WO2018176324A1 - 数据交互的方法、终端设备及网络设备 - Google Patents

数据交互的方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2018176324A1
WO2018176324A1 PCT/CN2017/078796 CN2017078796W WO2018176324A1 WO 2018176324 A1 WO2018176324 A1 WO 2018176324A1 CN 2017078796 W CN2017078796 W CN 2017078796W WO 2018176324 A1 WO2018176324 A1 WO 2018176324A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
antenna
time
polarization direction
frequency resource
Prior art date
Application number
PCT/CN2017/078796
Other languages
English (en)
French (fr)
Inventor
王哲
刘德平
赵振山
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17904060.5A priority Critical patent/EP3585115B1/en
Priority to PCT/CN2017/078796 priority patent/WO2018176324A1/zh
Priority to CN201780083582.6A priority patent/CN110199554B/zh
Publication of WO2018176324A1 publication Critical patent/WO2018176324A1/zh
Priority to US16/587,042 priority patent/US11051315B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Definitions

  • the present application relates to communication technologies, and in particular, to a data interaction method, a terminal device, and a network device.
  • V2V Vehicle to Vehicle
  • the vehicle broadcasts information such as the speed of the vehicle, the direction of travel, the specific position, and whether the emergency brake is stepped on to the surrounding vehicles through V2V communication.
  • the visual distance can be better perceived. Traffic conditions other than this, allowing the driver or the vehicle's own auxiliary/autonomous driving system to make early predictions of dangers or other situations to make evasive or to perform some coordinated traffic behavior.
  • IEEE 802.11p also known as WAVE, Wireless Access in the Vehicular Environment
  • 802.11p is an early technology proposed. It is a dedicated short distance for direct communication between vehicles and vehicles.
  • DSRC Dedicated short range communication
  • 3GPP Third Generation Partnership Project
  • LTE Long Term Evolution
  • security messages are low.
  • LTE-V Long Term Evolution-Vehicle
  • 802.11p adopts a carrier-based Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol, and each terminal autonomously randomly competes for frequency resources.
  • CSMA/CA carrier-based Sense Multiple Access/Collision Avoidance
  • the mechanism is flexible and convenient for networking, in the case of dense vehicles, the probability of collision is greatly increased, and the terminal may have difficulty competing for resources to send messages in time, which greatly reduces message delay and reliability.
  • LTE-V is a synchronous system with a unified synchronization source, which is divided into two modes: free competition mode and network scheduling mode.
  • free-competition mode a sensing/reservation mechanism is adopted to mitigate user conflicts through interception detection, and multiple periodic time-frequency resources can be preempted by resource reservation.
  • This mechanism has the same problem as CSMA/CA, that is, it is not efficient in the case of vehicle intensive; but in contrast, the advantage of LTE-V is that it can also pass through the base station when resource shortage occurs and the overall performance of the network is degraded.
  • Unified scheduling for example, can reduce the frequency of messages sent by all vehicles in a certain area to reduce the probability of collision, but this is also a way to compromise between performance and capacity; in the network scheduling mode, it is completely by the base station Scheduling the resource allocation of all terminal devices. Because network nodes coordinate and optimize the behavior of all terminal devices, the system efficiency can be significantly improved. In theory, the optimal reachable system performance under resource constraints can be achieved.
  • the present application provides a data interaction method, a terminal device, and a network device, which are used to solve the problem that the contradiction between the limited system bandwidth and the high-density service existing in the prior art still exists and is more prominent.
  • the application provides a method for data interaction, including:
  • the terminal device acquires resource information that can communicate with other terminal devices, where the resource information is used to indicate a time-frequency resource and an antenna port for performing communication, where each antenna port corresponds to an antenna polarization direction;
  • the terminal device sends scheduling information and data information to other terminal devices by using time-frequency resources and antenna polarization directions;
  • the scheduling information includes a time-frequency resource and an antenna polarization direction for carrying data information, and at least two time-frequency resources and antenna polarization directions used by any two terminal devices that transmit scheduling information and data information to other terminal devices. There is a difference.
  • the terminal device sends scheduling information and data information to other terminal devices by using time-frequency resources and antenna polarization directions, including:
  • the first terminal device broadcasts the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource and the first antenna polarization direction;
  • the second terminal device broadcasts the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • the first antenna polarization direction is orthogonal to the second antenna polarization direction.
  • the terminal device sends scheduling information and data information to other terminal devices by using time-frequency resources and antenna polarization directions, including:
  • the first terminal device broadcasts the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource and the first antenna polarization direction;
  • the second terminal device broadcasts the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the terminal device acquires resource information that can communicate with other terminal devices, including:
  • the terminal device receives a scheduling instruction sent by the network device, where the scheduling instruction includes a time-frequency resource and an antenna polarization direction allocated for the communication connection between the terminal device and the other terminal device, where any two communication connections are made with other terminal devices. At least one of the time-frequency resources allocated by the terminal devices and the antenna polarization direction is different.
  • the method before the terminal device receives the scheduling instruction sent by the network device, the method further includes:
  • the terminal device sends the terminal capability to the network device, where the terminal capability includes at least the antenna polarization capability of the terminal;
  • the terminal device sends a communication request for communicating with other terminal devices to the network device, so that the network device allocates time-frequency resources and antenna polarization for the communication connection between the terminal device and other terminal devices according to the antenna polarization capability possessed by the terminal device. direction.
  • the terminal device acquires resource information that can communicate with other terminal devices, including:
  • the terminal device acquires the used resource information occupied by the surrounding terminal, and the used resource information is used to indicate the time-frequency resource occupied by the communication and the polarization direction of the antenna;
  • the terminal device selects a time-frequency resource and an antenna polarization direction for communicating with other terminal devices according to the used resource information, wherein the selected time-frequency resource and the antenna polarization direction and the time-frequency resources and antenna polarization occupied by the surrounding terminals are used. There is at least one difference in direction.
  • the terminal device acquires the used resource information occupied by the surrounding terminal, including:
  • the terminal device receives scheduling information sent by the surrounding terminal;
  • the terminal device acquires time-frequency resources and antenna polarization directions occupied by the surrounding terminals according to the scheduling information.
  • the terminal device acquires the used resource information occupied by the surrounding terminal according to the scheduling information, including:
  • the terminal device demodulates the scheduling information, and obtains a time-frequency resource and an antenna polarization direction occupied by the peripheral terminal transmitting the data information.
  • the terminal device demodulates the scheduling information, including:
  • the terminal device demodulates the scheduling information by using a preset spatial multiplexing detection manner, and obtains a time-frequency resource and an antenna polarization direction for carrying data information in the scheduling information; and/or,
  • the terminal device demodulates the scheduling information by using a preset non-spatial multiplexing detection manner, and obtains time-frequency resources and antenna polarization directions for carrying data information in the scheduling information.
  • the application provides a method for data interaction, including:
  • the network device allocates time-frequency resources and antenna ports for the communication connection between the terminal device and other terminal devices, wherein each antenna port corresponds to an antenna polarization direction, and is any two terminal devices that are in communication connection with other terminal devices. At least one of the allocated time-frequency resources and the antenna polarization direction is different;
  • the network device sends the allocated time-frequency resource and the antenna polarization direction to the terminal device by using a scheduling instruction.
  • the network device allocates time-frequency resources and antenna ports for the communication connection between the terminal device and other terminal devices, including:
  • the network device receives a communication request sent by the terminal device for performing a communication connection with another terminal device;
  • the network device receives the terminal capability sent by the terminal device, and the terminal capability includes at least the antenna polarization capability of the terminal;
  • the network device allocates time-frequency resources and antenna polarization directions for the communication connection between the terminal device and other terminal devices according to the antenna polarization capability possessed by the terminal.
  • the network device allocates time-frequency resources and antenna polarization directions for the communication connection between the terminal device and other terminal devices according to the antenna polarization capability of the terminal, including:
  • the network device allocates a first time-frequency resource and a first antenna polarization direction for the communication connection between the first terminal device and the other terminal device;
  • the network device allocates a second time-frequency resource and a second antenna polarization direction for the communication connection between the second terminal device and the other terminal device;
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • the first antenna polarization direction is orthogonal to the second antenna polarization direction.
  • the network device allocates time-frequency resources and antenna polarization directions for the communication connection between the terminal device and other terminal devices according to the antenna polarization capability of the terminal, including:
  • the network device allocates a first time-frequency resource and a first antenna polarization direction for the communication connection between the first terminal device and the other terminal device;
  • the network device allocates a second time-frequency resource and a second antenna polarization direction for the communication connection between the second terminal device and the other terminal device;
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the application provides a method for data interaction, including:
  • the terminal device receives scheduling information sent by other terminal devices
  • the terminal device acquires resource information for carrying data information according to the scheduling information, where the resource information is used to indicate a time-frequency resource and an antenna port for performing communication;
  • Each antenna port corresponds to an antenna polarization direction
  • the terminal device receives at least one of the time-frequency resources and the antenna polarization direction used by any two terminal devices in the other terminal to transmit scheduling information.
  • the terminal device receives scheduling information sent by other terminal devices, including:
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • the first antenna polarization direction is orthogonal to the second antenna polarization direction.
  • the sending unit includes:
  • a first sending subunit configured to broadcast, by using the first time-frequency resource and the first antenna polarization direction, the first scheduling information and the first data information to other terminal devices;
  • a second sending subunit configured to broadcast second scheduling information and second data information to other terminal devices by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the terminal device acquires resource information for carrying data information according to the scheduling information, including:
  • the terminal device demodulates the scheduling information, acquires time-frequency resources and antenna polarization directions for carrying data information, and obtains data information sent by other terminal devices according to the time-frequency resources.
  • the terminal device demodulates the scheduling information, including:
  • the terminal device demodulates the scheduling information by using a preset spatial multiplexing detection manner, and obtains a time-frequency resource and an antenna polarization direction for carrying data information in the scheduling information; and/or,
  • the terminal device demodulates the scheduling information by using a preset non-spatial multiplexing detection manner, and obtains time-frequency resources and antenna polarization directions for carrying data information in the scheduling information.
  • the application provides a terminal device, including:
  • An acquiring unit configured to acquire resource information that can communicate with other terminal devices, where the resource information is used to indicate a time-frequency resource and an antenna port for performing communication, where each antenna port corresponds to an antenna polarization direction;
  • a sending unit configured to send scheduling information and data information to other terminal devices by using a time-frequency resource and an antenna polarization direction;
  • the scheduling information includes a time-frequency resource and an antenna polarization direction for carrying data information, and at least two time-frequency resources and antenna polarization directions used by any two terminal devices that transmit scheduling information and data information to other terminal devices. There is a difference.
  • the sending unit includes:
  • a first sending subunit configured to broadcast, by using the first time-frequency resource and the first antenna polarization direction, the first scheduling information and the first data information to other terminal devices;
  • a second sending subunit configured to broadcast second scheduling information and second data information to other terminal devices by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • the first antenna polarization direction is orthogonal to the second antenna polarization direction.
  • the sending unit includes:
  • a first sending subunit configured to broadcast, by using the first time-frequency resource and the first antenna polarization direction, the first scheduling information and the first data information to other terminal devices;
  • a second sending subunit configured to broadcast second scheduling information and second data information to other terminal devices by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the acquisition unit is used to:
  • the scheduling instruction includes a time-frequency resource and an antenna polarization direction allocated for a communication connection between the terminal device and another terminal device, where any two terminals that are in communication connection with other terminals At least one of the time-frequency resources allocated by the device and the polarization direction of the antenna is different.
  • the transmitting unit is used to:
  • the terminal capability Before receiving the scheduling instruction sent by the network device, sending the terminal capability to the network device, where the terminal capability includes at least the antenna polarization capability of the terminal;
  • a communication request for communicating with other terminal devices is sent to the network device, so that the network device allocates time-frequency resources and antenna polarization directions for the communication connection between the terminal device and other terminal devices according to the antenna polarization capability possessed by the terminal.
  • the acquisition unit is used to:
  • the used resource information is used to indicate the time-frequency resource occupied by the communication and the polarization direction of the antenna;
  • the acquisition unit is used to:
  • the acquisition unit is used to:
  • the scheduling information is demodulated, and the used resource information corresponding to the communication resource occupied by the surrounding terminal to transmit the data information is obtained.
  • the acquisition unit is used to:
  • the scheduling information is demodulated by using a preset non-spatial multiplexing detection manner, and time-frequency resources and antenna polarization directions for carrying data information in the scheduling information are obtained.
  • the application provides a network device, including:
  • an allocating unit configured to allocate a time-frequency resource and an antenna port for the communication connection between the terminal device and the other terminal device, where each antenna port corresponds to an antenna polarization direction, and is any two communication connection with other terminal devices At least one of the time-frequency resource allocated by the terminal device and the polarization direction of the antenna is different;
  • a sending unit configured to send the allocated time-frequency resource and the antenna polarization direction to the terminal device by using a scheduling instruction.
  • the allocation unit is used to:
  • the time-frequency resource and the antenna polarization direction are allocated according to the antenna polarization capability of the terminal for the communication connection between the terminal device and other terminal devices.
  • the allocation unit is used to:
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • the first antenna polarization direction is orthogonal to the second antenna polarization direction.
  • the allocation unit is used to:
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the application provides a terminal device, including:
  • a receiving unit configured to receive scheduling information sent by another terminal device
  • a processing unit configured to acquire resource information for carrying data information according to the scheduling information, where the resource information is used to indicate a time-frequency resource and an antenna port for performing communication;
  • Each antenna port corresponds to an antenna polarization direction
  • the terminal device receives at least one of the time-frequency resources and the antenna polarization direction used by any two terminal devices in the other terminal to transmit scheduling information.
  • the receiving unit is used to:
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • the first antenna polarization direction is orthogonal to the second antenna polarization direction.
  • the receiving unit is used to:
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the processing unit is used to:
  • Demodulating the scheduling information acquiring time-frequency resources and antenna polarization directions for carrying data information, and obtaining data information sent by other terminal devices according to the time-frequency resources.
  • the processing unit is used to:
  • the scheduling information is demodulated by using a preset non-spatial multiplexing detection manner, and time-frequency resources and antenna polarization directions for carrying data information in the scheduling information are obtained.
  • the present application provides a computer readable storage medium comprising instructions which, when run on a computer, cause the computer to perform the method of the above first aspect.
  • the present application provides a computer readable storage medium comprising instructions which, when run on a computer, cause the computer to perform the method of the second aspect above.
  • the present application provides a computer readable storage medium comprising instructions which, when run on a computer, cause the computer to perform the method of the above third aspect.
  • the application provides a program product, such as a computer readable storage medium, comprising the program of the seventh aspect.
  • the present application provides a program product, such as a computer readable storage medium, comprising the program of the eighth aspect.
  • the present application provides a program product, such as a computer readable storage medium, comprising the program of the ninth aspect.
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods of the above aspects.
  • the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform the methods of the above aspects.
  • a multi-antenna port selection mechanism is introduced in the process of communication between the terminal device and other terminals, and the network device can be scheduled or the terminal device can freely compete for the corresponding time frequency.
  • Resources and transmit antenna ports so that terminal devices with different transmit antenna ports can reuse the same time-frequency resources, or terminal devices with the same transmit antenna port can utilize different time-frequency resources;
  • the selection mechanism increases the optional dimension of resource information (increasing the spatial dimension in the original time-frequency dimension), thereby increasing the overall system communication capacity, helping to alleviate the contradiction between the limited system bandwidth and the high-density service, and reduce Information delay ensures stable and reliable communication information transmission.
  • FIG. 1 is a communication capacity performance curve of an application using 802.11p for communication according to an embodiment of the present application
  • FIG. 2 is a performance curve of communication capacity for performing communication using LTE-V according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart 1 of a method for data interaction according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an application scenario 1 according to an embodiment of the present disclosure.
  • FIG. 5 is a signaling diagram 1 of a method for data interaction according to an embodiment of the present disclosure
  • FIG. 6 is a structural diagram of multiple terminal devices transmitting data information with the same time-frequency resources multiplexed by different antenna ports according to an embodiment of the present disclosure
  • FIG. 7 is a structural diagram of transmitting, by a plurality of terminal devices, the same time-frequency resource for transmitting data information by using different antenna port portions according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of an application scenario 2 according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart 2 of a method for data interaction according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart 3 of a method for data interaction according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart 4 of a method for data interaction according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram 1 of a terminal device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram 1 of a network device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram 2 of a terminal device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram 3 of a terminal device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram 2 of a network device according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram 4 of a terminal device according to an embodiment of the present disclosure.
  • the present application is applied to a 5G communication system or other systems that may occur in the future, and some of the terms used in the present application are explained below so as to be understood by those skilled in the art. It should be noted that, when the solution of the embodiment of the present application is applied to a 5G system or other systems that may appear in the future, the names of the terminal device and the network device may change, but this does not affect the implementation of the solution in the embodiment of the present application.
  • a terminal device also referred to as a terminal or user device, is a device that provides voice and/or data connectivity to a user, for example, a handheld device having a wireless connection function, an in-vehicle device, and the like.
  • Common terminal devices include, for example, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), and a wearable device.
  • the wearable device includes, for example, a smart watch, a smart wristband, and a step counter. And so on.
  • a network device also known as a radio access network (RAN) device, is a device that accesses a terminal device to a wireless network, and includes network devices in various communication systems, for example, including but not Limited to: base station, evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), Network Device Controller (BSC), network Base Transceiver Station (BTS), home network equipment (for example, Home evolved NodeB, or Home Node B, HNB), Baseband Unit (BBU, etc.).
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC Network Device Controller
  • BTS network Base Transceiver Station
  • home network equipment for example, Home evolved NodeB, or Home Node B, HNB
  • BBU Baseband Unit
  • Multiple means two or more, and other quantifiers are similar. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • the present application relates to the field of communication technology.
  • Today's automobiles have become very popular vehicles.
  • ITS Intelligent Transportation System
  • V2V Vehicle to Vehicle
  • the vehicle broadcasts information about its own speed, direction of travel, specific location, whether an emergency brake is applied, or the like to the surrounding vehicles by using the 802.11p system or the LTE-V system; This type of information of the vehicle can better perceive the traffic conditions beyond the line of sight, thereby allowing the driver or the vehicle's own auxiliary/autonomous driving system to make early predictions of dangers or other situations to make avoidance, or to make some coordination. Traffic behavior.
  • 802.11p adopts a carrier-based Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol, and each terminal autonomously randomly competes for frequency resources.
  • CSMA/CA carrier-based Sense Multiple Access/Collision Avoidance
  • the mechanism is flexible and convenient for networking, in the case of dense vehicles, the probability of collision is greatly increased, and the terminal may have difficulty competing for resources to send messages in time, which greatly reduces message delay and reliability.
  • LTE-V is a synchronous system with a unified synchronization source, which is divided into two modes: free competition mode and network scheduling mode.
  • free-competition mode a sensing/reservation mechanism is adopted to mitigate user conflicts through interception detection, and multiple periodic time-frequency resources can be preempted by resource reservation.
  • This mechanism has the same problem as CSMA/CA, that is, it is not efficient in the case of vehicle intensive; but in contrast, the advantage of LTE-V is that it can also pass through the base station when resource shortage occurs and the overall performance of the network is degraded.
  • Unified scheduling can reduce the frequency of messages sent by all vehicles in a certain area to reduce the probability of collision, but this is also a way to compromise between performance and capacity; in the network scheduling mode, it is completely by the base station Scheduling the resource allocation of all terminal devices. Because network nodes coordinate and optimize the behavior of all terminal devices, the system efficiency can be significantly improved. In theory, the optimal reachable system performance under resource constraints can be achieved. In the case of serious conflicts with users, it is only possible to achieve a compromise between capacity and performance by sacrificing some of the performance; therefore, in V2V networks, the contradiction between limited system bandwidth and high-density services still exists and is more prominent.
  • the present application provides a method for data interaction, and the execution body of the data interaction method may be
  • the foregoing terminal device can be seen by referring to FIG. 3, and the method includes:
  • the terminal device acquires resource information that can communicate with other terminal devices, where the resource information is used to indicate a time-frequency resource and an antenna port for performing communication, where each antenna port corresponds to an antenna polarization direction;
  • the number of the terminal devices and the number of other terminal devices in the present application may be one or more, and the terminal type of the terminal device may be the same as or different from the terminal type of the other terminal device;
  • an achievable manner is: the third terminal device can determine resource information that the terminal device can communicate with other terminal devices by analyzing certain parameters, and then the third terminal device determines the determined The resource information is sent to the terminal device, so that the terminal device can receive the foregoing resource information, where the device type of the third terminal device may be the same as or different from the type of the terminal device or other terminal device;
  • the method is as follows: the terminal device itself can directly obtain the resource information that the terminal device can communicate with other terminal devices by analyzing and processing certain parameters; it should be noted that the time-frequency resource includes the time domain resource information and the frequency domain. Resource information.
  • the above antenna ports can correspond to At least one of: the polarization direction of the antenna, the antenna or antenna reference symbol reference pattern sequence.
  • the terminal device sends scheduling information and data information to other terminal devices by using time-frequency resources and antenna polarization directions.
  • the scheduling information includes a time-frequency resource and an antenna polarization direction for carrying data information, and at least two time-frequency resources and antenna polarization directions used by any two terminal devices that transmit scheduling information and data information to other terminal devices. There is a difference.
  • the number of the terminal device and the other terminal devices may be one or more, and when the number of the terminal devices is large, in order to alleviate communication conflicts when multiple terminal devices communicate with other terminal devices, multiple terminal devices may be used.
  • the scheduling information and the data information are respectively sent to other terminal devices by using the time-frequency resources and the antenna polarization direction obtained by the foregoing; it is noted that, in some specific cases, multiple terminal devices may use different resource information.
  • Communicating with other terminal devices, where different resource information may include: different time-frequency resources utilized by the two terminal devices and/or different antenna polarization directions utilized by the two terminal devices, thereby improving the entire communication system. Communication capacity helps to alleviate the contradiction between limited system bandwidth and high-density services, reduce information delay, and improve communication reliability.
  • the method for data interaction provided by the present application when there are multiple terminal devices communicating with other terminal devices, and the terminal device acquires resource information for performing communication, can use the resource information to communicate with other terminal devices. Since the resource information is used to indicate the time-frequency resource and the antenna port for communication, and each antenna port corresponds to an antenna polarization direction, different terminal devices can multiplex part of the resource information when performing communication, thereby The spatial multiplexing gain is used to improve the communication capacity of the whole system, which helps to alleviate the contradiction between limited system bandwidth and high-density services, reduces information delay, improves communication reliability, and improves the practicability of the method. .
  • the terminal device determines the resource information for communicating with other terminal devices, the resource information is used to indicate the time-frequency resource and the antenna polarization direction for performing communication, and therefore, the terminal device can utilize the The time-frequency resource and the antenna polarization direction are sent to the other terminal to send scheduling information and data information, where the scheduling information includes a time-frequency resource carrying the transmitted data information and an antenna polarization direction, so that other terminal devices can learn the terminal.
  • the resource information used by the device to communicate with other terminal devices, and when other terminal devices need to communicate with the third terminal device, the resource information different from the used resource information may be selected for communication connection; in addition, when the terminal device In the case of the in-vehicle device, the data information may include: vehicle speed, driving direction, specific location, whether to activate emergency braking, etc.; and when the terminal device is a wearable device, the data information may include: user location information. , the user's motion track, the user's own status information, and so on.
  • the terminal device uses the time-frequency resource and the antenna polarization direction to send scheduling information and data information to other terminal devices, in order to alleviate communication conflicts between multiple terminal devices, it is necessary to send scheduling information to other terminal devices.
