WO2018176800A1 - 空调器和空调器的运行方法 - Google Patents

空调器和空调器的运行方法 Download PDF

Info

Publication number
WO2018176800A1
WO2018176800A1 PCT/CN2017/106278 CN2017106278W WO2018176800A1 WO 2018176800 A1 WO2018176800 A1 WO 2018176800A1 CN 2017106278 W CN2017106278 W CN 2017106278W WO 2018176800 A1 WO2018176800 A1 WO 2018176800A1
Authority
WO
WIPO (PCT)
Prior art keywords
defrosting
liquid separation
air conditioner
pipe
liquid
Prior art date
Application number
PCT/CN2017/106278
Other languages
English (en)
French (fr)
Inventor
董涛涛
赵若男
陈鹏宇
袁文昭
杨检群
玉鼎
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2018176800A1 publication Critical patent/WO2018176800A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present invention relates to the field of air conditioning equipment, and in particular to an air conditioner and an air conditioner operating method.
  • Some existing air conditioners have a defrosting function.
  • the general heat pump air conditioner includes a compressor, a four-way valve, an external heat exchanger, an internal heat exchanger, a throttling device, an outdoor ambient temperature sensor, an outdoor pipe temperature sensor and a controller, and the external heat exchanger has mutual At least two independent flow paths are provided, and each of the flow paths is provided with an on-off valve that cuts off the flow path.
  • the air conditioner of the above structure has the problems of defrosting: the indoor unit does not heat, the compressor stops and then opens, and the four-way valve frequently reverses, which seriously affects the user's comfort experience and reduces the compressor and the four-way valve.
  • the service life is easy to damage the compressor and the four-way valve, which in turn leads to poor running reliability of the air conditioner.
  • Defrost During the heating operation of the winter air conditioner, the external heat exchanger is frosted, and the process of removing the frost is called defrosting.
  • the main object of the present invention is to provide a method for operating an air conditioner and an air conditioner to solve the problem of poor operational reliability when the air conditioner is defrosted in the prior art.
  • an air conditioner comprising: an internal heat exchanger; a defrosting pipeline, a defrosting valve disposed on the defrosting pipeline; an external heat exchanger, an internal machine
  • the heat exchanger is connected to the external heat exchanger through a defrosting pipeline.
  • the air conditioner includes an external connection pipe, and the defrosting pipeline is connected to the external heat exchanger through the external connection pipe.
  • a connecting pipe is disposed at the communication port of the internal heat exchanger, and the first end of the defrosting pipe is connected with the connecting pipe, and the pipe diameter of the connecting pipe is less than or equal to the pipe diameter of the defrosting pipe.
  • a connecting pipe is disposed at the communication port of the internal heat exchanger, and the first end of the defrosting pipe is connected with the connecting pipe, and the pipe diameter of the heat exchange pipe in the internal heat exchanger is less than or equal to defrosting Pipe diameter of the pipe.
  • the defrosting valve is one or more, the communication port is plural, the connecting pipe is plural, the plurality of connecting pipes are arranged in one-to-one correspondence with the plurality of communicating ports, and the defrosting pipeline comprises: a plurality of collecting branch pipes, The number of liquid collecting branch pipes is less than or equal to the number of connecting pipes, and the plurality of liquid collecting branch pipes are independently arranged on different connecting pipes; one collecting manifold, one end of the collecting branch pipe far from the connecting pipe is connected with the liquid collecting main pipe
  • the defrosting valve is disposed on the liquid collecting manifold and/or the liquid collecting branch pipe, and the liquid collecting manifold is connected with the external heat exchanger.
  • the defrosting valve is one, the defrosting valve is disposed on the liquid collecting manifold; when there are a plurality of defrosting valves, each condensing branch pipe is provided with a defrosting valve.
  • the air conditioner further comprises a liquid separation pipeline, and the connection pipe is connected to the external heat exchanger through the liquid separation pipeline, and at the same time, only one of the liquid separation pipeline and the defrosting pipeline is put into use.
  • the air conditioner further comprises a liquid separation pipeline, and the connection pipe is connected to the external heat exchanger through the liquid separation pipeline, and at the same time, the liquid separation pipeline and the defrosting pipeline are put into use.
  • the air conditioner includes an external connection pipe, and the liquid separation pipe is connected to the external heat exchanger through the external connection pipe, and the second end of the defrosting pipeline is connected to the external connection pipe of the liquid separation pipeline One end of the road.
  • the plurality of communication ports are plural, and the plurality of connection pipes are arranged in one-to-one correspondence with the plurality of communication ports, and the liquid separation pipeline comprises: a plurality of liquid distribution branch pipes, and the first end of the plurality of liquid distribution branch pipes One-to-one correspondingly arranged with the plurality of connecting pipes, the pipe diameter of the liquid-dividing branch pipe is smaller than the pipe diameter of the connecting pipe; the liquid-dividing head, the second end of the plurality of liquid-dividing branch pipes are connected with the liquid-dividing head; the liquid-dividing main pipe, the liquid-dividing head passes The liquid separation manifold is connected with the external heat exchanger; the heat exchange valve and the heat exchange valve are one or more, and the heat exchange valve is disposed on the liquid separation manifold and/or the liquid separation branch pipe.
  • the heat exchange valve is one, the heat exchange valve is disposed on the liquid separation manifold; when the heat exchange valve is plural, each of the liquid branch pipes is provided with a heat exchange valve.
  • the plurality of communication ports are plural, and the plurality of connection pipes are arranged in one-to-one correspondence with the plurality of communication ports, and the liquid separation pipeline comprises: a plurality of liquid distribution branch pipes, and the first end of the plurality of liquid distribution branch pipes One-to-one correspondingly arranged with the plurality of connecting pipes, the pipe diameter of the liquid-dividing branch pipe is smaller than the pipe diameter of the connecting pipe; the liquid-dividing head, the second end of the plurality of liquid-dividing branch pipes are connected with the liquid-dividing head; the liquid-dividing main pipe, the liquid-dividing head passes The liquid separation main pipe is connected with the external machine connecting pipe, and one end of the defrosting pipe far from the connecting pipe is connected to the liquid separating main pipe; the heat exchange valve, the heat exchange valve is disposed on the liquid separating main pipe, and the heat exchange valve is in the liquid separating main pipe The upper position is closer to the dispensing head relative to the defrosting line.
