WO2018174594A1 - 유속 가중화 수차 발전 시스템 - Google Patents

유속 가중화 수차 발전 시스템 Download PDF

Info

Publication number
WO2018174594A1
WO2018174594A1 PCT/KR2018/003354 KR2018003354W WO2018174594A1 WO 2018174594 A1 WO2018174594 A1 WO 2018174594A1 KR 2018003354 W KR2018003354 W KR 2018003354W WO 2018174594 A1 WO2018174594 A1 WO 2018174594A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
power generation
aberration
generation system
flow rate
Prior art date
Application number
PCT/KR2018/003354
Other languages
English (en)
French (fr)
Inventor
김미중
김시현
류희구
김효식
Original Assignee
주식회사 윈드로즈이앤씨
주식회사 케이지엔지니어링종합건축사사무소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 윈드로즈이앤씨, 주식회사 케이지엔지니어링종합건축사사무소 filed Critical 주식회사 윈드로즈이앤씨
Publication of WO2018174594A1 publication Critical patent/WO2018174594A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/16Stators
    • F03B3/18Stator blades; Guide conduits or vanes, e.g. adjustable
    • F03B3/186Spiral or volute casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to an aberration power generation system, and more particularly, including an outer cylinder in which a conical inner cylinder and a helical fluid induction tube are formed along an outer wall, and a flow rate weighted aberration power generation system that improves power generation efficiency by increasing flow velocity and ejection pressure. It is about.
  • electricity generating apparatuses include thermal power generation using fossil fuels such as coal and oil, nuclear power generation using uranium, and hydropower generation using water power.
  • Thermal power plants use fossil fuels, which limit their fossil fuel resources, cause air pollution, and destroy the environment.
  • Nuclear power generation is concerned about the stability of the use of nuclear fuel, the cost of disposal of wastes generated during the power generation process, and radioactive contamination due to waste leakage.
  • a generator using nature may be used. That is, solar power generation using solar heat, wind power generation using wind power, and hydro power generation using water.
  • Hydroelectric power generation during the power generation using nature is generally to build a dam to trap the water and continuously open a large amount of water by dropping the water by turning the generator using the weight of the water and drop to produce electricity.
  • the disadvantage of hydro power generation is that the construction of such dams and other auxiliary equipment is accompanied, it is necessary to ensure the economical efficiency in the rich flow of water. If only a small flow of water can produce effective power, it is possible to generate sufficient power by using a variety of water streams that are discarded without destroying the environment, such as small water storage facilities or general river water and sewage. Therefore, there is an urgent need for the development of a power generation device that can effectively generate power even with a small flow rate of water.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a flow rate weighted aberration power generation system that improves power generation efficiency by increasing the flow rate and the ejection pressure.
  • the present invention is to solve the above-described problems, the need for a massive construction of the hydroelectric method applied in the prior art, and the flow rate weighted aberration for minimizing the environmental impact at the time of construction, especially for small and medium flow and low drop It is a technical problem to provide a power generation system.
  • the inlet is formed in a wider than the outlet portion, and the inner cylinder flow rate induction formed to have a conical shape of the cross section is reduced to concentric circles and
  • a flow rate induction furnace body including a plurality of flow rate induction tubes spirally formed from an inlet to an outlet to surround the outside of the flow induction path;
  • a propeller aberration part including a propeller aberration rotated by a flow rate flowing from the flow rate guide path and the flow rate guide pipe of the flow rate guide path body;
  • a gear device for maintaining the rotational speed input from the propeller aberration unit at a predetermined rotational speed;
  • a synchronous generator facility for converting rotational energy input from the gear device into electrical energy.
  • Partitions for separating the plurality of flow guide pipe may be formed spirally from the beginning to the end of the flow guide.
  • the plurality of flow induction pipes may include eight induction pipes, and partitions for separating the eight induction pipes may be spirally formed from the beginning to the end of the flow induction path.
  • the plurality of flow guide tubes may be formed to have a predetermined pitch and have spiral leads of two to three times the pitch length along the total length of the inner cylinder.
  • the propeller may include a plurality of blades, and the flow rate flowing from the plurality of flow guide tubes may be ejected toward the end of the blade.
  • the wing may be formed such that the fluid flow rate of the lower wing is faster than the fluid flow rate of the upper wing.
  • the gear device may further include a function of separating the propeller aberration unit and the synchronous generator facility.
  • the induction induction furnace body and the propeller aberration unit may be disposed on the water surface or below the water surface, and the synchronous generator equipment may be disposed above the water surface.
  • the plurality of flow induction pipe may be inclined to have an inclination of 30 ° to 45 ° with respect to the vertical line at the inlet side, based on the vertical line at the outlet side Tilt may be formed to have a slope of 30 ° to 45 °.
  • the propeller may include three or four wings.
  • the propeller may have an input angle of about 30 ° to 45 ° on the shaft boss side, and may have a structure in which the input angle is twisted at 0 ° to 15 ° at the wing tip.
  • the gear device may include a bevel gear having a 90 ° orthogonal cross angle.
  • the speed-weighted aberration power generation system maintains a constant shaft rotation speed of an output shaft by installing a torque gun butter on the output side of the gear device, and idles the power to change the hydraulic energy.
  • the input shaft speed of the synchronous generator can be kept constant at all times.
  • the hydraulic energy is converted into mechanical energy of the aberration by the flow induction path and the plurality of flow induction pipes, and the energy acting on the impeller It can be converted into reaction energy and impulse energy.
  • a specific flow rate Vi [m / sec] when the current use quantity Q [m 3 / sec] flows on the inlet side is introduced into the conical flow induction furnace.
  • the outflow flow rate changed due to the reduction of the cross section of the flow induction furnace may be increased to Vo [m / sec] as shown in Equation 1 below by a continuous principle.
  • Ai is the inlet section of the flow guide
  • Ao is the outlet section of the flow guide
  • the hydraulic energy in the aberration may be calculated as in Equations 2 and 3 below,
  • Hd rising water level [m] of the drainage surface due to installation of power generation equipment
  • Vo outflow velocity [m / sec] increased by the flow induction furnace
  • Ao is the cross-sectional area of the outlet portion [m 2],
  • Equation 2 is converted into Equation 3 below,
  • Equation 4 The amount of power that can be actually produced by reflecting the aberration and the efficiency of the synchronous generator facility can be calculated by Equation 4 below.
  • ⁇ t is in the range of 0.85 to 0.9 in the efficiency of the propeller aberration
  • ⁇ g is 0.9 to 0.95 in the efficiency of the generator.
  • the amount of output electric energy of the impulse energy generated through the plurality of flow induction pipes may be calculated as in Equation 5 below.
  • Flow rate weighted aberration power generation system can be produced by converting the fluid energy of the fluid flow in the conditions of small and medium flow, low drop into the mechanical rotational energy of the propeller aberration equipment installed in the same channel have.
  • Flow rate weighted aberration power generation system by using the reaction force by the method of increasing the velocity energy by reducing the cross-sectional area of the fluid flow as a method of converting the fluid energy, at the same time, the fluid induction of the double cylinder installed Apply the method using the impulse by the ejection pressure ejected through the pipe.
  • Flow rate weighted aberration power generation system there is no need to change and supplement the large waterway construction or existing waterway for power generation, it is easy to install using the existing waterway as it is.
  • Flow rate weighted aberration power generation system does not require a high drop of water as a source of hydraulic energy for power generation, and does not require a complicated accessory by utilizing the speed head of the flow rate.
  • the flow rate weighted aberration power generation system does not need additional equipment such as a governor or an expansion tank for stable power generation.
  • the rotation of the water wheel is operated at a low speed so that the operation is stable and quiet.
  • an induction furnace and an induction pipe for forming an appropriate flow path are mounted on a main body.
