aspect.
  • a ninth aspect provides a base station, where the device includes a processing module and a sending module, and the device includes a module for performing the method for indicating a partial bandwidth according to the third aspect.
  • a base station In a tenth aspect, a base station is provided.
  • the structure of the device includes a processor configured to support a corresponding one of the methods for the device to perform resource configuration in the first aspect.
  • the apparatus can also include a memory coupled to the processor for storing program instructions and data necessary for the data merge device.
  • a base station in an eleventh aspect, is provided.
  • the structure of the device includes a processor and a transmitter, and the processor is configured to support the device to perform determining the partial bandwidth in the second aspect. The corresponding function in the method.
  • the transmitter is configured to send first indication information to the terminal device, where the first indication information is used to indicate the determined partial bandwidth.
  • the apparatus can also include a memory coupled to the processor for storing program instructions and data necessary for the data merge device.
  • a base station is provided.
  • the structure of the device includes a processor and a transmitter, and the processor is configured to support the device to perform the indication part of the bandwidth in the third aspect.
  • the transmitter being configured to transmit the first indication information and the second indication information.
  • the apparatus can also include a memory coupled to the transmitter for storing program instructions and data necessary for the data merge device.
  • a terminal device comprising a processing module, the module included in the device is configured to perform the method for resource configuration in the fourth aspect.
  • a terminal device comprising a processing module and a receiving module, the device comprising a module for performing the method for determining a partial bandwidth according to the fifth aspect.
  • a base station comprising a processing module and a receiving module, the device comprising a module for performing the method for indicating part of the bandwidth described in the sixth aspect.
  • a terminal device in a sixteenth aspect, includes a processor configured to support the device in performing the resource configuration in the fourth aspect. The corresponding function.
  • the apparatus can also include a memory coupled to the processor for storing program instructions and data necessary for the data merge device.
  • a terminal device in a seventeenth aspect, includes a processor and a receiver, and the processor is configured to support the device to perform the determined partial bandwidth in the fifth aspect. The corresponding function in the method.
  • the receiver is configured to receive first indication information and second indication information.
  • the apparatus can also include a memory coupled to the processor for storing program instructions and data necessary for the data merge device.
  • a terminal device includes a processor and a receiver, and the processor is configured to support the device to perform the indicated portion of the bandwidth in the sixth aspect.
  • the receiver being configured to receive the first indication information and the second indication information.
  • the apparatus can also include a memory coupled to the transmitter for storing program instructions and data necessary for the data merge device.
  • a device which may be a base station or a device in a base station, and the device may include a determining module and a communication module, and is used to implement the base station in any of the foregoing first design examples.
  • a determining module configured to determine, according to a mapping relationship between a carrier bandwidth and a subcarrier spacing, a first subcarrier spacing for resource configuration in the first carrier bandwidth, where the carrier bandwidth and the subcarrier spacing are between
  • the mapping relationship includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is spaced from the second subcarrier spacing different;
  • a communication module configured to perform resource configuration on the terminal device according to the determined first subcarrier interval.
  • the relationship between the first carrier bandwidth and the first subcarrier spacing may be referred to in the first aspect for a specific description of the first carrier bandwidth and the first subcarrier spacing, which is not specifically limited herein.
  • a device which may be a base station or a device in a base station, and the device may include a determining module and a communication module, and is used to implement the base station in any of the foregoing second design examples.
  • a determining module configured to determine a partial bandwidth according to a mapping relationship between the first carrier bandwidth and the first partial bandwidth set and/or a mapping relationship between the capability bandwidth of the terminal device and the second partial bandwidth set;
  • the first part of the bandwidth set includes a plurality of partial bandwidths, the first partial bandwidth set includes the determined partial bandwidth, the second partial bandwidth set includes a plurality of partial bandwidths, and the second partial bandwidth
  • the determined partial bandwidth is included in the set;
  • a communication module configured to send first indication information, where the first indication information is used to indicate the determined partial bandwidth.
  • the communication module is further configured to receive the second indication information, where the second indication information is used to indicate a capability bandwidth of the terminal device.
  • the determining module determines the partial bandwidth according to a mapping relationship between the first carrier bandwidth and the first partial bandwidth set and/or a mapping relationship between the capability bandwidth of the terminal device and the second partial bandwidth set.
  • the process can be referred to the second aspect, which is not specifically limited herein.
  • the sending, by the communications module, the first indication information may include sending the third indication information and the fourth indication information, where the third indication information is used to indicate to the terminal device that the determined partial bandwidth is in the a frequency domain location in a first carrier bandwidth, the determined partial bandwidth being composed of one or more partial bandwidth units; the fourth indication information is used to indicate a frequency of a physical resource block scheduled in the partial bandwidth Domain location.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the process for the third module to send the third indication information and the fourth indication information to the terminal device may refer to the second aspect, which is not specifically limited herein.
  • the determining module is further configured to determine, in the first carrier bandwidth, a first subcarrier spacing for resource configuration according to a mapping relationship between a carrier bandwidth and a subcarrier spacing;
  • the mapping relationship between the carrier bandwidth and the subcarrier spacing includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, the first sub The carrier spacing is different from the second subcarrier spacing; determining a frequency domain location of the determined partial bandwidth in the first carrier bandwidth according to the determined first subcarrier spacing.
  • the relationship between the carrier bandwidth and the subcarrier spacing can be referred to the specific description of the carrier bandwidth and the subcarrier spacing in the second aspect, which is not specifically limited herein.
  • a device which may be a base station or a device in a base station, and the device may include a determining module and a communication module, and the modules may perform any of the foregoing design examples in the third aspect.
  • the corresponding functions performed by the base station specifically:
  • a determining module for determining a partial bandwidth configured for the terminal device
  • a communication module configured to send the first indication information, where the first indication information is used to indicate, to the terminal device, a frequency domain location of the partial bandwidth in the first carrier bandwidth, the determined partial bandwidth Composed of one or more partial bandwidth units; transmitting second indication information; wherein the second indication information is used to indicate a frequency domain location of a physical resource block scheduled in the partial bandwidth.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the process for the first module to send the first indication information and the second indication information to the terminal device can refer to the third aspect, which is not specifically limited herein.
  • the determining module is further configured to determine, according to a mapping relationship between the first carrier bandwidth and the first partial bandwidth set, and/or a mapping relationship between the capability bandwidth of the terminal device and the second partial bandwidth set. Part of the bandwidth; wherein the first partial bandwidth set includes a plurality of partial bandwidths, the first partial bandwidth set includes the determined partial bandwidth, and the second partial bandwidth set includes a plurality of partial bandwidths, The determined partial bandwidth is included in the second partial bandwidth set;
  • the communication module is further configured to send first indication information, where the first indication information is used to indicate the determined partial bandwidth.
  • the communication module is further configured to receive the second indication information, where the second indication information is used to indicate a capability bandwidth of the terminal device.
  • the determining module determines the partial bandwidth according to a mapping relationship between the first carrier bandwidth and the first partial bandwidth set and/or a mapping relationship between the capability bandwidth of the terminal device and the second partial bandwidth set.
  • the process can be referred to the third aspect, which is not specifically limited herein.
  • the determining module is further configured to determine, according to a mapping relationship between the carrier bandwidth and the subcarrier spacing, a first subcarrier spacing for resource configuration in the first carrier bandwidth; wherein the mapping relationship And including a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is different from the second subcarrier spacing; according to the determined first subcarrier spacing A frequency domain location of a portion of the bandwidth in the first carrier bandwidth is determined.
  • the relationship between the carrier bandwidth and the subcarrier spacing can be referred to the specific description of the carrier bandwidth and the subcarrier spacing in the third aspect, which is not specifically limited herein.
  • a device may be a terminal device or a device in the terminal device, and the device may include a determining module, configured to implement the terminal in any one of the foregoing fourth aspects.
  • the corresponding functions performed by the device specifically:
  • a determining module configured to determine, according to a mapping relationship between a carrier bandwidth and a subcarrier spacing, a first subcarrier spacing for resource configuration in the first carrier bandwidth, where the carrier bandwidth and the subcarrier spacing are between
  • the mapping relationship includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is spaced from the second subcarrier spacing
  • the first carrier bandwidth is a carrier bandwidth indicated by the base station to the terminal device; and the resource location allocated to the terminal device is determined according to the determined first subcarrier interval.
  • the relationship between the carrier bandwidth and the subcarrier spacing can be referred to the specific description of the carrier bandwidth and the subcarrier spacing in the fourth aspect, which is not specifically limited herein.
  • a device which may be a terminal device or a device in a terminal device, and the device may include a determining module and a communication module, and is used to implement any design example of the fifth aspect.
  • a communication module configured to receive first indication information, where the first indication information is used to indicate a partial bandwidth configured for the terminal device;
  • a determining module configured to determine, according to the first indication information, a partial bandwidth configured for the terminal device.
  • the communication module is further configured to send second indication information for indicating a capability bandwidth of the terminal device.
  • the receiving, by the communication module, the first indication information may include receiving the third indication information and the fourth indication information, where the third indication information is used to indicate that the part of the bandwidth configured for the terminal device is in the first a frequency domain location in a carrier bandwidth, the partial bandwidth configured for the terminal device is composed of one or more partial bandwidth units; the fourth indication information is used to indicate that the part of the bandwidth configured for the terminal device is scheduled The frequency domain location of the physical resource block.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the process of receiving the third indication information and the fourth indication information sent by the base station by the communication module may refer to the fifth aspect, which is not specifically limited herein.
  • the determining module is further configured to determine, in the first carrier bandwidth, a first subcarrier spacing for resource configuration according to a mapping relationship between a carrier bandwidth and a subcarrier spacing;
  • the mapping relationship between the carrier bandwidth and the subcarrier spacing includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, the first sub The carrier spacing is different from the second subcarrier spacing; determining, according to the determined first subcarrier spacing, the frequency domain location of the partial bandwidth configured for the terminal device in the first carrier bandwidth.
  • the relationship between the carrier bandwidth and the subcarrier spacing can be referred to the specific description of the carrier bandwidth and the subcarrier spacing in the fifth aspect, which is not specifically limited herein.
  • a device which may be a terminal device or a device in a terminal device, and the device may include a determining module and a communication module, and the modules may perform any of the foregoing sixth aspects.
  • a communication module configured to receive the first indication information and the second indication information, where the first indication information is used to indicate to the terminal device that a part of the bandwidth configured for the terminal device is in a frequency domain position in the first carrier bandwidth,
  • the first carrier bandwidth is a carrier bandwidth indicated to the terminal device, and the partial bandwidth configured for the terminal device is composed of a plurality of partial bandwidth units;
  • the second indication information is used to indicate that the terminal device is configured in the The frequency domain location of the scheduled physical resource block in the partial bandwidth;
  • a determining module configured to determine, according to the first indication information and the second indication information, the partial bandwidth configured for the terminal device.
  • the part of the bandwidth unit configured for the terminal device is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the process of receiving the first indication information and the second indication information by the communication module may refer to the sixth aspect, which is not specifically limited herein.
  • the communication module is further configured to send the third indication information, where the third indication information is used to indicate a capability bandwidth of the terminal device.
  • the determining module is further configured to determine, according to a mapping relationship between the carrier bandwidth and the subcarrier spacing, a first subcarrier spacing for resource configuration in the first carrier bandwidth; wherein the mapping relationship And including a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is different from the second subcarrier spacing; according to the determined first subcarrier spacing A frequency domain location of a portion of the bandwidth in the first carrier bandwidth is determined.
  • the relationship between the carrier bandwidth and the subcarrier spacing can be referred to the specific description of the carrier bandwidth and the subcarrier spacing in the sixth aspect, which is not specifically limited herein.
  • an apparatus comprising a processor for implementing the method described in the first aspect above.
  • a memory may also be included in the apparatus for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can invoke and execute program instructions stored in the memory for implementing the method described in the first aspect above.
  • the device can also include a communication interface for the device to communicate with other devices.
  • the device includes:
  • a memory for storing program instructions
  • a processor configured to determine, according to a mapping relationship between a carrier bandwidth and a subcarrier interval, a first subcarrier spacing for resource configuration in the first carrier bandwidth, where the carrier bandwidth and the subcarrier spacing are between
  • the mapping relationship includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is spaced from the second subcarrier spacing Different; performing resource configuration to the terminal device according to the determined first subcarrier interval.
  • the relationship between the first carrier bandwidth and the first subcarrier spacing may be referred to in the first aspect for a specific description of the first carrier bandwidth and the first subcarrier spacing, which is not specifically limited herein.
  • an apparatus comprising a processor for implementing the method described in the second aspect above.
  • a memory may also be included in the apparatus for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can invoke and execute program instructions stored in the memory for implementing the method described in the second aspect above.
  • the device can also include a communication interface for the device to communicate with other devices.
  • the device includes:
  • a memory for storing program instructions
  • a processor configured to determine the partial bandwidth according to a mapping relationship between a first carrier bandwidth and a first partial bandwidth set and/or a mapping relationship between a capability bandwidth of the terminal device and a second partial bandwidth set;
  • the first part of the bandwidth set includes a plurality of partial bandwidths, the first partial bandwidth set includes the determined partial bandwidth, the second partial bandwidth set includes a plurality of partial bandwidths, and the second partial bandwidth
  • the determined partial bandwidth is included in the set;
  • the processor is further configured to send the first indication information by using the communication interface, where the first indication information is used to indicate the determined partial bandwidth.
  • the processor is further configured to receive the second indication information by using the communication interface, where the second indication information is used to indicate a capability bandwidth of the terminal device.
  • the processor determines the part of the bandwidth according to a mapping relationship between the first carrier bandwidth and the first partial bandwidth set, or a mapping relationship between the capability bandwidth of the terminal device and the second partial bandwidth set.
  • the process can be referred to the second aspect, which is not specifically limited herein.
  • the sending, by the processor, the first indication information by using the communication interface may include sending third indication information and fourth indication information, where the third indication information is used to indicate to the terminal device Determining a partial bandwidth in a frequency domain position in the first carrier bandwidth, the determined partial bandwidth being composed of one or more partial bandwidth units; the fourth indication information is used to indicate that the partial bandwidth is The frequency domain location of the scheduled physical resource block.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the process of sending the third indication information and the fourth indication information may refer to the second aspect, which is not specifically limited herein.
  • the processor is further configured to determine, in the first carrier bandwidth, a first subcarrier spacing for resource configuration according to a mapping relationship between a carrier bandwidth and a subcarrier spacing;
  • the mapping relationship between the carrier bandwidth and the subcarrier spacing includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, the first sub The carrier spacing is different from the second subcarrier spacing; determining a frequency domain location of the determined partial bandwidth in the first carrier bandwidth according to the determined first subcarrier spacing.
  • the relationship between the carrier bandwidth and the subcarrier spacing can be referred to the specific description of the carrier bandwidth and the subcarrier spacing in the second aspect, which is not specifically limited herein.
  • an apparatus comprising a processor for implementing the method described in the third aspect above.
  • the apparatus can also include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can invoke and execute program instructions stored in the memory for implementing the method described in the third aspect above.
  • the apparatus can also include a communication interface for the device to communicate with other devices.
  • the device comprises:
  • a memory for storing program instructions
  • a processor configured to determine a part of a bandwidth of the terminal device
  • the processor is further configured to send the first indication information by using the communication interface, where the first indication information is used to indicate, to the terminal device, a frequency domain location of the partial bandwidth in the first carrier bandwidth And determining, by the one or more partial bandwidth units, sending the second indication information, where the second indication information is used to indicate a frequency domain location of the physical resource block scheduled in the partial bandwidth .
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the process of sending the first indication information and the second indication information to the terminal device by the communication interface can refer to the third aspect, which is not specifically limited herein.
  • the processor is further configured to determine, according to a mapping relationship between the first carrier bandwidth and the first partial bandwidth set, and/or a mapping relationship between the capability bandwidth of the terminal device and the second partial bandwidth set. Part of the bandwidth; wherein the first partial bandwidth set includes a plurality of partial bandwidths, the first partial bandwidth set includes the determined partial bandwidth, and the second partial bandwidth set includes a plurality of partial bandwidths, The determined partial bandwidth is included in the second partial bandwidth set;
  • the processor is further configured to send the first indication information by using the communication interface, where the first indication information is used to indicate the determined partial bandwidth.
  • the processor is further configured to receive the second indication information by using the communication interface, where the second indication information is used to indicate a capability bandwidth of the terminal device.
  • the processor determines the partial bandwidth according to a mapping relationship between a first carrier bandwidth and a first partial bandwidth set and/or a mapping relationship between a capability bandwidth of the terminal device and a second partial bandwidth set.
  • the process can be referred to the third aspect, which is not specifically limited herein.
  • the processor is further configured to determine, according to a mapping relationship between the carrier bandwidth and the subcarrier spacing, a first subcarrier spacing for resource configuration in the first carrier bandwidth; wherein the mapping relationship And including a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is different from the second subcarrier spacing; according to the determined first subcarrier spacing A frequency domain location of a portion of the bandwidth in the first carrier bandwidth is determined.
  • the relationship between the carrier bandwidth and the subcarrier spacing can be referred to the specific description of the carrier bandwidth and the subcarrier spacing in the third aspect, which is not specifically limited herein.
  • an apparatus comprising a processor for implementing the method described in the fourth aspect above.
  • the apparatus can also include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can invoke and execute program instructions stored in the memory for implementing the method described in the fourth aspect above.
  • the apparatus can also include a communication interface for the device to communicate with other devices.
  • the device comprises:
  • a memory for storing program instructions
  • a processor configured to determine, according to a mapping relationship between a carrier bandwidth and a subcarrier interval, a first subcarrier spacing for resource configuration in the first carrier bandwidth, where the carrier bandwidth and the subcarrier spacing are between
  • the mapping relationship includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is spaced from the second subcarrier spacing
  • the first carrier bandwidth is a carrier bandwidth indicated by the base station to the terminal device, and the resource location allocated by the base station to the terminal device is determined according to the determined first subcarrier interval.
  • the relationship between the carrier bandwidth and the subcarrier spacing can be referred to the specific description of the carrier bandwidth and the subcarrier spacing in the fourth aspect, which is not specifically limited herein.
  • an apparatus comprising a processor for implementing the method described in the fifth aspect above.
  • the apparatus can also include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can invoke and execute program instructions stored in the memory for implementing the method described in the fifth aspect above.
  • the apparatus can also include a communication interface for the device to communicate with other devices.
  • the device comprises:
  • a memory for storing program instructions
  • a processor configured to receive, by using the communications interface, first indication information, where the first indication information is used to indicate a partial bandwidth configured for the terminal device;
  • the processor is further configured to determine, according to the first indication information, a partial bandwidth configured for the terminal device.
  • the processor is further configured to send, by using the communication interface, second indication information for indicating a capability bandwidth of the terminal device.
  • the receiving the first indication information may include receiving the third indication information and the fourth indication information, where the third indication information is used to indicate that the part of the bandwidth configured for the terminal device is on the first carrier a frequency domain location in the bandwidth, the partial bandwidth configured for the terminal device is composed of one or more partial bandwidth units; the fourth indication information is used to indicate a physicality scheduled in the partial bandwidth configured for the terminal device The frequency domain location of the resource block.
  • the part of the bandwidth unit configured for the terminal device is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the process of receiving the third indication information and the fourth indication information may refer to the fifth aspect, which is not specifically limited herein.
  • the processor is further configured to determine, in the first carrier bandwidth, a first subcarrier spacing for resource configuration according to a mapping relationship between a carrier bandwidth and a subcarrier spacing;
  • the mapping relationship between the carrier bandwidth and the subcarrier spacing includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, the first sub The carrier spacing is different from the second subcarrier spacing; determining, according to the determined first subcarrier spacing, the frequency domain location of the partial bandwidth configured for the terminal device in the first carrier bandwidth.
  • the relationship between the carrier bandwidth and the subcarrier spacing can be referred to the specific description of the carrier bandwidth and the subcarrier spacing in the fifth aspect, which is not specifically limited herein.
  • an apparatus comprising a processor for implementing the method described in the sixth aspect above.
  • the apparatus can also include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can invoke and execute program instructions stored in the memory for implementing the method described in the sixth aspect above.
  • the apparatus can also include a communication interface for the device to communicate with other devices.
  • the device comprises:
  • a memory for storing program instructions
  • a processor configured to receive the first indication information and the second indication information by using the communication interface, where the first indication information is used to indicate to the terminal device that a part of the bandwidth configured for the terminal device is in the first carrier bandwidth a frequency domain location, the first carrier bandwidth is a carrier bandwidth indicated to the terminal device, and the partial bandwidth configured for the terminal device is composed of a plurality of partial bandwidth units; the second indication information is used to indicate The frequency domain location of the scheduled physical resource block in the partial bandwidth configured by the terminal device;
  • a processor configured to determine, according to the first indication information and the second indication information, the partial bandwidth configured for the terminal device.
  • the part of the bandwidth unit configured for the terminal device is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the process of receiving the first indication information and the second indication information may refer to the sixth aspect, which is not specifically limited herein.
  • the processor is further configured to send the third indication information by using the communication interface, where the third indication information is used to indicate a capability bandwidth of the terminal device.
  • the processor is further configured to determine, according to a mapping relationship between the carrier bandwidth and the subcarrier spacing, a first subcarrier spacing for resource configuration in the first carrier bandwidth; wherein the mapping relationship And including a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is different from the second subcarrier spacing; according to the determined first subcarrier spacing A frequency domain location of a portion of the bandwidth in the first carrier bandwidth is determined.
  • the relationship between the carrier bandwidth and the subcarrier spacing can be referred to the specific description of the carrier bandwidth and the subcarrier spacing in the sixth aspect, which is not specifically limited herein.
  • a thirty-first aspect a computer readable storage medium comprising a possible design for performing any of the above aspects of the first aspect to the sixth aspect, and any one of the above first to sixth aspects
  • the program in the method is not limited to:
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform any of the above first to sixth aspects and the first to sixth aspects described above A method in a possible design of any of the aspects.
  • the present application provides a communication system, comprising the base station according to any one of the seventh to twelfth aspects, and the terminal of any one of the thirteenth to eighteenth aspects device.
  • the present application provides a communication system including the base station of the seventh aspect and the terminal device of the thirteenth aspect.
  • the present application provides a communication system comprising the base station of the eighth aspect and the terminal device of the fourteenth aspect.
  • the present application provides a communication system including the base station of the ninth aspect and the terminal device of the fifteenth aspect.
  • the present application provides a communication system including the base station of the tenth aspect and the terminal device of the sixteenth aspect.
  • the present application provides a communication system including the base station of the eleventh aspect and the terminal device of the seventeenth aspect.
  • the present application provides a communication system comprising the base station of the twelfth aspect and the terminal device of the eighteenth aspect.
  • the present application provides a communication system comprising the apparatus of the nineteenth aspect and the apparatus of the twenty-second aspect.
  • the present application provides a communication system comprising the apparatus of the above twentieth aspect and the apparatus of the twenty-third aspect.
  • the present application provides a communication system comprising the apparatus of the twenty-first aspect and the apparatus of the twenty-fourth aspect.
  • the present application provides a communication system comprising the apparatus of the twenty-fifth aspect and the apparatus of the twenty-eighth aspect.
  • the present application provides a communication system comprising the apparatus of the twenty-sixth aspect and the apparatus of the twenty-ninth aspect.
  • the present application provides a communication system comprising the apparatus of the twenty-seventh aspect and the apparatus of the thirtieth aspect.
  • the present application provides a chip system including a processor, and further comprising a memory for implementing any one of the above first to third aspects and the first to third aspects One or more of the possible designs of any of the aspects.
  • the present application provides a chip system including a processor, and further comprising a memory for implementing any of the above fourth to sixth aspects and the fourth to sixth aspects One or more of the possible designs of any of the aspects.
  • FIG. 1 is a schematic diagram of a possible network architecture according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of various subcarrier spacings introduced in a next generation communication system
  • FIG. 3 is a schematic diagram of a two-level method for indicating user resource allocation in a next generation communication system
  • FIG. 4 is a flowchart of a method for determining a partial bandwidth according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a communication system pre-configuring a BWP for each carrier bandwidth in the embodiment of the present application
  • FIG. 6 is a schematic diagram of a communication system pre-configuring a BWP for each UE BW in the embodiment of the present application;
  • the frequency domain location of the partial bandwidth of the UE in the first carrier bandwidth does not overlap with the resource location of the USS, and the base station sends the fourth indication information to the terminal device through the control channel in the first time domain location and A schematic diagram of transmitting data in a second time domain location;
  • the frequency domain location of the partial bandwidth of the UE in the first carrier bandwidth does not overlap with the resource location of the CSS, and the base station sends the fourth indication information to the terminal device through the control channel in the first time domain location and A schematic diagram of transmitting data in a second time domain location;
  • FIG. 9 is a schematic diagram of a method for indicating a partial bandwidth according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 13 is a structural block diagram of a base station according to an embodiment of the present application.
  • FIG. 16 to FIG. 18 are schematic structural diagrams of a terminal device according to an embodiment of the present application.
  • FIG. 19 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 22 to FIG. 25 are schematic structural diagrams of a device according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example, New Radio (NR) system, Wireless Fidelity (WiFi), Worldwide Interoperability for Microwave Access (WiMAX), Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced Long Term Evolution (LTE-A) system, Universal Mobile Telecommunication System (UMTS), and third The cellular system related to The 3rd Generation Partnership Project (3GPP), and the fifth generation mobile communication system (The Fifth Generation, 5G).
  • NR New Radio
  • WiFi Wireless Fidelity
  • WiMAX Worldwide Interoperability for Microwave Access
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long
  • the "base station” described in this application may also be referred to as an access network device, which may be a gNB (gNode B), and may be an ordinary base station (for example, a base station (NodeB, NB) in a WCDMA system, in an LTE system).
  • gNode B gNode B
  • NB base station
  • the evolved base station (Evolutional NodeB, eNB or eNodeB), the base station (Base Transceiver Station (BTS) in GSM or CDMA), may be a new radio controller (NR controller), and may be a centralized network element (
  • the centralized unit which may be a new radio base station, may be a radio remote unit, may be a micro base station, may be a distributed network unit (Distributed Unit), and may be a Transmission Reception Point (TRP) or a transmission point (Transmission Point).
  • TRP Transmission Reception Point
  • Transmission Point Transmission Point
  • TP may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future 5G network.
  • CRAN Cloud Radio Access Network
  • the terminal device may be a wireless terminal device or a wired terminal device.
  • the wireless terminal device can be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device that is connected to the wireless modem.
  • the wireless terminal device can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal device, such as a mobile phone (or "cellular" phone) and has a mobile
  • RAN Radio Access Network
  • the computers of the terminal devices for example, may be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit (SU), a subscriber station (Subscriber Station, SS), a mobile station (Mobile Station, MB), a mobile station (Mobile), a remote station (Remote Station, RS), Access Point (AP), Remote Terminal (RT), Access Terminal (AT), User Terminal (UT), User Agent (UA), Terminal Equipment ( User Device, UD), or User Equipment (UE).
  • SU subscriber unit
  • SS Subscriber Station
  • MB mobile station
  • a remote station Remote Station
  • AP Access Point
  • RT Remote Terminal
  • AT Access Terminal
  • U User Terminal
  • U Terminal Equipment
  • UD Terminal Equipment
  • UE User Equipment
  • Scheduling unit of time domain refers to a unit consisting of one slot or one subframe or one mini-slot, or multiple slots or multiple subframes or multiple mini-slots (mini-slot) A unit composed of polymerization.
  • Time domain location The location of the OFDM symbol within the scheduling unit of a time domain.
  • Subcarrier spacing One subcarrier refers to a basic unit in the frequency domain, and the subcarrier spacing is the frequency domain spacing between adjacent subcarrier peaks. For example, the subcarrier spacing in LTE is 15 kHz.
  • Bandwidth part refers to a part of the channel bandwidth. It can also be called “Operating Bandwidth” or transmission bandwidth. It refers to the bandwidth determined in the first step of the two-level resource allocation during data transmission.
  • Capability bandwidth of the terminal device refers to the maximum bandwidth capability supported by the terminal device.
  • Carrier bandwidth Also called “channel bandwidth” or “system bandwidth”, it is a cell-level bandwidth determined by the base station side.
  • Control channel refers to the channel used to carry downlink control information (DCI).
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the embodiments of the present application refer to ordinal numbers such as “first”, “second”, “third”, and “fourth” for distinguishing multiple objects, and are not used to define multiple objects. Order, timing, priority, or importance.
  • the base station when a terminal device sends uplink data to a base station, or when a base station transmits downlink data to a terminal device, the base station first allocates a partial bandwidth to the terminal device from a carrier bandwidth supported by the system.
  • the base station after the base station configures a system bandwidth through the MIB, the base station directly indicates to the terminal device the physical resource block used for transmitting data in the system bandwidth, so that the base station and the terminal device perform data on the full bandwidth of the system bandwidth. transmission.