  • the time-frequency resource and the antenna polarization direction used by any two terminal devices of the data information are set differently, and the difference here may include: the time-frequency resources utilized by any two terminal devices are different, and any two terminal devices are used.
  • the antennas used have different polarization directions and the time-frequency resources and antenna polarization directions utilized by any two terminal devices are different; or, when certain conditions are met (for example, when the distance between the terminal devices is sufficiently far),
  • the time-frequency resources used by any two terminal devices that send scheduling information and data information to other terminal devices are the same as the antenna polarization direction. At this time, the same time-frequency resources and antenna polarization are multiplexed within the effective communication distance.
  • the mutual interference between two different terminal devices in the direction is small; specifically, the terminal device includes the first terminal Device and a second terminal apparatus as an example, the first embodiment can be achieved using the acquired resource information and scheduling information is transmitted as data information:
  • the first terminal device broadcasts the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource and the first antenna polarization direction;
  • the second terminal device broadcasts the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • the first antenna polarization direction and the second antenna polarization direction are orthogonal, at this time for the terminal device and In terms of communication between other terminal devices, the effect is relatively good; specifically, since the polarization direction of the antenna is related to the hardware structure of the terminal device, in general, when the hardware structure of the terminal device is determined, the antenna pole possessed
  • the direction of the second embodiment is not limited.
  • the specific direction angles of the first antenna polarization direction and the second antenna polarization direction are not limited. For example, a linear polarization antenna may be used and the first antenna may be polarized.
  • the direction is set to +45°, and the polarization direction of the second antenna can be -45°, or the polarization direction of the first antenna can be set to +90° (vertical polarization), and the polarization direction of the second antenna can be 0° (horizontal polarization); or alternatively, the first antenna polarization direction can be set to +60° (normal polarization), and the second antenna polarization direction can be -30° (normal polarization); First day of the above
  • the specific angle values of the polarization direction and the polarization direction of the second antenna are only exemplified, and other numerical angles may be used in specific applications, and a circularly polarized antenna (left-handed polarization and right-handed pole) besides the linearly polarized antenna.
  • the polarization direction of the first antenna can be orthogonal to the polarization direction of the second antenna; specifically, since the first time-frequency resource is identical or partially identical to the second time-frequency resource, the first antenna is polarized.
  • the direction is orthogonal to the polarization direction of the second antenna, so that terminal devices that use different antenna polarization directions multiplex the same or partially the same time-frequency resources to communicate with other terminal devices, so that two different terminal devices are configured.
  • Virtual MIMO virtual-MIMO, VMIMO for short
  • the foregoing terminal device may be a vehicle and may be based on an LTE-V system.
  • the method of implementing the above data interaction is convenient for the pairing success of the virtual MIMO user pair.
  • the LTE-V is a synchronous system
  • each of the foregoing terminal devices has a uniform physical layer timing, thereby having the use condition of the VMIMO technology. Therefore, the existing system capacity can be improved by MIMO technology at a lower cost without changing the transmission and reception specifications of the terminal device (for example, the popular 1T2R configuration) without significantly increasing the cost of the terminal device.
  • Another advantage of introducing VMIMO technology in a V2V network is that for terminal equipment in V2V, the transmitting and receiving antennas are deployed on different terminal devices and are far apart, which is beneficial to reduce the correlation between the antennas;
  • the antenna deployment height is low, and it is easy to form a multipath channel by reflection of objects such as surrounding buildings. All of the above cases are beneficial to the successful pairing of VMIMO.
  • the V2V network is a communication mode of broadcasting.
  • the power of VMIMO paired users reaching each of the other terminal devices may be different, that is, the near-far effect is obvious.
  • the interference problem between the strong and weak receiving signals is prominent, especially for weak reception.
  • the effect of the signal is greater.
  • LOS line of sight
  • the device can also be distinguished in spatial dimensions by the direction of polarization of the introduced antenna.
  • the first terminal device and the second terminal device can be effectively alleviated.
  • the communication conflict between the two terminal devices helps to reduce the delay of information transmission and ensure the stability and reliability of communication information transmission.
  • the scheduling information and the data information are transmitted by using the acquired resource information.
  • Two achievable ways are:
  • the first terminal device broadcasts the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource and the first antenna polarization direction;
  • the second terminal device broadcasts the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the first terminal device and the second terminal device since the first terminal device and the second terminal device respectively use different time-frequency resources to broadcast scheduling information and data information to other terminal devices, the first terminal device and the second terminal device are connected to other terminal devices.
  • the communication does not generate a conflict.
  • the first antenna polarization direction utilized by the first terminal device may be set to be the same as the second antenna polarization direction utilized by the second terminal device.
  • the first terminal device may also be used.
  • the first antenna polarization direction utilized is different from the second antenna polarization direction utilized by the second terminal device, for example, the first antenna polarization direction is orthogonal to the second antenna polarization direction.
  • the first terminal device and the second terminal device are configured to communicate with other terminal devices by using the same or different antenna polarization directions and different time-frequency resources, and the first terminal device and the second terminal device have no mutual interaction.
  • the interference effectively increases the diversity of the communication modes between the terminal devices, but the above terminal devices do not constitute a virtual MIMO user pair.
  • the terminal device includes the first terminal device and the second terminal device, and the first terminal device and the second terminal device need to separately communicate with other terminal devices, the scheduling information and the data are transmitted by using the acquired resource information.
  • the third achievable way of information is:
  • the first terminal device broadcasts the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource and the first antenna polarization direction;
  • the second terminal device broadcasts the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is the same as or different from the second time-frequency resource, and the polarization direction of the first antenna is the same as the polarization direction of the second antenna. Or different.
  • the time-frequency resource and the antenna polarization direction used may be the same or different respectively; for example, when the distance threshold is 500 m, the distance between the first terminal device and the second terminal device It is 700m, because 700m>500m, at this time, the distance between the two is far enough for the first terminal device and the second terminal device. At this time, the signals of the two devices do not interfere with each other.
  • the distance threshold is only used as an example. In the specific application, the distance threshold may be set to other specific values.
  • the resource information used by the first terminal device may be the same as or different from the resource information used by the second terminal device. That is, the first time-frequency resource is the same as or different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the first terminal device and the second terminal device may be set as The same or different antenna polarization directions, the same or different time-frequency resources are used for communication connection with other terminal devices.
  • each antenna port corresponding to an antenna polarization direction, an antenna reference symbol sequence or an antenna reference pattern, that is, each antenna port.
  • each antenna port corresponds to an antenna polarization direction and an antenna reference pattern respectively; at this time, for the terminal device, the acquired resource information is used to indicate communication
  • the time-frequency resource, the antenna polarization direction, the antenna reference symbol sequence or the antenna reference pattern, and the manner in which the terminal device can use the resource information to communicate with other terminal devices includes:
  • the terminal device sends scheduling information and data information to other terminal devices by using time-frequency resources, antenna polarization directions, and antenna reference symbol sequences or antenna reference patterns;
  • the scheduling information includes a time-frequency resource for carrying data information, an antenna polarization direction, and an antenna reference symbol sequence or an antenna reference pattern; and when any two terminal devices that transmit scheduling information and data information are used by other terminal devices
  • the frequency resource, antenna polarization direction, and antenna reference symbol sequence or antenna reference pattern are the same or different.
  • the terminal device may utilize the foregoing
  • the time-frequency resource, the antenna polarization direction, and the antenna reference symbol sequence or the antenna reference pattern broadcast scheduling information and data information to other terminals, where the scheduling information includes time-frequency resources carrying the transmitted data information, antenna polarization direction, and antenna reference.
  • the foregoing data information may include: vehicle speed, driving direction, specific location, whether to activate emergency braking, etc.; and when the terminal device is a wearable device, the above data
  • the information may include: location information of the user, a motion track of the user, and status information of the user.
  • the terminal device when the terminal device sends scheduling information and data information to other terminal devices by using the time-frequency resource, the antenna polarization direction, and the antenna reference symbol sequence or the antenna reference pattern, in order to alleviate the multiple terminal devices and other terminal devices respectively.
  • the communication between the two causes a communication conflict, and the time-frequency resources, the antenna polarization direction, and the antenna reference symbol sequence or the antenna reference pattern used by any two terminal devices that transmit scheduling information and data information to other terminal devices need to be set to be different.
  • the difference is that at least one of the three parameters of the resource information utilized by any two terminal devices is different; or, under certain conditions (when the distance between the terminal devices is sufficiently far), the The time-frequency resources, the antenna polarization direction, and the antenna reference symbol sequence or the antenna reference pattern used by any two terminal devices that send the scheduling information and the data information by other terminal devices are set to be the same. In this case, the same time-frequency resources are multiplexed. Antenna polarization direction and antenna reference symbol sequence or antenna reference pattern
  • the communication between the two different terminal devices does not affect each other.
  • the terminal device includes the first terminal device and the second terminal device as an example, and the first terminal device and the second terminal device need to separately When the terminal device communicates, the first achievable way of transmitting the scheduling information and the data information by using the acquired resource information is:
  • the first terminal device broadcasts the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource, the first antenna polarization direction, and the first antenna reference symbol sequence or the first antenna reference pattern;
  • the second terminal device broadcasts the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource, the second antenna polarization direction, and the second antenna reference symbol sequence or the second antenna reference pattern;
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the first antenna polarization direction is different from the second antenna polarization direction, and the first antenna reference symbol sequence is different from the second antenna reference symbol sequence, or The first antenna reference pattern is different from the second antenna reference pattern.
  • the first antenna polarization direction is different from the second antenna polarization direction
  • the first antenna reference symbol sequence is different from the second antenna reference symbol sequence
  • the first antenna reference pattern is different from the second antenna reference pattern.
  • the first antenna polarization direction is orthogonal to the second antenna polarization direction
  • the first antenna reference symbol sequence is orthogonal to the second antenna reference symbol sequence
  • the first terminal device and the second terminal device may broadcast scheduling information and data information to other terminal devices by using time-frequency resources, antenna polarization directions, and antenna reference symbol sequences, respectively, or the first terminal device and the second terminal device.
  • the terminal device may broadcast scheduling information and data information to other terminal devices by using time-frequency resources, antenna polarization directions, and antenna reference patterns, that is, the antenna reference pattern and the antenna reference symbol sequence may not be used as reference data at the same time;
  • the first time-frequency resource is identical or partially identical to the second time-frequency resource, and the first antenna polarization direction is orthogonal to the second antenna polarization direction, and the corresponding first antenna reference symbol sequence is orthogonal to the second antenna reference symbol sequence.
  • the first antenna reference pattern is orthogonal to the second antenna reference pattern, thereby realizing that the terminal device that utilizes different antenna polarization directions and uses different antenna reference symbol sequences or different antenna reference patterns reuses the same or part
  • the same time-frequency resources communicate with other terminal devices, effectively improving the number Communication quality between the terminal device, the second terminal device and the other terminal device.
  • the device performs the communication connection, which can effectively alleviate the communication conflict between the first terminal device and the second terminal device, and ensures the stability and reliability of the communication information transmission.
  • the scheduling information and the data information are transmitted by using the acquired resource information.
  • Two achievable ways are:
  • the first terminal device broadcasts the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource, the first antenna polarization direction, and the first antenna reference symbol sequence or the first antenna reference pattern;
  • the second terminal device broadcasts the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource, the second antenna polarization direction, and the second antenna reference symbol sequence or the second antenna reference pattern;
  • the first time-frequency resource is different from the second time-frequency resource, and the first antenna polarization direction is the same as or different from the second antenna polarization direction, and the first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence, or The first antenna reference pattern is the same as or different from the second antenna reference pattern.
  • the first terminal device and the second terminal device since the first terminal device and the second terminal device respectively use different time-frequency resources to broadcast scheduling information and data information to other terminal devices, the first terminal device and the second terminal device are connected to other terminal devices.
  • the communication does not generate a collision.
  • the first antenna polarization direction and the second antenna polarization direction may be set to be the same.
  • the first antenna reference symbol sequence and the second antenna reference symbol sequence may be set to be the same.
  • the first antenna reference pattern and the second antenna reference pattern are set to be the same; the first antenna polarization direction may be different from the second antenna polarization direction, for example, the first antenna polarization direction and the second antenna
  • the antenna polarization directions are orthogonal.
  • the first antenna reference symbol sequence and the second antenna reference symbol sequence may be set to be different, or the first antenna reference pattern and the second antenna reference pattern may be set to be different.
  • the first terminal device and the second terminal device are configured to communicate with other terminal devices by using the same or different antenna polarization directions, different time-frequency resources, and the same or different antenna reference symbol sequences or line reference patterns, respectively. Since the time-frequency resources of different terminals are orthogonal, there is no collision or collision.
  • the terminal device includes the first terminal device and the second terminal device, and the first terminal device and the second terminal device need to separately communicate with other terminal devices, the scheduling information and the data are transmitted by using the acquired resource information.
  • the third achievable way of information is:
  • the first terminal device broadcasts the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource, the first antenna polarization direction, and the first antenna reference symbol sequence or the first antenna reference pattern;
  • the second terminal device broadcasts the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource, the second antenna polarization direction, and the second antenna reference symbol sequence or the second antenna reference pattern;
  • the first time-frequency resource is the same as or different from the second time-frequency resource
  • the polarization direction of the first antenna is the same as the polarization direction of the second antenna.
  • the first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence
  • the first antenna reference pattern is the same as or different from the second antenna reference pattern.
  • the first terminal device and other terminal devices When the distance between the first terminal device and the second terminal device is sufficiently far, the first terminal device and other terminal devices at this time The communication between the second terminal device and the other terminal device does not affect the communication between the second terminal device and the other terminal device. Therefore, for the first terminal device and the second terminal device, the time-frequency resource, the antenna polarization direction, and the antenna are used.
  • the reference symbol sequence or the antenna reference pattern may be the same or different respectively; for example, when the distance threshold is 600 m, the distance between the first terminal device and the second terminal device is 800 m, since 800 m>600 m, that is, the first terminal device and the second terminal device The distance between the two devices is far enough. At this time, the signals of the two devices do not interfere with each other.
  • the above distance threshold is only an example. In specific applications, the distance threshold can also be set to other specific values. Therefore, the resource information used by the first terminal device may be the same as or different from the resource information used by the second terminal device, that is, the first time-frequency resource is the same as or different from the second time-frequency resource, and the polarization direction of the first antenna is The second antennas have the same or different polarization directions.
  • the first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence. Who first antenna and the second antenna reference pattern with reference patterns the same or different.
  • the first terminal device and the second terminal device may be set as The same or different antenna polarization directions, the same or different time-frequency resources, and the same or different antenna reference symbol sequences or antenna reference patterns are used for communication connection with other terminal devices.
  • a plurality of terminal devices for example, a vehicle
  • a network device 801 for example, a base station
  • one terminal device 800 and a network device 801 of the plurality of terminal devices are included.
  • the communication connection is used to send data information to the network device 801, and the terminal device 800 is also in communication connection with other surrounding terminal devices 802.
  • the network device 801 can use the transmitted data information to the terminal device 800.
  • the communication between the other terminal devices 802 allocates corresponding resource information, and the allocated resource information ensures that the communication between any two terminal devices 800 that are in communication connection with other terminal devices 802 does not conflict with each other, so as to reduce different terminal devices 800. The correlation between them reduces the mutual interference between them.
  • a manner for the terminal device to obtain resource information that can communicate with other terminal devices includes:
  • the terminal device sends the terminal capability to the network device, where the terminal capability includes at least the antenna polarization capability of the terminal;
  • the antenna polarization capability is related to the hardware structure of the terminal device. Therefore, when the hardware structure of the terminal device is determined, the antenna polarization capability is also determined.
  • the above antenna polarization capability may include: The receiving antenna receives the number of antennas and the polarization direction. After obtaining the polarization capability of the antenna, the network device can allocate corresponding resource information to the terminal device according to the antenna polarization capability of the terminal device.
  • the terminal device sends a communication request for communicating with other terminal devices to the network device, so that the network device allocates time-frequency resources and antennas for the communication connection between the terminal device and other terminal devices according to the antenna polarization capability of the terminal. port;
  • steps S00 and S01 are interaction processes in which the terminal device sends information to the network device, and the specific information sent includes the terminal capability and the communication request.
  • the terminal device may separately send the terminal capability and the communication request.
  • the terminal device can simultaneously send the terminal capability and the communication request to the network device, and an achievable manner is: integrating the terminal capability into the communication request, Transmitting a communication request to the network device by the terminal device, and simultaneously transmitting the terminal device to the network device End capabilities and communication requests.
  • the time-frequency resource and the antenna port may be sent to the terminal device by using a scheduling instruction
  • the network device allocates time-frequency resources and antenna ports to different terminal devices.
  • different antenna ports can be assigned to the terminal devices, that is, different antenna devices are assigned different antenna polarization directions (for example: The orthogonal antenna polarization directions are assigned to different terminal devices.
  • orthogonal antenna reference symbol sequences or antenna reference patterns can also be allocated for different terminal devices.
  • the network device can partially allocate multiple different terminal devices (including antenna polarization direction and antenna reference symbol sequence or antenna reference pattern) by allocating time-frequency resources and antenna ports (as shown in FIG. 7). Or all multiplexed (as shown in Figure 6) the same time-frequency resource to send DATA data.
  • the scheduling information (Scheduling Assignment, SA for short) is not transmitted by multi-user MIMO, in reality, SAs of multiple different terminal devices can spatially multiplex the same time-frequency resources in the same manner; After determining, by the network device, the time-frequency resource and the antenna port allocated by the terminal device, the allocated time-frequency resource and the antenna port are sent to the terminal device by using a scheduling instruction.
  • the terminal device receives a scheduling instruction sent by the network device, where the scheduling instruction includes a time-frequency resource and an antenna port allocated for the communication connection between the terminal device and the other terminal device, where any two communication connections with other terminal devices are performed.
  • the time-frequency resources allocated by the terminal devices are the same or different from the antenna ports.
  • the terminal device After receiving the scheduling command sent by the network device, the terminal device can communicate with other terminal devices according to the allocated time-frequency resource and the antenna port. It should be noted that when multiple terminal devices need to communicate with other terminal devices, In order to alleviate communication conflicts, when the network device allocates time-frequency resources and antenna ports for each terminal device, the following rules are met: time-frequency resources and antennas allocated for any two terminal devices that are in communication connection with other terminal devices The ports are the same or different. It should be noted that when the distances of multiple terminal devices are close enough, the time-frequency resources and antenna ports allocated by any two terminal devices that are in communication connection with other terminal devices may be different. The antenna port may be different and/or the antenna port is different.
  • the antenna port at this time may correspond to at least one of the following: an antenna polarization direction, an antenna reference symbol sequence or an antenna reference pattern; and when the distances of the multiple terminal devices are far enough Any two finals that can be connected to other terminal devices
  • the time-frequency resource allocated by the end device is the same as the antenna port.
  • the terminal device acquires a scheduling instruction by using a network device, where the scheduling instruction includes a time-frequency resource and an antenna port used by the terminal device to communicate with other terminal devices, thereby improving the time-frequency.
  • the accurate reliability of the resource and antenna port acquisition ensures the stability and reliability of the communication connection between the terminal device and other terminal devices, and also expands the applicable range of the method, thereby improving the practicability of the method.
  • a communication connection exists between the terminal device 900 and the surrounding terminal 901; Specifically, the surrounding terminal 901 sends data information to the terminal device 900, and the terminal device 900 performs analysis and judgment on the transmitted data information, so that time-frequency resources and antenna ports for communicating with other terminal devices can be determined; When communicating with the determined resource information, it is ensured that the communication between the communication with other terminal devices and the communication between any two terminal devices 900 does not conflict with each other, so as to ensure the security and reliability of information transmission.
  • the data interaction method may be applied in the foregoing application scenario 2, and the antenna port corresponds to an antenna polarization direction as an example.
  • the antenna port corresponds to an antenna polarization direction as an example.
  • Ways of information include:
  • the terminal device acquires the used resource information occupied by the surrounding terminal, where the used resource information is used to indicate the time-frequency resource and the antenna polarization direction that are occupied by the communication;
  • an achievable manner is:
  • S10111 The terminal device receives scheduling information sent by the surrounding terminal.
  • the surrounding terminal may automatically send scheduling information to the terminal device in real time or according to a preset period, where the scheduling information includes resource information for carrying data information, and the foregoing resource information may include time-frequency resources and antenna ports, and in specific applications, the antenna
  • the port may correspond to at least one of an antenna polarization direction, an antenna reference symbol sequence, or an antenna reference pattern, where the antenna reference symbol sequence or the antenna reference pattern may be specified by an antenna port, or the antenna reference symbol sequence or the antenna reference pattern may also be The antenna port field in the scheduling information is obtained.
  • the terminal device acquires time-frequency resources and antenna polarization directions occupied by the surrounding terminals according to the scheduling information.
  • the terminal device can obtain the used resource information occupied by the surrounding terminal according to the different scheduling information sent by the surrounding terminal; therefore, after the terminal device receives the scheduling information, the terminal device can analyze and process the scheduling information, which is implemented.
  • the processing manner of the scheduling information includes: the terminal device demodulates the scheduling information, and obtains a time-frequency resource and an antenna polarization direction corresponding to the communication resource occupied by the surrounding terminal to send the data information.
  • the scheduling information includes the resource information for carrying the data information
  • the foregoing resource information may be obtained; wherein, due to the uncertainty, the specific complex of the time-frequency resource corresponding to the scheduling information
  • the scheduling information is demodulated by using a blind solution, and the blind solution may include: a spatial multiplexing detection mode and a non-spatial multiplexing detection mode; further, the terminal device demodulates the scheduling information.
  • the method includes: the terminal device demodulates the scheduling information by using a preset spatial multiplexing detection manner, and obtains a time-frequency resource and an antenna port for carrying data information in the scheduling information; or, the terminal device uses the preset non-spatial multiplexing detection
  • the method demodulates the scheduling information, and obtains the time-frequency resource and the antenna port used for carrying the data information in the scheduling information. It is noted that the obtained information is used to carry the data information regardless of the manner in which the scheduling information is demodulated.
  • Both the time-frequency resource and the antenna port may include: multiplexing or partial multiplexing of multiple peripheral terminals Resource information, the resource information or around the individual terminal devices.
  • the terminal device selects a time-frequency resource and an antenna port that communicate with other terminal devices according to the used resource information, where the selected time-frequency resource and the antenna port and the time-frequency resource occupied by the surrounding terminal and the antenna polarization direction are There is at least one difference.
  • the terminal device may select a time-frequency resource and an antenna port for communicating with other terminal devices according to the used resource information, wherein when there is a terminal device that needs to communicate with other terminal devices, in order to reduce Correlation between terminal devices, reducing mutual interference, under certain conditions, specifically, when the distance between terminal devices is relatively close, the selected time-frequency resources and antenna ports and surrounding terminals
  • the occupied time-frequency resources are the same as or different from the antenna ports.
  • the differences include time-frequency resources and/or antenna ports.
  • Each antenna port corresponds to at least one of the following: antenna polarization direction, antenna reference symbol sequence, or antenna.
  • the selected time-frequency resource, the antenna polarization direction, and the antenna reference symbol sequence are different from at least one of the time-frequency resources occupied by the surrounding terminals, the antenna polarization direction, and the antenna reference symbol sequence; It is stated that when the distance between the terminal devices is sufficiently far, the selected time frequency can be selected. Resources and antenna ports are occupied by the surrounding terminals The time-frequency resource is the same as the antenna port. At this time, communication interference does not occur between the terminal devices.
  • the data interaction method provided by the present application introduces a multi-antenna port (antenna polarization direction, antenna reference symbol sequence or antenna reference pattern) selection mechanism in a V2V communication link, and the terminal device freely competes for time-frequency resources while autonomously selecting
