WO2018176471A1 - 一种通道选择方法及装置 - Google Patents
一种通道选择方法及装置 Download PDFInfo
- Publication number
- WO2018176471A1 WO2018176471A1 PCT/CN2017/079307 CN2017079307W WO2018176471A1 WO 2018176471 A1 WO2018176471 A1 WO 2018176471A1 CN 2017079307 W CN2017079307 W CN 2017079307W WO 2018176471 A1 WO2018176471 A1 WO 2018176471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- access node
- frequency band
- access
- node
- directly
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/32—Hierarchical cell structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
- H04W92/20—Interfaces between hierarchically similar devices between access points
Definitions
- the embodiments of the present invention relate to the field of communications technologies, and in particular, to a channel selection method and apparatus.
- the basic network service set (BSS) WiFi network structure is shown in Figure 1, including an access point (AP) and one or more workstations (station, STA), one or more STAs. Access the WiFi network through the AP and use the services provided by the AP.
- AP access point
- STA workstation
- STA workstation
- STA workstation
- the distributed coverage WiFi network shown in FIG. 2 includes multiple APs, and a plurality of APs have a cascading relationship, and each AP can access one or more STAs. Since the existing AP can support the connection of two or more frequency bands, each frequency band can include multiple channels. Therefore, in the distributed coverage WiFi network, there is a need for channel selection when the AP performs cascading.
- the AP uses two frequency bands simultaneously as the frequency band when the AP cascades and the AP accesses the STA, and the channel used by the AP for cascading and the channel used for access in one frequency band is Consistent (in Figure 3, the 2.4G and 5G bands are used as an example.
- the AP uses the channel 1 of the 2.4G band for cascading and access, and uses the channel 36 of the 5G band for cascading and access), thereby enabling the WiFi network.
- all APs use one common frequency band as the frequency band of the AP cascading, and another frequency band is used as the frequency band when the AP accesses the STA, and the channel used by each AP to access the STA.
- the two bands are both 5G bands. All APs use the channel 5 of the first 5G band for cascading. AP1 uses the channel 5 of the second 5G band to access the STA, and AP2 uses the second 5G. The channel 52 of the frequency band is connected to the STA, and the AP3 accesses the STA using the channel 36 of the second 5G frequency band.
- multiple APs use the same channel in the same frequency band for cascading. When the cascading level is more, the performance of the entire cascading path is worse, resulting in poor performance of the distributed coverage WiFi network.
- Embodiments of the present invention provide a channel selection method and apparatus, which solves the problem of poor performance of a distributed coverage WiFi network in the prior art.
- a channel selection method is provided, which is applied to a WiFi network, where the WiFi network includes a first access node, a second access node, and a third access node; and the first access node supports at least two different frequency bands.
- the connection, the at least two different frequency bands include the first frequency band and the second frequency band; the method includes: the first access node directly cascading the second access node as the upper access node through the first frequency band to the second connection Into the node; first The access node receives the cascade access request of the third access node, and allows the third access node to directly cascade to the first access node as the next-level access node through the second frequency band.
- the first access node when the first access node supports the connection of the at least two different frequency bands, the first access node may directly cascade to the second access node by using the first frequency band, and receive the third access node.
- the cascading access request allows the third access node to directly cascade to the first access node through the second frequency band, thereby implementing cascading between access nodes in the WiFi network through different frequency bands, thereby reducing different connections.
- Mutual interference between data sent by the ingress node thereby improving the performance of the entire cascaded path and the performance of the WiFi network.
- the WiFi network further includes a fourth access node, where the fourth access node is a second access node of the second access node,
- the second access node supports the connection of at least two different frequency bands; wherein the fourth access node and the second access node are directly cascaded through the second frequency band; or, the at least two different frequency bands further include the third frequency band, and the fourth connection The ingress node and the second access node are directly cascaded through the third frequency band.
- the WiFi network further includes the fourth access node, and the fourth access node is the upper-level node of the second access node, the second access node may pass through at least two different frequency bands.
- the second frequency band or the third frequency band is directly cascaded to the fourth access node, thereby implementing cascading between different access nodes through crossover or wrong frequency of different frequency bands, thereby reducing data between different access nodes.
- Mutual interference thereby improving the performance of the entire cascade path and the performance of the WiFi network.
- the fourth connection if the fourth access node and the second access node are directly cascaded through the second frequency band, the fourth connection
- the channel in the second frequency band used when the ingress node is directly cascaded with the second access node is different from the channel in the second frequency band used when the first access node allows the third access node to directly cascade.
- the competition between the access nodes in the same frequency band can be avoided by selecting different channels, thereby improving the performance of the WiFi network.
- the first access node uses the second access node as the previous one After the level access node is directly cascaded to the second access node by using the first frequency band, the method further includes: the first access node accessing the workstation of the first access node by using the second frequency band.
- the first access node accesses the workstation of the first access node by using the second frequency band, and the operation is simple and easy to implement, and the first access node accesses the first access node by using the first frequency band. Compared with the workstation, the effect is better.
- the interval between the first frequency band and the second frequency band is greater than the first threshold, The first frequency band and the second frequency band are not separated by a filter; or the interval between the first frequency band and the second frequency band is greater than a second threshold, and the first frequency band and the second frequency band need to be isolated by a filter, and the second threshold is smaller than The first threshold.
- two possibilities of the first frequency band and the second frequency band are provided, so as to ensure that the first access node supports the first frequency band and the second frequency band connection, and provides more first frequency bands and The available range of the second frequency band.
- the first access node uses the second access node as the previous one Before the level access node is directly cascaded to the second access node by using the first frequency band, the method further includes: the first access node determines the second access node; wherein the second access node is according to each of the WiFi networks Cascading parameter information of the access node, from The WiFi network includes one of the access nodes selected by all the access nodes.
- the first access node may determine the second access node, and the second access node selects one of all the access nodes included in the WiFi network according to the cascading parameter information of each access node.
- the access node with the optimal cascading parameter information is used as the second access node, so that the first access node is directly cascaded to the second access node with the optimal cascading parameter information, so as to ensure that the first access node has a comparison.
- Good performance which in turn improves the performance of the WiFi network.
- the cascading parameter information of each access node includes the following information. At least one of: cascade level, signal strength, load information, interference information; or, the cascading parameter information of each access node includes at least one of the following information: throughput, delay, jitter.
- cascade level signal strength, load information, interference information
- the cascading parameter information of each access node includes at least one of the following information: throughput, delay, jitter.
- an access node which is applied to a WiFi network, where the WiFi network includes a first access node, a second access node, and a third access node; the access node is a first access node and supports At least two different frequency bands are connected, at least two different frequency bands include a first frequency band and a second frequency band; the access node includes: a cascading unit, configured to use the second access node as the upper-level access node to pass the first frequency band Directly cascaded to the second access node; the receiving unit is configured to receive the cascade access request of the third access node, and allow the third access node to directly cascade to the next-level access node through the second frequency band to The first access node.
- the WiFi network further includes a fourth access node, where the fourth access node is a second-level access node of the second access node,
- the second access node supports the connection of at least two different frequency bands; wherein the fourth access node and the second access node are directly cascaded through the second frequency band; or, the at least two different frequency bands further include the third frequency band, and the fourth connection The ingress node and the second access node are directly cascaded through the third frequency band.
- the fourth connection if the fourth access node and the second access node are directly cascaded through the second frequency band, the fourth connection The channel in the second frequency band used when the ingress node is directly cascaded with the second access node is different from the channel in the second frequency band used when the first access node allows the third access node to directly cascade.
- the access node further includes: an access unit, configured to pass The second frequency band accesses the workstation of the first access node.
- the interval between the first frequency band and the second frequency band is greater than the first threshold, The first frequency band and the second frequency band are not separated by a filter; or the interval between the first frequency band and the second frequency band is greater than a second threshold, and the first frequency band and the second frequency band need to be isolated by a filter, and the second threshold is smaller than The first threshold.
- the access node further includes: a determining unit, configured to determine And a second access node, wherein the second access node is an access node selected from all access nodes included in the WiFi network according to the cascading parameter information of each access node in the WiFi network.
- the cascading parameter information of each access node includes at least one of the following information: a cascading level, a signal strength, a load information, and interference information; or a cascading of each access node.
- the parameter information includes at least one of the following information: throughput, delay, jitter.
- an access node comprising a processor and a memory, wherein the code stores data and data, and the processor runs the code in the memory, so that the access node performs the first aspect to the first aspect
- a random access method provided by any of the sixth possible implementations.
- a fourth aspect provides a system, where the system includes a first access node, a second access node, and a third access node; wherein the first access node is the sixth aspect of the foregoing second aspect to the second aspect An access node provided by any of the possible implementations, or the first access node is the access node provided by the third aspect above.
- Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the channel selection method provided by the various aspects described above.
- Yet another aspect of the present application provides a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the random access method provided by the various aspects described above.
- 1 is a schematic structural diagram of a WiFi network of a basic BSS
- 2 is a schematic structural diagram of a distributed coverage WiFi network
- 3 is a schematic diagram of a connection of a distributed coverage WiFi network
- FIG. 5 is a schematic structural diagram of an access point device according to an embodiment of the present disclosure.