  • liquid branch pipe is a throttle device.
  • the air conditioner includes: a cooling mode, when the air conditioner is in the cooling mode, the liquid separation line is activated, and the defrosting tube
  • the road is deactivated, and the refrigerant flows from the external heat exchanger to the internal heat exchanger through the liquid separation pipeline; in the heating mode, when the air conditioner is in the heating mode, the liquid separation pipeline is activated, the defrosting pipeline is deactivated, and the refrigerant is deactivated.
  • the internal heat exchanger flows through the liquid separation line to the external heat exchanger; in the defrosting mode, when the air conditioner is in the defrosting mode, the liquid separation pipeline is deactivated, the defrosting pipeline is activated, and the refrigerant is exchanged by the internal heat exchanger.
  • the defrosting pipeline flows to the external heat exchanger.
  • the air conditioner further includes: an indoor side fan, the indoor side fan is used for blowing the inward heat exchanger, and when the air conditioner is in the defrosting mode, the indoor side fan stops running; and/or the outdoor throttle electronic expansion valve,
  • the outdoor throttle electronic expansion valve is disposed on the external connection pipe connected to the external heat exchanger.
  • the outdoor throttle electronic expansion valve has an opening range of 300B to 500B.
  • an air conditioner operating method comprising: a cooling mode, when the air conditioner is in the cooling mode, the liquid separation line of the air conditioner is activated, The defrosting pipeline of the air conditioner is deactivated, and the refrigerant flows from the external heat exchanger of the air conditioner to the internal heat exchanger of the air conditioner through the liquid separation pipeline; in the heating mode, when the air conditioner is in the heating mode, the liquid separation When the pipeline is activated, the defrosting pipeline is deactivated, and the refrigerant flows from the internal heat exchanger to the external heat exchanger through the liquid separation pipeline; in the defrosting mode, when the air conditioner is in the defrosting mode, the liquid separation pipeline is deactivated. The defrosting pipeline is activated, and the refrigerant flows from the internal heat exchanger to the external heat exchanger through the defrosting pipeline.
  • the air conditioner further includes: an indoor side fan, the indoor side fan is used for blowing the inward heat exchanger, and when the air conditioner is in the defrosting mode, the indoor side fan stops running; and/or the outdoor throttle electronic expansion valve,
  • the outdoor throttle electronic expansion valve is disposed on the external connection pipe connected to the external heat exchanger.
  • the outdoor throttle electronic expansion valve has an opening range of 300B to 500B.
  • a defrosting valve is disposed on the defrosting pipeline, and the internal heat exchanger is connected to the external heat exchanger through the defrosting pipeline.
  • the compressor does not need to be frequently started, and the four-way valve does not need to be frequently reversed, thereby reducing the possibility of damage to the compressor and the four-way valve, and prolonging the use of the two. Life expectancy, which improves the operational reliability of the air conditioner.
  • Figure 1 is a schematic view showing the structure of an air conditioner in an alternative embodiment of the present invention.
  • Figure 2 is a flow chart showing the refrigerant flow of the air conditioner of Figure 1 in a cooling mode
  • Figure 3 is a flow chart showing the refrigerant flow of the air conditioner of Figure 1 in a heating mode
  • Fig. 4 is a view showing a flow path of a refrigerant in the defrosting mode of the air conditioner of Fig. 1.
  • orientation words such as “up, down, top, and bottom” are generally used in the directions shown in the drawings, or the components themselves are vertical, without being otherwise described. In the vertical or gravity direction; likewise, for convenience of understanding and description, “inside and outside” refer to the inside and outside of the contour of each component, but the above orientation words are not intended to limit the invention.
  • the present invention provides an air conditioner and an air conditioner operating method.
  • the air conditioner includes an internal heat exchanger 10, a defrosting pipeline 20, and an external heat exchanger 30.
  • the defrosting pipeline 20 is provided with a defrosting valve 21; the internal heat exchanger 10 is connected to the external heat exchanger 30 through the defrosting line 20.
  • the air conditioner further includes a four-way valve and a compressor 80, and the four-way valve is connected to the internal heat exchanger 10, the compressor 80, and the external heat exchanger 30.
  • the defrosting line 20 when the defrosting operation is performed on the air conditioner, the high-temperature refrigerant in the internal heat exchanger 10 is introduced into the external heat exchanger 30 through the defrosting line 20, thereby utilizing the refrigerant. Defrosting at high temperatures ensures defrosting reliability of the air conditioner.
  • the compressor 80 since the defrosting operation is performed by using the defrosting line 20, the compressor 80 does not need to be frequently started, and the four-way valve does not need to be frequently reversed, thereby reducing the possibility of damage of the compressor 80 and the four-way valve, and prolonging the second.
  • the service life of the air conditioner is improved.
  • the communication port of the internal heat exchanger 10 of the present invention is provided with a connecting pipe 40, the first end of the defrosting pipe 20 is connected to the connecting pipe 40, and the pipe of the heat exchange pipe in the internal heat exchanger 10
  • the diameter is less than or equal to the diameter of the defrosting line 20. Since the pipe diameter of the heat exchange pipe is less than or equal to the pipe diameter of the defrosting pipe 20, the refrigerant entering the defrosting pipe 20 from the heat exchange pipe is not cooled by the throttling action, so that the flow is outward.
  • the refrigerant at the heat exchanger 30 is kept at a high temperature to facilitate defrosting.
  • the pipe diameter of the inventive connecting pipe 40 is less than or equal to the pipe diameter of the defrosting pipe 20.
  • the diameter of the connecting pipe 40 is less than or equal to the pipe diameter of the defrosting pipe 20.
  • the flow acts to cool down, so that the refrigerant flowing to the external heat exchanger 30 is kept at a high temperature to facilitate defrosting.