  • the antenna port is configured to enable the terminal devices of different transmit antenna ports to multiplex the same time-frequency resources, or the terminal devices of different time-frequency resources can be multiplexed with the same antenna port; that is, by introducing antenna port polarization selection,
  • the spatial dimension is introduced to increase the optional dimension of the terminal device competing for resource information (increasing the spatial dimension in the original time-frequency dimension), thereby effectively increasing the overall system capacity.
  • FIG. 10 is a schematic flowchart of a method for data interaction according to an embodiment of the present disclosure.
  • the embodiment provides another method for data interaction, and the execution body of the method may be a network device, that is, For the network device used in the application scenario 1 to interact with the terminal device, the method includes:
  • the network device allocates a time-frequency resource and an antenna port for the communication connection between the terminal device and the other terminal device, where each antenna port corresponds to an antenna polarization direction, and is any two communication connections with other terminal devices. At least one of the time-frequency resource allocated by the terminal device and the polarization direction of the antenna is different;
  • the time-frequency resource includes time domain resource information and frequency domain resource information.
  • each antenna port may correspond to at least one of: antenna polarization direction, antenna reference symbol sequence, and antenna reference pattern;
  • antenna polarization direction when at least one antenna polarization direction is used, when the network device allocates time-frequency resources and antenna polarization directions for different terminal devices, in order to alleviate communication conflicts between the terminal devices, it may be any communication connection with other terminal devices.
  • the time-frequency resources allocated by the two terminal devices are the same or different from the polarization direction of the antenna. When the distance between the multiple terminal devices is relatively close, any two terminal devices that can communicate with other terminal devices can be connected.
  • the allocated time-frequency resource and the antenna polarization direction are set to be at least one different, and the difference here includes: different time-frequency resources and/or different antenna polarization directions; it should be noted that when between multiple terminal devices When the distance is long, the mutual interference between the terminal devices is small, so that communication with other terminal devices can be performed.
  • the time-frequency resources and antenna polarization directions allocated by any two connected terminal devices are set to be the same.
  • the network device is a communication between the terminal device and other terminal devices.
  • the connection allocates time-frequency resources and the antenna polarization direction are set to include:
  • the network device receives a communication request sent by the terminal device for performing a communication connection with another terminal device; the network device receives the terminal capability sent by the terminal device, and the terminal capability includes at least the antenna polarization capability possessed by the terminal;
  • the network device allocates time-frequency resources and antenna polarization directions for the communication connection between the terminal device and other terminal devices according to the antenna polarization capability possessed by the terminal.
  • the antenna polarization capability is related to the hardware structure of the terminal device. Therefore, when the hardware structure of the terminal device is determined, the antenna polarization capability is also determined, and the antenna polarization capability described above may be The method includes: the number of receiving antennas of the transmitting antenna and the polarization direction of the antenna, so that the network device allocates corresponding resource information to the terminal device according to the antenna polarization capability of the terminal device.
  • the network device allocates time-frequency resources and antenna polarization directions for different terminal devices.
  • different antenna ports may be assigned to the terminal devices, that is, different antenna polarization directions are assigned to different terminal devices.
  • orthogonal antenna polarization directions are assigned to different terminal devices.
  • orthogonal antenna reference symbol sequences or antenna reference patterns can also be assigned to different terminal devices.
  • the network device can partially allocate multiple different terminal devices (including antenna polarization direction and antenna reference symbol sequence or antenna reference pattern) by allocating time-frequency resources and antenna ports (as shown in FIG. 7). Or all multiplexed (as shown in Figure 6) the same time-frequency resource to send DATA data.
  • the scheduling information (Scheduling Assignment, SA for short) is not transmitted by multi-user MIMO, in reality, SAs of multiple different terminal devices can spatially multiplex the same time-frequency resources in the same manner; After determining, by the network device, the time-frequency resource and the antenna port allocated by the terminal device, the allocated time-frequency resource and the antenna port are sent to the terminal device by using a scheduling instruction.
  • the network device sends the allocated time-frequency resource and the antenna polarization direction to the terminal device by using a scheduling instruction.
  • the allocated time-frequency resource and the antenna polarization direction may be sent to the terminal device by using a scheduling instruction, so that the terminal device can perform the scheduling instruction.
  • the analysis process can obtain the allocated time-frequency resources and the antenna polarization direction, and then can communicate with other terminal devices by using the determined time-frequency resources and the antenna polarization direction to ensure the quality and efficiency of the communication.
  • the data interaction method provided by the present application specifies a time-frequency resource corresponding to the terminal device by the network device by introducing a multi-antenna port (corresponding to: antenna polarization direction, antenna reference symbol sequence or antenna reference pattern) selection mechanism in the communication process. And the antenna port, so that the terminal devices of different transmitting antenna ports can multiplex the same time-frequency resources; that is, by introducing the antenna port polarization selection, introducing the spatial dimension, and increasing the optional dimension when the terminal is freely competing for resources (in the original time-frequency Increase the dimensional dimension in the dimension, thus effectively increasing the overall system capacity.
  • a multi-antenna port corresponding to: antenna polarization direction, antenna reference symbol sequence or antenna reference pattern
  • the antenna port may correspond to at least one of the following: an antenna polarization direction, an antenna reference symbol sequence, or an antenna reference pattern; and the following description of the antenna port corresponding to the antenna polarization direction, where the network device is For example, it can be used to allocate resources for communication between the first terminal device and the second terminal device, and further, the first device realizes communication between the terminal device and other terminal devices according to the antenna polarization capability possessed by the terminal device.
  • the way to connect the allocated time-frequency resources and antenna ports includes:
  • the network device allocates a first time-frequency resource and a first antenna polarization direction for the communication connection between the first terminal device and the other terminal device;
  • the network device allocates a second time-frequency resource and a second antenna polarization direction for the communication connection between the second terminal device and the other terminal device;
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • the method for realizing the polarization direction of the first antenna and the polarization direction of the second antenna is: the polarization direction of the first antenna is orthogonal to the polarization direction of the second antenna; and the first terminal device and the second terminal are The device allocates different antenna polarization directions and multiplexes the same or partially identical time-frequency resources to communicate with other terminal devices, which helps to improve the spectrum efficiency and ease the relationship between the first terminal device and the second terminal device. Communication interference ensures the stability and reliability of communication information transmission.
  • the second method for the network device to allocate time-frequency resources and antenna ports according to the antenna polarization capability of the terminal for the communication connection between the terminal device and other terminal devices includes:
  • the network device allocates a first time-frequency resource and a first antenna polarization direction for the communication connection between the first terminal device and the other terminal device;
  • the network device allocates a second time-frequency resource and a second antenna polarization direction for the communication connection between the second terminal device and the other terminal device;
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the user signals do not interfere with each other.
  • the third method for the network device to allocate the time-frequency resource and the antenna port according to the antenna polarization capability of the terminal for the communication connection between the terminal device and the other terminal device includes:
  • the network device allocates a first time-frequency resource and a first antenna polarization direction for the communication connection between the first terminal device and the other terminal device;
  • the network device allocates a second time-frequency resource and a second antenna polarization direction for the communication connection between the second terminal device and the other terminal device;
  • the first time-frequency resource is the same as or different from the second time-frequency resource, and the polarization direction of the first antenna is the same as the polarization direction of the second antenna. Or different.
  • the signals between the first terminal device and the second terminal device do not interfere with each other, and therefore, the first terminal device and the second terminal device may be allocated.
  • the same or different antenna polarization directions, the same or different time-frequency resources are communicatively connected with other terminal devices.
  • the antenna port corresponds to: the antenna polarization direction, the antenna reference symbol sequence or the antenna reference pattern, that is, the antenna port corresponds to the antenna polarization direction and the antenna reference symbol sequence; or the antenna port corresponds to the antenna pole
  • the allocated resource information is used to indicate the time-frequency resource for communication, the antenna polarization direction, the antenna reference symbol sequence or the antenna reference pattern, and at this time, for the network device
  • the resource information needs to be allocated for the communication between the first terminal device and the second terminal device, and the network device can allocate the time-frequency to the communication connection between the terminal device and the other terminal device according to the antenna polarization capability of the terminal device.
  • the ways of resources and antenna ports include:
  • the network device allocates a first time-frequency resource, a first antenna polarization direction, a first antenna reference symbol sequence or a first antenna reference pattern for the communication connection between the first terminal device and the other terminal device;
  • the network device allocates a second time-frequency resource and a second antenna polarization direction, a second antenna reference symbol sequence or a second antenna reference pattern for the communication connection between the second terminal device and the other terminal device;
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the first antenna polarization direction is different from the second antenna polarization direction, and the first antenna reference symbol sequence is different from the second antenna reference symbol sequence, or The first antenna reference pattern is different from the second antenna reference pattern.
  • the first antenna polarization direction is different from the second antenna polarization direction
  • the first antenna reference symbol sequence is different from the second antenna reference symbol sequence
  • the first antenna reference pattern and the second antenna reference pattern are One way is: the first antenna polarization direction is orthogonal to the second antenna polarization direction, the first antenna reference symbol sequence is orthogonal to the second antenna reference symbol sequence, or the first antenna reference pattern and the second antenna The antenna reference pattern is orthogonal.
  • the communication connection can improve the spectrum efficiency of the system, effectively alleviate the mutual interference between the first terminal device and the second terminal device, and ensure the stability and reliability of the communication information transmission.
  • the second method for the network device to allocate time-frequency resources and antenna ports according to the antenna polarization capability of the terminal for the communication connection between the terminal device and other terminal devices includes:
  • the network device allocates a first time-frequency resource, a first antenna polarization direction, a first antenna reference symbol sequence or a first antenna reference pattern for the communication connection between the first terminal device and the other terminal device;
  • the network device allocates a second time-frequency resource and a second antenna polarization direction, a second antenna reference symbol sequence or a second antenna reference pattern for the communication connection between the second terminal device and the other terminal device;
  • the first time-frequency resource is different from the second time-frequency resource, and the first antenna polarization direction is the same as or different from the second antenna polarization direction, and the first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence, or The first antenna reference pattern is the same as or different from the second antenna reference pattern.
  • the frequency resources are orthogonal, and the user signals do not interfere with each other.
  • the third way for the network device to allocate the time-frequency resource and the antenna port according to the antenna polarization capability of the terminal for the communication connection between the terminal device and the other terminal device includes:
  • the network device allocates a first time-frequency resource, a first antenna polarization direction, a first antenna reference symbol sequence or a first antenna reference pattern for the communication connection between the first terminal device and the other terminal device;
  • the network device allocates a second time-frequency resource and a second antenna polarization direction, a second antenna reference symbol sequence or a second antenna reference pattern for the communication connection between the second terminal device and the other terminal device;
  • the first time-frequency resource is the same as or different from the second time-frequency resource
  • the polarization direction of the first antenna is the same as the polarization direction of the second antenna.
  • the first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence
  • the first antenna reference pattern is the same as or different from the second antenna reference pattern.
  • the first terminal device and the second terminal device can be assigned the same Or different antenna polarization directions, the same or different time-frequency resources, and the same or different antenna reference symbol sequences or antenna reference patterns are communicatively connected with other terminal devices.
  • FIG. 11 is a schematic flowchart of a method for data interaction according to an embodiment of the present disclosure.
  • the present application provides another method for data interaction, where the main body of the method is a terminal device, specifically,
  • the terminal device may be any one of the other terminal devices used in the application scenario 1 or the application scenario 2 for communicating with the terminal device.
  • the terminal device may receive scheduling information and data information sent by other terminal devices.
  • the method includes:
  • S301 The terminal device receives scheduling information sent by another terminal device.
  • the scheduling information includes resource information for carrying data information, where the resource information is used to indicate a time-frequency resource and an antenna port for performing communication, and the time-frequency resource includes time domain resource information and frequency domain resource information, and the antenna port may be At least one of the following: antenna polarization direction, antenna reference symbol sequence or antenna reference pattern; in addition, the specific implementation process of receiving scheduling information by the terminal device is not limited, and an achievable manner, other terminal devices in real time Or, the scheduling information is actively sent according to a preset period, so that the terminal device can receive the scheduling information. In another implementation manner, the terminal device sends a scheduling acquisition request to other terminal devices, and other terminal devices obtain the scheduling according to the sent scheduling. Requesting to send scheduling information to the terminal device, so that the terminal device can receive the scheduling information.
  • the terminal device acquires resource information for carrying data information according to the scheduling information, where the resource information is used to indicate a time-frequency resource and an antenna port for performing communication.
  • Each antenna port corresponds to an antenna polarization direction
  • the terminal device receives at least one of the time-frequency resources and the antenna polarization direction used by any two terminal devices in the other terminal to transmit scheduling information.
  • the terminal device may obtain the resource information for carrying the data information according to the analysis processing result of the scheduling information. Specifically, the terminal device may obtain the resource information used to carry the data information according to the scheduling information. Ways include:
  • the terminal device demodulates the scheduling information, and acquires time-frequency resources and antenna ports used by other terminal devices to carry data information.
  • the time-frequency resource and the antenna port for carrying the data information may be acquired, and further, the time-frequency resource is detected, and the sent data information, that is, the terminal device, may be acquired.
  • the data information sent by other terminal devices can be obtained according to the time-frequency resource; wherein, due to the specific multiplexing manner of the time-frequency resources corresponding to the scheduling information, the blind information is used to demodulate the scheduling information, and the blind solution is
  • the method may include: a spatial multiplexing detection mode and a non-spatial multiplexing detection mode; and further, the manner in which the terminal device demodulates the scheduling information may include: the terminal device demodulates the scheduling information by using a preset spatial multiplexing detection manner.
  • the time information resource and the antenna port obtained for carrying the data information may include: resource information of multiple peripheral terminals multiplexed or partially multiplexed, or resources that are not multiplexed by surrounding terminal devices. information.
  • the terminal device receives the scheduling information, demodulates the scheduling information, and obtains the time-frequency resource and the antenna port, and further obtains the data information sent by the other terminal device, because the antenna is introduced.
  • the polarization selection mechanism helps to reduce the channel correlation between terminal devices, which can further reduce mutual interference between spatially multiplexed terminal devices and improve the communication capacity of the entire system, thereby ensuring the stability and reliability of information interaction.
  • the antenna port may correspond to: at least one of an antenna polarization direction, an antenna reference symbol sequence, or an antenna reference pattern; and the following description is performed by using an antenna port corresponding to an antenna polarization direction, where
  • the other terminal devices that are in communication with the terminal device include at least the first terminal device and the second terminal device, the first manner for the terminal device to receive the scheduling information sent by the other terminal device includes:
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • the method for realizing the polarization direction of the first antenna and the polarization direction of the second antenna is: the polarization direction of the first antenna is orthogonal to the polarization direction of the second antenna; and the first terminal device and the second terminal device are Utilizing different antenna polarization directions and multiplexing the same or partially identical time-frequency resources to communicate with the terminal device, which helps to improve the spectrum efficiency and ease the communication between the first terminal device and the second terminal device. Interference to ensure the stability and reliability of communication information transmission.
  • the second method for enabling the terminal device to receive scheduling information sent by other terminal devices includes:
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the first terminal device and the second terminal device use the same or different antenna polarization directions and different time-frequency resources to communicate with the terminal device, since the time-frequency resources are orthogonal, the user signals do not interfere with each other.
  • the third method for implementing the terminal device to receive scheduling information sent by other terminal devices includes:
  • the first time-frequency resource is the same as or different from the second time-frequency resource, and the polarization direction of the first antenna is the same as the polarization direction of the second antenna. Or different.
  • the first terminal device and the second terminal device can utilize the same Or different antenna polarization directions, the same or different time-frequency resources are connected to the terminal device.
  • FIG. 12 is a schematic structural diagram 1 of a terminal device according to an embodiment of the present disclosure.
  • the application provides a terminal device, where the terminal device is configured to perform data interaction corresponding to the foregoing FIG. 3-8.
  • the method specifically, the terminal device includes:
  • the acquiring unit 100 is configured to acquire resource information that can communicate with other terminal devices, where the resource information is used to indicate a time-frequency resource and an antenna port for performing communication, where each antenna port corresponds to an antenna polarization direction;
  • the sending unit 101 is configured to send scheduling information and data information to other terminal devices by using time-frequency resources and antenna polarization directions.
  • the scheduling information includes a time-frequency resource and an antenna polarization direction for carrying data information, and at least two time-frequency resources and antenna polarization directions used by any two terminal devices that transmit scheduling information and data information to other terminal devices. There is a difference.
  • the antenna port may correspond to at least one of an antenna polarization direction, an antenna reference symbol sequence, and an antenna reference pattern, and the time-frequency resource includes time domain resource information and frequency domain resource information; and the acquiring unit 100 may be configured as described above.
  • the transmitting unit 101 can execute step S102 of the method shown in FIG.
  • the sending unit 101 includes a first sending unit 1011 disposed in the first terminal device and a second sending unit 1012 disposed in the second terminal device terminal, and further, utilizing time-frequency resources and antenna polarization directions to other
  • An implementation manner in which the terminal device sends scheduling information and data information is:
  • the first sending unit 1011 is configured to: broadcast the first scheduling information and the first data information to other terminal devices by using the first time-frequency resource and the first antenna polarization direction;
  • the second sending unit 1012 is configured to: broadcast the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • the polarization direction of the first antenna is orthogonal to the polarization direction of the second antenna.
  • the first sending unit 1011 is configured to: broadcast the first scheduling information and the first data information to other terminal devices by using the first time-frequency resource and the first antenna polarization direction;
  • the second sending unit 1012 is configured to: broadcast the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the first sending unit 1011 is configured to: broadcast the first scheduling information and the first data information to other terminal devices by using the first time-frequency resource and the first antenna polarization direction;
  • the second sending unit 1012 is configured to: broadcast the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is the same as or different from the second time-frequency resource, and the first antenna is polarized with the second antenna.
  • the polarization directions are the same or different.
  • the antenna port corresponds to: antenna polarization direction, antenna reference symbol sequence or antenna reference pattern, that is, the antenna port corresponds to the antenna polarization direction and the antenna reference symbol sequence, or the antenna port corresponds to the antenna polarization direction and the antenna reference pattern.
  • the transmitting unit 101 when it performs communication using the resource information with other terminal devices, it may be configured to:
  • the scheduling information includes a time-frequency resource for carrying data information, an antenna polarization direction, and an antenna reference symbol sequence or an antenna reference pattern; and when any two terminal devices that transmit scheduling information and data information are used by other terminal devices
  • the frequency resource, antenna polarization direction, and antenna reference symbol sequence or antenna reference pattern are the same or different.
  • the transmitting unit 101 includes a first transmitting unit 1011 and a setting that are disposed in the first terminal device.
  • a second transmitting unit 1012 in the second terminal device terminal further, an implementation manner of transmitting scheduling information and data information to other terminal devices by using time-frequency resources and antenna polarization directions is:
  • the first sending unit 1011 is configured to: broadcast the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource, the first antenna polarization direction, and the first antenna reference symbol sequence or the first antenna reference pattern;
  • the second sending unit 1012 is configured to: broadcast the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource, the second antenna polarization direction, and the second antenna reference symbol sequence or the second antenna reference pattern;
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the first antenna polarization direction is orthogonal to the second antenna polarization direction, and the first antenna reference symbol sequence is orthogonal to the second antenna reference symbol sequence.
  • the first antenna reference pattern is orthogonal to the second antenna reference pattern.
  • the first sending unit 1011 is configured to: broadcast the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource, the first antenna polarization direction, and the first antenna reference symbol sequence or the first antenna reference pattern;
  • the second sending unit 1012 is configured to: broadcast the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource, the second antenna polarization direction, and the second antenna reference symbol sequence or the second antenna reference pattern;
  • the first time-frequency resource is different from the second time-frequency resource, and the first antenna polarization direction is the same as or different from the second antenna polarization direction, and the first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence, or The first antenna reference pattern is the same as or different from the second antenna reference pattern.
  • the first sending unit 1011 is configured to: broadcast the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource, the first antenna polarization direction, and the first antenna reference symbol sequence or the first antenna reference pattern;
  • the second sending unit 1012 is configured to: broadcast the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource, the second antenna polarization direction, and the second antenna reference symbol sequence or the second antenna reference pattern;
  • the first time-frequency resource is the same as or different from the second time-frequency resource
  • the first antenna polarization direction is opposite to the second antenna.
  • the polarization directions are the same or different
  • the first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence
  • the first antenna reference pattern is the same as or different from the second antenna reference pattern.
  • the obtaining unit 100 can also be used to:
  • the terminal capability Before receiving the scheduling instruction sent by the network device, sending the terminal capability to the network device, where the terminal capability includes at least the antenna polarization capability of the terminal;
  • the antenna port corresponds to at least one antenna polarization direction.
  • the obtaining unit 100 can also be used to:
  • the scheduling instruction includes a time-frequency resource and an antenna polarization direction allocated for a communication connection between the terminal device and another terminal device, where any two terminals that are in communication connection with other terminals At least one of the time-frequency resources allocated by the device and the polarization direction of the antenna is different.
  • the obtaining unit 100 is specifically configured to:
  • the used resource information is used to indicate the time-frequency resource occupied by the communication and the polarization direction of the antenna;
  • the acquiring unit 100 may be configured to:
  • the acquiring unit 100 acquires the used resource information occupied by the surrounding terminal according to the scheduling information
  • the acquiring unit 100 is configured to:
  • the scheduling information is demodulated, and the used resource information corresponding to the communication resource occupied by the surrounding terminal to transmit the data information is obtained.
  • a method for demodulating the scheduling information of the acquiring unit 100 is: demodulating the scheduling information by using a preset spatial multiplexing detection manner, and obtaining a time-frequency resource and an antenna port for carrying data information in the scheduling information;
  • Another method for demodulating the scheduling information of the acquiring unit 100 is: demodulating the scheduling information by using a preset non-spatial multiplexing detection manner, and obtaining time-frequency resources and antennas for carrying data information in the scheduling information. port.
  • the terminal device of the embodiment shown in FIG. 12 can be used to perform the technical solution of the embodiment shown in FIG. 3 and FIG. 9 in the foregoing method, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present disclosure; and as shown in FIG. 13 , the network device is used for performing communication connection with a terminal device, and specifically, The method for performing the data interaction shown in FIG. 10 above, the network device includes:
  • the allocating unit 200 is configured to allocate a time-frequency resource and an antenna port for the communication connection between the terminal device and the other terminal device, where each antenna port corresponds to an antenna polarization direction, and is any communication connection with other terminal devices. At least one of the time-frequency resources allocated by the two terminal devices and the polarization direction of the antenna is different;
  • the sending unit 201 is configured to send the allocated time-frequency resource and the antenna polarization direction to the terminal device by using a scheduling instruction.
  • the antenna port may correspond to at least one of an antenna polarization direction, an antenna reference symbol sequence, and an antenna reference pattern, and the time-frequency resource includes time domain resource information and frequency domain resource information; and the allocating unit 200 may perform the method in FIG.
  • the transmitting unit 201 can execute step S202 of the method shown in FIG.
  • the allocation unit 200 may be configured to:
  • the time-frequency resource and the antenna port are allocated to the communication connection between the terminal device and the other terminal device according to the antenna polarization capability of the terminal, and the antenna port at this time corresponds to at least one antenna polarization direction.
  • the allocating unit 200 allocates a time-frequency resource and a polarization direction of the antenna to the communication connection between the terminal device and other terminal devices according to the antenna polarization capability of the terminal.
  • the ways to achieve this include:
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • a manner in which the polarization direction of the first antenna is different from the polarization direction of the second antenna is: the first antenna polarization direction is orthogonal to the second antenna polarization direction; further, the distribution unit 200 is configured according to the antenna pole of the terminal.