- FIG. 6 is a flowchart of a channel selection method according to an embodiment of the present invention.
- FIG. 7 is a schematic diagram of a channel of a 5G frequency band according to an embodiment of the present disclosure.
- FIG. 8 is a schematic diagram of a connection of a WiFi network according to an embodiment of the present invention.
- FIG. 9 is a schematic diagram of connection of another WiFi network according to an embodiment of the present invention.
- FIG. 10 is a schematic diagram of connection of another WiFi network according to an embodiment of the present invention.
- FIG. 11 is a flowchart of another channel selection method according to an embodiment of the present invention.
- FIG. 12 is a flowchart of still another channel selection method according to an embodiment of the present invention.
- FIG. 13 is a schematic diagram of a channel of a 2.4G frequency band according to an embodiment of the present disclosure.
- FIG. 14 is a schematic structural diagram of an access node according to an embodiment of the present disclosure.
- FIG. 15 is a schematic structural diagram of another access node according to an embodiment of the present invention.
- An access point refers to a wireless access point, also called a wireless AP, which is an access point of a wireless network and is also the core of a wireless network.
- the main functions of the AP are shown in the following Aspects: management of mobile stations in the cell, including processing of connection and authentication of mobile stations; completion of bridging process of data frames from wired network to BSS, implementing address filtering and address learning functions; completing mobile stations between different BSS Switch management; simple network management functions, etc.
- the AP can be used as a wireless network extension to connect with other APs to expand the coverage of the wireless network.
- Wireless APs are mainly used in broadband homes, inside buildings, and inside campuses.
- the distance can range from tens of meters to hundreds of meters.
- the access point device may be a wireless router, and the wireless router mainly has a routing switching access integrated device and a pure access point device, and the integrated device performs access and routing work, and the pure access device is only responsible for wireless client access.
- an AP may be referred to as an access node, and may be divided into a root node and a slave node.
- the root node refers to the primary AP in the distributed coverage WiFi network.
- the lower level of the primary AP can be cascaded with one or more APs, but the upper AP of the primary AP does not have a cascaded AP.
- a slave node refers to a slave AP in a distributed coverage WiFi network, and a slave AP refers to any AP other than the master AP in a distributed overlay WiFi network.
- the cascading level of the AP included in the distributed coverage WiFi network may be defined.
- the cascading level of the primary AP may be defined as the first level, and the secondary AP directly cascading with the primary AP
- the cascading level is defined as the second level, which is defined as the third level from the AP that is directly cascaded from the AP at the second level, and so on.
- a station also referred to as a mobile station, refers to a device that carries a wireless network interface card (such as a wireless network card).
- the terminal device connected to the AP that is, the wireless client accessing the AP.
- the application scenario of the WiFi network is a distributed coverage scenario of multiple APs, that is, the WiFi network includes multiple cascaded APs, and A workstation STA accessing the plurality of APs.
- the multiple APs included in the WiFi network may be connected by using a WiFi connection, or some APs may be connected by a wired connection.
- the multiple APs are connected by using a WiFi connection as an example.
- the workstation STAs that access the multiple APs include 10 (ie, S1 to S10) as an example, and the access relationship is as shown in FIG. 2, and S1 and S2 are connected to R, S3, and S4 to access A and S5. And S6 access B, S7 and S8 access C, and S9 and S10 access D.
- the embodiments of the present invention mainly relate to a frequency band and a channel connected between nodes in a WiFi network, a frequency band and a channel for accessing the STA, and a problem of how the access node selects an access node from the WiFi network.
- the access point device may include a processor, a memory, a communication interface, and a bus.
- the memory and the communication interface are connected to the processor through a bus. .
- the processor is configured to perform various functions of the access point device, and may include one or more modules, for example, including a central processing unit (CPU), an application-specific integrated circuit (ASIC), And field-programmable gate array (FPGA) and the like.
- the memory can be used to store data, software programs, and modules, and can be implemented by any type of volatile or non-volatile memory or a combination thereof.
- the memory includes flash memory and synchronous dynamic random memory (synchronous dynamic random memory).
- Access memory, SDRAM is an example. Flash can be used to store programs and configuration data, and SDRAM can provide temporary storage for program execution and data processing.
- the access point device acts as a bridge between a distributed system (such as Ethernet) and a wireless network. On the one hand, it needs to communicate with other nodes on the wireless network through the wireless interface of the WLAN, and on the other hand, it needs to be in a distributed system. Other nodes communicate.
- the communication interface of the access point device is implemented by a wired network card and a WLAN network card to support communication between the access point device and other nodes.
- FIG. 6 is a flowchart of a channel selection method according to an embodiment of the present invention, which is applied to a WiFi network, where the WiFi network includes a first access node, a second access node, and a third access node.
- the first access node supports the connection of at least two different frequency bands, and the at least two different frequency bands include the first frequency band and the second frequency band.
- the method includes the following steps.
- Step 201 The first access node directly cascades the second access node as the upper-level access node to the second access node by using the first frequency band.
- the at least two different frequency bands may include two or more frequency bands, and the frequency width of each of the at least two different frequency bands may be the same or different.
- the two different frequency bands may be the first frequency band and the second frequency band, and when the at least two frequency bands include more than two frequency bands, the first frequency band and the second frequency band may be at least Any two of the two different frequency bands.
- At least two different frequency bands may include a 2.4G band and a 5G band.
- at least two different frequency bands may include different frequency bands in the 2.4G frequency band or the 5G frequency band, that is, at least two different frequency bands are different frequency bands in the 2.4G frequency band or the 5G frequency band whose frequency width is less than the 2.4G frequency band or the 5G frequency band.
- the 5G frequency band can be divided into two different frequency bands, and the two different frequency bands can be divided by the channel 100 shown in FIG. 7 , and the frequency band below the channel 100 is one. In the frequency band, the frequency band above channel 100 is the other frequency band.
- at least two different frequency bands may also include some newly defined frequency bands and the like.
- the WiFi network when the at least two different frequency bands include the first frequency band and the second frequency band, if the first access node is directly cascaded with the second access node, and the second access node is the first interface The first access node may directly cascade to the second access node through the first frequency band.
- Step 202 The first access node receives the cascade access request of the third access node, and allows the third access node to be directly cascaded to the first access node by using the second frequency band as the next-level access node.
- the first access node may receive the cascade access request of the third access node, and receive the first access node at the first access node.
- the first access node may allow the third access node to be directly cascaded to the first access node by using the second frequency band as the next-level access node.
- the third access node may traverse all channels to actively send a probe request, and when the first access node receives the probe request, the first access node may return a probe response. Thereafter, the third access node sends an authentication request to the first access node, and the first access node returns an authentication response. Further, the third access node may send an association request to the first access node, where the association request may be a cascade access request in the example of the present invention, and after receiving the association request, the first access node may The three access nodes return an association response to directly cascade the third access node to the first access node.
- the first access node periodically sends a Beacon frame
- the third access node may traverse all channels for interception, thereby detecting the Beacon frame of the first access node. Then, the third access node performs authentication and association with the first access node, and the cascading access request in the embodiment of the present invention may be an association request of the association process.
- the WiFi network includes the first access node X1, the second access node X2, and the third access node X3, if the first frequency band is F1 and the second frequency band is F2, then X1
- the connection relationship between X2 and X3 can be as shown in FIG. 8.
- the first access node when the first access node supports the connection of at least two different frequency bands, and the at least two different frequency bands include the first frequency band and the second frequency band, the first access node may use the second access node.
- the upper-level node is directly cascaded to the second access node by using the first frequency band, and when receiving the cascade access request of the third access node, allowing the third access node to pass the second node as the next-level node
- the frequency band is directly cascaded to the first access node, so that the cascading of the upper-level node and the next-level node is realized through different frequency bands, thereby reducing mutual interference between data sent by different access nodes, thereby improving the entire cascading.
- the performance of the path and the performance of the WiFi network are examples of the path and the performance of the WiFi network.
- the WiFi network further includes a fourth access node, where the fourth access node is a higher-level access node of the second access node, and when the second access node supports the connection of at least two different frequency bands,
- the connection relationship between the four access nodes and the second access node may include the following two situations.
- the fourth access node and the second access node are directly cascaded through the second frequency band.
- the second access node may directly pass the second frequency band of the at least two different frequency bands.
- the first access node is X1
- the second access node is X2
- the third access node is X3
- the fourth access node is X4.
- the first frequency band is F1 and the second frequency band is F2. Description.
- each of the at least two different frequency bands may include two or more channels, and when the second frequency band includes two or more channels, if the fourth access node and the second access The node is directly cascaded through the second frequency band, and the channel in the second frequency band used when the fourth access node is directly cascaded with the second access node is used when the first access node allows the third access node to directly cascade.
- the channels in the second frequency band are different.
- the channel in the second frequency band F2 used by the first access node X1 to allow the third access node X3 to be directly cascaded is represented as C1
- the fourth access node is directly cascaded with the second access node.