  • Flow rate weighted aberration power generation system is a system suitable for applying to a small force suitable for small and medium flow rate, low drop.
  • Flow rate weighted aberration power generation system according to an embodiment of the present invention, there is no fear of environmental damage to the facility construction, in particular, the effect of the optimal power generation system for the recovery of lost fluid energy and renewable energy production is characterized.
  • FIG. 1 is a view showing a flow rate weighted aberration power generation system according to an embodiment of the present invention.
  • FIG. 2 is a view illustrating a flow guide path body in which a flow guide channel is disposed according to an exemplary embodiment of the present invention.
  • FIG. 3 and 4 are views illustrating an outer guide tube of the outer cylinder of the flow guide in FIG. 2.
  • FIG. 5 is a diagram illustrating the propeller aberration shown in FIG. 2.
  • FIG. 6 is a diagram illustrating an outline view of the propeller aberration shown in FIG. 5.
  • FIG. 6 is a diagram illustrating an outline view of the propeller aberration shown in FIG. 5.
  • FIG. 7 is a view showing the gear device shown in FIG.
  • FIG. 8 is a diagram illustrating the synchronous generator facility shown in FIG. 2.
  • first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
  • the present invention is a technology for producing and generating electrical energy by converting the fluid energy (pressure and potential energy) held by the fluid in the fluid flow into the velocity energy, the fluid induction furnace body, propeller aberration equipment, gear gear and synchronous generator
  • the aberration power generation system according to an embodiment of the present invention, a power generation system for generating electric power by converting the fluid energy of the fluid flow in the conditions of small and medium flow rate, low drop into the mechanical rotational energy of the propeller aberration equipment installed in the same channel to be.
  • FIG. 1 is a view showing a flow rate weighted aberration power generation system according to an embodiment of the present invention.
  • the flow rate weighted aberration power generation system 100 includes a flow induction furnace body 110, a propeller aberration unit 120, a gear device 130, and a synchronous generator facility 140. It includes.
  • the flow induction furnace main body 110 and the propeller aberration unit 120 is disposed on the water surface or below the water surface, the synchronous generator equipment 140 is disposed above the water surface.
  • the gear device 130 may be installed below the surface of the water, or may be installed above the surface of the water. In addition, a portion of the gear device 130 may be installed below the surface of the water, and the remaining portion may be installed above the surface of the water.
  • the flow guide passage body 110 includes a flow guide channel 112 through which a flow rate flows, and a plurality of guide tubes 114 disposed in an outer cylinder of the flow guide passage 112. That is, the flow guide passage main body 110 includes a flow guide passage 112 that is an inner cylinder and a plurality of flow guide tubes 114 that are an outer cylinder.
  • the flow rate introduced into the flow rate induction furnace main body 110 is discharged to the propeller aberration unit 120, and the propeller aberration of the propeller aberration unit 120 is rotated by the flow rate to generate power.
  • the power by the rotation of the propeller aberration is transmitted to the gear device 130, the rotational kinetic force of the constant velocity is transmitted to the synchronous generator facility 140 by the gear device 130 to continuously generate a certain amount of power.
  • FIG. 2 is a view illustrating a flow guide path body in which a flow guide channel is disposed according to an exemplary embodiment of the present invention.
  • the flow guides 112 are formed in a cylindrical shape, and a plurality of guide tubes 114 are disposed outside the flow guides 112. Therefore, the flow rate induction furnace main body 110 is formed in a cylindrical shape.
  • the inflow flow path 112 which is an inner cylinder, has an inlet portion 114i wider than the outlet portion 114o, and the inlet portion 114i and the outlet portion 114o have a conical shape whose cross section is reduced to a concentric circle. Formed.
  • FIG. 3 and 4 are views illustrating an outer guide tube of the outer cylinder of the flow guide in FIG. 2.
  • the plurality of flow guide pipes 114 which are outer cylinders, are formed as a double pipe outside the flow guide passage 112 which is an inner cylinder, and the concentric circles are divided into eight parts based on a cross section. . That is, eight induction pipes 114 are disposed outside the flow path induction path 112 that is an inner cylinder.
  • a partition that separates the eight induction pipes 114 is formed from the start end to the end of the flow induction path 112.
  • the plurality of flow guide pipes 114 are formed spirally from the inlet to the outlet so as to surround the inner cylinder of the conical shape in a helical shape. Therefore, a double pipe
  • the induction pipe 114 is formed in a spiral from the upper end to the lower end of the flow induction path 112 based on the cross section.
  • the slope of the induction pipe 114 is formed to have an inclination of 30 ° to 45 ° with respect to the vertical line at the inlet side.
  • the inclination of the induction pipe 114 is formed to have an inclination of 30 ° to 45 ° with respect to the vertical line on the outlet side.
  • the pitches of the plurality of flow guide pipes 114 formed in a spiral form in the range of 1 to 3 times the ratio average value of the inlet diameter and the outlet diameter of the flow guide passage 112. Since the flow rate weighted aberration power generation system 100 is installed in a natural environment such as a river, it is not designed to fix the lengths of the plurality of flow guide pipes 114 as one, and the inlet diameter and the outlet diameter of the flow guide path 112 are not designed. In the range where the ratio average value is 1 to 3 times, the length of the flow guide tube 114 can be freely changed according to the installation environment.
  • a method for increasing the velocity energy at the outlet side around a concentric circle, as shown in FIG. 2, is a cross-sectional view of the inlet and outlet of the internal guide channel 112 of the inner cylinder to obtain reaction energy.
  • it is possible to implement the recovery of electrical energy by obtaining the increased speed Vo by the designed cross-sectional ratio Ai / Ao calculated according to the specific inflow speed Vi according to the installation environment.
  • the velocity energy according to the change of the flow rate that is, the amount of outputable electrical energy can be calculated as in Equation 1-5 below.
  • Ai is the inlet section of the flow guide, and Ao is the outlet section of the flow guide.
  • the energy at the outflow side is represented by the sum of the head caused by the increased velocity energy due to the reduction of the cross section and the position head represented by the rise of the drainage surface by the resistive force caused by the installation of the aberration power generation system. do.
  • 1,000 [kg / m 3] as the specific weight of water
  • H hydraulic energy head [m]
  • Q flow rate [m 3 / sec].
  • Hd rising water level [m] of the drainage surface due to installation of power generation equipment
  • Vo outflow velocity [m / sec] increased by the flow induction furnace
  • Ao is the cross-sectional area of the outlet portion [m 2],
  • Equation 2 may be represented by Equation 3 below.
  • ⁇ t is in the range of 0.85 to 0.9 in the efficiency of the propeller aberration
  • ⁇ g is 0.9 to 0.95 in the efficiency of the generator.
  • the actual amount of generated power can be calculated by reflecting ⁇ t and ⁇ g in the theoretical amount of generated power.
  • a plurality of flow guide tubes 114 are provided outside the flow guide passage 112 of the inner cylinder, and a plurality of flow guide tubes 114 are provided.
  • the amount of electric energy that can be output from the impulse energy from the water stream ejected from the flow induction path 112 of the outer cylinder at the increased flow rate according to the change of the flow rate can be calculated as shown in Equation 5 below.
  • Inlet side cross-sectional area; ai ⁇ / 4 (Di1 2 -Di2 2 ) * 1/8 (where Di1 is the inlet diameter of the outer cylinder, Di2 is the diameter of the inlet of the inner cylinder)
  • Outlet side cross-sectional area; ao ⁇ / 4 (Do1 2 -Do2 2 ) * 1/8 (where Do1 is the outlet diameter of the outer cylinder, Do2 is the outlet diameter of the inner cylinder)
  • FIG. 5 is a diagram illustrating the propeller aberration shown in FIG. 2
  • FIG. 6 is a diagram illustrating the outline of the propeller aberration shown in FIG. 5.