  • the connecting tube 40 is a copper tube.
  • the defrosting pipeline 20 includes a plurality of collecting branch pipes. 22 and a liquid collecting manifold 23, the number of the liquid collecting branch pipes 22 is less than or equal to the number of the connecting pipes 40, and the plurality of liquid collecting branch pipes 22 are independently disposed on the different connecting pipes 40; the liquid collecting branch pipes 22 are away from the connecting pipe One end of 40 is connected to the header manifold 23, the defrosting valve 21 is disposed on the header manifold 23, and the header manifold 23 is connected to the external heat exchanger 30.
  • the flow reliability and uniformity of the refrigerant are improved by providing a plurality of communication ports, a plurality of connecting pipes 40, and a plurality of liquid collecting branch pipes 22.
  • the start and stop state of the defrosting line 20 can be controlled by the defrosting valve 21 to activate the line during defrosting, while the line is deactivated in other modes.
  • each of the communication ports is provided with a connecting pipe 40.
  • Each of the connecting pipes 40 is correspondingly provided with a liquid collecting branch pipe 22, and four liquid collecting branch pipes 22 are connected to one.
  • the liquid collection manifold 23 is located.
  • the diameter of the connecting pipe 40 is equal to the diameter of the collecting branch pipe 22.
  • the liquid separation is uneven, but the throttling and cooling effect can ensure that the refrigerant flows to the outer heat exchanger 30 at a high temperature to facilitate defrosting.
  • the air conditioner further includes a liquid separation line 50.
  • the connection tube 40 is connected to the external heat exchanger 30 through the liquid separation line 50.
  • the liquid separation line 50 and the defrosting line 20 are only One is put into use. It should be noted that the liquid separation line 50 is opened when the air conditioner is in the cooling mode and the heating mode, and the defrosting line 20 is only opened in the defrosting mode.
  • the liquid separation pipe 50 includes a plurality of liquid distribution branch pipes 51 and a liquid separation head 52.
  • the liquid separation manifold 53 and the heat exchange valve 54, the first ends of the plurality of liquid branch pipes 51 are disposed in one-to-one correspondence with the plurality of connecting pipes 40, and the pipe diameter of the liquid branch pipe 51 is smaller than the pipe diameter of the connecting pipe 40;
  • the second end of the branch pipe 51 is connected to the liquid separation head 52;
  • the liquid separation head 52 is connected to the outer heat exchanger 30 through the liquid separation manifold 53, and the heat exchange valve 54 is disposed on the liquid separation manifold 53.
  • the liquid separation condition of each liquid separation branch pipe 51 is relatively uniform. Further, since the pipe diameter of the liquid-dividing branch pipe 51 is smaller than the pipe diameter of the connecting pipe 40, it has a throttling effect when flowing through the liquid-dividing branch pipe 51.
  • the heat exchange valve 54 is used to control the start and stop state of the liquid separation line 50. When only the heat exchange valve 54 is opened, the refrigerant entering the outer heat exchanger 30 passes through the liquid branch pipe 51 first, and the temperature of the refrigerant is lowered due to the throttling action of the liquid branch pipe 51, which has a certain defrosting effect.
  • the heat exchange valve 54 and the defrosting valve 21 are two-way valves.
  • the flow path is turned on; when the two-way valve is not energized, the flow path is not turned on.
  • the heat exchange valve 54 is energized, the defrosting valve 21 is not energized; when the defrosting valve 21 is energized, the heat exchange valve 54 is not energized, ensuring that at the same time, the liquid separation line 50 and the defrosting line 20 have only one way. Can be turned on.
  • the liquid separation branch pipe 51 is a throttle device. Therefore, the liquid separation branch pipe 51 has a throttling effect, which causes the temperature of the refrigerant flowing therethrough to decrease.
  • liquid branch pipe 51 is a capillary tube or a short tube.
  • FIG. 1 a plurality of liquid branch pipes 51 are respectively connected to the four connecting pipes 40 , and four liquid branch pipes 51 are connected to On the liquid separation head 52.
  • FIG. 1 to FIG. 4 provides a 4-in and 4-out flow path, and is not limited to the 4-in 4-out flow path in actual use.
  • the air conditioner of the present invention includes an external connection line 60, the second end of the defrosting line 20 is connected to the liquid separation manifold 53; and the position of the heat exchange valve 54 on the liquid separation manifold 53 is relative to the defrosting line 20 is close to the dispensing head 52.
  • the liquid separation line 50 is connected to the external heat exchanger 30 through the external connection line 60, and the second end of the defrosting line 20 is connected to one end of the liquid separation line 50 near the external connection line 60.
  • the heat exchange valve 54 is only used to control the liquid separation line 50 without affecting the on-off state of the defrosting line 20.
  • the outdoor throttle electronic expansion valve 70 is disposed on the external connection line 60 connected to the external heat exchanger 30.
  • the state of the refrigerant can be adjusted to improve the heat exchange efficiency of the air conditioner.
  • the present invention increases the defrosting line 20 to defrosting the external heat exchanger 30 by delivering a high-temperature refrigerant during defrosting.
  • the main difference between the defrosting line 20 and the liquid dividing line 50 is that the liquid dividing line 50 includes a liquid dividing branch 51, which is a capillary tube, and the diameter of the capillary tube is smaller than the diameter of the connecting tube 40 to the refrigerant. Throttle cooling.
  • the air conditioner in the present invention includes a cooling mode, a heating mode, and a defrosting mode.
  • the air conditioner is a heat pump type air conditioner.
  • the liquid separation line 50 is activated, the defrosting line 20 is deactivated, and the refrigerant flows from the external heat exchanger 30 through the liquid separation line 50 to the internal heat exchanger 10 .
  • the liquid separation line 50 is activated, the defrosting line 20 is deactivated, and the refrigerant is flown from the internal heat exchanger 10 through the liquid separation line 50 to the external heat exchanger. 30.
  • the air conditioner enters the heating mode, the temperature of the refrigerant flowing into the external heat exchanger needs to be lower.
  • the heat exchange valve 54 is energized, and the liquid separation line 50 is turned on.