- the channel in the second frequency band F2 is denoted as C2.
- the at least two different frequency bands further include a third frequency band
- the fourth access node and the second access node are directly cascaded through the third frequency band.
- the second access node may directly cascade to the fourth access node by using the third frequency band.
- the third frequency band is any one of the at least two different frequency bands except the first frequency band and the second frequency band.
- the first access node is X1, the second access node is X2, the third access node is X3, and the fourth access node is X4, and the first frequency band is F1, and the second frequency band is F2.
- the third frequency band is F3 as an example.
- the second access node when the WiFi network further includes the fourth access node, and the fourth access node is the upper-level node of the second access node, the second access node may pass through at least two different frequency bands.
- the second frequency band or the third frequency band is directly cascaded to the fourth access node, thereby implementing cascading between the access nodes through crossover or wrong frequency of different frequency bands, thereby reducing data between different access nodes.
- Mutual interference thereby improving the performance of the entire cascade path and the performance of the WiFi network.
- the method further includes: step 203.
- the step 203 is located after step 202 as an example.
- Step 203 The first access node accesses the workstation of the first access node by using the second frequency band.
- the first access node may also access the second frequency band after the first access node directly cascades the second access node to the second access node by using the first frequency band.
- a workstation of an access node refers to one or more terminal devices directly accessing the first access node.
- the first access node may also access the workstation of the first access node by using the first frequency band.
- the first access node accesses the workstation of the first access node by using the second frequency band, and the effect is better than that of the first access node accessing the workstation of the first access node by using the first frequency band.
- step 201 the method further includes: step 200.
- Step 200 The first access node determines the second access node.
- the second access node is an access node selected from all access nodes included in the WiFi network according to the cascading parameter information of each access node in the WiFi network.
- the cascading parameter information of each access node may include one or more different information, and the second access node may be all access nodes included in the WiFi network according to the cascading parameter information of each access node. An access node with the optimal cascading parameter information is selected as the second access node.
- the cascading parameter information of each access node may include at least one of the following information: a cascading level, a signal strength, load information, and interference information.
- the cascading level of an access node refers to the number of cascading layers of the access node in the WiFi.
- the WiFi network shown in FIG. 2 the cascading level of the R may be the first level, and the R is directly
- the cascaded levels of cascaded A and B can be the second level.
- the signal strength of an access node refers to the signal strength of the access node at the target node.
- B in FIG. 2 scans the signal strengths of other nodes in the WiFi network, thereby obtaining each node in the other nodes in B.
- the load information of an access node refers to the busyness of the air interface of the access node, including the time when the air interface sends a signal and the idle time.
- the cascading parameter information of each access node includes at least one of the following information: throughput, delay, and jitter.
- the method for estimating the throughput, the delay, and the jitter of each access node may be obtained by using an estimation or measurement method in the prior art.
- the specific estimation or measurement method refers to the related technology, and the embodiment of the present invention does not specifically set forth.
- the first access node may determine the second access node by using the following methods, as follows.
- the first access node acquires cascading parameter information of each access node in the WiFi network, and selects one of all access nodes included in the WiFi network according to the cascading parameter information of each access node.
- the access node acts as a second access node.
- the obtaining, by the first access node, the cascading parameter information of each access node in the WiFi network may include: the first access node sending an information acquisition request to each access node in the WiFi network, so that each access When receiving the information acquisition request, the node returns its own cascading parameter information to the first access node.
- the information acquisition request may be a probe request
- the cascading parameter information may be carried in the probe response.
- each access node in the WiFi network may broadcast its own cascading parameter information such that the first access node receives cascading parameter information for each access node.
- the first access node receives the concatenation indication information sent by the root node in the WiFi network, and the first access node determines the second access node according to the concatenation indication information.
- the second access node may be an access node selected by the root node from all the access nodes included in the WiFi network according to the cascading parameter information of each access node.
- the signal strength may be that the first access node obtains the signal strength of other access nodes in the WiFi network by scanning, and directly cascades to the signal strength. After the strong access node, the signal strength information of each access node is sent to the root node.
- the root node selects one access node from all the access nodes as the second access node according to the signal strength of each access node and other cascading parameter information, and sends the cascading indication information to the first access node,
- the first access node may determine the second access node according to the concatenation indication information, and then the first access node may switch the concatenation path, that is, the first access node directly cascades to the second access node.
- a cascade is selected from all the access nodes included in the WiFi network according to the cascading parameter information of each access node.
- the access node with the optimal parameter information is used as the upper-level access node directly connected by the first access node, thereby directly cascading the first access node to the access node with the optimal cascading parameter information, ensuring the first The access node has better performance, thereby improving the performance of the WiFi network.
- the following two situations may exist for the first frequency band and the second frequency band in the foregoing steps 201 and 202, as follows.
- the interval between the first frequency band and the second frequency band is greater than the first threshold, and the first frequency band and the second frequency band are not isolated by a filter, and the first threshold may be set in advance. That is, the interval between the first frequency band and the second frequency band is relatively large, so that the interference between the first frequency band and the second frequency band is small.
- the first access node supports the connection between the first frequency band and the second frequency band, the first access node does not need to be Isolate by a filter.
- the second threshold is smaller than the first threshold, and the second threshold may be set in advance. That is, the interval between the first frequency band and the second frequency band is small, so that the interference between the first frequency band and the second frequency band is large.
- the first frequency band may include multiple channels, and the first access node directly cascades the second access node as the upper-level access node to the second access node through the first frequency band, specifically It is directly cascaded to the second access node through a channel in the first frequency band.
- the first frequency band is a 5G frequency band
- FIG. 7 is a channel distribution diagram of the 5G frequency band.
- the 5G frequency band can be divided into multiple different channels, and FIG. 7 respectively
- the channel bandwidths are 20 MHz, 40 MHz, 80 MHz, and 160 MHz as an example.
- the channel bandwidth is 20M.
- the first access node can directly cascade to the channel 100 with the channel bandwidth of 20M. Two access nodes.
- FIG. 13 is a channel distribution map of the 2.4G frequency band, and the 2.4G frequency band may include the channel 1 - channel 14 when the first access node passes the first When a frequency band is directly cascaded to the second access node, the first access node may directly cascade to the second access node through channel 1.
- the channel bandwidth of the 5G frequency band is generally higher than the channel bandwidth of the 2.4G frequency band
- the 5G frequency band is directly cascaded to the second access node. To improve the performance of the WiFi network.
- the first access node supports the connection of at least two different frequency bands, and the first access node may directly cascade to the second access node by using the first frequency band of the at least two different frequency bands, and allow Third access The node directly cascades to the first access node through the second frequency band, thereby implementing cascading between access nodes in the WiFi network through different frequency bands, thereby reducing mutual interference between data sent by different access nodes, thereby improving The performance of the entire cascaded path, as well as the performance of the WiFi network.
- each network element for example, an access node, such as a first access node, a second access node, and a third access node, includes a hardware structure and/or software for performing each function in order to implement the foregoing functions. Module.
- the present invention can be implemented in a combination of hardware or hardware and computer software in conjunction with the network elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
- the embodiment of the present invention may divide the function module into the access node according to the foregoing method example.
- each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
- the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
- FIG. 14 is a schematic diagram showing a possible structure of an access node involved in the foregoing embodiment, where the access node 300 includes: a cascading unit 301 and a receiving unit. 302.
- the cascading unit 301 is configured to perform step 201 in FIG. 6, FIG. 11, or FIG. 12; the receiving unit 302 is configured to perform step 202 in FIG. 6, FIG. 11, or FIG.
- the access node 300 may further include: an access unit 303, where the access unit 303 is configured to perform step 203 in FIG. 11 or FIG.
- the access node 300 can also include a determining unit 304 for performing step 200 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional description of the corresponding functional modules, and details are not described herein again.
- the foregoing cascading unit 301, the access unit 303 and the determining unit 304 may be processors, the receiving unit 302 may be a receiver, and the receiver and the transmitter may constitute a communication interface.
- FIG. 15 is a schematic diagram showing a possible logical structure of an access node 310 involved in the foregoing embodiment according to an embodiment of the present invention.
- the access node 310 includes a processor 312, a communication interface 313, a memory 311, and a bus 314.
- the processor 312, the communication interface 313, and the memory 311 are connected to one another via a bus 314.
- the processor 312 is configured to perform control management on the action of the access node 310.
- the processor 312 is configured to perform step 201 in FIG. 6, step 201 and step 203 in FIG. 11, or Step 200, step 201, and step 203 in Figure 12, and/or other processes for the techniques described herein.
- Communication interface 313 is used to support the access node 310 for communication.
- the memory 311 is configured to store program codes and data of the access node 310.
- the processor 312 can be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, combinations of digital signal processors and microprocessors, and the like.
- Bus 314 can be a peripheral component A Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
- PCI Peripheral Component Interconnect
- EISA Extended Industry Standard Architecture
- a computer readable storage medium stores computer executed instructions.
- the device executes FIG. 6
- FIG. 6 The channel selection method provided in FIG. 11, or FIG.