  • the propeller aberration unit 120 includes a propeller aberration 122, and the propeller 112 includes three or four wings. 4 shows a propeller aberration 122 comprising three wings.
  • the propeller aberration 122 has an input angle of about 30 ° to 45 ° at the side of the shaft boss, and is formed in a structure in which the input angle is twisted at 0 ° to 15 ° at the wing tip.
  • the upper part is made in the tangential direction and the horizontal plane of the front end arc of the front end in the fluid flow direction so as to generate a lift due to the speed difference of the upper and lower parts of the wing in the main body of the wing, and the size of the rear end end arc is large.
  • the fluid flow velocity of the upper and lower parts of the blade is lower than that of the upper part, so that the pressure of the lower part is smaller than that of the upper part so that the rotational force can be added in the rotational speed direction of the blade.
  • FIG. 7 is a view showing the gear device shown in FIG.
  • the gear device 130 is a power transmission component for transmitting hydraulic energy converted into mechanical energy from a propeller aberration to a generator, and a power transmission shaft coupling coupling (Roller Chain Coupling 132) and a bevel gear (Bevel) Gear, 134), torque converter (136) on the output side, and output shaft couplings.
  • a power transmission shaft coupling coupling Roller Chain Coupling 132
  • a bevel gear Bevel gear
  • torque converter 136
  • the power transmission shaft coupling coupling 132 connects or disconnects the input shaft and the output shaft, and the bevel gear 134 has a crossing angle of 90 degrees, thereby converting the direction of power transmission from the horizontal axis to the vertical axis, thereby receiving a synchronous generator system. Can be installed on the ground to facilitate maintenance.
  • the torque gun butter 136 on the output side maintains the shaft rotation speed of the output shaft at all times and has a clutch function to idle the power, thereby synchronizing in response to the change of the output shaft rotation speed according to the change of hydraulic energy.
  • it has a function that can separate the aberration unit and the generator unit, to increase and stabilize the power generation efficiency and to facilitate the maintenance of the generator site.
  • FIG. 8 is a view showing the synchronous motor equipment shown in FIG.
  • Synchronous generator facility 140 is a synchronous generator and a power conversion device for producing electric power by using the rotational force from the propeller aberration converter device for converting the AC power produced by the rotational force of the propeller aberration into DC power and the power converted into direct current It is configured to include inverter device which controls frequency range or phase angle difference and converts to AC again so that it can be connected to grid power.
  • the rotational force input from the gear device 130 is transmitted to the rotor, the electromagnetic force is induced in the armature winding by the rotation of the rotor to generate power.
  • a constant rotational force is transmitted to the synchronous generator 140 by the torque converter 136 of the gear device 130, so that the power generation is made stable.
  • the design of the speed increase and the reduction ratio of the gear device 130 for the proper rotational speed of the bevel gear is set in accordance with the manufacture of the synchronous generator to be connected, and may be represented by Equations 6 and 7 below.
  • Synchronous generator facility 140 is made of even poles of 24 to 60 poles, the AC frequency is 60Hz, the rated rotational speed of the power transmission shaft can be calculated as shown in Equations 6 and 7 below. .
  • N 120 * f / Pole
  • Pole is an even pole between 24 and 60 poles.
  • the rotation speed of the expected aberration is from the generation formula of power energy
  • Ns N x ⁇ P x 1 / (H)
  • Equation 7 the reference rotational speed N is calculated, and each element in this case is Ns applied as a limit specific speed of propeller aberration in the range of 350 rpm to 800 rpm but in this aberration based on around 300 rpm to 350 rpm.
  • the determination of the final increase / deceleration ratio of the bevel gear box can be calculated as the ratios of Equations 6 and 7 above.
  • Flow rate weighted aberration power generation system the cooling effluent of the river or industrial facility, the treated effluent of the sewage treatment plant, the water channel in which the discharge sluice of the reservoir or reservoir is installed, and the marine water channel such as the current or algae Can be installed on Through this, it is a system for producing and generating electrical energy by converting fluid energy (pressure and potential energy) held by a fluid into velocity energy by a flow guide channel main body installed in the fluid flow.
  • Flow rate weighted aberration power generation system it is possible to produce electric power by converting the fluid energy of the flow of the fluid in the conditions of small and medium flow, low drop into the mechanical rotational energy of the propeller aberration equipment installed in the same channel have.
  • Flow rate weighted aberration power generation system by using the reaction force by the method of increasing the velocity energy by reducing the cross-sectional area of the fluid flow as a method of converting the fluid energy, at the same time, the fluid induction of the double cylinder installed Apply the method using the impulse by the ejection pressure ejected through the pipe.
  • Flow rate weighted aberration power generation system there is no need to change and supplement the large waterway construction or existing waterway for power generation, it is easy to install using the existing waterway as it is.
  • Flow rate weighted aberration power generation system does not require a high drop of water as a source of hydraulic energy for power generation, and does not require a complicated accessory by utilizing the speed head of the flow rate.
  • the flow rate weighted aberration power generation system does not need additional equipment such as a governor or an expansion tank for stable power generation.
  • the rotation of the water wheel is operated at a low speed so that the operation is stable and quiet.
  • an induction furnace and an induction pipe for forming an appropriate flow path are mounted on a main body.
  • Flow rate weighted aberration power generation system is a system suitable for applying to a small force suitable for small and medium flow rate, low drop.
  • Flow rate weighted aberration power generation system according to an embodiment of the present invention, there is no fear of environmental damage to the facility construction, in particular, the effect of the optimal power generation system for the recovery of lost fluid energy and renewable energy production is characterized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

본 발명은 원추형의 내통 및 나선형의 유체 유도관이 외벽을 따라서 형성된 외통을 포함하여, 유속 및 분출압력을 증가시킴으로써 발전 효율을 향상시킨 유속 가중화 수차 발전 시스템에 관한 것이다. 본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 입구부가 출구부보다 넓게 형성되고, 동심원으로 단면이 감소되는 원추형의 형상을 가지도록 형성된 유량 유도로와, 상기 유량 유도로의 외부를 감싸도록 입구에서부터 출구까지 나선형으로 형성된 복수의 유량 유도관을 포함하는 유량 유도로 본체와; 상기 유량 유도로 본체에서 유입되는 유량에 의해 회전하는 프로펠러 수차를 포함하는 프로펠러 수차부와; 상기 프로펠러 수차부에서 입력된 회전수를 일정 회전수로 유지시키는 기어장치; 및 상기 기어장치에서 입력된 회전에너지지를 전기에너지로 변환하는 동기발전기 설비를 포함한다.

Description

유속 가중화 수차 발전 시스템
본 발명은 수차 발전 시스템에 관한 것으로, 보다 자세하게는 원추형의 내통 및 나선형의 유체 유도관이 외벽을 따라서 형성된 외통을 포함하여, 유속 및 분출압력을 증가시킴으로써 발전 효율을 향상시킨 유속 가중화 수차 발전 시스템에 관한 것이다.
일반적으로 전기를 발전하는 발전장치는 석탄이나 석유와 같은 화석연료를 이용한 화력발전, 우라늄을 이용한 원자력발전과 물의 힘을 이용한 수력발전 등이 있다.
화력발전은 화석연료를 사용하는 것으로 화석연료자원이 한정되어 있고, 대기오염을 유발하여 환경을 파괴할 뿐만 아니라 지구온난화의 주범이 되고 있다. 원자력발전은 핵연료의 사용에 따른 안정성, 발전과정에서 발생되는 폐기물 등의 처리비용 및 폐기물 누출에 의한 방사능오염의 우려가 있다.
