WO2018176875A1 - Gnss智能节电装置、定位系统和方法 - Google Patents

Gnss智能节电装置、定位系统和方法 Download PDF

Info

Publication number
WO2018176875A1
WO2018176875A1 PCT/CN2017/113235 CN2017113235W WO2018176875A1 WO 2018176875 A1 WO2018176875 A1 WO 2018176875A1 CN 2017113235 W CN2017113235 W CN 2017113235W WO 2018176875 A1 WO2018176875 A1 WO 2018176875A1
Authority
WO
WIPO (PCT)
Prior art keywords
gnss
module
satellite signal
power saving
saving device
Prior art date
Application number
PCT/CN2017/113235
Other languages
English (en)
French (fr)
Inventor
王飞
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018176875A1 publication Critical patent/WO2018176875A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a GNSS intelligent power saving device, a GNSS positioning system, and a smart power saving method for a GNSS positioning system.
  • the GNSS positioning system in the existing smart phone has a feature: when the upper application of the smart phone starts the GNSS positioning system in the "high precision" or “device only” mode, the GNSS chip processing module on the smart phone is uncertain in the current environment. Whether there is a satellite signal in it will continue to scan and attempt to capture satellite signals.
  • the embodiment of the invention provides a GNSS intelligent power saving device, a GNSS positioning system and a GNSS positioning system intelligent power saving method, which aims to solve the problem that the GNSS chip processing module keeps searching for satellite signal state when there is no satellite signal, resulting in high power consumption of the terminal.
  • the problem is a GNSS intelligent power saving device, a GNSS positioning system and a GNSS positioning system intelligent power saving method, which aims to solve the problem that the GNSS chip processing module keeps searching for satellite signal state when there is no satellite signal, resulting in high power consumption of the terminal.
  • Embodiments of the present invention provide a GNSS intelligent power saving device, which is applied to a GNSS positioning system of a mobile terminal, where the GNSS positioning system includes an ELNA module and a GNSS chip processing module, and the GNSS intelligent power saving device Connected between the ELNA module and the GNSS chip processing module, the GNSS smart power saving device is configured to: monitor satellite signals from the ELNA module, notify the GNSS chip processing when satellite signals are not detected The module goes to sleep.
  • the GNSS smart power saving device includes:
  • a satellite signal receiving module coupled to the ELNA module and configured to receive from the ELNA mode Block satellite signal
  • a satellite signal monitoring module connected between the satellite signal receiving module and the GNSS chip processing module, configured to monitor whether the satellite signal receiving module receives a satellite signal from the ELNA module, and monitors the satellite
  • the GNSS chip processing module is notified to enter a sleep state.
  • the satellite signal monitoring module is further configured to: when the satellite signal receiving module receives the satellite signal from the ELNA module, send the satellite signal to the GNSS chip processing module, Notifying the GNSS chip processing module to start work.
  • the satellite signal monitoring module is further configured to receive notification information from the GNSS chip processing module after the GNSS chip processing module receives the initiating satellite positioning request.
  • the GNSS smart power saving device further includes a timer module, and the timer module is connected to the satellite signal monitoring module, wherein:
  • the timer module is configured to monitor, by the satellite signal monitoring module, whether the satellite signal receiving module receives a satellite signal for timing within a preset time;
  • the satellite signal monitoring module is further configured to: when the satellite signal receiving module does not receive the satellite signal, start the timer module to perform timing;
  • the satellite signal receiving module is not monitored to receive the satellite signal from the ELNA module, and the GNSS chip processing module is notified to enter a sleep state;
  • the satellite signal receiving module receives the satellite signal from the ELNA module, it notifies the GNSS chip processing module to start working, and closes the timer module.
  • the satellite signal monitoring module is further configured to monitor a satellite signal after the GNSS chip processing module enters a sleep state, and if the satellite signal is detected, wake up the GNSS chip processing module.
  • the embodiment of the invention further provides a GNSS positioning system, comprising: a GNSS intelligent power saving device, an ELNA module and a GNSS chip processing module, wherein the ELNA module is connected to a satellite signal receiving antenna system, and the GNSS intelligent power saving device is connected at the Between the ELNA module and the GNSS chip processing module, where:
  • the ELNA module is configured to receive a satellite signal transmitted by a satellite signal receiving antenna system and perform amplification processing
  • the GNSS intelligent power saving device is a GNSS intelligent power saving device as described above;
  • the GNSS chip processing module is configured to notify the GNSS intelligent power saving device when the satellite positioning function is turned on, and is further configured to: when the satellite signal is not monitored by the GNSS smart power saving device, according to the GNSS smart power saving device The notification goes to sleep.
  • the embodiment of the invention further provides a smart power saving method for a GNSS positioning system, the GNSS positioning system comprising: a GNSS chip processing module, an ELNA module, and a GNSS intelligent power saving device connected between the GNSS chip processing module and the ELNA module.
  • the method includes:
  • the GNSS smart power saver monitors satellite signals from the ELNA module
  • the GNSS smart power saving device notifies the GNSS chip processing module to enter a sleep state when the satellite signal from the ELNA module is not monitored.
  • the GNSS smart power saving device after the step of monitoring the satellite signal from the ELNA module, the GNSS smart power saving device further includes:
  • the GNSS smart power saving device notifies the GNSS chip processing module to start work when monitoring satellite signals from the ELNA module.
  • the GNSS smart power saving device before the step of monitoring the satellite signal from the ELNA module, the GNSS smart power saving device further includes:
  • the GNSS chip processing module After receiving the start satellite positioning request, the GNSS chip processing module sends notification information to the GNSS smart power saving device;
  • the GNSS smart power saver receives notification information from the GNSS chip processing module.
  • the GNSS positioning system further includes: a timer module;
  • the step of notifying the GNSS chip processing module to enter a sleep state when the GNSS smart power saving device does not monitor a satellite signal from the ELNA module includes:
  • the GNSS intelligent power saving device starts the timer module to perform timing when no satellite signal from the ELNA module is detected;
  • the GNSS smart power saving device When the preset time arrives, the GNSS smart power saving device does not monitor the satellite signal from the ELNA module, and the GNSS smart power saving device notifies the GNSS chip processing module to enter a sleep state;
  • the GNSS smart power saving device monitors a satellite signal from the ELNA module, and the GNSS smart power saving device notifies the GNSS chip processing module to start work, and closes the Timer module.
  • the method further includes:
  • the GNSS smart power saving device wakes up the GNSS chip processing module if the satellite signal is detected after the GNSS chip processing module enters a sleep state.
  • the embodiment of the invention provides a GNSS intelligent power saving device, a GNSS positioning system and a GNSS positioning system intelligent power saving method.
  • the GNSS chip power processing device enables the GNSS chip processing module to work when there is a satellite signal, and enters sleep when there is no satellite signal.
  • the state solves the problem that the GNSS positioning system maintains the search state when there is no satellite signal, thereby causing the power consumption of the mobile terminal to be high and high.
  • FIG. 1 is a schematic structural view of a first embodiment of a GNSS positioning system of the present invention
  • FIG. 2 is a schematic diagram showing the working flow of a second embodiment of the GNSS positioning system of the present invention.
  • FIG. 3 is a schematic diagram showing the working flow of a third embodiment of the GNSS positioning system of the present invention.
  • FIG. 4 is a schematic structural view of a first embodiment of a GNSS intelligent power saving device of the present invention.
  • FIG. 5 is a schematic structural view of a second embodiment of a GNSS intelligent power saving device of the present invention.
  • FIG. 6 is a schematic diagram showing a refinement process of a second embodiment of the GNSS intelligent power saving device of the present invention.
  • FIG. 7 is a flow chart of a first embodiment of a smart power saving method for a GNSS positioning system according to the present invention.
  • FIG. 8 is a flow chart of a second embodiment of a smart power saving method for a GNSS positioning system according to the present invention.
  • FIG. 9 is a flow chart of a third embodiment of a smart power saving method for a GNSS positioning system according to the present invention.
  • FIG. 10 is a schematic flowchart of a third embodiment of a smart power saving method for a GNSS positioning system according to the present invention.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a GNSS positioning system according to the present invention.
  • an embodiment of the present invention provides a GNSS positioning system, which is applied to a mobile communication terminal such as a mobile phone, and the GNSS positioning.
  • the system includes: satellite signal receiving antenna system 101, ELNA module 102, GNSS intelligent power saving Apparatus 100 and GNSS chip processing module 103, wherein:
  • a satellite signal receiving antenna system 101 configured to receive satellite signals in a surrounding environment
  • the ELNA module 102 is connected to the satellite signal receiving antenna system 101, and is configured to receive satellite signals from the satellite signal receiving antenna system 101, amplify the satellite signals, and send the signals to the GNSS smart power saving device. 100;
  • a GNSS intelligent power saving device 100 is connected between the ELNA module 102 and the GNSS chip processing module 103, configured to monitor satellite signals from the ELNA module 102, and notify the GNSS when satellite signals are not detected.
  • the chip processing module 103 enters a sleep state;
  • the GNSS chip processing module 103 is configured to process satellite signals.
  • the GNSS chip processing module 103 enters a sleep state when there is no satellite signal through the GNSS intelligent power saving device 100, thereby solving the problem that the GNSS chip processing module 103 maintains the search state when there is no satellite signal, thereby causing large power consumption of the mobile phone.
  • the problem of high fever is a problem that the GNSS chip processing module 103 maintains the search state when there is no satellite signal. The problem of high fever.
  • the GNSS positioning system will face both satellite signals and no satellite signals.
  • the solution in this embodiment is mainly used to deal with the situation when there is no satellite signal.
  • the GNSS positioning system can follow The normal process is processed accordingly.
  • the GNSS intelligent power saving device 100 is further configured to notify the GNSS chip processing module 103 to start work when the satellite signal is detected. It should be noted that, in other embodiments, when the satellite signal is detected by the GNSS smart power saving device 100, the GNSS chip processing module 103 may be notified to start work by other devices according to actual conditions. This is not specifically limited.
  • the GNSS chip processing module 103 can be used to notify the GNSS smart power saving device 100 satellite. Location is on.
  • the GNSS chip processing module 103 is further configured to transmit a satellite positioning start feeder signal to the GNSS smart power saving device 100 when the satellite positioning function is activated, so that the GNSS smart power saving device 100 is in the satellite positioning function. Start working after turning on, monitoring satellite signals from the ELNA module 102.
  • the GNSS chip processing module 103 sends notification information to the GNSS smart power saving device 100 after receiving the start satellite positioning request; the GNSS smart power saving device 100 receives the When the GNSS chip processes the notification information of the module, monitoring the information from the ELNA module satellite signal.