- a computer program product comprising computer executable instructions stored in a computer readable storage medium; at least one processor of the device may be Reading the storage medium reads the computer execution instructions, and the at least one processor executing the computer execution instructions causes the apparatus to implement the channel selection method provided in FIG. 6, FIG. 11, or FIG.
- a system comprising a first access node, a second access node, and a third access node; wherein the first access node supports at least two different frequency bands
- the connection, and the first access node may be the access node shown in Figure 14 or Figure 15 above.
- the first access node supports the connection of at least two different frequency bands, and the first access node may directly cascade to the second access node by using the first frequency band of the at least two different frequency bands, and allow The third access node is directly cascaded to the first access node by using the second frequency band, thereby implementing cascading between access nodes in the WiFi network through different frequency bands, and reducing mutual data between different access nodes. Interference, thereby improving the performance of the entire cascaded path, as well as the performance of the WiFi network.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供一种通道选择方法及装置,涉及通信技术领域,用于提高分布式覆盖的WiFi网络的性能。所述WiFi网络包括第一接入节点、第二接入节点和第三接入节点;所述第一接入节点支持至少两个不同频段的连接,所述至少两个不同频段包括第一频段和第二频段;所述方法包括:所述第一接入节点将所述第二接入节点作为上一级接入节点通过所述第一频段直接级联到所述第二接入节点;所述第一接入节点接收所述第三接入节点的级联接入请求,并允许所述第三接入节点作为下一级接入节点通过所述第二频段直接级联到所述第一接入节点。
Description
本发明实施例涉及通信技术领域,尤其涉及一种通道选择方法及装置。
基础型基本服务集(basic service set,BSS)的WiFi网络结构如图1所示,包括一个接入点(access point,AP)和一个或者多个工作站(station,STA),一个或者多个STA通过AP接入WiFi网络,并可以使用AP提供的服务。目前,由于大多数WiFi网络的应用范围较大,单个AP无法覆盖,需要用到分布式覆盖。比如,图2所示的分布式覆盖的WiFi网络包括多个AP,多个AP之间存在级联关系,每个AP可以接入一个或者多个STA。由于现有AP可以支持两个或者两个以上频段的连接,每个频段可以包括多个信道,因此,在分布式覆盖的WiFi网络中,在AP进行级联时存在通道选择的需求。
现有技术中,在AP只支持一个频段的连接时,自然只能用该频段进行级联和接入;如果同时支持两个频段的连接时,通常有以下两种方法进行通道选择。第一种方法,如图3所示,AP同时使用两个频段作为AP级联和AP接入STA时的频段,且在一个频段内AP用于级联的信道和用于接入的信道是一致的(图3中以2.4G和5G频段为例,AP使用2.4G频段的信道1进行级联和接入,同时使用5G频段的信道36进行级联和接入),从而WiFi网络中的多个AP和多个STA之间存在空中传输时间公平性(airtime fairness)竞争,进而导致WiFi网络的性能较差。
第二种方法,如图4所示,所有AP使用其中的一个共同频段作为AP级联时的频段,使用另一个频段作为AP接入STA时的频段,每个AP接入STA时使用的信道可以相同,也可以不同。图4中以两个频段均为5G频段为例,所有AP均使用第一个5G频段的信道100进行级联,AP1使用第二个5G频段的信道36接入STA、AP2使用第二个5G频段的信道52接入STA、AP3使用第二个5G频段的信道36接入STA。上述方法中,多个AP使用同一频段的相同信道进行级联,当级联层级越多时,整个级联路径的性能就越差,从而导致分布式覆盖的WiFi网络的性能较差。
发明内容
本发明的实施例提供一种通道选择方法及装置,解决了现有技术中分布式覆盖的WiFi网络的性能较差的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种通道选择方法,应用于WiFi网络中,该WiFi网络包括第一接入节点、第二接入节点和第三接入节点;第一接入节点支持至少两个不同频段的连接,至少两个不同频段包括第一频段和第二频段;该方法包括:第一接入节点将第二接入节点作为上一级接入节点通过第一频段直接级联到第二接入节点;第一
接入节点接收第三接入节点的级联接入请求,并允许第三接入节点作为下一级接入节点通过第二频段直接级联到第一接入节点。上述技术方案中,在第一接入节点支持至少两个不同频段的连接时,第一接入节点可以通过第一频段直接级联至第二接入节点,并在接收到第三接入节点的级联接入请求时,允许第三接入节点通过第二频段直接级联至第一接入节点,从而通过不同频段实现WiFi网络中接入节点之间的级联,减小了不同接入节点发送的数据之间的相互干扰,从而提高整个级联路径的性能、以及WiFi网络的性能。
结合第一方面,在第一方面的第一种可能的实现方式中,该WiFi网络还包括第四接入节点,第四接入节点为第二接入节点的上一级接入节点,第二接入节点支持至少两个不同频段的连接;其中,第四接入节点与第二接入节点通过第二频段直接级联;或者,至少两个不同频段还包括第三频段,第四接入节点与第二接入节点通过第三频段直接级联。上述可能的实现方式中,当WiFi网络还包括第四接入节点,且第四接入节点为第二接入节点的上一级节点时,第二接入节点可以通过至少两个不同频段中的第二频段或者第三频段直接级联到第四接入节点,从而通过不同频段的交叉或者错频实现不同接入节点之间的级联,减小了不同接入节点发送的数据之间的相互干扰,从而提高整个级联路径的性能、以及WiFi网络的性能。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,若第四接入节点与第二接入节点通过第二频段直接级联,第四接入节点与第二接入节点直接级联时使用的第二频段中的信道与第一接入节点允许第三接入节点直接级联时使用的第二频段中的信道不同。上述可能的实现方式中,在WiFi网络中接入节点同时使用第二频段进行级联时,通过选择不同的信道可以避免使用相同频段的接入节点之间的竞争,进而提高WiFi网络的性能。
结合第一方面至第一方面的第二种可能的实现方式中的任一种,在第一方面的第三种可能的实现方式中,第一接入节点将第二接入节点作为上一级接入节点通过第一频段直接级联到第二接入节点之后,该方法还包括:第一接入节点通过第二频段接入第一接入节点的工作站。上述可能的实现方式中,第一接入节点通过第二频段接入第一接入节点的工作站,操作简单容易实现,且与第一接入节点通过第一频段接入第一接入节点的工作站相比,效果更优。
结合第一方面至第一方面的第三种可能的实现方式中的任一种,在第一方面的第四种可能的实现方式中,第一频段与第二频段的间隔大于第一阈值,且第一频段与第二频段无需通过滤波器进行隔离;或者,第一频段与第二频段的间隔大于第二阈值,且第一频段与第二频段需要通过滤波器进行隔离,第二阈值小于第一阈值。上述可能的实现方式中,提供了第一频段和第二频段的两种可能性,从而在保证第一接入节点支持第一频段和第二频段连接的同时,提供更多的第一频段和第二频段的可用范围。
结合第一方面至第一方面的第四种可能的实现方式中的任一种,在第一方面的第五种可能的实现方式中,第一接入节点将第二接入节点作为上一级接入节点通过第一频段直接级联到第二接入节点之前,该方法还包括:第一接入节点确定第二接入节点;其中,第二接入节点是根据WiFi网络中每个接入节点的级联参数信息,从
WiFi网络包括的所有接入节点中选择的一个接入节点。上述可能的实现方式中,第一接入节点可以确定第二接入节点,第二接入节点是根据每个接入节点的级联参数信息,从WiFi网络包括的所有接入节点中选择一个级联参数信息最优的接入节点作为第二接入节点,从而将第一接入节点直接级联到级联参数信息最优的第二接入节点,保证第一接入节点的具有较好性能,进而提高WiFi网络的性能。
结合第一方面至第一方面的第五种可能的实现方式中的任一种,在第一方面的第六种可能的实现方式中,每个接入节点的级联参数信息包括以下信息中的至少一个:级联层级、信号强度、负载信息、干扰信息;或者,每个接入节点的级联参数信息包括以下信息中的至少一个:吞吐量、时延、抖动。上述可能的实现方式中,提供了几种可能的级联参数信息,从而在根据该级联参数信息选择第二接入节点后,可以保证第一接入节点在直接级联到第二接入节点时具有较好性能,进而提高WiFi网络的性能。
第二方面,提供一种接入节点,应用于WiFi网络中,该WiFi网络包括第一接入节点、第二接入节点和第三接入节点;接入节点为第一接入节点且支持至少两个不同频段的连接,至少两个不同频段包括第一频段和第二频段;接入节点包括:级联单元,用于将第二接入节点作为上一级接入节点通过第一频段直接级联到第二接入节点;接收单元,用于接收第三接入节点的级联接入请求,并允许第三接入节点作为下一级接入节点通过第二频段直接级联到第一接入节点。