  • FIG. 1 shows a schematic diagram of one possible network architecture of an embodiment of the present application.
  • the communication system of Figure 1 can include a terminal device and a base station.
  • the base station is configured to provide communication services for the terminal device and access the core network, and the terminal accesses the network by searching for synchronization signals, broadcast signals, and the like sent by the base station.
  • a terminal device may perform data transmission only with one base station, or may perform data transmission with multiple base stations.
  • a base station can perform data transmission with one terminal device or data transmission with multiple terminal devices. This application does not specifically limit this.
  • the next-generation communication system will support a larger carrier bandwidth.
  • the carrier bandwidth can be up to 400 MHz, while some UEs do not have the capability to support this large carrier bandwidth, or the UE's service requirements do not need to be so large.
  • Carrier bandwidth can be divided into multiple subbands, and different subbands can adopt different subcarrier spacings, as shown in FIG. 2, and therefore, in the next generation communication system.
  • a method for indicating user resource allocation is proposed. First, a bandwidth smaller than or equal to the maximum bandwidth supported by the user is indicated in the carrier bandwidth as a partial bandwidth of the user equipment, as shown in FIG. 3, and the second step is to indicate the part.
  • the Bandwidth part includes 0-199 PRBs, and the base station further instructs the terminal device to use 0-99 PRBs in the 0-99 PRBs of the Bandwidth part for transmitting data.
  • the embodiment of the present application provides a method for determining a partial bandwidth, which is used to determine a partial bandwidth of a terminal device from a carrier bandwidth and indicate to a terminal device.
  • the base station is pre-configured with a mapping relationship between a carrier bandwidth and a partial bandwidth set and/or a mapping relationship between a capability bandwidth of the terminal device and a partial bandwidth set.
  • the mapping relationship may include a mapping relationship between a carrier bandwidth and a partial bandwidth set or a mapping relationship between a capability bandwidth of the terminal device and a partial bandwidth set or both mapping relationships.
  • the mapping between the carrier bandwidth and the partial bandwidth set includes multiple carrier bandwidths, each of which has a partial bandwidth set; the mapping relationship between the capability bandwidth of the terminal device and the partial bandwidth set includes The capability bandwidth of each terminal device, wherein each terminal device has a partial bandwidth set corresponding to the capability bandwidth, and a part of the bandwidth set includes a plurality of partial bandwidths, thereby pre-preserving different carrier bandwidths and different terminal device capability bandwidths.
  • a plurality of partial bandwidths are configured, and the base station determines the partial bandwidth according to the pre-configured mapping relationship, thereby solving the problem of adaptively selecting part of the bandwidth of different carrier bandwidths or different UE capabilities, and improving the partial bandwidth of the terminal device. flexibility.
  • the base station can determine the bandwidth from the multiple parts, which is beneficial for the base station to adaptively adjust part of the bandwidth according to actual requirements, such as adjusting part of the bandwidth according to different service types.
  • the device that implements the function of the base station may be a base station, or may be a device that supports the base station to implement the function, such as a chip system.
  • the device that implements the function of the base station is a base station, and the technical solution provided by the embodiment of the present application is described.
  • the device that implements the function of the terminal device may be a terminal device, or may be a device that supports the terminal device to implement the function, such as a chip system.
  • the device that implements the function of the terminal device is a terminal device, and the terminal device is a UE as an example, and the technical solution provided by the embodiment of the present application is described.
  • an embodiment of the present application provides a method for determining a partial bandwidth, and a process of the method is described as follows.
  • the base station of the communication system allocates a carrier bandwidth for the cell where the UE is located, for example, allocates a carrier bandwidth according to the service type of the cell or the number of UEs supported by the cell, Alternatively, the base station may be configured according to a preset configuration rule, which is not limited in this application.
  • the carrier configured for the cell by the base station is taken as an example of the first carrier bandwidth.
  • the partial bandwidth determination method 400 includes:
  • the base station determines a part of the bandwidth.
  • the base station determines the partial bandwidth according to the mapping relationship between the first carrier bandwidth and the first partial bandwidth set and/or the mapping relationship between the capability bandwidth of the terminal device and the second partial bandwidth set.
  • the first part of the bandwidth set includes a plurality of partial bandwidths
  • the first part of the bandwidth set includes the part of the bandwidth
  • the second part of the bandwidth set includes a plurality of partial bandwidths
  • the second part of the bandwidth set includes the part of the bandwidth
  • the communication system can support multiple carrier bandwidths (CBW), such as CBW1, CBW2, and the like.
  • CBW carrier bandwidths
  • the base station of the communication system configures a carrier bandwidth for the current cell.
  • the base station configures a carrier bandwidth of 100 MHz for the cell 1
  • the base station configures a carrier bandwidth of 50 MHz for the cell 2.
  • the communication system can support different UE types, for example, the UE type can represent UEs supporting different subcarrier spacings, or UEs with different UE BWs (UE Bandwidth).
  • the capability bandwidth of the terminal device refers to the maximum bandwidth supported by the UE.
  • the UE BW of UE1 is 5 MHz
  • the UE BW of UE2 is 10 MHz.
  • one or more Bandwidth Part is configured in advance for each carrier bandwidth supported by the communication system and/or each UE BW.
  • BWP Bandwidth Part
  • FIG. 5 is a case where BWP is configured for each carrier bandwidth, for example, BWP1 and BWP2 are configured for CBW1, BWP1, BWP2, and BWP3 are configured for CBW2, and BWPs supported by different carrier bandwidths may partially overlap, such as CBW1. Both BWP1 and BWP2 can be supported by CBW2.
  • FIG. 6 FIG.
  • BWP is configured for each UE BW
  • BWP1 and BWP2 are configured for UE BW1
  • BWP1, BWP2, and BWP3 are configured for UE BW2
  • BWPs supported by different UE BWs may partially overlap.
  • UE BW1 and UE BW2 can support BWP1 and BWP2.
  • One or more BWPs in this embodiment may be predefined or configurable, as shown in Table 1 and Table 2.
  • Table 1 is an example of configuring one or more BWPs for different carrier bandwidths, such as 5MHz CBW is configured with 5MHz, 10Mhz, 20MHz partial bandwidth;
  • Table 2 is an example of configuring one or more BWPs for different UE BWs, for example, 5MHz, 10Mhz, 20MHz, 40MHz for 40MHz UEBW Part of the bandwidth.
  • the pre-defined means that the size of the partial bandwidth available in Table 1 or Table 2 is preset, and the configurable refers to a set of optional partial bandwidths under one carrier bandwidth or UE capable bandwidth in Table 1 or Table 2. It is configurable, for example, configured in real time according to actual conditions such as the type of service between the base station and the UE.
  • the synchronization signal is received on the resources of the synchronizing signal bandwidth (SS bandwidth), for example, the primary synchronization and the secondary synchronization of the communication system, and the size of the synchronization bandwidth may be related to the subcarrier spacing.
  • SS bandwidth can be considered as a kind of bandwidth that the UE can support, and can be used for configuring a BWP for the carrier bandwidth or the capability bandwidth of the UE.
  • Carrier bandwidth (CBW) Partial bandwidth (BWP) 5MHz 5MHz 20MHz 5MHz, 10Mhz, 20MHz 40MHz 5MHz, 10Mhz, 20MHz, 40MHz 100MHz 5MHz, 10Mhz, 20MHz, 40MHz — > 400MHz 20MHz, 40MHz, 80Mhz, 100Mhz
  • UE capability bandwidth (UE BW) Partial bandwidth (BWP) 5MHz 5MHz 20MHz 5MHz, 10Mhz, 20MHz 40MHz 5MHz, 10Mhz, 20MHz, 40MHz 100MHz 5MHz, 10Mhz, 20MHz, 40MHz —
  • a plurality of partial bandwidths are pre-configured for different carrier bandwidths and different capability bandwidths of the terminal devices.
  • the base station determines the bandwidth according to the pre-configured mapping relationship, thereby solving different carrier bandwidths or different.
  • the adaptive selection of partial bandwidth problems of UE capabilities improves the flexibility of determining part of the bandwidth of the terminal device.
  • the bandwidths in Table 1 and Table 2 are expressed in units of Mhz, and may also be expressed in units of PRBs of a specific subcarrier interval, and one PRB includes 12 subcarrier intervals. In the embodiment of the present application, only Mhz is taken as an example for description.
  • the base station can determine the bandwidth from the multiple parts, which is beneficial for the base station to adaptively adjust part of the bandwidth according to actual requirements, such as adjusting part of the bandwidth according to different service types.
  • the partial bandwidth of the UE is determined according to the first partial bandwidth set corresponding to the first carrier bandwidth and/or the second partial bandwidth set corresponding to the capability bandwidth of the UE in the pre-configured mapping relationship.
  • mapping relationship between the carrier bandwidth and the partial bandwidth set may be included in the mapping relationship between the base station and the partial bandwidth set, or the mapping relationship between the capability bandwidth and the partial bandwidth set of the UE may be included.
  • the three methods will be described separately below:
  • the first mode the base station configures a mapping relationship between the carrier bandwidth and the partial bandwidth set, and the base station determines a partial bandwidth from the first partial bandwidth set according to the capability bandwidth of the terminal device.
  • the first carrier bandwidth is CBW1 in FIG. 5, CBW1 supports BWP1 and BWP2, and the base station adopts one of BWP1 and BWP2 as part of the bandwidth according to the capability bandwidth of the UE.
  • Table 1 is taken as an example. If the first carrier bandwidth is 20 MHz, the capability bandwidth of the UE acquired by the base station is 5 MHz. As shown in Table 1, the partial bandwidth set supported by the first carrier bandwidth is (5 MHz, 10 Mhz, 20 MHz). At this time, the base station may select 5 MHz in the partial bandwidth set as the partial bandwidth of the UE, where the partial bandwidth determined by the base station should be less than or equal to the capability bandwidth of the UE.
  • the second mode the base station is configured with a mapping relationship between the capability bandwidth of the terminal device and a part of the bandwidth set, and the base station determines that any part of the bandwidth of the second part of the bandwidth is part of the bandwidth.
  • the capability bandwidth of the UE is the UE BW1 in FIG. 6, the UE BW1 supports the BWP1 and the BWP2, and the base station adopts one of the BWP1 and the BWP2 as the partial bandwidth.
  • Table 2 is taken as an example. If the capability bandwidth of the UE acquired by the base station is 20 MHz, as shown in Table 2, the partial bandwidth set supported by the capability bandwidth of the 20 MHz UE is (5 MHz, 10 Mhz, 20 MHz). At this time, the base station 5 MHz or 10 Mhz or 20 MHz in the partial bandwidth set may be selected as the partial bandwidth of the UE.
  • the third mode the base station configures the above two mapping relationships, and the base station combines the above two methods to determine part of the bandwidth.
  • the first carrier bandwidth is CBW1 in FIG. 5, CBW1 supports BWP1 and BWP2, the capability bandwidth of the UE is UE BW3 in FIG. 6, UE BW3 supports BWP2, BWP3, and BWP4, and both CBW1 and UE BW3 can support BWP2.
  • the base station determines that BWP2 is part of the bandwidth. Table 1 and Table 2 are taken as an example. If the first carrier bandwidth is 40 MHz, the capability bandwidth of the UE acquired by the base station is 20 MHz. As shown in Table 1, the first part of the bandwidth supported by the first carrier bandwidth is (5 MHz, 10 Mhz).
  • the second working set supported by the capability bandwidth of the 20MHz UE is (5MHz, 10Mhz, 20MHz).
  • the intersection of the first partial bandwidth set and the second partial bandwidth set is ( 5MHz, 10Mhz, 20MHz)
  • the base station can select part of the bandwidth in the intersection as part of the bandwidth of the UE. For example, select 5MHz or 10Mhz or 20MHz as the partial bandwidth of the UE.
  • the base station sends first indication information to the terminal device, where the first indication information is used to indicate the determined partial bandwidth.
  • the base station sends the first indication information to the terminal device, and the terminal device may determine, according to the indication of the first indication information, a frequency domain location of the partial bandwidth determined by the base station in the first carrier bandwidth.
  • the first indication information may include indication information indicating a start position of a partial bandwidth unit (BWP unit) in the first carrier bandwidth, and information indicating a size of the partial bandwidth.
  • BWP unit partial bandwidth unit
  • the partial bandwidth may consist of a series of partial bandwidth units.
  • the partial bandwidth unit indicates the granularity of the frequency domain resource occupied by the partial bandwidth in the carrier bandwidth.
  • the partial bandwidth unit may be, for example, an RBG, an SS bandwidth, or a PRB, but the present application does not limit this.
  • the BWP unit has different actual resource sizes, so that the indication information corresponds to different granularities, so that the base station can have different degrees of indication accuracy when indicating the partial bandwidth of the UE.
  • the RBG can be composed of multiple PRBs, if the base station adopts the PRB as the BWP.
  • the unit indicates the frequency domain location of the part of the bandwidth, the frequency domain location of the specific PRB is indicated.
  • the RBG is used as the frequency domain location of the partial bandwidth of the BWP unit, the frequency domain location of the specific RBG is indicated.
  • the RBG is used as the scheduling unit when indicating the resource block specifically scheduled in the part of the bandwidth. Therefore, in order to be more compatible with the second step of the resource allocation, the RBG is preferred as the RBG. Part of the bandwidth unit.
  • the first carrier bandwidth is composed of a plurality of RBGs, such as numbers 0, 1, ... 16, and the base station needs to use Indicates rounding up, logU indicates the logarithm of U, and U indicates the number of RBGs in the carrier bandwidth.
  • the bits indicate the starting RBG of the partial bandwidth. For example, 00000 indicates that the partial bandwidth is 0 at the starting RBG of the first carrier bandwidth.
  • the part of the bandwidth is the starting RBG number of the carrier bandwidth is 0, and the size of the determined partial bandwidth, such as 10 MHz, is indicated to the UE, thereby determining the frequency domain of the part of the bandwidth in the first carrier bandwidth. position.
  • determining the frequency domain position of the partial bandwidth in the first carrier bandwidth by determining the starting position of a partial bandwidth unit, such as an RBG is merely an example, and those skilled in the art can understand that,
  • the frequency domain location of the portion of the bandwidth in the first carrier bandwidth may also be determined by determining a partial bandwidth unit, such as an intermediate location of the RBG, or an end location or other location. This application does not specifically limit this.
  • the base station may use the first signaling to carry the first indication information, where the first signaling may be, for example, RRC signaling or DCI signaling. That is, the base station may carry the information included in the first indication information in one signaling.
  • the base station may also carry, by using the second signaling, indication information, which is included in the first indication information, for indicating a starting location of the RBG, where the second signaling is
  • the eNB may be the RRC signaling or the DCI signaling
  • the base station carries, by using the third signaling, the information included in the first indication information to indicate the size of the part of the bandwidth, where the third signaling may be, for example, RRC signaling or DCI signaling, wherein the second signaling and the third signaling are different signaling. That is, the base station may carry the information included in the first indication information by using multiple signalings.
  • the base station may pass the message 2 (Message 2, MSG2) and / in the random access procedure.
  • the message 4 (Message 4, MSG4) carries the first indication information.
  • the base station may carry the first indication information by using a random access response (RAR) to indicate to the UE that the partial bandwidth is in the The frequency domain location in the first carrier bandwidth.
  • RAR random access response
  • the base station may send the RAR through the determined partial bandwidth; if the base station indicates the partial bandwidth in the first carrier bandwidth by transmitting the data channel of the RAR In the frequency domain location, the base station can transmit the RAR through a predefined partial bandwidth, and send the MSG4 in the determined partial bandwidth.
  • the base station may indicate the frequency domain location of the partial bandwidth in the first carrier bandwidth by using Msg4. If the control channel of the Msg4 indicates the frequency domain position of the part of the bandwidth in the first carrier bandwidth, the base station may send the Msg4 through the determined partial bandwidth; if the data channel of the Msg4 is transmitted, the frequency bandwidth of the part of the bandwidth in the first carrier bandwidth is indicated.
  • the base station can send Msg4 through a predefined partial bandwidth.
  • the embodiment of the present application further provides another method 900 for indicating a working bandwidth.
  • the method can also be used in S402 of method 400 to indicate a partial bandwidth to the UE.
  • the method includes:
  • the base station sends the third indication information to the terminal device, where the third indication information is used to indicate, to the terminal device, a frequency domain location of the part of the bandwidth determined by the base station in a first carrier bandwidth, Part of the bandwidth consists of multiple partial bandwidth units.
  • the base station sends fourth indication information to the terminal device, where the fourth indication information is used for a frequency domain location in a physical resource block that is scheduled in the partial bandwidth.
  • the method can be used by the base station to determine the portion of bandwidth in S402.
  • the first indication information includes the third indication information and the fourth indication information.
  • the terminal device receives the third indication information, and determines, according to the third indication information, a working bandwidth determined by the base station.
  • the terminal device receives the fourth indication information, and determines, according to the fourth indication information, a frequency domain location in the scheduled physical resource block in the partial bandwidth.
  • the part of the bandwidth is composed of a plurality of partial bandwidth units
  • the first indication information includes the third indication information
  • the sending, by the base station, the first indication information to the terminal device specifically: The base station sends third indication information to the terminal device, where the third indication information is used to indicate to the terminal device a frequency domain location of the partial bandwidth in the first carrier bandwidth; and the base station sends the third location to the terminal device Four indication information; wherein the fourth indication information is used to indicate a frequency domain location in the physical resource block in which the partial bandwidth is scheduled.
  • the third indication information may be a Resource Indication Value (RIV) or a valid value of each frequency domain location in the bit mapping manner, so that part of the bandwidth is occupied by the carrier bandwidth.
  • the frequency domain locations are continuously distributed.
  • the third indication information may be a combined index r value in the type 1 of the two resource allocation types of the uplink physical channel PUSCH or a valid value of each frequency domain position in the bit mapping manner, thereby implementing a partial bandwidth on the carrier.
  • the frequency domain occupied by the bandwidth is discontinuously distributed.
  • the base station can calculate the RIV value according to the formula (1) and the formula (2), thereby indicating the starting position of the RBG of the BWP in the carrier bandwidth by the RIV value. size.
  • RBG start is the starting value, that is, the index value of the starting RBG of the partial bandwidth in the carrier bandwidth.
  • the base station may calculate the combined index r value in the manner of the uplink resource allocation type 1 by using the formula (3), thereby indicating the index s of the starting RBG of the RBG set 1 of the BWP in the carrier bandwidth by the r value. 0 and the index s 1 -1 of the ending RBG, and the starting RBG of the RBG set 2 and the indexes s 2 and s 3 -1 of the ending RBG.
  • P is the number of RBs included in one RBG. Indicates the total number of RGB in the carrier bandwidth.
  • the base station notifies the frequency domain location of the partial bandwidth of the UE by using the bit mapping sequence in the bit mapping manner, where each frequency domain location is RBG granularity, 0 indicates that the RBG is valid, and 1 indicates that the RBG is invalid.
  • the bit mapping sequence is "0011010”
  • the bit value of the second RBG, the fifth RBG, and the seventh RBG of the first RBG is 0, indicating that the RBG is not the location of the partial bandwidth of the UE
  • the bit values of the three RBGs, the fourth RBG, and the sixth RBG are 1, indicating that the RBGs of the three locations constitute part of the bandwidth of the UE.
  • the BWP unit is an SS bandwidth or a PRB, it is similar in the above manner, and details are not described herein again.
  • the third indication information and the fourth indication information may be simultaneously carried by the fourth signaling.
  • the fourth signaling may be, for example, DCI signaling, which is not specifically limited in this application.
  • the third indication information and the fourth indication information may be separately carried by different signaling.
  • the third indication information is carried by the fifth signaling
  • the fourth indication information is carried by the sixth signaling.
  • the fifth signaling may be, for example, RRC signaling
  • the sixth signaling may be, for example, DCI signaling, which is not specifically limited in this application.
  • the execution order of S901 and S902 is not sequential, and the execution order of S903 and S904 is not sequential. That is, S901 may be performed after S902, or may be performed before S902. Similarly, S903 may be performed after S904 or before S904.
  • the third indication information is carried in a resource location of a Common Search Space (CSS) of the control channel or a resource location of a UE-specific search space (USS).
  • the CSS is used to carry the common control information of the cell
  • the USS is used to carry the user-specific control information.
  • the various embodiments of the present application use the names of the “CSS” and the “USS” as an example, but the name is not limited. The specific implementation is determined by the function it has.
  • the control channel may be a physical downlink control channel (PDCCH) in the NR system, or a new radio physical downlink control channel (NR-PDCCH).
  • PDCH physical downlink control channel
  • NR-PDCCH new radio physical downlink control channel
  • control channel for performing the same or similar functions in the NR system, for example, a Group Common Control Channel (GCCCH), a PCFICH-like channel, and a physical layer broadcast channel (L1Broadcast Channel) )Wait.
  • GCCCH Group Common Control Channel
  • PCFICH-like channel a PCFICH-like channel
  • L1Broadcast Channel a physical layer broadcast channel
  • the frequency domain location of the partial bandwidth of the UE in the first carrier bandwidth may not overlap with the resource location of the CSS or the resource location of the USS.
  • the base station passes the control channel in the first time domain location.
  • the terminal device sends the third indication information. After receiving the third indication information in the first time domain location, the UE determines, according to the third indication information, a frequency domain location of the partial bandwidth in the first carrier bandwidth.
  • the USS indicates The resource location transmits data; or as shown in FIG. 8, the base station transmits data in the determined partial bandwidth through the resource location indicated in the CSS in the second time domain location after the first time domain location.
  • the value of the M may be pre-agreed with the UE, or may be indicated to the UE in the third indication information.
  • the first time domain location and the second time domain location are located in one scheduling unit in the time domain, and the interval between the last OFDM symbol included in the first time domain location and the first OFDM symbol included in the second time domain location M OFDM symbols.
  • the base station learns that the common search space resource location (CSS) of the control channel or the UE-specific search space resource location (USS) occupies n OFDM symbols in the time domain, and the corresponding data channel starts at the time domain as n+ M OFDM symbols, so that the starting position of the data channel in the time domain can be accurately determined, which is convenient for improving the accuracy of data interaction between the base station and the terminal device.
  • This ensures that the UE receives data at the time domain location where the base station transmits data, ensuring the integrity of the received data.
  • the method 400 may further include step S403.
  • the terminal device sends, to the base station, second indication information indicating a capability bandwidth of the terminal device.
  • the UE may report the capability bandwidth of the UE to the base station.
  • the UE sends the second indication information to the base station, and the base station receives the second indication information.
  • the second indication information is used to indicate a capability bandwidth of the UE.
  • the second indication information may be Radio Resource Control (RRC) signaling, such that after the base station establishes an RRC connection with the terminal device, the UE sends RRC signaling to the base station, where the RRC signal.
  • RRC Radio Resource Control
  • the UE carries the UE capability information, and the base station acquires the capability bandwidth of the UE by using the UE capability information carried in the RRC signaling.
  • the second indication information may be information that is sent by the base station to the base station during the random access process with the UE.
  • the UE when the UE sends the preamble information to the base station, the UE carries the UE capability in the preamble information. Obtaining the capability bandwidth of the UE by using the preamble information sent by the UE; or, in the random access procedure initiated by the base station, the UE sends the Message3 (MSG3) through the uplink data channel, and carries the UE capability in the MSG3, so that the base station passes the MSG3.
  • the message acquires the capability bandwidth of the UE.
  • the present application does not specifically limit the signaling format that carries the second indication information.
  • the foregoing step is an optional step, that is, the terminal device reporting the capability bandwidth of the UE to the base station is an optional process, and is not mandatory, and the base station may obtain the capability bandwidth of the UE by using other methods.
  • the method 400 further includes: S404: determining a subcarrier spacing for indicating a partial bandwidth of the UE.
  • the base station may determine a subcarrier spacing for indicating a partial bandwidth of the UE before indicating a partial bandwidth to the UE, for example, after the base station configures the first carrier bandwidth for the cell, or determines a partial bandwidth.
  • the subcarrier spacing is determined at the same time, which is not limited in this application.
  • the base station may use a specific subcarrier spacing to indicate the frequency domain location of the partial bandwidth of the UE, for example, using a reference subcarrier spacing (15 KHz).
  • a method for resource configuration is provided.
  • the method can be used by the base station to determine a subcarrier spacing for indicating a portion of a bandwidth of the UE.
  • the base station determines, according to a mapping relationship between the carrier bandwidth and the subcarrier spacing, a first subcarrier spacing for resource configuration in the first carrier bandwidth, where the carrier bandwidth and the subcarrier spacing are between
  • the mapping relationship includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is spaced from the second subcarrier spacing different.
  • the base station performs resource configuration on the terminal device according to the determined first subcarrier interval.
  • the first carrier bandwidth belongs to a first carrier bandwidth interval
  • a subcarrier spacing for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier. Carrier spacing.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the multiple subcarrier spacings include the first subcarrier spacing.
  • the supported subcarrier spacing in the carrier bandwidth is a finite set, so that the mapping relationship between the carrier bandwidth and the subcarrier spacing may be one carrier bandwidth corresponding to one subcarrier spacing.
  • the set, when determining the subcarrier spacing the base station may determine from the corresponding subcarrier spacing set according to actual conditions, for example, to minimize the signaling overhead, select the largest subcarrier spacing from the subcarrier spacing set; or according to the actual The service type selects the appropriate subcarrier spacing so that the subcarrier spacing can be flexibly configured.
  • the base station pre-configures a mapping relationship between the carrier bandwidth and the sub-carrier spacing, where the mapping relationship includes different sub-carrier spacings and a carrier bandwidth corresponding to each sub-carrier spacing.
  • the mapping relationship between the carrier bandwidth and the subcarrier spacing includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first The subcarrier spacing is different from the second subcarrier spacing.
  • the base station can determine the subcarrier spacing used to indicate the resource configuration from the mapping relationship.
  • each base station can select a suitable subcarrier spacing according to its own carrier bandwidth to perform resource configuration, thereby avoiding resource allocation with small subcarrier spacing under a large carrier bandwidth.
  • the signaling overhead problem which reduces the signaling overhead when configuring resources.
  • the subcarrier spacing used by the terminal device when determining the frequency domain location may be implicitly indicated, for example, when a carrier is divided into subbands with different subcarrier spacings. Indicates the frequency domain location of the different subbands, or indicates the frequency domain location of the primary resources when the resource allocation secondary indication. That is, after the carrier bandwidth of the base station is configured, the subcarrier spacing is also configured. Or, by binding the carrier bandwidth and the subcarrier spacing in the resource configuration, the subcarrier spacing indicating the configuration of the terminal device resource can be displayed, for example, the subcarrier spacing of the resource block RB is divided when the base station side broadcasts the carrier bandwidth, and the main information is passed. A Master Information Block (MIB) or a Synchronizing Signal Block (SS block) is displayed to notify the terminal side.
  • MIB Master Information Block
  • SS block Synchronizing Signal Block
  • mapping between the carrier bandwidth and the subcarrier spacing described above includes but is not limited to the following two modes:
  • the first type may be a mapping relationship between a carrier bandwidth interval and a Sub-Carrier Spacing (SCS).
  • SCS Sub-Carrier Spacing
  • the maximum number of sub-carriers in a carrier bandwidth may be 3300 or 6600.
  • the maximum number of subcarriers in the carrier bandwidth is different, and the subcarrier spacing corresponding to the same carrier bandwidth interval may be different.
  • mapping relationship between the corresponding carrier bandwidth interval and the subcarrier spacing when the maximum number of subcarriers is 3300, wherein the subcarrier spacing corresponding to the (100, 200) interval is 60 kHz; as shown in Table 4, The mapping relationship between the corresponding carrier bandwidth interval and the subcarrier spacing when the maximum number of subcarriers is 6600, wherein the subcarrier spacing corresponding to the (100, 200) interval is 30 kHz.
  • the maximum number of subcarriers is 3300
  • the carrier bandwidth of the base station is 80 MHz and is located in the 50 MHz-100 MHz interval
  • 30 kHz can be used as the subcarrier spacing of the carrier bandwidth resource configuration of the base station, and there are about 200 within the carrier bandwidth of the base station.
  • PRB assuming the resource allocation method 2 in LTE, then according to the formula It can be seen that the maximum overhead of the bits in the signaling at the time of resource allocation is 15 bits. among them, The number of downlink RBs.
  • the division of the bandwidth range in Tables 3 and 4 is also related to the size of the guard band of the bandwidth in one carrier for preventing interference setting between the respective subcarriers, so the division of the bandwidth in Tables 3 and 4 is only one kind. For example, other types of partitioning are not excluded.
  • the second type the mapping relationship may be a mapping relationship between the carrier bandwidth and the set of subcarrier spacing supported by the corresponding carrier bandwidth, as shown in Table 5.
  • the set of supported subcarrier spacings under this carrier bandwidth should be a finite set.
  • the finite set is, for example, a subset of the subcarrier spacing set ⁇ 3.75 kHz, 7.5 kHz, 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz ⁇ .