  • Another achievable way to allocate time-frequency resources and antenna ports for communication connections between terminal devices and other terminal devices includes:
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • Another achievable manner for the allocating unit 200 to allocate time-frequency resources and antenna ports for the communication connection between the terminal device and other terminal devices according to the antenna polarization capability of the terminal includes:
  • the first time-frequency resource is the same as or different from the second time-frequency resource, and the polarization direction of the first antenna is the same as the polarization direction of the second antenna. Or different.
  • an achievable way for the allocating unit 200 to allocate time-frequency resources and antenna ports for the communication connection between the terminal device and other terminal devices according to the antenna polarization capability of the terminal includes:
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the first antenna polarization direction is different from the second antenna polarization direction, and the first antenna reference symbol sequence is different from the second antenna reference symbol sequence, or The first antenna reference pattern is different from the second antenna reference pattern.
  • the first antenna reference symbol sequence is different from the second antenna reference symbol sequence, or the first antenna reference pattern is different from the second antenna reference pattern.
  • the first antenna polarization direction is orthogonal to the second antenna polarization direction
  • the first antenna reference symbol sequence is orthogonal to the second antenna reference symbol sequence
  • the first antenna reference pattern is orthogonal to the second antenna reference pattern.
  • the allocating unit 200 is based on the antenna polarization capability of the terminal, and is the terminal device and other terminal devices. Another achievable way to allocate time-frequency resources and antenna ports between communication connections is:
  • the first time-frequency resource is different from the second time-frequency resource, and the first antenna polarization direction is the same as or different from the second antenna polarization direction, and the first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence, or The first antenna reference pattern is the same as or different from the second antenna reference pattern.
  • Another achievable manner for the allocating unit 200 to allocate time-frequency resources and antenna ports for the communication connection between the terminal device and other terminal devices according to the antenna polarization capability of the terminal includes:
  • the first time-frequency resource is the same as or different from the second time-frequency resource
  • the polarization direction of the first antenna is the same as the polarization direction of the second antenna.
  • the first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence
  • the first antenna reference pattern is the same as or different from the second antenna reference pattern.
  • the network device of the embodiment shown in FIG. 13 can be used to perform the technical solution of the embodiment shown in FIG. 10 in the foregoing method, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure. and as shown in FIG. 14 , the present application provides another terminal device, where the terminal device is used to communicate with other terminal devices, and the foregoing figure may be executed. 11 method steps for data interaction, specifically, the terminal device includes:
  • the receiving unit 300 is configured to receive scheduling information sent by other terminal devices.
  • the processing unit 301 is configured to acquire resource information for carrying data information according to the scheduling information, where the resource information is used to indicate a time-frequency resource and an antenna port for performing communication.
  • Each antenna port corresponds to an antenna polarization direction
  • the terminal device receives at least one of the time-frequency resources and the antenna polarization direction used by any two terminal devices in the other terminal to transmit scheduling information.
  • the antenna port may correspond to at least one of an antenna polarization direction, an antenna reference symbol sequence, and an antenna reference pattern, and the time-frequency resource includes time domain resource information and frequency domain resource information;
  • the receiving unit 300 can perform step S301 of the method shown in FIG. 11, and the processing unit 301 can execute step S302 of the method shown in FIG.
  • the processing unit 301 acquires resource information for carrying data information according to the scheduling information, it may be configured to:
  • the scheduling information is demodulated, and the data information sent by other terminal devices and the time-frequency resources and antenna polarization directions for carrying the data information are obtained.
  • the processing unit 301 may be configured to:
  • the scheduling information is demodulated by using a preset spatial multiplexing detection manner, and the number of bearers used in the scheduling information is obtained. According to the time-frequency resources of the information and the polarization direction of the antenna; and/or,
  • the scheduling information is demodulated by using a preset non-spatial multiplexing detection manner, and time-frequency resources and antenna polarization directions for carrying data information in the scheduling information are obtained.
  • the antenna port corresponds to the antenna polarization direction
  • the antenna reference symbol sequence, or the antenna reference pattern when the scheduling information is demodulated, the data information sent by other terminal devices and the time frequency used for carrying the data information can be acquired.
  • Resource and antenna polarization direction, antenna reference symbol sequence or antenna reference pattern when the antenna port corresponds to the antenna polarization direction, the antenna reference symbol sequence, or the antenna reference pattern, when the scheduling information is demodulated, the data information sent by other terminal devices and the time frequency used for carrying the data information can be acquired.
  • Resource and antenna polarization direction, antenna reference symbol sequence or antenna reference pattern when the antenna port corresponds to the antenna polarization direction, the antenna reference symbol sequence, or the antenna reference pattern.
  • the terminal device of the embodiment shown in FIG. 14 can be used to perform the technical solution of the embodiment shown in FIG. 11 in the foregoing method, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the antenna port may correspond to: at least one of an antenna polarization direction, an antenna reference symbol sequence, or an antenna reference pattern; and the following describes the antenna port corresponding to the antenna polarization direction.
  • the manner in which the first implementation receiving unit 300 receives the scheduling information sent by the other terminal device includes:
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • the method for realizing the polarization direction of the first antenna and the polarization direction of the second antenna is: the polarization direction of the first antenna is orthogonal to the polarization direction of the second antenna; and the first terminal device and the second terminal device are Utilizing different antenna polarization directions and multiplexing the same or partially identical time-frequency resources to communicate with the terminal device, which helps to improve the spectrum efficiency and ease the communication between the first terminal device and the second terminal device. Interference to ensure the stability and reliability of communication information transmission.
  • the second manner in which the receiving unit 300 can receive the scheduling information sent by other terminal devices includes:
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the first terminal device and the second terminal device use the same or different antenna polarization directions and different time-frequency resources to communicate with the terminal device, since the time-frequency resources are orthogonal, the user signals do not interfere with each other.
  • the manner in which the third implementation receiving unit 300 receives scheduling information sent by other terminal devices includes:
  • the first time-frequency resource is the same as or different from the second time-frequency resource, and the polarization direction of the first antenna is the same as the polarization direction of the second antenna. Or different.
  • the first terminal device and the second terminal device can communicate with the terminal device by using the same or different antenna polarization directions and the same or different time-frequency resources.
  • each module unit of the above terminal device and network device is only a division of logic functions, and may be integrated into one physical entity or physically separated in whole or in part.
  • the module units may all be implemented in the form of software processing by the processing component; or may be implemented in the form of hardware; or some of the module units may be implemented by software in the form of processing component calls, and some of the module units are implemented by hardware.
  • the sending module unit may be a separately set processing element, or may be integrated in a chip of a terminal device or a network device, or may be stored in a memory of the terminal device or the network device in the form of a program.
  • a processing element of a terminal device or a network device invokes and executes the functions of each of the above module units.
  • the implementation of other modular units is similar.
  • all or part of these modular units can be integrated or implemented independently.
  • the processing element herein can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above module units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above receiving module unit is a module unit for controlling reception, and the information transmitted by the network device can be received by the receiving device of the terminal device or the network device, such as an antenna and a radio frequency device.
  • the above sending module unit is a module unit for controlling transmission, and can send information to the terminal device through a network device or a transmitting device of the terminal device, such as an antenna and a radio frequency device.
  • the above units may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 15 is a schematic structural diagram 3 of a terminal device according to an embodiment of the present disclosure; and as shown in FIG. 15 , the terminal device is configured to perform another terminal device corresponding to the foregoing FIG. 3 to FIG. 9 .
  • the method of data interaction specifically, the terminal device includes: a processor 401 and a memory 402, wherein the number of the processor 401 may be one or more, and may work separately or in cooperation, and the processor 401 is configured to :
  • resource information that can communicate with other terminal devices, where the resource information is used to indicate a time-frequency resource and an antenna port for performing communication;
  • the antenna port may correspond to at least one of an antenna polarization direction, an antenna reference symbol sequence, and an antenna reference pattern, and the time-frequency resource includes time domain resource information and frequency domain resource information; further, when the antenna port corresponds to antenna polarization In the direction, when the processor 401 communicates with other terminal devices by using the resource information, it may be configured to:
  • the scheduling information includes a time-frequency resource for carrying data information and an antenna polarization direction; and the time-frequency resources used by any two terminal devices that transmit scheduling information and data information to other terminal devices are the same as the antenna polarization direction or Different; here, when any two terminal devices that transmit scheduling information and data information are used by other terminal devices
  • the frequency resource and the antenna polarization direction are different.
  • At least one of the time-frequency resource and the antenna polarization direction utilized by any two terminal devices that send scheduling information and data information to other terminal devices is different; the processor 401 can execute at this time. Steps S101-S102 of the method shown in FIG.
  • the memory 402 is used to store a program that implements the above method embodiments, or the various units of the embodiment shown in FIG. 12, and the processor 401 calls the program to perform the operations of the foregoing method embodiments to implement the various units shown in FIG. The function of the function.
  • part or all of the above units may be implemented by being embedded in a chip of the device in the form of an integrated circuit. And they can be implemented separately or integrated. That is, the above units may be configured to implement one or more integrated circuits of the above method, for example, one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital singnal processor) , DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • microprocessors digital singnal processor
  • FPGAs Field Programmable Gate Arrays
  • an implementation manner of transmitting scheduling information and data information to other terminal devices by using time-frequency resources and antenna polarization directions is:
  • the processor 401 in the first terminal device is configured to: broadcast the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource and the first antenna polarization direction;
  • the processor 401 in the second terminal device is configured to: broadcast the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna. It should be noted that the first antenna polarization direction and the second antenna are implemented. The way in which the polarization directions of the antennas are different is that the polarization direction of the first antenna is orthogonal to the polarization direction of the second antenna.
  • the processor 401 in the first terminal device is configured to: broadcast the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource and the first antenna polarization direction;
  • the processor 401 in the second terminal device is configured to: broadcast the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the processing 401 in the first terminal device is configured to: broadcast the first scheduling information and the first data information to the other terminal device by using the first time-frequency resource and the first antenna polarization direction;
  • the processor 401 in the second terminal device is configured to: broadcast the second scheduling information and the second data information to the other terminal device by using the second time-frequency resource and the second antenna polarization direction;
  • the first time-frequency resource is the same as or different from the second time-frequency resource
  • the first The polarization direction of the antenna is the same as or different from the polarization direction of the second antenna.
  • the processor 401 performs communication between the terminal device and other terminal devices according to the antenna polarization capability of the terminal.
  • the connection allocates time-frequency resources and antenna ports, which can be configured to:
  • the scheduling information includes a time-frequency resource for carrying data information, an antenna polarization direction, and an antenna reference symbol sequence or an antenna reference pattern; and when any two terminal devices that transmit scheduling information and data information are used by other terminal devices
  • the frequency resource, antenna polarization direction, and antenna reference symbol sequence or antenna reference pattern are the same or different.
  • an implementation manner of transmitting scheduling information and data information to other terminal devices by using a time-frequency resource, an antenna polarization direction, and an antenna reference symbol sequence or an antenna reference pattern is:
  • the processor 401 of the first terminal device is configured to: broadcast the first scheduling information and the first to the other terminal device by using the first time-frequency resource, the first antenna polarization direction, and the first antenna reference symbol sequence or the first antenna reference pattern Data information;
  • the processor 401 of the second terminal device is configured to: broadcast the second scheduling information and the second to the other terminal device by using the second time-frequency resource, the second antenna polarization direction, and the second antenna reference symbol sequence or the second antenna reference pattern Data information;
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the first antenna polarization direction is different from the second antenna polarization direction, and the first antenna reference symbol sequence is different from the second antenna reference symbol sequence, or The first antenna reference pattern is different from the second antenna reference pattern.
  • the first antenna polarization direction is different from the second antenna polarization direction
  • the first antenna reference symbol sequence is different from the second antenna reference symbol sequence
  • the first antenna reference pattern and the second antenna reference pattern are One way is: the first antenna polarization direction is orthogonal to the second antenna polarization direction, the first antenna reference symbol sequence is orthogonal to the second antenna reference symbol sequence, or the first antenna reference pattern and the second antenna The antenna reference pattern is orthogonal.
  • the processor 401 of the first terminal device is configured to: broadcast the first scheduling information and the first to the other terminal device by using the first time-frequency resource, the first antenna polarization direction, and the first antenna reference symbol sequence or the first antenna reference pattern Data information;
  • the processor 401 of the second terminal device is configured to: broadcast the second scheduling information and the second to the other terminal device by using the second time-frequency resource, the second antenna polarization direction, and the second antenna reference symbol sequence or the second antenna reference pattern Data information;
  • the first time-frequency resource is different from the second time-frequency resource, and the first antenna polarization direction is the same as or different from the second antenna polarization direction, and the first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence, or The first antenna reference pattern is the same as or different from the second antenna reference pattern.
  • Another method for transmitting scheduling information and data information to other terminal devices by using time-frequency resources, antenna polarization directions, antenna reference symbol sequences or antenna reference patterns is:
  • the processor 401 of the first terminal device is configured to: broadcast the first scheduling information and the first to the other terminal device by using the first time-frequency resource, the first antenna polarization direction, and the first antenna reference symbol sequence or the first antenna reference pattern Data information;
  • the processor 401 of the second terminal device is configured to: broadcast the second scheduling information and the second to the other terminal device by using the second time-frequency resource, the second antenna polarization direction, and the second antenna reference symbol sequence or the second antenna reference pattern Data information;
  • the first time-frequency resource is the same as or different from the second time-frequency resource
  • the first antenna pole The first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence, or the first antenna reference pattern is the same as or different from the second antenna reference pattern.
  • the method may be configured to:
  • the terminal capability Before receiving the scheduling instruction sent by the network device, sending the terminal capability to the network device, where the terminal capability includes at least the antenna polarization capability of the terminal;
  • a communication request for communicating with other terminal devices is sent to the network device, so that the network device allocates time-frequency resources and antenna ports for the communication connection between the terminal device and the other terminal devices according to the antenna polarization capability possessed by the terminal.
  • the scheduling instruction includes a time-frequency resource and an antenna port allocated for a communication connection between the terminal device and another terminal device, where any two terminal devices that are in communication connection with other terminals are included
  • the allocated time-frequency resources are the same or different from the antenna ports.
  • the processor 401 acquires resource information that can communicate with other terminal devices, it may be configured to:
  • the processor 401 when the processor 401 obtains the used resource information occupied by the surrounding terminal, the processor 401 is configured to:
  • the processor 401 when the processor 401 acquires the used resource information occupied by the surrounding terminal according to the scheduling information, the 401 may be configured to:
  • the scheduling information is demodulated, and the used resource information corresponding to the communication resource occupied by the surrounding terminal to transmit the data information is obtained.
  • An achievable manner for implementing the demodulation of the scheduling information includes: demodulating the scheduling information by using a preset spatial multiplexing detection manner, and obtaining time-frequency resources and antenna ports for carrying data information in the scheduling information; and/ or,
  • Another implementation manner of implementing demodulation of the scheduling information includes: demodulating the scheduling information by using a preset non-spatial multiplexing detection manner, and obtaining time-frequency resources and antenna ports for carrying data information in the scheduling information.
  • the terminal device of the embodiment shown in FIG. 15 can be used to perform the technical solution of the embodiment shown in FIG. 1 to FIG. 9 in the foregoing method, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. and referring to FIG. 16, the present application provides another network device, where the network device is used to perform data interaction shown in FIG. Specifically, the network device includes: a processor 501 and a transmitter 502, where the processor 501 can be a Or multiple, and can work alone or in concert;
  • the processor 501 is configured to allocate a time-frequency resource and an antenna port for a communication connection between the terminal device and other terminal devices, wherein the time-frequency resources allocated by any two terminal devices that are in communication connection with other terminal devices are
  • the antenna ports are the same or different.
  • each antenna port corresponds to an antenna polarization direction
  • the difference here includes the time-frequency resource and the antenna polarization direction allocated by any two terminal devices that are in communication connection with other terminal devices. There is at least one difference in it.
  • the transmitter 502 is configured to transmit the allocated time-frequency resource and the antenna polarization direction to the terminal device by using a scheduling instruction.
  • the antenna port may correspond to at least one of an antenna polarization direction, an antenna reference symbol sequence, and an antenna reference pattern, and the time-frequency resource includes time domain resource information and frequency domain resource information; and the processor 501 may perform FIG. 10
  • the transmitter 502 can perform step S202 of the method illustrated in FIG.
  • processor 501 allocates time-frequency resources and antenna ports for the communication connection between the terminal device and other terminal devices, the following may be configured as:
  • the time-frequency resource and the antenna port are allocated according to the antenna polarization capability of the terminal for the communication connection between the terminal device and other terminal devices.
  • the processor 501 allocates time-frequency resources and antenna polarization directions to the communication connection between the terminal device and other terminal devices according to the antenna polarization capability of the terminal.
  • One way to achieve this includes:
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • One way to achieve the difference between the polarization direction of the first antenna and the polarization direction of the second antenna is that the polarization direction of the first antenna is orthogonal to the polarization direction of the second antenna.
  • Another achievable manner for allocating time-frequency resources and antenna ports according to the antenna polarization capability of the terminal for the communication connection between the terminal device and other terminal devices includes:
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • Another achievable manner for allocating time-frequency resources and antenna ports according to the antenna polarization capability of the terminal for the communication connection between the terminal device and other terminal devices includes:
  • the first time-frequency resource is the same as or different from the second time-frequency resource, and the polarization direction of the first antenna is the same as the polarization direction of the second antenna. Or different.
  • antenna port corresponds to: antenna polarization direction, antenna reference symbol sequence or antenna reference pattern, that is, the antenna port corresponds to the antenna polarization direction and the antenna reference symbol sequence, or the antenna port corresponds to the antenna polarization direction and the antenna reference pattern.
  • An achievable manner of allocating time-frequency resources and antenna ports for the communication connection between the terminal device and other terminal devices according to the antenna polarization capability of the terminal includes:
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the first antenna polarization direction is different from the second antenna polarization direction, and the first antenna reference symbol sequence is different from the second antenna reference symbol sequence, or The first antenna reference pattern is different from the second antenna reference pattern.
  • the first antenna polarization direction is different from the second antenna polarization direction
  • the first antenna reference symbol sequence is different from the second antenna reference symbol sequence
  • the first antenna reference pattern and the second antenna reference pattern are One way is: the first antenna polarization direction is orthogonal to the second antenna polarization direction, the first antenna reference symbol sequence is orthogonal to the second antenna reference symbol sequence, or the first antenna reference pattern and the second antenna The antenna reference pattern is orthogonal.
  • Another achievable manner for allocating time-frequency resources and antenna ports according to the antenna polarization capability of the terminal for the communication connection between the terminal device and other terminal devices includes:
  • the first time-frequency resource is different from the second time-frequency resource, and the first antenna polarization direction is the same as or different from the second antenna polarization direction, and the first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence, or The first antenna reference pattern is the same as or different from the second antenna reference pattern.
  • Another achievable manner for allocating time-frequency resources and antenna ports according to the antenna polarization capability of the terminal for the communication connection between the terminal device and other terminal devices includes:
  • the first time-frequency resource is the same as or different from the second time-frequency resource
  • the polarization direction of the first antenna is the same as the polarization direction of the second antenna.
  • the first antenna reference symbol sequence is the same as or different from the second antenna reference symbol sequence
  • the first antenna reference pattern is the same as or different from the second antenna reference pattern.
  • the terminal device of the embodiment shown in FIG. 16 can be used to perform the technical solution of the embodiment shown in FIG. 10 in the foregoing method, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 17 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the embodiment provides a terminal device, where the terminal device is configured to perform data interaction corresponding to FIG. 11 .
  • the method specifically, the terminal device includes: a receiver 602 and a processor 601, wherein the number of the processor 601 may be one or more, and may work separately or in cooperation;
  • the receiver 602 is configured to receive scheduling information sent by other terminal devices.
  • the processor 601 is configured to acquire resource information for carrying data information according to the scheduling information, where the resource information is used to indicate a time-frequency resource and an antenna port for performing communication.
  • the antenna port may correspond to at least one of an antenna polarization direction, an antenna reference symbol sequence, and an antenna reference pattern, and the time-frequency resource includes time domain resource information and frequency domain resource information; and each antenna port corresponds to an antenna polarization.
  • the receiver 602 receives at least one of the time-frequency resource and the antenna polarization direction used by any two terminal devices in the other terminal to transmit the scheduling information; that is, the receiver 602 can perform the method shown in FIG.
  • the processor 601 can execute step S302 of the method shown in FIG.
  • an achievable manner for the processor 601 to obtain resource information for carrying data information according to the scheduling information includes:
  • Demodulating the scheduling information acquiring time-frequency resources and antenna polarization directions for carrying data information, and obtaining data information sent by other terminal devices according to the time-frequency resources.
  • the processor 601 demodulates the scheduling information, it is configured to:
  • the scheduling information is demodulated by using a preset non-spatial multiplexing detection manner, and time-frequency resources and antenna polarization directions for carrying data information in the scheduling information are obtained.
  • the scheduling information when the antenna port corresponds to the antenna polarization direction, the antenna reference symbol sequence, or the antenna port corresponds to the antenna polarization direction and the antenna reference pattern, when the scheduling information is demodulated, the scheduling information may be obtained.
  • the time-frequency resource for carrying the data information, the antenna polarization direction, and the antenna reference symbol sequence; or the time-frequency resource, the antenna polarization direction, and the antenna reference pattern for carrying the data information in the scheduling information may also be acquired.
  • the antenna port may correspond to: at least one of an antenna polarization direction, an antenna reference symbol sequence, or an antenna reference pattern; and the following describes the antenna port corresponding to the antenna polarization direction, where the terminal device is
  • the first manner for the receiver 602 to receive the scheduling information sent by the other terminal device includes:
  • the first time-frequency resource is the same as or partially the same as the second time-frequency resource, and the polarization direction of the first antenna is different from the polarization direction of the second antenna.
  • the manner in which the polarization direction of the first antenna is different from the polarization direction of the second antenna is: the polarization direction of the first antenna is orthogonal to the polarization direction of the second antenna; and the first terminal device and the second terminal device are utilized.
  • Different antenna polarization directions, and multiplexing the same or partially identical time-frequency resources to communicate with the terminal equipment help to improve spectral efficiency
  • the communication interference between the first terminal device and the second terminal device is alleviated, and the stability and reliability of the communication information transmission are ensured.
  • the second manner in which the receiver 602 can receive scheduling information sent by other terminal devices includes:
  • the first time-frequency resource is different from the second time-frequency resource, and the polarization direction of the first antenna is the same as or different from the polarization direction of the second antenna.
  • the first terminal device and the second terminal device use the same or different antenna polarization directions and different time-frequency resources to communicate with the terminal device, since the time-frequency resources are orthogonal, the user signals do not interfere with each other.
  • the manner in which the third implementation receiver 602 receives scheduling information sent by other terminal devices includes:
  • the first time-frequency resource is the same as or different from the second time-frequency resource, and the polarization direction of the first antenna is the same as the polarization direction of the second antenna. Or different.
  • the first terminal device and the second terminal device can utilize the same Or different antenna polarization directions, the same or different time-frequency resources are connected to the terminal device.
  • the terminal device of the embodiment shown in FIG. 17 can be used to perform the technical solution of the embodiment shown in FIG. 11 in the foregoing method, and the implementation principle and technical effects are similar, and details are not described herein again.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, Digital Subscriber Line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
  • the functions described in the embodiments of the present application may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本申请提供了一种数据交互的方法、终端设备及网络设备,方法包括:终端设备获取可与其他终端设备进行通信的资源信息,资源信息用于指示进行通信的时频资源和天线端口,每个天线端口对应一天线极化方向;终端设备利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息;其中,调度信息中包括用于承载数据信息的时频资源和天线极化方向;向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源和天线极化方向中至少有一个不同。本申请通过在终端设备与其他终端进行通信的过程中引入多天线端口选择机制,实现了不同发送天线端口的终端设备可复用相同的时频资源,增加资源信息的可选维度,从而增加整体的系统通信容量。