结合第二方面,在第二方面的第一种可能的实现方式中,该WiFi网络还包括第四接入节点,第四接入节点为第二接入节点的上一级接入节点,第二接入节点支持至少两个不同频段的连接;其中,第四接入节点与第二接入节点通过第二频段直接级联;或者,至少两个不同频段还包括第三频段,第四接入节点与第二接入节点通过第三频段直接级联。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,若第四接入节点与第二接入节点通过第二频段直接级联,第四接入节点与第二接入节点直接级联时使用的第二频段中的信道与第一接入节点允许第三接入节点直接级联时使用的第二频段中的信道不同。
结合第二方面至第二方面的第二种可能的实现方式中的任一种,在第二方面的第三种可能的实现方式中,接入节点还包括:接入单元,用于通过第二频段接入第一接入节点的工作站。
结合第二方面至第二方面的第三种可能的实现方式中的任一种,在第二方面的第四种可能的实现方式中,第一频段与第二频段的间隔大于第一阈值,且第一频段与第二频段无需通过滤波器进行隔离;或者,第一频段与第二频段的间隔大于第二阈值,且第一频段与第二频段需要通过滤波器进行隔离,第二阈值小于第一阈值。
结合第二方面至第二方面的第四种可能的实现方式中的任一种,在第二方面的第五种可能的实现方式中,该接入节点还包括:确定单元,用于确定第二接入节点;其中,第二接入节点是根据WiFi网络中每个接入节点的级联参数信息,从WiFi网络包括的所有接入节点中选择的一个接入节点。
结合第二方面至第二方面的第五种可能的实现方式中的任一种,在第二方面的
第六种可能的实现方式中,每个接入节点的级联参数信息包括以下信息中的至少一个:级联层级、信号强度、负载信息、干扰信息;或者,每个接入节点的级联参数信息包括以下信息中的至少一个:吞吐量、时延、抖动。
第三方面,提供一种接入节点,该接入节点包括处理器和存储器,存储器中存储代码和数据,处理器运行存储器中的代码,使得接入节点执行上述第一方面至第一方面的第六种可能的实现方式中的任一种所提供的随机接入方法。
第四方面,提供一种系统,该系统包括第一接入节点、第二接入节点和第三接入节点;其中,第一接入节点为上述第二方面至第二方面的第六种可能的实现方式中的任一种所提供的接入节点,或者第一接入节点为上述第三方面所提供的接入节点。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所提供的通道选择方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所提供的随机接入方法。
可以理解地,上述提供的任一种通道选择方法的装置、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
图1为一种基础型BSS的WiFi网络的结构示意图;
图2为一种分布式覆盖的WiFi网络的结构示意图;
图3为一种分布式覆盖的WiFi网络的连接示意图;
图4为另一种分布式覆盖的WiFi网络的连接示意图;
图5为本发明实施例提供的一种接入点设备的结构示意图;
图6为本发明实施例提供的一种通道选择方法的流程图;
图7为本发明实施例提供的一种5G频段的信道示意图;
图8为本发明实施例提供的一种WiFi网络的连接示意图;
图9为本发明实施例提供的另一种WiFi网络的连接示意图;
图10为本发明实施例提供的又一种WiFi网络的连接示意图;
图11为本发明实施例提供的另一种通道选择方法的流程图;
图12为本发明实施例提供的又一种通道选择方法的流程图;
图13为本发明实施例提供的一种2.4G频段的信道示意图;
图14为本发明实施例提供的一种接入节点的结构示意图;
图15为本发明实施例提供的另一种接入节点的结构示意图。
在介绍本发明实施例之前,首先对本发明实施例涉及的技术名词进行介绍说明。
接入点(access point,AP),是指无线接入点,也可以称为无线AP,它是一个无线网络的接入点,也是无线网络的核心。在无线网络中,AP的主要功能表现在以下几
个方面:对小区内移动站点的管理,包括移动站点的连接、认证等的处理;完成数据帧从有线网络到BSS的桥接过程,实现地址过滤以及地址的学习功能;完成移动站点在不同BSS间的切换管理;简单的网络管理功能等。另外,AP可以作为无线网络扩展使用,与其他AP连接以扩大无线网络的覆盖范围。无线AP主要用于宽带家庭、大楼内部以及园区内部,其距离覆盖可以为几十米至上百米。其中,接入点设备可以为无线路由器,无线路由器主要有路由交换接入一体设备和纯接入点设备,一体设备执行接入和路由工作,纯接入设备只负责无线客户端的接入。
在本发明实施例中,可以将AP称为接入节点,且可以分为根节点和从节点。其中,根节点,是指分布式覆盖的WiFi网络中的主AP,主AP的下级可以级联一个或者多个AP,但主AP的上级不存在级联的AP。从节点是指分布式覆盖的WiFi网络中的从AP,从AP是指分布式覆盖的WiFi网络中除主AP以外的其他任一AP。在本发明实施例中,可以定义分布式覆盖的WiFi网络包括的AP的级联层级,具体的,可以将主AP的级联层级定义为第一级,与主AP直接级联的从AP的级联层级定义为第二级,与第二级的从AP直接级联的从AP定义为第三级,以此类推。
工作站(station,STA),也可以称为移动站点,是指携带有无线网络接口卡(比如无线网卡)的设备。在本发明实施例中,是指连接到AP的终端设备,即接入AP的无线客户端。
图2为本发明实施例提供的一种WiFi网络的结构示意图,参见图2,该WiFi网络的应用场景为多个AP的分布式覆盖场景,即该WiFi网络包括多个级联的AP、以及接入该多个AP的工作站STA。其中,该WiFi网络包括的多个AP之间可以完全通过WiFi方式连接,也可以存在部分AP通过有线方式进行连接,图2中以该多个AP之间完全通过WiFi方式连接为例进行说明。图2中的多个AP包括R、A、B、C和D,其中R为根节点,A、B、C和D为从节点,也可以称为R的下一级节点,其级联关系如图2所示。图2中以接入该多个AP的工作站STA包括10个(即S1~S10)为例,其接入关系如图2所示,S1和S2接入R、S3和S4接入A、S5和S6接入B、S7和S8接入C、以及S9和S10接入D。本发明实施例中主要涉及WiFi网络中节点之间连接的频段和信道、接入STA的频段和信道,以及待接入节点如何从WiFi网络中选择接入节点的问题。
图5为本发明实施例提供的一种接入点设备的结构示意图,参见图5,该接入点设备可以包括处理器、存储器、通信接口和总线,存储器和通信接口通过总线与处理器连接。
其中,处理器用于执行接入点设备的各种功能,可以包括一个或者多个模块,比如,包括中央处理单元(central processing unit,CPU)、专用集成电路(application-specific integrated circuit,ASIC)、以及现场可编程门阵列(field-programmable gate array,FPGA)等。存储器可用于存储数据、软件程序以及模块,可以由任何类型的易失性或非易失性存储器或者它们的组合实现,图4中以存储器包括闪存(Flash)和同步动态随机存储器(synchronous dynamic random access memory,SDRAM)为例进行说明。Flash可用于存储程序和配置数据,SDRAM可以为程序运行和数据处理提供临时存储空间。通信接口用于支持接入点设备与其他设备
进行通信,接入点设备作为连接分布式系统(比如,以太网)和无线网络的桥梁,一方面需要通过WLAN的无线接口与无线网络上的其他节点通信,另一方面需要与分布式系统中的其他节点通信。图5中以接入点设备的通信接口通过有线网卡和WLAN网卡来实现,以支持接入点设备与其他节点的通信。
图6为本发明实施例提供的一种通道选择方法的流程图,应用于WiFi网络中,该WiFi网络包括第一接入节点、第二接入节点和第三接入节点。其中,第一接入节点支持至少两个不同频段的连接,至少两个不同频段包括第一频段和第二频段,参见图6,该方法包括以下几个步骤。
步骤201:第一接入节点将第二接入节点作为上一级接入节点通过第一频段直接级联到第二接入节点。
其中,至少两个不同频段可以包括两个或者两个以上的频段,且至少两个不同频段中每个频段的频率宽度可以是一样的,也可以是不一样的。当至少两个不同频段包括两个频段时,该两个不同频段可以是第一频段和第二频段,当至少两个频段包括两个以上的频段时,第一频段和第二频段可以是至少两个不同频段中的任意两个频段。
比如,至少两个不同频段可以包括2.4G频段和5G频段。或者,至少两个不同频段可以包括2.4G频段或者5G频段中的不同频段,即至少两个不同频段是2.4G频段或者5G频段中频率宽度小于2.4G频段或者5G频段的频率宽度的不同频段。比如,如图7所示,以5G频段为例,可以将5G频段划分为两个不同频段,该两个不同频段可以通过图7中所示的信道100进行划分,信道100以下的频段为一个频段,信道100以上的频段为另一个频段。进一步的,至少两个不同频段还可以包括一些新定义的频段等等。
具体的,在WiFi网络中,当至少两个不同频段包括第一频段和第二频段时,若第一接入节点与第二接入节点直接级联,且第二接入节点为第一接入节点的上一级节点,则第一接入节点可以通过第一频段直接级联到第二接入节点。
步骤202:第一接入节点接收第三接入节点的级联接入请求,并允许第三接入节点作为下一级接入节点通过第二频段直接级联到第一接入节点。
第一接入节点在通过第一频段直接级联至第二接入节点之后,第一接入节点可以接收第三接入节点的级联接入请求,且在第一接入节点接收到第三接入节点的级联接入请求时,第一接入节点可以允许第三接入节点作为下一级接入节点通过第二频段直接级联到第一接入节点。
在实际应用中,第三接入节点可以遍历所有信道主动发送探测请求,当第一接入节点接收到该探测请求时,第一接入节点可以返回探测响应。之后,第三接入节点向第一接入节点发送认证请求,第一接入节点返回认证响应。进一步的,第三接入节点可以向第一接入节点发送关联请求,该关联请求可以是本发明实例中的级联接入请求,第一接入节点在接收到关联请求之后,可以向第三接入节点返回关联响应,以将第三接入节点直接级联到第一接入节点。
或者,第一接入节点定期的发送Beacon帧,第三接入节点可以遍历所有信道进行侦听,从而侦听到第一接入节点的Beacon帧。之后,第三接入节点与第一接入节点之间进行认证和关联,本发明实施例中的级联接入请求可以为关联过程的关联请求。
具体的,如图8所示,在WiFi网络包括第一接入节点X1、第二接入节点X2和第三接入节点X3时,若第一频段为F1、第二频段为F2,则X1、X2和X3的连接关系可以如图8所示。