이러한 문제점을 지닌 발전장치를 대체하는 발전장치로는 자연을 이용한 발전장치를 들을 수 있다. 즉, 태양열을 이용한 태양열발전, 풍력을 이용한 풍력발전, 물을 이용한 수력발전 등이 있다.
상기 자연을 이용한 발전 중 수력발전은 일반적으로 댐을 건설하여 물을 가두었다가 지속적으로 많은 양의 물을 개방하여 낙하시킴으로써 물의 무게와 낙차를 이용하여 발전기를 돌려 전기를 생산하는 것이다.
이러한 수력발전은 자연적인 물의 위치에너지를 이용하여 발전을 하기 위하여 강의 물을 가두는 대규모의 댐 건설이 불가피하여 건설비용이 많이 들고, 건설지역이 한정되어 있으며, 물을 가둠으로 인한 수몰지역이 발생되어 그로 인해 생태계의 변화가 발생되는 등의 문제점이 있었다.
또한, 수력 발전의 단점은 이러한 댐 건설 및 기타 부대설비의 건설이 수반됨으로 인해, 물의 유량이 풍부해야 경제성을 확보할 수 있다는 점이다. 만약 소 유량의 물의 흐름만으로도 효과적인 발전을 할 수 있다면 소규모 저수 시설 혹은 일반 하천수, 상하수도 등 환경을 파괴하지 않고 버려지는 다양한 물의 흐름을 이용하여 충분한 발전을 할 수 있다. 따라서, 적은 유량의 물의 흐름에도 효과적인 발전을 할 수 있는 발전 장치의 개발이 절실하게 요청되고 있다.
(선행기술문헌)
대한민국 공개특허공보 10-2014-0093150(2014년 07월 25일)
본 발명은 앞에서 설명한 문제점을 해결하기 위한 것으로, 유속 및 분출압력을 증가시킴으로써 발전 효율을 향상시킨 유속 가중화 수차 발전 시스템을 제공하는 것을 기술적 과제로 한다.
본 발명은 앞에서 설명한 문제점을 해결하기 위한 것으로, 종래 기술에서 적용되는 수력발전 방식의 방대한 건설공사의 필요성과, 건설 시의 환경영향을 최소화하고 특히 중소유량 및 저낙차에 적용하기 위한 유속 가중화 수차 발전 시스템을 제공하는 것을 기술적 과제로 한다.
위에서 언급된 본 발명의 기술적 과제 외에도, 본 발명의 다른 특징 및 장점들이 이하에서 기술되거나, 그러한 기술 및 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
앞에서 설명한 목적을 달성하기 위한 본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 입구부가 출구부보다 넓게 형성되고, 동심원으로 단면이 감소되는 원추형의 형상을 가지도록 형성된 내통인 유량 유도로와, 상기 유량 유도로의 외부를 감싸도록 입구에서부터 출구까지 나선형으로 형성된 외통인 복수의 유량 유도관을 포함하는 유량 유도로 본체; 상기 유량 유도로 본체의 상기 유량 유도로 및 상기 유량 유도관으로부터 유입되는 유량에 의해 회전하는 프로펠러 수차를 포함하는 프로펠러 수차부; 상기 프로펠러 수차부에서 입력된 회전수를 일정 회전수로 유지시키는 기어장치; 및 상기 기어장치에서 입력된 회전에너지를 전기에너지로 변환하는 동기발전기 설비;를 포함할 수 있다.
상기 복수의 유량 유도관을 구분시키는 칸막이는 상기 유량 유도로의 시작단부터 끝단까지 나선형으로 형성될 수 있다. 또한, 상기 복수의 유량 유도관은 8개의 유도관을 포함할 수 있고, 상기 8개의 유도관을 구분시키는 칸막이가 상기 유량 유도로의 시작단부터 끝단까지 나선형으로 형성될 수 있다. 또한, 상기 복수의 유량 유도관은 일정 피치(pitch)를 갖고 내통의 총 길이를 따라 피치 길이의 2배 내지 3배의 나선 리드(Lead)를 가지도록 형성될 수 있다.
상기 프로펠러는 복수의 날개를 포함하고, 상기 복수의 유량 유도관으로부터 유입되는 유량은 날개의 끝단 쪽으로 분출될 수 있다. 또한, 상기 날개는 날개 하부의 유체흐름속도가 날개 상부의 유체흐름속도보다 빠르도록 형성될 수 있다.
상기 기어장치는 상기 프로펠러 수차부와 상기 동기발전기 설비를 분리시키는 기능을 추가로 구비할 수 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템에서, 상기 유도 유도로 본체 및 상기 프로펠러 수차부는 수면 또는 수면 아래에 배치될 수 있고, 상기 동기발전기 설비는 수면보다 높은 곳에 배치될 수 있다..
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템에서, 상기 복수의 유량 유도관은 유입구 쪽에서 수직선을 기준으로 30°내지 45°의 경사를 가지도록 기울기가 형성될 수 있고, 배출구 쪽에서 수직선을 기준으로 30°내지 45°의 경사를 가지도록 기울기가 형성될 수 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템에서, 상기 유량 유도로의 유입구 직경과 유출구 직경의 비율평균 값이 1배 내지 3배의 범위에서, 상기 복수의 유량 유도관의 길이가 설정될 수 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템에서, 프로펠러는 3개 또는 4개의 날개를 포함할 수 있다. 상기 프로펠러는 축보스 측에서 30°내지 45° 정도의 입력각을 가질 수 있으며, 날개 끝단에서는 입력각이 0°내지 15°로 비틀린 구조로 형성될 수 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템에서, 상기 기어장치는 90° 직교 교차각을 갖는 베벨기어를 포함할 수 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 상기 기어장치에서 출력측에 토오크 건버터를 설치함으로써 출력축의 축 회전수를 항상 일정하게 유지시킬 수 있고, 동력을 공회전시켜 수력에너지의 변화에 따른 출력축 회전수변화에 대응해 동기발전기의 입력축 회전수를 항상 일정하게 유지시킬 수 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 상기 유량 유도로와 상기 복수의 유량 유도관으로 수력에너지를 수차의 기계적 에너지로 변환시키되, 수차의 회전체(Impeller)에 작용하는 에너지를 반동(Reaction) 에너지와 충동(Impulse) 에너지로 변환시킬 수 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템에서, 현재의 사용수량 Q[㎥/sec]이 유입구 측을 흐를 때의 특정 유속 Vi[m/sec]이 원추형의 상기 유량 유도로 내로 유입된 후, 상기 유량 유도로의 단면축소로 인해 변화된 유출 유속은 연속식의 원리에 의해 아래의 수학식 1과 같이 Vo[m/sec]로 증가될 수 있다.
[수학식 1]
Q = AiVi = AoVo 에서,
Vo = Ai/Ao * Q, Ai/Ao > 1 이므로,
Vo > Vi
여기서, Ai는 유량 유도로의 유입구 단면이고, Ao는 유량 유도로의 유출구 단면이다.
본 발명의 실시 예에 따른 수차 발전 시스템에서, 상기 수차에서의 수력에너지는 하기의 수학식 2, 3과 같이 산출될 수 있고,
[수학식 2]
Pw = γ * H * Q[kgm/sec]의 식으로 표현되며,
여기서, γ = 물의 비중량으로 1,000 [kg/㎥]을 나타내고, H = 수력 에너지수두[m], Q = 유량[㎥/sec] 을 나타내고,
또한, 발전 가능량을 결정하는 주요 요인으로 수력에너지수두[m] 와 유량 Q = 유량[㎥/sec]의 산정은 다음과 같이 계산되고,
H = Ho + Hd + Vo2/(2 * g)[m] 과 Q = AoVo 이므로,
발전 가능량 Pw= γ * (Ho + Hd + Vo2/(2 * g)) * AoVo [kg m/sec]가 되며,
여기에, 각각의 값은 다음의 설명으로 산정되고,
γ=1,000 [kg/㎥]: 물의 비중량 값이고,
Ho=발전설비가 설치 되기 전 원 수로의 낙차 수위[m]이고,
Hd=발전설비의 설치로 인한 배수면의 상승수위[m]이고,
Vo=유량 유도로에 의해 증가된 유출부유속[m/sec]이고,
Ao=유출부의 단면적[㎡]이고,
g=9.8[m/sec2]이고,
상기 수학식 2는 하기의 수학식 3으로 변환되고,
[수학식 3]
Pw = γ * (Ho + Hd + Vo2/(2 * g)) * AoVo [kg m/sec]에서 1 KW는 102 kg m/sec가 되므로 발전 가능량은 다음의 식으로 산출 된다.