  • the refrigerant exchanged by the internal heat exchanger 10 is merged by the liquid separation branch 51 through the liquid separation head 52 and then flows into the external heat exchanger 30. Due to the throttling action of the liquid branch pipe 51, the temperature of the refrigerant entering the outer heat exchanger 30 is lower, and the easier it is to absorb heat from the outdoor environment, the heat exchange effect is better.
  • the air conditioner of the present invention can realize defrosting without stopping the heating, thereby improving the user experience.
  • the air conditioner of the present invention further includes an indoor side fan, and the indoor side fan is used to blow the inward heat exchanger 10, and when the air conditioner is in the defrosting mode, the indoor side fan stops operating.
  • the indoor side fan is closed, the heat exchange effect of the internal heat exchanger 10 is deteriorated, the heat loss of the refrigerant is small, and the temperature of the refrigerant flowing into the external heat exchanger 30 is higher, and the defrosting effect is better.
  • the outdoor throttle electronic expansion valve 70 has an opening range of 300B to 500B when the air conditioner is in the defrosting mode.
  • the effect of cooling the refrigerant flowing into the outdoor is worse, and the temperature of the refrigerant that enters the external heat exchanger 30 is higher, the defrosting effect is more remarkable, and the defrosting effect is better.
  • the opening of the outdoor throttle electronic expansion valve 70 is opened to the maximum when the air conditioner is in the defrosting mode.
  • the opening range of the outdoor throttle electronic expansion valve 70 is 0 to 500 B; when defrosting, the recommended opening degree is at least 300 B.
  • the opening degree is the largest, the throttling effect of the refrigerant is the smallest, the temperature of the refrigerant flowing into the outdoor is higher, and the defrosting effect is better;
  • the opening degree is smaller, the throttling effect of the refrigerant is larger, and the refrigerant temperature flowing into the outdoor is higher.
  • the defrosting effect will be worse than the opening degree 500B, but the defrosting effect can still be achieved.
  • the invention increases the defrosting pipeline 20, by switching the defrosting pipeline 20 or the liquid separation pipeline 50, so that the air conditioner can simultaneously heat when defrosting, to ensure defrosting while the room has continuous hot air blowing, indoor
  • the temperature field is more uniform, the comfort is high, and the operating energy consumption of the air conditioner is saved.
  • the difference from the first embodiment is that, at the same time, the liquid separation line 50 and the defrosting line 20 are put into use. At this time, the defrosting valve 21 and the heat exchange valve 54 are simultaneously opened, a part of the refrigerant flows through the liquid separation line 50, and another part of the refrigerant flows through the defrosting line 20, and the defrosting effect is compared with the only heat exchange valve 54. better.