在本发明实施例中,在第一接入节点支持至少两个不同频段的连接,且至少两个不同频段包括第一频段和第二频段时,第一接入节点可以将第二接入节点作为上一级节点通过第一频段直接级联至第二接入节点,并在接收到第三接入节点的级联接入请求时,允许第三接入节点作为下一级节点通过第二频段直接级联至第一接入节点,从而通过不同频段实现上一级节点与下一级节点的级联,减小了不同接入节点发送的数据之间的相互干扰,从而提高整个级联路径的性能、以及WiFi网络的性能。
进一步的,该WiFi网络还包括第四接入节点,第四接入节点为第二接入节点的上一级接入节点,当第二接入节点支持至少两个不同频段的连接时,第四接入节点与第二接入节点的连接关系可以包括以下两种情况。
第一种、如图9所示,第四接入节点与第二接入节点通过第二频段直接级联。具体的,第二接入节点在作为第四接入节点的下一级节点直接级联到第四接入节点时,第二接入节点可以通过至少两个不同频段中的第二频段直接级联到第四接入节点。图9中以第一接入节点为X1、第二接入节点为X2、第三接入节点为X3和第四接入节点为X4,第一频段为F1、第二频段为F2为例进行说明。
进一步的,至少两个不同频段中的每个频段可以包括两个或者两个以上的信道,当第二频段包括两个或者两个以上的信道时,若第四接入节点与第二接入节点通过第二频段直接级联,则第四接入节点与第二接入节点直接级联时使用的第二频段中的信道与第一接入节点允许第三接入节点直接级联时使用的第二频段中的信道不同。图中,第一接入节点X1允许第三接入节点X3直接级联时使用的第二频段F2中的信道表示为C1、第四接入节点与第二接入节点直接级联时使用的第二频段F2中的信道表示为C2。
第二种、如图10所示,该至少两个不同频段还包括第三频段,第四接入节点与第二接入节点通过第三频段直接级联。具体的,第二接入节点在作为第四接入节点的下一级节点直接级联到第四接入节点时,第二接入节点可以通过第三频段直接级联到第四接入节点,第三频段是至少两个不同频段中除第一频段和第二频段之外的任一频段。其中,图10中以第一接入节点为X1、第二接入节点为X2、第三接入节点为X3和第四接入节点为X4,第一频段为F1、第二频段为F2和第三频段为F3为例进行说明。
在本发明实施例中,当WiFi网络还包括第四接入节点,且第四接入节点为第二接入节点的上一级节点时,第二接入节点可以通过至少两个不同频段中的第二频段或者第三频段直接级联到第四接入节点,从而通过不同频段的交叉或者错频实现接入节点之间的级联,减小了不同接入节点发送的数据之间的相互干扰,从而提高整个级联路径的性能、以及WiFi网络的性能。
进一步的,参见图11,在步骤201之后,该方法还包括:步骤203。图11中以步骤203位于步骤202之后为例进行说明。
步骤203:第一接入节点通过第二频段接入第一接入节点的工作站。
其中,当第一接入节点将第二接入节点作为上一级接入节点通过第一频段直接级联到第二接入节点之后,第一接入节点还可以通过第二频段接入第一接入节点的工作站,第一接入节点的工作站是指直接接入第一接入节点的一个或者多个终端设备。可选的,第一接入节点也可以通过第一频段接入第一接入节点的工作站。在实际应用中,第一接入节点通过第二频段接入第一接入节点的工作站实现方便,且效果优于第一接入节点通过第一频段接入第一接入节点的工作站。
进一步的,参见图12,在步骤201之前,该方法还包括:步骤200。
步骤200:第一接入节点确定第二接入节点。其中,第二接入节点是根据WiFi网络中每个接入节点的级联参数信息,从WiFi网络包括的所有接入节点中选择的一个接入节点。
其中,每个接入节点的级联参数信息可以包括一个或者多个不同的信息,第二接入节点可以是根据每个接入节点的级联参数信息,从WiFi网络包括的所有接入节点中选择一个级联参数信息最优的接入节点作为第二接入节点。
可选的,每个接入节点的级联参数信息可以包括以下信息中的至少一个:级联层级、信号强度、负载信息、干扰信息。其中,一个接入节点的级联层级是指该接入节点在WiFi中所处的级联层数,比如图2所示的WiFi网络,R的级联层级可以为第一级,与R直接级联的A和B的级联层级可以为第二级。一个接入节点的信号强度是指该接入节点在目标节点处的信号强度,比如图2中的B对WiFi网络中的其他节点的信号强度进行扫描,从而得到其他节点中每个节点在B处的信号强度。一个接入节点的负载信息是指该接入节点的空口繁忙程度,包括该空口发送信号的时间和空闲的时间。
或者,每个接入节点的级联参数信息包括以下信息中的至少一个:吞吐量、时延、抖动。其中,每个接入节点的吞吐量、时延和抖动的方法可以通过现有技术中的估算或测量方法进行获取,具体的估算或测量方法参考相关技术,本发明实施例对此不做具体阐述。
具体的,第一接入节点可以通过以下几种方法确定第二接入节点,如下所述。
第一种方法、第一接入节点获取WiFi网络中每个接入节点的级联参数信息,并根据每个接入节点的级联参数信息,从WiFi网络包括的所有接入节点中选择一个接入节点作为第二接入节点。
其中,第一接入节点获取WiFi网络中每个接入节点的级联参数信息可以包括:第一接入节点向WiFi网络中的每个接入节点发送信息获取请求,以使每个接入节点在接收到该信息获取请求时,将其自身的级联参数信息返回给第一接入节点,比如,信息获取请求具体可以是探测请求,级联参数信息可以携带在探测响应中。或者,WiFi网络中的每个接入节点可以广播自身的级联参数信息,以使第一接入节点接收到每个接入节点的级联参数信息。
第二种方法、第一接入节点接收WiFi网络中根节点发送的级联指示信息,第一接入节点根据级联指示信息确定第二接入节点。其中,第二接入节点可以是根节点根据每个接入节点的级联参数信息,从WiFi网络包括的所有接入节点中选择的一个接入节点。
其中,当每个接入节点的级联参数信息包括信号强度时,该信号强度可以是第一接入节点通过扫描获取WiFi网络中其他接入节点的信号强度,并直接级联到信号强度最强的接入节点之后,将每个接入节点的信号强度信息发送给根节点的。根节点根据每个接入节点的信号强度、以及其他级联参数信息,从所有接入节点中选择一个接入节点作为第二接入节点,并向第一接入节点发送级联指示信息,以使第一接入节点根据级联指示信息确定第二接入节点,之后第一接入节点可以切换级联路径,即第一接入节点直接级联至第二接入节点。
在本发明实施例中,在第一接入节点级联到上一级接入节点时,根据每个接入节点的级联参数信息,从WiFi网络包括的所有接入节点中选择一个级联参数信息最优的接入节点作为第一接入节点直接级联的上一级接入节点,从而将第一接入节点直接级联到级联参数信息最优的接入节点,保证第一接入节点的具有较好性能,进而提高WiFi网络的性能。
进一步的,在本发明实施例中,对于上述步骤201和步骤202中的第一频段和第二频段可以存在以下两种情况,具体如下所述。
其中,第一频段与第二频段的间隔大于第一阈值,且第一频段与第二频段无需通过滤波器进行隔离,第一阈值可以事先进行设置。即第一频段与第二频段的间隔较大,从而第一频段与第二频段的干扰较小,当第一接入节点支持第一频段和第二频段的连接时,第一接入节点无需通过滤波器进行隔离。
或者,第一频段与第二频段的间隔大于第二阈值,且第一频段与第二频段需要通过滤波器进行隔离,第二阈值小于第一阈值,第二阈值可以事先进行设置。即第一频段与第二频段的间隔较小,从而第一频段与第二频段的干扰较大,当第一接入节点支持第一频段和第二频段的连接时,为了避免第一频段与第二频段之间的干扰,第一接入节点需要通过滤波器进行隔离。
另外,在上述步骤201中,第一频段可以包括多个信道,第一接入节点将第二接入节点作为上一级接入节点通过第一频段直接级联到第二接入节点,具体是通过第一频段中的信道直接级联到第二接入节点。
比如,如上述图7所示的第一频段为5G频段为例,图7为5G频段的信道分布图,根据不同的信道带宽可以将5G频段划分为多个不同的信道,图7中分别以信道带宽为20MHz、40MHz、80MHz和160MHz为例进行说明。具体的,以信道带宽为20M为例,第一接入节点通过第一频段直接级联到第二接入节点时,第一接入节点可以通过信道带宽为20M的信道100直接级联到第二接入节点。
再比如,如图13所示,以第一频段为2.4G频段为例,图13为2.4G频段的信道分布图,2.4G频段可以包括信道1-信道14,当第一接入节点通过第一频段直接级联到第二接入节点时,第一接入节点可以通过信道1直接级联到第二接入节点。
在实际应用中,由于5G频段的信道带宽普遍高于2.4G频段的信道带宽,在第一接入节点同时支持2.4G频段和5G频段时,通常通过5G频段直接级联至第二接入节点,以提高WiFi网络的性能。
在本发明实施例中,在第一接入节点支持至少两个不同频段的连接,第一接入节点可以通过至少两个不同频段中第一频段直接级联到第二接入节点,并允许第三接入
节点通过第二频段直接级联到第一接入节点,从而通过不同频段实现WiFi网络中接入节点之间的级联,减小了不同接入节点发送的数据之间的相互干扰,从而提高整个级联路径的性能、以及WiFi网络的性能。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如第一接入节点、第二接入节点和第三接入节点等接入节点为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对接入节点进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图14示出了上述实施例中所涉及的接入节点的一种可能的结构示意图,该接入节点300包括:级联单元301和接收单元302。其中,级联单元301用于执行图6、图11或图12中的步骤201;接收单元302用于执行图6、图11或图12中的步骤202。进一步的,该接入节点300还可以包括:接入单元303,接入单元303用于执行图11或图12中的步骤203。该接入节点300还可以包括:确定单元304,确定单元304用于执行图12中的步骤200。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在硬件实现上,上述级联单元301、接入单元303和确定单元304可以为处理器,接收单元302可以为接收器,接收器与发送器可以构成通信接口。
图15所示,为本发明的实施例提供的上述实施例中所涉及的接入节点310的一种可能的逻辑结构示意图。该接入节点310包括:处理器312、通信接口313、存储器311以及总线314。处理器312、通信接口313以及存储器311通过总线314相互连接。在发明的实施例中,处理器312用于对该接入节点310的动作进行控制管理,例如,处理器312用于执行图6中的步骤201、图11中的步骤201和步骤203、或者图12中的步骤200、步骤201和步骤203,和/或用于本文所描述的技术的其他过程。通信接口313用于支持该接入节点310进行通信。存储器311,用于存储该接入节点310的程序代码和数据。
其中,处理器312可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线314可以是外设部件互