Pw = γ * (Ho + Hd + Vo2/(2 * g)) * AoVo / 102 [KW],
본 발명의 실시 예에 따른 수차 발전 시스템은,
상기 수차와 상기 동기발전기 설비의 효율을 반영하여 실제 생산 가능한 전력량은 하기의 수학식 4와 같이 산출될 수 있다.
[수학식 4]
실질 생산전력량; Pw = γ * (Ho + Hd + Vo2/(2 * g)) * AoVo / 102 * ηt * ηg [KW],
여기서, ηt 는 프로펠러 수차의 효율로 0.85~0.9의 범위이고, ηg 는 발전기의 효율로 0.9~0.95이다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템에서, 상기 복수의 유량 유도관을 통해 생성된 상기 충동 에너지의 출력 가능한 전기 에너지량은 하기의 수학식 5와 같이 산출될 수 있고,
[수학식 5]
유입구 측 단면적; ai = π/4(Di12-Di22) * 1/8
분출구 측 단면적; ao = π/4(Do12-Do22) * 1/8
또한 Q = ai * Vi = ao * vo에서,
Vo = ai/ao * Vi 이므로, 물의 충동에너지가 프로펠러 수차에 전달하는 운동량 Em=M(질량) x V(속도)이고, M(질량)은 ρ(밀도) x Q(유량)로 표시되고, 또한 γ(비중량)= ρ(밀도) x g(중력가속도) 이므로,
충동에너지 즉 발생 전력량 Pw = M x Vo = ρ x Q x Vo 로부터,
Pw = γ * Q * Vo/g = ρ * Q * Vi * (Di12-Di22)/(Do12-Do22)이다.
이 밖에도, 본 발명의 실시 예들을 통해 본 발명의 또 다른 특징 및 이점들이 새롭게 파악될 수 있을 것이다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 중소유량, 저낙차의 조건에서 유체의 흐름이 갖고 있는 유체에너지를 동일 수로 내에 설치된 프로펠러 수차 설비의 기계적 회전에너지로 변환시켜 전력을 생산할 수 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 유체에너지의 변환방법으로 우선 유체흐름의 단면적을 감소시킴으로써 속도에너지를 증가시키는 방법에 의한 반동력을 이용함과 동시에, 이중으로 설치된 외통의 유체 유도관을 통해서 분출되는 분출압에 의한 충동력을 함께 활용한 방법을 적용한다. 이를 통해서, 각종 수력발전 방식의 방대한 건설공사의 필요성과 건설시의 환경영향을 최소화하고 특히 중소유량 및 저낙차에 적용하기 적합한 발전 시스템을 제공할 수 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 발전을 위해 대형 수로공사나 기존수로를 변경 보완 할 필요가 없으며 기존 수로를 그대로 활용하며 설치가 간단하다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 발전을 위한 수력에너지원인 높은 낙차를 필요로 하지 않으며 흐름유량의 속도수두를 활용함으로써 복잡한 부속설비가 필요치 않다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 안정적인 발전을 위해 조속기나 팽창탱크(Surge Tank)등의 부대설비가 필요치 않다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 수차의 회전이 저속으로 운영되어 운전이 안정적이고 정숙하다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 적정 유로형성을 위한 유도로 및 유도관을 본체에 장착하고 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 중소유량, 저낙차에 적합한 소수력에 적용하기에는 적합한 시스템이다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 시설공사에 환경성 침해의 우려가 없으며 특히 손실되는 유체에너지의 회수 및 신재생에너지 생산에 최적의 발전시스템의 효과가 특징적이다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템을 나타내는 도면이다.
도 2는 본 발명의 실시 예에 따른 유량 유도로(Flow Guide Channel)가 배치된 유량 유도로 본체를 나타내는 도면이다.
도 3 및 도 4는 도 2에 도시된 유량 유도로 외통의 유도관(Outer Guide Tube)을 나타내는 도면이다.
도 5는 도 2에 도시된 프로펠러 수차를 나타내는 도면이다.
도 6은 도 5에 도시된 프로펠러 수차의 외형도를 나타내는 도면이다.
도 7은 도 2에 도시된 기어장치를 나타내는 도면이다.
도 8은 도 2에 도시된 동기발전기 설비를 나타내는 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시 예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
"아래", "위" 등의 상대적인 공간을 나타내는 용어는 도면에서 도시된 한 부분의 다른 부분에 대한 관계를 보다 쉽게 설명하기 위해 사용될 수 있다. 이러한 용어들은 도면에서 의도한 의미와 함께 사용 중인 장치의 다른 의미나 동작을 포함하도록 의도된다. 예를 들면, 도면 중의 장치를 뒤집으면, 다른 부분들의 "아래"에 있는 것으로 설명된 어느 부분들은 다른 부분들의 "위"에 있는 것으로 설명된다. 따라서 "아래"라는 예시적인 용어는 위와 아래 방향을 전부 포함한다. 장치는 90˚ 회전 또는 다른 각도로 회전할 수 있고, 상대적인 공간을 나타내는 용어도 이에 따라서 해석된다.
이하, 첨부한 도면을 참조하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다.
본 발명은 유체 흐름속에 유체가 보유하고 있는 유체에너지(압력 및 위치에너지)를 속도에너지로 변환시켜 전기에너지를 생산 발전하는 기술로, 유체 유도로 본체, 프로펠러 수차설비, 증감속 기어장치 및 동기발전기 설비로 구성된 수차 발전 시스템을 제안한다.
본 발명의 실시 예에 따른 수차 발전 시스템은, 중소유량, 저낙차의 조건에서 유체의 흐름이 갖고 있는 유체에너지를 동일수로 내에 설치된 프로펠러 수차 설비의 기계적 회전에너지로 변환시켜 전력을 생산하는 발전시스템이다.
도 1은 본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템을 나타내는 도면이다.
도 1을 참조하면, 본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템(100)은 유량 유도로 본체(110), 프로펠러 수차부(120), 기어장치(130) 및 동기발전기 설비(140)를 포함한다.
여기서, 유량 유도로 본체(110) 및 프로펠러 수차부(120)는 수면 또는 수면 아래에 배치되고, 동기발전기 설비(140)는 수면보다 높은 곳에 배치된다.
유속 가중화 수차 발전 시스템(100)이 설치되는 환경의 특성에 따라서, 기어장치(130)는 수면 아래에 설치될 수도 있고, 수면보다 높은 곳에 설치될 수도 있다. 또한, 기어장치(130)의 일부는 수면 아래에 설치되고, 나머지 부분은 수면보다 높은 곳에 설치될 수도 있다.
유량 유도로 본체(110)는 유량이 유입되는 유량 유도로(112, Flow Guide Channel) 및 유량 유도로(112) 외통에 배치된 복수의 유도관(114, Outer Guide Tube)을 포함한다. 즉, 유량 유도로 본체(110)는 내통인 유량 유도로(112)와 외통인 복수의 유량 유도관(114)을 포함한다.