  • the GNSS chip processing module 103 enters a sleep state when there is no satellite signal through the GNSS intelligent power saving device 100, thereby solving the problem that the GNSS chip processing module 103 maintains the search state when there is no satellite signal, and the mobile phone consumes a large amount of heat. High problem.
  • a second embodiment of the GNSS positioning system of the present invention is proposed based on the first embodiment of the GNSS positioning system of the present invention.
  • the difference between this embodiment and the first embodiment of the GNSS positioning system of the present invention is:
  • the GNSS smart power saving device 100 is further configured to time whether the GNSS smart power saving device 100 receives a satellite signal;
  • the GNSS smart power saving device 100 is further configured to notify the GNSS chip processing module 103 to enter sleep when the preset time arrives and the GNSS smart power saving device 100 does not monitor the satellite signal from the ELNA module 102. status;
  • the GNSS smart power saving device 100 is further configured to notify the GNSS chip processing module 103 to start working and stop when the GNSS smart power saving device 100 monitors the satellite signal from the ELNA module 102 within a preset time. Timing.
  • the satellite positioning function is activated, the GNSS chip processing module 103 feeds back this information to the GNSS intelligent power saving device 100;
  • the GNSS intelligent power saving device 100 After receiving the satellite positioning function to turn on the feeder signal from the GNSS chip processing module 103, the GNSS intelligent power saving device 100 starts monitoring the satellite signal from the ELNA module 102;
  • the GNSS chip processing module 103 is notified to start the work and send the satellite signal to the GNSS chip processing module 103;
  • the GNSS smart power saving device 100 When the GNSS smart power saving device 100 does not monitor the satellite signal from the ELNA module 102, the GNSS smart power saving device 100 starts counting, and the time duration is 1 minute;
  • the GNSS smart power saving device 100 monitors a satellite signal from the ELNA module 102, the GNSS smart power saving device 100 transmits a satellite signal to the GNSS chip processing module. 103, and notifying the GNSS chip processing module 103 to start the work, and ending the timing.
  • the GNSS smart power saver 100 does not monitor the satellite signal from the ELNA module 102, and the GNSS smart power saver 100 notifies the GNSS chip processing module 103 to enter a sleep state.
  • the GNSS intelligent power saving device 100 notifies the GNSS chip processing module 103 to start the work when the satellite signal is detected, and performs timing when no satellite signal is detected.
  • the GNSS intelligent power saving The device 100 monitors the satellite signal, and if the GNSS smart power saving device 100 detects the satellite signal, notifies the GNSS chip processing module 103 to start the operation and stop timing, and if the timing ends, the GNSS smart power saving device 100 is still not
  • the GNSS smart power saving device 100 notifies the GNSS chip processing module 103 to enter a sleep state, thereby solving the problem that the GNSS chip processing module 103 keeps scanning the satellite signal when there is no satellite signal, causing large power consumption of the mobile terminal. High problem.
  • a third embodiment of the GNSS positioning system of the present invention is proposed, which differs from the first or second embodiment of the GNSS positioning system of the present invention in that:
  • the GNSS smart power saving device 100 is further configured to monitor a satellite signal from the ELNA module 102 after the GNSS chip processing module 103 enters a sleep state, and wake up when the satellite signal is detected. GNSS chip processing module 103.
  • the user may move from an environment without satellite signals (such as a tunnel, etc.) to an environment with satellite signals.
  • the GNSS chip processing module 103 that wakes up the sleep state is started.
  • the GNSS intelligent power saving device 100 wakes up the GNSS chip processing module 103 when the satellite signal from the ELNA module 102 is monitored after the GNSS chip processing module 103 enters a sleep state. , a good solution to this problem.
  • the main body of the GNSS chip processing module 103 may also be other devices in the GNSS positioning system, and is not limited to the GNSS smart power saving device 100 in the solution of the embodiment.
  • the satellite positioning function is activated, the GNSS chip processing module 103 sends the satellite positioning start feeder signal to the GNSS intelligent power saving device 100;
  • the GNSS smart power saving device 100 receives a satellite positioning function turn-on feeder signal from the GNSS chip processing module 103, and starts monitoring satellite signals from the ELNA module 102;
  • the GNSS smart power saving device 100 monitors the satellite signal from the ELNA module 102, the GNSS chip processing module 103 is notified to start the work and send the satellite signal to the GNSS chip processing module 103;
  • the GNSS smart power saving device 100 If the GNSS smart power saving device 100 does not monitor the satellite signal from the ELNA module 102, the GNSS smart power saving device 100 starts counting, and the time duration is 1 minute;
  • the GNSS smart power saving device 100 monitors a satellite signal from the ELNA module 102, the GNSS smart power saving device 100 transmits a satellite signal to the GNSS chip processing module. 103 and notifying the GNSS chip processing module 103 to start the work, and ending the timing;
  • the GNSS smart power saving device 100 At the end of 1 minute, if the GNSS smart power saving device 100 does not monitor the satellite signal from the ELNA module 102, the GNSS smart power saving device 100 notifies the GNSS chip processing module 103 to enter a sleep state;
  • the GNSS chip processing module 103 After the GNSS chip processing module 103 enters a sleep state, if the GNSS smart power saving device 100 monitors a satellite signal from the ELNA module 102, the GNSS smart power saving device 100 wakes up the GNSS chip processing. Module 103.
  • the GNSS intelligent power saving device 100 notifies the GNSS chip processing module 103 to start the work when the satellite signal is detected, and performs timing when no satellite signal is detected. During the timed period, the GNSS intelligent power saving The device 100 monitors the satellite signal, and if the GNSS smart power saving device 100 detects the satellite signal, notifies the GNSS chip processing module 103 to start the operation and stop timing, and the GNSS smart power saving device 100 does not detect if the timing ends.
  • the GNSS smart power saving device 100 notifies the GNSS chip processing module 103 to enter a sleep state, thereby solving the problem that the GNSS chip processing module 103 keeps scanning the satellite signal when there is no satellite signal, causing the mobile terminal to consume a large amount of heat. problem.
  • the GNSS chip processing module 103 After the GNSS chip processing module 103 enters a sleep state, if the GNSS smart power saving device 100 monitors a satellite signal from the ELNA module 102, the GNSS smart power saving device 100 wakes up the GNSS.
  • the chip processing module 103 timely guarantees the normal communication function of the mobile terminal and improves the user experience.
  • the GNSS intelligent power saving device 100 is applied to the GNSS positioning system of the mobile terminal, and the frame structure of the GNSS positioning system can be referred to. figure 1.
  • the structure of the GNSS intelligent power saving device 100 is shown in FIG. 4.
  • the GNSS intelligent power saving device 100 includes a satellite signal receiving module 401 and a satellite signal monitoring module 402, wherein:
  • a satellite signal receiving module 401 coupled to the ELNA module 102, configured to receive satellite signals from the ELNA module 102;
  • the satellite signal monitoring module 402 is connected between the GNSS chip processing module 103 and the satellite signal receiving module 401, and is configured to monitor whether the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102. When the satellite signal receiving module 401 does not detect the satellite signal from the ELNA module 102, the GNSS chip processing module 103 is notified to enter a sleep state.
  • the GNSS chip processing module 103 sends a satellite positioning start feeder signal to the satellite signal monitoring module 402 when the satellite positioning function is started, so that the GNSS
  • the smart power saver 100 begins to operate after the satellite positioning function is turned on, monitoring satellite signals from the ELNA module 102.
  • the GNSS chip processing module 103 sends notification information to the satellite signal monitoring module 402 of the GNSS smart power saving device 100 after receiving the start satellite positioning request; the GNSS smart power saving device 100
  • the satellite signal monitoring module 402 receives the notification information from the GNSS chip processing module, it monitors whether the satellite signal receiving module 401 receives the satellite signal from the ELNA module.
  • the GNSS positioning function will face both satellite signals and no satellite signals.
  • the above scheme only illustrates the processing situation when there is no satellite signal.
  • the satellite signal monitoring module 402 is further configured to notify the GNSS chip processing module 103 to start work when it detects that the satellite signal receiving module 401 receives a satellite signal from the ELNA module 102. .
  • the GNSS chip processing module 103 enters a sleep state when there is no satellite signal through the GNSS intelligent power saving device 100, thereby solving the problem that the GNSS chip processing module 103 maintains the search state when there is no satellite signal, and the mobile phone consumes a large amount of heat. High problem.
  • the user may move from an environment without satellite signals (such as a tunnel, etc.) to an environment with satellite signals, in which case the GNSS chip processing module 103 that automatically wakes up the sleep state is activated.
  • the work is a better optimization method.
  • the satellite signal monitoring module 402 is further configured to monitor that the satellite signal receiving module 401 receives the received signal from the GNSS chip processing module 103 after entering the sleep state.
  • the satellite signal of the ELNA module 102 wakes up the GNSS chip processing module 103.
  • the GNSS chip processing module 103 may be other devices, and is not limited to the GNSS smart power saving device 100 used in the solution of the embodiment.
  • the GNSS smart power saving device 100 notifies the GNSS chip processing module 103 to start working when the satellite signal is detected, and notifies the GNSS chip processing module 103 to enter a sleep state when no satellite signal is detected, thereby
  • the problem that the GNSS chip processing module 103 keeps scanning the satellite signal state when there is no satellite signal causes high power consumption and high heat generation; in addition, after the GNSS chip processing module 103 enters the sleep state, the GNSS smart power saving device 100
  • the GNSS chip processing module 103 in the dormant state is awakened when the satellite signal is detected, and the normal communication function of the mobile terminal is ensured in time to improve the user experience.
  • a second embodiment of the GNSS intelligent power saving device 100 of the present invention is proposed.
  • the internal structure of the GNSS intelligent power saving device 100 of the present embodiment is as shown in FIG. 5 .
  • the difference from the first embodiment of the GNSS smart power saving device 100 of the present invention is that the GNSS smart power saving device 100 further includes a timer module 403, wherein:
  • the timer module 403 is connected to the satellite signal monitoring module 402, and is configured to monitor, by the satellite signal monitoring module 402, whether the satellite signal receiving module 401 receives a satellite signal for timing within a preset time;
  • the satellite signal monitoring module 402 is further configured to: when the satellite signal receiving module 401 does not receive the satellite signal from the ELNA module 102, start the timer module 403 to perform timing;
  • the GNSS chip processing module 103 is notified to enter a sleep state.
  • the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102 during the preset time, the GNSS chip processing module 103 is notified to start the operation, and the timer module 403 is turned off.
  • FIG. 6 is a schematic diagram of a complete workflow of the embodiment:
  • the satellite positioning function is turned on, the GNSS chip processing module 103 feeds back the information to the satellite signal monitoring module 402, and the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102, the satellite signal monitoring module. 402 monitoring whether the satellite signal receiving module 401 receives a satellite signal from the ELNA module 102;
  • the satellite signal monitoring module 402 detects that the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102, the satellite signal monitoring module 402 notifies the GNSS chip processing module 103 to start work.
  • the satellite signal is sent to the GNSS chip processing module 103;
  • the satellite signal monitoring module 402 If the satellite signal monitoring module 402 does not detect that the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102, the satellite signal monitoring module 402 starts the timer module 403 to perform timing;
  • the satellite signal monitoring module 402 detects that the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102 within a preset time, the satellite signal monitoring module 402 notifies the GNSS chip processing module. 103 start work, send the satellite signal to the GNSS chip processing module 103, close the timer module 403;
  • the satellite signal monitoring module 402 detects that the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102, the satellite signal monitoring module 402 notifies the GNSS chip to process Module 103 enters a sleep state;
  • the GNSS chip processing module 103 After the GNSS chip processing module 103 enters the sleep state, if the satellite signal monitoring module 402 detects that the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102, the satellite signal monitoring module 402 The GNSS chip processing module 103 is woken up.
  • the satellite signal monitoring module 402 after the satellite positioning function is enabled, notifies the GNSS chip processing module when the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102. 103, starting work; not monitoring when the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102, and if the satellite signal monitoring module 402 detects the satellite signal receiving during the time period
  • the module 401 receives the satellite signal from the ELNA module 102, and notifies the GNSS chip processing module 103 to start the operation; if the deadline signal ends, the satellite signal monitoring module 402 does not detect that the satellite signal receiving module 401 receives the signal.
  • the satellite signal monitoring module 402 notifies the GNSS chip processing module 103 to enter a sleep state; after the GNSS chip processing module 103 enters a sleep state, the satellite signal monitoring module 402 monitors the satellite signal.
  • the receiving module 401 receives the satellite signal from the ELNA module 102, and wakes up the GNSS chip processing module 103 when the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102, the GNSS
  • the chip processing module 103 starts the work.
  • the problem that the GNSS chip processing module 103 keeps scanning the satellite signal and has high power consumption and high heat when there is no satellite signal is solved; in addition, after the GNSS chip processing module 103 enters the sleep state, the GNSS intelligence The power saving device 100 wakes up the GNSS chip processing module 103 in the sleep state when monitoring the satellite signal, and ensures the normal communication function of the mobile terminal in time to improve the user experience.
  • the first embodiment of the present invention further provides a smart power saving method for a GNSS positioning system, which is implemented based on the GNSS positioning system shown in FIG. 1 , and may also be based on the GNSS shown in FIG. 4 and FIG. 5 .
  • the smart power saving device 100 is implemented, and the method includes:
  • Step 701 The GNSS smart power saving device 100 monitors a satellite signal from the ELNA module 102.
  • the GNSS positioning system includes a GNSS intelligent power saving device 100, a satellite signal receiving antenna system 101, an ELNA module 102, and a GNSS chip processing module 103, wherein the ELNA module 102 and the satellite signal receiving antenna are provided.
  • the system 101 and the GNSS smart power saving device 100 are respectively connected, and the GNSS smart power saving device 100 is connected between the ELNA module 102 and the GNSS chip processing module 103, wherein:
  • the GNSS smart power saving device 100 monitors the satellite signal from the ELNA module 102, and if the satellite signal from the ELNA module 102 is detected, notifies the GNSS chip processing module 103 to start working, and Sending a satellite signal to the GNSS chip processing module 103;
  • the GNSS chip processing module 103 is notified to enter a sleep state.
  • the GNSS smart power saving device 100 monitors the satellite signal from the ELNA module 102 may be triggered by the GNSS chip processing module 103; as another implementation manner, the external GNSS chip processing module may also be triggered by other external devices. 103. Of course, the GNSS smart power saving device 100 can also trigger the monitoring action periodically or periodically.
  • the processing scheme may be as follows:
  • the GNSS chip processing module 103 feeds back this information to the GNSS smart power saving device 100 when the satellite positioning function is activated, and then the GNSS smart power saving device 100 starts monitoring satellite signals from the ELNA module 102;
  • the GNSS smart power saving device 100 monitors a satellite signal from the ELNA module 102, the GNSS smart power saving device 100 notifies the GNSS chip processing module 103 to start a work;
  • the next step is performed: notifying the GNSS chip processing module 103 to enter a sleep state.
  • Step S702 The GNSS smart power saving device 100 does not monitor the satellite signal from the ELNA module 102, and notifies the GNSS chip processing module 103 to enter a sleep state.
  • the GNSS chip processing module 103 enters a sleep state when there is no satellite signal through the GNSS intelligent power saving device 100, thereby solving the problem that the GNSS chip processing module 103 maintains the search state when there is no satellite signal, thereby causing large power consumption of the mobile phone.
  • the problem of high fever is a problem that the GNSS chip processing module 103 maintains the search state when there is no satellite signal. The problem of high fever.
  • a second embodiment of the intelligent power saving method of the GNSS positioning system of the present invention is proposed, which is the same as the first embodiment.
  • the GNSS positioning system further includes a timer module
  • the solution of the embodiment further includes monitoring the GNSS intelligent power saving device 100 by using a timer module.
  • step S702 includes:
  • Step S7021 when the satellite signal from the ELNA module 102 is not monitored, the GNSS smart power saving device 100 starts a timer module 403, and the timer module 403 monitors the satellite signal within a preset time.
  • the module 402 monitors whether the satellite signal receiving module 401 receives a satellite signal for timing;
  • Step S7022 when the preset time arrives, if the GNSS smart power saving device 100 does not monitor the satellite signal from the ELNA module 102, the GNSS smart power saving device 100 notifies the GNSS chip processing module 103 to enter. Dormancy state
  • Step S7023 in the preset time, if the GNSS smart power saving device 100 monitors the satellite signal from the ELNA module 102, the GNSS smart power saving device 100 notifies the GNSS chip processing module 103 to start. Working, the timer module 403 is turned off.
  • a third embodiment of the intelligent power saving method of the GNSS positioning system of the present invention is proposed, which is the first or the second
  • the GNSS smart power saving device 100 monitors the satellite signal from the ELNA module 102 after the GNSS chip processing module 103 enters a dormant state, when the satellite signal is detected.
  • the GNSS chip processing module 103 is woken up.
  • the method may further include:
  • Step S703 the GNSS smart power saving device wakes up the GNSS chip processing module if the satellite signal is detected after the GNSS chip processing module enters a sleep state.
  • the GNSS positioning system may move from an environment without satellite signals to an environment with satellite signals, such as a user may move from an environment without satellite signals (such as a tunnel, etc.) to a satellite signal.
  • the GNSS chip processing module 103 can enter a sleep state in an environment without satellite signals to save energy, and wake up from the sleep state when moving from an environment without satellite signals to an environment with satellite signals. , to provide users with location services.
  • the GNSS smart power saving device 100 notifies the GNSS chip processing module 103 to enter a sleep state when the satellite signal from the ELNA module 102 is not monitored, thereby solving the GNSS chip processing module 103 without satellite.
  • the signal is kept, the state of the satellite signal is always scanned, so that the terminal has a problem that the power consumption is large and the heat is high.
  • the GNSS smart power saving device 100 wakes up the GNSS chip processing module 103 when the satellite signal from the ELNA module 102 is monitored after the GNSS chip processing module 103 enters a sleep state, and ensures normal communication of the mobile terminal in time.
  • FIG. 10 is a complete flowchart of the solution of the embodiment.
  • the satellite positioning function is enabled, the satellite signal monitoring module 402 receives a notification signal from the GNSS chip processing module 103 to activate a satellite positioning function, and the satellite signal receiving module 401 receives a satellite signal from the ELNA module 102.
  • the satellite signal monitoring module 402 monitors whether the satellite signal receiving module 401 receives a satellite signal from the ELNA module 102;
  • the satellite signal monitoring module 402 detects that the satellite signal receiving module 401 receives the The satellite signal of the ELNA module 102, the satellite signal monitoring module 402 notifies the GNSS chip processing module 103 to start the work, the satellite signal is sent to the GNSS chip processing module 103 through the cable;
  • the satellite signal monitoring module 402 If the satellite signal monitoring module 402 does not detect that the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102, the satellite signal monitoring module 402 starts the timer module 403 to perform timing, and the timing is 1 minute. ;
  • the satellite signal monitoring module 402 detects that the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102, the satellite signal monitoring module 402 notifies the GNSS chip processing module 103. Starting the work, the satellite signal is sent to the GNSS chip processing module 103, the timer module 403 is closed;
  • the satellite signal monitoring module 402 detects that the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102, the satellite signal monitoring module 402 notifies the GNSS chip processing module. 103 enters a sleep state;
  • the GNSS chip processing module 103 After the GNSS chip processing module 103 enters the sleep state, if the satellite signal monitoring module 402 detects that the satellite signal receiving module 401 receives the satellite signal from the ELNA module 102, the satellite signal monitoring module 402 The GNSS chip processing module 103 is woken up.
  • the GNSS smart power saving device 100 notifies the GNSS chip processing module 103 to start the work when the satellite signal is detected; when the satellite signal is not detected, the timing is performed, and within the time period If the GNSS smart power saving device 100 detects the satellite signal, notifying the GNSS chip processing module 103 to start the work; if the GNSS smart power saving device 100 does not detect the satellite signal at the end of the cutoff time, the GNSS The smart power saving device 100 notifies the GNSS chip processing module 103 to enter a sleep state; thereby causing the GNSS chip processing module 103 to maintain the state of scanning the satellite signal when there is no satellite signal, thereby causing a problem that the terminal power consumption is high and the heat is large; After the GNSS chip processing module 103 enters the dormant state, the GNSS smart power saving device 100 wakes up the GNSS chip processing module 103 in the dormant state when monitoring the satellite signal, and ensures the
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, an air conditioner, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention can be applied to the field of communications technologies.
  • the GNSS chip processing module works when there is a satellite signal through the GNSS intelligent power saving device, and enters a sleep state when there is no satellite signal, thereby solving the GNSS positioning system and maintaining the search state when there is no satellite signal. As a result, the power consumption of the mobile terminal is high and the heat is high.