  • the subcarrier spacing f0 is a sub-f3*3300 that is not less than a given carrier bandwidth B1.
  • other extended subcarrier spacings f0*2 ⁇ N can be applied to the The intersection of the carrier bandwidth, or the extended subcarrier spacing f0*2 ⁇ N (N>0)
  • the applicable set of subcarrier spacings in the carrier band may be applied to the carrier bandwidth. If the maximum number of subcarriers per carrier is 6600, the above rules apply, except that for a bandwidth B2, f0*6600 is not less than B2.
  • the total number of subcarriers in one carrier may be less than or equal to M, and M is 6600 or 9900.
  • M is 6600
  • the number of subcarriers of 15 kHz in one carrier is 3300.
  • the number of subcarriers at 30 kHz is 1650
  • the total number of subcarriers in one carrier is 4950, which is less than 6600.
  • Table 5 is taken as an example. If the carrier bandwidth of the base station is 40 MHz, and the subcarrier spacing set supported by the carrier bandwidth is ⁇ 15, 30, 60 ⁇ kHz, the base station may select one of the subcarrier spacing sets. Subcarrier spacing as the carrier bandwidth of the base station. Or, in order to maximize the signaling overhead, the base station may select the maximum subcarrier spacing of 60 kHz in the subcarrier spacing set as the subcarrier spacing of the carrier bandwidth of the base station. In this case, Table 5 may be simplified as Table 6, ie, each The subcarrier spacing of the carrier bandwidth is the maximum subcarrier spacing it supports. Certainly, the embodiment of the present application does not limit which subcarrier spacing the base station selects from the set of subcarrier spacings. The base station side can also directly determine the subcarrier spacing according to Table 6. For example, when the carrier bandwidth is 40 MHz, the subcarrier spacing used for the carrier spacing resource allocation is 60 kHz.
  • mapping relationship between the carrier bandwidth and the subcarrier spacing shown in Tables 3 to 6 in this application is only an example and does not constitute a limitation on the present application.
  • the manner in which the base station determines the sub-carrier spacing may be agreed with the UE in advance, or may be carried in a system message or an indication message and sent to the UE in a manner of determining the sub-carrier spacing.
  • S405 The terminal device receives the first indication information sent by the base station.
  • the terminal device determines, according to the first indication information, a partial bandwidth determined by the base station.
  • the UE After receiving the first indication information indicating the partial bandwidth sent by the base station, the UE determines, according to the indication information, a frequency domain location of the partial bandwidth in the first carrier bandwidth, that is, determining a frequency domain location of the partial bandwidth according to the subcarrier spacing. It should be noted that the UE may determine the frequency domain location of the partial bandwidth by using the subcarrier spacing agreed with the base station, or may determine the frequency domain location of the partial bandwidth by using the method of determining the subcarrier spacing carried in the indication information, but the UE The subcarrier spacing is determined in the same manner as the base station. Two specific implementation manners for determining the subcarrier spacing by the UE are described below.
  • the UE uses a default carrier spacing to determine a frequency domain location of a partial bandwidth of the UE, for example, using a reference subcarrier spacing (15 KHz).
  • a mapping relationship between a carrier bandwidth and a subcarrier spacing is configured in advance, and the mapping relationship includes different subcarrier spacings and a carrier bandwidth corresponding to each subcarrier spacing.
  • the mapping relationship between the carrier bandwidth and the subcarrier spacing includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first The subcarrier spacing is different from the second subcarrier spacing.
  • the base station when the UE initially accesses the network or after establishing an RRC connection with the base station or during a random access procedure initiated by the base station, the base station indicates the configured carrier bandwidth to the UE, so that the UE according to the carrier bandwidth indicated by the base station A pre-configured mapping relationship that determines the subcarrier spacing of a portion of the bandwidth.
  • the method for determining the subcarrier spacing by the UE is the same as that in S404, and details are not described herein again.
  • the UE determines the frequency domain location of the partial bandwidth according to the indication information, which determines the inverse process in the processes S401 and S402, and details are not described herein again.
  • the indication information which determines the inverse process in the processes S401 and S402, and details are not described herein again.
  • the following is a brief description of a case where a base station uses a BWP unit to indicate a partial bandwidth of a UE.
  • the UE After the UE determines the subcarrier spacing used by the base station to indicate part of the bandwidth, the UE determines the frequency domain location of the partial bandwidth according to the subcarrier spacing.
  • the UE calculates the starting position and the quantity of the partial bandwidth in the carrier bandwidth according to the RIV and the formula (1)(2):
  • the UE calculates a starting position and a quantity of the partial bandwidth in the carrier bandwidth according to the r value and the formula (3):
  • the UE determines a partial bandwidth according to the bit value of each RBG. For example, the bit mapping sequence received by the UE is “0011010”, and since the bit values of the second RBG, the fifth RBG, and the seventh RBG of the first RBG are 0, the third RBG and the fourth are determined.
  • the RBG and the sixth RBG are frequency domain locations of the partial bandwidth of the UE in the carrier bandwidth.
  • an embodiment of the present application provides a base station, which may be used to perform the method in the embodiment of the present application, where the base station includes a processor 101.
  • the processor 101 may be a central processing unit (CPU) or an application specific integrated circuit (ASIC), and may be one or more integrated circuits for controlling program execution, may be a baseband chip, and the like.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the base station may also include a memory that may be coupled to the processor 101 via the bus 102.
  • the number of memories may be one or more, and the memory may be a read only memory (ROM), a random access memory (RAM), or a disk memory, and the like.
  • the memory can be used to store program code required by the processor 101 to perform tasks, and the memory can also be used to store data.
  • the processor 101 is configured to determine, according to a mapping relationship between a carrier bandwidth and a subcarrier interval, a first subcarrier spacing for resource configuration in a first carrier bandwidth, where the carrier bandwidth and the subcarrier spacing are between
  • the mapping relationship includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between a second carrier bandwidth and a second subcarrier spacing, the first subcarrier spacing and the second subcarrier Different intervals;
  • the processor 101 is further configured to perform resource configuration to the terminal device according to the determined first subcarrier interval.
  • the first carrier bandwidth belongs to a first carrier bandwidth interval
  • a subcarrier spacing for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier. interval.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the multiple subcarrier spacings include the first subcarrier spacing.
  • the code corresponding to the foregoing resource configuration method is solidified into the chip, so that the chip can perform the foregoing resource configuration method during operation, and how to design and program the processor 101. Techniques well known to those skilled in the art will not be described here.
  • an embodiment of the present application provides a base station, where the base station includes a processor 111 and a transmitter 112.
  • Processor 111 and transmitter 112 may be coupled by system bus 110.
  • the processor 111 may be a central processing unit (CPU) or an application specific integrated circuit (ASIC), and may be one or more integrated circuits for controlling program execution, may be a baseband chip, and the like.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • Transmitter 112 may be coupled to processor 111 via system bus 110 (as shown in FIG. 11) or may be coupled to processor 111 via a dedicated connection line.
  • the device may also include a memory that may be coupled to the processor 111 via the system bus 110.
  • the number of memories may be one or more, and the memory may be a read only memory (ROM), a random access memory (RAM) or a disk memory, or the like.
  • the memory can be used to store the program code required by the processor 111 to perform tasks, and can also be used to store data.
  • the processor 111 is configured to determine a mapping relationship between the first carrier bandwidth and the first partial bandwidth set and/or a mapping relationship between the capability bandwidth of the terminal device and the second partial bandwidth set.
  • the first part of the bandwidth set includes a plurality of partial bandwidths
  • the first partial bandwidth set includes the determined partial bandwidth
  • the second partial bandwidth set includes a plurality of partial bandwidths
  • the second partial bandwidth set The determined partial bandwidth is included.
  • the transmitter 112 is configured to send first indication information to the terminal device, where the first indication information is used to indicate the determined partial bandwidth.
  • the base station further includes:
  • the receiver 113 is configured to receive second indication information that is sent by the terminal device, where the second indication information is used to indicate a capability bandwidth of the terminal device.
  • the processor 111 is specifically configured to:
  • the processor 111 is configured to:
  • the transmitter 112 is also used to:
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the third indication information is carried in a resource of a common search space of a control channel or a resource of a terminal device-specific search space, and the part of the bandwidth is in a frequency domain of the first carrier bandwidth.
  • the location and the resource of the common search space do not overlap in the frequency domain location in the first carrier bandwidth, the frequency domain location of the partial bandwidth in the first carrier bandwidth and the resource of the terminal device-specific search space
  • the frequency domain positions in the first carrier bandwidth do not overlap, and the transmitter 112 is specifically configured to:
  • the transmitter 112 is further configured to:
  • the first time domain location and the second time domain location are in a scheduling unit in a time domain, and the last orthogonal frequency division multiplexing OFDM symbol included in the first time domain location Intersecting M OFDM symbols with the first OFDM symbol included in the second time domain location, where M is an integer greater than or equal to 1.
  • the processor 111 is also used to:
  • a mapping relationship between the carrier bandwidth and a subcarrier spacing includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is different from the second subcarrier spacing;
  • the first carrier bandwidth belongs to a first carrier bandwidth interval, and a subcarrier spacing for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier. Carrier spacing.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the first subcarrier spacing is included in the multiple subcarrier spacings.
  • the foregoing code corresponding to the method for determining part of the bandwidth is solidified into the chip, so that the chip can execute the foregoing method for determining part of the bandwidth during operation, and how to design and program the processor 111. Techniques well known to those skilled in the art are not described herein.
  • an embodiment of the present application provides a base station, where the device includes a processor 121 and a transmitter 122.
  • the device may also include a memory that may be coupled to the processor 121 via a bus 123.
  • the number of memories may be one or more, and the memory may be a read only memory (ROM), a random access memory (RAM), or a disk memory, and the like.
  • the processor 121 is configured to generate first indication information and second indication information, where the first indication information is used to indicate to the terminal device, a frequency domain location of a partial bandwidth determined by the base station in a first carrier bandwidth The part of the bandwidth is composed of a plurality of partial bandwidth units; the second indication information is used to indicate a frequency domain location of the physical resource block scheduled in the partial bandwidth;
  • the transmitter 122 is configured to send the first indication information and the second indication information to the terminal device.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the first indication information is carried in a resource of a common search space of a control channel or a resource in a terminal-specific search space, and the part of the bandwidth is in a frequency domain position in the first carrier bandwidth.
  • the frequency domain location in the first carrier bandwidth does not overlap with the resource of the common search space, and the frequency domain location of the partial bandwidth in the first carrier bandwidth and the resource of the terminal device-specific search space are The frequency domain locations in the first carrier bandwidth do not overlap, and the transmitter 122 is specifically configured to:
  • the transmitter 122 is further configured to:
  • the first time domain location and the second time domain location are located in one scheduling unit in the time domain, and the last OFDM symbol included in the first time domain location and the second time
  • the first OFDM symbols included in the domain location are separated by M OFDM symbols, and M is an integer greater than or equal to 1.
  • the foregoing code corresponding to the method for indicating part of the bandwidth is solidified into the chip, so that the chip can execute the foregoing method for indicating part of the bandwidth during operation, and how to design and program the processor 121. Techniques well known to those skilled in the art are not described herein.
  • an embodiment of the present application provides a base station, which can be used to perform the method in the embodiment of the present application.
  • the device includes a subcarrier spacing determination module 131 and a resource configuration module 132.
  • the physical device corresponding to the subcarrier spacing determining module 131 and the resource configuration module 132 may be the processor 101 in FIG.
  • the subcarrier spacing determining module 131 is configured to determine, according to a mapping relationship between the carrier bandwidth and the subcarrier spacing, a first subcarrier spacing for resource configuration in the first carrier bandwidth, where The mapping relationship between the carrier bandwidth and the subcarrier spacing includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first The subcarrier spacing is different from the second subcarrier spacing;
  • the resource configuration module 132 is configured to perform resource configuration to the terminal device according to the determined first subcarrier interval.
  • the first carrier bandwidth belongs to a first carrier bandwidth interval, and a subcarrier spacing for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier. Carrier spacing.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the first subcarrier spacing is included in the multiple subcarrier spacings.
  • an embodiment of the present application provides a base station, where the device includes a processing module 141 and a sending module 142.
  • the physical device corresponding to the processing module 141 may be the processor 111 in FIG. 11, and the physical device corresponding to the sending module 142 may be the transmitter 112 in FIG.
  • the processing module 141 is configured to determine a mapping relationship between the first carrier bandwidth and the first partial bandwidth set and/or a mapping relationship between the capability bandwidth of the terminal device and the second partial bandwidth set, and determine the partial bandwidth.
  • the first part of the bandwidth set includes a plurality of partial bandwidths, the first partial bandwidth set includes the determined partial bandwidth, the second partial bandwidth set includes a plurality of partial bandwidths, and the second partial bandwidth set Including the determined partial bandwidth;
  • the sending module 142 is configured to send first indication information to the terminal device, where the first indication information is used to indicate the determined partial bandwidth.
  • the base station further includes:
  • the receiving module 143 is configured to receive second indication information that is sent by the terminal device, where the second indication information is used to indicate a capability bandwidth of the terminal device.
  • the processing module 141 is specifically configured to:
  • the processing module 141 is used to:
  • the sending module 142 is also used to:
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the third indication information is carried in a resource of a common search space of a control channel or a resource of a terminal device-specific search space, and the part of the bandwidth is in a frequency domain of the first carrier bandwidth.
  • the location and the resource of the common search space do not overlap in the frequency domain location in the first carrier bandwidth, the frequency domain location of the partial bandwidth in the first carrier bandwidth and the resource of the terminal device-specific search space
  • the frequency domain locations in the first carrier bandwidth do not overlap, and the sending module 142 is specifically configured to:
  • the sending module 142 is further configured to:
  • the first time domain location and the second time domain location are in a scheduling unit in a time domain, and the last orthogonal frequency division multiplexing OFDM included in the first time domain location
  • the symbol is spaced apart from the first OFDM symbol included in the second time domain position by M OFDM symbols, and M is an integer greater than or equal to 1.
  • processing module 141 is also used to:
  • a mapping relationship between the carrier bandwidth and a subcarrier spacing includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is different from the second subcarrier spacing;
  • the first carrier bandwidth belongs to a first carrier bandwidth interval, and a subcarrier spacing for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier. Carrier spacing.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the first subcarrier spacing is included in the multiple subcarrier spacings.
  • an embodiment of the present application provides a base station, where the device includes a processing module 151 and a sending module 152.
  • the physical device corresponding to the processing module 151 may be the processor 121 in FIG. 12, and the physical device corresponding to the sending module 152 may be the transmitter 122 in FIG.
  • the processing module 151 is configured to generate first indication information and second indication information, where the first indication information is used to indicate, to the terminal device, a frequency of a partial bandwidth determined by the base station in a first carrier bandwidth a domain location, where the partial bandwidth is composed of a plurality of partial bandwidth units; the second indication information is used to indicate a frequency domain location of the physical resource block scheduled in the partial bandwidth;
  • the sending module 152 is configured to send the first indication information and the second indication information to the terminal device.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the first indication information is carried in a resource of a common search space of a control channel or a resource of a terminal device-specific search space, and the part of the bandwidth is in a frequency domain of the first carrier bandwidth.
  • the location and the resource of the common search space do not overlap in the frequency domain location in the first carrier bandwidth, the frequency domain location of the partial bandwidth in the first carrier bandwidth and the resource of the terminal device-specific search space
  • the frequency domain locations in the first carrier bandwidth do not overlap
  • the sending module 152 is specifically configured to:
  • the sending module 152 is further configured to:
  • the first time domain location and the second time domain location are located in one scheduling unit in the time domain, and the last OFDM symbol included in the first time domain location and the second time
  • the first OFDM symbols included in the domain location are separated by M OFDM symbols, and M is an integer greater than or equal to 1.
  • an embodiment of the present application provides a terminal device, where the device includes a processor 161.
  • the processor 161 may be a central processing unit (CPU) or an application specific integrated circuit (ASIC), and may be one or more integrated circuits for controlling program execution, may be a baseband chip, and the like.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the device may also include a memory that may be coupled to the processor 161 via a bus 162.
  • the number of memories may be one or more, and the memory may be a read only memory (ROM), a random access memory (RAM), or a disk memory, and the like.
  • the processor 161 is configured to determine, according to a mapping relationship between the carrier bandwidth and the subcarrier spacing, a first subcarrier spacing for resource configuration in the first carrier bandwidth, where the carrier bandwidth and the subcarrier spacing are between
  • the mapping relationship includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between a second carrier bandwidth and a second subcarrier spacing, the first subcarrier spacing and the second subcarrier
  • the first carrier bandwidth is a carrier bandwidth indicated by the base station to the terminal device;
  • the first carrier bandwidth belongs to a first carrier bandwidth interval, and a subcarrier spacing for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier. Carrier spacing.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the first subcarrier spacing is included in the multiple subcarrier spacings.
  • the code corresponding to the foregoing resource configuration method is solidified into the chip, so that the chip can perform the foregoing resource configuration method during operation, and how to design and program the processor 101. Techniques well known to those skilled in the art will not be described here.
  • an embodiment of the present application provides a terminal device that includes a processor 171 and a receiver 172 that are connected to the same bus 170.
  • the processor 171 may be a central processing unit (CPU) or an application specific integrated circuit (ASIC), and may be one or more integrated circuits for controlling program execution, may be a baseband chip, and the like.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the receiver 172 can be connected to the processor 171 via the bus 170 (as shown in FIG. 17), or can be connected to the processor 171 via a dedicated connection line, respectively.
  • the device may also include a memory that may be coupled to the processor 171 via a bus 170.
  • the number of memories may be one or more, and the memory may be a read only memory (ROM), a random access memory (RAM), or a disk memory, and the like.
  • the receiver 172 is configured to receive first indication information that is sent by the base station, where the first indication information is used to indicate a part of the bandwidth determined by the base station, where the part of the bandwidth determined by the base station is the base station according to the first carrier bandwidth. Determining a mapping relationship between the first partial bandwidth set and/or a capability bandwidth of the terminal device and the second partial bandwidth set; wherein the first partial bandwidth set includes a plurality of partial bandwidths, The part of the bandwidth set includes a part of the bandwidth determined by the base station, the second part of the bandwidth set includes a plurality of partial bandwidths, and the second partial bandwidth set includes a part of the bandwidth determined by the base station;
  • the processor 171 is configured to determine, according to the first indication information, a partial bandwidth determined by the base station.
  • the terminal device further includes:
  • the transmitter 173 is configured to send second indication information for indicating a capability bandwidth of the terminal device to the base station before the receiving module receives the first indication information.
  • the first indication information includes the third indication information and the fourth indication information
  • the receiver 172 receives the first indication information, which specifically includes:
  • the receiver 172 receives the third indication information that is sent by the base station, where the third indication information is used to indicate a frequency domain location of a part of the bandwidth determined by the base station in the first carrier bandwidth, where the base station
  • the determined partial bandwidth is composed of a plurality of partial bandwidth units
  • the receiver 172 receives the fourth indication information sent by the base station, where the fourth indication information is used for a location of a physical resource block that is scheduled in the determined partial bandwidth.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the third indication information is carried in a resource of a common search space of a control channel or a resource in a terminal-specific search space, where a part of the bandwidth is in a frequency domain position in the first carrier bandwidth.
  • the frequency domain location in the first carrier bandwidth does not overlap with the resource of the common search space, and the frequency domain location of the partial bandwidth in the first carrier bandwidth and the resource of the terminal device-specific search space are The frequency domain locations in the first carrier bandwidth do not overlap, and the receiver 172 is configured to:
  • the receiver 172 is further configured to:
  • the data transmitted by the base station is received over the data channel at the second time domain location.
  • the first time domain location and the second time domain location are located in one scheduling unit in the time domain, and the last frequency division orthogonal multiplexing OFDM symbol included in the first time domain location Intersecting M OFDM symbols with the first OFDM symbol included in the second time domain location, where M is an integer greater than or equal to 1.
  • the processor 171 is also used to:
  • mapping relationship includes the first carrier bandwidth and the a mapping relationship between the first subcarrier spacing and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is different from the second subcarrier spacing;
  • the first carrier bandwidth belongs to a first carrier bandwidth interval, and a subcarrier spacing for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier. Carrier spacing.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the multiple subcarrier spacings include the first subcarrier spacing.
  • an embodiment of the present application provides a terminal device, where the device includes a processor 181 and a receiver 182.
  • the device can also include a memory that can be coupled to processor 181 via bus 183.
  • the number of memories may be one or more, and the memory may be a read only memory (ROM), a random access memory (RAM), or a disk memory, and the like.
  • the receiver 182 is configured to receive first indication information that is sent by the base station, where the first indication information is used to indicate, to the terminal device, that the determined partial bandwidth is in a frequency domain position in a first carrier bandwidth of the base station,
  • the partial bandwidth is composed of a plurality of partial bandwidth units;
  • the receiver 182 is further configured to receive second indication information that is sent by the base station, where the second indication information is used to indicate a frequency domain location of a physical resource block that is scheduled in the partial bandwidth;
  • the processor 181 is configured to determine, according to the first indication information, a frequency domain location of the part of the bandwidth in a first carrier bandwidth of the base station;
  • the processor 181 is further configured to determine, according to the second indication information, a frequency domain location of the physical resource block in which the base station transmits data to the terminal device in the partial bandwidth.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the first indication information is carried in a resource of a common search space of a control channel or a resource location of a terminal device-specific search space, and the part of the bandwidth is in a frequency domain of the first carrier bandwidth.
  • the location and the resource of the common search space do not overlap in the frequency domain location in the first carrier bandwidth, the frequency domain location of the partial bandwidth in the first carrier bandwidth and the resource of the terminal device-specific search space
  • the frequency domain locations in the first carrier bandwidth do not overlap, and the receiver 182 is configured to:
  • the receiver 182 is further configured to:
  • the data transmitted by the base station is received over the data channel at the second time domain location.
  • the first time domain location and the second time domain location are in a scheduling unit in a time domain, and the last orthogonal frequency division multiplexing OFDM symbol included in the first time domain location Intersecting M OFDM symbols with the first OFDM symbol included in the second time domain location, where M is an integer greater than or equal to 1.
  • an embodiment of the present application provides a terminal device, where the device includes a subcarrier spacing determining module 191 and a resource location determining module 192.
  • the physical device corresponding to the subcarrier spacing determining module 191 and the resource location determining module 192 may be the processor 161 in FIG.
  • the subcarrier spacing determining module 191 is configured to determine, according to a mapping relationship between the carrier bandwidth and the subcarrier spacing, a first subcarrier spacing for resource configuration in the first carrier bandwidth, where The mapping relationship between the carrier bandwidth and the subcarrier spacing includes a mapping relationship between the first carrier bandwidth and the first subcarrier spacing, and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first The subcarrier spacing is different from the second subcarrier spacing, where the first carrier bandwidth is a carrier bandwidth indicated by the base station to the terminal device;
  • the resource location determining module 192 is configured to determine, according to the determined first subcarrier interval, a resource location allocated by the base station to the terminal device.
  • the first carrier bandwidth belongs to a first carrier bandwidth interval, and a subcarrier spacing for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier. Carrier spacing.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the first subcarrier spacing is included in the multiple subcarrier spacings.
  • an embodiment of the present application provides a terminal device, where the device includes a processing module 201 and a receiving module 202.
  • the physical device corresponding to the processing module 201 may be the processor 171 in FIG. 17, and the physical device corresponding to the receiving module 202 may be the receiver 172 in FIG.
  • the receiving module 202 is configured to receive first indication information that is sent by the base station, where the first indication information is used to indicate a part of the bandwidth determined by the base station, where the part of the bandwidth determined by the base station is the base station according to the first carrier bandwidth. Determining a mapping relationship between the first partial bandwidth set and/or a capability bandwidth of the terminal device and the second partial bandwidth set; wherein the first partial bandwidth set includes a plurality of partial bandwidths, The part of the bandwidth set includes a part of the bandwidth determined by the base station, the second part of the bandwidth set includes a plurality of partial bandwidths, and the second partial bandwidth set includes a part of the bandwidth determined by the base station;
  • the processing module 201 is configured to determine, according to the first indication information, a partial bandwidth determined by the base station.
  • the terminal device further includes:
  • the sending module 203 is configured to send, to the base station, second indication information for indicating a capability bandwidth of the terminal device, before the receiving module 202 receives the first indication information.
  • the first indication information includes the third indication information and the fourth indication information, and the receiving, by the receiving module 202, the first indication information, specifically:
  • the receiving module 202 receives the third indication information that is sent by the base station, where the third indication information is used to indicate that a part of the bandwidth determined by the base station is in a frequency domain position in the first carrier bandwidth, where the base station
  • the determined partial bandwidth is composed of a plurality of partial bandwidth units
  • the receiving module 202 receives the fourth indication information sent by the base station, where the fourth indication information is used to indicate a location of a physical resource block that is scheduled in the determined partial bandwidth.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the third indication information is carried in a resource of a common search space of a control channel or a resource in a terminal-specific search space, where a part of the bandwidth is in a frequency domain position in the first carrier bandwidth.
  • the frequency domain location in the first carrier bandwidth does not overlap with the resource of the common search space, and the frequency domain location of the partial bandwidth in the first carrier bandwidth and the resource of the terminal device-specific search space are The frequency domain locations in the first carrier bandwidth do not overlap, and the receiving module 202 is configured to:
  • the receiving module 202 is further configured to:
  • Data transmitted by the base station is received over the determined partial bandwidth at a second time domain location.
  • the first time domain location and the second time domain location are located in one scheduling unit in the time domain, and the last frequency division orthogonal multiplexing OFDM symbol included in the first time domain location Intersecting M OFDM symbols with the first OFDM symbol included in the second time domain location, where M is an integer greater than or equal to 1.
  • processing module 201 is further configured to:
  • mapping relationship includes the first carrier bandwidth and the a mapping relationship between the first subcarrier spacing and a mapping relationship between the second carrier bandwidth and the second subcarrier spacing, where the first subcarrier spacing is different from the second subcarrier spacing;
  • the first carrier bandwidth belongs to a first carrier bandwidth interval, and a subcarrier spacing for resource configuration in each carrier bandwidth included in the first carrier bandwidth interval is the first subcarrier. Carrier spacing.
  • the first carrier bandwidth can support multiple subcarrier spacings, and the first subcarrier spacing is included in the multiple subcarrier spacings.
  • an embodiment of the present application provides a terminal device, where the device includes a processing module 211 and a receiving module 212.
  • the physical device corresponding to the processing module 211 may be the processor 181 in FIG. 18, and the physical device corresponding to the receiving module 212 may be the receiver 182 in FIG.
  • the receiving module 212 is configured to receive first indication information that is sent by the base station, where the first indication information is used to indicate to the terminal device that the determined partial bandwidth is in a frequency domain position in a first carrier bandwidth of the base station,
  • the partial bandwidth is composed of a plurality of partial bandwidth units;
  • the receiving module 212 is further configured to receive second indication information that is sent by the base station, where the second indication information is used to indicate a frequency domain location of a physical resource block that is scheduled in the partial bandwidth;
  • the processing module 211 is configured to determine, according to the first indication information, a frequency domain location of the partial bandwidth in a first carrier bandwidth of the base station;
  • the processing module 211 is further configured to determine, according to the second indication information, a frequency domain location of the physical resource block in which the base station transmits data to the terminal device in the partial bandwidth.
  • the partial bandwidth unit is a resource block group RBG or a synchronization bandwidth SS bandwidth or a physical resource block PRB.
  • the first indication information is carried in a resource of a common search space of a control channel or a resource location of a terminal device-specific search space, and the part of the bandwidth is in a frequency domain of the first carrier bandwidth.
  • the location and the resource of the common search space do not overlap in the frequency domain location in the first carrier bandwidth, the frequency domain location of the partial bandwidth in the first carrier bandwidth and the resource of the terminal device-specific search space
  • the frequency domain locations in the first carrier bandwidth do not overlap, and the receiving module 212 is configured to:
  • the receiving module 212 is further configured to:
  • Data transmitted by the base station is received over the determined partial bandwidth at a second time domain location.
  • the first time domain location and the second time domain location are in a scheduling unit in a time domain, and the last orthogonal frequency division multiplexing OFDM symbol included in the first time domain location Intersecting M OFDM symbols with the first OFDM symbol included in the second time domain location, where M is an integer greater than or equal to 1.
  • FIG. 22 shows a schematic structural view of a device 2200.
  • the device 2200 can be a base station, and can implement the function of the base station in the method provided by the embodiment of the present application.
  • the device 2200 can also be a device that can support the base station to implement the function of the base station in the method provided by the embodiment of the present application.
  • the device 2200 can be a hardware structure, a software module, or a hardware structure plus a software module.
  • Device 2200 can be implemented by a chip system. In the embodiment of the present application, the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the device 2200 can include a determination module 2201 and a communication module 2202.
  • the determination module 2201 and the communication module 2202 can be used to perform the methods of the embodiments illustrated in FIG. 4 or FIG. 9, and/or other processes for supporting the techniques described herein.