  • the difference from the first embodiment is that a plurality of defrosting valves 21 are provided, and a defrosting valve 21 is provided on each of the liquid collecting branch pipes 22. By opening a plurality of defrosting valves 21, the defrosting line 20 can be put into use.
  • the difference from the first embodiment is that a plurality of heat exchange valves 54 are provided, and each of the liquid branch pipes 51 is provided with a heat exchange valve 54. By opening the plurality of heat exchange valves 54, the liquid separation line 50 can be put into use.
  • the air conditioner of the present invention solves the following problems:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器,包括:内机换热器(10);化霜管路(20),化霜管路(20)上设置有化霜阀(21);外机换热器(30),内机换热器(10)通过化霜管路(20)与外机换热器(30)连接。该空调器解决了现有技术中空调器化霜时运行可靠性差的问题。

Description

空调器和空调器的运行方法
相关申请
本申请要求2017年03月27日申请的,申请号为201710191022.4,名称为“空调器和空调器的运行方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及空调设备技术领域,具体而言,涉及一种空调器和空调器的运行方法。
背景技术
现有的部分空调器具有化霜功能。
以热泵空调器为例。
一般的热泵空调器包括压缩机、四通阀、外机换热器、内机换热器、节流装置、室外环境温度传感器、室外管温温度传感器和控制器,外机换热器具有相互独立的至少两流路,各流路上分别设有切断该流路的开关阀。
在冬季除霜时,当室外环境温度较高,在外风机的作用下足以使外侧冰霜融化时,通过控制某流路截止,使该流路铜管内无冷媒流动,该流路停止从室外侧吸热,铜管温度会慢慢从低于室外环境温度升高到等于环境温度,该流路表面的冰霜也会融化。其中导通的流路继续制热;当室外环境温度较低,在外风机作用下不足以融化冰霜时,通过传统的控制四通阀换向,从而实现室外机化霜。
上述结构的空调器在进行化霜时存在:室内机不制热、压缩机先停再开、且四通阀频繁换向等问题,严重影响用户舒适性体验,降低压缩机和四通阀的使用寿命,且容易损坏压缩机和四通阀,进而导致空调器的运行可靠性变差。
术语解释:
化霜:冬季空调器在制热运行过程中,外机换热器出现结霜,去除冰霜的过程叫化霜。
发明内容
本发明的主要目的在于提供一种空调器和空调器的运行方法,以解决现有技术中空调器化霜时运行可靠性差的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种空调器,包括:内机换热器;化霜管路,化霜管路上设置有化霜阀;外机换热器,内机换热器通过化霜管路与外机换热器连接。
进一步地,空调器包括外机连接管路,化霜管路通过外机连接管路与外机换热器连接。
进一步地,内机换热器的连通口处设置有连接管,化霜管路的第一端与连接管连接,且连接管的管径小于或等于化霜管路的管径。
进一步地,内机换热器的连通口处设置有连接管,化霜管路的第一端与连接管连接,且内机换热器内的换热管路的管径小于或等于化霜管路的管径。
进一步地,化霜阀为一个或多个,连通口为多个,连接管为多个,多个连接管与多个连通口一一对应设置,化霜管路包括:多个集液支管,集液支管的个数小于或等于连接管的个数,多个集液支管彼此独立设置在不同的连接管上;一个集液总管,集液支管的远离连接管的一端均与集液总管连接,化霜阀设置在集液总管和/或集液支管上,集液总管与外机换热器连接。
进一步地,当化霜阀为一个时,化霜阀设置在集液总管上;当化霜阀为多个时,各集液支管上均设置有化霜阀。
进一步地,空调器还包括分液管路,连接管通过分液管路与外机换热器连接,同一时间内,分液管路和化霜管路只有一个投入使用。
进一步地,空调器还包括分液管路,连接管通过分液管路与外机换热器连接,同一时间内,分液管路和化霜管路均投入使用。
进一步地,空调器包括外机连接管路,分液管路通过外机连接管路与外机换热器连接,化霜管路的第二端连接至分液管路的靠近外机连接管路的一端。
进一步地,连通口为多个,连接管为多个,多个连接管与多个连通口一一对应设置,分液管路包括:多个分液支管,多个分液支管的第一端与多个连接管一一对应设置,分液支管的管径小于连接管的管径;分液头,多个分液支管的第二端与分液头连接;分液总管,分液头通过分液总管与外机换热器连接;换热阀,换热阀为一个或多个,换热阀设置在分液总管和/或分液支管上。
进一步地,当换热阀为一个时,换热阀设置在分液总管上;当换热阀为多个时,各分液支管上均设置有换热阀。
进一步地,连通口为多个,连接管为多个,多个连接管与多个连通口一一对应设置,分液管路包括:多个分液支管,多个分液支管的第一端与多个连接管一一对应设置,分液支管的管径小于连接管的管径;分液头,多个分液支管的第二端与分液头连接;分液总管,分液头通过分液总管与外机连接管路连接,化霜管路的远离连接管的一端连接至分液总管上;换热阀,换热阀设置在分液总管上,且换热阀在分液总管上的位置相对于化霜管路靠近分液头。
进一步地,分液支管为节流装置。
进一步地,空调器包括:制冷模式,当空调器处于制冷模式时,分液管路启用,化霜管 路停用,冷媒由外机换热器经分液管路流向内机换热器;制热模式,当空调器处于制热模式时,分液管路启用,化霜管路停用,冷媒由内机换热器经分液管路流向外机换热器;化霜模式,当空调器处于化霜模式时,分液管路停用,化霜管路启用,冷媒由内机换热器经化霜管路流向外机换热器。
进一步地,空调器还包括:室内侧风机,室内侧风机用于向内机换热器吹风,当空调器处于化霜模式时,室内侧风机停止运行;和/或室外节流电子膨胀阀,室外节流电子膨胀阀设置在与外机换热器连接的外机连接管路上,当空调器处于化霜模式时,室外节流电子膨胀阀的开度范围为300B至500B。
根据本发明的另一个方面,提供了一种空调器的运行方法,空调器是上述的空调器,运行方法包括:制冷模式,当空调器处于制冷模式时,空调器的分液管路启用,空调器的化霜管路停用,冷媒由空调器的外机换热器经分液管路流向空调器的内机换热器;制热模式,当空调器处于制热模式时,分液管路启用,化霜管路停用,冷媒由内机换热器经分液管路流向外机换热器;化霜模式,当空调器处于化霜模式时,分液管路停用,化霜管路启用,冷媒由内机换热器经化霜管路流向外机换热器。
进一步地,空调器还包括:室内侧风机,室内侧风机用于向内机换热器吹风,当空调器处于化霜模式时,室内侧风机停止运行;和/或室外节流电子膨胀阀,室外节流电子膨胀阀设置在与外机换热器连接的外机连接管路上,当空调器处于化霜模式时,室外节流电子膨胀阀的开度范围为300B至500B。
应用本发明的技术方案,化霜管路上设置有化霜阀,内机换热器通过化霜管路与外机换热器连接。通过设置化霜管路,以在对空调器进行化霜操作时,通过化霜管路将内机换热器内的高温冷媒通入外机换热器内,从而利用冷媒的高温进行化霜,保证了空调器的化霜可靠性。