Abstract

一种GNSS智能节电装置(100)、定位系统及方法,GNSS智能节电装置(100)应用于移动终端的GNSS定位系统,GNSS定位系统包含ELNA模块(102)和GNSS芯片处理模块(103),GNSS智能节电装置(100)连接在ELNA模块(102)和GNSS芯片处理模块(103)之间,GNSS智能节电装置(100)设置为监测来自ELNA模块(102)的卫星信号,在未监测到卫星信号时,通知GNSS芯片处理模块(103)进入休眠状态。通过GNSS智能节电装置(100)使GNSS芯片处理模块(103)在有卫星信号时工作,没有卫星信号时进入休眠状态,解决了GNSS定位系统在没有卫星信号时保持搜索状态从而造成移动终端功耗大、发热高的问题。

Description

GNSS智能节电装置、定位系统和方法 技术领域
本公开涉及通讯技术领域,尤其涉及一种GNSS智能节电装置、GNSS定位系统和GNSS定位系统智能节电方法。
背景技术
目前,智能手机上的GNSS(Global Navigation Satellite System,全球导航卫星系统)定位功能成了智能手机的标准配置。现有智能手机中的GNSS定位系统有一个特点:当智能手机的上层应用以“高精度”或者“仅限设备”模式启动GNSS定位系统后,智能手机上的GNSS芯片处理模块在不确定当前环境中是否存在有卫星信号时会不停的扫描并试图捕获卫星信号。
这就带来了一个弊端:当智能手机处在一个没有卫星信号的环境(比如隧道、商场或者地铁等没有卫星信号的环境)下时,智能手机的上层应用无法判知当前是否有卫星信号而启动卫星定位,此时智能手机上的GNSS芯片处理模块会一直保持搜索卫星信号的状态,这不但对位置定位毫无帮助,反而会影响智能手机的整体功耗,而智能手机的功耗大一方面使得手机待机时间变得很短,一方面还使手机发热比较严重。
发明内容
本发明实施例提出一种GNSS智能节电装置、GNSS定位系统和GNSS定位系统智能节电方法,旨在解决GNSS芯片处理模块在没有卫星信号时一直保持搜索卫星信号状态导致终端功耗大发热高的问题。
本发明实施例提出一种GNSS智能节电装置,所述GNSS智能节电装置应用于移动终端的GNSS定位系统,所述GNSS定位系统包含ELNA模块和GNSS芯片处理模块,所述GNSS智能节电装置连接在所述ELNA模块和所述GNSS芯片处理模块之间,所述GNSS智能节电装置设置为:监测来自所述ELNA模块的卫星信号,在未监测到卫星信号时,通知所述GNSS芯片处理模块进入休眠状态。
根据一示例性实施例,所述GNSS智能节电装置包括:
卫星信号接收模块,与所述ELNA模块相连接,设置为接收来自所述ELNA模 块的卫星信号;
卫星信号监测模块,连接于所述卫星信号接收模块和所述GNSS芯片处理模块之间,设置为监测所述卫星信号接收模块是否接收到来自所述ELNA模块的卫星信号,在监测到所述卫星信号接收模块未接收到来自所述ELNA模块的卫星信号时,通知所述GNSS芯片处理模块进入休眠状态。
根据一示例性实施例,所述卫星信号监测模块,还设置为在监测到所述卫星信号接收模块接收到来自所述ELNA模块的卫星信号时,将卫星信号发送给所述GNSS芯片处理模块,通知所述GNSS芯片处理模块启动工作。
根据一示例性实施例,所述卫星信号监测模块,还设置为在GNSS芯片处理模块接收到启动卫星定位请求后,接收来自于所述GNSS芯片处理模块的通知信息。
根据一示例性实施例,所述GNSS智能节电装置还包含定时器模块,所述定时器模块与所述卫星信号监测模块相连接,其中:
所述定时器模块,设置为在预设时间内,对所述卫星信号监测模块监测所述卫星信号接收模块是否接收到卫星信号进行计时;
所述卫星信号监测模块,还设置为在监测到所述卫星信号接收模块未接收到卫星信号时,启动所述定时器模块进行计时;
在所述预设时间到达后,未监测到所述卫星信号接收模块接收到来自所述ELNA模块的卫星信号时,通知所述GNSS芯片处理模块进入休眠状态;
在所述预设时间内,监测到所述卫星信号接收模块接收到来自所述ELNA模块的卫星信号时,通知所述GNSS芯片处理模块启动工作,关闭所述定时器模块。
根据一示例性实施例,所述卫星信号监测模块,还设置为在所述GNSS芯片处理模块进入休眠状态后监测卫星信号,若监测到卫星信号,则唤醒所述GNSS芯片处理模块。
本发明实施例还提出一种GNSS定位系统,包括:GNSS智能节电装置、ELNA模块和GNSS芯片处理模块,所述ELNA模块与卫星信号接收天线系统连接,所述GNSS智能节电装置连接在所述ELNA模块和GNSS芯片处理模块之间,其中:
所述ELNA模块,设置为接收卫星信号接收天线系统发送过来的卫星信号并进行放大处理;
所述GNSS智能节电装置为如上所述的GNSS智能节电装置;
所述GNSS芯片处理模块,设置为在卫星定位功能开启时通知所述GNSS智能节电装置,还设置为在所述GNSS智能节电装置未监测到卫星信号时,根据所述GNSS智能节电装置的通知进入休眠状态。
本发明实施例还提出一种GNSS定位系统智能节电方法,所述GNSS定位系统包括:GNSS芯片处理模块、ELNA模块以及连接于所述GNSS芯片处理模块、ELNA模块之间的GNSS智能节电装置,所述方法包括:
所述GNSS智能节电装置监测来自所述ELNA模块的卫星信号;
所述GNSS智能节电装置在未监测到来自所述ELNA模块的卫星信号时,通知所述GNSS芯片处理模块进入休眠状态。
根据一示例性实施例,所述GNSS智能节电装置监测来自所述ELNA模块的卫星信号步骤之后还包括:
所述GNSS智能节电装置在监测到来自所述ELNA模块的卫星信号时,通知所述GNSS芯片处理模块启动工作。
根据一示例性实施例,所述GNSS智能节电装置监测来自所述ELNA模块的卫星信号的步骤之前还包括:
所述GNSS芯片处理模块在接收到启动卫星定位请求后,向所述GNSS智能节电装置发送通知信息;
所述GNSS智能节电装置接收来自于所述GNSS芯片处理模块的通知信息。
根据一示例性实施例,所述GNSS定位系统还包括:定时器模块;
所述GNSS智能节电装置在未监测来自所述ELNA模块的卫星信号时,通知所述GNSS芯片处理模块进入休眠状态的步骤包括:
所述GNSS智能节电装置在未监测到来自所述ELNA模块的卫星信号时,启动所述定时器模块进行计时;
在预设时间到达时,所述GNSS智能节电装置未监测到来自所述ELNA模块的卫星信号,所述GNSS智能节电装置通知所述GNSS芯片处理模块进入休眠状态;
在所述预设时间内,所述GNSS智能节电装置监测到来自所述ELNA模块的卫星信号,所述GNSS智能节电装置通知所述GNSS芯片处理模块启动工作,关闭所述 定时器模块。
根据一示例性实施例,所述方法还包括:
所述GNSS智能节电装置在所述GNSS芯片处理模块进入休眠状态后,若监测到卫星信号,则唤醒所述GNSS芯片处理模块。
本发明实施例提出了一种GNSS智能节电装置、GNSS定位系统及GNSS定位系统智能节电方法,通过GNSS智能节电装置使GNSS芯片处理模块在有卫星信号时工作,没有卫星信号时进入休眠状态,解决了GNSS定位系统在没有卫星信号时保持搜索状态从而造成移动终端功耗大发热高的问题。
附图说明
图1是本发明GNSS定位系统第一实施例的结构框架示意图;
图2是本发明GNSS定位系统第二实施例的工作流程示意图;
图3是本发明GNSS定位系统第三实施例的工作流程示意图;
图4是本发明GNSS智能节电装置第一实施例的结构框架示意图;
图5是本发明GNSS智能节电装置第二实施例的结构框架示意图;
图6是本发明GNSS智能节电装置第二实施例的细化流程示意图;
图7是本发明GNSS定位系统智能节电方法第一实施例流程图;
图8是本发明GNSS定位系统智能节电方法第二实施例流程图;
图9是本发明GNSS定位系统智能节电方法第三实施例流程图;
图10为本发明GNSS定位系统智能节电方法第三实施例的细化流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的实施例仅为了说明本发明,并不用于限定本发明。
参照图1,图1为本发明GNSS定位系统第一实施例的结构框架示意图,如图1所示,本发明实施例提出一种GNSS定位系统,应用于手机等移动通信终端,所述GNSS定位系统包括:卫星信号接收天线系统101、ELNA模块102、GNSS智能节电 装置100以及GNSS芯片处理模块103,其中:
卫星信号接收天线系统101,设置为接收周围环境中的卫星信号;