  • the determining module 2201 may be configured to determine, according to a mapping relationship between a carrier bandwidth and a subcarrier interval, a first subcarrier spacing for resource configuration in the first carrier bandwidth, and the communication module 2202 may be configured to use the Determining the first subcarrier spacing to perform resource configuration on the terminal device; or determining module 2201 may be configured to use a mapping relationship between the first carrier bandwidth and the first partial bandwidth set and/or a capability bandwidth of the terminal device and the second portion
  • the mapping between the bandwidth sets, the partial bandwidth is determined, the communication module 2202 may be configured to send the first indication information, where the first indication information is used to indicate the determined partial bandwidth; or the determining module 2201 may be configured to determine
  • the communication module 2202 may be configured to send the first indication information and the second indication information, where the first indication information is used to indicate to the terminal device that the determined partial bandwidth is in the first carrier a frequency domain location in the bandwidth, the determined partial bandwidth consisting of one or more partial bandwidth units, the second indication letter The information is used to indicate the frequency
  • Communication module 2201 is for device 2200 to communicate with other modules, which may be circuits, devices, interfaces, buses, software modules, transceivers, or any other device that can implement communication.
  • the device 2300 is provided in the embodiment of the present application.
  • the device 2300 may be a base station, which can implement the function of the base station in the method provided by the embodiment of the present application.
  • the device 2300 can also support the base station to implement the embodiment of the present application.
  • the device 2300 can be a chip system.
  • the device 2300 includes at least one processor 2320 for implementing or for supporting the device 2300 to implement the functions of the base station in the method provided by the embodiment of the present application.
  • the processor 2320 may determine a first subcarrier spacing for resource configuration, and perform resource configuration to the terminal device according to the determined first subcarrier spacing; the processor 2320 may be configured to use the first carrier bandwidth
  • the mapping relationship between the first part of the bandwidth set and/or the capability bandwidth of the terminal device and the second part of the bandwidth set determines a partial bandwidth configured for the terminal device, and the processor 2320 can generate and send the first indication information.
  • the second indication information where the first indication information is used to indicate a frequency domain location of the partial bandwidth configured for the terminal device in the first carrier bandwidth, where the partial bandwidth is composed of multiple partial bandwidth units, the second indication The information is used to indicate the frequency domain location of the physical resource block that is scheduled in the part of the bandwidth.
  • Apparatus 2300 can also include at least one memory 2330 for storing program instructions and/or data.
  • Memory 2330 is coupled to processor 2320.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in an electrical, mechanical or other form for information interaction between devices, units or modules.
  • the processor 2320 may operate in conjunction with the memory 2330.
  • the processor 2320 may execute program instructions stored in the memory 2330. At least one of the at least one memory may be included in a processor.
  • the device 2300 can also include a communication interface 2310 for communicating with other devices through the transmission medium such that the devices for use in the device 2300 can communicate with other devices.
  • the processor 2320 can transmit and receive data using the communication interface 2310.
  • connection medium between the communication interface 2310, the processor 2320, and the memory 2330 is not limited in the embodiment of the present application.
  • the memory 2330, the processor 2320, and the communication interface 2310 are connected by a bus 2340 in FIG. 23, and the bus is indicated by a thick line in FIG. 23, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 23, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, a discrete hardware component, or may be implemented or The methods, steps, and logical block diagrams disclosed in the embodiments of the present application are performed.
  • a general purpose processor can be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), or may be a volatile memory, such as Random-access memory (RAM).
  • a memory is any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function for storing program instructions and/or data.
  • FIG. 24 shows a schematic structural view of a device 2400.
  • the device 2400 can be a terminal device, and can implement the function of the terminal device in the method provided by the embodiment of the present application.
  • the device 2400 can also be a device that can support the terminal device to implement the function of the terminal device in the method provided by the embodiment of the present application.
  • the device 2400 can be a hardware structure, a software module, or a hardware structure plus a software module.
  • Device 2400 can be implemented by a chip system.
  • the device 2400 can include a determination module 2401 and/or a communication module 2402.
  • the determination module 2401 can be used to perform the methods in the embodiments illustrated in FIG. 4 or FIG. 9, and/or other processes for supporting the techniques described herein.
  • the determining module 2401 may be configured to determine, according to a mapping relationship between a carrier bandwidth and a subcarrier interval, a first subcarrier spacing for resource configuration in the first carrier bandwidth, according to the determined first subcarrier.
  • the carrier interval is determined to be a resource location configured by the terminal device; or the communication module 2402 is configured to receive the first indication information, where the first indication information is used to indicate a partial bandwidth configured for the terminal device, and the determining module 2401 is configured to use, according to the An indication information, determining a partial bandwidth configured for the terminal device; or, the communication module 2402 is configured to receive the first indication information and the second indication information, where the first indication information is used to indicate that the partial bandwidth configured for the terminal device is at the first a frequency domain location in the carrier bandwidth, the first carrier bandwidth is an indicated carrier bandwidth, the partial bandwidth configured for the terminal device is composed of a plurality of partial bandwidth units, and the second indication information is used to indicate that a frequency domain location of the scheduled physical resource block in a part of the bandwidth configured by the
  • Communication module 2402 is for device 2400 to communicate with other modules, which may be circuits, devices, interfaces, buses, software modules, transceivers, or any other device that can implement communication.
  • the device 2500 is provided in the embodiment of the present application.
  • the device 2500 may be a terminal device, which can implement the function of the terminal device in the method provided by the embodiment of the present application.
  • the device 2500 can also support the terminal device to implement the device.
  • the device 2500 can be a chip system.
  • the device 2500 includes at least one processor 2520 for implementing or for supporting the device 2500 to implement the functions of the terminal device in the method provided by the embodiment of the present application.
  • the processor 2520 may determine a first subcarrier spacing for resource configuration, and determine a resource location configured for the terminal device according to the determined first subcarrier spacing; or the processor 2520 may receive the The first indication information is determined as a part of the bandwidth configured by the terminal device; or the processor 2520 may determine, according to the received first indication information and the second indication information, part of the bandwidth configured for the terminal device, the first indication information And indicating a frequency domain location of the part of the bandwidth configured in the first carrier bandwidth, where the first carrier bandwidth is the indicated carrier bandwidth, and the part of the bandwidth configured for the terminal device is composed of multiple partial bandwidth units.
  • the second indication information is used to indicate the frequency domain location of the physical resource block that is scheduled in the part of the bandwidth configured by the terminal device.
  • Apparatus 2500 can also include at least one memory 2530 for storing program instructions and/or data.
  • Memory 2530 is coupled to processor 2520.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in an electrical, mechanical or other form for information interaction between devices, units or modules.
  • Processor 2520 may operate in conjunction with memory 2530.
  • the processor 2520 may execute program instructions stored in the memory 2530. At least one of the at least one memory may be included in a processor.
  • the device 2500 can also include a communication interface 2510 for communicating with other devices through the transmission medium such that devices for use in the device 2500 can communicate with other devices.
  • the processor 2520 can transmit and receive data using the communication interface 2510.
  • connection medium between the communication interface 2510, the processor 2520, and the memory 2530 is not limited in the embodiment of the present application.
  • the memory 2530, the processor 2520, and the communication interface 2510 are connected by a bus 2540 in FIG. 25.
  • the bus is indicated by a thick line in FIG. 25, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 25, but it does not mean that there is only one bus or one type of bus.
  • the base stations in FIGS. 10 to 15 according to the embodiments of the present application, the devices in FIGS. 22 and 23, and the terminal devices in FIGS. 16 to 21, the devices in FIGS. 24 and 25 may correspond to The base station and the terminal in the communication methods 400 and 900 according to the embodiments of the present application, and the above-mentioned and other operations and/or functions of the respective units in the base station and the terminal are respectively corresponding to the corresponding processes of the method described in the embodiments of the present application, Concise, no longer repeat here.
  • the size of the sequence number of each process does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be taken by the embodiment of the present application.
  • the implementation process constitutes any qualification.
  • modules and method steps of the various examples described in connection with the embodiments disclosed herein can be implemented in electronic hardware or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the receiver, the transmitter, the receiving module, and the sending module may be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network transceiver, a cellular network transceiver, or a combination thereof.
  • the processor may be a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: network processor, abbreviated: NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the memory may include a volatile memory (English: volatile memory), such as random access memory (English: random-access memory, abbreviation: RAM); the memory may also include non-volatile memory (English: non-volatile memory).
  • read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, Abbreviation: SSD); the memory may also include a combination of the above types of memory.
  • bus interface may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor and memory represented by the memory.
  • the circuits are linked together.
  • the bus interface can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver provides means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations. In the above embodiments, it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • the computer program product includes one or more computer instructions.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了资源配置、确定部分带宽及指示部分带宽的方法及设备。该方法包括:基站根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽;其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合包括所述部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合包括所述部分带宽;所述基站向所述终端设备指示所述部分带宽。

Description

资源配置、确定部分带宽及指示部分带宽的方法及设备
本申请要求于2017年3月25日提交中国专利局、申请号为201710184953.1、申请名称为“资源配置、确定部分带宽及指示部分带宽的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及数据通信技术领域,尤其涉及资源配置、确定部分带宽及指示部分带宽的方法及设备。
背景技术
由第三代合作伙伴项目(the 3rd Generation Partnership Project,3GPP)制定的长期演进(Long Term Evolution,LTE)系统标准被认为是第四代无线接入系统标准。现有LTE系统中,频域上的基本单位为一个子载波(sub-carrier)。上行和下行的子载波间隔均为15kHz。LTE中基站通过MIB配置一个系统带宽,这个系统带宽可以理解为一个载波带宽,基站和UE可以在该载波带宽的全带宽上进行数据传输。
随着通信系统中场景和业务的多变性的需求,在下一代通信系统中,例如:新无线(New Radio,NR)系统,或者称之为第五代(5G)无线接入系统,引入了多种子载波间隔,即一个用户设备可以支持多种子载波间隔,不同的用户设备之间也可以使用不同或相同的子载波间隔。对于具有多种子载波间隔的载波带宽,如何进行资源配置,如何确定部分带宽以及如何指示部分带宽是目前亟需解决的问题。
发明内容
本申请实施例提供资源配置、确定部分带宽及指示部分带宽的方法及设备,用以指示部分带宽。
第一方面,提供一种资源配置的方法,该方法可以应用于基站。在该方法中,基站根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,载波带宽与子载波间隔之间的映射关系包括第一载波带宽与第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,第一子载波间隔与第二子载波间隔不同,然后,基站根据确定的第一子载波间隔向终端设备进行资源配置。
在本申请实施例中,基站预先配置有载波带宽与子载波间隔之间的映射关系,该映射关系中包括多个不同的子载波间隔,基站可以根据载波带宽选择合适的子载波间隔进行资源配置,设定基站的载波带宽为第一载波带宽,基站则根据预配置的映射关系,确定在第一载波带宽中用于资源配置的子载波间隔,避免了在大的载波带宽下使用小的子载波间隔进行资源配置带来的信令开销问题,从而减小了资源配置所需的信令开销。
进一步地,通过绑定载波带宽与资源配置时的子载波间隔,可以隐式或显示的指示终端设备在资源配置时使用的子载波间隔。
在一种可能的设计中,第一载波带宽属于第一载波带宽区间,第一载波带宽区间 所包括的每个载波带宽中用于资源配置的子载波间隔为第一子载波间隔。
在本申请实施例中,载波带宽与子载波间隔的映射关系可以是一个载波带宽区间与一个子载波间隔的映射关系,其中,一个载波带宽区间中包括有多个载波带宽或载波带宽与子载波间隔的映射关系可以是一个载波带宽与一个子载波间隔的映射关系。
在一种可能的设计中,第一载波带宽能够支持多个子载波间隔,多个子载波间隔中包括第一子载波间隔。
在本申请实施例中,对于一个给定的载波带宽,该载波带宽下支持的子载波间隔是一个有限的集合,从而载波带宽与子载波间隔的映射关系可以是一个载波带宽对应一个子载波间隔集合,基站在确定子载波间隔时,可以根据实际情况从对应的子载波间隔集合中确定,如为了使信令开销达到最小,从子载波间隔集合中选择最大的子载波间隔;或者根据实际的业务类型选择适当的子载波间隔,从而使子载波间隔可以灵活配置。
第二方面,提供一种确定部分带宽的方法,该方法可以应用于基站。在该方法中,基站根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定部分带宽,其中,第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合中包括的所述多个部分带宽中包括所述基站确定的部分带宽,第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合中包括的所述多个部分带宽中包括所述基站确定的部分带宽;在基站确定所述部分带宽后,基站向终端设备发送第一指示信息,第一指示信息用于指示所述基站确定的部分带宽。
在本申请实施例中,基站预先配置有载波带宽与部分带宽集合的映射关系和/或终端设备的能力带宽与部分带宽集合之间的映射关系,该映射关系可以包含载波带宽与部分带宽集合的映射关系或者包含终端设备的能力带宽与部分带宽集合之间的映射关系或者包含两种映射关系,其中,在载波带宽与部分带宽集合的映射关系中包含有多个载波带宽,其中的每个载波带宽都对应有一个部分带宽集合;终端设备的能力带宽与部分带宽集合之间的映射关系中包含有多个终端设备的能力带宽,其中的每个终端设备的能力带宽都对应有一个部分带宽集合,部分带宽集合中包含有多个部分带宽,从而为不同的载波带宽及不同的终端设备的能力带宽预配置了多种部分带宽,基站在确定部分带宽时,则根据预配置的映射关系确定,从而解决了不同载波带宽或者不同UE能力的自适应选择部分带宽问题,提高了确定终端设备的部分带宽的灵活性。
进一步地,基站在确定部分带宽时,能够从多个部分带宽中确定,有利于基站根据实际需求自适应调整部分带宽,如根据业务类型的不同调整部分带宽等。
在一种可能的设计中,该方法还包括:基站接收终端设备发送的第二指示信息;其中,第二指示信息用于指示终端设备的能力带宽。终端设备的能力带宽表示终端设备能够支持的最大部分带宽。
在本申请实施例中,基站可以在与终端设备建立RRC连接以后,通过RRC信令获取终端设备能够支持的能力带宽,或者在与终端设备建立的随机接入过程中获取终端设备能支持的能力带宽,然后根据获取方式的不同,采用不同的方式指示部分带宽。如基站通过终端设备发送的preamble信息中获取终端设备的能力带宽,那么基站可以通过RAR指示确定的部分带宽;基站通过随机接入过程的MSG3获取终端设备的能 力带宽,那么基站可以通过MSG4指示确定的部分带宽,从而使基站能够灵活调整指示方式。
在一种可能的设计中,基站根据第一载波带宽与第一部分带宽集合之间的映射关系,确定终端设备的部分带宽,包括:基站从第一部分带宽集合中,确定终端设备的部分带宽,其中,所述终端设备的部分带宽小于或者等于所述终端设备的能力带宽以及所述第一载波带宽中较小值。
在本申请实施例中,基站中仅配置有载波带宽与部分带宽集合的映射关系,设定基站的载波带宽为第一载波带宽,则基站根据终端设备的能力带宽,从与第一载波带宽对应的多个第一部分带宽中,确定终端设备的部分带宽,从而使终端设备的部分带宽能够分别与载波带宽及终端设备的能力适配。
在一种可能的设计中,基站根据终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定终端设备的部分带宽,包括:基站确定第二部分带宽集合中的任一部分带宽为终端设备的部分带宽。
在具体实施过程中,若基站中仅配置有终端设备的能力带宽与部分带宽集合的映射关系,设定与终端设备的能力带宽对应的部分带宽集合为第二部分带宽集合,则基站可以从第二部分带宽集合中选择任意一个部分带宽作为终端设备的部分带宽。从而使终端设备的部分带宽能够与终端设备的能力适配。
在一种可能的设计中,基站向终端设备发送第一指示信息,包括:基站向终端设备发送第三指示信息;其中,第三指示信息用于向终端设备指示部分带宽在第一载波带宽中的频域位置,部分带宽由多个部分带宽单元组成;以及基站向终端设备发送第四指示信息;其中,第四指示信息用于指示在部分带宽中被调度的物理资源块的频域位置。
在本申请实施例中,当基站确定为终端设备配置的部分带宽后,则向终端设备发送第三指示信息和第四指示信息,其中,第三指示信息用于指示终端设备的部分带宽在载波带宽中的频域位置,但是基站向终端设备传输数据时,部分带宽可能并不会被全部使用,因此,还需要第四指示信息用于指示在部分带宽中被调度的物理资源块的频域位置。第三指示信息和第四指示信息可以包含在同一个信令中,也可以是分两次分别发送。若部分带宽在载波带宽中的频域位置上连续分布,第三指示信息可以为RIV值或者比特映射方式中每个频域位置的有效值;若部分带宽在载波带宽中的频域位置上非连续分布,第三指示信息可以为上行资源分配类型1的方式中的r值或者比特映射方式中每个频域位置的有效值。从而使终端设备的部分带宽由若干个部分带宽单元组成,通过部分带宽单元来灵活指示部分带宽。
在一种可能的设计中,部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在本申请实施例中,部分带宽单元可以根据实际情况确定,如在两级指示用户资源分配的方法中,在指示该部分带宽中具体调度的资源块时是以资源块组作为调度单元,因此,为了能和资源分配的第二步更好的兼容,则选择资源块组作为部分带宽单元,从而通过采用不同粒度的部分带宽单元,获取不同程度的灵活性。
在一种可能的设计中,该第三指示信息承载在控制信道的公共搜索空间的资源位置中或终端设备专用搜索空间的资源位置中,且该部分带宽在第一载波带宽中的频域 位置与公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,基站向终端设备发送第三指示信息,包括:基站在第一时域位置通过控制信道向终端设备发送第三指示信息;在基站向终端设备发送第三指示信息之后,该方法还包括:基站在第二时域位置通过所述确定的部分带宽向终端设备发送数据。
在本申请实施例中,第三指示信息中指示的频域位置可以与公共搜索空间的资源位置或UE专用搜索空间的资源位置不重叠,这样发送第三指示信息的频域位置与终端设备实际接收数据的频域位置不同,终端设备在接收基站发送的数据时需要切换频域位置,为了保证终端设备无误地接收到基站发送的数据,因此,基站在发送第三指示信息的时域位置后的某一时域位置向终端设备发送数据。因而能够有效保证终端在基站发送数据的时域位置接收所述数据,保证了接收数据的完整性。
在一种可能的设计中,该第四指示信息承载在控制信道的公共搜索空间的资源位置中或终端设备专用搜索空间的资源位置,且该部分带宽在第一载波带宽中的频域位置与公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,基站向终端设备发送第四指示信息,包括:基站在第一时域位置通过控制信道向终端设备发送第四指示信息;在基站向终端设备发送第四指示信息之后,该方法还包括:基站在第二时域位置通过所述确定的部分带宽向终端设备发送数据。