此外,由于采用化霜管路进行化霜操作,无需让压缩机频繁启动,也无需让四通阀频繁换向,故降低了压缩机和四通阀的损坏可能性,延长了二者的使用寿命,从而提高了空调器的运行可靠性。
由于在化霜时无需进行停机的操作,保证了室内正常供暖,提高了用户的满意度。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明的一个可选实施例中空调器的结构示意图;
图2示出了图1中的空调器处于制冷模式下的冷媒流路图;
图3示出了图1中的空调器处于制热模式下的冷媒流路图;
图4示出了图1中的空调器处于化霜模式下的冷媒流路图。
其中,上述附图包括以下附图标记:
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本发明。
为了解决现有技术中空调器化霜时运行可靠性差的问题,本发明提供了一种空调器和空调器的运行方法。
如图1至图4所示,空调器包括内机换热器10、化霜管路20和外机换热器30,化霜管路20上设置有化霜阀21;内机换热器10通过化霜管路20与外机换热器30连接。当然,空调器还包括四通阀和压缩机80,四通阀与内机换热器10、压缩机80和外机换热器30均连接。
通过设置化霜管路20,以在对空调器进行化霜操作时,通过化霜管路20将内机换热器10内的高温冷媒通入外机换热器30内,从而利用冷媒的高温进行化霜,保证了空调器的化霜可靠性。
此外,由于采用化霜管路20进行化霜操作,无需让压缩机80频繁启动,也无需让四通阀频繁换向,故降低了压缩机80和四通阀的损坏可能性,延长了二者的使用寿命,从而提高了空调器的运行可靠性。
由于在化霜时无需进行停机的操作,保证了室内正常供暖,提高了用户的满意度。
本发明中的内机换热器10的连通口处设置有连接管40,化霜管路20的第一端与连接管40连接,且内机换热器10内的换热管路的管径小于或等于化霜管路20的管径。由于换热管路的管径小于或等于化霜管路20的管径,因而,由换热管路进入化霜管路20内的冷媒,不会因节流作用而降温,从而使得流向外机换热器30处的冷媒保持高温,以利于化霜。
同样地,发明连接管40的管径小于或等于化霜管路20的管径。当连接管40的管径小于或等于化霜管路20的管径时,这样,由连接管40内的冷媒进入化霜管路20内后,不会因节 流作用而降温,从而使得流向外机换热器30处的冷媒保持高温,以利于化霜。
可选地,连接管40为铜管。
可选地,化霜阀21为一个,连通口为多个,连接管40为多个,多个连接管40与多个连通口一一对应设置,化霜管路20包括多个集液支管22和一个集液总管23,集液支管22的个数小于或等于连接管40的个数,多个集液支管22彼此独立设置在不同的连接管40上;集液支管22的远离连接管40的一端均与集液总管23连接,化霜阀21设置在集液总管23上,集液总管23与外机换热器30连接。通过设置多个连通口、多个连接管40、多个集液支管22以提高冷媒的流动可靠性和均匀性。通过化霜阀21可以控制化霜管路20的启停状态,以在化霜时启用该管路,而在其他模式下使该管路停用。
如图1至图4所示,连通口为四个,各连通口处设置有一个连接管40,各连接管40处对应设置有一个集液支管22,四个集液支管22均连接至一个集液总管23处。
在该实施例中,连接管40的管径等于集液支管22的管径。冷媒流经集液支管22时,分液不均匀,但无节流降温作用,可以保证冷媒以高温状态流向外机换热器30,以利于化霜。
如图1所示,空调器还包括分液管路50,连接管40通过分液管路50与外机换热器30连接,同一时间内,分液管路50和化霜管路20只有一个投入使用。需要说明的是,分液管路50在空调器处于制冷模式和制热模式时开启,而化霜管路20仅在化霜模式下开启。
可选地,连通口为多个,连接管40为多个,多个连接管40与多个连通口一一对应设置,分液管路50包括多个分液支管51、分液头52、分液总管53和换热阀54,多个分液支管51的第一端与多个连接管40一一对应设置,分液支管51的管径小于连接管40的管径;多个分液支管51的第二端与分液头52连接;分液头52通过分液总管53与外机换热器30连接;换热阀54设置在分液总管53上。冷媒通过分液头52流经分液支管51时,各分液支管51的分液情况比较均匀。且由于分液支管51的管径小于连接管40的管径,因而流经分液支管51时具有节流的作用。换热阀54用于控制分液管路50的启停状态。只开换热阀54时,进入外机换热器30内的冷媒会先经分液支管51,因分液支管51的节流作用,冷媒温度降低,有一定化霜效果。
可选地,换热阀54和化霜阀21是二通阀。二通阀得电时,流路导通;二通阀不得电时,流路不导通。当换热阀54得电时,化霜阀21不得电;当化霜阀21得电时,换热阀54不得电,保证同一时刻,分液管路50和化霜管路20仅有一路可以导通。
可选地,分液支管51为节流装置。因而分液支管51具有节流的作用,会导致流经该处的冷媒温度降低。
进一步可选地,分液支管51为毛细管或短管。
如图1所示,四个连接管40上分别连接有一个分液支管51,四个分液支管51均连接至 分液头52上。需要说明的是,图1至图4实施例给出的是4进4出流路,实际使用中不局限于4进4出流路。
本发明中的空调器包括外机连接管路60,化霜管路20的第二端连接至分液总管53上;且换热阀54在分液总管53上的位置相对于化霜管路20靠近分液头52。分液管路50通过外机连接管路60与外机换热器30连接,化霜管路20的第二端连接至分液管路50的靠近外机连接管路60的一端。这样,换热阀54仅用于控制分液管路50,而不会影响化霜管路20的通断状态。
如图1至图4所示,室外节流电子膨胀阀70设置在与外机换热器30连接的外机连接管路60上。这样,通过调节室外节流电子膨胀阀70,可以调节冷媒的状态,以提高空调器的换热效率。
本发明通过增加化霜管路20,以在化霜时,通过输送高温冷媒,以对外机换热器30进行化霜的操作。化霜管路20与分液管路50的主要区别在于,分液管路50包括分液支管51,该分液支管51为毛细管,毛细管的管径小于连接管40的管径,以对冷媒节流降温。
本发明中的空调器包括制冷模式、制热模式和化霜模式。
可选地,空调器是热泵式空调器。
如图2所示,当空调器处于制冷模式时,分液管路50启用,化霜管路20停用,冷媒由外机换热器30经分液管路50流向内机换热器10。
如图3所示,当空调器处于制热模式时,分液管路50启用,化霜管路20停用,冷媒由内机换热器10经分液管路50流向外机换热器30。当空调器进入制热模式时,流入外机换热器的冷媒温度需要更低,此时换热阀54得电,分液管路50导通。经过内机换热器10换热的冷媒,经分液支管51通过分液头52汇合后流入外机换热器30。由于分液支管51的节流作用,会使进入外机换热器30的冷媒温度更低,越容易从室外环境中吸热,换热效果会更好。
如图4所示,当空调器处于化霜模式时,分液管路50停用,化霜管路20启用,冷媒由内机换热器10经化霜管路20流向外机换热器30。由于集液支管22的管径与连接管40的管径相同,集液支管22没有节流作用,因而不会使冷媒温度降低。经过集液支管22的冷媒温度几乎不会降低,从而使得流入外机换热器30内的冷媒温度很高,可以利用此高温冷媒对外机换热器进行化霜。因此,本发明中的空调器无需停止制热,就可以实现化霜,提高用户体验。
本发明中的空调器还包括室内侧风机,室内侧风机用于向内机换热器10吹风,当空调器处于化霜模式时,室内侧风机停止运行。关闭室内侧风机,内机换热器10的换热效果变差,冷媒损失的热量少,流入外机换热器30的冷媒温度更高,化霜效果更好。
可选地,当空调器处于化霜模式时,室外节流电子膨胀阀70的开度范围为300B至500B。 流入室外的冷媒节流降温的效果变差,进入外机换热器30化霜的冷媒温度更高,化霜效果更加显著,化霜效果更好。优选地,当空调器处于化霜模式时,室外节流电子膨胀阀70的开度开到最大。