유량 유도로 본체(110)에 유입된 유량은 프로펠러 수차부(120)로 배출되고, 유량에 의해서 프로펠러 수차부(120)의 프로펠러 수차가 회전하여 발전이 이루어지게 된다. 여기서, 프로펠러 수차의 회전에 의한 동력은 기어장치(130)로 전달되고, 기어장치(130)에 의해 등속의 회전 운동력이 동기발전기 설비(140)에 전달되어 지속적으로 일정량의 발전이 이루지도록 한다.
도 2는 본 발명의 실시 예에 따른 유량 유도로(Flow Guide Channel)가 배치된 유량 유도로 본체를 나타내는 도면이다.
도 2를 참조하면, 유량 유도로(112)는 원통형으로 형성되어 있고, 유량 유도로(112)의 외부에 복수의 유도관(114, Guide Tube)이 배치되어 있다. 따라서, 유량 유도로 본체(110)는 원통형으로 형성되어 있다.
내통인 유량 유도로(112)는 입구부(114i)가 출구부(114o)보다 넓게 형성되어 있으며, 입구부(114i)와 출구부(114o)는 동심원으로 단면이 감소되는 원추형의 형상을 가지도록 형성되어 있다.
유체에너지의 변환방법으로, 유량 유도로(112)를 통해서, 유체흐름의 단면적을 감소시킴으로써 속도에너지를 증가시킬 수 있다. 또한, 유체흐름에서의 에너지 방정식인 베르누이의 원리와 연속식을 활용한 방법으로, 유량유도관 본체를 유체 흐름속에 설치하여 유체가 보유하고 있는 유체에너지(압력 및 위치에너지)를 속도에너지로 변환시켜 발전이 이루어지도록 한다.
도 3 및 도 4는 도 2에 도시된 유량 유도로 외통의 유도관(Outer Guide Tube)을 나타내는 도면이다.
도 3을 참조하면, 외통인 복수의 유량 유도관(114)은 내통인 유량 유도로(112) 외부에 이중관으로 형성되어 있으며, 단면을 기준으로 동심원이 8개의 부위로 분할된 형태로 형성되어 있다. 즉, 8개의 유도관(114)이 내통인 유량 유도로(112)의 외부에 배치되어 있다. 여기서, 8개의 유도관(114)을 구분 시키는 칸막이(baffle)는 유량 유도로(112)의 시작단부터 끝단까지 형성되어 있다.
여기서, 복수의 유량 유도관(114)은 나선형(Helical)으로 원추형의 내통을 감싸도록 입구에서부터 출구까지 나선형으로 형성되어 있다. 따라서, 이중관 칸막이를 8개의 나선형으로 원추형 내통(유량 유도로, 112)의 외부에 접착 용접 제작하는 방법으로 형성할 수 있다.
8개의 유도관(114) 중에서 제1 유도관(1i)의 형상을 구체적으로 설명하면, 단면을 기준으로 유량 유도로(112)의 상단에서부터 하단까지 유도관(114)이 나선형으로 형성되어 있다. 유입구 쪽에서 수직선을 기준으로 30°내지 45°의 경사를 가지도록 유도관(114)의 기울기가 형성된다. 그리고, 배출구 쪽에서 수직선을 기준으로 30°내지 45°의 경사를 가지도록 유도관(114)의 기울기가 형성된다.
유량 유도로(112)의 유입구 직경과 유출구 직경의 비율평균 값이 1배 내지 3배의 범위에서, 나선형으로 형성된 복수의 유량 유도관(114)의 길이(pitch)를 설정할 수 있다. 유속 가중화 수차 발전 시스템(100)은 하천과 같은 자연 환경에 설치됨으로, 복수의 유량 유도관(114)의 길이를 하나로 고정시켜 설계하지 않고, 유량 유도로(112)의 유입구 직경과 유출구 직경의 비율평균 값이 1배 내지 3배의 범위에서, 설치 환경에 따라 자유롭게 유량 유도관(114)의 길이를 변경할 수 있다.
유량 유도로(112) 및 복수의 유량 유도관(114)을 형성함으로써, 수력에너지를 수차의 기계적 에너지로 변환하는 방법에 있어서, 수차의 회전체(Impeller)에 작용하는 에너지를 반동(Reaction)에 의한 방법과 충동(Impulse)에 의한 방법의 효과를 동시에 얻을 수 있다.
반동 에너지(Reaction Energy)를 얻기 위해 내통의 유량 유도로(112, Internal Guide Channel)의 유입 및 유출구의 단면을 도 2에 도시된 바와 같이, 동심원을 중심으로 유출측의 속도에너지를 증가시키기 위한 방법으로 설치환경에 따른 특정유입속도(Vi)에 따라 산출 설계된 단면비(Ai/Ao)에 의해 증가된 속도(Vo)를 얻어 전기에너지의 회수를 구현할 수 있다. 이 경우, 유속의 변화에 따를 속도에너지, 즉, 출력 가능한 전기에너지의 량은 하기의 수학식 1-5와 같이 산정할 수 있다.
현재의 사용수량 Q[㎥/sec]이 유입구 측을 흐를 때의 특정 유속 Vi[m/sec]이 유량 유도로(Flow Guide Channel)내로 유입된 후, 원추형 유량 유도로(112) 본체의 단면축소로 인해 변화된 유출 유속은 연속식의 원리에 의해 아래의 수학식 1과 같이 Vo[m/sec]로 증가된다.
[수학식 1]
Q = AiVi = AoVo 에서,
Vo = Ai/Ao * Q, Ai/Ao > 1 이므로,
Vo > Vi
Ai는 유량 유도로의 유입구 단면이고, Ao는 유량 유도로의 유출구 단면이다.
여기서, 유출측에서의 에너지는 단면의 축소로 인해 증가된 속도에너지에 의한 수두와 본 수차발전 시스템의 설치에 따른 저항력에 의한 배수면 상승에 의해 나타나는 위치수두의 합으로 나타나며 다음의 수학식 2와 같이 표현된다.
[수학식 2]
수차에서의 수력에너지의 산정공식은,
Pw = γ * H * Q[kgm/sec]의 식으로 표현되며,
여기서, γ = 물의 비중량으로 1,000 [kg/㎥]을 나타내고, H = 수력 에너지수두[m], Q = 유량[㎥/sec] 을 나타낸다.
또한, 발전 가능량을 결정하는 주요 요인으로 수력에너지수두[m] 와 유량 Q = 유량[㎥/sec]의 산정은 다음과 같이 계산된다. 즉,
H = Ho + Hd + Vo2/(2 * g)[m] 과 Q = AoVo 이므로,
발전 가능량 Pw= γ * (Ho + Hd + Vo2/(2 * g)) * AoVo [kg m/sec]가 되며,
여기에, 각각의 값은 다음의 설명으로 산정된다.
γ=1,000 [kg/㎥]: 물의 비중량 값이고,
Ho=발전설비가 설치 되기 전 원 수로의 낙차 수위[m]이고,
Hd=발전설비의 설치로 인한 배수면의 상승수위[m]이고,
Vo=유량 유도로에 의해 증가된 유출부유속[m/sec]이고,
Ao=유출부의 단면적[㎡]이고,
g=9.8[m/sec2]이다.
또한, 상기 수학식 2는 아래의 수학식 3으로 나타낼 수 있다.
[수학식 3]
Pw = γ * (Ho + Hd + Vo2/(2 * g)) * AoVo [kg m/sec]에서 1 KW는 102 kg m/sec가 되므로 발전 가능량은 다음의 식으로 산출 된다.
Pw = γ * (Ho + Hd + Vo2/(2 * g)) * AoVo / 102 [KW]
[수학식 4]
상기식의 결과는 이론산출 가능 발생 전력량이며 이에 수차와 발전기의 효율을 반영하면 다음과 같은 실 생산 전력량 산출식이 된다.