在本申请实施例中,第四指示信息中指示的频域位置可以与公共搜索空间的资源位置或UE专用搜索空间的资源位置不重叠,这样发送第四指示信息的频域位置与终端设备实际接收数据的频域位置不同,终端设备在接收基站发送的数据时需要切换频域位置,为了保证终端设备无误地接收到基站发送的数据,因此,基站在发送第四指示信息的时域位置后的某一时域位置向终端设备发送数据。因而能够有效保证终端在基站发送数据的时域位置接收所述数据,保证了接收数据的完整性。
在一种可能的设计中,第一时域位置和第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个正交频分复用OFDM符号与第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
在本申请实施例中,可以将基站发送第二指示信息第一时域位置与发送数据时的第二时域位置的时域位置差值设定为一个或多个OFDM符号,如2个符号,这样,基站确定出公共搜索空间资源位置或者UE专用搜索空间资源位置在时域中占用的符号位数后,便能准确地确定出数据信道在时域的起始位置,便于提高基站与终端设备进行数据交互时的准确性。
在一种可能的设计中,在基站向终端设备发送第一指示信息之前,该方法还包括:基站根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,载波带宽与子载波间隔之间的映射关系包括第一载波带宽与第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,第一子载波间隔与第二子载波间隔不同;基站根据所述确定的第一子载波间隔确定终端设备的部分带宽在第一载波带宽中的频域位置。
在本申请实施例中,基站预先配置有载波带宽与子载波间隔之间的映射关系,该映射关系中包括有多个不同的子载波间隔,对于具有不同载波带宽的多个基站来说,每个基站都可以根据自身的载波带宽选择合适的子载波间隔进行资源配置,避免了在大的载波带宽下使用小的子载波间隔进行资源配置带来的信令开销问题,从而减小了资源配置时的信令开销。
进一步地,通过绑定载波带宽与资源配置时的子载波间隔,可以隐式的指示终端设备在确定频域位置时使用的子载波间隔。
在一种可能的设计中,第一载波带宽属于第一载波带宽区间,第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为第一子载波间隔。
在本申请实施例中,载波带宽与子载波间隔的映射关系可以是一个载波带宽区间与一个子载波间隔的映射关系,其中,一个载波带宽区间中包括有多个载波带宽,从而减少映射关系的信息量,减轻基站的负荷。
在一种可能的设计中,第一载波带宽能够支持多个子载波间隔,多个子载波间隔中包括第一子载波间隔。
在本申请实施例中,对于一个给定的载波带宽,该载波带宽下支持的子载波间隔是一个有限的集合,从而载波带宽与子载波间隔的映射关系可以是一个载波带宽对应一个子载波间隔集合,基站在确定子载波间隔时,可以根据实际情况从对应的子载波间隔集合中确定,如为了使信令开销达到最小,从子载波间隔集合中选择最大的子载波间隔;或者根据实际的业务类型选择适当的子载波间隔,从而使子载波间隔可以灵活配置。
第三方面,提供一种指示部分带宽的方法,该方法可以应用于基站。在该方法中,基站在确定终端设备的部分带宽后,基站向终端设备发送第一指示信息;其中,第一指示信息用于向终端设备指示确定的部分带宽在第一载波带宽中的频域位置,部分带宽由多个部分带宽单元组成;然后,基站向终端设备发送第二指示信息;其中,第二指示信息用于指示在部分带宽中被调度的物理资源块的频域位置。
在本申请实施例中,基站确定终端设备的部分带宽可以是根据预设带宽值确定的,也可以是通过载波带宽与部分带宽集合的映射关系和/或终端设备的能力带宽与部分带宽集合之间的映射关系确定的。当基站确定为终端设备配置的部分带宽后,则向终端设备发送第一指示信息和第二指示信息,其中,第一指示信息用于指示终端设备的部分带宽在载波带宽中的频域位置的一系列比特位,但是部分带宽可能并不会被全部使用,因此,还需要第二指示信息指示基站向终端设备传输数据的物理资源块在部分带宽中的频域位置。第一指示信息和第二指示信息可以包含在同一个信令中,也可以是分两次分别发送。若第一指示信息可以为RIV值或者比特映射方式中每个频域位置的有效值,以实现部分带宽在所述载波带宽中的频域位置上连续分布;第一指示信息可以为上行资源分配类型1的方式中的r值或者比特映射方式中每个频域位置的有效值,以显示部分带宽在载波带宽中的频域位置上非连续分布,。从而使终端设备的部分带宽由若干个部分带宽单元组成,通过部分带宽单元来灵活指示部分带宽。
在一种可能的设计中,部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在本申请实施例中,部分带宽单元可以根据实际情况确定,如在两级指示用户资 源分配的方法中,在指示该部分带宽中具体调度的资源块时是以资源块组作为调度单元,因此,为了能和资源分配的第二步更好的兼容,则选择资源块组作为部分带宽单元,从而通过采用不同粒度的部分带宽单元,获取不同程度的灵活性。
在一种可能的设计中,第一指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,部分带宽在所述第一载波带宽中的频域位置与公共搜索空间的资源在第一载波带宽中的频域位置不重叠,部分带宽在所述第一载波带宽中的频域位置与终端设备专用搜索空间的资源在第一载波带宽中的频域位置不重叠,基站向终端设备发送第一指示信息,包括:基站在第一时域位置通过控制信道向终端设备发送第一指示信息;在基站向终端设备发送第一指示信息之后,该方法还包括:基站在第二时域位置通过所述确定部分带宽向终端设备发送数据。
在本申请实施例中,第一指示信息中指示的频域位置可以与控制信道的公共搜索空间资源位置或者UE专用搜索空间资源位置不重叠,这样发送第一指示信息的频域位置与终端设备实际接收数据的频域位置不同,终端设备在接收基站发送的数据时需要切换频域位置,为了保证终端设备无误地接收到基站发送的数据,因此,基站在发送第一指示信息的时域位置后的某一时域位置向终端设备发送数据。因而能够有效保证终端在基站发送数据的时域位置接收所述数据,保证了接收数据的完整性。
在一种可能的设计中,第二指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,部分带宽在所述第一载波带宽中的频域位置与公共搜索空间的资源在第一载波带宽中的频域位置不重叠,部分带宽在所述第一载波带宽中的频域位置与终端设备专用搜索空间的资源在第一载波带宽中的频域位置不重叠,基站向终端设备发送第一指示信息,包括:基站在第一时域位置通过控制信道向终端设备发送第二指示信息;在基站向终端设备发送第二指示信息之后,该方法还包括:基站在第二时域位置通过所述确定部分带宽向终端设备发送数据。
在本申请实施例中,第二指示信息中指示的频域位置可以与控制信道的公共搜索空间资源位置或者UE专用搜索空间资源位置不重叠,这样发送第二指示信息的频域位置与终端设备实际接收数据的频域位置不同,终端设备在接收基站发送的数据时需要切换频域位置,为了保证终端设备无误地接收到基站发送的数据,因此,基站在发送第二指示信息的时域位置后的某一时域位置向终端设备发送数据。因而能够有效保证终端在基站发送数据的时域位置接收所述数据,保证了接收数据的完整性。
在一种可能的设计中,第一时域位置和第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个OFDM符号与第二时域位置中包括的第一个正交频分复用OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
在本申请实施例中,可以将基站发送第二指示信息第一时域位置与发送数据时的第二时域位置的时域位置差值设定为一个或多个OFDM符号,如2个符号,这样,基站确定出公共搜索空间资源位置或者UE专用搜索空间资源位置在时域中占用的符号位数后,便能准确地确定出数据信道在时域的起始位置,便于提高基站与终端设备进行数据交互时的准确性。
在一种可能的设计中,在基站向终端设备发送第一指示信息之前,该方法还包括:基站根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定终端设备的部分带宽;其中,第一部分 带宽集合中包括多个部分带宽,第一部分带宽集合包括确定的部分带宽,第二部分带宽集合中包括多个部分带宽,第二部分带宽集合包括确定的部分带宽。
在本申请实施例中,基站预先配置有载波带宽与部分带宽集合的映射关系和/或终端设备的能力带宽与部分带宽集合之间的映射关系。基站配置的映射关系可以包含载波带宽与部分带宽集合的映射关系或者包含终端设备的能力带宽与部分带宽集合之间的映射关系或者包含两种映射关系,其中,在载波带宽与部分带宽集合的映射关系中包含有多个载波带宽,其中的每个载波带宽都对应有一个部分带宽集合;终端设备的能力带宽与部分带宽集合之间的映射关系中包含有多个终端设备的能力带宽,其中的每个终端设备的能力带宽都对应有一个部分带宽集合,部分带宽集合中包含有多个部分带宽,从而为不同的载波带宽及不同的终端设备的能力带宽预配置了多种部分带宽,基站在确定部分带宽时,则根据预配置的映射关系确定,从而解决了不同载波带宽或者不同UE能力的自适应选择部分带宽问题,提高了确定终端设备的部分带宽的灵活性。
进一步地,基站在确定部分带宽时,能够从多个部分带宽中确定,有利于基站根据实际需求自适应调整部分带宽,如根据业务类型的不同调整部分带宽等。
在一种可能的设计中,在基站确定所述部分带宽之前,该方法还包括:基站接收终端设备发送的第三指示信息;其中,该第三指示信息用于指示终端设备的能力带宽。
在本申请实施例中,基站可以在与终端设备建立RRC连接以后,通过RRC信令获取终端设备的能力带宽,或者在与终端设备建立的随机接入过程中获取终端设备的能力带宽,然后根据获取方式的不同,采用不同的方式指示部分带宽。如基站通过终端设备发送的preamble信息中获取终端设备的能力带宽,那么基站可以通过RAR指示确定的部分带宽;基站通过随机接入过程的MSG3获取终端设备的能力带宽,那么基站可以通过MSG4指示确定的部分带宽,从而使基站能够灵活调整指示方式。
在一种可能的设计中,基站根据第一载波带宽与第一部分带宽集合之间的映射关系,确定终端设备的部分带宽,包括:基站从第一部分带宽集合中,确定终端设备的部分带宽,其中,该部分带宽小于等于终端设备的能力带宽,。
在本申请实施例中,基站中仅配置有载波带宽与部分带宽集合的映射关系,设定基站的载波带宽为第一载波带宽,则基站根据终端设备的能力带宽,从与第一载波带宽对应的多个第一部分带宽中,确定终端设备的部分带宽,从而使终端设备的部分带宽能够分别与载波带宽及终端设备的能力适配。
在一种可能的设计中,基站根据终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定终端设备的部分带宽,包括:基站确定第二部分带宽集合中的任一部分带宽为终端设备的部分带宽。
在具体实施过程中,若基站中仅配置终端设备的能力带宽与部分带宽集合的映射关系,设定与终端设备的能力带宽对应的部分带宽集合为第二部分带宽集合,则基站可以从第二部分带宽集合中选择任意一个部分带宽作为终端设备的部分带宽。从而使终端设备的部分带宽能够与终端设备的能力适配。
在一种可能的设计中,该方法还包括:基站根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,该映射关系包括第一载波带宽与第一子载波间隔的映射关系以及第二载波带宽与第二子载波间 隔的映射关系,第一子载波间隔与第二子载波间隔不同;基站根据确定的第一子载波间隔确定部分带宽在第一载波带宽中的频域位置。
在本申请实施例中,基站预先配置有载波带宽与子载波间隔之间的映射关系,该映射关系中包括多个不同的子载波间隔,对于具有不同载波带宽的多个基站来说,每个基站都可以根据自身的载波带宽选择合适的子载波间隔进行资源配置,避免了在大的载波带宽下使用小的子载波间隔进行资源配置带来的信令开销问题,从而减小了资源配置时的信令开销。
进一步地,通过绑定载波带宽与资源配置时的子载波间隔,可以隐式的指示终端设备在资源配置时使用的子载波间隔。
在一种可能的设计中,第一载波带宽属于第一载波带宽区间,第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为第一子载波间隔。
在本申请实施例中,载波带宽与子载波间隔的映射关系可以是一个载波带宽区间与一个子载波间隔的映射关系,其中,一个载波带宽区间中包括有多个载波带宽,从而减少映射关系的信息量,减轻基站的负荷。
在一种可能的设计中,第一载波带宽能够支持多个子载波间隔,多个子载波间隔中包括第一子载波间隔。
在本申请实施例中,对于一个给定的载波带宽,该载波带宽下支持的子载波间隔是一个有限的集合,从而载波带宽与子载波间隔的映射关系可以是一个载波带宽对应一个子载波间隔集合,基站在确定子载波间隔时,可以根据实际情况从对应的子载波间隔集合中确定,如为了使信令开销达到最小,从子载波间隔集合中选择最大的子载波间隔;或者根据实际的业务类型选择适当的子载波间隔,从而使子载波间隔可以灵活配置。
第四方面,提供一种资源配置的方法,该方法可以应用于终端设备。在该方法中,终端设备根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同,所述第一载波带宽为基站向所述终端设备指示的载波带宽;然后,所述终端设备根据所述确定的第一子载波间隔确定所述基站为所述终端设备分配的资源位置。
在本申请实施例中,终端设备预先配置有载波带宽与子载波间隔之间的映射关系,该映射关系中包括多个不同的子载波间隔,对于具有不同载波带宽的多个基站来说,每个基站都可以根据自身的载波带宽选择合适的子载波间隔进行资源配置,设定基站的载波带宽为第一载波带宽,终端设备则根据预配置的映射关系,确定在第一载波带宽中用于资源配置的子载波间隔,避免了在大的载波带宽下使用小的子载波间隔进行资源配置带来的信令开销问题,从而减小了资源配置所需的信令开销。
进一步地,通过绑定载波带宽与资源配置时的子载波间隔,终端设备可以隐式的确定在资源配置时使用的子载波间隔。
在一种可能的设计中,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
在本申请实施例中,载波带宽与子载波间隔的映射关系可以是一个载波带宽区间 与一个子载波间隔的映射关系,其中,一个载波带宽区间中包括有多个载波带宽,从而减少映射关系的信息量,减轻终端设备的负荷。
在一种可能的设计中,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
在本申请实施例中,对于一个给定的载波带宽,该载波带宽下支持的子载波间隔是一个有限的集合,从而载波带宽与子载波间隔的映射关系可以是一个载波带宽对应一个子载波间隔集合,终端设备在确定子载波间隔时,可以根据实际情况从对应的子载波间隔集合中确定,如为了使信令开销达到最小,从子载波间隔集合中选择最大的子载波间隔;或者根据实际的业务类型选择适当的子载波间隔,从而使子载波间隔可以灵活配置。
第五方面,提供一种确定部分带宽的方法,该方法可以应用于终端设备。在该方法中,终端设备接收基站发送的第一指示信息,所述第一指示信息用于指示所述基站确定的部分带宽;其中,所述基站确定的部分带宽为所述基站根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系确定的;其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合中包括的所述多个部分带宽中包括所述基站确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合包括的所述多个部分带宽中包括所述基站确定的部分带宽,所述第一载波带宽为所述基站向所述终端设备指示的载波带宽,然后,所述终端设备根据所述第一指示信息,确定所述基站确定的部分带宽。
在本申请实施例中,终端设备根据基站的指示信息来对确定部分带宽。
在一种可能的设计中,终端设备接收基站发送的第一指示信息之前,该方法还包括:
所述终端设备向所述基站发送用于指示所述终端设备的能力带宽的第二指示信息。
在本申请实施例中,终端设备在与基站建立RRC连接以后,可以通过RRC信令上报终端设备的能力带宽,即终端设备能够支持的最大部分带宽,或者在与基站建立的随机接入过程中上报终端设备的能力带宽。
在一种可能的设计中,终端设备接收基站发送的第一指示信息,包括:
所述终端设备接收所述基站发送的第三指示信息;其中,所述第三指示信息用于指示所述基站确定的部分带宽在所述第一载波带宽中的频域位置,所述基站确定的部分带宽由多个部分带宽单元组成;
所述终端设备接收所述基站发送的第四指示信息;其中,所述第四指示信息用于指示在所述确定的部分带宽中被调度的物理资源块的频域位置。
在本申请实施例中,终端设备在根据基站发送的指示信息确定部分带宽时,会从基站中获取第三指示信息和第四指示信息,其中,第三指示信息用于指示终端设备的部分带宽在载波带宽中的频域位置的一系列比特位,还需要第四指示信息指示具体的物理资源块在部分带宽中的频域位置。第三指示信息和第四指示信息可以包含在同一个信令中,也可以是分两次分别发送。若部分带宽在载波带宽中的频域位置上连续分布,第一指示信息可以为RIV值或者比特映射方式中每个频域位置的有效值;若部分带宽在载波带宽中的频域位置上非连续分布,第一指示信息可以为上行资源分配类型 1的方式中的r值或者比特映射方式中每个频域位置的有效值。
在一种可能的设计中,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB,但本申请不限于此。
在本申请实施例中,部分带宽单元可以根据实际情况确定,如在两级指示用户资源分配的方法中,在指示该部分带宽中具体调度的资源块时是以资源块组作为调度单元,因此,为了能和资源分配的第二步更好的兼容,则选择资源块组作为部分带宽单元,从而通过采用不同粒度的部分带宽单元,获取不同程度的灵活性。
在一种可能的设计中,所述第三指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源位置不重叠,终端设备接收所述基站发送的第三指示信息,包括:
所述终端设备在第一时域位置通过所述控制信道接收由所述基站在发送的所述第三指示信息;在所述终端设备接收由所述基站发送的第三指示信息之后,所述方法还包括:
所述终端设备在第二时域位置通过所述确定的部分带宽接收由所述基站发送的数据。
在本申请实施例中,第三指示信息中指示的频域位置可以与公共搜索空间的资源位置或UE专用搜索空间的资源位置不重叠,这样发送第二指示信息的频域位置与终端设备实际接收数据的频域位置不同,终端设备在接收基站发送的数据时需要切换频域位置,为了保证终端设备无误地接收到基站发送的数据,因此,基站在发送第二指示信息的时域位置后的某一时域位置向终端设备发送数据,从而终端设备在第二时域位置接收基站发送的数据。
在一种可能的设计中,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个正交频分复用OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
在本申请实施例中,可以将第二指示信息第一时域位置与发送数据时的第二时域位置的时域位置差值设定为一个或多个OFDM符号,如2个符号,这样,终端设备确定出公共搜索空间资源位置或者UE专用搜索空间资源位置在时域中占用的符号位数后,便能准确地确定出数据信道在时域的起始位置,便于提高基站与终端设备进行数据交互时的准确性。
在一种可能的设计中,所述方法还包括:所述终端设备根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;
所述终端设备根据所述确定的第一子载波间隔确定所述基站确定的部分带宽在所述第一载波带宽中的频域位置。
在本申请实施例中,终端设备预先配置有载波带宽与子载波间隔之间的映射关系, 该映射关系中包括多个不同的子载波间隔,对于具有不同载波带宽的多个基站来说,每个基站都可以根据自身的载波带宽选择合适的子载波间隔进行资源配置,设定基站的载波带宽为第一载波带宽,终端设备则根据预配置的映射关系,确定在第一载波带宽中用于资源配置的子载波间隔。
在一种可能的设计中,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
在本申请实施例中,载波带宽与子载波间隔的映射关系可以是一个载波带宽区间与一个子载波间隔的映射关系,其中,一个载波带宽区间中包括有多个载波带宽,从而减少映射关系的信息量,减轻终端设备的负荷。
在一种可能的设计中,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
在本申请实施例中,对于一个给定的载波带宽,该载波带宽下支持的子载波间隔是一个有限的集合,从而载波带宽与子载波间隔的映射关系可以是一个载波带宽对应一个子载波间隔集合,终端设备在确定子载波间隔时,可以根据实际情况从对应的子载波间隔集合中确定,如为了使信令开销达到最小,从子载波间隔集合中选择最大的子载波间隔;或者根据实际的业务类型选择适当的子载波间隔,从而使子载波间隔可以灵活配置。
第六方面,提供一种指示部分带宽的方法,该方法可以应用于终端设备。在该方法中,终端设备接收基站发送的第一指示信息;其中,所述第一指示信息用于向所述终端设备指示所述基站确定的部分带宽在第一载波带宽中的频域位置,所述第一载波带宽为所述基站向所述终端设备指示的载波带宽,所述部分带宽由多个部分带宽单元组成;所述终端设备接收所述基站发送的第二指示信息;其中,所述第二指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置。
在本申请实施例中,终端设备在根据基站发送的指示信息确定部分带宽时,会从基站中获取所述第一指示信息和第二指示信息,其中,第一指示信息用于指示终端设备的部分带宽在载波带宽中的频域位置,第四指示信息指示基站向终端设备传输数据的物理资源块在部分带宽中的频域位置。第一指示信息和第二指示信息可以包含在同一个信令中,也可以是分两次分别发送。若部分带宽在载波带宽中的频域位置上连续分布,第一指示信息可以为RIV值或者比特映射方式中每个频域位置的有效值;若部分带宽在载波带宽中的频域位置上非连续分布,第一指示信息可以为上行资源分配类型1的方式中的r值。
在一种可能的设计中,所述部分带宽单元为资源块组或同步带宽或物理资源块。
在本申请实施例中,部分带宽单元可以根据实际情况确定,如在两级指示用户资源分配的方法中,在指示该部分带宽中具体调度的资源块时是以资源块组作为调度单元,因此,为了能和资源分配的第二步更好的兼容,则选择资源块组作为部分带宽单元,从而通过采用不同粒度的部分带宽单元,获取不同程度的灵活性。
在一种可能的设计中,所述第一指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一 载波带宽中的频域位置不重叠,所述终端设备接收由所述基站发送的第一指示信息,包括:
所述终端设备在第一时域位置通过所述控制信道接收由所述基站在发送的所述第一指示信息;
在所述终端设备接收由所述基站发送的第一指示信息之后,所述方法还包括:
所述终端设备在第二时域位置通过数据信道接收由所述基站发送的数据。
在本申请实施例中,第一指示信息中指示的频域位置可以与公共搜索空间的资源位置或UE专用搜索空间的资源位置不重叠,这样发送第一指示信息的频域位置与终端设备实际接收数据的频域位置不同,终端设备在接收基站发送的数据时需要切换频域位置,为了保证终端设备无误地接收到基站发送的数据,因此,基站在发送第一指示信息的时域位置后的某一时域位置向终端设备发送数据,从而终端设备在第二时域位置接收基站发送的数据。保证了终端在基站发送数据的时域位置上接收数据,有效保证接收数据的完整性。
在一种可能的设计中,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
在本申请实施例中,可以将第二指示信息第一时域位置与发送数据时的第二时域位置的时域位置差值设定为一个或多个OFDM符号,如2个符号,这样,终端设备确定出公共搜索空间资源位置或者UE专用搜索空间资源位置在时域中占用的符号位数后,便能准确地确定出数据信道在时域的起始位置,便于提高基站与终端设备进行数据交互时的准确性。
在一种可能的设计中,所述基站确定的部分带宽为所述基站根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系确定的;其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合中包括的所述多个部分带宽中包括所述基站确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合中包括的所述多个部分带宽中包括所述基站确定的部分带宽。
在一种可能的设计中,所述方法还包括:所述终端设备向所述基站发送用于指示所述终端设备的能力带宽的第三指示信息。
在本申请实施例中,终端设备在与基站建立RRC连接以后,可以通过RRC信令上报终端设备的能力带宽,所述RRC信令中携带该第三指示信息,第三指示信息具体用于指示终端设备的能力带宽,或者在与基站建立的随机接入过程中上报终端设备的能力带宽,即在随机接入过程中通过随机接入信令携带所述第三指示信息。
在一种可能的设计中,所述方法还包括:所述终端设备根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;所述终端设备根据所述确定的第一子载波间隔确定所述部分带宽在所述第一载波带宽中的频域位置。
在本申请实施例中,终端设备预先配置有载波带宽与子载波间隔之间的映射关系, 该映射关系中包括多个不同的子载波间隔,对于具有不同载波带宽的多个基站来说,每个基站都可以根据自身的载波带宽选择合适的子载波间隔进行资源配置,设定基站的载波带宽为第一载波带宽,终端设备则根据预配置的映射关系,确定在第一载波带宽中用于资源配置的子载波间隔,避免了在大的载波带宽下使用小的子载波间隔进行资源配置带来的信令开销问题,从而减小了资源配置所需的信令开销。
进一步地,通过绑定载波带宽与资源配置时的子载波间隔,终端设备可以隐式的确定在资源配置时使用的子载波间隔。
在一种可能的设计中,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
在本申请实施例中,载波带宽与子载波间隔的映射关系可以是一个载波带宽区间与一个子载波间隔的映射关系,其中,一个载波带宽区间中包括有多个载波带宽,从而减少映射关系的信息量,减轻终端设备的负荷。
在一种可能的设计中,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
在本申请实施例中,对于一个给定的载波带宽,该载波带宽下支持的子载波间隔是一个有限的集合,从而载波带宽与子载波间隔的映射关系可以是一个载波带宽对应一个子载波间隔集合,终端设备在确定子载波间隔时,可以根据实际情况从对应的子载波间隔集合中确定,如为了使信令开销达到最小,从子载波间隔集合中选择最大的子载波间隔;或者根据实际的业务类型选择适当的子载波间隔,从而使子载波间隔可以灵活配置。
第七方面,提供一种基站,该设备包括处理模块,该设备所包括的模块用于执行第一方面中所述的资源配置的方法。
第八方面,提供一种基站,该设备包括处理模块和发送模块,该设备所包括的模块用于执行第二方面中所述的确定部分带宽的方法。
第九方面,提供一种基站,该设备包括处理模块和发送模块,该设备所包括的模块用于执行第三方面中所述的指示部分带宽的方法。
第十方面,提供一种基站,在一个可能的设计中,该设备的结构中包括处理器,所述处理器被配置为支持所述设备执行第一方面中的资源配置的方法中的相应的功能。所述设备还可以包括存储器,所述存储器与处理器耦合,用于保存数据合并设备必要的程序指令和数据。
第十一方面,提供一种基站,在一个可能的设计中,该设备的结构中包括处理器和发送器,所述处理器被配置为支持所述设备执行第二方面中的确定部分带宽的方法中的相应的功能。所述发送器用于向终端设备发送第一指示信息,所述第一指示信息用于指示所述确定的部分带宽。所述设备还可以包括存储器,所述存储器与处理器耦合,用于保存数据合并设备必要的程序指令和数据。
第十二方面,提供一种基站,在一个可能的设计中,该设备的结构中包括处理器和发送器,所述处理器被配置为支持所述设备执行第三方面中的指示部分带宽的方法中的相应的功能,所述发送器被配置为发送第一指示信息和第二指示信息。所述设备还可以包括存储器,所述存储器与发送器耦合,用于保存数据合并设备必要的程序指令和数据。
第十三方面,提供一种终端设备,该设备包括处理模块,该设备所包括的模块用于执行第四方面中所述的资源配置的方法。
第十四方面,提供一种终端设备,该设备包括处理模块和接收模块,该设备所包括的模块用于执行第五方面中所述的确定部分带宽的方法。
第十五方面,提供一种基站,该设备包括处理模块和接收模块,该设备所包括的模块用于执行第六方面中所述的指示部分带宽的方法。
第十六方面,提供一种终端设备,在一个可能的设计中,该设备的结构中包括处理器,所述处理器被配置为支持所述设备执行第四方面中的资源配置的方法中的相应的功能。所述设备还可以包括存储器,所述存储器与处理器耦合,用于保存数据合并设备必要的程序指令和数据。
第十七方面,提供一种终端设备,在一个可能的设计中,该设备的结构中包括处理器和接收器,所述处理器被配置为支持所述设备执行第五方面中的确定部分带宽的方法中的相应的功能。所述接收器用于接收第一指示信息和第二指示信息。所述设备还可以包括存储器,所述存储器与处理器耦合,用于保存数据合并设备必要的程序指令和数据。
第十八方面,提供一种终端设备,在一个可能的设计中,该设备的结构中包括处理器和接收器,所述处理器被配置为支持所述设备执行第六方面中的指示部分带宽的方法中的相应的功能,所述接收器被配置为接收第一指示信息和第二指示信息。所述设备还可以包括存储器,所述存储器与发送器耦合,用于保存数据合并设备必要的程序指令和数据。
第十九方面,提供了一种装置,该装置可以是基站,也可以是基站中的装置,该装置可以包括确定模块和通信模块,用于实现上述第一方面任一种设计示例中的基站所执行的相应功能,具体的:
确定模块,用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;
通信模块,用于根据所述确定的第一子载波间隔向终端设备进行资源配置。
在一种可能的设计中,第一载波带宽与第一子载波间隔的关系可以参见第一方面中针对第一载波带宽与第一子载波间隔的具体描述,此处不再具体限定。
第二十方面,提供了一种装置,该装置可以是基站,也可以是基站中的装置,该装置可以包括确定模块和通信模块,用于实现上述第二方面任一种设计示例中的基站所执行的相应功能,具体的:
确定模块,用于根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定部分带宽;
其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合中包括所述确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合中包括所述确定的部分带宽;
通信模块,用于发送第一指示信息,所述第一指示信息用于指示所述确定的部分带宽。
在一种可能的设计中,通信模块还用于接收第二指示信息;其中,所述第二指示信息用于指示终端设备的能力带宽。
在一种可能的设计中,确定模块根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽的过程可以参见第二方面,在此不再具体限定。
在一种可能的设计中,通信模块发送第一指示信息可以包括发送第三指示信息以及第四指示信息,所述第三指示信息用于向所述终端设备指示所述确定的部分带宽在所述第一载波带宽中的频域位置,所述确定的部分带宽由一个或多个部分带宽单元组成;所述第四指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置。
在一种可能的设计中,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,通信模块向所述终端设备发送第三指示信息以及第四指示信息的过程可以参见第二方面,在此不再具体限定。
在一种可能的设计中,确定模块还用于根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;根据所述确定的第一子载波间隔确定所述确定的部分带宽在所述第一载波带宽中的频域位置。
在一种可能的设计中,载波带宽与子载波间隔的关系可以参见第二方面中针对载波带宽与子载波间隔的具体描述,此处不再具体限定。
第二十一方面,提供了一种装置,该装置可以是基站,也可以是基站中的装置,该装置可以包括确定模块和通信模块,这些模块可以执行上述第三方面任一种设计示例中的基站所执行的相应功能,具体的:
确定模块,用于确定为终端设备配置的部分带宽;
通信模块,用于发送第一指示信息;其中,所述第一指示信息用于向所述终端设备指示所述部分带宽在所述第一载波带宽中的频域位置,所述确定的部分带宽由一个或多个部分带宽单元组成;发送第二指示信息;其中,所述第二指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置。
在一种可能的设计中,部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,通信模块向所述终端设备发送第一指示信息以及第二指示信息的过程可以参见第三方面,在此不再具体限定。
在一种可能的设计中,确定模块还用于根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽;其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合中包括所述确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合中包括所述确定的部分带宽;
通信模块还用于发送第一指示信息,所述第一指示信息用于指示所述确定的部分带宽。
在一种可能的设计中,通信模块还用于接收第二指示信息;其中,所述第二指示信息用于指示所述终端设备的能力带宽。
在一种可能的设计中,确定模块根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽的过程可以参见第三方面,在此不再具体限定。
在一种可能的设计中,确定模块还用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,该映射关系包括第一载波带宽与第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,第一子载波间隔与第二子载波间隔不同;根据确定的第一子载波间隔确定部分带宽在第一载波带宽中的频域位置。
在一种可能的设计中,载波带宽与子载波间隔的关系可以参见第三方面中针对载波带宽与子载波间隔的具体描述,此处不再具体限定。
第二十二方面,提供了一种装置,该装置可以是终端设备,也可以是终端设备中的装置,该装置可以包括确定模块,用于实现上述第四方面任一种设计示例中的终端设备所执行的相应功能,具体的:
确定模块,用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同,所述第一载波带宽为基站向所述终端设备指示的载波带宽;根据所述确定的第一子载波间隔确定为所述终端设备分配的资源位置。
在一种可能的设计中,载波带宽与子载波间隔的关系可以参见第四方面中针对载波带宽与子载波间隔的具体描述,此处不再具体限定。
第二十三方面,提供了一种装置,该装置可以是终端设备,也可以是终端设备中的装置,该装置可以包括确定模块和通信模块,用于实现上述第五方面任一种设计示例中的终端设备所执行的相应功能,具体的:
通信模块,用于接收第一指示信息,所述第一指示信息用于指示为终端设备配置的部分带宽;
确定模块,用于根据所述第一指示信息,确定为终端设备配置的部分带宽。
在一种可能的设计中,通信模块还用于发送用于指示所述终端设备的能力带宽的第二指示信息。
在一种可能的设计中,通信模块接收第一指示信息可以包含接收第三指示信息以及第四指示信息,所述第三指示信息用于指示所述为终端设备配置的部分带宽在所述第一载波带宽中的频域位置,所述为终端设备配置的部分带宽由一个或多个部分带宽单元组成;所述第四指示信息用于指示在所述为终端设备配置的部分带宽中被调度的物理资源块的频域位置。
在一种可能的设计中,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,通信模块接收所述基站发送的第三指示信息以及第四指示信息的过程可以参见第五方面,在此不再具体限定。
在一种可能的设计中,确定模块还用于根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;根据所述确定的第一子载波间隔确定所述为终端设备配置的部分带宽在所述第一载波带宽中的频域位置。
在一种可能的设计中,载波带宽与子载波间隔的关系可以参见第五方面中针对载波带宽与子载波间隔的具体描述,此处不再具体限定。
第二十四方面,提供了一种装置,该装置可以是终端设备,也可以是终端设备中的装置,该装置可以包括确定模块和通信模块,这些模块可以执行上述第六方面任一种设计示例中的终端设备所执行的相应功能,具体的:
通信模块,用于接收第一指示信息和第二指示信息;其中,所述第一指示信息用于向所述终端设备指示为终端设备配置的部分带宽在第一载波带宽中的频域位置,所述第一载波带宽为向所述终端设备指示的载波带宽,所述为终端设备配置的部分带宽由多个部分带宽单元组成;所述第二指示信息用于指示在所述为终端设备配置的部分带宽中被调度的物理资源块的频域位置;
确定模块,用于根据所述第一指示信息及所述第二指示信息,确定所述为终端设备配置的部分带宽。
在一种可能的设计中,所述为终端设备配置的部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,通信模块接收第一指示信息以及第二指示信息的过程可以参见第六方面,在此不再具体限定。
在一种可能的设计中,通信模块还用于发送第三指示信息;其中,所述第三指示信息用于指示所述终端设备的能力带宽。
在一种可能的设计中,确定模块还用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,该映射关系包括第一载波带宽与第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,第一子载波间隔与第二子载波间隔不同;根据确定的第一子载波间隔确定部分带宽在第一载波带宽中的频域位置。
在一种可能的设计中,载波带宽与子载波间隔的关系可以参见第六方面中针对载波带宽与子载波间隔的具体描述,此处不再具体限定。
第二十五方面,提供了一种装置,所述装置中包括处理器,用于实现上述第一方面描述的方法。所述装置中还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第一方面描述的方法。所述装置中还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。
在一种可能的设备中,该装置中包括:
存储器,用于存储程序指令;
处理器,用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射 关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;根据所述确定的第一子载波间隔向终端设备进行资源配置。
在一种可能的设计中,第一载波带宽与第一子载波间隔的关系可以参见第一方面中针对第一载波带宽与第一子载波间隔的具体描述,此处不再具体限定。
第二十六方面,提供了一种装置,所述装置中包括处理器,用于实现上述第二方面描述的方法。所述装置中还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第二方面描述的方法。所述装置中还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。
在一种可能的设备中,该装置中包括:
通信接口;
存储器,用于存储程序指令;
处理器,用于根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽;
其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合中包括所述确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合中包括所述确定的部分带宽;
所述处理器还用于利用所述通信接口发送第一指示信息,所述第一指示信息用于指示所述确定的部分带宽。