连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本发明的另一实施例中,还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当设备的至少一个处理器执行该计算机执行指令时,设备执行图6、图11、或者图12所提供的通道选择方法。
在本发明的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施图6、图11、或者图12所提供的通道选择方法。
在本发明的另一实施例中,还提供一种系统,该系统包括第一接入节点、第二接入节点和第三接入节点;其中,第一接入节点支持至少两个不同频段的连接,且第一接入节点可以为上述图14或者图15所示的接入节点。
在本发明实施例中,在第一接入节点支持至少两个不同频段的连接,第一接入节点可以通过至少两个不同频段中第一频段直接级联到第二接入节点,并允许第三接入节点通过第二频段直接级联到第一接入节点,从而通过不同频段实现WiFi网络中接入节点之间的级联,减小了不同接入节点发送的数据之间的相互干扰,从而提高整个级联路径的性能、以及WiFi网络的性能。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (16)
- 一种通道选择方法,应用于WiFi网络中,其特征在于,所述WiFi网络包括第一接入节点、第二接入节点和第三接入节点;所述第一接入节点支持至少两个不同频段的连接,所述至少两个不同频段包括第一频段和第二频段;所述方法包括:所述第一接入节点将所述第二接入节点作为上一级接入节点通过所述第一频段直接级联到所述第二接入节点;所述第一接入节点接收所述第三接入节点的级联接入请求,并允许所述第三接入节点作为下一级接入节点通过所述第二频段直接级联到所述第一接入节点。
- 根据权利要求1所述的方法,其特征在于,所述WiFi网络还包括第四接入节点,所述第四接入节点为所述第二接入节点的上一级接入节点,所述第二接入节点支持所述至少两个不同频段的连接;其中,所述第四接入节点与所述第二接入节点通过所述第二频段直接级联;或者,所述至少两个不同频段还包括第三频段,所述第四接入节点与所述第二接入节点通过所述第三频段直接级联。
- 根据权利要求2所述的方法,其特征在于,若所述第四接入节点与所述第二接入节点通过所述第二频段直接级联,所述第四接入节点与所述第二接入节点直接级联时使用的所述第二频段中的信道与所述第一接入节点允许所述第三接入节点直接级联时使用的所述第二频段中的信道不同。
- 根据权利要求1-3任一项所述的方法,其特征在于,所述第一接入节点将所述第二接入节点作为上一级接入节点通过所述第一频段直接级联到所述第二接入节点之后,所述方法还包括:所述第一接入节点通过所述第二频段接入所述第一接入节点的工作站。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述第一频段与所述第二频段的间隔大于第一阈值,且所述第一频段与所述第二频段无需通过滤波器进行隔离;或者,所述第一频段与所述第二频段的间隔大于第二阈值,且所述第一频段与所述第二频段需要通过滤波器进行隔离,所述第二阈值小于所述第一阈值。
- 根据权利要求1-5任一项所述的方法,其特征在于,所述第一接入节点将所述第二接入节点作为上一级接入节点通过所述第一频段直接级联到所述第二接入节点之前,所述方法还包括:所述第一接入节点确定所述第二接入节点;其中,所述第二接入节点是根据所述WiFi网络中每个接入节点的级联参数信息,从所述WiFi网络包括的所有接入节点中选择的一个接入节点。
- 根据权利要求6所述的方法,其特征在于,所述每个接入节点的级联参数信息包括以下信息中的至少一个:级联层级、信号强度、负载信息、干扰信息;或者,所述每个接入节点的级联参数信息包括以下信息中的至少一个:吞吐量、时延、抖动。
- 一种接入节点,应用于WiFi网络中,其特征在于,所述WiFi网络包括第一接入节点、第二接入节点和第三接入节点;所述接入节点为所述第一接入节点且支持至少两个不同频段的连接,所述至少两个不同频段包括第一频段和第二频段;所述接入节点包括:级联单元,用于将所述第二接入节点作为上一级接入节点通过所述第一频段直接级联到所述第二接入节点;接收单元,用于接收所述第三接入节点的级联接入请求,并允许所述第三接入节点作为下一级接入节点通过所述第二频段直接级联到所述第一接入节点。
- 根据权利要求8所述的接入节点,其特征在于,所述WiFi网络还包括第四接入节点,所述第四接入节点为所述第二接入节点的上一级接入节点,所述第二接入节点支持所述至少两个不同频段的连接;其中,所述第四接入节点与所述第二接入节点通过所述第二频段直接级联;或者,所述至少两个不同频段还包括第三频段,所述第四接入节点与所述第二接入节点通过所述第三频段直接级联。
- 根据权利要求9所述的接入节点,其特征在于,若所述第四接入节点与所述第二接入节点通过所述第二频段直接级联,所述第四接入节点与所述第二接入节点直接级联时使用的所述第二频段中的信道与所述第一接入节点允许所述第三接入节点直接级联时使用的所述第二频段中的信道不同。
- 根据权利要求8-10任一项所述的接入节点,其特征在于,所述接入节点还包括:接入单元,用于通过所述第二频段接入所述第一接入节点的工作站。
- 根据权利要求8-11任一项所述的接入节点,其特征在于,所述第一频段与所述第二频段的间隔大于第一阈值,且所述第一频段与所述第二频段无需通过滤波器进行隔离;或者,所述第一频段与所述第二频段的间隔大于第二阈值,且所述第一频段与所述第二频段需要通过滤波器进行隔离,所述第二阈值小于所述第一阈值。
- 根据权利要求8-12任一项所述的接入节点,其特征在于,所述接入节点还包括:确定单元,用于确定所述第二接入节点;其中,所述第二接入节点是根据所述WiFi网络中每个接入节点的级联参数信息,从所述WiFi网络包括的所有接入节点中选择的一个接入节点。
- 根据权利要求13所述的接入节点,其特征在于,所述每个接入节点的级联参数信息包括以下信息中的至少一个:级联层级、信号强度、负载信息、干扰信息;或者,所述每个接入节点的级联参数信息包括以下信息中的至少一个:吞吐量、时延、抖动。
- 一种接入节点,其特征在于,所述接入节点包括处理器和存储器,所述存储器中存储代码和数据,所述处理器运行所述存储器中的代码,使得所述接入节点执行上述权利要求1-7任一项所述的随机接入方法。
- 一种系统,所述系统包括第一接入节点、第二接入节点和第三接入节点;其中,所述第一接入节点为上述权利要求8-15任一项所述的接入节点。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780063023.9A CN109845197B (zh) | 2017-04-01 | 2017-04-01 | 一种通道选择方法及装置 |
EP17903811.2A EP3595402A1 (en) | 2017-04-01 | 2017-04-01 | Channel selection method and apparatus |
PCT/CN2017/079307 WO2018176471A1 (zh) | 2017-04-01 | 2017-04-01 | 一种通道选择方法及装置 |
US16/588,578 US20200029228A1 (en) | 2017-04-01 | 2019-09-30 | Channel Selection Method and Apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/079307 WO2018176471A1 (zh) | 2017-04-01 | 2017-04-01 | 一种通道选择方法及装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/588,578 Continuation US20200029228A1 (en) | 2017-04-01 | 2019-09-30 | Channel Selection Method and Apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018176471A1 true WO2018176471A1 (zh) | 2018-10-04 |
Family
ID=63675031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/079307 WO2018176471A1 (zh) | 2017-04-01 | 2017-04-01 | 一种通道选择方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200029228A1 (zh) |
EP (1) | EP3595402A1 (zh) |
CN (1) | CN109845197B (zh) |
WO (1) | WO2018176471A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114513828A (zh) * | 2020-11-17 | 2022-05-17 | 中兴通讯股份有限公司 | 级联通信控制方法、通信设备及计算机可读存储介质 |
CN116801266A (zh) * | 2023-08-24 | 2023-09-22 | 北京城建智控科技股份有限公司 | 无线网络覆盖系统及ap设备 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3130493B1 (fr) * | 2021-12-15 | 2024-07-26 | Sagemcom Broadband Sas | Procede et dispositif de selection d’un nœud dans un reseau local |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103378875A (zh) * | 2012-04-25 | 2013-10-30 | 杭州讯能科技有限公司 | 一种ofdm的协作分集传输方法及装置 |
CN104639360A (zh) * | 2013-11-14 | 2015-05-20 | 中兴通讯股份有限公司 | 一种控制网元设备加入网络的方法及网元设备 |
WO2015134553A1 (en) * | 2014-03-04 | 2015-09-11 | Mediatek Inc. | Subchannel feedback for ofdma systems |