실질 생산전력량; Pw = γ * (Ho + Hd + Vo2/(2 * g)) * AoVo / 102 * ηt * ηg [KW],
여기서, ηt 는 프로펠러 수차의 효율로 0.85~0.9의 범위이고, ηg 는 발전기의 효율로 0.9~0.95이다. 상기 이론적 발생 전력량에 ηt, ηg를 반영하여 실질 생산 전력량을 산출할 수 있다.
그리고, 충동 에너지(Impulse Energy)를 얻기 위해서 도 3에 도시된 바와 같이, 내통의 유량 유도로(112)의 외부에 복수의 유량 유도관(114)을 설치하고, 복수의 유량 유도관(114)을 내통의 외벽을 따라 헬리컬(Helical)곡선의 30도∼45도 기울기 나선형으로 형성하였다. 그리고, 일정 피치(Pitch)를 갖고 내통의 총 길이(L)을 따라 피치(Pitch)길이의 2배∼3배의 나선 리드(Lead)를 가지도록 형성하였다.
이 경우의 유속의 변화에 따라 증가된 유속으로 외통의 유량 유도로(112)에서 분출된 수류로부터의 충동에너지의 출력 가능한 전기에너지의 량은 다음과 수학식 5와 같이 산출할 수 있다.
[수학식 5]
유입구 측 단면적; ai = π/4(Di12-Di22) * 1/8 (여기서, Di1은 외통의 유입구 직경, Di2는 내통의 유입구의 직경)
분출구 측 단면적; ao = π/4(Do12-Do22) * 1/8 (여기서, Do1은 외통의 분출구 직경, Do2는 내통의 분출구 직경)
또한 Q = ai * Vi = ao * vo에서,
Vo = ai/ao * Vi 이므로, 물의 충동에너지가 프로펠러 수차에 전달하는 운동량 Em=M(질량) x V(속도)이고, M(질량)은 ρ(밀도) x Q(유량)로 표시되고, 또한 γ(비중량)= ρ(밀도) x g(중력가속도) 이므로,
충동에너지 즉 발생 전력량 Pw = M x Vo = ρ x Q x Vo 로부터,
Pw = γ * Q * Vo/g = ρ * Q * Vi * (Di12-Di22)/(Do12-Do22)가 된다.
도 5는 도 2에 도시된 프로펠러 수차를 나타내는 도면이고, 도 6는 도 5에 도시된 프로펠러 수차의 외형도를 나타내는 도면이다.
도 5 및 도 6을 참조하면, 프로펠러 수차부(120)는 프로펠러 수차(122)를 포함하며, 프로펠러(112)는 3개 또는 4개의 날개를 포함한다. 도 4에서는 3개의 날개를 포함하는 프로펠러 수차(122)를 도시하고 있다.
프로펠러 수차(122)는 축보스 측에서 30°내지 45° 정도의 입력각을 가지며, 날개 끝단에서는 입력각이 0°내지 15°로 비틀린 구조로 형성되어 있다. 또한, 날개의 본체에서 날개 상하부의 속도차에 의한 양력을 발생시킬 수 있도록 유체 흐름방향에 대해 상부는 전방의 끝단면 원호의 접선방향과 수평면으로 제작하고, 하부는 후방 끝단면 원호의 크기를 크게 하고 접선방향으로 날개의 약 1/3 지점을 가장 두껍게 한 후 전방측 원호의 접선과 연결하여 곡선형태의 두께를 가지도록 제작한다.
이렇게 함으로써 날개 상하부의 유체흐름속도가 하부가 상부보다 빠르게 됨으로써 하부의 압력이 상부보다 작아져 날개의 회전속도방향으로 회전력이 부가 발생할 수 있는 구조를 갖도록 한다.
도 7은 도 2에 도시된 기어장치를 나타내는 도면이다.
도 7을 참조하면, 기어장치(130)는 프로펠러 수차에서 기계적 에너지로 변환된 수력에너지를 발전기에 전달하는 동력전달부품으로서, 동력전달축 연결 커플링(Roller Chain Coupling, 132), 베벨기어(Bevel Gear, 134), 출력측의 토오크 컨버터(Torque Converter, 136) 및 출력 축 탈착용 커플링으로 구성 되어 있다.
동력전달축 연결 커플링(132)은 입력축 과 출력축을 연결 또는 분리시키며 베벨기어(134)는 교차각이 90도로 제작되어 동력전달의 방향을 수평축방향에서 수직축 방향으로 변환함으로써, 동기발전기 시스템을 수중에서 지상에 설치 가능하게 하여 유지관리를 용이하게 한다.
또한, 출력측의 토오크 건버터(136)는 출력축의 축 회전수를 항상 일정하게 유지시킴과 동시에, 동력을 공회전 시킬 수 있는 클러치 기능을 갖고 있어 수력에너지의 변화에 따른 출력축 회전수변화에 대응해 동기발전기의 입력축 회전수를 항상 일정하게 유지시킨다. 이와 함께, 수차부와 발전기부를 분리 시킬 수 있는 기능을 갖고 있어, 발전효율을 높이고 안정화 시킴과 동시에 발전기부위의 유지관리를 용이하게 한다.
도 8은 도 2에 도시된 동기전동기 설비를 나타내는 도면이다.
도 8을 참조하면, 발전 시스템의 운영 및 유지관리의 효율성 향상을 위해서 동기발전기 설비(140)가 지상 플랫폼에 설치되어 있다. 동기발전기 설비(140)는 프로펠러 수차로부터의 회전력을 이용하여 전력을 생산하는 동기발전기와 전력변환장치로써 프로펠러 수차의 회전력에 의해 생산된 교류전원을 직류전원으로 변환하는 컨버터장치와 직류로 변환된 전력을 계통전원(Grid)에 연계할 수 있도록 주파수범위나 위상각차 등을 조절한 후 다시 교류로 전환하는 인버터장치등을 포함하여 구성한다. 기어장치(130)에서 입력된 회전력이 회전자에 전달되고, 회전자의 회전에 의해서 전기자 권선에서 전자기력이 유도되어 발전이 이루어지게 된다. 여기서, 유량이 증감되더라도 기어장치(130)의 토크컨버터(136)에 의해서 일정한 회전력이 동기발전기(140)에 전달되어, 안정적으로 발전이 이루어지도록 한다.
그리고, 베벨기어의 적정 회전수를 위한 기어장치(130)의 증속 및 감속비의 설계는 연결되는 동기발전기의 제작에 맞춰서 설정되며, 아래의 수학식 6, 7과 같이 나타낼 수 있다.
동기발전기 설비(140)는 극수가 24극~60극의 짝수 극으로 제작되고, 교류주파수가 60Hz인 것을 기준으로, 동력전달축의 정격 회전수는 아래의 수학식 6, 7과 같이 산출할 수 있다.
[수학식 6]
N=120 * f/Pole
상기 수학식 6에서, f= 주파수 (60 Hz)
Pole은 24극~60극 사이의 짝수 극.
[수학식 7]
여기서, 예상 수차의 회전수는 동력 에너지의 발생 이론식으로부터,
Ns=N x √P x 1/(H)
상기 수학식 7에서, 기준 회전수 N을 산정하며, 이때의 각 요소는 Ns는 프로펠러 수차의 한계 비속도로 350 rpm∼800 rpm의 범위 이나 본 수차에서는 300 rpm ~ 350 rpm 내외를 기준으로 적용하며 전달 동력 P[KW]는 상기의 식에 의한 발전 동력을 기준하고 수두차 H[m]는 동력을 발생키 위한 속도에너지를 위치에너지로 환산한 값(H=Vo2/2g)을 적용하여 산출 한다.