具体而言,室外节流电子膨胀阀70的开度范围0~500B;化霜时,建议开度至少要大于300B。500B时,开度最大,冷媒的节流作用最小,流入室外的冷媒温度更高,化霜效果会更好;300B时,开度较小,冷媒的节流作用较大,流入室外的冷媒温度相对于开度500B会偏低,化霜效果会变差,但还是可以实现化霜效果。
本发明增加了化霜管路20,通过切换化霜管路20或分液管路50,以使空调器在进行化霜时能够同时制热,以保证化霜同时室内有持续热风吹出,室内温度场更均匀,舒适性高,并且节省空调器的运行能耗。
实施例二
与实施例一的区别在于,同一时间内,分液管路50和化霜管路20均投入使用。此时,化霜阀21与换热阀54同时开启,一部分冷媒流经分液管路50,另一部分冷媒流经化霜管路20,相对于只开换热阀54而言,化霜效果更好。
实施例三
与实施例一的区别在于,化霜阀21为多个,各集液支管22上均设置有化霜阀21。通过将多个化霜阀21开启,能够使化霜管路20投入使用。
实施例四
与实施例一的区别在于,换热阀54为多个,各分液支管51上均设置有换热阀54。通过将多个换热阀54开启,能够使分液管路50投入使用。
本发明中的空调器解决了如下问题:
1.避免空调器冬季化霜运行时,室内侧不制热,导致舒适性变差问题;
2.避免冬季空调器频繁进入化霜,导致压缩机80频繁启停,损坏压缩机80;
3.避免冬季空调器频繁进入化霜,导致四通阀频繁换向,损坏四通阀。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于 覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种空调器,其特征在于,包括:
    内机换热器(10);
    化霜管路(20),所述化霜管路(20)上设置有化霜阀(21);
    外机换热器(30),所述内机换热器(10)通过所述化霜管路(20)与所述外机换热器(30)连接。
  2. 根据权利要求1所述的空调器,其特征在于,所述空调器包括外机连接管路(60),所述化霜管路(20)通过所述外机连接管路(60)与所述外机换热器(30)连接。
  3. 根据权利要求1所述的空调器,其特征在于,所述内机换热器(10)的连通口处设置有连接管(40),所述化霜管路(20)的第一端与所述连接管(40)连接,且所述连接管(40)的管径小于或等于所述化霜管路(20)的管径。
  4. 根据权利要求1所述的空调器,其特征在于,所述内机换热器(10)的连通口处设置有连接管(40),所述化霜管路(20)的第一端与所述连接管(40)连接,且所述内机换热器(10)内的换热管路的管径小于或等于所述化霜管路(20)的管径。
  5. 根据权利要求3或4所述的空调器,其特征在于,所述化霜阀(21)为一个或多个,所述连通口为多个,所述连接管(40)为多个,多个所述连接管(40)与多个所述连通口一一对应设置,所述化霜管路(20)包括:
    多个集液支管(22),所述集液支管(22)的个数小于或等于所述连接管(40)的个数,多个所述集液支管(22)彼此独立设置在不同的所述连接管(40)上;
    一个集液总管(23),所述集液支管(22)的远离所述连接管(40)的一端均与所述集液总管(23)连接,所述化霜阀(21)设置在所述集液总管(23)和/或所述集液支管(22)上,所述集液总管(23)与所述外机换热器(30)连接。
  6. 根据权利要5所述的空调器,其特征在于,
    当所述化霜阀(21)为一个时,所述化霜阀(21)设置在所述集液总管(23)上;
    当所述化霜阀(21)为多个时,各所述集液支管(22)上均设置有所述化霜阀(21)。
  7. 根据权利要求3或4所述的空调器,其特征在于,所述空调器还包括分液管路(50),所述连接管(40)通过所述分液管路(50)与所述外机换热器(30)连接,同一时间内,所述分液管路(50)和所述化霜管路(20)只有一个投入使用。
  8. 根据权利要求3或4所述的空调器,其特征在于,所述空调器还包括分液管路(50),所述连接管(40)通过所述分液管路(50)与所述外机换热器(30)连接,同一时间内,所述分液管路(50)和所述化霜管路(20)均投入使用。
  9. 根据权利要求7所述的空调器,其特征在于,所述空调器包括外机连接管路(60),所述分液管路(50)通过所述外机连接管路(60)与所述外机换热器(30)连接,所述化霜管路(20)的第二端连接至所述分液管路(50)的靠近所述外机连接管路(60)的一端。
  10. 根据权利要求7所述的空调器,其特征在于,所述连通口为多个,所述连接管(40)为多个,多个所述连接管(40)与多个所述连通口一一对应设置,所述分液管路(50)包括:
    多个分液支管(51),多个所述分液支管(51)的第一端与多个所述连接管(40)一一对应设置,所述分液支管(51)的管径小于所述连接管(40)的管径;
    分液头(52),多个所述分液支管(51)的第二端与所述分液头(52)连接;
    分液总管(53),所述分液头(52)通过所述分液总管(53)与所述外机换热器(30)连接;
    换热阀(54),所述换热阀(54)为一个或多个,所述换热阀(54)设置在所述分液总管(53)和/或所述分液支管(51)上。
  11. 根据权利要求10所述的空调器,其特征在于,
    当所述换热阀(54)为一个时,所述换热阀(54)设置在所述分液总管(53)上;
    当所述换热阀(54)为多个时,各所述分液支管(51)上均设置有所述换热阀(54)。
  12. 根据权利要求9所述的空调器,其特征在于,所述连通口为多个,所述连接管(40)为多个,多个所述连接管(40)与多个所述连通口一一对应设置,所述分液管路(50)包括:
    多个分液支管(51),多个所述分液支管(51)的第一端与多个所述连接管(40)一一对应设置,所述分液支管(51)的管径小于所述连接管(40)的管径;
    分液头(52),多个所述分液支管(51)的第二端与所述分液头(52)连接;
    分液总管(53),所述分液头(52)通过所述分液总管(53)与所述外机连接管路(60)连接,所述化霜管路(20)的远离所述连接管(40)的一端连接至所述分液总管(53)上;
    换热阀(54),所述换热阀(54)设置在所述分液总管(53)上,且所述换热阀(54)在所述分液总管(53)上的位置相对于所述化霜管路(20)靠近所述分液头(52)。
  13. 根据权利要求10所述的空调器,其特征在于,所述分液支管(51)为节流装置。
  14. 根据权利要求7所述的空调器,其特征在于,所述空调器包括:
    制冷模式,当所述空调器处于所述制冷模式时,所述分液管路(50)启用,所述化霜管路(20)停用,冷媒由所述外机换热器(30)经所述分液管路(50)流向所述内机。
PCT/CN2017/106278 2017-03-27 2017-10-16 空调器和空调器的运行方法 WO2018176800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710191022.4A CN106940057A (zh) 2017-03-27 2017-03-27 空调器和空调器的运行方法
CN201710191022.4 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018176800A1 true WO2018176800A1 (zh) 2018-10-04

Family