CN106535199A (zh) * | 2016-10-31 | 2017-03-22 | 生茂光电科技股份有限公司 | 基于433MHz和2.4GHz频段的双通道通信方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6690657B1 (en) * | 2000-02-25 | 2004-02-10 | Berkeley Concept Research Corporation | Multichannel distributed wireless repeater network |
US8520691B2 (en) * | 2003-05-08 | 2013-08-27 | Mesh Dynamics, Inc. | Persistent mesh for isolated mobile and temporal networking |
US7590084B2 (en) * | 2003-02-14 | 2009-09-15 | Onlive, Inc. | Self-configuring, adaptive, three-dimensional, wireless network |
US20070280155A1 (en) * | 2006-06-02 | 2007-12-06 | Vinh-Phuong Tra Le | Device and method for optimizing communications in a wireless network |
EP2091298B1 (en) * | 2008-02-18 | 2012-05-16 | Alcatel Lucent | FDD inband backhauling and method thereof |
CN104053213B (zh) * | 2013-03-11 | 2018-04-17 | 中兴通讯股份有限公司 | 无线通信网络中的集成中继 |
US9749874B2 (en) * | 2013-07-17 | 2017-08-29 | Qualcomm Incorporated | Multi-band management of wireless relaying networks |
US9271153B2 (en) * | 2013-09-24 | 2016-02-23 | Qualcomm Incorporated | Adaptive network configuration |
US9923581B2 (en) * | 2013-10-14 | 2018-03-20 | Netgear, Inc. | Front-end module and antenna design for a wireless device simultaneously using WLAN modules operating in different wireless bands |
CN104661237A (zh) * | 2013-11-25 | 2015-05-27 | 上海益尚信息科技有限公司 | 一种分布式天线进行信号网状传输的装置 |
US9924513B2 (en) * | 2014-07-23 | 2018-03-20 | Belkin International Inc. | Band-switching operations in a mesh network environment |
CN105722224A (zh) * | 2016-01-13 | 2016-06-29 | 广东欧珀移动通信有限公司 | 一种中继wifi网络的方法及装置 |
-
2017
- 2017-04-01 EP EP17903811.2A patent/EP3595402A1/en active Pending
- 2017-04-01 CN CN201780063023.9A patent/CN109845197B/zh active Active
- 2017-04-01 WO PCT/CN2017/079307 patent/WO2018176471A1/zh unknown
-
2019
- 2019-09-30 US US16/588,578 patent/US20200029228A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103378875A (zh) * | 2012-04-25 | 2013-10-30 | 杭州讯能科技有限公司 | 一种ofdm的协作分集传输方法及装置 |
CN104639360A (zh) * | 2013-11-14 | 2015-05-20 | 中兴通讯股份有限公司 | 一种控制网元设备加入网络的方法及网元设备 |
WO2015134553A1 (en) * | 2014-03-04 | 2015-09-11 | Mediatek Inc. | Subchannel feedback for ofdma systems |
CN106535199A (zh) * | 2016-10-31 | 2017-03-22 | 生茂光电科技股份有限公司 | 基于433MHz和2.4GHz频段的双通道通信方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3595402A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114513828A (zh) * | 2020-11-17 | 2022-05-17 | 中兴通讯股份有限公司 | 级联通信控制方法、通信设备及计算机可读存储介质 |
WO2022105509A1 (zh) * | 2020-11-17 | 2022-05-27 | 中兴通讯股份有限公司 | 级联通信控制方法、通信设备及计算机可读存储介质 |
CN116801266A (zh) * | 2023-08-24 | 2023-09-22 | 北京城建智控科技股份有限公司 | 无线网络覆盖系统及ap设备 |
CN116801266B (zh) * | 2023-08-24 | 2024-01-16 | 北京城建智控科技股份有限公司 | 无线网络覆盖系统及ap设备 |
Also Published As
Publication number | Publication date |
---|---|
CN109845197B (zh) | 2020-09-29 |
EP3595402A4 (en) | 2020-01-15 |
CN109845197A (zh) | 2019-06-04 |
EP3595402A1 (en) | 2020-01-15 |
US20200029228A1 (en) | 2020-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11777676B2 (en) | Method and device for transmitting positioning reference signal | |
US11191076B2 (en) | Transmission configuration method and related product | |
WO2016045306A1 (zh) | 终端能力的上报、获取方法及装置 | |
US9532269B2 (en) | Method and apparatus for offloading data | |
US20140362776A1 (en) | Application aware association in wireless networks | |
US20200029228A1 (en) | Channel Selection Method and Apparatus | |
CN116938391A (zh) | 无线局域网中的信令信息的交互方法及通信装置 | |
RU2684474C1 (ru) | Точка доступа, поддерживающая по меньшей мере две виртуальные сети, и способ, осуществляемый посредством точки доступа, для обмена данными с беспроводным устройством | |
WO2018181491A1 (ja) | 無線通信システムおよび無線通信制御方法 | |
JP6475333B2 (ja) | エアインタフェース容量密度を調整する方法及び装置 | |
JP6843971B2 (ja) | ビームフォーミング情報の交換方法及びネットワーク機器 | |
CN109922489B (zh) | 一种ap聚合方法、装置和介质 | |
CN111587599B (zh) | 无线网络中的信道选择 | |
JP6629428B2 (ja) | ワイヤレスローカルエリアネットワークwlan測定および報告方法ならびに関連デバイス | |
US20230247568A1 (en) | Methods for communication under multiple links and electronic device | |
CN109804693B (zh) | 一种调度方法、装置及系统 | |
US20240373293A1 (en) | QUALITY OF SERVICE (QoS) TRANSLATION | |
EP3318079B1 (en) | Dynamic allocation of radio resources in a wireless networks | |
CN115396987B (zh) | 同时接入多个网络的方法及装置、存储介质、电子设备 | |
WO2024169531A1 (zh) | 一种通信方法及装置 | |
WO2024032232A1 (zh) | 通信方法及装置 | |
US20240187876A1 (en) | GRANULARITY OF COORDINATION GROUPS (CGs) USING SECTORIZATION | |
WO2022151170A1 (zh) | 切换控制的方法、准入控制的方法和通信装置 | |
CN110446234B (zh) | 一种主从型混合组网的通信方法、装置及系统 | |
US10856346B2 (en) | Neighboring network devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17903811 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017903811 Country of ref document: EP Effective date: 20191010 |