在一种可能的设计中,所述处理器还用于利用所述通信接口接收第二指示信息;其中,所述第二指示信息用于指示终端设备的能力带宽。
在一种可能的设计中,处理器根据第一载波带宽与第一部分带宽集合之间的映射关系/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽的过程可以参见第二方面,在此不再具体限定。
在一种可能的设计中,所述处理器利用所述通信接口发送第一指示信息可以包括发送第三指示信息以及第四指示信息,所述第三指示信息用于向所述终端设备指示所述确定的部分带宽在所述第一载波带宽中的频域位置,所述确定的部分带宽由一个或多个部分带宽单元组成;所述第四指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置。
在一种可能的设计中,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,发送第三指示信息以及第四指示信息的过程可以参见第二方面,在此不再具体限定。
在一种可能的设计中,处理器还用于根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;根据所述确定的第一子载波间隔确定所述确定的部分带宽在所述第一载波带宽中的频域位置。
在一种可能的设计中,载波带宽与子载波间隔的关系可以参见第二方面中针对载波带宽与子载波间隔的具体描述,此处不再具体限定。
第二十七方面,提供了一种装置,所述装置包括处理器,用于实现上述第三方面描述的方法。所述装置还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第三方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。
在一种可能的设备中,该装置包括:
通信接口;
存储器,用于存储程序指令;
处理器,用于确定终端设备的部分带宽;
所述处理器还用于利用所述通信接口发送第一指示信息;其中,所述第一指示信息用于向所述终端设备指示所述部分带宽在所述第一载波带宽中的频域位置,所述确定的部分带宽由一个或多个部分带宽单元组成;发送第二指示信息;其中,所述第二指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置。
在一种可能的设计中,部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,通信接口向所述终端设备发送第一指示信息以及第二指示信息的过程可以参见第三方面,在此不再具体限定。
在一种可能的设计中,处理器还用于根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽;其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合中包括所述确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合中包括所述确定的部分带宽;
所述处理器还用于利用所述通信接口发送第一指示信息,所述第一指示信息用于指示所述确定的部分带宽。
在一种可能的设计中,所述处理器还用于利用所述通信接口接收第二指示信息;其中,所述第二指示信息用于指示所述终端设备的能力带宽。
在一种可能的设计中,处理器根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽的过程可以参见第三方面,在此不再具体限定。
在一种可能的设计中,处理器还用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,该映射关系包括第一载波带宽与第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,第一子载波间隔与第二子载波间隔不同;根据确定的第一子载波间隔确定部分带宽在第一载波带宽中的频域位置。
在一种可能的设计中,载波带宽与子载波间隔的关系可以参见第三方面中针对载波带宽与子载波间隔的具体描述,此处不再具体限定。
第二十八方面,提供了一种装置,所述装置包括处理器,用于实现上述第四方面描述的方法。所述装置还可以包括存储器,用于存储程序指令和数据。所述存储器与 所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第四方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。
在一种可能的设备中,该装置包括:
通信接口;
存储器,用于存储程序指令;
处理器,用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同,所述第一载波带宽为基站向所述终端设备指示的载波带宽;根据所述确定的第一子载波间隔确定所述基站为所述终端设备分配的资源位置。
在一种可能的设计中,载波带宽与子载波间隔的关系可以参见第四方面中针对载波带宽与子载波间隔的具体描述,此处不再具体限定。
第二十九方面,提供了一种装置,所述装置包括处理器,用于实现上述第五方面描述的方法。所述装置还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第五方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。
在一种可能的设备中,该装置包括:
通信接口;
存储器,用于存储程序指令;
处理器,用于利用所述通信接口接收第一指示信息,所述第一指示信息用于指示为终端设备配置的部分带宽;
处理器,还用于根据所述第一指示信息,确定为终端设备配置的部分带宽。
在一种可能的设计中,所述处理器还用于利用所述通信接口发送用于指示所述终端设备的能力带宽的第二指示信息。
在一种可能的设计中,接收第一指示信息可以包括接收第三指示信息以及第四指示信息,所述第三指示信息用于指示所述为终端设备配置的部分带宽在所述第一载波带宽中的频域位置,所述为终端设备配置的部分带宽由一个或多个部分带宽单元组成;所述第四指示信息用于指示在所述为终端设备配置的部分带宽中被调度的物理资源块的频域位置。
在一种可能的设计中,所述为终端设备配置的部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,接收第三指示信息以及第四指示信息的过程可以参见第五方面,在此不再具体限定。
在一种可能的设计中,处理器还用于根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二 子载波间隔不同;根据所述确定的第一子载波间隔确定所述为终端设备配置的部分带宽在所述第一载波带宽中的频域位置。
在一种可能的设计中,载波带宽与子载波间隔的关系可以参见第五方面中针对载波带宽与子载波间隔的具体描述,此处不再具体限定。
第三十方面,提供了一种装置,所述装置包括处理器,用于实现上述第六方面描述的方法。所述装置还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第六方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。
在一种可能的设备中,该装置包括:
通信接口;
存储器,用于存储程序指令;
处理器,用于利用所述通信接口接收第一指示信息和第二指示信息;其中,所述第一指示信息用于向所述终端设备指示为终端设备配置的部分带宽在第一载波带宽中的频域位置,所述第一载波带宽为向所述终端设备指示的载波带宽,所述为终端设备配置的部分带宽由多个部分带宽单元组成;所述第二指示信息用于指示在所述为终端设备配置的部分带宽中被调度的物理资源块的频域位置;
处理器,用于根据所述第一指示信息及所述第二指示信息,确定所述为终端设备配置的部分带宽。
在一种可能的设计中,所述为终端设备配置的部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,接收第一指示信息以及第二指示信息的过程可以参见第六方面,在此不再具体限定。
在一种可能的设计中,处理器还用于利用通信接口发送第三指示信息;其中,所述第三指示信息用于指示所述终端设备的能力带宽。
在一种可能的设计中,处理器还用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,该映射关系包括第一载波带宽与第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,第一子载波间隔与第二子载波间隔不同;根据确定的第一子载波间隔确定部分带宽在第一载波带宽中的频域位置。
在一种可能的设计中,载波带宽与子载波间隔的关系可以参见第六方面中针对载波带宽与子载波间隔的具体描述,此处不再具体限定。
第三十一方面,提供了一种计算机可读存储介质,其包含用于执行上述第一方面至第六方面中任一方面以及上述第一方面至第六方面中任一方面的可能的设计中的方法的程序。
第三十二方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第六方面中任一方面以及上述第一方面至第六方面中任一方面的可能的设计中的方法。
第三十三方面,本申请提供了一种通信系统,该通信系统包括上述第七方面至第 十二方面中任一方面的基站以及第十三方面至第十八方面中任一方面的终端设备。
第三十四方面,本申请提供了一种通信系统,该通信系统包括上述第七方面的的基站以及第十三方面的终端设备。
第三十五方面,本申请提供了一种通信系统,该通信系统包括上述第八方面的基站以及第十四方面的终端设备。
第三十六方面,本申请提供了一种通信系统,该通信系统包括上述第九方面的基站以及第十五方面的终端设备。
第三十七方面,本申请提供了一种通信系统,该通信系统包括上述第十方面的基站以及第十六方面的终端设备。
第三十八方面,本申请提供了一种通信系统,该通信系统包括上述第十一方面的基站以及第十七方面的终端设备。
第三十九方面,本申请提供了一种通信系统,该通信系统包括上述第十二方面的基站以及第十八方面的终端设备。
第四十方面,本申请提供了一种通信系统,该通信系统包括上述第十九方面的的装置以及第二十二方面的装置。
第四十一方面,本申请提供了一种通信系统,该通信系统包括上述第二十方面的装置以及第二十三方面的装置。
第四十二方面,本申请提供了一种通信系统,该通信系统包括上述第二十一方面的装置以及第二十四方面的装置。
第四十三方面,本申请提供了一种通信系统,该通信系统包括上述第二十五方面的装置以及第二十八方面的装置。
第四十四方面,本申请提供了一种通信系统,该通信系统包括上述第二十六方面的装置以及第二十九方面的装置。
第四十五方面,本申请提供了一种通信系统,该通信系统包括上述第二十七方面的装置以及第三十方面的装置。
第四十六方面,本申请提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面至第三方面中任一方面以及上述第一方面至第三方面中任一方面的可能的设计中的一个或多个。
第四十七方面,本申请提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第四方面至第六方面中任一方面以及上述第四方面至第六方面中任一方面的可能的设计中的一个或多个。
附图说明
图1为本申请实施例的一个可能的网络架构的示意图;
图2为在下一代通信系统中引入的多种子载波间隔的示意图;
图3为在下一代通信系统中提出了一种两级指示用户资源分配的方法的示意图;
图4为本申请实施例提供一种确定部分带宽的方法的流程图;
图5为本申请实施例中通信系统预先为每种载波带宽配置BWP的示意图;
图6为本申请实施例中通信系统预先为每种UE BW配置BWP的示意图;
图7为本申请实施例中UE的部分带宽在第一载波带宽中的频域位置与USS的资 源位置不重叠,基站在第一时域位置通过控制信道向终端设备发送第四指示信息以及在第二时域位置发送数据的示意图;
图8为本申请实施例中UE的部分带宽在第一载波带宽中的频域位置与CSS的资源位置不重叠,基站在第一时域位置通过控制信道向终端设备发送第四指示信息以及在第二时域位置发送数据的示意图;
图9为本申请实施例提供的一种用于指示部分带宽的方法示意图;
图10-图12为本申请实施例提供的一种基站的结构示意图;
图13-图15为本申请实施例提供的一种基站的结构框图;
图16-图18为本申请实施例提供的一种终端设备的结构示意图;
图19-图21为本申请实施例提供的一种终端设备的结构框图;
图22-图25分别为本申请实施例提供的一种装置的结构示意图。
具体实施方式
本申请实施例的的技术方案可以应用于各种通信系统,例如:新无线(New Radio,NR)系统、无线保真(wifi)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)、全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)相关的蜂窝系统等,以及第五代移动通信系统(The Fifth Generation,5G)等。
以下,对本申请中的部分用于进行解释说明,以方便本领域技术人员理解。
1)本申请所述的“基站”,也可以称之为接入网设备,可以是gNB(gNode B),可以是普通的基站(例如WCDMA系统中的基站(NodeB,NB),LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),GSM或CDMA中的基站(Base Transceiver Station,BTS)),可以是新无线控制器(New Radio controller,NR controller),可以是集中式网元(Centralized Unit),可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是分布式网元(Distributed Unit),可以是接收点(Transmission Reception Point,TRP)或传输点(Transmission Point,TP),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备或者任何其它无线接入设备,但本申请实施例不限于此。
2)终端设备可以是无线终端设备也可以是有线终端设备。无线终端设备可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session  Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit,SU)、订户站(Subscriber Station,SS),移动站(Mobile Station,MB)、移动台(Mobile)、远程站(Remote Station,RS)、接入点(Access Point,AP)、远程终端(Remote Terminal,RT)、接入终端(Access Terminal,AT)、用户终端(User Terminal,UT)、用户代理(User Agent,UA)、终端设备(User Device,UD)、或用户装备(User Equipment,UE)。
3)时域的调度单位:是指由一个时隙(slot)或者一个子帧或者一个微时隙(mini-slot)组成的单元,或多个时隙或者多个子帧或者多个微时隙(mini-slot)聚合组成的单元。
4)时域位置:在一个时域的调度单位内,OFDM符号所在的位置。
5)子载波间隔:一个子载波是指频域上的一个基本单元,子载波间隔即为相邻的子载波峰值之间的频域间隔。比如,LTE中子载波间隔为15kHz。
6)部分带宽(Bandwidth part):是指信道带宽中的一部分,也可以叫做“工作带宽(Operating Bandwidth)”或者传输带宽,是指在数据传输时两级资源分配中第一步确定的带宽。
7)终端设备的能力带宽:指终端设备支持的最大带宽能力。
8)载波带宽:也可以叫做“信道带宽”或者“系统带宽”,是由基站侧确定的一个小区级带宽。
9)控制信道:是指用来承载下行控制信息(downlink control information,DCI)的信道。比如,LTE中的物理下行控制信道(physical downlink control channel,PDCCH)。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”、“第三”以及“第四”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
接下来介绍本申请实施例的应用场景作简要介绍。
在无线通信系统中,终端设备要向基站发送上行数据,或者基站向终端设备发送下行数据时,基站都要先从系统支持的载波带宽中为终端设备分配部分带宽。在LTE中,当基站通过MIB配置一个系统带宽后,基站则直接向终端设备指示在系统带宽中用于传输数据的物理资源块,实现在基站和终端设备在该系统带宽的全带宽上进行数据传输。
图1示出了本申请实施例的一个可能的网络架构的示意图。图1中的通信系统可以包括终端设备和基站。基站用于为终端设备提供通信服务并接入核心网,终端通过搜索基站发送的同步信号、广播信号等而接入网络。
需要说明的是,图1所示的场景中,仅以一个基站和一个终端设备之间的交互为例来进行介绍,不应对本申请的应用场景造成限定。在实际的网络架构中,可以包括多个基站和多个终端。例如,一个终端设备可以只与一个基站进行数据传输,也可以与多个基站进行数据的传输。一个基站可以与一个终端设备进行数据传输,也可以与多个终端设备进行数据传输。本申请对此不作具体限定。
下一代通信系统将支持更大的载波带宽,比如,在NR系统中,载波带宽最大可为 400MHz,而有一些UE端不具备支持这个大载波带宽的能力,或者UE的业务需求不需要这么大的载波带宽。另外,由于下一代通信系统中引入了多种子载波间隔,载波带宽可以分为多个子带,不同的子带可以采用不同的子载波间隔,如图2所示,因此,在下一代通信系统中提出了一种两级指示用户资源分配的方法,首先在载波带宽中指示一个小于或等于用户支持的最大带宽的带宽作为用户设备的部分带宽,如图3所示,第二步就是指示该部分带宽中具体为用户设备调度的资源块或资源块集合。比如,Bandwidth part中包含为0-199个PRB,基站进一步指示终端设备在Bandwidth part的0-199个PRB中的0-99个PRB用于传输数据。
鉴于此,本申请实施例提供一种确定部分带宽的方法,用于从载波带宽中确定出终端设备的部分带宽并指示给终端设备。在该方法中,基站预先配置有载波带宽与部分带宽集合的映射关系和/或终端设备的能力带宽与部分带宽集合之间的映射关系。该映射关系可以包含载波带宽与部分带宽集合的映射关系或者包含终端设备的能力带宽与部分带宽集合之间的映射关系或者同时包含两种映射关系。在载波带宽与部分带宽集合的映射关系中包含有多个载波带宽,其中的每个载波带宽都对应有一个部分带宽集合;终端设备的能力带宽与部分带宽集合之间的映射关系中包含有多个终端设备的能力带宽,其中的每个终端设备的能力带宽都对应有一个部分带宽集合,部分带宽集合中包含有多个部分带宽,从而为不同的载波带宽及不同的终端设备的能力带宽预配置了多种部分带宽,基站在确定部分带宽时,则根据预配置的映射关系确定,从而解决了不同载波带宽或者不同UE能力的自适应选择部分带宽问题,提高了确定终端设备的部分带宽的灵活性。
进一步地,基站在确定部分带宽时,能够从多个部分带宽中确定,有利于基站根据实际需求自适应调整部分带宽,如根据业务类型的不同调整部分带宽等。
本申请实施例中,实现基站的功能的装置可以是基站,也可以是支持基站实现该功能的装置,例如芯片系统。本申请实施例中,以实现基站的功能的装置是基站为例,描述本申请实施例提供的技术方案。
本申请实施例中,实现终端设备的功能的装置可以是终端设备,也可以是支持终端设备实现该功能的装置,例如芯片系统。本申请实施例中,以实现终端设备的功能的装置是终端设备,以终端设备是UE为例,描述本申请实施例提供的技术方案。
下面将结合说明书附图以及具体的实施方式对本申请实施例中的技术方案进行详细的说明。在下面的介绍过程中,以本申请实施例提供的技术方案应用于图1所示的应用场景,以终端设备为UE为例。
请参见图4,本申请实施例提供一种确定部分带宽的方法,该方法的流程描述如下。
在本申请实施例中,通信系统的基站在为UE分配部分带宽之前,会为UE所在的小区配置载波带宽,比如,根据该小区的业务类型或者该小区支持的UE的数量分配载波带宽等,或者,基站可以根据预设的配置规则进行配置,在本申请中不对此作限制。在下面的描述中,以基站为该小区配置的载波为第一载波带宽为例进行描述。
部分带宽确定方法400包括:
S401:基站确定部分带宽。
具体地,基站根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定部分带宽。
其中,第一部分带宽集合中包括多个部分带宽,第一部分带宽集合包括该部分带宽, 第二部分带宽集合中包括多个部分带宽,第二部分带宽集合包括该部分带宽。
通信系统能够支持多种载波带宽(Carrier Bandwidth,CBW),如CBW1,CBW2等。当然,通信系统基站给当前小区配置一种载波带宽,比如,基站为小区1配置100MHz的载波带宽,基站为小区2配置50MHz的载波带宽。相应地,通信系统能够支持不同的UE类型,比如,UE类型可以表示支持不同的子载波间隔的UE,或者支持具有不同的UE BW(UE Bandwidth,终端设备的能力带宽)的UE。其中,终端设备的能力带宽是指UE支持的最大部分带宽。比如,UE1的UE BW为5MHz,UE2的UE BW为10MHz。
在本申请实施例中,预先为通信系统支持的每种载波带宽和/或每种UE BW配置一种或多种部分带宽(Bandwidth part,BWP)。如图5所示,图5是为每种载波带宽配置BWP的情况,比如,为CBW1配置BWP1和BWP2,为CBW2配置BWP1、BWP2及BWP3,不同的载波带宽支持的BWP可以部分重合,比如CBW1和CBW2都能支持BWP1和BWP2。如图6所示,图6是为每种UE BW配置BWP的情况,比如,为UE BW1配置BWP1和BWP2,为UE BW2配置BWP1、BWP2及BWP3,不同的UE BW支持的BWP可以部分重合的,比如UE BW1和UE BW2都能支持BWP1和BWP2。本申请实施例中一种或多种BWP可以是预定义的或者可配置的,如表1和表2所示,表1是为不同载波带宽配置一种或多种BWP的一种示例,比如,为20MHz的CBW配置5MHz,10Mhz,20MHz的部分带宽;表2是为不同的UE BW配置一种或多种BWP的一种示例,比如,为40MHz的UEBW配置5MHz,10Mhz,20MHz,40MHz的部分带宽。其中,预定义是指表1或表2中可用的部分带宽的大小是预先设置的,可配置是指表1或表2中一种载波带宽或UE能力的带宽下可选的部分带宽的集合是可配置的,比如,根据基站和UE之间的业务类型等实际情况实时配置的。另外,UE初始接入网络时都会在同步带宽(synchronizing signal bandwidth,SS bandwidth)的资源上接收同步信号,比如,通信系统的主同步和辅同步,同步带宽的大小可以和子载波间隔有关。由于UE能够在同步带宽中接收到信息,因此,可以认为SS bandwidth是UE能够支持的一种带宽,可用于对载波带宽或者UE的能力带宽进行配置的一种BWP。
表1
载波带宽(CBW) 部分带宽(BWP)
5MHz 5MHz
20MHz 5MHz,10Mhz,20MHz
40MHz 5MHz,10Mhz,20MHz,40MHz
100MHz 5MHz,10Mhz,20MHz,40MHz
...... ......
400MHz 20MHz,40MHz,80Mhz,100Mhz
表2
UE的能力带宽(UE BW) 部分带宽(BWP)
5MHz 5MHz
20MHz 5MHz,10Mhz,20MHz
40MHz 5MHz,10Mhz,20MHz,40MHz
100MHz 5MHz,10Mhz,20MHz,40MHz
…… ……
这样,为不同的载波带宽及不同的终端设备的能力带宽预配置了多种部分带宽,基站在确定终端设备的部分带宽时,则根据预配置的映射关系确定,从而解决了不同载波带宽或者不同UE能力的自适应选择部分带宽问题,提高了确定终端设备的部分带宽的灵活性。
需要说明的是,表1和表2中带宽都是以Mhz为单位进行表示的,也可以体现为一个特定子载波间隔的PRB为单位,一个PRB包含12个子载波间隔。本申请实施例中仅以Mhz为单位为例进行说明。
进一步地,基站在确定部分带宽时,能够从多个部分带宽中确定,有利于基站根据实际需求自适应调整部分带宽,如根据业务类型的不同调整部分带宽等。
在基站获取UE的能力带宽后,则根据预配置的映射关系中与第一载波带宽对应的第一部分带宽集合和/或与UE的能力带宽对应的第二部分带宽集合确定UE的部分带宽。
基站配置的映射关系中可以包含载波带宽与部分带宽集合的映射关系,或者包含UE的能力带宽与部分带宽集合之间的映射关系,或者包含这两种映射关系。下面将对这三种方式进行分别的描述:
第一种方式:基站配置了载波带宽与部分带宽集合的映射关系,则基站根据终端设备的能力带宽,从第一部分带宽集合中,确定部分带宽。
比如,第一载波带宽为图5中的CBW1,CBW1支持BWP1和BWP2,基站根据UE的能力带宽采用BWP1和BWP2的其中之一作为部分带宽。以表1为例进行说明,若第一载波带宽为20MHz,基站获取的UE的能力带宽为5MHz,由表1中可知,第一载波带宽支持的部分带宽集合为(5MHz,10Mhz,20MHz),此时,基站可以选择部分带宽集合中的5MHz作为UE的部分带宽,其中,基站确定的部分带宽,应该小于等于UE的能力带宽。
第二种方式:基站配置有终端设备的能力带宽与部分带宽集合之间的映射关系,则基站确定第二部分带宽集合中的任一部分带宽为部分带宽。
比如,UE的能力带宽为图6中的UE BW1,UE BW1支持BWP1和BWP2,基站则采用BWP1和BWP2的其中之一作为部分带宽。以表2为例进行说明,若基站获取的UE的能力带宽为20MHz,由表2中可知,20 MHz的UE的能力带宽支持的部分带宽集合为(5MHz,10Mhz,20MHz),此时,基站可以选择部分带宽集合中的5MHz或10Mhz或20MHz作为UE的部分带宽。
第三种方式:基站配置了上述两种映射关系,基站则结合上述两种方式来确定部分带宽。
比如,第一载波带宽为图5中的CBW1,CBW1支持BWP1和BWP2,UE的能力带宽为图6中的UE BW3,UE BW3支持BWP2、BWP3及BWP4,CBW1和UE BW3均能支持BWP2,则基站确定BWP2为部分带宽。以表1和表2为例进行说明,若第一载波带宽为40MHz,基站获取的UE的能力带宽为20MHz,由表1中可知,第一载波带宽支持的第一部分带宽集合为(5MHz,10Mhz,20MHz,40MHz),由表2中可知,20MHz的UE的能力带宽支持的第二工作集合为(5MHz,10Mhz,20MHz),此时,第一部分带宽集合与第二部分带宽集合的交集为(5MHz,10Mhz,20MHz),则基站可以选择交集中的部分带宽作为UE的部分带宽,比如,选择5MHz或10Mhz或20MHz作为UE的部分带宽。
S402:基站向终端设备发送第一指示信息,所述第一指示信息用于指示所述确定的部分带宽。
具体得,基站向终端设备发送所述第一指示信息;终端设备根据所述第一指示信息的指示,可以确定所述基站确定的部分带宽在第一载波带宽中的频域位置。该第一指示信息可以包括用于指示该所述部分带宽中的部分带宽单元(BWP unit)在所述第一载波带宽中的起始位置的指示信息以及用于指示该部分带宽的大小的信息。在本申请中,所述部分带宽可以由一系列的部分带宽单元组成。所述部分带宽单元表示所述部分带宽在载波带宽中所占的频域资源的粒度。所述部分带宽单元例如可以是:RBG、SS bandwidth、或PRB,但本申请对此不作限定。BWP unit实际资源大小不同,从而使指示信息对应不同的粒度,从而基站在指示UE的部分带宽时,能够具有不同程度的指示精度,比如,RBG可以由多个PRB组成,若基站采用PRB作为BWP unit指示部分带宽的频域位置时,指示的是具体的PRB的频域位置;若基站采用RBG作为BWP unit指示部分带宽的频域位置时,指示的是具体的RBG的频域位置。在两级指示用户资源分配的方法中,在指示该部分带宽中具体调度的资源块时是以RBG作为调度单元,因此,为了能和资源分配的第二步更好的兼容,则优选RBG作为部分带宽单元。
以部分带宽单元为RBG为例,基站指示部分带宽的频域位置时,第一载波带宽由若干个RBG组成,如编号0,1,……16,基站需要用
Figure PCTCN2018080331-appb-000001
表示向上取整,logU表示U的对数,U表示载波带宽中RBG的数量)个比特指示部分带宽的起始RBG,比如00000表示部分带宽在第一载波带宽的起始RBG为0。那么部分带宽为载波带宽中起始RBG编号为0,同时,将确定的部分带宽的大小,如10MHz指示给UE,由此,可以确定所述部分带宽在所述第一载波带宽中的频域位置。需要说明的是,通过确定部分带宽单元,例如RBG,的起始位置来确定所述部分带宽在所述第一载波带宽中的频域位置仅是例举,本领域技术人员可以理解的是,也可以通过确定部分带宽单元,例如RBG,的中间位置,或者结束位置或者其它位置来确定所述部分带宽在所述第一载波带宽中的频域位置。本申请对此不作具体限定。
在一个具体的实施方式中,所述基站可以采用第一信令来携带所述第一指示信息,所述第一信令例如可以是RRC信令或DCI信令。即基站可以在一个信令中携带所述第一指示信息所包括的信息。
在另一个具体地实施方式中,所述基站也可以通过第二信令来携带将所述第一指示信息中包括的用于指示该RBG的起始位置的指示信息,所述第二信令例如可以是RRC信令或DCI信令,所述基站通过第三信令来携带所述第一指示信息中包括的用意指示所述部分带宽的大小的信息,所述第三信令例如可以是RRC信令或DCI信令,其中,所述第二信令和所述第三信令是不同的信令。即基站可以通过多个信令携带所述第一指示信息所包括的信息。
在另一种具体的实施方式中,若UE在与基站建立的随机接入过程中上报了UE的能力带宽,则基站可以通过在随机接入过程中的消息2(Message 2,MSG2)和/或消息4(Message 4,MSG4)中携带所述第一指示信息。关于基站如何通过所述MSG2和/或所述MSG4携带所述第一指示信息,与上文中描述的方式相类似,此处不再赘述。在该实施方式中,若基站通过UE发送的序文(preamble)获取UE的能力带宽,那么基站可以通过随机接入响应(Random Access Response,RAR)携带第一指示信息,以向UE指示部分带宽在第一载波带宽中的频域位置。其中,若基站通过RAR的控制信道指示部分带宽在第一载波带宽中的频域位置,则基站可以通过确定的部分带宽发送RAR;若基站通过传输RAR 的数据信道指示部分带宽在第一载波带宽中的频域位置,基站可以通过预定义的部分带宽发送RAR,在确定的部分带宽中发送MSG4。
若基站通过UE发送的Msg3获取UE能力带宽,那么基站可以通过Msg4指示部分带宽在第一载波带宽中的频域位置。若通过Msg4的控制信道指示部分带宽在第一载波带宽中的频域位置,基站可以通过确定的部分带宽发送Msg4;若通过传输Msg4的数据信道指示部分带宽在第一载波带宽中的频域位置,基站可以通过预定义的部分带宽发送Msg4。
在一个具体的实施方式中,本申请实施例还提供了另外一种用于指示工作带宽的方法900。参见图9,该方法也可以被用于方法400的S402中向UE指示部分带宽。该方法包括:
S901:基站向终端设备发送第三指示信息;其中,所述第三指示信息用于向所述终端设备指示所述基站确定的所述部分带宽在第一载波带宽中的频域位置,所述部分带宽由多个部分带宽单元组成。
S902:所述基站向所述终端设备发送第四指示信息;其中,所述第四指示信息用于在所述部分带宽中被调度的物理资源块中的频域位置。
该方法可以被所述基站用于在S402中用于确定所述部分带宽。具体地,所述第一指示信息包括所述第三指示信息和所述第四指示信息。
S903:终端设备接收该第三指示信息,并根据该第三指示信息,确定所述基站确定的工作带宽。
S904:终端设备接收该第四指示信息,并根据该第四指示信息,确定所述部分带宽中被调度的物理资源块中的频域位置。
在该实施方式中中,该部分带宽由多个部分带宽单元组成,所述第一指示信息中包括所述第三指示信息,所述基站向终端设备发送所述第一指示信息,具体包括:所述基站向所述终端设备发送第三指示信息;其中,第三指示信息用于向终端设备指示部分带宽在第一载波带宽中的频域位置;以及所述基站向所述终端设备发送第四指示信息;其中,所述第四指示信息用于指示所述部分带宽被调度的物理资源块中的频域位置。
在一种具体的实施方式中,则第三指示信息可以为资源指示值(Resource Indication Value,RIV)或者比特映射方式中每个频域位置的有效值,从而实现部分带宽在载波带宽中所占据的频域位置连续分布。第三指示信息可以为上行物理信道PUSCH的2种资源分配类型中的类型1中的组合索引(combinatorial index)r值或者比特映射方式中每个频域位置的有效值,从而实现部分带宽在载波带宽所占据的频域位置上非连续分布。
以BWP unit为RBG为例,以下行数据传输为例,基站可以根据公式(1)及公式(2)计算出RIV值,从而通过该RIV值指示BWP在载波带宽中的RBG的起始位置和大小。
Figure PCTCN2018080331-appb-000002
Figure PCTCN2018080331-appb-000003
Figure PCTCN2018080331-appb-000004
Figure PCTCN2018080331-appb-000005
其中,L CRBGs为载波带宽中RBG的长度,
Figure PCTCN2018080331-appb-000006
为载波带宽中下行RBG的数量,RBG start为起始值,即部分带宽在载波带宽中的起始RBG的索引值。
或者,基站可以利用公式(3)计算上行资源分配类型1的方式中的组合索引(combinatorial index)r值,从而通过该r值指示BWP在载波带宽中的RBG集合1的起始RBG的索引s 0和结束RBG的索引s 1-1,以及RBG集合2的起始RBG和结束RBG的 索引s 2和s 3-1。
Figure PCTCN2018080331-appb-000007
其中,M=4,且
Figure PCTCN2018080331-appb-000008
为下行RBG个数,P为一个RBG里面包含的RB数,
Figure PCTCN2018080331-appb-000009
表示载波带宽中RGB的总数。
或者,基站通过比特映射方式中比特映射序列通知UE部分带宽的频域位置,其中,每个频域位置以RBG为粒度,0表示该RBG有效,1表示该RBG无效。比如,比特映射序列为“0011010”,由于第一个RBG第二个RBG、第五个RBG及第七个RBG的比特值为0,则表示上述RBG不是UE的部分带宽所在的位置,而第三个RBG、第四个RBG以及第六个RBG的比特值为1,则表示这三个位置的RBG组成了UE的部分带宽。
当BWP unit为SS bandwidth或PRB时,以上述方式类似,在此不再赘述。
在一个具体的实施方式中,可以通过第四信令同时携带所述第三指示信息和所述第四指示信息。所述第四信令例如可以是DCI信令,本申请对此不作具体限定。
在另一个具体的实施方式中,可以通过不同的信令分别携带所述第三指示信息和所述第四指示信息。例如,通过第五信令携带所述第三指示信息,通过第六信令携带所述第四指示信息。所述第五信令例如可以是RRC信令,所述第六信令例如可以是DCI信令,本申请对此不作具体限定。
需要说明的是,当通过不同信令发送所述第三指示信息和第四指示信息时,S901和S902的执行顺序没有先后,S903和S904的执行顺序没有先后。即S901可以在S902之后进行,也可以在S902之前进行。同理,即S903可以在S904之后进行,也可以在S904之前进行。
基站在发送第三指示信息时,第三指示信息承载在控制信道的公共搜索空间(Common Search Space,CSS)的资源位置或UE专用搜索空间(UE-specific search space,USS)的资源位置。CSS用于承载小区公共的控制信息,USS用于承载用户特定的控制信息,本申请的各种实施例以“CSS”和“USS”的名称为例进行说明,但对该名称不进行限定,具体实现时以其具有的功能来确定。在本申请实施例中,所述控制信道可以是NR系统中的物理下行控制信道(Physical Downlink Control Channel,PDCCH),或者新空口物理下行控制信道(New radio Physical Downlink Control Channel,NR-PDCCH),或NR系统中用于执行相同或者相似功能的控制信道,比如,组公共控制信道(Group Common Control Channel,GCCCH),类物理控制格式指示信道(PCFICH-like Channel),物理层广播信道(L1Broadcast Channel)等。在本申请中不作具体限制。
在一个具体的实施方式中,UE的部分带宽在第一载波带宽中的频域位置可以与CSS的资源位置或USS的资源位置不重叠,此时,基站在第一时域位置通过控制信道向终端设备发送第三指示信息。UE在第一时域位置接收到所述第三指示信息后,则根据第三指示信息确定所述部分带宽在所述第一载波带宽中的频域位置。
当基站在第一时域位置发送第三指示信息后,如图7所示,则在第一时域位置后的第二时域位置上,在所述确定的部分带宽中,通过USS中指示的资源位置发送数据;或如图8所示,基站在第一时域位置后的第二时域位置上,在所述确定的部分带宽中,通过CSS中指示的资源位置发送数据。
在本申请实施例中,所述第一时域位置与所述第二时域位置的位置差值设定为一个或 多个OFDM符号,该位置差值表示为M,如图7所示,M为大于等于1的整数,比如M=2。该M的值可以是与UE预先约定好的,也可以是在第三指示信息中指示给UE。第一时域位置和第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个OFDM符号与第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号。这样,基站获知控制信道的公共搜索空间资源位置(CSS)或者UE专用搜索空间资源位置(USS)在时域占用n个OFDM符号,那么对应的数据信道在时域的起始时间就为n+M个OFDM符号,从而能准确地确定数据信道在时域的起始位置,便于提高基站与终端设备进行数据交互时的准确性。由此保证了UE在基站发送数据的时域位置接收数据,保证了接收数据的完整性。
在一个具体的实施方式中,在步骤S401之前,所述方法400还可以包括步骤S403。
S403:终端设备向基站发送用于指示终端设备的能力带宽的第二指示信息。
在本申请实施例中,在基站确定UE的部分带宽之前,UE可以向基站上报UE的能力带宽。在基站确定UE的部分带宽之前,UE向基站发送第二指示信息,则基站接收该第二指示信息。其中,第二指示信息用于指示UE的能力带宽。
在一种实施方式中,第二指示信息可以是无线资源控制(Radio Resource Control,RRC)信令,这样,基站在与终端设备建立RRC连接以后,UE向基站发送RRC信令,其中,RRC信令中携带UE能力信息,基站则通过RRC信令携带的UE能力信息获取UE的能力带宽。
在另一种实施方式中,第二指示信息可以是基站在与UE的随机接入过程中向基站发送的信息,比如,当UE向基站发送preamble信息时,在preamble信息中携带UE能力,基站则通过UE发送的preamble信息获取UE的能力带宽;或者,UE在与基站发起的随机接入过程中,通过上行数据信道发送Message3(MSG3),并在MSG3中携带UE能力,从而基站通过该MSG3消息获取UE的能力带宽。
本申请对于携带所述第二指示信息的信令格式不作具体限定。
需要注意的是,上述步骤是可选步骤,即终端设备向基站上报UE的能力带宽是可选过程,不是必须执行的,基站可以采用其他方式获取UE的能力带宽。
在一个具体的实施方式中,为了指示出UE的部分带宽的频域位置,在本申请实施例中,该方法400还包括S404:确定用于指示UE的部分带宽的子载波间隔。
在一种具体的实施方式中,基站可以在向UE指示部分带宽之前确定用于指示UE的部分带宽的子载波间隔,比如,在基站为该小区配置第一载波带宽后,或者在确定部分带宽同时确定子载波间隔,本申请对此不作限制。
需要说明的是,基站可以采用一种特定的子载波间隔来指示UE的部分带宽的频域位置,比如,采用参考子载波间隔(15KHz)。
在本申请实施例中,提供了一种资源配置的方法。该方法可被所述基站用于确定用于指示UE的部分带宽的子载波间隔。
该方法中,基站根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同。所述基站根据所述确定的第一子载波间隔向终端设备进行资源配置。