Description

数据交互的方法、终端设备及网络设备 技术领域
本申请涉及通信技术,尤其涉及一种数据交互的方法、终端设备及网络设备。
背景技术
随着科学技术的不断发展,汽车已经成为非常普及的交通工具。在物联网的大背景下,随着车联网和智能交通(Intelligent Transportation System,简称ITS)概念和相关产业的兴起,车车通信(Vehicle to Vehicle,简称V2V)相关的通信管道技术也成为研究热点之一。具体来说,即车辆通过V2V通信,将自身的车速、行驶方向、具体位置、是否踩了紧急刹车等信息广播给周围车辆;同时通过获取其他车辆的该类信息,可以更好的感知视距以外的交通状况,从而允许驾驶员或者车辆本身的辅助/自主驾驶系统对危险或其他情况做出提前预判进而做出避让,或者进行一些协同交通行为。
IEEE 802.11p(又称WAVE,Wireless Access in the Vehicular Environment)标准是一个由IEEE 802.11标准扩充的通信协议,802.11p是提出较早的一种技术,是车车、车路直接通信的专用短距离通信(dedicated short range communication,简称DSRC)备选方案。同时,第三代合作伙伴极化(the third Generation Partnership Project,简称3GPP)组织也在积极推动基于长期演进(Long Term Evolution,简称LTE)的车载通信方案的标准化,其中用于安全类消息低时延传输的直接广播链路是长期演进-车辆(Long Term Evolution-Vehicle,简称LTE-V)车联网通信方案的组成部分。
应用时,802.11p采用了基于竞争的载波监听多址接入/碰撞避免(Carrier Sense Multiple Access/collision avoidance,简称CSMA/CA)协议,各个终端自主地随机竞争频率资源。该机制虽然灵活,便于组网,但在车辆密集的情况下,会导致冲突概率大大增加,终端可能很难竞争到资源及时发送消息,使得消息延迟和可靠性大大降低。
而与异步的802.11p系统的工作原理不同,LTE-V是一个有统一同步源的同步系统,分为自由竞争模式和网络调度模式两种工作模式。其中,自由竞争模式下采用了侦听/预留(sensing/reservation)机制,通过侦听检测来缓解用户间冲突,并通过资源预留可一次抢占多个周期性的时频资源。该机制与CSMA/CA有同样的问题,即在车辆密集的情况下效率不高;但相比之下,LTE-V的优势在于在发生资源紧张导致网络整体性能下降的时候,还可以通过基站的统一调度,例如,可以降低一定区域内所有车辆的消息发送频率来降低冲突概率,但这也是一种在性能和容量之间取折中的办法;在网络调度模式下,则是完全由基站调度完成所有终端设备的资源分配,由于有网络节点统一协调和优化所有终端设备的行为,所以可以明显提高系统效率,理论上可以达到满足资源约束条件下的最优可达系统性能。
然而,基于网络集中调度的资源分配方式,虽然理论上可以达到满足资源约束条件下的最优性能,但在资源和用户冲突严重的情况下,也只能通过牺牲部分性能以取 得与容量之间的一个折中;因此,在V2V网络中,有限系统带宽与高密度业务之间的矛盾仍然存在且较为突出。
发明内容
本申请提供了一种数据交互的方法、终端设备及网络设备,用于解决现有技术中存在的有限系统带宽与高密度业务之间的矛盾仍然存在且较为突出的问题。
第一方面,本申请提供了一种数据交互的方法,包括:
终端设备获取可与其他终端设备进行通信的资源信息,资源信息用于指示进行通信的时频资源和天线端口,其中,每个天线端口对应一天线极化方向;
终端设备利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息;
其中,调度信息中包括用于承载数据信息的时频资源和天线极化方向;向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源和天线极化方向中至少有一个不同。
在一种可能的设计中,终端设备利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息,包括:
第一终端设备利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
在一种可能的设计中,第一天线极化方向与第二天线极化方向正交。
在一种可能的设计中,终端设备利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息,包括:
第一终端设备利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
在一种可能的设计中,终端设备获取可与其他终端设备进行通信的资源信息,包括:
终端设备接收网络设备发送的调度指令,调度指令中包括为终端设备与其他终端设备之间的通信连接分配的时频资源和天线极化方向,其中,为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中至少有一个不同。
在一种可能的设计中,在终端设备接收网络设备发送的调度指令之前,方法还包括:
终端设备向网络设备发送终端能力,终端能力中至少包括终端具备的天线极化能力;
终端设备向网络设备发送用于与其他终端设备进行通信的通信请求,以使得网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向。
在一种可能的设计中,终端设备获取可与其他终端设备进行通信的资源信息,包括:
终端设备获取周围终端所占用的已用资源信息,已用资源信息用于指示进行通信已占用的时频资源和天线极化方向;
终端设备根据已用资源信息选择与其他终端设备进行通信的时频资源和天线极化方向,其中,所选择的时频资源和天线极化方向与周围终端所占用的时频资源和天线极化方向中至少有一个不同。
在一种可能的设计中,终端设备获取周围终端所占用的已用资源信息,包括:
终端设备接收周围终端发送的调度信息;
终端设备根据调度信息获取周围终端所占用的时频资源和天线极化方向。
在一种可能的设计中,终端设备根据调度信息获取周围终端所占用的已用资源信息,包括:
终端设备对调度信息进行解调,获得与周围终端发送数据信息所占用的时频资源和天线极化方向。
在一种可能的设计中,终端设备对调度信息进行解调,包括:
终端设备利用预先设置的空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线极化方向;和/或,
终端设备利用预先设置的非空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线极化方向。
第二方面,本申请提供了一种数据交互的方法,包括:
网络设备为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口,其中,每个天线端口对应一天线极化方向,且为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中至少有一个不同;
网络设备将所分配的时频资源和天线极化方向通过调度指令发送至终端设备。
在一种可能的设计中,网络设备为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口,包括:
网络设备接收终端设备发送的用于与其他终端设备进行通信连接的通信请求;
网络设备接收终端设备发送的终端能力,终端能力中至少包括终端具备的天线极化能力;
网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向。
在一种可能的设计中,网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向,包括:
网络设备为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
网络设备为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
在一种可能的设计中,第一天线极化方向与第二天线极化方向正交。
在一种可能的设计中,网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向,包括:
网络设备为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
网络设备为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
第三方面,本申请提供了一种数据交互的方法,包括:
终端设备接收其他终端设备发送的调度信息;
终端设备根据调度信息获取用于承载数据信息的资源信息,资源信息用于指示进行通信的时频资源和天线端口;
其中,每个天线端口对应一天线极化方向,且终端设备接收其他终端中任意两个终端设备发送调度信息时所利用的时频资源和天线极化方向中至少有一个不同。
在一种可能的设计中,终端设备接收其他终端设备发送的调度信息,包括:
终端设备接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
终端设备接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
在一种可能的设计中,第一天线极化方向与第二天线极化方向正交。
在一种可能的设计中,发送单元包括:
第一发送子单元,用于利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二发送子单元,用于利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
在一种可能的设计中,终端设备根据调度信息获取用于承载数据信息的资源信息,包括:
终端设备对调度信息进行解调,获取用于承载数据信息的时频资源和天线极化方向,并根据时频资源获得其他终端设备发送的数据信息。
在一种可能的设计中,终端设备对调度信息进行解调,包括:
终端设备利用预先设置的空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线极化方向;和/或,
终端设备利用预先设置的非空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线极化方向。
第四方面,本申请提供了一种终端设备,包括:
获取单元,用于获取可与其他终端设备进行通信的资源信息,资源信息用于指示进行通信的时频资源和天线端口,其中,每个天线端口对应一天线极化方向;
发送单元,用于利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息;
其中,调度信息中包括用于承载数据信息的时频资源和天线极化方向;向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源和天线极化方向中至少有一个不同。
在一种可能的设计中,发送单元包括:
第一发送子单元,用于利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二发送子单元,用于利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
在一种可能的设计中,第一天线极化方向与第二天线极化方向正交。
在一种可能的设计中,发送单元包括:
第一发送子单元,用于利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二发送子单元,用于利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
在一种可能的设计中,获取单元,用于:
接收网络设备发送的调度指令,调度指令中包括为终端设备与其他终端设备之间的通信连接所分配的时频资源和天线极化方向,其中,为与其他终端进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中至少有一个不同。
在一种可能的设计中,发送单元,用于:
在接收网络设备发送的调度指令之前,向网络设备发送终端能力,终端能力中至少包括终端具备的天线极化能力;
向网络设备发送用于与其他终端设备进行通信的通信请求,以使得网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向。
在一种可能的设计中,获取单元,用于:
获取周围终端所占用的已用资源信息,已用资源信息用于指示进行通信已占用的时频资源和天线极化方向;
根据已用资源信息选择与其他终端设备进行通信的时频资源和天线极化方向,其中,所选择的时频资源和天线极化方向与周围终端所占用的时频资源和天线极化方向中至少有一个不同。
在一种可能的设计中,获取单元,用于:
接收周围终端发送的调度信息;
根据调度信息获取周围终端所占用的已用资源信息。
在一种可能的设计中,获取单元,用于:
对调度信息进行解调,获得与周围终端发送数据信息所占用的通信资源所对应的已用资源信息。
在一种可能的设计中,获取单元,用于:
利用预先设置的空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线极化方向;和/或,
利用预先设置的非空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线极化方向。
第五方面,本申请提供了一种网络设备,包括:
分配单元,用于为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口,其中,每个天线端口对应一天线极化方向,且为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中至少有一个不同;
发送单元,用于将所分配的时频资源和天线极化方向通过调度指令发送至终端设备。
在一种可能的设计中,分配单元,用于:
接收终端设备发送的用于与其他终端设备进行通信连接的通信请求;
接收终端设备发送的终端能力,终端能力中至少包括终端具备的天线极化能力;
根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向。
在一种可能的设计中,分配单元,用于:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
为第一终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
在一种可能的设计中,第一天线极化方向与第二天线极化方向正交。
在一种可能的设计中,分配单元,用于:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
第六方面,本申请提供了一种终端设备,包括:
接收单元,用于接收其他终端设备发送的调度信息;
处理单元,用于根据调度信息获取用于承载数据信息的资源信息,资源信息用于指示进行通信的时频资源和天线端口;
其中,每个天线端口对应一天线极化方向,且终端设备接收其他终端中任意两个终端设备发送调度信息时所利用的时频资源和天线极化方向中至少有一个不同。
在一种可能的设计中,接收单元,用于:
接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
在一种可能的设计中,第一天线极化方向与第二天线极化方向正交。
在一种可能的设计中,接收单元,用于:
接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
在一种可能的设计中,处理单元,用于:
对调度信息进行解调,获取用于承载数据信息的时频资源和天线极化方向,并根据时频资源获得其他终端设备发送的数据信息。
在一种可能的设计中,处理单元,用于:
利用预先设置的空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线极化方向;和/或,
利用预先设置的非空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线极化方向。
第七方面,本申请提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行以上第一方面的方法。
第八方面,本申请提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行以上第二方面的方法。
第九方面,本申请提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行以上第三方面的方法。
第十方面,本申请提供了一种程序产品,例如计算机可读存储介质,包括第七方面的程序。
第十一方面,本申请提供了一种程序产品,例如计算机可读存储介质,包括第八方面的程序。
第十二方面,本申请提供了一种程序产品,例如计算机可读存储介质,包括第九方面的程序。
第十三方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第十四方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
可见,在以上各个方面,通过在终端设备与其他终端进行通信的过程中引入多天线端口选择机制,并且可以由网络设备调度指定或者由终端设备自由竞争相应的时频 资源和发送天线端口,从而可以实现具有不同发送天线端口的终端设备可复用相同的时频资源,或者,具有相同发送天线端口的终端设备可以利用不同的时频资源;实现了通过引入天线极化选择机制,增加了资源信息的可选维度(在原有时间-频率维度上增加空间维),从而增加整体的系统通信容量,有助于缓解有限系统带宽与高密度业务之间的矛盾,降低信息延迟,保证了通信信息传递的稳定可靠性。
附图说明
图1为本申请实施例提供的应用802.11p进行通信的通信容量性能曲线;
图2为本申请实施例提供的应用LTE-V进行通信的通信容量性能曲线;
图3为本申请实施例提供的一种数据交互的方法的流程示意图一;
图4为本申请实施例提供的应用场景一的组织结构示意图;
图5为本申请实施例提供的一种数据交互的方法的信令图一;
图6为本申请实施例提供的多个终端设备以不同的天线端口全部复用相同的时频资源发送数据信息的结构图;
图7为本申请实施例提供的多个终端设备以不同的天线端口部分复用相同的时频资源发送数据信息的结构图;
图8为本申请实施例提供的应用场景二的组织结构示意图;
图9为本申请实施例提供的一种数据交互的方法的流程示意图二;
图10为本申请实施例提供的一种数据交互的方法的流程示意图三;
图11为本申请实施例提供的一种数据交互的方法的流程示意图四;
图12为本申请实施例提供的一种终端设备的结构示意图一;
图13为本申请实施例提供的一种网络设备的结构示意图一;
图14为本申请实施例提供的一种终端设备的结构示意图二;
图15为本申请实施例提供的一种终端设备的结构示意图三;
图16为本申请实施例提供的一种网络设备的结构示意图二;
图17为本申请实施例提供的一种终端设备的结构示意图四。
具体实施方式
本申请应用于5G通信系统或未来可能出现的其他系统,以下对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。需要说明的是,当本申请实施例的方案应用于5G系统或未来可能出现的其他系统时,终端设备、网络设备的名称可能发生变化,但这并不影响本申请实施例方案的实施。
1)终端设备,又称为终端、用户设备,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端设备例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,其中,可穿戴设备例如包括:智能手表、智能手环、计步器等。
2)网络设备,又称为无线接入网(Radio Access Network,RAN)设备是一种将终端设备接入到无线网络的设备,其包括各种通信制式中的网络设备,例如包括但不 限于:基站、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(Base Station Controller,BSC)、网络设备收发台(Base Transceiver Station,BTS)、家庭网络设备(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU等。
3)“多个”是指两个或两个以上,其他量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请涉及通信技术领域,随着科学技术的不断进步,当今汽车已经成为非常普及的交通工具,在物联网的大背景下,随着车联网和智能交通(Intelligent Transportation System,简称ITS)概念和相关产业的兴起,车车通信(Vehicle to Vehicle,简称V2V)相关的通信管道技术也成为研究热点之一。现有技术中,车辆通过采用802.11p系统的方式或者LTE-V系统的方式利用V2V网络将自身的车速、行驶方向、具体位置、是否踩了紧急刹车等信息广播给周围车辆;同时通过获取其他车辆的该类信息,可以更好的感知视距以外的交通状况,从而允许驾驶员或者车辆本身的辅助/自主驾驶系统对危险或其他情况做出提前预判进而做出避让,或者进行一些协同交通行为。
然而,在具体应用时,802.11p采用了基于竞争的载波监听多址接入/碰撞避免(Carrier Sense Multiple Access/collision avoidance,简称CSMA/CA)协议,各个终端自主地随机竞争频率资源。该机制虽然灵活,便于组网,但在车辆密集的情况下,会导致冲突概率大大增加,终端可能很难竞争到资源及时发送消息,使得消息延迟和可靠性大大降低。
而与异步的802.11p系统的工作原理不同,LTE-V是一个有统一同步源的同步系统,分为自由竞争模式和网络调度模式两种工作模式。其中,自由竞争模式下采用了侦听/预留(sensing/reservation)机制,通过侦听检测来缓解用户间冲突,并通过资源预留可一次抢占多个周期性的时频资源。该机制与CSMA/CA有同样的问题,即在车辆密集的情况下效率不高;但相比之下,LTE-V的优势在于在发生资源紧张导致网络整体性能下降的时候,还可以通过基站的统一调度,例如,可以降低一定区域内所有车辆的消息发送频率来降低冲突概率,但这也是一种在性能和容量之间取折中的办法;在网络调度模式下,则是完全由基站调度完成所有终端设备的资源分配,由于有网络节点统一协调和优化所有终端设备的行为,所以可以明显提高系统效率,理论上可以达到满足资源约束条件下的最优可达系统性能;但在资源和用户冲突严重的情况下,也只能通过牺牲部分性能以取得与容量之间的一个折中;因此,在V2V网络中,有限系统带宽与高密度业务之间的矛盾仍然存在且较为突出。
具体的,参考附图1所示,在利用802.11P进行通信的通信容量性能仿真曲线中,在50辆车每公里每车道的情况下,90%可靠通讯的距离已经远小于50m,此时会严重影响安全消息的正确发送。继续参考附图2可知,在应用LTE-V进行通信的通信容量性能仿真曲线中,虽然结合了LTE-V基站调度以及基于地理位置的调度策略进行通信,并且上述通信容量性能相对802.11P的通信容量性能有所提升,但是在应对上述严重 车辆密集的场景下,仍然会面临系统容量瓶颈的问题。
因此,为了克服现有技术中存在的有限系统带宽与高密度业务之间的矛盾仍然存在且较为突出的问题,本申请提供了一种数据交互的方法,该数据交互的方法的执行主体可以为上述的终端设备,参考附图3可知,该方法包括:
S101:终端设备获取可与其他终端设备进行通信的资源信息,资源信息用于指示进行通信的时频资源和天线端口,其中,每个天线端口对应一天线极化方向;
本申请中的终端设备的个数和其他终端设备的个数可以为一个或多个,并且上述终端设备的终端类型可以与其他终端设备的终端类型相同或不同;而对于终端设备获取资源信息的具体方式而言,一种可实现的方式为:第三终端设备可以通过对某些参数进行分析后确定该终端设备可与其他终端设备进行通信的资源信息,之后第三终端设备将所确定的资源信息发送至终端设备,从而使得该终端设备可以接收到上述的资源信息,其中,上述第三终端设备的设备类型可以与上述终端设备或其他终端设备的类型相同或不同;另一种可实现的方式为:终端设备自身可以通过对某些参数的分析处理直接获取该终端设备可与其他终端设备进行通信的资源信息;需要说明的是,上述的时频资源包括时域资源信息和频域资源信息,实际应用中,上述的天线端口可以对应于以下至少之一:天线极化方向、天线参考符号序列或天线参考图样。
S102:终端设备利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息。
其中,调度信息中包括用于承载数据信息的时频资源和天线极化方向;向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源和天线极化方向中至少有一个不同。
由于终端设备和其他终端设备的个数可以为一个或多个,而当终端设备的个数较多时,为了缓解多个终端设备与其他终端设备进行通信时出现通信冲突,可以将多个终端设备分别设置为利用上述所获取的时频资源和天线极化方向向其他终端设备发送调度信息和数据信息;需要注意的是,在某些特定的情况下,多个终端设备可以采用不同的资源信息与其他终端设备进行通信,其中,不同的资源信息可以包括:两个终端设备所利用的时频资源不同和/或两个终端设备所利用的天线极化方向不同,从而可以提升整个通信系统的通信容量,有助于缓解有限系统带宽与高密度业务之间的矛盾,降低信息延迟,提高通信可靠性。
本申请所提供的数据交互的方法,在存在多个终端设备与其他终端设备进行通信时,且终端设备获取用于进行通信的资源信息之后,可以利用上述的资源信息与其他终端设备进行通信,由于资源信息用于指示进行通信的时频资源和天线端口,而每个天线端口对应一天线极化方向,因此,在进行通信时,不同的终端设备可以对部分的资源信息进行复用,从而实现了通过空间复用增益的方式提升了整个系统的通信容量,有助于缓解有限系统带宽与高密度业务之间的矛盾,降低信息延迟,提高通信可靠性,进而提高了该方法的实用性。
基于上述的陈述内容可知,在终端设备确定与其他终端设备进行通信的资源信息之后,由于资源信息用于指示进行通信的时频资源和天线极化方向,因此,终端设备可以利用上 述的时频资源和天线极化方向向其他终端发送调度信息和数据信息,该调度信息中包括承载所发送的数据信息的时频资源和天线极化方向,从而可以使得其他终端设备获知该终端设备与其他终端设备进行通信时所利用的资源信息,而当其他终端设备需要与第三终端设备进行通信时,可以选择与上述已利用资源信息不同的资源信息进行通信连接;另外,当终端设备为车载设备时,上述的数据信息可以包括:车辆的车速、行驶方向、具体位置、是否启动紧急刹车等信息;而当终端设备为可穿戴设备,上述的数据信息可以包括:使用者的位置信息、使用者的运动轨迹、使用者的自身状态信息等。
需要注意的是,当终端设备利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息时,为了缓解多个终端设备之间产生通信冲突,需要将向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源和天线极化方向设置为不同,此处的不同可以包括:任意两个终端设备所利用的时频资源不同、任意两个终端设备所利用的天线极化方向不同以及任意两个终端设备所利用的时频资源和天线极化方向均不同;或者,在满足特定的条件下(例如,当终端设备之间距离足够远时),可以使得向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源和天线极化方向相同,此时,在有效通信距离内,复用相同的时频资源和天线极化方向的两个不同终端设备之间相互干扰较小;具体的,以终端设备包括第一终端设备和第二终端设备为例进行说明,利用所获取的资源信息发送调度信息和数据信息的第一种可实现的方式为:
第一终端设备利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
对于上述不同的第一天线极化方向和第二天线极化方向而言,一种可实现的方式为:第一天线极化方向和第二天线极化方向正交,此时对于终端设备与其他终端设备之间的通信而言,效果较为良好;具体的,由于上述的天线极化方向与终端设备的硬件结构相关,一般情况下,当终端设备的硬件结构确定后,所拥有的天线极化方向也是唯一不变的;而本申请对于上述的第一天线极化方向和第二天线极化方向的具体方向角度不做限定,例如,可以采用线性极化天线并将第一天线极化方向设置为+45°,而第二天线极化方向可以为-45°,或者,还可以将第一天线极化方向设置为+90°(垂直极化),而第二天线极化方向可以为0°(水平极化);再或者,可以将第一天线极化方向设置为+60°(普通极化),而第二天线极化方向可以为-30°(普通极化);当然的,上述的第一天线极化方向和第二天线极化方向的具体角度值仅为举例说明,具体应用时还可以采用其他数值角度,而且除了线极化天线外还有圆极化天线(左旋极化和右旋极化),只要能够保证第一天线极化方向与第二天线极化方向正交即可;具体的,由于第一时频资源与第二时频资源相同或部分相同,而第一天线极化方向与第二天线极化方向正交,从而实现了利用不同天线极化方向的终端设备复用了相同或部分相同的时频资源与其他终端设备进行通信,使得两个不同的终端设备构成了虚拟MIMO(virtual-MIMO,简称VMIMO)用户对。
进一步的,在V2V网络中,上述的终端设备可以为车辆,并且可以基于LTE-V系统 实现上述数据交互的方法,从而便于虚拟MIMO用户对的配对成功。具体的,由于LTE-V是一个同步系统,当存在多个终端设备需要与其他终端设备进行通信时,上述的各个终端设备具有统一的物理层定时,从而具备VMIMO技术的使用条件。因此可在不改变终端设备的收发规格(例如现在流行的1T2R配置)、且不明显增加终端设备成本的条件下,以较低的代价通过MIMO技术提升现有系统容量。在V2V网络中引入VMIMO技术的另外一个优势在于:对于V2V中的终端设备而言,收发天线部署于不同的终端设备上且相距较远,有利于降低天线之间的相关性;同时由于全向天线部署高度低,容易由周围建筑等物体的反射而构成多径信道,上述情况均有利于VMIMO的配对成功。
然而,V2V网络是广播的通信方式,VMIMO配对用户到达其他终端设备中的各个设备的功率可能相差较多,即远近效应明显,此时强弱接收信号之间的干扰问题突出,尤其对弱接收信号的影响更大。另外,对于周围反射物体较少、终端设备(即车辆)之间有较多视线(line of sight,简称LOS)路径的应用场景(例如:周围环境较为空旷的高速路、郊区道路等),信号传播将以直射径为主,此时VMIMO空间复用用户之间的信道相关性可能会比较高,用户间干扰较大。因此,通过在V2V通信链路中引入发送天线极化选择机制,有助于降低VMIMO复用终端设备之间的相关性,使得即使在LOS传播为主的应用场景,占用相同时频资源的终端设备还可以因所引入的天线极化方向在空间维被区分。
通过将第一终端设备、第二终端设备设置为分别采用不同的天线极化方向、复用相同或部分相同的时频资源与其他终端设备进行通信连接,可以有效地缓解第一终端设备与第二终端设备之间的通信冲突,有助于降低信息传输延迟,保证通信信息传递的稳定可靠性。
此外,当终端设备包括第一终端设备和第二终端设备,且第一终端设备、第二终端设备需要分别向其他终端设备进行通信时,利用所获取的资源信息发送调度信息和数据信息的第二种可实现的方式为:
第一终端设备利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
具体应用时,由于第一终端设备和第二终端设备分别采用不同的时频资源向其他终端设备广播调度信息和数据信息,因此,第一终端设备和第二终端设备与其他终端设备之间的通信并不会产生冲突,此时,可以将第一终端设备所利用的第一天线极化方向与第二终端设备所利用的第二天线极化方向设置为相同;也可以将第一终端设备所利用的第一天线极化方向与第二终端设备所利用的第二天线极化方向设置为不同,例如:第一天线极化方向与第二天线极化方向正交。
通过将第一终端设备、第二终端设备设置为分别采用相同或不同的天线极化方向、不同的时频资源与其他终端设备进行通信连接,第一终端设备与第二终端设备之间无相互干扰,有效增加了终端设备之间通信方式的设置多样性,但是上述的终端设备并不构成虚拟MIMO用户对。
需要注意的是,当终端设备包括第一终端设备和第二终端设备,且第一终端设备、第二终端设备需要分别向其他终端设备进行通信时,利用所获取的资源信息发送调度信息和数据信息的第三种可实现的方式为:
第一终端设备利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
第一终端设备与第二终端设备的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同。
当第一终端设备和第二终端设备的距离足够远时,此时第一终端设备与其他终端设备之间的通信并不会影响到第二终端设备与其他终端设备之间的通信,因此,对于第一终端设备和第二终端设备而言,所采用的时频资源和天线极化方向可以分别相同或不同;例如,当距离阈值为500m时,第一终端设备和第二终端设备的距离为700m,由于700m>500m,此时对于第一终端设备和第二终端设备而言,二者之间的距离足够远,此时二者的信号并不会产生相互干扰,需要注意的是,以上的距离阈值仅为举例说明,具体应用时,还可以将距离阈值设置为其他具体数值;因此,第一终端设备所采用的资源信息可以与第二终端设备所采用的资源信息相同或不同,也即第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同。
当第一终端设备和第二终端设备的距离足够远时,第一终端设备和第二终端设备之间的通信并不会产生冲突,因此,可以将第一终端设备、第二终端设备设置为分别采用相同或不同的天线极化方向、相同或不同的时频资源与其他终端设备进行通信连接。
基于上述的陈述内容可知,为了进一步理解本申请的技术方案,下面以每个天线端口分别对应一天线极化方向、天线参考符号序列或天线参考图样的情况进行说明,也即,每个天线端口分别对应一天线极化方向和天线参考符号序列;或者,每个天线端口分别对应一天线极化方向和天线参考图样;此时对于终端设备而言,所获取的资源信息用于指示进行通信的时频资源、天线极化方向、天线参考符号序列或天线参考图样,进而一种可实现终端设备利用资源信息与其他终端设备进行通信的方式包括:
终端设备利用时频资源、天线极化方向以及天线参考符号序列或天线参考图样向其他终端设备发送调度信息和数据信息;
其中,调度信息中包括用于承载数据信息的时频资源、天线极化方向以及天线参考符号序列或天线参考图样;向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源、天线极化方向以及天线参考符号序列或天线参考图样相同或不同。