ELNA模块102,与所述卫星信号接收天线系统101相连接,设置为接收来自于所述卫星信号接收天线系统101中的卫星信号,对卫星信号进行放大处理后发送给所述GNSS智能节电装置100;
GNSS智能节电装置100,连接于所述ELNA模块102和所述GNSS芯片处理模块103之间,设置为监测来自于所述ELNA模块102的卫星信号,在未监测到卫星信号时通知所述GNSS芯片处理模块103进入休眠状态;
GNSS芯片处理模块103,设置为处理卫星信号。
本实施例方案中,通过GNSS智能节电装置100使GNSS芯片处理模块103在没有卫星信号时进入休眠状态,从而解决了GNSS芯片处理模块103在没有卫星信号时保持搜索状态而造成手机功耗大发热高的问题。
在实际应用中,GNSS定位系统会面临有卫星信号和没有卫星信号两种情况,本实施例方案主要用于处理没有卫星信号时的情况,对于周围环境有卫星信号的情况,GNSS定位系统可以按照正常的流程进行相应处理。
因此,本发明实施例中,GNSS智能节电装置100还设置为在监测到卫星信号时,通知所述GNSS芯片处理模块103启动工作。需要说明的是,在其他实施例中,在所述GNSS智能节电装置100监测到卫星信号时,也可以根据实际情况由其他装置来通知所述GNSS芯片处理模块103启动工作,本实施例对此不作具体限定。
此外,由于在实际使用过程中GNSS定位功能不是一直处于开启状态,因此,可选地,在卫星定位功能开启时,可以利用所述GNSS芯片处理模块103来通知所述GNSS智能节电装置100卫星定位功能已开启。
因此,在进一步实施方案中,GNSS芯片处理模块103还设置为在卫星定位功能启动时将卫星定位启动馈线信号发送给所述GNSS智能节电装置100,以便GNSS智能节电装置100在卫星定位功能开启后开始工作,监测来自于所述ELNA模块102的卫星信号。
根据一示例性实施例,所述GNSS芯片处理模块103在接收到启动卫星定位请求后,向所述GNSS智能节电装置100发送通知信息;所述GNSS智能节电装置100接收到来自于所述GNSS芯片处理模块的通知信息时,监测来自所述ELNA模块的 卫星信号。
本实施例方案,通过GNSS智能节电装置100使GNSS芯片处理模块103在没有卫星信号时进入休眠状态,从而解决了GNSS芯片处理模块103在没有卫星信号时保持搜索状态而造成手机功耗大发热高的问题。
进一步地,基于本发明GNSS定位系统第一实施例提出本发明GNSS定位系统第二实施例,该实施例与本发明GNSS定位系统第一实施例的区别在于:
在本实施例中,所述GNSS智能节电装置100还设置为对所述GNSS智能节电装置100是否接收到卫星信号进行计时;
所述GNSS智能节电装置100还设置为,在预设时间到达且所述GNSS智能节电装置100未监测到来自所述ELNA模块102的卫星信号时,通知所述GNSS芯片处理模块103进入休眠状态;
以及,GNSS智能节电装置100还设置为,在预设时间内所述GNSS智能节电装置100监测到来自所述ELNA模块102的卫星信号时,通知所述GNSS芯片处理模块103启动工作,停止计时。
以计时1分钟为例,对本实施例方案进行说明,本实施例方案工作流程如图2所示:
首先,卫星定位功能启动,所述GNSS芯片处理模块103将此信息反馈给所述GNSS智能节电装置100;
所述GNSS智能节电装置100接收到来自所述GNSS芯片处理模块103的卫星定位功能开启馈线信号后,开始监测来自所述ELNA模块102的卫星信号;
在所述GNSS智能节电装置100监测到来自所述ELNA模块102的卫星信号时,通知所述GNSS芯片处理模块103启动工作并将卫星信号发送给所述GNSS芯片处理模块103;
所述GNSS智能节电装置100在未监测到来自所述ELNA模块102的卫星信号时,所述GNSS智能节电装置100开始计时,计时时长1分钟;
在接下来的1分钟内,若所述GNSS智能节电装置100监测到来自于所述ELNA模块102的卫星信号,则所述GNSS智能节电装置100将卫星信号发送给所述GNSS芯片处理模块103,并通知所述GNSS芯片处理模块103启动工作,同时结束计时。
在1分钟计时结束时,所述GNSS智能节电装置100未监测到来自于所述ELNA模块102的卫星信号,则所述GNSS智能节电装置100通知所述GNSS芯片处理模块103进入休眠状态。
通过上述实施例方案,GNSS智能节电装置100在监测到卫星信号时通知所述GNSS芯片处理模块103启动工作,没有监测到卫星信号时进行计时,在计时时间段内,所述GNSS智能节电装置100监测卫星信号,如果所述GNSS智能节电装置100监测到卫星信号,则通知所述GNSS芯片处理模块103启动工作并停止计时,若计时结束时所述GNSS智能节电装置100仍未未检测到卫星信号,则所述GNSS智能节电装置100通知所述GNSS芯片处理模块103进入休眠状态,从而解决了GNSS芯片处理模块103在没有卫星信号时保持扫描卫星信号造成移动终端功耗大发热高的问题。
进一步地,基于本发明GNSS定位系统第一或第二实施例,提出本发明GNSS定位系统第三实施例,与本发明GNSS定位系统第一或第二实施例的区别在于:
本实施例中,所述GNSS智能节电装置100,还设置为在所述GNSS芯片处理模块103进入休眠状态后监测来自于所述ELNA模块102的卫星信号,在监测到卫星信号时唤醒所述GNSS芯片处理模块103。
在实际使用过程中,用户可能从没有卫星信号的环境(如隧道等)移动到有卫星信号的环境,在这种情况下,唤醒所述休眠状态的GNSS芯片处理模块103使其启动工作是比较有必要的,本实施例方案中,GNSS智能节电装置100在所述GNSS芯片处理模块103进入休眠状态后监测到来自于所述ELNA模块102的卫星信号时,唤醒所述GNSS芯片处理模块103,很好的解决了这一问题。
需要说明的是,唤醒所述GNSS芯片处理模块103的主体也可以是GNSS定位系统内的其他装置,并不局限于本实施例方案中的GNSS智能节电装置100。
如图3,本实施例方案的一个完整工作流程所下:
首先,卫星定位功能启动,所述GNSS芯片处理模块103将此卫星定位启动馈线信号发送给所述GNSS智能节电装置100;
所述GNSS智能节电装置100接收到来自所述GNSS芯片处理模块103的卫星定位功能开启馈线信号,开始监测来自所述ELNA模块102的卫星信号;
若所述GNSS智能节电装置100监测到来自所述ELNA模块102的卫星信号,则通知所述GNSS芯片处理模块103启动工作并将卫星信号发送给所述GNSS芯片处理模块103;
若所述GNSS智能节电装置100未监测到来自所述ELNA模块102的卫星信号,所述GNSS智能节电装置100开始计时,计时时长1分钟;
在接下来的1分钟内,若所述GNSS智能节电装置100监测到来自于所述ELNA模块102的卫星信号,则所述GNSS智能节电装置100将卫星信号发送给所述GNSS芯片处理模块103并通知所述GNSS芯片处理模块103启动工作,同时结束计时;
在1分钟结束时,若所述GNSS智能节电装置100未监测到来自于所述ELNA模块102的卫星信号,则所述GNSS智能节电装置100通知所述GNSS芯片处理模块103进入休眠状态;
在所述GNSS芯片处理模块103进入休眠状态后,若所述GNSS智能节电装置100监测到来自于所述ELNA模块102的卫星信号,则所述GNSS智能节电装置100唤醒所述GNSS芯片处理模块103。
通过上述实施例方案,GNSS智能节电装置100在监测到卫星信号时通知所述GNSS芯片处理模块103启动工作,没有监测到卫星信号时进行计时,在计时时间段内,所述GNSS智能节电装置100监测卫星信号,如果所述GNSS智能节电装置100监测到卫星信号,则通知所述GNSS芯片处理模块103启动工作并停止计时,若计时结束时所述GNSS智能节电装置100未检测到卫星信号,则所述GNSS智能节电装置100通知所述GNSS芯片处理模块103进入休眠状态,从而解决了GNSS芯片处理模块103在没有卫星信号时保持扫描卫星信号造成移动终端功耗大发热高的问题。此外,在所述GNSS芯片处理模块103进入休眠状态后,若所述GNSS智能节电装置100监测到来自于所述ELNA模块102的卫星信号,则所述GNSS智能节电装置100唤醒所述GNSS芯片处理模块103,及时保证移动终端正常的通信功能,提高用户体验。