在一个具体的实施方式中,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
在另一个具体的实施方式中,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
在本申请实施例中,对于一个给定的载波带宽,该载波带宽下支持的子载波间隔是一个有限的集合,从而载波带宽与子载波间隔的映射关系可以是一个载波带宽对应一个子载波间隔集合,基站在确定子载波间隔时,可以根据实际情况从对应的子载波间隔集合中确定,如为了使信令开销达到最小,从子载波间隔集合中选择最大的子载波间隔;或者根据实际的业务类型选择适当的子载波间隔,从而使子载波间隔可以灵活配置。
下面对于所述资源配置的方法进行详细说明。
基站预先配置载波带宽与子载波间隔之间的映射关系,该映射关系中包括有不同的子载波间隔,以及与每个子载波间隔对应的载波带宽。比如,载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同。基站从该映射关系中就可以确定用于指示资源配置的子载波间隔。对于具有不同载波带宽的多个基站来说,每个基站都可以根据自身的载波带宽选择合适的子载波间隔进行资源配置,避免了在大的载波带宽下使用小的子载波间隔进行资源配置带来的信令开销问题,从而减小了资源配置时的信令开销。
进一步地,通过绑定载波带宽与资源配置时的子载波间隔,可以隐式的指示终端设备在确定频域位置时使用的子载波间隔,比如一个载波划分为不同子载波间隔的子带时用于指示不同子带频域位置,或在资源分配二级指示时指示一级资源频域位置。即基站的载波带宽配置好后,其子载波间隔也已配置好。或通过绑定载波带宽与资源配置时的子载波间隔,可以显示的指示终端设备资源配置时的子载波间隔,比如在基站侧广播载波带宽时划分资源块RB的子载波间隔,并通过主信息块(Master Information Block,MIB)或同步信号块(Synchronizing signal block,SS block)显示通知终端侧。
上述的载波带宽与子载波间隔之间的映射关系,包括但不限于下面两种方式:
第一种:该映射关系可以是载波带宽区间与子载波间隔(Sub-Carrier Spacing,SCS)的映射关系,比如对于一个单一的子载波间隔,一个载波带宽中最大子载波个数可以为3300或6600,对同一个载波带宽而言,载波带宽中的最大子载波个数不同,相同的载波带宽区间对应的子载波间隔可能不同。如表3所示,为最大子载波个数为3300时对应的载波带宽区间与子载波间隔的映射关系,其中,(100,200]区间对应的子载波间隔为60kHz;如表4所示,为最大子载波个数为6600时对应的载波带宽区间与子载波间隔的映射关系,其中,(100,200]区间对应的子载波间隔为30kHz。
表3
BW(MHz) <=50 (50,100] (100,200] (200,400]
SCS(kHz) 15 30 60 120
表4
BW(MHz) <100 (100,200] (200,400]
SCS(kHz) 15 30 60
比如对于最大子载波个数为3300的情况,若基站的载波带宽为80MHz,位于50MHz-100MHz区间,那么可以使用30kHz作为基站的载波带宽资源配置的子载波间隔,基站的载波带宽内大约有200个PRB,假设使用LTE中资源分配方式2,那么根据公式
Figure PCTCN2018080331-appb-000010
可以知,在资源分配时信令中比特的最大开销为15个比特。其中,
Figure PCTCN2018080331-appb-000011
为下行RB的个数。
表3和4中的带宽范围的划分与一个载波中带宽的用于防止各个子载波之间的干扰设置的保护带的大小也有关系,因此表3和表4中的带宽的划分仅是一种示例,并不排除其它类型的划分。
第二种:映射关系可以是载波带宽与相应的载波带宽所支持的子载波间隔集合的映射关系,如表5所示。
表5
BW(MHz) 5 20 40 80 100 160 200 320
SCSset(kHz) 15,30,60 15,30,60 15,30,60 30,60,120 60,120 60,120,240 120,240 240,480
SCS(kHz) 60 60 60 120 120 240 240 480
对于一个给定的载波带宽,该载波带宽下支持的子载波间隔集合应该是一个有限的集合。该有限的集合例如是子载波间隔集合{3.75kHz,7.5kHz,15kHz,30kHz,60kHz,120kHz,240kHz,480kHz}的子集。
比如对于多子载波间隔场景,对于一个单一的子载波间隔,如果每个载波的最大子载波个数为3300,且子载波间隔f0是满足f0*3300不小于一个给定的载波带宽B1的子载波间隔集合中最小值,那么f0和f0*2^N(N>0)可以适用于该载波带宽下。比如,如果给定一个载波带宽是80MHz,那么f0=30 kHz是满足f0*3300>=80MHz的最小值,那么其他扩展的子载波间隔f0*2^N(N>0)均可适用于该载波带宽下,或扩展的子载波间隔f0*2^N(N>0)与该载波频段下可适用的子载波间隔集合的交集可适用于该载波带宽下。若每个载波的最大子载波个数为6600,上述规则同样适用,只是对于一个的带宽B2,f0*6600不小于B2。可选的,对于多个子载波间隔,一个载波中总的子载波个数可以是小于等于M的,M为6600或9900,比如M值为6600,一个载波中15 kHz的子载波个数为3300,30kHz的子载波个数为1650,那么一个载波中总的子载波个数为4950,是小于6600的。
以表5为例进行说明,若基站的载波带宽为40MHz,假设该载波带宽下支持的子载波 间隔集合为{15,30,60}kHz,则基站可以从该子载波间隔集合中任选一个作为基站的载波带宽的子载波间隔。或者,为了最大化地节省信令开销,基站可以选择该子载波间隔集合中最大的子载波间隔60kHz作为基站的载波带宽的子载波间隔,此时,表5可以简化为表6,即每个载波带宽的子载波间隔均为其所支持的最大子载波间隔。当然,本申请实施例对于基站究竟从该子载波间隔集合中选择哪个子载波间隔不作限制。基站侧也可以直接根据表6确定子载波间隔,比如载波带宽为40MHz时,用于该载波间隔资源分配时的子载波间隔就是60kHz。
表6
BW(MHz) 5 20 40 80 100 160 200 320
SCS(kHz) 60 60 60 120 120 240 240 480
需要说明的是,本申请中表3至表6所示出的载波带宽与子载波间隔的映射关系仅是一种例举,不构成对本申请的限制。
需要注意的是,基站确定子载波间隔的方式可以是预先与UE约定好的,也可以是将确定子载波间隔的方式携带在系统消息或指示消息中发送给UE。
S405:终端设备接收所述基站发送的所述第一指示信息
S406:终端设备根据所述第一指示信息,确定基站确定的部分带宽。
当UE接收到基站发送的指示部分带宽的第一指示信息后,则根据该指示信息确定出部分带宽在第一载波带宽中的频域位置,即根据子载波间隔确定部分带宽的频域位置。需要注意的是,UE可以是采用与基站约定好的子载波间隔确定部分带宽的频域位置,也可以是采用指示信息中携带的确定子载波间隔的方法确定部分带宽的频域位置,但UE的子载波间隔的确定方式与基站的确定方式相同。下面对UE确定子载波间隔的两种具体实现方式进行说明。
在一种具体的实施方式中,UE采用与默认载波间隔来确定UE的部分带宽的频域位置,比如,采用参考子载波间隔(15KHz)。
在另一种具体实施方式中,预先配置载波带宽与子载波间隔之间的映射关系,该映射关系中包括有不同的子载波间隔,以及与每个子载波间隔对应的载波带宽。比如,载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同。对于UE而言,当UE初始接入网络或者在与基站建立RRC连接后或者向基站发起的随机接入过程中,基站会将配置的载波带宽指示给UE,从而UE根据基站指示的载波带宽及预配置的映射关系,确定部分带宽的子载波间隔。
UE确定子载波间隔的方法与S404中相同,在此就不再赘述。
在获取子载波间隔后,UE则根据指示信息确定部分带宽的频域位置,其确定过程S401和S402中的逆过程,在此不再赘述。下面以基站使用BWP unit来指示UE的部分带宽为例进行简要说明。
在UE确定出基站用于指示部分带宽的子载波间隔后,UE则根据子载波间隔,确定所述部分带宽的频域位置。
若UE接收到的第三指示信息为RIV,则UE根据RIV及公式(1)(2)计算出部分带宽在载波带宽中的起始位置和数量:
若UE接收到的第三指示信息为r值,则UE根据r值及公式(3)计算出部分带宽在载波带宽中的起始位置和数量:
若UE接收到的第三指示信息为比特映射,则UE根据每个RBG的比特值确定部分带宽。比如,UE收到的比特映射序列为“0011010”,由于第一个RBG第二个RBG、第五个RBG及第七个RBG的比特值为0,则确定出第三个RBG、第四个RBG以及第六个RBG为UE的部分带宽在载波带宽中的频域位置。
请参见图10,本申请实施例提供一种基站,可以用于执行本申请实施例的方法,该基站包括处理器101。
其中,处理器101可以是中央处理器(CPU)或特定应用集成电路(Application Specific Integrated Circuit,ASIC),可以是一个或多个用于控制程序执行的集成电路,可以是基带芯片,等等。
所述基站还可以包括存储器,存储器可以通过总线102与处理器101连接。存储器的数量可以是一个或多个,存储器可以是只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)或磁盘存储器,等等。存储器可以用于存储处理器101执行任务所需的程序代码,存储器还可以用于存储数据。
处理器101,用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;
处理器101,还用于根据所述确定的第一子载波间隔向终端设备进行资源配置。
在一个可能的设计中,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
在本申请实施例中,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
通过对处理器101进行设计编程,将前述的资源配置的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述的资源配置的方法,如何对处理器101进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
请参见图11,本申请实施例提供一种基站,该基站包括处理器111和发送器112。处理器111和发送器112可以通过系统总线110连接。
其中,处理器111可以是中央处理器(CPU)或特定应用集成电路(Application Specific Integrated Circuit,ASIC),可以是一个或多个用于控制程序执行的集成电路,可以是基带芯片,等等。
发送器112可以通过系统总线110与处理器111相连接(如图11所示),或者也可以通过专门的连接线分别与处理器111连接。
所述设备还可以包括存储器,存储器可以通过系统总线110与处理器111连接。存储器的数量可以是一个或多个,存储器可以是只读存储器(Read Only Memory,ROM)、随 机存取存储器(Random Access Memory,RAM)或磁盘存储器,等等。存储器可以用于存储处理器111执行任务所需的程序代码,还可以用于存储数据。
处理器111,用于第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽。
其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合包括所述确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合包括所述确定的部分带宽。
发送器112,用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述确定的部分带宽。
在一种可能的设计中,所述基站还包括:
接收器113,用于接收所述终端设备发送的第二指示信息;其中,所述第二指示信息用于指示所述终端设备的能力带宽。
在本申请实施例中,处理器111具体用于:
从所述第一部分带宽集合中,确定所述部分带宽;其中,所述部分带宽小于等于所述终端设备的能力带宽。
在一种可能的设计中,处理器111用于:
确定所述第二部分带宽集合中的任一部分带宽为所述部分带宽。
在一种可能的设计中,发送器112还用于:
向所述终端设备发送第三指示信息;其中,所述第三指示信息用于向所述终端设备指示所述部分带宽在所述第一载波带宽中的频域位置,所述确定的部分带宽由一个或多个部分带宽单元组成;以及
向所述终端设备发送第四指示信息;其中,所述第四指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置。
在一种可能的设计中,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,所述第三指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,发送器112具体用于:
在第一时域位置通过所述控制信道向所述终端设备发送所述第三指示信息;
在所述发送模块发送所述第一指示信息之后,发送器112还用于:
在第二时域位置通过所述确定的部分带宽向所述终端设备发送数据。
在本申请实施例中,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个正交频分复用OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
在一种可能的设计中,处理器111还用于:
根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射 关系,所述第一子载波间隔与所述第二子载波间隔不同;
根据所述确定的第一子载波间隔确定所述确定的部分带宽在所述第一载波带宽中的频域位置。
在一种可能的设计中,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
在一种可能的设计中,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
通过对处理器111进行设计编程,将前述的确定部分带宽的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述的确定部分带宽的方法,如何对处理器111进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
请参见图12,本申请实施例提供一种基站,该设备包括处理器121和发送器122。
该设备还可以包括存储器,存储器可以通过总线123与处理器121连接。存储器的数量可以是一个或多个,存储器可以是只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)或磁盘存储器,等等。
处理器121,用于生成第一指示信息和第二指示信息,其中,所述第一指示信息用于向所述终端设备指示所述基站确定的部分带宽在第一载波带宽中的频域位置,所述部分带宽由多个部分带宽单元组成;所述第二指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置;
发送器122,用于向终端设备发送所述第一指示信息和所述第二指示信息。
在本申请实施例中,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在本申请实施例中,所述第一指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,发送器122具体用于:
在第一时域位置通过所述控制信道向所述终端设备发送所述第一指示信息;
在所述发送模块发送所述第一指示信息之后,发送器122还用于:
在第二时域位置通过所述确定的部分带宽向所述终端设备发送数据。
在本申请实施例中,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
通过对处理器121进行设计编程,将前述的指示部分带宽的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述的指示部分带宽的方法,如何对处理器121进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
请参见图13,本申请实施例提供一种基站,可以用于执行本申请实施例的方法。该设备包括子载波间隔确定模块131和资源配置模块132。
在实际应用中,子载波间隔确定模块131和资源配置模块132对应的实体设备可以是图10中的处理器101。
在一种可能的设计中,子载波间隔确定模块131用于根据载波带宽与子载波间隔之间 的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;
资源配置模块132用于根据所述确定的第一子载波间隔向终端设备进行资源配置。
在一种可能的设计中,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
在一种可能的设计中,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
请参见图14,本申请实施例提供一种基站,该设备包括处理模块141和发送模块142。
在实际应用中,处理模块141对应的实体设备可以是图11中的处理器111,发送模块142对应的实体设备可以是图11中的发送器112。
处理模块141,用于第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽;
其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合包括所述确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合包括所述确定的部分带宽;
发送模块142,用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述确定的部分带宽。
在一种可能的设计中,所述基站还包括:
接收模块143,用于接收所述终端设备发送的第二指示信息;其中,所述第二指示信息用于指示所述终端设备的能力带宽。
在一种可能的设计中,处理模块141具体用于:
从所述第一部分带宽集合中,确定所述部分带宽;其中,所述部分带宽小于等于所述终端设备的能力带宽。
在一种可能的设计中,处理模块141用于:
确定所述第二部分带宽集合中的任一部分带宽为所述部分带宽。
在一种可能的设计中,发送模块142还用于:
向所述终端设备发送第三指示信息;其中,所述第三指示信息用于向所述终端设备指示所述部分带宽在所述第一载波带宽中的频域位置,所述确定的部分带宽由一个或多个部分带宽单元组成;以及
向所述终端设备发送第四指示信息;其中,所述第四指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置。
在一种可能的设计中,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,所述第三指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,发送模块142具体用于:
在第一时域位置通过所述控制信道向所述终端设备发送所述第三指示信息;
在所述发送模块发送所述第一指示信息之后,发送模块142还用于:
在第二时域位置通过所述确定的部分带宽向所述终端设备发送数据。
在一种可能的设计中,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个正交频分复用OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
在一种可能的设计中,处理模块141还用于:
根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;
根据所述确定的第一子载波间隔确定所述确定的部分带宽在所述第一载波带宽中的频域位置。
在一种可能的设计中,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
在一种可能的设计中,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
请参见图15,本申请实施例提供一种基站,该设备包括处理模块151和发送模块152。
在实际应用中,处理模块151对应的实体设备可以是图12中的处理器121,发送模块152对应的实体设备可以是图12中的发送器122。
处理模块151,用于生成第一指示信息和第二指示信息,所述其中,所述第一指示信息用于向所述终端设备指示所述基站确定的部分带宽在第一载波带宽中的频域位置,所述部分带宽由多个部分带宽单元组成;所述第二指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置;
发送模块152,用于向终端设备发送所述第一指示信息和所述第二指示信息。
在一种可能的设计中,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,所述第一指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,发送模块152具体用于:
在第一时域位置通过所述控制信道向所述终端设备发送所述第一指示信息;
在所述发送模块发送所述第一指示信息之后,发送模块152还用于:
在第二时域位置通过所述确定的部分带宽向所述终端设备发送数据。
在本申请实施例中,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
请参见图16,本申请实施例提供一种终端设备,该设备包括处理器161。
其中,处理器161可以是中央处理器(CPU)或特定应用集成电路(Application Specific  Integrated Circuit,ASIC),可以是一个或多个用于控制程序执行的集成电路,可以是基带芯片,等等。
所述设备还可以包括存储器,存储器可以通过总线162与处理器161连接。存储器的数量可以是一个或多个,存储器可以是只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)或磁盘存储器,等等。
处理器161,用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同,所述第一载波带宽为基站向所述终端设备指示的载波带宽;以及
用于根据所述确定的第一子载波间隔确定所述基站为所述终端设备分配的资源位置。
在一种可能的设计中,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
在一种可能的设计中,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
通过对处理器101进行设计编程,将前述的资源配置的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述的资源配置的方法,如何对处理器101进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
请参见图17,本申请实施例提供一种终端设备,该设备包括连接到同一总线170的处理器171和接收器172。
其中,处理器171可以是中央处理器(CPU)或特定应用集成电路(Application Specific Integrated Circuit,ASIC),可以是一个或多个用于控制程序执行的集成电路,可以是基带芯片,等等。
接收器172可以通过总线170与处理器171相连接(如图17所示),或者也可以通过专门的连接线分别与处理器171连接。
所述设备还可以包括存储器,存储器可以通过总线170与处理器171连接。存储器的数量可以是一个或多个,存储器可以是只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)或磁盘存储器,等等。
接收器172,用于接收基站发送的第一指示信息,所述第一指示信息用于指示所述基站确定的部分带宽;其中,所述基站确定的部分带宽为所述基站根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系确定的;其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合包括所述基站确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合包括所述基站确定的部分带宽;
处理器171,用于根据所述第一指示信息,确定所述基站确定的部分带宽。
在本申请实施例中,所述终端设备还包括:
发送器173,用于在所述接收模块接收所述第一指示信息之前,向所述基站发送用于指示所述终端设备的能力带宽的第二指示信息。
在本申请实施例中,所述第一指示信息包括第三指示信息和第四指示信息,接收器172接收所述第一指示信息,具体包括:
接收器172接收所述基站发送的所述第三指示信息;其中,所述第三指示信息用于指示所述基站确定的部分带宽在所述第一载波带宽中的频域位置,所述基站确定的部分带宽由多个部分带宽单元组成;
接收器172接收所述基站发送的所述第四指示信息;其中,所述第四指示信息用于在所述确定的部分带宽中被调度的物理资源块的位置。
在本申请实施例中,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在本申请实施例中,所述第三指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,接收器172用于:
在第一时域位置通过所述控制信道接收由所述基站在发送的所述第三指示信息;
在所述接收模块接收所述第三指示信息之后,接收器172还用于:
在第二时域位置通过数据信道接收由所述基站发送的数据。
在本申请实施例中,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个频分正交复用OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
在一种可能的设计中,处理器171还用于:
根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;以及
根据所述确定的第一子载波间隔确定所述确定的部分带宽在所述第一载波带宽中的频域位置。
在一种可能的设计中,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
在本申请实施例中,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
请参见图18,本申请实施例提供一种终端设备,该设备包括处理器181和接收器182。
该设备还可以包括存储器,存储器可以通过总线183与处理器181连接。存储器的数量可以是一个或多个,存储器可以是只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)或磁盘存储器,等等。
接收器182,用于接收基站发送的第一指示信息;其中,所述第一指示信息用于向所述终端设备指示确定的部分带宽在所述基站的第一载波带宽中的频域位置,所述部分带宽由多个部分带宽单元组成;
接收器182还用于接收所述基站发送的第二指示信息;其中,所述第二指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置;
处理器181,用于根据所述第一指示信息,确定所述部分带宽在所述基站的第一载波带宽中的频域位置;
处理器181,还用于根据所述第二指示信息,确定所述基站向所述终端设备传输数据的物理资源块在所述部分带宽中的频域位置。
在一种可能的设计中,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,所述第一指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源位置,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,接收器182用于:
在第一时域位置通过所述控制信道接收由所述基站在发送的所述第一指示信息;
在所述接收模块接收所述第一指示信息之后,接收器182还用于:
在第二时域位置通过数据信道接收由所述基站发送的数据。
在本申请实施例中,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个正交频分复用OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
请参见图19,本申请实施例提供一种终端设备,该设备包括子载波间隔确定模块191和资源位置确定模块192。
在实际应用中,子载波间隔确定模块191和资源位置确定模块192对应的实体设备可以是图16中的处理器161。
在一种可能的设计中,子载波间隔确定模块191用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同,所述第一载波带宽为基站向所述终端设备指示的载波带宽;以及
资源位置确定模块192用于根据所述确定的第一子载波间隔确定所述基站为所述终端设备分配的资源位置。
在一种可能的设计中,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
在一种可能的设计中,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
请参见图20,本申请实施例提供一种终端设备,该设备包括处理模块201及接收模块202。
在实际应用中,处理模块201对应的实体设备可以是图17中的处理器171,接收模块202对应的实体设备可以是图17中的接收器172。
接收模块202,用于接收基站发送的第一指示信息,所述第一指示信息用于指示所述基站确定的部分带宽;其中,所述基站确定的部分带宽为所述基站根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系确定的;其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合包括所述基站确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合包括所述基站确定的部分带宽;
处理模块201,用于根据所述第一指示信息,确定所述基站确定的部分带宽。
在一种可能的设计中,所述终端设备还包括:
发送模块203,用于在接收模块202接收所述第一指示信息之前,向所述基站发送用于指示所述终端设备的能力带宽的第二指示信息。
在一种可能的设计中,所述第一指示信息包括第三指示信息和第四指示信息,接收模块202接收所述第一指示信息,具体包括:
接收模块202接收所述基站发送的所述第三指示信息;其中,所述第三指示信息用于指示所述基站确定的部分带宽在所述第一载波带宽中的频域位置,所述基站确定的部分带宽由多个部分带宽单元组成;
接收模块202接收所述基站发送的所述第四指示信息;其中,所述第四指示信息用于指示在所述确定的部分带宽中被调度的物理资源块的位置。
在本申请实施例中,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在本申请实施例中,所述第三指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,接收模块202用于:
在第一时域位置通过所述控制信道接收由所述基站在发送的所述第三指示信息;
在所述接收模块接收所述第三指示信息之后,接收模块202还用于:
在第二时域位置通过所述确定的部分带宽接收由所述基站发送的数据。
在本申请实施例中,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个频分正交复用OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
在一种可能的设计中,处理模块201还用于:
根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;以及
根据所述确定的第一子载波间隔确定所述确定的部分带宽在所述第一载波带宽中的频域位置。
在一种可能的设计中,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
在一种可能的设计中,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
请参见图21,本申请实施例提供一种终端设备,该设备包括处理模块211和接收模块212。
在实际应用中,处理模块211对应的实体设备可以是图18中的处理器181,接收模块212对应的实体设备可以是图18中的接收器182。
接收模块212,用于接收基站发送的第一指示信息;其中,所述第一指示信息用于向 所述终端设备指示确定的部分带宽在所述基站的第一载波带宽中的频域位置,所述部分带宽由多个部分带宽单元组成;
接收模块212还用于接收所述基站发送的第二指示信息;其中,所述第二指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置;
处理模块211,用于根据所述第一指示信息,确定所述部分带宽在所述基站的第一载波带宽中的频域位置;
处理模块211,还用于根据所述第二指示信息,确定所述基站向所述终端设备传输数据的物理资源块在所述部分带宽中的频域位置。
在一种可能的设计中,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
在一种可能的设计中,所述第一指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源位置,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,接收模块212用于:
在第一时域位置通过所述控制信道接收由所述基站在发送的所述第一指示信息;
在所述接收模块接收所述第一指示信息之后,接收模块212还用于:
在第二时域位置通过所述确定的部分带宽接收由所述基站发送的数据。
在一个可能的设计中,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个正交频分复用OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
图22示出了一种装置2200的结构示意图。其中,装置2200可以是基站,能够实现本申请实施例提供的方法中基站的功能;装置2200也可以是能够支持基站实现本申请实施例提供的方法中基站的功能的装置。装置2200可以是硬件结构、软件模块、或硬件结构加软件模块。装置2200可以由芯片系统实现。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
装置2200可以包括确定模块2201和通信模块2202。
确定模块2201和通信模块2202可以用于执行图4或图9所示的实施例中的方法,和/或用于支持本文所描述的技术的其它过程。
示例性地,确定模块2201可以用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔,通信模块2202可以用于根据所述确定的第一子载波间隔向终端设备进行资源配置;或,确定模块2201可以用于根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定部分带宽,通信模块2202可以用于发送第一指示信息,所述第一指示信息用于指示所述确定的部分带宽;或,确定模块2201可以用于确定为终端设备配置的部分带宽,通信模块2202可以用于发送第一指示信息及第二指示信息,所述第一指示信息用于向所述终端设备指示所述确定的部分带宽在所述第一载波带宽中的频域位置,所述确定的部分带宽由一个或多个部分带宽单元组成,所述第二指示信息用于指示在所述确定的部分带宽中被调度的物理资源块的频域位置。
通信模块2201用于装置2200和其它模块进行通信,其可以是电路、器件、接口、总 线、软件模块、收发器或者其它任意可以实现通信的装置。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
如图23所示为本申请实施例提供的装置2300,其中,装置2300可以是基站,能够实现本申请实施例提供的方法中基站的功能;装置2300也可以是能够支持基站实现本申请实施例提供的方法中基站的功能的装置。其中,该装置2300可以为芯片系统。
装置2300包括至少一个处理器2320,用于实现或用于支持装置2300实现本申请实施例提供的方法中基站的功能。示例性地,处理器2320可以确定用于资源配置的第一子载波间隔,以及,根据所述确定的第一子载波间隔向终端设备进行资源配置;处理器2320可以用于根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定为终端设备配置的部分带宽,处理器2320可以生成和发送第一指示信息和第二指示信息,所述第一指示信息用于指示为终端设备配置的部分带宽在第一载波带宽中的频域位置,所述部分带宽由多个部分带宽单元组成,所述第二指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置,具体参见方法示例中的详细描述,此处不做赘述。
装置2300还可以包括至少一个存储器2330,用于存储程序指令和/或数据。存储器2330和处理器2320耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器2320可能和存储器2330协同操作。处理器2320可能执行存储器2330中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
装置2300还可以包括通信接口2310,用于通过传输介质和其它设备进行通信,从而用于装置2300中的装置可以和其它设备进行通信。处理器2320可以利用通信接口2310收发数据。
本申请实施例中不限定上述通信接口2310、处理器2320以及存储器2330之间的具体连接介质。本申请实施例在图23中以存储器2330、处理器2320以及通信接口2310之间通过总线2340连接,总线在图23中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图23中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
图24示出了一种装置2400的结构示意图。其中,装置2400可以是终端设备,能够 实现本申请实施例提供的方法中终端设备的功能;装置2400也可以是能够支持终端设备实现本申请实施例提供的方法中终端设备的功能的装置。装置2400可以是硬件结构、软件模块、或硬件结构加软件模块。装置2400可以由芯片系统实现。
装置2400可以包括确定模块2401和/或通信模块2402。
确定模块2401可以用于执行图4或图9所示的实施例中的方法,和/或用于支持本文所描述的技术的其它过程。
示例性地,确定模块2401可以用于根据载波带宽与子载波间隔之间的映射关系,在第一载波带宽中,确定用于资源配置的第一子载波间隔,根据所述确定的第一子载波间隔确定为终端设备配置的资源位置;或,通信模块2402用于接收第一指示信息,所述第一指示信息用于指示为终端设备配置的部分带宽,确定模块2401用于根据所述第一指示信息,确定为终端设备配置的部分带宽;或,通信模块2402用于接收第一指示信息和第二指示信息,所述第一指示信息用于指示为终端设备配置的部分带宽在第一载波带宽中的频域位置,所述第一载波带宽为指示的载波带宽,所述为终端设备配置的部分带宽由多个部分带宽单元组成,所述第二指示信息用于指示在所述为终端设备配置的部分带宽中被调度的物理资源块的频域位置,确定模块2401用于根据所述第一指示信息及所述第二指示信息,确定所述为装置配置的部分带宽。
通信模块2402用于装置2400和其它模块进行通信,其可以是电路、器件、接口、总线、软件模块、收发器或者其它任意可以实现通信的装置。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
如图25所示为本申请实施例提供的装置2500,其中,装置2500可以是终端设备,能够实现本申请实施例提供的方法中终端设备的功能;装置2500也可以是能够支持终端设备实现本申请实施例提供的方法中终端设备的功能的装置。其中,该装置2500可以为芯片系统。