在终端设备确定与其他终端设备进行通信的资源信息之后,由于资源信息用于指示进行通信的时频资源、天线极化方向以及天线参考符号序列或天线参考图样,因此,终端设备可以利用上述的时频资源、天线极化方向以及天线参考符号序列或天线参考图样向其他终端广播调度信息和数据信息,该调度信息中包括承载所发送的数据信息的时频资源、天线极化方向以及天线参考符号序列或天线参考图样,从而可以使得其他终端设备获知该终 端设备与其他终端设备进行通信时所利用的资源信息,而当其他终端设备需要与第三终端设备进行通信时,可以选择与上述已利用资源信息不同的资源信息进行通信连接;而对于数据信息的具体内容而言,当终端设备为车载设备时,上述的数据信息可以包括:车辆的车速、行驶方向、具体位置、是否启动紧急刹车等信息;而当终端设备为可穿戴设备,上述的数据信息可以包括:使用者的位置信息、使用者的运动轨迹、使用者的自身状态信息等。
需要注意的是,当终端设备利用时频资源、天线极化方向以及天线参考符号序列或天线参考图样向其他终端设备发送调度信息和数据信息时,为了缓解多个终端设备分别与其他终端设备之间的通信产生通信冲突,需要将向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源、天线极化方向以及天线参考符号序列或天线参考图样设置为不同,此处的不同是指任意两个终端设备所利用的资源信息的三个参数中至少有一个参数不同;或者,在满足特定的条件下(当终端设备之间的距离足够远时),可以使得向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源、天线极化方向以及天线参考符号序列或天线参考图样设置为相同,此时,复用相同的时频资源、天线极化方向以及天线参考符号序列或天线参考图样的两个不同终端设备之间的通信也不会相互影响;具体的,以终端设备包括第一终端设备和第二终端设备为例进行说明,且第一终端设备、第二终端设备需要分别向其他终端设备进行通信时,利用所获取的资源信息发送调度信息和数据信息的第一种可实现的方式为:
第一终端设备利用第一时频资源、第一天线极化方向以及第一天线参考符号序列或第一天线参考图样向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备利用第二时频资源、第二天线极化方向以及第二天线参考符号序列或第二天线参考图样向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同,第一天线参考符号序列与第二天线参考符号序列不同,或者,第一天线参考图样与第二天线参考图样不同。
其中,实现“第一天线极化方向与第二天线极化方向不同,第一天线参考符号序列与第二天线参考符号序列不同,或者,第一天线参考图样与第二天线参考图样不同”的一种方式为:第一天线极化方向与第二天线极化方向正交,第一天线参考符号序列与第二天线参考符号序列正交,或者,第一天线参考图样与第二天线参考图样正交。
需要注意的是,第一终端设备、第二终端设备可以分别利用时频资源、天线极化方向以及天线参考符号序列向其他终端设备广播调度信息和数据信息,或者,第一终端设备、第二终端设备可以分别利用时频资源、天线极化方向以及天线参考图样向其他终端设备广播调度信息和数据信息,也即上述的天线参考图样与天线参考符号序列不可同时作为参考数据;具体的,由于第一时频资源与第二时频资源相同或部分相同,而第一天线极化方向与第二天线极化方向正交,相应的第一天线参考符号序列与第二天线参考符号序列正交,或者,第一天线参考图样与第二天线参考图样正交,从而实现了利用不同天线极化方向、且利用不同的天线参考符号序列或不同的天线参考图样的终端设备复用了相同或部分相同的时频资源与其他终端设备进行通信,有效地提高第一终端设备、第二终端设备与其他终端设备之间的通信质量。
通过将第一终端设备、第二终端设备设置为分别采用不同的天线极化方向、利用不同的天线参考符号序列或不同的天线参考图样、且复用相同或部分相同的时频资源与其他终端设备进行通信连接,可以有效地缓解第一终端设备与第二终端设备之间的通信冲突,保证了通信信息传递的稳定可靠性。
此外,当终端设备包括第一终端设备和第二终端设备,且第一终端设备、第二终端设备需要分别向其他终端设备进行通信时,利用所获取的资源信息发送调度信息和数据信息的第二种可实现的方式为:
第一终端设备利用第一时频资源、第一天线极化方向以及第一天线参考符号序列或第一天线参考图样向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备利用第二时频资源、第二天线极化方向以及第二天线参考符号序列或第二天线参考图样向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
具体应用时,由于第一终端设备和第二终端设备分别采用不同的时频资源向其他终端设备广播调度信息和数据信息,因此,第一终端设备和第二终端设备与其他终端设备之间的通信并不会产生冲突,此时,可以将第一天线极化方向与第二天线极化方向设置为相同,相应的,可以将第一天线参考符号序列与第二天线参考符号序列设置为相同,或者,将第一天线参考图样与第二天线参考图样设置为相同;也可以将第一天线极化方向与第二天线极化方向设置为不同,例如:第一天线极化方向与第二天线极化方向正交,相应的,可以将第一天线参考符号序列与第二天线参考符号序列设置为不同,或者,将第一天线参考图样与第二天线参考图样设置为不同。
通过将第一终端设备、第二终端设备设置为分别采用相同或不同的天线极化方向、不同的时频资源以及相同或不同的天线参考符号序列或线参考图样与其他终端设备进行通信连接,由于不同终端的时频资源正交,因而不存在碰撞和冲突的情况发生。
需要注意的是,当终端设备包括第一终端设备和第二终端设备,且第一终端设备、第二终端设备需要分别向其他终端设备进行通信时,利用所获取的资源信息发送调度信息和数据信息的第三种可实现的方式为:
第一终端设备利用第一时频资源、第一天线极化方向以及第一天线参考符号序列或第一天线参考图样向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备利用第二时频资源、第二天线极化方向以及第二天线参考符号序列或第二天线参考图样向其他终端设备广播第二调度信息和第二数据信息;
第一终端设备与第二终端设备的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
当第一终端设备和第二终端设备的距离足够远时,此时第一终端设备与其他终端设备 之间的通信并不会影响到第二终端设备与其他终端设备之间的通信,因此,对于第一终端设备和第二终端设备而言,所采用的时频资源、天线极化方向以及天线参考符号序列或者天线参考图样可以分别相同或不同;例如,当距离阈值为600m时,第一终端设备和第二终端设备的距离为800m,由于800m>600m,也即第一终端设备和第二终端设备的距离足够远,此时,二者的信号并不会产生相互干扰,需要注意的是,以上的距离阈值仅为举例说明,具体应用时,还可以将距离阈值设置为其他具体数值;因此,第一终端设备所采用的资源信息可以与第二终端设备所采用的资源信息相同或不同,也即第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同,相对应的,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
当第一终端设备和第二终端设备的距离足够远时,第一终端设备和第二终端设备之间的通信并不会产生冲突,因此,可以将第一终端设备、第二终端设备设置为分别采用相同或不同的天线极化方向、相同或不同的时频资源以及相同或不同的天线参考符号序列或者天线参考图样与其他终端设备进行通信连接。
应用场景一
参考附图4可知,在应用场景一的组织结构中,包括多个终端设备(例如:车辆)和一个网络设备801(例如:基站),多个终端设备中的一个终端设备800与网络设备801通信连接,用于向网络设备801发送数据信息,而该终端设备800同时也与周围的其他终端设备802进行通信连接;具体的,网络设备801可以根据所发送的数据信息对该终端设备800与其他终端设备802之间的通信分配相应的资源信息,所分配的资源信息要保证与其他终端设备802进行通信连接的任意两个终端设备800之间的通信相互不冲突,以降低不同终端设备800之间的相关性,从而减小之间的相互干扰。
在上述的应用场景一中应用该数据交互的方法,参考附图5可知,一种可实现终端设备获取可与其他终端设备进行通信的资源信息的方式包括:
S00:终端设备向网络设备发送终端能力,终端能力中至少包括终端具备的天线极化能力;
对于终端设备而言,天线极化能力与终端设备的硬件结构有关,因此,当终端设备的硬件结构确定后,天线极化能力也随之确定,上述的天线极化能力可以包括:能够支持的发射天线接收天线数目和极化方向,网络设备通过获取到天线极化能力之后,可以根据终端设备的天线极化能力为该终端设备分配相应的资源信息。
S01:终端设备向网络设备发送用于与其他终端设备进行通信的通信请求,以使得网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口;
需要注意的是,步骤S00和S01均为终端设备向网络设备发送信息的交互过程,发送的具体信息包括终端能力和通信请求,由上述陈述内容可知,终端设备可以将终端能力和通信请求分别发送至网络设备;可以想到的是,在某些特定的场景下,终端设备可以将终端能力和通信请求同时发送至网络设备处,一种可实现的方式为:将终端能力集成在通信请求中,通过终端设备向网络设备发送通信请求而实现了终端设备向网络设备同时发送终 端能力和通信请求。
S02:网络设备在为终端设备与其他终端设备之间的通信连接分配完毕时频资源和天线端口之后,可以将时频资源和天线端口通过调度指令发送至终端设备;
在网络设备调度模式下,由网络设备为不同的终端设备分配时频资源和天线端口,具体的,可以为其指定不同的天线端口,即为不同终端设备分配不同的天线极化方向(例如:为不同的终端设备分配正交的天线极化方向),当然的,也可以为不同的终端设备分配正交的天线参考符号序列或天线参考图样。
网络设备可以通过分配时频资源和天线端口,使得多个不同的终端设备以不同的天线端口(包括天线极化方向以及天线参考符号序列或天线参考图样)部分复用(如图7所示)或者全部复用(如图6所示)相同的时频资源发送DATA数据。虽然图中所示调度信息(Scheduling Assignment,简称SA)并未采用多用户MIMO的方式发送,但实际上多个不同终端设备的SA也可以采用相同的方式空间复用相同的时频资源;在网络设备确定为终端设备所分配的时频资源和天线端口之后,将上述所分配的时频资源和天线端口通过调度指令发送至终端设备。
S03:终端设备接收网络设备发送的调度指令,调度指令中包括为终端设备与其他终端设备之间的通信连接分配的时频资源和天线端口,其中,为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线端口相同或不同。
终端设备接收到网络设备发送的调度指令后,可以按照所分配的时频资源和天线端口与其他终端设备进行通信连接,需要注意的是,当存在多个终端设备需要与其他终端设备进行通信时,为了缓解通信冲突,网络设备在为每个终端设备分配时频资源和天线端口时,会满足以下规则:为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线端口相同或不同,需要说明的是,当多个终端设备的距离足够近时,可以为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线端口不同,上述的不同可以包括时频资源不同和/或天线端口不同,此时的天线端口可以对应于以下至少之一:天线极化方向、天线参考符号序列或天线参考图样;而当多个终端设备的距离足够远时,可以为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线端口相同。
本申请提供的数据交互的方法,终端设备通过网络设备获取到调度指令,上述的调度指令中包括该终端设备用于与其他终端设备进行通信连接的时频资源和天线端口,从而提高了时频资源和天线端口获取的准确可靠性,保证了该终端设备与其他终端设备之间进行通信连接的稳定可靠性,同时也拓展了该方法的适用范围,提高了该方法的实用性。
应用场景二
参考附图8可知,在应用场景二的组织结构中,包括一个终端设备900(例如:车辆)和位于该终端设备周边的周围终端901,该终端设备900与周围终端901之间存在通信连接;具体的,周围终端901向该终端设备900发送数据信息,该终端设备900根据对所发送的数据信息进行分析判断,从而可以确定用于与其他终端设备进行通信的时频资源和天线端口;并且,利用所确定的资源信息进行通信时,要保证与其他终端设备进行通信连接到任意两个终端设备900之间的通信相互不冲突,以保证信息发送的安全可靠性。
可以在上述的应用场景二中应用该数据交互的方法,以天线端口对应一天线极化方向为例,参考附图9可知,另一种可实现终端设备获取可与其他终端设备进行通信的资源信息的方式包括:
S1011:终端设备获取周围终端所占用的已用资源信息,已用资源信息用于指示进行通信已占用的时频资源和天线极化方向;
具体的,对于终端设备获取已用资源信息而言,一种可实现的方式为:
S10111:终端设备接收周围终端发送的调度信息;
周围终端可以实时或者按照预设周期自动向终端设备发送调度信息,该调度信息中包括用于承载数据信息的资源信息,上述的资源信息可以包括时频资源和天线端口,而具体应用时,天线端口可以对应天线极化方向、天线参考符号序列或者天线参考图样中至少之一,其中,天线参考符号序列或天线参考图样可以由天线端口指定,或者,天线参考符号序列或天线参考图样也可以由调度信息中的天线端口字段获得。
S10112:终端设备根据调度信息获取周围终端所占用的时频资源和天线极化方向。
终端设备可以根据周围终端所发送的不同的调度信息,从而可以获取周围终端所占用的已用资源信息;因此,在终端设备接收到调度信息之后,可以对该调度信息进行分析处理,一种实现对调度信息的处理方式包括:终端设备对调度信息进行解调,获得与周围终端发送数据信息所占用的通信资源所对应的时频资源和天线极化方向。
由于调度信息中包括有用于承载数据信息的资源信息,因此,在对调度信息进行解调后,即可获取到上述的资源信息;其中,由于不确定调度信息所对应的时频资源的具体复用方式,从而会采用盲解的方式对调度信息进行解调,而盲解的方式可以包括:空间复用检测方式和非空间复用检测方式;进一步的,终端设备对调度信息进行解调可以包括:终端设备利用预先设置的空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线端口;或者,终端设备利用预先设置的非空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线端口;需要注意的是,无论采用哪种方式对调度信息进行解调,所获取的用于承载数据信息的时频资源和天线端口均可以包括:多个周围终端复用或者部分复用的资源信息、或者单个周围终端设备使用的资源信息。
S1012:终端设备根据已用资源信息选择与其他终端设备进行通信的时频资源和天线端口,其中,所选择的时频资源和天线端口与周围终端所占用的时频资源和天线极化方向中至少有一个不同。
在确定已用资源信息之后,终端设备可以根据已用资源信息选择用于与其他终端设备进行通信的时频资源和天线端口,其中,当存在终端设备需要与其他终端设备进行通信时,为了降低的终端设备之间的相关性,减小之间相互干扰,在某些特定的条件下,具体的,当终端设备之间的距离较近时,所选择的时频资源和天线端口与周围终端所占用的时频资源和天线端口相同或不同,上述的不同包括时频资源不同和/或天线端口不同,每个天线端口分别对应以下至少之一:天线极化方向、天线参考符号序列或天线参考图样;例如:还可以实现所选择的时频资源、天线极化方向以及天线参考符号序列与周围终端所占用的时频资源、天线极化方向以及天线参考符号序列中至少有一个不同;需要说明的是,当终端设备之间的距离足够远时,则可以将所选择的时频资源和天线端口与周围终端所占用的 时频资源和天线端口相同,此时,终端设备之间并不会产生通信干扰。
本申请提供的数据交互的方法,通过在V2V通信链路中引入多天线端口(天线极化方向、天线参考符号序列或者天线参考图样)选择机制,由终端设备自由竞争时频资源的同时自主选择发送天线端口,使得不同发送天线端口的终端设备可复用相同的时频资源,或者,还可以使得不同时频资源的终端设备可复用相同的天线端口;即通过引入天线端口极化选择,引入空间维,增加终端设备竞争资源信息时的可选维度(在原有时间-频率维度上增加空间维),从而有效地增加整体的系统容量。
图10为本申请实施例提供的一种数据交互的方法的流程示意图三;参考附图10可知,本实施例提供了另一种数据交互的方法,该方法的执行主体可以为网络设备,即为在上述应用场景一中用于与终端设备进行交互的网络设备,该方法包括:
S201:网络设备为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口,其中,每个天线端口对应一天线极化方向,且为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中至少有一个不同;
其中,时频资源包括时域资源信息和频域资源信息,具体应用时,每个天线端口可以对应以下至少之一:天线极化方向、天线参考符号序列和天线参考图样;当每个天线端口至少对应一天线极化方向时,网络设备在为不同的终端设备分配时频资源和天线极化方向时,为了缓解各个终端设备之间的通信冲突,可以为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向相同或不同,其中,当多个终端设备之间的距离较近时,可以将与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中设置为至少有一个不同,此处的不同包括:时频资源不同和/或天线极化方向不同;需要注意的是,当多个终端设备之间的距离较远时,此时各个终端设备之间相互干扰小,因此,可以将与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向设置为相同。
进一步的,对于为终端设备分配时频资源和天线极化方向的具体方式而言,参考附图5可知,一种可实现的方式为:将网络设备为终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向设置为包括:
网络设备接收终端设备发送的用于与其他终端设备进行通信连接的通信请求;网络设备接收终端设备发送的终端能力,终端能力中至少包括终端具备的天线极化能力;
网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向。
具体的,对于终端设备而言,天线极化能力与终端设备的硬件结构有关,因此,当终端设备的硬件结构确定后,天线极化能力也会随之确定,而上述的天线极化能力可以包括:发射天线接收天线数目和天线极化方向,以便于网络设备根据终端设备的天线极化能力为该终端设备分配相应的资源信息。
在网络设备的调度模式下,由网络设备为不同的终端设备分配时频资源和天线极化方向,具体的,可以为其指定不同的天线端口,即为不同终端设备分配不同的天线极化方向(例如:为不同的终端设备分配正交的天线极化方向),当然的,也可以为不同的终端设备分配正交的天线参考符号序列或天线参考图样。
网络设备可以通过分配时频资源和天线端口,使得多个不同的终端设备以不同的天线端口(包括天线极化方向以及天线参考符号序列或天线参考图样)部分复用(如图7所示)或者全部复用(如图6所示)相同的时频资源发送DATA数据。虽然图中所示调度信息(Scheduling Assignment,简称SA)并未采用多用户MIMO的方式发送,但实际上多个不同终端设备的SA也可以采用相同的方式空间复用相同的时频资源;在网络设备确定为终端设备所分配的时频资源和天线端口之后,将上述所分配的时频资源和天线端口通过调度指令发送至终端设备。
S202:网络设备将所分配的时频资源和天线极化方向通过调度指令发送至终端设备。
在网络设备确定为终端设备所分配的时频资源和天线极化方向之后,可以将所分配的时频资源和天线极化方向通过调度指令发送至终端设备,以使得终端设备可以对调度指令进行分析处理,从而可以获取到所分配的时频资源和天线极化方向,进而可以利用上述所确定的时频资源和天线极化方向与其他终端设备进行通信,保证了通信的质量和效率。
本申请提供的数据交互的方法,通过在通信过程中引入多天线端口(对应于:天线极化方向、天线参考符号序列或者天线参考图样)选择机制,由网络设备指定终端设备相应的时频资源和天线端口,使得不同发送天线端口的终端设备可复用相同的时频资源;即通过引入天线端口极化选择,引入空间维,增加终端自由竞争资源时的可选维度(在原有时间-频率维度上增加空间维),从而有效地增加整体的系统容量。
基于上述的陈述内容可知,天线端口可以对应于以下至少之一:天线极化方向、天线参考符号序列或天线参考图样;下面以天线端口对应天线极化方向的情况进行说明,此时对于网络设备而言,可以用于为第一终端设备和第二终端设备的通信进行资源的分配,进而,第一种实现网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的方式包括:
网络设备为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
网络设备为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
其中,实现将第一天线极化方向与第二天线极化方向不同的一种方式为:第一天线极化方向与第二天线极化方向正交;通过为第一终端设备、第二终端设备分配不同的天线极化方向、且复用相同或部分相同的时频资源与其他终端设备进行通信连接,有助于在提升频谱效率的同时,缓解第一终端设备与第二终端设备之间的通信干扰,保证通信信息传递的稳定可靠性。
此外,第二种可实现网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的方式包括:
网络设备为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
网络设备为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
通过为第一终端设备、第二终端设备设置分配相同或不同的天线极化方向、不同的时频资源与其他终端设备进行通信连接,由于时频资源正交,用户信号之间互不干扰。
需要注意的是,第三种实现网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的方式包括:
网络设备为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
网络设备为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
第一终端设备与第二终端设备的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同。
当第一终端设备和第二终端设备的距离足够远时,第一终端设备和第二终端设备之间的信号并不会产生相互干扰,因此,可以为第一终端设备、第二终端设备分配相同或不同的天线极化方向、相同或不同的时频资源与其他终端设备进行通信连接。
下面以天线端口对应于:天线极化方向、天线参考符号序列或天线参考图样的情况进行说明,也即,天线端口对应于天线极化方向和天线参考符号序列;或者,天线端口对应于天线极化方向和天线参考图样;此时对于终端设备而言,所分配的资源信息用于指示进行通信的时频资源、天线极化方向、天线参考符号序列或天线参考图样,此时,对于网络设备而言,需要为第一终端设备和第二终端设备的通信分配资源信息,进而一种可实现网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的方式包括:
网络设备为第一终端设备与其他终端设备之间的通信连接分配第一时频资源、第一天线极化方向、第一天线参考符号序列或第一天线参考图样;
网络设备为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向、第二天线参考符号序列或第二天线参考图样;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同,第一天线参考符号序列与第二天线参考符号序列不同,或者,第一天线参考图样与第二天线参考图样不同。
需要注意的是,实现“第一天线极化方向与第二天线极化方向不同,第一天线参考符号序列与第二天线参考符号序列不同,或者,第一天线参考图样与第二天线参考图样不同”的一种方式为:第一天线极化方向与第二天线极化方向正交,第一天线参考符号序列与第二天线参考符号序列正交,或者,第一天线参考图样与第二天线参考图样正交。
通过为第一终端设备、第二终端设备设置分配不同的天线极化方向、利用不同的天线参考符号序列或不同的天线参考图样、且复用相同或部分相同的时频资源与其他终端设备 进行通信连接,可以提升系统频谱效率的同时,有效缓解第一终端设备与第二终端设备之间的相互干扰,保证通信信息传递的稳定可靠性。
此外,第二种可实现网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的方式包括:
网络设备为第一终端设备与其他终端设备之间的通信连接分配第一时频资源、第一天线极化方向、第一天线参考符号序列或第一天线参考图样;
网络设备为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向、第二天线参考符号序列或第二天线参考图样;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
通过为第一终端设备、第二终端设备设置分配相同或不同的天线极化方向、不同的时频资源以及相同或不同的天线参考符号序列或线参考图样与其他终端设备进行通信连接,由于时频资源正交,用户信号之间互不干扰。
另外,第三种可实现网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的方式包括:
网络设备为第一终端设备与其他终端设备之间的通信连接分配第一时频资源、第一天线极化方向、第一天线参考符号序列或第一天线参考图样;
网络设备为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向、第二天线参考符号序列或第二天线参考图样;
第一终端设备与第二终端设备的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
当第一终端设备和第二终端设备的距离足够远时,第一终端设备和第二终端设备之间的通信并不会产生冲突,因此,可以为第一终端设备、第二终端设备分配相同或不同的天线极化方向、相同或不同的时频资源以及相同或不同的天线参考符号序列或者天线参考图样与其他终端设备进行通信连接。
图11为本申请实施例提供的一种数据交互的方法的流程示意图三;参考附图11可知,本申请提供了又一种数据交互的方法,该方法的执行主体为终端设备,具体的,该终端设备可以为上述应用场景一或应用场景二中用于与终端设备进行通信的其他终端设备中的任意一个,具体的,该终端设备会接收到其他终端设备所发送的调度信息和数据信息,具体的,该方法包括:
S301:终端设备接收其他终端设备发送的调度信息;
其中,调度信息中包括用于承载数据信息的资源信息,该资源信息用于指示进行通信的时频资源和天线端口,而时频资源包括时域资源信息和频域资源信息,天线端口可以对 应以下至少之一:天线极化方向、天线参考符号序列或天线参考图样;另外,对于终端设备接收调度信息的具体实现过程不做限定,一种可实现的方式,此时的其他终端设备实时或者按照预设的周期主动发送调度信息,从而使得终端设备可以接收到上述调度信息;另一种可实现的方式,终端设备向其他终端设备发送调度获取请求,其他终端设备根据所发送的调度获取请求向终端设备发送调度信息,从而使得终端设备可以接收到上述调度信息。
S302:终端设备根据调度信息获取用于承载数据信息的资源信息,资源信息用于指示进行通信的时频资源和天线端口。
其中,每个天线端口对应一天线极化方向,且终端设备接收其他终端中任意两个终端设备发送调度信息时所利用的时频资源和天线极化方向中至少有一个不同。
在获取到调度信息之后,终端设备可以根据对调度信息的分析处理结果获取到用于承载数据信息的资源信息,具体的,一种可实现终端设备根据调度信息获取用于承载数据信息的资源信息的方式包括:
终端设备对调度信息进行解调,获取其他终端设备用于承载数据信息的时频资源和天线端口。
具体的,在对调度信息进行解调之后,可以获取到用于承载数据信息的时频资源和天线端口,进一步的,对时频资源进行检测,可以获取到所发送的数据信息,即终端设备可以根据时频资源获得其他终端设备发送的数据信息;其中,由于不确定调度信息所对应的时频资源的具体复用方式,因此会采用盲解的方式对调度信息进行解调,盲解的方式可以包括:空间复用检测方式和非空间复用检测方式;进而实现终端设备对调度信息进行解调的方式可以包括:终端设备利用预先设置的空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线端口;或者,终端设备利用预先设置的非空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线端口;需要注意的是,无论采用上述哪种方式对调度信息进行解调,所获取的用于承载数据信息的时频资源和天线端口均可以包括:多个周围终端复用或者部分复用的资源信息、或者为周围终端设备未经复用的资源信息。
本申请提供的数据交互的方法,终端设备通过接收调度信息,并对调度信息进行解调,进而获得时频资源和天线端口,进一步可以获取到其他终端设备所发送的数据信息,由于引入了天线极化选择机制,有助于降低终端设备之间的信道相关性,可以进一步降低空间复用的终端设备之间的相互干扰,提高整个系统的通信容量,进而保证了信息交互的稳定可靠性。
由于天线端口可以对应于:天线极化方向、天线参考符号序列或天线参考图样中至少之一;下面以天线端口对应天线极化方向的情况进行说明,此时对于终端设备而言,当用于与终端设备进行通信的其他终端设备中至少包括第一终端设备和第二终端设备时,第一种实现终端设备接收其他终端设备发送的调度信息的方式包括:
终端设备接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
终端设备接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
其中,实现将第一天线极化方向与第二天线极化方向不同的一种方式为:第一天线极化方向与第二天线极化方向正交;由于第一终端设备、第二终端设备利用不同的天线极化方向、且复用相同或部分相同的时频资源与终端设备进行通信连接,有助于在提升频谱效率的同时,缓解第一终端设备与第二终端设备之间的通信干扰,保证通信信息传递的稳定可靠性。
此外,第二种可实现终端设备接收其他终端设备发送的调度信息的方式包括:
终端设备接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
终端设备接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
由于第一终端设备、第二终端设备利用相同或不同的天线极化方向、不同的时频资源与终端设备进行通信连接,由于时频资源正交,用户信号之间互不干扰。
需要注意的是,第三种实现终端设备接收其他终端设备发送的调度信息的方式包括:
终端设备接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
终端设备接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
第一终端设备与第二终端设备的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同。
当第一终端设备和第二终端设备的距离足够远时,第一终端设备和第二终端设备之间的信号并不会产生相互干扰,因此,第一终端设备、第二终端设备可以利用相同或不同的天线极化方向、相同或不同的时频资源与终端设备进行通信连接。
图12为本申请实施例提供的一种终端设备的结构示意图一;参考附图12可知,本申请提供了一种终端设备,该终端设备用于执行上述图3-图8所对应的数据交互的方法,具体的,该终端设备包括:
获取单元100,用于获取可与其他终端设备进行通信的资源信息,资源信息用于指示进行通信的时频资源和天线端口,其中,每个天线端口对应一天线极化方向;
发送单元101,用于利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息。
其中,调度信息中包括用于承载数据信息的时频资源和天线极化方向;向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源和天线极化方向中至少有一个不同。
具体应用时,天线端口可以对应于天线极化方向、天线参考符号序列和天线参考图样中的至少之一,而时频资源包括时域资源信息和频域资源信息;并且上述的获取单元100可以执行图3所示方法的步骤S101,发送单元101可以执行图3所示方法的步骤S102。
具体的,发送单元101包括设置于第一终端设备中的第一发送单元1011和设置于第二终端设备终端中的第二发送单元1012,进一步的,利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息的一种可实现方式为:
第一发送单元1011用于:利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二发送单元1012用于:利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
具体的,一种可实现第一天线极化方向与第二天线极化方向不同的方式为:第一天线极化方向与第二天线极化方向正交。
进一步的,另一种可实现的方式为:
第一发送单元1011用于:利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二发送单元1012用于:利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
进一步的,又一种可实现的方式为:
第一发送单元1011用于:利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二发送单元1012用于:利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
第一发送单元1011与第二通信单元1012之间的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同。