ID=59463103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106278 WO2018176800A1 (zh) 2017-03-27 2017-10-16 空调器和空调器的运行方法

Country Status (2)

Country Link
CN (1) CN106940057A (zh)
WO (1) WO2018176800A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106940057A (zh) * 2017-03-27 2017-07-11 珠海格力电器股份有限公司 空调器和空调器的运行方法
CN108036552A (zh) * 2017-10-31 2018-05-15 珠海格力电器股份有限公司 空调器及空调器的运行方法
CN110686420A (zh) * 2019-10-22 2020-01-14 广东美的暖通设备有限公司 多联机空调器、化霜方法和计算机可读存储介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121915A (ja) * 1994-10-24 1996-05-17 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機
JPH10141815A (ja) * 1996-11-08 1998-05-29 Fujitsu General Ltd 空気調和機
KR100767857B1 (ko) * 2006-08-03 2007-10-17 엘지전자 주식회사 공기 조화기 및 그 제어 방법
CN101387455A (zh) * 2008-09-02 2009-03-18 Tcl集团股份有限公司 一种平行流空调器及其除霜控制方法
CN201508077U (zh) * 2009-09-25 2010-06-16 广东美的电器股份有限公司 一种空调器
JP2010164257A (ja) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp 冷凍サイクル装置及び冷凍サイクル装置の制御方法
CN102331121A (zh) * 2011-08-10 2012-01-25 Tcl空调器(中山)有限公司 一种空调器及其控制方法
CN103574758A (zh) * 2012-07-25 2014-02-12 珠海格力电器股份有限公司 空调器系统及其除霜方法
CN105258270A (zh) * 2015-09-28 2016-01-20 深圳麦克维尔空调有限公司 一种定频新风系统及其除霜控制方法
EP3040635A1 (en) * 2013-11-25 2016-07-06 Samsung Electronics Co., Ltd. Air conditioner
CN106940057A (zh) * 2017-03-27 2017-07-11 珠海格力电器股份有限公司 空调器和空调器的运行方法
CN206626726U (zh) * 2017-03-27 2017-11-10 珠海格力电器股份有限公司 空调器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121915A (ja) * 1994-10-24 1996-05-17 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機
JPH10141815A (ja) * 1996-11-08 1998-05-29 Fujitsu General Ltd 空気調和機
KR100767857B1 (ko) * 2006-08-03 2007-10-17 엘지전자 주식회사 공기 조화기 및 그 제어 방법
CN101387455A (zh) * 2008-09-02 2009-03-18 Tcl集团股份有限公司 一种平行流空调器及其除霜控制方法
JP2010164257A (ja) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp 冷凍サイクル装置及び冷凍サイクル装置の制御方法
CN201508077U (zh) * 2009-09-25 2010-06-16 广东美的电器股份有限公司 一种空调器
CN102331121A (zh) * 2011-08-10 2012-01-25 Tcl空调器(中山)有限公司 一种空调器及其控制方法
CN103574758A (zh) * 2012-07-25 2014-02-12 珠海格力电器股份有限公司 空调器系统及其除霜方法
EP3040635A1 (en) * 2013-11-25 2016-07-06 Samsung Electronics Co., Ltd. Air conditioner
CN105258270A (zh) * 2015-09-28 2016-01-20 深圳麦克维尔空调有限公司 一种定频新风系统及其除霜控制方法
CN106940057A (zh) * 2017-03-27 2017-07-11 珠海格力电器股份有限公司 空调器和空调器的运行方法
CN206626726U (zh) * 2017-03-27 2017-11-10 珠海格力电器股份有限公司 空调器

Also Published As

Publication number Publication date
CN106940057A (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2018188514A1 (zh) 一种空调器及清洁控制方法
CN103383157B (zh) 热泵空调系统及其控制方法
CN103363600B (zh) 热泵式空气调节装置
WO2019134509A1 (zh) 室外机、空调系统及控制方法
CN104180442B (zh) 空调系统
CN104329824A (zh) 多联式空调系统及其控制方法
WO2018176800A1 (zh) 空调器和空调器的运行方法
CN110345566A (zh) 具有调温除湿功能的空调系统及其控制方法
WO2012058844A1 (zh) 蒸发器和具有该蒸发器的制冷系统
CN104833152A (zh) 一种防液击空调除霜系统
WO2014201828A1 (zh) 空调系统
CN107238222A (zh) 空调系统及其控制方法
CN104197571A (zh) 一种三管制热回收多联机系统
CN206637885U (zh) 空调系统
CN206644706U (zh) 杯托装置及汽车
CN202546973U (zh) 热泵式空气调节装置
JP5247853B2 (ja) 空調システム
CN206771795U (zh) 空调系统
CN105650822A (zh) 热泵空调器及其化霜方法
JP2017194201A (ja) 空気調和機
CN108931069A (zh) 空调热水器及其控制方法
CN111121337B (zh) 空调双冷凝器除霜方法和空调
CN209165825U (zh) 空调器
CN110595093A (zh) 一种空气调节系统
CN108534231B (zh) 空调器的新风调节系统及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902610

Country of ref document: EP

Kind code of ref document: A1