装置2500包括至少一个处理器2520,用于实现或用于支持装置2500实现本申请实施例提供的方法中终端设备的功能。示例性地,处理器2520可以确定用于资源配置的第一子载波间隔,以及,根据所述确定的第一子载波间隔确定为终端设备配置的资源位置;或,处理器2520可以根据接收到的第一指示信息确定为终端设备配置的部分带宽;或处理器2520可以根据接收到的第一指示信息和第二指示信息,确定为所述终端设备配置的部分带宽,所述第一指示信息用于指示为终端设备配置的部分带宽在第一载波带宽中的频域位置,所述第一载波带宽为指示的载波带宽,所述为终端设备配置的部分带宽由多个部分带宽单元组成,所述第二指示信息用于指示在所述为终端设备配置的部分带宽中被调度的物理资源块的频域位置,具体参见方法示例中的详细描述,此处不做赘述。
装置2500还可以包括至少一个存储器2530,用于存储程序指令和/或数据。存储器2530和处理器2520耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器2520可能和存储器2530协同操作。处理器2520可能执行存储器2530中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
装置2500还可以包括通信接口2510,用于通过传输介质和其它设备进行通信,从而用于装置2500中的装置可以和其它设备进行通信。处理器2520可以利用通信接口2510 收发数据。
本申请实施例中不限定上述通信接口2510、处理器2520以及存储器2530之间的具体连接介质。本申请实施例在图25中以存储器2530、处理器2520以及通信接口2510之间通过总线2540连接,总线在图25中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图25中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
应理解,根据本申请实施例的图10至图15中的基站,图22以及图23中的装置,以及图16至图21中的终端设备,图24以及图25中的装置,可对应于根据本申请实施例的通信方法400以及900中的基站和终端,并且基站和终端中的各个单元的上述和其它操作和/或功能分别为了本申请实施例中所述的方法的相应流程,为了简洁,在此不再赘述。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例中,接收器,发送器,接收模块,发送模块可以是有线收发机,无线收发机或其组合。有线收发机例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发机例如可以为无线局域网收发机,蜂窝网络收发机或其组合。处理器可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。存储器可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器还可以包括上述种类的存储器的组合。
图10,图11,图12以及图13中还可以包括总线接口,总线接口可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线接口还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机提供用于在传输介质上与各种其他设备通信的单元。处理器负责 管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
最后,需要说明的是:以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。显然,本领域技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (44)

  1. 一种确定部分带宽的方法,其特征在于,包括:
    基站根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽;
    其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合包括所述确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合包括所述确定的部分带宽;
    所述基站向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述确定的部分带宽。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述基站接收所述终端设备发送的第二指示信息;其中,所述第二指示信息用于指示所述终端设备的能力带宽。
  3. 根据权利要求2所述的方法,其特征在于,基站根据第一载波带宽与第一部分带宽集合之间的映射关系,确定所述部分带宽,包括:
    所述基站从所述第一部分带宽集合中,确定所述部分带宽;其中,所述部分带宽小于等于所述终端设备的能力带宽。
  4. 根据权利要求2或3所述的方法,其特征在于,基站根据终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽,包括:
    所述基站确定所述第二部分带宽集合中的任一部分带宽为所述部分带宽。
  5. 根据权利要求1-4中任一所述的方法,其特征在于,所述基站向所述终端设备发送第一指示信息,包括:
    所述基站向所述终端设备发送第三指示信息;其中,所述第三指示信息用于向所述终端设备指示所述部分带宽在所述第一载波带宽中的频域位置,所述确定的部分带宽由一个或多个部分带宽单元组成;
    所述基站向所述终端设备发送第四指示信息;其中,所述第四指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置。
  6. 根据权利要求5所述的方法,其特征在于,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第三指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述基站向所述终端设备发送所述第三指示信息,具体包括:
    所述基站在第一时域位置通过所述控制信道向所述终端设备发送所述第三指示信息;
    在所述基站向所述终端设备发送所述第三指示信息之后,所述方法还包括:
    所述基站在第二时域位置通过所述确定的部分带宽向所述终端设备发送数据。
  8. 根据权利要求7所述的方法,其特征在于,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个正交频分复用 OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
  9. 根据权利要求5-8中任一所述的方法,其特征在于,在所述基站向所述终端设备发送第一指示信息之前,所述方法还包括:
    所述基站根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;
    所述基站根据所述确定的第一子载波间隔确定所述确定的部分带宽在所述第一载波带宽中的频域位置。
  10. 根据权利要求9所述的方法,其特征在于,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
  12. 一种确定部分带宽的方法,其特征在于,包括:
    终端设备接收基站发送的第一指示信息,所述第一指示信息用于指示所述基站确定的部分带宽;其中,所述基站确定的部分带宽为所述基站根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系确定的;其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合包括所述基站确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合包括所述基站确定的部分带宽,所述第一载波带宽为所述基站向所述终端设备指示的载波带宽;
    所述终端设备根据所述第一指示信息,确定所述基站确定的部分带宽。
  13. 根据权利要求12所述的方法,其特征在于,终端设备接收基站发送的第一指示信息之前,所述方法还包括:
    所述终端设备向所述基站发送用于指示所述终端设备的能力带宽的第二指示信息。
  14. 根据权利要求12或13所述的方法,其特征在于,终端设备接收基站发送的第一指示信息,包括:
    所述终端设备接收所述基站发送的第三指示信息;其中,所述第三指示信息用于指示所述基站确定的部分带宽在所述第一载波带宽中的频域位置,所述基站确定的部分带宽由多个部分带宽单元组成;
    所述终端设备接收所述基站发送的第四指示信息;其中,所述第四指示信息用于指示在所述确定的部分带宽中被调度的物理资源块的频域位置。
  15. 根据权利要求14所述的方法,其特征在于,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第三指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备 专用搜索空间的资源位置不重叠,终端设备接收所述基站发送的第三指示信息,包括:
    所述终端设备在第一时域位置通过所述控制信道接收由所述基站在发送的所述第三指示信息;
    在所述终端设备接收由所述基站发送的第三指示信息之后,所述方法还包括:
    所述终端设备在第二时域位置通过所述确定的部分带宽接收由所述基站发送的数据。
  17. 根据权利要求16所述的方法,其特征在于,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个正交频分复用OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
  18. 根据权利要求12-17中任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;
    所述终端设备根据所述确定的第一子载波间隔确定所述基站确定的部分带宽在所述第一载波带宽中的频域位置。
  19. 根据权利要求18所述的方法,其特征在于,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
  21. 一种基站,其特征在于,包括:
    处理模块,用于第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系,确定所述部分带宽;
    其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合包括所述确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合包括所述确定的部分带宽;
    发送模块,用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述确定的部分带宽。
  22. 根据权利要求21所述的基站,其特征在于,所述基站还包括:
    接收模块,用于接收所述终端设备发送的第二指示信息;其中,所述第二指示信息用于指示所述终端设备的能力带宽。
  23. 根据权利要求22所述的基站,其特征在于,所述处理模块具体用于:
    从所述第一部分带宽集合中,确定所述部分带宽;其中,所述部分带宽小于等于所述终端设备的能力带宽。
  24. 根据权利要求21或22所述的基站,其特征在于,所述处理模块用于:
    确定所述第二部分带宽集合中的任一部分带宽为所述部分带宽。
  25. 根据权利要求21-24中任一所述的基站,其特征在于,所述发送模块还用于:
    向所述终端设备发送第三指示信息;其中,所述第三指示信息用于向所述终端设 备指示所述部分带宽在所述第一载波带宽中的频域位置,所述确定的部分带宽由一个或多个部分带宽单元组成;以及
    向所述终端设备发送第四指示信息;其中,所述第四指示信息用于指示在所述部分带宽中被调度的物理资源块的频域位置。
  26. 根据权利要求25所述的基站,其特征在于,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
  27. 根据权利要求25或26所述的基站,其特征在于,所述第三指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述发送模块具体用于:
    在第一时域位置通过所述控制信道向所述终端设备发送所述第三指示信息;
    在所述发送模块发送所述第一指示信息之后,所述发送模块还用于:
    在第二时域位置通过所述确定的部分带宽向所述终端设备发送数据。
  28. 根据权利要求27所述的基站,其特征在于,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个正交频分复用OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
  29. 根据权利要求25-28中任一所述的基站,其特征在于,所述处理模块还用于:
    根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述载波带宽与子载波间隔之间的映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;
    根据所述确定的第一子载波间隔确定所述确定的部分带宽在所述第一载波带宽中的频域位置。
  30. 根据权利要求29所述的基站,其特征在于,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
  31. 根据权利要求29或30所述的基站,其特征在于,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
  32. 一种终端设备,其特征在于,包括:
    接收模块,用于接收基站发送的第一指示信息,所述第一指示信息用于指示所述基站确定的部分带宽;其中,所述基站确定的部分带宽为所述基站根据第一载波带宽与第一部分带宽集合之间的映射关系和/或终端设备的能力带宽与第二部分带宽集合之间的映射关系确定的;其中,所述第一部分带宽集合中包括多个部分带宽,所述第一部分带宽集合包括所述基站确定的部分带宽,所述第二部分带宽集合中包括多个部分带宽,所述第二部分带宽集合包括所述基站确定的部分带宽;
    处理模块,用于根据所述第一指示信息,确定所述基站确定的部分带宽。
  33. 根据权利要求32所述的终端设备,其特征在于,所述终端设备还包括:
    发送模块,用于在所述接收模块接收所述第一指示信息之前,向所述基站发送用于指示所述终端设备的能力带宽的第二指示信息。
  34. 根据权利要求32或33所述的终端设备,其特征在于,所述第一指示信息包括第三指示信息和第四指示信息,所述接收模块接收所述第一指示信息,具体包括:
    所述接收模块接收所述基站发送的所述第三指示信息;其中,所述第三指示信息用于指示所述基站确定的部分带宽在所述第一载波带宽中的频域位置,所述基站确定的部分带宽由多个部分带宽单元组成;
    所述接收模块接收所述基站发送的所述第四指示信息;其中,所述第四指示信息用于指示在所述确定的部分带宽中被调度的物理资源块的位置。
  35. 根据权利要求34所述的终端设备,其特征在于,所述部分带宽单元为资源块组RBG或同步带宽SS bandwidth或物理资源块PRB。
  36. 根据权利要求34或35所述的终端设备,其特征在于,所述第三指示信息承载在控制信道的公共搜索空间的资源中或终端设备专用搜索空间的资源中,所述部分带宽在所述第一载波带宽中的频域位置与所述公共搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述部分带宽在所述第一载波带宽中的频域位置与所述终端设备专用搜索空间的资源在所述第一载波带宽中的频域位置不重叠,所述接收模块用于:
    在第一时域位置通过所述控制信道接收由所述基站在发送的所述第三指示信息;
    在所述接收模块接收所述第三指示信息之后,所述接收模块还用于:
    在第二时域位置通过所述确定的部分带宽接收由所述基站发送的数据。
  37. 根据权利要求36所述的终端设备,其特征在于,所述第一时域位置和所述第二时域位置在时域上位于一个调度单位中,第一时域位置中包括的最后一个频分正交复用OFDM符号与所述第二时域位置中包括的第一个OFDM符号之间间隔M个OFDM符号,M为大于等于1的整数。
  38. 根据权利要求32-37中任一所述的终端设备,其特征在于,所述处理模块还用于:
    根据载波带宽与子载波间隔之间的映射关系,在所述第一载波带宽中,确定用于资源配置的第一子载波间隔;其中,所述映射关系包括所述第一载波带宽与所述第一子载波间隔的映射关系以及第二载波带宽与第二子载波间隔的映射关系,所述第一子载波间隔与所述第二子载波间隔不同;以及
    根据所述确定的第一子载波间隔确定所述确定的部分带宽在所述第一载波带宽中的频域位置。
  39. 根据权利要求38所述的终端设备,其特征在于,所述第一载波带宽属于第一载波带宽区间,所述第一载波带宽区间所包括的每个载波带宽中用于资源配置的子载波间隔为所述第一子载波间隔。
  40. 根据权利要求38或39所述的终端设备,其特征在于,所述第一载波带宽能够支持多个子载波间隔,所述多个子载波间隔中包括所述第一子载波间隔。
  41. 一种装置,所述装置用于实现权利要求1至11中任一项所述的方法。
  42. 一种装置,所述装置用于实现权利要求12至20中任一项所述的方法。
  43. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机 执行如权利要求1至11任意一项所述的方法。
  44. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求12至20任意一项所述的方法。
PCT/CN2018/080331 2017-03-25 2018-03-23 资源配置、确定部分带宽及指示部分带宽的方法及设备 WO2018177223A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18775061.7A EP3585118B1 (en) 2017-03-25 2018-03-23 Method and device for determining partial bandwidth and indicating partial bandwidth
US16/580,927 US11184139B2 (en) 2017-03-25 2019-09-24 Resource configuration method, method for determining bandwidth part, method for indicating bandwidth part, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184953.1A CN108633059B (zh) 2017-03-25 2017-03-25 资源配置、确定部分带宽及指示部分带宽的方法及设备
CN201710184953.1 2017-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/580,927 Continuation US11184139B2 (en) 2017-03-25 2019-09-24 Resource configuration method, method for determining bandwidth part, method for indicating bandwidth part, and device

Publications (1)

Publication Number Publication Date
WO2018177223A1 true WO2018177223A1 (zh) 2018-10-04

Family

ID=63674225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080331 WO2018177223A1 (zh) 2017-03-25 2018-03-23 资源配置、确定部分带宽及指示部分带宽的方法及设备

Country Status (4)

Country Link
US (1) US11184139B2 (zh)
EP (1) EP3585118B1 (zh)
CN (1) CN108633059B (zh)
WO (1) WO2018177223A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496455A (zh) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 资源切换方法、资源分配方法、装置、设备及系统
US20210127395A1 (en) * 2017-06-16 2021-04-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201909090YA (en) * 2017-04-07 2019-10-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Method for configuring resource, user equipment, network device and computer storage medium
US11206627B2 (en) * 2017-04-27 2021-12-21 Beijing Xiaomi Mobile Software Co., Ltd. System information transmission method and device
CN110583075B (zh) * 2017-05-05 2023-07-21 瑞典爱立信有限公司 用于数据传输的方法和设备
US11310820B2 (en) * 2017-08-11 2022-04-19 Beijing Xiaomi Mobile Software Co., Ltd. Cross-carrier scheduling method and device
CN109803326B (zh) * 2017-11-17 2023-10-31 中兴通讯股份有限公司 资源分配指示、接收方法及装置
RU2758926C1 (ru) * 2018-03-29 2021-11-03 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ и устройство для предоставления информации, а также способ и устройство для работы на основе частей полосы частот
CN110381585B (zh) * 2018-04-13 2021-05-25 电信科学技术研究院有限公司 一种进行bwp分配的方法和设备
US11336494B2 (en) * 2018-04-16 2022-05-17 Lg Electronics Inc. Method and apparatus for generating signal in wireless communication system
CN114828249A (zh) * 2018-10-22 2022-07-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111148237B (zh) * 2018-11-02 2022-12-30 华为技术有限公司 一种通信方法及装置
CN111200862B (zh) * 2018-11-20 2022-12-06 展讯通信(上海)有限公司 主部分带宽pbwp的配置方法及装置
US11258570B2 (en) * 2018-12-13 2022-02-22 Apple Inc. Joint optimization of bandwidth part, search space and connected mode discontinuous reception operation in 5G New Radio
CN109548087B (zh) * 2018-12-19 2023-02-03 新华三技术有限公司成都分公司 通信方法及装置
US11026223B2 (en) * 2019-01-24 2021-06-01 Qualcomm Incorporated Bandwidth part (BWP) selection
CN111491398B (zh) * 2019-01-28 2022-07-22 中国移动通信有限公司研究院 Bwp的处理方法、装置、相关设备及存储介质
US11546897B2 (en) * 2019-03-28 2023-01-03 Mediatek Inc. Control information for wideband operation
CN112039641B (zh) * 2019-06-04 2021-12-03 华为技术有限公司 一种通信方法及装置
WO2021027603A1 (zh) * 2019-08-12 2021-02-18 华为技术有限公司 一种指示频域资源的方法及装置
TWI724502B (zh) 2019-08-20 2021-04-11 中磊電子股份有限公司 主控基地台及資源分配指示方法
CN112449424B (zh) * 2019-08-30 2022-09-16 华为技术有限公司 一种数据的传输方法及装置
WO2021159510A1 (zh) * 2020-02-14 2021-08-19 富士通株式会社 上行传输方法以及装置
CN114071729A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种确定bwp的方法、装置及系统
CN116261889A (zh) * 2020-12-18 2023-06-13 Oppo广东移动通信有限公司 资源确定方法、终端设备和网络设备
CN115175143A (zh) * 2021-03-17 2022-10-11 华为技术有限公司 一种通信方法及装置
CN118575548A (zh) * 2022-04-07 2024-08-30 中兴通讯股份有限公司 用于资源配置的不同类型带宽部分之间的映射的系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615984A (zh) * 2009-08-07 2009-12-30 中兴通讯股份有限公司 载波聚合下周期性cqi反馈的方法和装置
CN102148666A (zh) * 2010-02-09 2011-08-10 华为技术有限公司 信道信息反馈方法、终端及基站
CN102291731A (zh) * 2010-06-18 2011-12-21 电信科学技术研究院 一种应用于分层网络的测量方法及其装置
CN104703269A (zh) * 2008-04-16 2015-06-10 高通股份有限公司 上行链路和下行链路小区间干扰协调

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473578A (zh) * 2006-06-21 2009-07-01 高通股份有限公司 用于测量、传送和/或使用干扰信息的方法和设备
US8665799B2 (en) * 2006-09-14 2014-03-04 Qualcomm Incorporated Beacon assisted cell search in a wireless communication system
ES2907939T3 (es) * 2007-08-14 2022-04-27 Panasonic Corp Dispositivo de radiocomunicación y procedimiento de radiocomunicación
US9084201B2 (en) * 2008-01-25 2015-07-14 Qualcomm Incorporated Power headroom management in wireless communication systems
WO2010116764A1 (ja) * 2009-04-10 2010-10-14 パナソニック株式会社 無線基地局装置、無線端末装置、周波数リソース割当方法、及び、送信信号形成方法
US9276710B2 (en) 2009-12-21 2016-03-01 Qualcomm Incorporated Method and apparatus for resource allocation with carrier extension
WO2011082534A1 (zh) * 2010-01-08 2011-07-14 华为技术有限公司 资源分配方法及装置
CN103716841A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 信息传输方法及装置
CN103825670B (zh) * 2012-11-16 2018-05-18 华为技术有限公司 工作窄带确定方法、终端设备及基站
US10172131B2 (en) * 2013-03-25 2019-01-01 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes and methods for enabling access to a radio network node
CN105099634B (zh) * 2014-05-09 2019-05-07 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
WO2016004634A1 (en) * 2014-07-11 2016-01-14 Mediatek Singapore Pte. Ltd. Method for enb, ue uplink transmission and reception
US9420584B2 (en) * 2014-09-17 2016-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Uplink sounding reference signals for machine type communications (MTC) user equipment (UE)
US10143005B2 (en) * 2014-11-07 2018-11-27 Qualcomm Incorporated Uplink control resource allocation for dynamic time-division duplex systems
JP6567690B2 (ja) * 2015-01-27 2019-08-28 華為技術有限公司Huawei Technologies Co.,Ltd. 共通情報送信方法および装置
US10681676B2 (en) * 2015-02-25 2020-06-09 Qualcomm Incorporated Narrowband management for machine type communications
WO2017014486A1 (ko) * 2015-07-21 2017-01-26 엘지전자 주식회사 무선 통신 시스템에서 csi를 보고하는 방법 및 이를 위한 장치
US10021685B2 (en) * 2015-12-28 2018-07-10 Qualcomm Incorporated Techniques for allocating resources in low latency wireless communications
KR102275675B1 (ko) * 2016-06-12 2021-07-09 엘지전자 주식회사 신호를 수신하는 방법 및 그 무선 기기
US10574425B2 (en) * 2016-06-28 2020-02-25 Lg Electronics Inc. Method for receiving downlink signal and user equipment, and method for transmitting downlink signal and base station
WO2018018628A1 (zh) * 2016-07-29 2018-02-01 华为技术有限公司 参考信号序列的映射方法、配置方法、基站和用户设备
CN107734693B (zh) * 2016-08-12 2020-09-22 华硕电脑股份有限公司 无线通信系统中用于确定基础参数带宽的方法和设备
US10841060B2 (en) * 2016-09-06 2020-11-17 Lg Electronics Inc. Method and apparatus for configuring resource block structure for NR in wireless communication system
CN109906651B (zh) * 2016-11-01 2023-07-21 Lg电子株式会社 在无线通信系统中配置nr载波中的子带聚合的方法和设备
US10499371B2 (en) * 2016-11-03 2019-12-03 Samsung Electronics Co., Ltd. Method and apparatus of flexible data transmissions and receptions in next generation cellular networks
US11184893B2 (en) * 2017-02-05 2021-11-23 Lg Electronics Inc. Method for configuring common search space in wireless communication system and apparatus therefor
US10476651B2 (en) * 2017-02-14 2019-11-12 Huawei Technologies Co., Ltd. Methods and systems for numerology determination of wireless communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104703269A (zh) * 2008-04-16 2015-06-10 高通股份有限公司 上行链路和下行链路小区间干扰协调
CN101615984A (zh) * 2009-08-07 2009-12-30 中兴通讯股份有限公司 载波聚合下周期性cqi反馈的方法和装置
CN102148666A (zh) * 2010-02-09 2011-08-10 华为技术有限公司 信道信息反馈方法、终端及基站
CN102291731A (zh) * 2010-06-18 2011-12-21 电信科学技术研究院 一种应用于分层网络的测量方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3585118A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210127395A1 (en) * 2017-06-16 2021-04-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
US11937242B2 (en) * 2017-06-16 2024-03-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
CN109496455A (zh) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 资源切换方法、资源分配方法、装置、设备及系统
CN109496455B (zh) * 2018-10-19 2023-08-22 北京小米移动软件有限公司 资源切换方法、资源分配方法、装置、设备及系统
US11889473B2 (en) 2018-10-19 2024-01-30 Beijing Xiaomi Mobile Software Co., Ltd. Resource switching method, and resource allocation method, apparatus, device and system

Also Published As

Publication number Publication date
CN108633059A (zh) 2018-10-09
EP3585118B1 (en) 2022-06-22
US20200021420A1 (en) 2020-01-16
CN108633059B (zh) 2021-06-29
EP3585118A4 (en) 2020-03-04
US11184139B2 (en) 2021-11-23
EP3585118A1 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
WO2018177223A1 (zh) 资源配置、确定部分带宽及指示部分带宽的方法及设备
JP7078276B2 (ja) 通信装置、ユーザ機器、通信装置によって実行される方法、及びユーザ機器によって実行される方法
KR102288695B1 (ko) 리소스 할당 방법, 단말, 및 네트워크 디바이스
US11490370B2 (en) Information transmission method and apparatus
WO2020063519A1 (zh) 配置旁链路资源的方法和装置
JP7170643B2 (ja) データ伝送方法、ネットワーク装置と端末装置
EP3627733A1 (en) Communication method, network device and terminal device
WO2021032065A1 (zh) 一种资源复用方法及装置
EP3820218A1 (en) Signal transmission method, apparatus, terminal device, network device, and system
EP3557806B1 (en) Sending and receiving method and apparatus for reference signal
EP3582565B1 (en) Data transmission method, and computer-readable storage medium
WO2018090259A1 (zh) 上行信号的传输方法和装置
WO2020164461A1 (zh) 一种下行传输方法及其装置
JP6918929B2 (ja) 信号伝送方法及び装置
JP2021510945A (ja) データ伝送方法、端末装置及びネットワーク装置
WO2017070948A1 (zh) 一种载波聚合方法及装置
WO2020052419A1 (zh) 参考信号及序列配置方法和装置
WO2013178177A2 (zh) Ue类型上报、资源分配方法及装置、ue、基站
WO2021036942A1 (zh) 一种srs的传输方法及装置
JP6931702B2 (ja) 情報伝送方法、ネットワーク機器及び端末機器
WO2023011110A1 (zh) 一种通信方法及装置
WO2018201886A1 (zh) 一种资源指示的方法、设备及系统
WO2017036236A9 (zh) 一种基于tdd的m2m系统的通信方法、装置与系统
EP4221110A1 (en) Symbol application method and communication apparatus
WO2019051788A1 (zh) 用于传输数据的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018775061

Country of ref document: EP

Effective date: 20190916