此外,本发明实施例还提出一种GNSS智能节电装置100,所述GNSS智能节电装置100应用于移动终端的GNSS定位系统,所述GNSS定位系统的框架结构可参照 图1。所述GNSS智能节电装置100的结构参照图4所示,所述GNSS智能节电装置100包括:卫星信号接收模块401、卫星信号监测模块402,其中:
卫星信号接收模块401,与所述ELNA模块102相连接,设置为接收来自于所述ELNA模块102的卫星信号;
卫星信号监测模块402,连接于所述GNSS芯片处理模块103和所述卫星信号接收模块401之间,设置为监测所述卫星信号接收模块401是否接收到来自于所述ELNA模块102的卫星信号,在未监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号时,通知所述GNSS芯片处理模块103进入休眠状态。
在实际使用过程中,GNSS定位功能不是一直处于开启状态,本实施例方案中GNSS芯片处理模块103在卫星定位功能启动时,将卫星定位启动馈线信号发送给所述卫星信号监测模块402,以便GNSS智能节电装置100在卫星定位功能开启后开始工作,监测来自于所述ELNA模块102的卫星信号。
根据一示例性实施例,所述GNSS芯片处理模块103在接收到启动卫星定位请求后,向所述GNSS智能节电装置100的卫星信号监测模块402发送通知信息;所述GNSS智能节电装置100的卫星信号监测模块402接收到来自于所述GNSS芯片处理模块的通知信息时,监测卫星信号接收模块401是否接收到来自所述ELNA模块的卫星信号。
此外,在实际应用中,GNSS定位功能会面临有卫星信号和没有卫星信号两种情况,上述方案只说明了没有卫星信号时的处理情况,对于周围有卫星信号的情况,GNSS定位系统可以按照正常的流程进行相应处理。根据一示例性实施例,所述卫星信号监测模块402还设置为在监测到所述卫星信号接收模块401接收到来自于所述ELNA模块102的卫星信号时通知所述GNSS芯片处理模块103启动工作。
在实际使用过程中,也可以采用其他装置在所述卫星信号监测模块402监测到所述卫星信号接收模块401接收到来自于所述ELNA模块102的卫星信号时,通知所述GNSS芯片处理模块103启动工作,并不局限于本方案中的卫星信号监测模块402。
本实施例方案,通过GNSS智能节电装置100使GNSS芯片处理模块103在没有卫星信号时进入休眠状态,从而解决了GNSS芯片处理模块103在没有卫星信号时保持搜索状态而造成手机功耗大发热高的问题。
此外,在实际使用过程中,用户可能从没有卫星信号的环境(如隧道等)移动到有卫星信号的环境,在这种情况下,自动唤醒所述休眠状态的GNSS芯片处理模块103使其启动工作是一个比较好的优化方法,本实施例方案中,卫星信号监测模块402还设置为在所述GNSS芯片处理模块103进入休眠状态后监测到所述卫星信号接收模块401接收到来自于所述ELNA模块102的卫星信号时,唤醒所述GNSS芯片处理模块103。需要说明的是,唤醒所述GNSS芯片处理模块103也可以是其他装置,并不局限于本实施例方案中所使用的的GNSS智能节电装置100。
本实施例方案中,GNSS智能节电装置100在监测到卫星信号时通知所述GNSS芯片处理模块103启动工作,在没有监测到卫星信号时通知所述GNSS芯片处理模块103进入休眠状态,从而使得GNSS芯片处理模块103在没有卫星信号时保持扫描卫星信号状态造成功耗高发热大的问题得到了解决;此外,在所述GNSS芯片处理模块103进入休眠状态后,所述GNSS智能节电装置100在监测到卫星信号时唤醒处于休眠状态的GNSS芯片处理模块103,以及时保证移动终端正常的通信功能,提高用户体验。
进一步地,基于本发明GNSS智能节电装置100第一实施例,提出本发明GNSS智能节电装置100的第二实施例,本实施例方案GNSS智能节电装置100的内部结构框架如图5所示,与本发明GNSS智能节电装置100第一实施例的区别在于,所述GNSS智能节电装置100还包含定时器模块403,其中:
所述定时器模块403与所述卫星信号监测模块402相连接,设置为在预设时间内,对所述卫星信号监测模块402监测所述卫星信号接收模块401是否接收到卫星信号进行计时;
所述卫星信号监测模块402,还设置为在监测到所述卫星信号接收模块401未接收到来自于所述ELNA模块102的卫星信号时,启动所述定时器模块403进行计时;
在预设时间到达时,若未监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,则通知所述GNSS芯片处理模块103进入休眠状态。
在预设时间内,若监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,则通知所述GNSS芯片处理模块103启动工作,关闭所述定时器模块403。
参照图6,图6为本实施例的完整工作流程示意图:
首先,卫星定位功能开启,所述GNSS芯片处理模块103将此信息反馈所述卫星信号监测模块402,所述卫星信号接收模块401接收来自所述ELNA模块102的卫星信号,所述卫星信号监测模块402监测所述卫星信号接收模块401是否接收到来自所述ELNA模块102的卫星信号;
若所述卫星信号监测模块402监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,则所述卫星信号监测模块402通知所述GNSS芯片处理模块103启动工作,将所述卫星信号发送给所述GNSS芯片处理模块103;
若所述卫星信号监测模块402未监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,则所述卫星信号监测模块402启动定时器模块403进行计时;
在预设时间内,若所述卫星信号监测模块402监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,则所述卫星信号监测模块402通知所述GNSS芯片处理模块103启动工作,将所述卫星信号发送给所述GNSS芯片处理模块103,关闭所述定时器模块403;
在预设时间到达时,若所述卫星信号监测模块402监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,则所述卫星信号监测模块402通知所述GNSS芯片处理模块103进入休眠状态;
在所述GNSS芯片处理模块103进入休眠状态后,若所述卫星信号监测模块402监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,则所述卫星信号监测模块402唤醒所述GNSS芯片处理模块103。
本实施例方案中,卫星定位功能开启后,所述卫星信号监测模块402,在监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号时,通知所述GNSS芯片处理模块103启动工作;未监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号时进行计时,在计时时间段内,如果所述卫星信号监测模块402监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,则通知所述GNSS芯片处理模块103启动工作;若截止计时结束时所述卫星信号监测模块402未检测到所述卫星信号接收模块401接收到来自所述ELNA 模块102的卫星信号,则所述卫星信号监测模块402通知所述GNSS芯片处理模块103进入休眠状态;所述GNSS芯片处理模块103进入休眠状态后,所述卫星信号监测模块402监测所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,在监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号时,唤醒所述GNSS芯片处理模块103,所述GNSS芯片处理模块103启动工作。通过本方案,使得GNSS芯片处理模块103在没有卫星信号时保持扫描卫星信号造成功耗大发热高的问题得到了解决;此外,在所述GNSS芯片处理模块103进入休眠状态后,所述GNSS智能节电装置100在监测到卫星信号时唤醒处于休眠状态的GNSS芯片处理模块103,以及时保证移动终端正常的通信功能,提高用户体验。
对应地,提出本发明GNSS定位系统智能节电方法实施例。