此外,当天线端口对应于:天线极化方向、天线参考符号序列或天线参考图样时,也即天线端口对应天线极化方向和天线参考符号序列,或者天线端口对应天线极化方向和天线参考图样;此时,在发送单元101执行利用资源信息与其他终端设备进行通信时,可以被配置为:
利用时频资源、天线极化方向以及天线参考符号序列或天线参考图样向其他终端设备发送调度信息和数据信息;
其中,调度信息中包括用于承载数据信息的时频资源、天线极化方向以及天线参考符号序列或天线参考图样;向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源、天线极化方向以及天线参考符号序列或天线参考图样相同或不同。
进一步的,在发送单元101包括设置于第一终端设备中的第一发送单元1011和设置 于第二终端设备终端中的第二发送单元1012时,进一步的,利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息的一种可实现方式为:
第一发送单元1011用于:利用第一时频资源、第一天线极化方向以及第一天线参考符号序列或第一天线参考图样向其他终端设备广播第一调度信息和第一数据信息;
第二发送单元1012用于:利用第二时频资源、第二天线极化方向以及第二天线参考符号序列或第二天线参考图样向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向正交,第一天线参考符号序列与第二天线参考符号序列正交,或者,第一天线参考图样与第二天线参考图样正交。
进一步的,另一种可实现的方式为:
第一发送单元1011用于:利用第一时频资源、第一天线极化方向以及第一天线参考符号序列或第一天线参考图样向其他终端设备广播第一调度信息和第一数据信息;
第二发送单元1012用于:利用第二时频资源、第二天线极化方向以及第二天线参考符号序列或第二天线参考图样向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
或者,又一种可实现的方式为:
第一发送单元1011用于:利用第一时频资源、第一天线极化方向以及第一天线参考符号序列或第一天线参考图样向其他终端设备广播第一调度信息和第一数据信息;
第二发送单元1012用于:利用第二时频资源、第二天线极化方向以及第二天线参考符号序列或第二天线参考图样向其他终端设备广播第二调度信息和第二数据信息;
第一发送单元1011与第二发送单元1012之间的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
进一步的,可以将获取单元100还可以用于:
在接收网络设备发送的调度指令之前,向网络设备发送终端能力,终端能力中至少包括终端具备的天线极化能力;
向网络设备发送用于与其他终端设备进行通信的通信请求,以使得网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口;此处的天线端口至少对应一天线极化方向。
获取单元100还可以用于:
接收网络设备发送的调度指令,调度指令中包括为终端设备与其他终端设备之间的通信连接所分配的时频资源和天线极化方向,其中,为与其他终端进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中至少有一个不同。
进一步的,获取单元100具体用于:
获取周围终端所占用的已用资源信息,已用资源信息用于指示进行通信已占用的时频资源和天线极化方向;
根据已用资源信息选择与其他终端设备进行通信的时频资源和天线极化方向,其中,所选择的时频资源和天线极化方向与周围终端所占用的时频资源和天线极化方向中至少有一个不同。
进一步的,在获取单元100获取周围终端所占用的已用资源信息时,可以被配置为:
接收周围终端发送的调度信息;
根据调度信息获取周围终端所占用的已用资源信息。
具体的,在获取单元100根据调度信息获取周围终端所占用的已用资源信息时,被配置为:
对调度信息进行解调,获得与周围终端发送数据信息所占用的通信资源所对应的已用资源信息。
一种可实现对获取单元100调度信息进行解调的方式为:利用预先设置的空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线端口;
另一种可实现对获取单元100调度信息进行解调的方式为:利用预先设置的非空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线端口。
图12所示实施例的终端设备可用于执行上述方法中图3-图9所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图13为本申请实施例提供的一种网络设备的结构示意图一;参考附图13可知,本实施例提供了一种网络设备,该网络设备用于与终端设备进行通信连接,具体的,可以执行上述附图10所示的数据交互的方法,该网络设备包括:
分配单元200,用于为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口,其中,每个天线端口对应一天线极化方向,且为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中至少有一个不同;
发送单元201,用于将所分配的时频资源和天线极化方向通过调度指令发送至终端设备。
其中,天线端口可以对应于天线极化方向、天线参考符号序列和天线参考图样中的至少之一,而时频资源包括时域资源信息和频域资源信息;并且分配单元200可以执行图10所示方法的步骤S201,发送单元201可以执行图10所示方法的步骤S202。
进一步的,当分配单元200为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口时,可以被配置为:
接收终端设备发送的用于与其他终端设备进行通信连接的通信请求;
接收终端设备发送的终端能力,终端能力中至少包括终端具备的天线极化能力;
根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口,此时的天线端口至少对应一天线极化方向。
进一步的,当天线端口只对应天线极化方向时,分配单元200根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向的一种可实现的方式包括:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化 方向;
为第一终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
一种可实现第一天线极化方向与第二天线极化方向不同的方式为:第一天线极化方向与第二天线极化方向正交;进一步的,分配单元200根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的另一种可实现的方式包括:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
进一步的,分配单元200根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的又一种可实现的方式包括:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
第一终端设备与第二终端设备的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同。
此外,在天线端口对应于:天线极化方向、天线参考符号序列或天线参考图样时,也即天线端口对应天线极化方向和天线参考符号序列,或者,天线端口对应天线极化方向和天线参考图样时,分配单元200根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的一种可实现的方式包括:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源、第一天线极化方向、第一天线参考符号序列或第一天线参考图样;
为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向、第二天线参考符号序列或第二天线参考图样;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同,第一天线参考符号序列与第二天线参考符号序列不同,或者,第一天线参考图样与第二天线参考图样不同。
一种实现第一天线极化方向与第二天线极化方向不同,第一天线参考符号序列与第二天线参考符号序列不同,或者,第一天线参考图样与第二天线参考图样不同的方式为:第一天线极化方向与第二天线极化方向正交,第一天线参考符号序列与第二天线参考符号序列正交,或者,第一天线参考图样与第二天线参考图样正交。
进一步的,分配单元200根据终端具备的天线极化能力为终端设备与其他终端设备之 间的通信连接分配时频资源和天线端口的另一种可实现的方式包括:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源、第一天线极化方向、第一天线参考符号序列或第一天线参考图样;
为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向、第二天线参考符号序列或第二天线参考图样;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
进一步的,分配单元200根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的又一种可实现的方式包括:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源、第一天线极化方向、第一天线参考符号序列或第一天线参考图样;
为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向、第二天线参考符号序列或第二天线参考图样;
第一终端设备与第二终端设备的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
图13所示实施例的网络设备可用于执行上述方法中图10所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图14为本申请实施例提供的一种终端设备的结构示意图二;参考附图14可知,本申请提供了又一种终端设备,该终端设备用于与其他终端设备进行通信,可以执行上述图11所对应的数据交互的方法步骤,具体的,该终端设备包括:
接收单元300,用于接收其他终端设备发送的调度信息;
处理单元301,用于根据调度信息获取用于承载数据信息的资源信息,资源信息用于指示进行通信的时频资源和天线端口。
其中,每个天线端口对应一天线极化方向,且终端设备接收其他终端中任意两个终端设备发送调度信息时所利用的时频资源和天线极化方向中至少有一个不同。
需要注意的是,在具体应用时,天线端口可以对应于天线极化方向、天线参考符号序列和天线参考图样中的至少之一,而时频资源包括时域资源信息和频域资源信息;并且接收单元300可以执行图11所示方法的步骤S301,处理单元301可以执行图11所示方法的步骤S302。
当天线端口对应一天线极化方向时,在处理单元301根据调度信息获取用于承载数据信息的资源信息时,可以被配置为:
对调度信息进行解调,获取其他终端设备发送的数据信息以及用于承载数据信息的时频资源和天线极化方向。
具体的,处理单元301对调度信息进行解调时,可以被配置为:
利用预先设置的空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数 据信息的时频资源和天线极化方向;和/或,
利用预先设置的非空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线极化方向。
同理的,当天线端口对应天线极化方向、天线参考符号序列或天线参考图样时,在对调度信息进行解调时,可以获取其他终端设备发送的数据信息以及用于承载数据信息的时频资源和天线极化方向、天线参考符号序列或天线参考图样。
图14所示实施例的终端设备可用于执行上述方法中图11所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
基于上述的陈述内容可知,由于天线端口可以对应于:天线极化方向、天线参考符号序列或天线参考图样中至少一个;下面以天线端口对应天线极化方向的情况进行说明,此时对于终端设备而言,当用于与终端设备进行通信的其他终端设备中至少包括第一终端设备和第二终端设备时,第一种实现接收单元300接收其他终端设备发送的调度信息的方式包括:
接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
其中,实现将第一天线极化方向与第二天线极化方向不同的一种方式为:第一天线极化方向与第二天线极化方向正交;由于第一终端设备、第二终端设备利用不同的天线极化方向、且复用相同或部分相同的时频资源与终端设备进行通信连接,有助于在提升频谱效率的同时,缓解第一终端设备与第二终端设备之间的通信干扰,保证通信信息传递的稳定可靠性。
此外,第二种可实现接收单元300接收其他终端设备发送的调度信息的方式包括:
接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
由于第一终端设备、第二终端设备利用相同或不同的天线极化方向、不同的时频资源与终端设备进行通信连接,由于时频资源正交,用户信号之间互不干扰。
需要注意的是,第三种实现接收单元300接收其他终端设备发送的调度信息的方式包括:
接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
第一终端设备与第二终端设备的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同。
当第一终端设备和第二终端设备的距离足够远时,第一终端设备和第二终端设备之间 的信号并不会产生相互干扰,因此,第一终端设备、第二终端设备可以利用相同或不同的天线极化方向、相同或不同的时频资源与终端设备进行通信连接。
应理解以上终端设备、网络设备的各个模块单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块单元通过软件通过处理元件调用的形式实现,部分模块单元通过硬件的形式实现。例如,发送模块单元可以为单独设立的处理元件,也可以集成在例如终端设备或网络设备的某一个芯片中实现,此外,也可以以程序的形式存储于终端设备或网络设备的存储器中,由终端设备或网络设备的某一个处理元件调用并执行以上各个模块单元的功能。其他模块单元的实现与之类似。此外这些模块单元全部或部分可以集成在一起,也可以独立实现。这里的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。此外,以上接收模块单元是一种控制接收的模块单元,可以通过终端设备或网络设备的接收装置,例如天线和射频装置接收网络设备发送的信息。以上发送模块单元是一种控制发送的模块单元,可以通过网络设备或终端设备的发送装置,例如天线和射频装置向终端设备发送信息。
例如,以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其他可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图15为本申请实施例提供的一种终端设备的结构示意图三;参考附图15可知,本实施例提供了另一种终端设备,该终端设备用于执行上述图3-图9所对应的数据交互的方法,具体的,该终端设备包括:处理器401和存储器402,其中,处理器401的个数可以为1个或多个,且可以单独或协同工作,该处理器401被配置为:
获取可与其他终端设备进行通信的资源信息,资源信息用于指示进行通信的时频资源和天线端口;
利用资源信息与其他终端设备进行通信。
其中,天线端口可以对应天线极化方向、天线参考符号序列和天线参考图样中的至少之一,而时频资源包括时域资源信息和频域资源信息;进一步的,当天线端口对应天线极化方向时,处理器401利用资源信息与其他终端设备进行通信时,可以被配置为:
利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息;
其中,调度信息中包括用于承载数据信息的时频资源和天线极化方向;向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源和天线极化方向相同或不同;此处的向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时 频资源和天线极化方向不同为向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源和天线极化方向中至少有一个不同;此时的处理器401可以执行图3所示方法的步骤S101-S102。
该存储器402用于存储实现以上方法实施例,或者图12所示实施例各个单元的程序,处理器401调用该程序,执行以上方法实施例的操作,以实现图12所示的各个单元所实现的功能作用。
或者,以上各个单元的部分或全部也可以通过集成电路的形式内嵌于该用设备的某一个芯片上来实现。且它们可以单独实现,也可以集成在一起。即以上这些单元可以被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
进一步的,利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息的一种可实现方式为:
第一终端设备中的处理器401被配置为:利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备中的处理器401被配置为:利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同;需要说明的是,一种实现第一天线极化方向与第二天线极化方向不同的方式为:第一天线极化方向与第二天线极化方向正交。
进一步的,另利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息的另一种可实现方式为:
第一终端设备中的处理器401被配置为:利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备中的处理器401被配置为:利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
进一步的,利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息的又一种可实现方式为:
第一终端设备中的处理401器被配置为:利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备中的处理器401被配置为:利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
第一终端设备中的处理器401与第二终端设备中的处理器401之间的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同。
此外,在天线端口对应:天线极化方向、天线参考符号序列或天线参考图样时,也即 天线端口对应天线极化方向和天线参考符号序列,或者,天线端口对应天线极化方向和天线参考图样时,处理器401根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口,可以被配置为:
利用时频资源、天线极化方向以及天线参考符号序列或天线参考图样向其他终端设备发送调度信息和数据信息;
其中,调度信息中包括用于承载数据信息的时频资源、天线极化方向以及天线参考符号序列或天线参考图样;向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源、天线极化方向以及天线参考符号序列或天线参考图样相同或不同。
进一步的,利用时频资源、天线极化方向以及天线参考符号序列或天线参考图样向其他终端设备发送调度信息和数据信息的一种可实现方式为:
第一终端设备的处理器401被配置为:利用第一时频资源、第一天线极化方向以及第一天线参考符号序列或第一天线参考图样向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备的处理器401被配置为:利用第二时频资源、第二天线极化方向以及第二天线参考符号序列或第二天线参考图样向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同,第一天线参考符号序列与第二天线参考符号序列不同,或者,第一天线参考图样与第二天线参考图样不同。
需要说明的是,实现“第一天线极化方向与第二天线极化方向不同,第一天线参考符号序列与第二天线参考符号序列不同,或者,第一天线参考图样与第二天线参考图样不同”的一种方式为:第一天线极化方向与第二天线极化方向正交,第一天线参考符号序列与第二天线参考符号序列正交,或者,第一天线参考图样与第二天线参考图样正交。
进一步的,利用时频资源、天线极化方向以及天线参考符号序列或天线参考图样向其他终端设备发送调度信息和数据信息的另一种可实现方式为:
第一终端设备的处理器401被配置为:利用第一时频资源、第一天线极化方向以及第一天线参考符号序列或第一天线参考图样向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备的处理器401被配置为:利用第二时频资源、第二天线极化方向以及第二天线参考符号序列或第二天线参考图样向其他终端设备广播第二调度信息和第二数据信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
进一步的,利用时频资源、天线极化方向以及天线参考符号序列或天线参考图样向其他终端设备发送调度信息和数据信息的又一种可实现方式为:
第一终端设备的处理器401被配置为:利用第一时频资源、第一天线极化方向以及第一天线参考符号序列或第一天线参考图样向其他终端设备广播第一调度信息和第一数据信息;
第二终端设备的处理器401被配置为:利用第二时频资源、第二天线极化方向以及第二天线参考符号序列或第二天线参考图样向其他终端设备广播第二调度信息和第二数据信息;
第一终端设备的处理器401与第二终端设备的处理器402之间的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
进一步的,在应用场景一利用上述的数据交互的方法时,在处理器401获取可与其他终端设备进行通信的资源信息时,可以被配置为:
在接收网络设备发送的调度指令之前,向网络设备发送终端能力,终端能力中至少包括终端具备的天线极化能力;
向网络设备发送用于与其他终端设备进行通信的通信请求,以使得网络设备根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口。
接收网络设备发送的调度指令,调度指令中包括为终端设备与其他终端设备之间的通信连接所分配的时频资源和天线端口,其中,为与其他终端进行通信连接的任意两个终端设备所分配的时频资源和天线端口相同或不同。
此外,在应用场景二利用上述的数据交互的方法时,在处理器401获取可与其他终端设备进行通信的资源信息时,可以被配置为:
获取周围终端所占用的已用资源信息,已用资源信息至少包括:时频资源和天线端口;
具体的,可以将处理器401获取周围终端所占用的已用资源信息时,被配置为:
接收周围终端发送的调度信息;
根据调度信息获取周围终端所占用的已用资源信息。
进一步的,处理器401根据调度信息获取周围终端所占用的已用资源信息时可以被配置为:
对调度信息进行解调,获得与周围终端发送数据信息所占用的通信资源所对应的已用资源信息。
实现对调度信息进行解调的一种可实现方式包括:利用预先设置的空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线端口;和/或,
实现对调度信息进行解调的另一种可实现方式包括:利用预先设置的非空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线端口。
根据已用资源信息选择与其他终端设备进行通信的时频资源和天线端口,其中,所选择的时频资源和天线端口与周围终端所占用的时频资源和天线端口相同或不同。
图15所示实施例的终端设备可用于执行上述方法中图1-图9所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图16为本申请实施例提供的一种网络设备的结构示意图二;参考附图16可知,本申请提供了又一种网络设备,该网络设备用于执行附图10所示的数据交互的方法,具体的,该网络设备包括:处理器501和发送器502,其中,处理器501可以为一个 或多个,且可以单独或协同工作;
处理器501被配置为:为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口,其中,为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线端口相同或不同,当每个天线端口对应一天线极化方向时,此处的不同包括且为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中至少有一个不同。
发送器502被配置为:将所分配的时频资源和天线极化方向通过调度指令发送至终端设备。
具体应用时,天线端口可以对应天线极化方向、天线参考符号序列和天线参考图样中的至少之一,而时频资源包括时域资源信息和频域资源信息;并且处理器501可以执行图10所示方法的步骤S201,发送器502可以执行图10所示方法的步骤S202。
进一步的,在处理器501为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口时可以被配置为:
接收终端设备发送的用于与其他终端设备进行通信连接的通信请求;
接收终端设备发送的终端能力,终端能力中至少包括终端具备的天线极化能力;
根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口。
进一步的,当天线端口对应天线极化方向时,对于处理器501而言,根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向的一种可实现方式包括:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
为第一终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
实现第一天线极化方向与第二天线极化方向不同的一种方式为:第一天线极化方向与第二天线极化方向正交。
进一步的,根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的另一种可实现方式包括:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
进一步的,根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的又一种可实现方式包括:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化 方向;
为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
第一终端设备与第二终端设备的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同。
此外,在天线端口对应:天线极化方向、天线参考符号序列或天线参考图样时,也即天线端口对应天线极化方向和天线参考符号序列,或者,天线端口对应天线极化方向和天线参考图样时,根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的一种可实现方式包括:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源、第一天线极化方向、第一天线参考符号序列或第一天线参考图样;
为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向、第二天线参考符号序列或第二天线参考图样;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同,第一天线参考符号序列与第二天线参考符号序列不同,或者,第一天线参考图样与第二天线参考图样不同。
需要说明的是,实现“第一天线极化方向与第二天线极化方向不同,第一天线参考符号序列与第二天线参考符号序列不同,或者,第一天线参考图样与第二天线参考图样不同”的一种方式为:第一天线极化方向与第二天线极化方向正交,第一天线参考符号序列与第二天线参考符号序列正交,或者,第一天线参考图样与第二天线参考图样正交。
进一步的,根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的另一种可实现方式包括:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源、第一天线极化方向、第一天线参考符号序列或第一天线参考图样;
为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向、第二天线参考符号序列或第二天线参考图样;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
进一步的,根据终端具备的天线极化能力为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口的又一种可实现方式包括:
为第一终端设备与其他终端设备之间的通信连接分配第一时频资源、第一天线极化方向、第一天线参考符号序列或第一天线参考图样;
为第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向、第二天线参考符号序列或第二天线参考图样;
第一终端设备与第二终端设备的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同,第一天线参考符号序列与第二天线参考符号序列相同或不同,或者,第一天线参考图样与第二天线参考图样相同或不同。
图16所示实施例的终端设备可用于执行上述方法中图10所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图17为本申请实施例提供的一种终端设备的结构示意图四,参考附图17所示,本实施例提供了有一种终端设备,该终端设备用于执行上述附图11所对应的数据交互的方法,具体的,该终端设备包括:接收器602和处理器601,其中,处理器601的个数可以为一个或多个,且可以单独或协同工作;
接收器602,用于接收其他终端设备发送的调度信息;
处理器601,用于根据调度信息获取用于承载数据信息的资源信息,资源信息用于指示进行通信的时频资源和天线端口。
其中,天线端口可以对应天线极化方向、天线参考符号序列和天线参考图样中的至少之一,而时频资源包括时域资源信息和频域资源信息;而每个天线端口对应一天线极化方向时,该接收器602接收其他终端中任意两个终端设备发送调度信息时所利用的时频资源和天线极化方向中至少有一个不同;也即接收器602可以执行图11所示方法的步骤S301,处理器601可以执行图11所示方法的步骤S302。
进一步的,当天线端口对应一天线极化方向时,对于处理器601而言,根据调度信息获取用于承载数据信息的资源信息的一种可实现方式包括:
对调度信息进行解调,获取用于承载数据信息的时频资源和天线极化方向,并根据时频资源获得其他终端设备发送的数据信息。
具体的,可以将处理器601对调度信息进行解调时,被配置为:
利用预先设置的空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线极化方向;和/或,
利用预先设置的非空间复用检测方式对调度信息进行解调,获得调度信息中用于承载数据信息的时频资源和天线极化方向。
需要说明的是,当天线端口对应于天线极化方向、天线参考符号序列,或者天线端口对应于天线极化方向、天线参考图样时,在对调度信息进行解调时,可以获取到调度信息中用于承载数据信息的时频资源、天线极化方向、天线参考符号序列;或者,也可以获取到调度信息中用于承载数据信息的时频资源、天线极化方向、天线参考图样。
具体的,由于天线端口可以对应于:天线极化方向、天线参考符号序列或天线参考图样中至少一个;下面以天线端口对应天线极化方向的情况进行说明,此时对于终端设备而言,当用于与终端设备进行通信的其他终端设备中至少包括第一终端设备和第二终端设备时,第一种实现接收器602接收其他终端设备发送的调度信息的方式包括:
接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
其中,第一时频资源与第二时频资源相同或部分相同,第一天线极化方向与第二天线极化方向不同。
其中,实现第一天线极化方向与第二天线极化方向不同的一种方式为:第一天线极化方向与第二天线极化方向正交;由于第一终端设备、第二终端设备利用不同的天线极化方向、且复用相同或部分相同的时频资源与终端设备进行通信连接,有助于在提升频谱效率 的同时,缓解第一终端设备与第二终端设备之间的通信干扰,保证通信信息传递的稳定可靠性。
此外,第二种可实现接收器602接收其他终端设备发送的调度信息的方式包括:
接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
其中,第一时频资源与第二时频资源不同,第一天线极化方向与第二天线极化方向相同或不同。
由于第一终端设备、第二终端设备利用相同或不同的天线极化方向、不同的时频资源与终端设备进行通信连接,由于时频资源正交,用户信号之间互不干扰。
需要注意的是,第三种实现接收器602接收其他终端设备发送的调度信息的方式包括:
接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
第一终端设备与第二终端设备的距离大于或等于预设的距离阈值时,第一时频资源与第二时频资源相同或不同,第一天线极化方向与第二天线极化方向相同或不同。
当第一终端设备和第二终端设备的距离足够远时,第一终端设备和第二终端设备之间的信号并不会产生相互干扰,因此,第一终端设备、第二终端设备可以利用相同或不同的天线极化方向、相同或不同的时频资源与终端设备进行通信连接。
图17所示实施例的终端设备可用于执行上述方法中图11所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如,同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。

Claims (45)

  1. 一种数据交互的方法,其特征在于,包括:
    终端设备获取可与其他终端设备进行通信的资源信息,所述资源信息用于指示进行所述通信的时频资源和天线端口,其中,每个所述天线端口对应一天线极化方向;
    所述终端设备利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息;
    其中,所述调度信息中包括用于承载所述数据信息的时频资源和天线极化方向;向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源和天线极化方向中至少有一个不同。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息,包括:
    所述第一终端设备利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
    所述第二终端设备利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
    其中,所述第一时频资源与所述第二时频资源相同或部分相同,所述第一天线极化方向与所述第二天线极化方向不同。
  3. 根据权利要求2所述的方法,其特征在于,所述第一天线极化方向与所述第二天线极化方向正交。
  4. 根据权利要求1所述的方法,其特征在于,所述终端设备利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息,包括:
    所述第一终端设备利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
    所述第二终端设备利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
    其中,所述第一时频资源与所述第二时频资源不同,所述第一天线极化方向与所述第二天线极化方向相同或不同。
  5. 根据权利要求1-4中任意一项所述的方法,其特征在于,所述终端设备获取可与其他终端设备进行通信的资源信息,包括:
    所述终端设备接收网络设备发送的调度指令,所述调度指令中包括为所述终端设备与其他终端设备之间的通信连接分配的时频资源和天线极化方向,其中,为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中至少有一个不同。
  6. 根据权利要求5所述的方法,其特征在于,在所述终端设备接收网络设备发送的调度指令之前,所述方法还包括:
    所述终端设备向网络设备发送终端能力,所述终端能力中至少包括所述终端具备的天线极化能力;
    所述终端设备向所述网络设备发送用于与其他终端设备进行通信的通信请求,以使得所述网络设备根据所述终端具备的天线极化能力为所述终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向。
  7. 根据权利要求1-4中任意一项所述的方法,其特征在于,所述终端设备获取可与其他终端设备进行通信的资源信息,包括:
    所述终端设备获取周围终端所占用的已用资源信息,所述已用资源信息用于指示进行通信已占用的时频资源和天线极化方向;
    所述终端设备根据所述已用资源信息选择与其他终端设备进行通信的时频资源和天线极化方向,其中,所选择的时频资源和天线极化方向与所述周围终端所占用的时频资源和天线极化方向中至少有一个不同。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备获取周围终端所占用的已用资源信息,包括:
    所述终端设备接收所述周围终端发送的调度信息;
    所述终端设备根据所述调度信息获取所述周围终端所占用的时频资源和天线极化方向。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备根据所述调度信息获取所述周围终端所占用的已用资源信息,包括:
    所述终端设备对所述调度信息进行解调,获得与所述周围终端发送数据信息所占用的时频资源和天线极化方向。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备对所述调度信息进行解调,包括:
    所述终端设备利用预先设置的空间复用检测方式对所述调度信息进行解调,获得所述调度信息中用于承载数据信息的时频资源和天线极化方向;和/或,
    所述终端设备利用预先设置的非空间复用检测方式对所述调度信息进行解调,获得所述调度信息中用于承载数据信息的时频资源和天线极化方向。
  11. 一种数据交互的方法,其特征在于,包括:
    网络设备为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口,其中,每个所述天线端口对应一天线极化方向,且为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中至少有一个不同;
    所述网络设备将所分配的时频资源和天线极化方向通过调度指令发送至所述终端设备。
  12. 根据权利要求11所述的方法,其特征在于,所述网络设备为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口,包括:
    所述网络设备接收终端设备发送的用于与其他终端设备进行通信连接的通信请求;
    所述网络设备接收所述终端设备发送的终端能力,所述终端能力中至少包括所述终端具备的天线极化能力;
    所述网络设备根据所述终端具备的天线极化能力为所述终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向。
  13. 根据权利要求12所述的方法,其特征在于,所述网络设备根据所述终端具备的天线极化能力为所述终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向,包括:
    所述网络设备为所述第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
    所述网络设备为所述第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
    其中,所述第一时频资源与所述第二时频资源相同或部分相同,所述第一天线极化方向与所述第二天线极化方向不同。
  14. 根据权利要求13所述的方法,其特征在于,所述第一天线极化方向与所述第二天线极化方向正交。
  15. 根据权利要求12所述的方法,其特征在于,所述网络设备根据所述终端具备的天线极化能力为所述终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向,包括:
    所述网络设备为所述第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
    所述网络设备为所述第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
    其中,所述第一时频资源与所述第二时频资源不同,所述第一天线极化方向与所述第二天线极化方向相同或不同。
  16. 一种数据交互的方法,其特征在于,包括:
    终端设备接收其他终端设备发送的调度信息;
    所述终端设备根据所述调度信息获取用于承载数据信息的资源信息,所述资源信息用于指示进行通信的时频资源和天线端口;
    其中,每个所述天线端口对应一天线极化方向,且所述终端设备接收其他终端中任意两个终端设备发送调度信息时所利用的时频资源和天线极化方向中至少有一个不同。
  17. 根据权利要求16所述的方法,其特征在于,所述终端设备接收其他终端设备发送的调度信息,包括:
    所述终端设备接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
    所述终端设备接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
    其中,所述第一时频资源与所述第二时频资源相同或部分相同,所述第一天线极化方向与所述第二天线极化方向不同。
  18. 根据权利要求17所述的方法,其特征在于,所述第一天线极化方向与所述第二天线极化方向正交。
  19. 根据权利要求16所述的方法,其特征在于,所述终端设备接收其他终端设备发送的调度信息,包括:
    所述终端设备接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
    所述终端设备接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二 调度信息;
    其中,所述第一时频资源与所述第二时频资源不同,所述第一天线极化方向与所述第二天线极化方向相同或不同。
  20. 根据权利要求16所述的方法,其特征在于,所述终端设备根据所述调度信息获取用于承载数据信息的资源信息,包括:
    所述终端设备对所述调度信息进行解调,获取用于承载所述数据信息的时频资源和天线极化方向,并根据所述时频资源获得其他终端设备发送的数据信息。
  21. 根据权利要求20所述的方法,其特征在于,所述终端设备对所述调度信息进行解调,包括:
    所述终端设备利用预先设置的空间复用检测方式对所述调度信息进行解调,获得所述调度信息中用于承载数据信息的时频资源和天线极化方向;和/或,
    所述终端设备利用预先设置的非空间复用检测方式对所述调度信息进行解调,获得所述调度信息中用于承载数据信息的时频资源和天线极化方向。
  22. 一种终端设备,其特征在于,包括:
    获取单元,用于获取可与其他终端设备进行通信的资源信息,所述资源信息用于指示进行所述通信的时频资源和天线端口,其中,每个所述天线端口对应一天线极化方向;
    发送单元,用于利用时频资源和天线极化方向向其他终端设备发送调度信息和数据信息;
    其中,所述调度信息中包括用于承载所述数据信息的时频资源和天线极化方向;向其他终端设备发送调度信息和数据信息的任意两个终端设备所利用的时频资源和天线极化方向中至少有一个不同。
  23. 根据权利要求22所述的终端设备,其特征在于,所述发送单元包括:
    第一发送子单元,用于利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
    第二发送子单元,用于利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
    其中,所述第一时频资源与所述第二时频资源相同或部分相同,所述第一天线极化方向与所述第二天线极化方向不同。
  24. 根据权利要求23所述的终端设备,其特征在于,所述第一天线极化方向与所述第二天线极化方向正交。
  25. 根据权利要求22所述的终端设备,其特征在于,所述发送单元包括:
    第一发送子单元,用于利用第一时频资源和第一天线极化方向向其他终端设备广播第一调度信息和第一数据信息;
    第二发送子单元,用于利用第二时频资源和第二天线极化方向向其他终端设备广播第二调度信息和第二数据信息;
    其中,所述第一时频资源与所述第二时频资源不同,所述第一天线极化方向与所述第二天线极化方向相同或不同。
  26. 根据权利要求22-25中任意一项所述的终端设备,其特征在于,所述获取单元, 用于:
    接收网络设备发送的调度指令,所述调度指令中包括为所述终端设备与其他终端设备之间的通信连接所分配的时频资源和天线极化方向,其中,为与其他终端进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中至少有一个不同。
  27. 根据权利要求26所述的终端设备,其特征在于,所述发送单元,用于:
    在接收网络设备发送的调度指令之前,向网络设备发送终端能力,所述终端能力中至少包括所述终端具备的天线极化能力;
    向所述网络设备发送用于与其他终端设备进行通信的通信请求,以使得所述网络设备根据所述终端具备的天线极化能力为所述终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向。
  28. 根据权利要求22-25中任意一项所述的终端设备,其特征在于,所述获取单元,用于:
    获取周围终端所占用的已用资源信息,所述已用资源信息用于指示进行通信已占用的时频资源和天线极化方向;
    根据所述已用资源信息选择与其他终端设备进行通信的时频资源和天线极化方向,其中,所选择的时频资源和天线极化方向与所述周围终端所占用的时频资源和天线极化方向中至少有一个不同。
  29. 根据权利要求28所述的终端设备,其特征在于,所述获取单元,用于:
    接收所述周围终端发送的调度信息;
    根据所述调度信息获取所述周围终端所占用的已用资源信息。
  30. 根据权利要求29所述的终端设备,其特征在于,所述获取单元,用于:
    对所述调度信息进行解调,获得与所述周围终端发送数据信息所占用的通信资源所对应的已用资源信息。
  31. 根据权利要求30所述的终端设备,其特征在于,所述获取单元,用于:
    利用预先设置的空间复用检测方式对所述调度信息进行解调,获得所述调度信息中用于承载数据信息的时频资源和天线极化方向;和/或,
    利用预先设置的非空间复用检测方式对所述调度信息进行解调,获得所述调度信息中用于承载数据信息的时频资源和天线极化方向。
  32. 一种网络设备,其特征在于,包括:
    分配单元,用于为终端设备与其他终端设备之间的通信连接分配时频资源和天线端口,其中,每个所述天线端口对应一天线极化方向,且为与其他终端设备进行通信连接的任意两个终端设备所分配的时频资源和天线极化方向中至少有一个不同;
    发送单元,用于将所分配的时频资源和天线极化方向通过调度指令发送至所述终端设备。
  33. 根据权利要求32所述的网络设备,其特征在于,所述分配单元,用于:
    接收终端设备发送的用于与其他终端设备进行通信连接的通信请求;
    接收所述终端设备发送的终端能力,所述终端能力中至少包括所述终端具备的天线极化能力;
    根据所述终端具备的天线极化能力为所述终端设备与其他终端设备之间的通信连接分配时频资源和天线极化方向。
  34. 根据权利要求32所述的网络设备,其特征在于,所述分配单元,用于:
    为所述第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
    为所述第一终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
    其中,所述第一时频资源与所述第二时频资源相同或部分相同,所述第一天线极化方向与所述第二天线极化方向不同。
  35. 根据权利要求34所述的网络设备,其特征在于,所述第一天线极化方向与所述第二天线极化方向正交。
  36. 根据权利要求32所述的网络设备,其特征在于,所述分配单元,用于:
    为所述第一终端设备与其他终端设备之间的通信连接分配第一时频资源和第一天线极化方向;
    为所述第二终端设备与其他终端设备之间的通信连接分配第二时频资源和第二天线极化方向;
    其中,所述第一时频资源与所述第二时频资源不同,所述第一天线极化方向与所述第二天线极化方向相同或不同。
  37. 一种终端设备,其特征在于,包括:
    接收单元,用于接收其他终端设备发送的调度信息;
    处理单元,用于根据所述调度信息获取用于承载数据信息的资源信息,所述资源信息用于指示进行通信的时频资源和天线端口;
    其中,每个所述天线端口对应一天线极化方向,且所述终端设备接收其他终端中任意两个终端设备发送调度信息时所利用的时频资源和天线极化方向中至少有一个不同。
  38. 根据权利要求37所述的终端设备,其特征在于,所述接收单元,用于:
    接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
    接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
    其中,所述第一时频资源与所述第二时频资源相同或部分相同,所述第一天线极化方向与所述第二天线极化方向不同。
  39. 根据权利要求38所述的终端设备,其特征在于,所述第一天线极化方向与所述第二天线极化方向正交。
  40. 根据权利要求37所述的终端设备,其特征在于,所述接收单元,用于:
    接收第一终端设备利用第一时频资源和第一天线极化方向发送的第一调度信息;
    接收第二终端设备利用第二时频资源和第二天线极化方向发送的第二调度信息;
    其中,所述第一时频资源与所述第二时频资源不同,所述第一天线极化方向与所述第二天线极化方向相同或不同。
  41. 根据权利要求37所述的终端设备,其特征在于,所述处理单元,用于:
    对所述调度信息进行解调,获取用于承载所述数据信息的时频资源和天线极化方向, 并根据所述时频资源获得其他终端设备发送的数据信息。
  42. 根据权利要求41所述的终端设备,其特征在于,所述处理单元,用于:
    利用预先设置的空间复用检测方式对所述调度信息进行解调,获得所述调度信息中用于承载数据信息的时频资源和天线极化方向;和/或,
    利用预先设置的非空间复用检测方式对所述调度信息进行解调,获得所述调度信息中用于承载数据信息的时频资源和天线极化方向。
  43. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-10任一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求11-15任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求16-21任一项所述的方法。
PCT/CN2017/078796 2017-03-30 2017-03-30 数据交互的方法、终端设备及网络设备 WO2018176324A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17904060.5A EP3585115B1 (en) 2017-03-30 2017-03-30 Data exchange method, terminal device, and network device
PCT/CN2017/078796 WO2018176324A1 (zh) 2017-03-30 2017-03-30 数据交互的方法、终端设备及网络设备
CN201780083582.6A CN110199554B (zh) 2017-03-30 2017-03-30 数据交互的方法、终端设备及网络设备
US16/587,042 US11051315B2 (en) 2017-03-30 2019-09-29 Data exchange method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/078796 WO2018176324A1 (zh) 2017-03-30 2017-03-30 数据交互的方法、终端设备及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/587,042 Continuation US11051315B2 (en) 2017-03-30 2019-09-29 Data exchange method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2018176324A1 true WO2018176324A1 (zh) 2018-10-04

Family

ID=63674448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078796 WO2018176324A1 (zh) 2017-03-30 2017-03-30 数据交互的方法、终端设备及网络设备

Country Status (4)

Country Link
US (1) US11051315B2 (zh)
EP (1) EP3585115B1 (zh)
CN (1) CN110199554B (zh)
WO (1) WO2018176324A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810957B (zh) * 2017-05-05 2020-12-15 华为技术有限公司 监测信息的方法、终端和网络设备
EP4176677A4 (en) * 2020-07-31 2023-11-29 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR TRANSMITTING AND RECEIVING SIGNALS
WO2022115807A1 (en) * 2020-11-30 2022-06-02 Fort Robotics, Inc. System and method for safety message latency characterization
CN115606113A (zh) * 2021-05-10 2023-01-13 北京小米移动软件有限公司(Cn) 一种通信方法及其装置
US11500715B1 (en) 2021-05-27 2022-11-15 Fort Robotics, Inc. Determining functional safety state using software-based ternary state translation of analog input

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244449A (zh) * 2013-06-20 2014-12-24 华为技术有限公司 设备到设备的通信方法及用户设备
WO2016021949A1 (ko) * 2014-08-07 2016-02-11 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
CN105453679A (zh) * 2013-08-16 2016-03-30 Lg电子株式会社 设备到设备通信中的信号传输方法及其装置
US9451631B2 (en) * 2013-08-14 2016-09-20 Lg Electronics Inc. Method and apparatus for transmitting signal in device-to-device communication
CN106209195A (zh) * 2015-03-06 2016-12-07 电信科学技术研究院 信道状态信息获取方法、信道状态信息反馈方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9264907B2 (en) * 2007-07-10 2016-02-16 Qualcomm Incorporated Method and apparatus for interference management between networks sharing a frequency spectrum
JP5400958B2 (ja) * 2009-05-20 2014-01-29 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線通信システムにおける方法及び装置
CN101834707B (zh) * 2010-04-04 2016-03-30 中兴通讯股份有限公司 一种获取信道状态信息的方法及相应的通信系统
CN104254132B (zh) * 2013-06-26 2018-12-18 上海朗帛通信技术有限公司 一种d2d系统中的调度方法和装置
EP3021498B1 (en) * 2013-07-12 2019-09-04 LG Electronics Inc. Method and apparatus for transreceiving signal in wireless communication system
US10314092B2 (en) * 2013-08-16 2019-06-04 Lg Electronics Inc. Signal transmission method in device-to-device communication and apparatus therefor
KR102357524B1 (ko) * 2014-11-03 2022-02-04 삼성전자주식회사 풀-디멘젼 다중 입력 다중 출력 방식을 지원하는 통신 시스템에서 기준 신호 송/수신 장치 및 방법
CN107736064B (zh) * 2015-07-03 2021-12-31 Lg电子株式会社 用于在终端之间发送信号的方法及其设备
CN106559121B (zh) * 2015-09-25 2021-07-09 华为技术有限公司 一种多天线信道测量方法和装置
WO2017116141A1 (ko) * 2015-12-29 2017-07-06 엘지전자(주) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244449A (zh) * 2013-06-20 2014-12-24 华为技术有限公司 设备到设备的通信方法及用户设备
US9451631B2 (en) * 2013-08-14 2016-09-20 Lg Electronics Inc. Method and apparatus for transmitting signal in device-to-device communication
CN105453679A (zh) * 2013-08-16 2016-03-30 Lg电子株式会社 设备到设备通信中的信号传输方法及其装置
WO2016021949A1 (ko) * 2014-08-07 2016-02-11 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
CN106209195A (zh) * 2015-03-06 2016-12-07 电信科学技术研究院 信道状态信息获取方法、信道状态信息反馈方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3585115A4 *

Also Published As

Publication number Publication date
EP3585115B1 (en) 2021-09-22
CN110199554B (zh) 2021-09-14
CN110199554A (zh) 2019-09-03
US11051315B2 (en) 2021-06-29
US20200029343A1 (en) 2020-01-23
EP3585115A1 (en) 2019-12-25
EP3585115A4 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2018176324A1 (zh) 数据交互的方法、终端设备及网络设备
WO2020221318A1 (zh) 一种上行波束管理方法及装置
KR20190131381A (ko) V2x 시스템에서 dmrs 정보 설정 방법 및 장치
US10314039B2 (en) Interference and traffic pattern database
CN109478964B (zh) 一种调度分配信息传输方法、设备及系统
WO2022022610A1 (zh) 一种同步信号块的传输方法和通信装置
WO2019157910A1 (zh) 同步信号块的传输方法、通信装置及通信设备
US20230308141A1 (en) Communication Method, Device, and System
WO2019101018A1 (zh) 一种链路恢复方法、终端设备及网络设备
CN108370561A (zh) 一种链路资源的请求方法、用户设备及基站
CN111095897B (zh) 社交网状网络
CN112106417B (zh) 一种通信方法及装置
Ghosh et al. NR radio interface for 5G verticals
KR20240022493A (ko) 사이드링크 포지셔닝 자원 구성의 사용자 장비 개시 선택
EP4096323A1 (en) Wireless communication method and device
WO2020125635A1 (zh) 一种通信方法及装置
CN114765752A (zh) 一种信息的确定方法和电子设备
WO2021159511A1 (zh) 一种资源指示和确定方法及相关装置
WO2023241671A1 (zh) 定位广播的配置方法及通信装置
WO2023131222A1 (zh) 通信方法以及通信装置
CN114258134A (zh) 波束管理方法、装置及系统
CN117545101A (zh) 定时提前命令确定方法与装置、终端设备和网络设备
CN117099342A (zh) 用于侧行通信的方法及装置
CN116980821A (zh) 一种通信方法以及相关装置
CN117581609A (zh) 一种通信方法及其通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017904060

Country of ref document: EP

Effective date: 20190920

NENP Non-entry into the national phase

Ref country code: DE