如图7所示,本发明第一实施例还提出一种GNSS定位系统智能节电方法,该方法基于图1所示的GNSS定位系统来实施,也可以基于图4、图5所示的GNSS智能节电装置100来实施,所述方法包括:
步骤701:所述GNSS智能节电装置100监测来自所述ELNA模块102的卫星信号;
参照图1所示,所述GNSS定位系统包含GNSS智能节电装置100、卫星信号接收天线系统101、ELNA模块102和GNSS芯片处理模块103,其中,所述ELNA模块102与所述卫星信号接收天线系统101和所述GNSS智能节电装置100分别相连接,所述GNSS智能节电装置100连接在所述ELNA模块102和所述GNSS芯片处理模块103之间,其中:
在本实施例中,GNSS智能节电装置100监测来自所述ELNA模块102的卫星信号,若监测到来自所述ELNA模块102的卫星信号时,则通知所述GNSS芯片处理模块103启动工作,并将卫星信号发送给所述GNSS芯片处理模块103;
若未监测到,则通知所述GNSS芯片处理模块103进入休眠状态。
其中,GNSS智能节电装置100监测来自所述ELNA模块102的卫星信号可以是由所述GNSS芯片处理模块103触发;作为另一种实施方式,也可以由其他外部设备来触发通知GNSS芯片处理模块103,当然还可以是GNSS智能节电装置100定时或定期触发监测动作。
其中,若由所述GNSS芯片处理模块103触发GNSS智能节电装置100监测来自所述ELNA模块102的卫星信号,则其处理方案可以如下:
首先,GNSS芯片处理模块103在卫星定位功能启动时,将此信息反馈给GNSS智能节电装置100,然后,所述GNSS智能节电装置100开始监测来自于所述ELNA模块102的卫星信号;
若所述GNSS智能节电装置100监测到来自所述ELNA模块102的卫星信号,则所述GNSS智能节电装置100通知所述GNSS芯片处理模块103启动工作;
若所述GNSS智能节电装置100未监测到来自所述ELNA模块102的卫星信号,则执行下一步:通知所述GNSS芯片处理模块103进入休眠状态。
步骤S702:所述GNSS智能节电装置100未监测到来自所述ELNA模块102的卫星信号,通知所述GNSS芯片处理模块103进入休眠状态。
本实施例方案中,通过GNSS智能节电装置100使GNSS芯片处理模块103在没有卫星信号时进入休眠状态,从而解决了GNSS芯片处理模块103在没有卫星信号时保持搜索状态而造成手机功耗大发热高的问题。
进一步地,如图8所示,基于本发明GNSS定位系统智能节电方法的第一实施例,提出本发明GNSS定位系统智能节电方法的第二实施例,该实施例与第一实施例的区别在于,本实施例中,GNSS定位系统还包括定时器模块,本实施例方案还包括通过定时器模块来实现GNSS智能节电装置100的监测。
其中,在本实施例中,所述步骤S702包括:
步骤S7021,所述GNSS智能节电装置100在未监测到来自所述ELNA模块102的卫星信号时,启动定时器模块403,由所述定时器模块403在预设时间内对所述卫星信号监测模块402监测所述卫星信号接收模块401是否接收到卫星信号进行计时;
步骤S7022,在预设时间到达时,若所述GNSS智能节电装置100未监测到来自所述ELNA模块102的卫星信号,所述GNSS智能节电装置100则通知所述GNSS芯片处理模块103进入休眠状态;
步骤S7023,在所述预设时间内,若所述GNSS智能节电装置100监测到来自所述ELNA模块102的卫星信号,所述GNSS智能节电装置100则通知所述GNSS芯片处理模块103启动工作,关闭所述定时器模块403。
如图9所示,基于本发明GNSS定位系统智能节电方法的第一或第二实施例,提出本发明GNSS定位系统智能节电方法的第三实施例,该实施例与第一或第二实施例的区别在于,本实施例中,所述GNSS智能节电装置100,在所述GNSS芯片处理模块103进入休眠状态后监测来自于所述ELNA模块102的卫星信号,在监测到卫星信号时唤醒所述GNSS芯片处理模块103。
根据一示例性实施例,该方法还可以包括:
步骤S703,所述GNSS智能节电装置在所述GNSS芯片处理模块进入休眠状态后,若监测到卫星信号,则唤醒所述GNSS芯片处理模块。
本实施例考虑到,在实际使用过程中,GNSS定位系统可能从没有卫星信号的环境移动到有卫星信号的环境,比如用户可能从没有卫星信号的环境(如隧道等)移动到有卫星信号的环境,这种情况下,GNSS芯片处理模块103可以在没有卫星信号的环境中进入休眠状态,以节省能耗,在从没有卫星信号的环境移动到有卫星信号的环境时从休眠状态中被唤醒,为用户提供定位服务。
本实施例中,GNSS智能节电装置100在未监测到来自所述ELNA模块102的卫星信号时,通知所述GNSS芯片处理模块103进入休眠状态,由此解决了GNSS芯片处理模块103在没有卫星信号时一直保持扫描卫星信号状态从而造终端成功耗大发热高的问题。此外,GNSS智能节电装置100在所述GNSS芯片处理模块103进入休眠状态后监测到来自于所述ELNA模块102的卫星信号时,唤醒所述GNSS芯片处理模块103,及时保证移动终端正常的通信功能,提高用户体验。
在实际应用中,以预设时间为1分钟为例阐述本实施例的方案,参照图10,图10为本实施例方案的完整流程图。
卫星定位功能开启,所述所述卫星信号监测模块402接收来自所述GNSS芯片处理模块103的启动卫星定位功能的通知信号,所述卫星信号接收模块401接收来自所述ELNA模块102的卫星信号,所述卫星信号监测模块402监测所述卫星信号接收模块401是否接收到来自所述ELNA模块102的卫星信号;
若所述卫星信号监测模块402监测到所述卫星信号接收模块401接收到来自所述 ELNA模块102的卫星信号,则所述卫星信号监测模块402通知所述GNSS芯片处理模块103启动工作,将所述卫星信号通过线缆发送给所述GNSS芯片处理模块103;
若所述卫星信号监测模块402未监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,则所述卫星信号监测模块402启动定时器模块403进行计时,计时时长1分钟;
在1分钟内,若所述卫星信号监测模块402监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,则所述卫星信号监测模块402通知所述GNSS芯片处理模块103启动工作,将所述卫星信号发送给所述GNSS芯片处理模块103,关闭所述定时器模块403;
在1分钟结束时,若所述卫星信号监测模块402监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,则所述卫星信号监测模块402通知所述GNSS芯片处理模块103进入休眠状态;
在所述GNSS芯片处理模块103进入休眠状态后,若所述卫星信号监测模块402监测到所述卫星信号接收模块401接收到来自所述ELNA模块102的卫星信号,则所述卫星信号监测模块402唤醒所述GNSS芯片处理模块103。
通过上述方案,在卫星定位功能开启后,所述GNSS智能节电装置100在监测到卫星信号时通知所述GNSS芯片处理模块103启动工作;没有监测到卫星信号时进行计时,在计时时间段内,如果所述GNSS智能节电装置100监测到卫星信号,则通知所述GNSS芯片处理模块103启动工作;若截止计时结束时所述GNSS智能节电装置100未检测到卫星信号,则所述GNSS智能节电装置100通知所述GNSS芯片处理模块103进入休眠状态;从而使得GNSS芯片处理模块103在没有卫星信号时保持扫描卫星信号状态造成终端功耗高发热大的问题得到了解决;此外,在所述GNSS芯片处理模块103进入休眠状态后,所述GNSS智能节电装置100在监测到卫星信号时唤醒处于休眠状态的GNSS芯片处理模块103,以及时保证移动终端正常的通信功能,提高用户体验。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、 物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
本发明实施例提供的技术方案可以应用于通讯技术领域。在本发明实施例提供的技术方案中,通过GNSS智能节电装置使GNSS芯片处理模块在有卫星信号时工作,没有卫星信号时进入休眠状态,解决了GNSS定位系统在没有卫星信号时保持搜索状态从而造成移动终端功耗大发热高的问题。

Claims (12)

  1. 一种全球导航卫星系统GNSS定位系统智能节电装置,其中,所述GNSS智能节电装置应用于移动终端的GNSS定位系统,所述GNSS定位系统包含ELNA模块和GNSS芯片处理模块,所述GNSS智能节电装置连接在所述ELNA模块和所述GNSS芯片处理模块之间,所述GNSS智能节电装置设置为:监测来自所述ELNA模块的卫星信号,在未监测到卫星信号时,通知所述GNSS芯片处理模块进入休眠状态。
  2. 根据权利要求1所述的GNSS智能节电装置,其中,所述GNSS智能节电装置包括:
    卫星信号接收模块,与所述ELNA模块相连接,设置为接收来自所述ELNA模块的卫星信号;
    卫星信号监测模块,连接于所述卫星信号接收模块和所述GNSS芯片处理模块之间,设置为监测所述卫星信号接收模块是否接收到来自所述ELNA模块的卫星信号,在监测到所述卫星信号接收模块未接收到来自所述ELNA模块的卫星信号时,通知所述GNSS芯片处理模块进入休眠状态。
  3. 根据权利要求2所述的GNSS智能节电装置,其中,
    所述卫星信号监测模块,还设置为在监测到所述卫星信号接收模块接收到来自所述ELNA模块的卫星信号时,将卫星信号发送给所述GNSS芯片处理模块,通知所述GNSS芯片处理模块启动工作。
  4. 根据权利要求2所述的GNSS智能节电装置,其中,
    所述卫星信号监测模块,还设置为在GNSS芯片处理模块接收到启动卫星定位请求后,接收来自于所述GNSS芯片处理模块的通知信息。
  5. 根据权利要求2所述的GNSS智能节电装置,其中,所述GNSS智能节电装置还包含:定时器模块,所述定时器模块与所述卫星信号监测模块相连接,其中:
    所述定时器模块,设置为在预设时间内,对所述卫星信号监测模块监测所述卫星信号接收模块是否接收到卫星信号进行计时;
    所述卫星信号监测模块,还设置为在监测到所述卫星信号接收模块未接收到卫星信号时,启动所述定时器模块进行计时;
    在所述预设时间到达后,未监测到所述卫星信号接收模块接收到来自所述ELNA模块的卫星信号时,通知所述GNSS芯片处理模块进入休眠状态;
    在所述预设时间内,监测到所述卫星信号接收模块接收到来自所述ELNA模块的卫星信号时,通知所述GNSS芯片处理模块启动工作,关闭所述定时器模块。
  6. 根据权利要求2-5中任一项所述的GNSS智能节电装置,其中,
    所述卫星信号监测模块,还设置为在所述GNSS芯片处理模块进入休眠状态后监测卫星信号,若监测到卫星信号,则唤醒所述GNSS芯片处理模块。
  7. 一种GNSS定位系统,其中,包括:GNSS智能节电装置、ELNA模块和GNSS芯片处理模块,所述ELNA模块与卫星信号接收天线系统连接,所述GNSS智能节电装置连接在所述ELNA模块和GNSS芯片处理模块之间,其中:
    所述ELNA模块,设置为接收卫星信号接收天线系统发送过来的卫星信号并进行放大处理;
    所述GNSS智能节电装置为权利要求1-6中任一项所述的GNSS智能节电装置;
    所述GNSS芯片处理模块,设置为在卫星定位功能开启时通知所述GNSS智能节电装置,还设置为在所述GNSS智能节电装置未监测到卫星信号时,根据所述GNSS智能节电装置的通知进入休眠状态。
  8. 一种GNSS定位系统智能节电方法,其中,所述GNSS定位系统包括:GNSS芯片处理模块、ELNA模块以及连接于所述GNSS芯片处理模块、ELNA模块之间的GNSS智能节电装置,所述方法包括:
    所述GNSS智能节电装置监测来自所述ELNA模块的卫星信号;
    所述GNSS智能节电装置在未监测到来自所述ELNA模块的卫星信号时,通知所述GNSS芯片处理模块进入休眠状态。
  9. 根据权利要求8所述的GNSS定位系统智能节电方法,其中,所述GNSS智能节电装置监测来自所述ELNA模块的卫星信号步骤之后还包括:
    所述GNSS智能节电装置在监测到来自所述ELNA模块的卫星信号时,通知所述GNSS芯片处理模块启动工作。
  10. 根据权利要求8所述的GNSS定位系统智能节电方法,其中,所述GNSS智能节电装置监测来自所述ELNA模块的卫星信号的步骤之前还包括:
    所述GNSS芯片处理模块在接收到启动卫星定位请求后,向所述GNSS智能节电装置发送通知信息;
    所述GNSS智能节电装置接收来自于所述GNSS芯片处理模块的通知信息。
  11. 根据权利要求8所述的GNSS定位系统智能节电方法,其中,所述GNSS定位系统还包括:定时器模块;
    所述GNSS智能节电装置在未监测来自所述ELNA模块的卫星信号时,通知所述GNSS芯片处理模块进入休眠状态的步骤包括:
    所述GNSS智能节电装置在未监测到来自所述ELNA模块的卫星信号时,启动所述定时器模块进行计时;
    在预设时间到达时,所述GNSS智能节电装置未监测到来自所述ELNA模块的卫星信号,所述GNSS智能节电装置通知所述GNSS芯片处理模块进入休眠状态;
    在所述预设时间内,所述GNSS智能节电装置监测到来自所述ELNA模块的卫星信号,所述GNSS智能节电装置通知所述GNSS芯片处理模块启动工作,关闭所述定时器模块。
  12. 根据权利要求8-11中任一项所述的GNSS定位系统智能节电方法,其中,所述方法还包括:
    所述GNSS智能节电装置在所述GNSS芯片处理模块进入休眠状态后,若监测到卫星信号,则唤醒所述GNSS芯片处理模块。
PCT/CN2017/113235 2017-03-31 2017-11-28 Gnss智能节电装置、定位系统和方法 WO2018176875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710212814.5A CN108663699A (zh) 2017-03-31 2017-03-31 Gnss智能节电装置、定位系统和方法
CN201710212814.5 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018176875A1 true WO2018176875A1 (zh) 2018-10-04

Family

ID=63674170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113235 WO2018176875A1 (zh) 2017-03-31 2017-11-28 Gnss智能节电装置、定位系统和方法

Country Status (2)

Country Link
CN (1) CN108663699A (zh)
WO (1) WO2018176875A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975843A (zh) * 2019-04-02 2019-07-05 甄十信息科技(上海)有限公司 定位手表中的gnss的节电方法及设备
CN114338911B (zh) * 2021-12-14 2023-08-08 青岛海信移动通信技术有限公司 适用于终端设备的定位方法和终端设备
WO2023245665A1 (zh) * 2022-06-24 2023-12-28 北京小米移动软件有限公司 接入处理方法、装置、通信设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598568A (zh) * 2008-06-06 2009-12-09 佛山市顺德区顺达电脑厂有限公司 电源控制系统及其方法
WO2011072273A1 (en) * 2009-12-10 2011-06-16 Maxlinear, Inc. Intermittent tracking for gnss
CN102103209A (zh) * 2009-12-17 2011-06-22 深圳富泰宏精密工业有限公司 Gps自动省电系统及方法
CN103727943A (zh) * 2012-10-12 2014-04-16 成都众易通科技有限公司 低功耗节能gps车载装置
CN104486824A (zh) * 2014-12-12 2015-04-01 上海斐讯数据通信技术有限公司 移动终端的节能方法及装置
US20160349377A1 (en) * 2015-05-25 2016-12-01 DBJay Inc. Systems and methods for managing power consumption of a gnss receiver

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661092B (zh) * 2008-08-26 2012-07-04 凹凸电子(武汉)有限公司 卫星导航设备、卫星导航接收装置及其控制方法
US7948434B2 (en) * 2008-11-13 2011-05-24 Broadcom Corporation Method and system for maintaining a GNSS receiver in a hot-start state
CN101902765B (zh) * 2010-03-29 2016-05-04 北京冠图创新信息技术有限公司 一种控制移动台gps工作的方法和系统
CN102901975A (zh) * 2012-10-18 2013-01-30 中兴通讯股份有限公司 一种移动终端和获取移动终端位置信息的方法
CN105738928A (zh) * 2016-05-06 2016-07-06 中国科学院微电子研究所 一种gnss接收机、终端设备及定位系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598568A (zh) * 2008-06-06 2009-12-09 佛山市顺德区顺达电脑厂有限公司 电源控制系统及其方法
WO2011072273A1 (en) * 2009-12-10 2011-06-16 Maxlinear, Inc. Intermittent tracking for gnss
CN102103209A (zh) * 2009-12-17 2011-06-22 深圳富泰宏精密工业有限公司 Gps自动省电系统及方法
CN103727943A (zh) * 2012-10-12 2014-04-16 成都众易通科技有限公司 低功耗节能gps车载装置
CN104486824A (zh) * 2014-12-12 2015-04-01 上海斐讯数据通信技术有限公司 移动终端的节能方法及装置
US20160349377A1 (en) * 2015-05-25 2016-12-01 DBJay Inc. Systems and methods for managing power consumption of a gnss receiver

Also Published As

Publication number Publication date
CN108663699A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
KR101787293B1 (ko) Mcu칩을 웨이크업 시키기 위한 방법 및 디바이스
US9210659B2 (en) Dormancy mode control method and apparatus of portable terminal
EP2996367B1 (en) Device, method, and system for starting mobile hotspot
WO2019119846A1 (zh) 一种低功耗设备、保活服务器、消息推送方法及系统
EP2887746A1 (en) Data transmission method and device
EP3198950B1 (en) Power management in device to device communications
CN103974391A (zh) 一种设备唤醒方法及装置
CN107407956B (zh) 用于在计算设备内的多个soc之间协调操作状态的方法和系统
WO2018176875A1 (zh) Gnss智能节电装置、定位系统和方法
WO2016058335A1 (zh) 信号传输的控制方法及装置、电子设备
EP3190771B1 (en) Method and device for managing instant communication application program, and mobile terminal thereof
US10912022B2 (en) WLAN station capable of optimizing power saving operation
CN106550438A (zh) 限制定期唤醒的方法及系统、移动设备
JP2008270918A (ja) パケット受信装置
US20190215771A1 (en) Beacon signal processing system and filtering method of reducing wake-up frequency
CN103716861A (zh) 网络搜寻方法及使用此方法的移动电子装置
JP2011040988A (ja) ウェイクアップ電波送信機能を有する無線アクセスポイントおよび無線lan端末
CN108646909B (zh) 信息处理方法、装置、移动终端和计算机可读存储介质
CN114375597B (zh) 信号接收方法、信号发送方法及相关设备
CN108650384B (zh) 信息处理方法、装置、移动终端和计算机可读存储介质
CN113141626B (zh) 事件发送方法、系统、终端设备以及相关装置
CN103313277B (zh) WSN终端节点及其基于ZigBee的低功耗侦听方法
WO2023173445A1 (zh) 一种通信方法、通信装置及通信设备
WO2023201577A1 (zh) 无线通信方法、装置、通信设备及存储介质
WO2024017198A1 (zh) 信道信号传输方法及装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902689

Country of ref document: EP

Kind code of ref document: A1