이에 따라, 베벨기어 박스의 최종 증감속비의 결정은 상기 수학식 6 및 7의 비로서 산출할 수 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 하천이나 산업시설의 냉각 방류수, 하 폐수처리시설의 처리 방류수, 저수지나 저류지의 방류수문이 설치되어 있는 수로 및 해류나 조류 등의 해양수로에 설치될 수 있다. 이를 통해서, 유체 흐름속에 장치된 유량유도로(Flow Guide Channel) 본체에 의해 유체가 보유하고 있는 유체에너지(압력 및 위치에너지)를 속도에너지로 변환시켜 전기에너지를 생산 발전하는 시스템이다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 중소유량, 저낙차의 조건에서 유체의 흐름이 갖고 있는 유체에너지를 동일 수로내에 설치된 프로펠러 수차 설비의 기계적 회전에너지로 변환시켜 전력을 생산할 수 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 유체에너지의 변환방법으로 우선 유체흐름의 단면적을 감소시킴으로써 속도에너지를 증가시키는 방법에 의한 반동력을 이용함과 동시에, 이중으로 설치된 외통의 유체 유도관을 통해서 분출되는 분출압에 의한 충동력을 함께 활용한 방법을 적용한다. 이를 통해서, 각종 수력발전 방식의 방대한 건설공사의 필요성과 건설시의 환경영향을 최소화하고 특히 중소유량 및 저낙차에 적용하기 위한 적합한 발전 시스템을 제공할 수 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 발전을 위해 대형 수로공사나 기존수로를 변경 보완 할 필요가 없으며 기존 수로를 그대로 활용하며 설치가 간단하다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 발전을 위한 수력에너지원인 높은 낙차를 필요로 하지 않으며 흐름유량의 속도수두를 활용함으로써 복잡한 부속설비가 필요치 않다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 안정적인 발전을 위해 조속기나 팽창탱크(Surge Tank)등의 부대설비가 필요치 않다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 수차의 회전이 저속으로 운영되어 운전이 안정적이고 정숙하다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 적정 유로형성을 위한 유도로 및 유도관을 본체에 장착하고 있다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 중소유량, 저낙차에 적합한 소수력에 적용하기에는 적합한 시스템이다.
본 발명의 실시 예에 따른 유속 가중화 수차 발전 시스템은, 시설공사에 환경성 침해의 우려가 없으며 특히 손실되는 유체에너지의 회수 및 신재생에너지 생산에 최적의 발전시스템의 효과가 특징적이다.
본 발명이 속하는 기술 분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있으므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (14)

  1. 유속 가중화 수차 발전 시스템으로서,
    입구부가 출구부보다 넓게 형성되고, 동심원으로 단면이 감소되는 원추형의 형상을 가지도록 형성된 내통인 유량 유도로와, 상기 유량 유도로의 외부를 감싸도록 입구에서부터 출구까지 나선형으로 형성된 외통인 복수의 유량 유도관을 포함하는 유량 유도로 본체;
    상기 유량 유도로 본체의 상기 유량 유도로 및 상기 유량 유도관으로부터 유입되는 유량에 의해 회전하는 프로펠러 수차를 포함하는 프로펠러 수차부;
    상기 프로펠러 수차부에서 입력된 회전수를 일정 회전수로 유지시키는 기어장치; 및
    상기 기어장치에서 입력된 회전에너지를 전기에너지로 변환하는 동기발전기 설비;를 포함하며,
    상기 복수의 유량 유도관을 구분시키는 칸막이는 상기 유량 유도로의 시작단부터 끝단까지 나선형으로 형성되고,
    상기 프로펠러는 복수의 날개를 포함하고, 상기 복수의 유량 유도관으로부터 유입되는 유량은 날개의 끝단 쪽으로 분출되며,
    상기 날개는 날개 하부의 유체흐름속도가 날개 상부의 유체흐름속도보다 빠르도록 형성되고,
    상기 기어장치는 상기 프로펠러 수차부와 상기 동기발전기 설비를 분리시키는 기능을 추가로 구비하는,
    유속 가중화 수차 발전 시스템.
  2. 제 1 항에 있어서,
    상기 복수의 유량 유도관은 8개의 유도관을 포함하고, 상기 8개의 유도관을 구분시키는 칸막이가 상기 유량 유도로의 시작단부터 끝단까지 나선형으로 형성되는,
    유속 가중화 수차 발전 시스템.
  3. 제 1 항에 있어서,
    상기 복수의 유량 유도관은 일정 피치(pitch)를 갖고 내통의 총 길이를 따라 피치 길이의 2배 내지 3배의 나선 리드(Lead)를 가지도록 형성되는,
    유속 가중화 수차 발전 시스템.
  4. 제 1 항에 있어서,
    상기 유량 유도로 본체 및 상기 프로펠러 수차부는 수면 또는 수면 아래에 배치되고,
    상기 동기발전기 설비는 수면보다 높은 곳에 배치되는,
    유속 가중화 수차 발전 시스템.
  5. 제1 항에 있어서,
    상기 복수의 유량 유도관은 유입구 쪽에서 수직선을 기준으로 30°내지 45°의 경사를 가지도록 기울기가 형성되고, 배출구 쪽에서 수직선을 기준으로 30°내지 45°의 경사를 가지도록 기울기가 형성된
    유속 가중화 수차 발전 시스템.
  6. 제1 항에 있어서,
    상기 유량 유도로는 유입구 직경이 유출구 직경에 대해 비율평균 값이 1배 내지 3배의 범위에서, 상기 복수의 유량 유도관의 유입구 및 유출구의 직경의 비가 설정된,
    유속 가중화 수차 발전 시스템.
  7. 제1 항에 있어서,
    상기 프로펠러는 3개 또는 4개의 날개를 포함하고, 상기 프로펠러는 축보스 측에서 30°내지 45°의 입력각을 가지며, 날개 끝단에서는 입력각이 0°내지 15°로 비틀린 구조로 형성된,
    유속 가중화 수차 발전 시스템.
  8. 제1 항에 있어서,
    상기 기어장치는 90° 직교 교차각을 갖는 베벨기어를 포함하는,
    유속 가중화 수차 발전 시스템.
  9. 제1 항에 있어서,
    상기 기어장치에서 출력측에 토오크 컨버터를 설치함으로써 출력축의 축 회전수를 항상 일정하게 유지시키고, 동력을 공회전 시켜 수력에너지의 변화에 따른 출력축 회전수변화에 대응해 동기발전기의 입력축 회전수를 항상 일정하게 유지시키는,
    유속 가중화 수차 발전 시스템.
  10. 제1 항에 있어서,
    상기 유량 유도로와 상기 복수의 유량 유도관으로 수력에너지를 수차의 기계적 에너지로 변환시키되,
    수차의 회전체(Impeller)에 작용하는 에너지를 반동(Reaction) 에너지와 충동(Impulse) 에너지로 변환시키는,
    유속 가중화 수차 발전 시스템.
  11. 제10 항에 있어서,
    현재의 사용수량 Q[㎥/sec]이 유입구 측을 흐를 때의 특정 유속 Vi[m/sec]이 원추형의 상기 유량 유도로내로 유입된 후, 상기 유량 유도로의 단면축소로 인해 변화된 유출 유속은 연속식의 원리에 의해 아래의 수학식 1과 같이 Vo[m/sec]로 증가되는,
    [수학식 1]
    Q = AiVi = AoVo 에서,
    Vo = Ai/Ao * Q, Ai/Ao > 1 이므로,
    Vo > Vi
    Ai : 유량 유도로의 유입구 단면
    Ao : 유량 유도로의 유출구 단면인,
    유속 가중화 수차 발전 시스템.
  12. 제11 항에 있어서,
    상기 수차에서의 수력에너지는 하기의 수학식 2, 3과 같이 산출되고,
    [수학식 2]
    Pw = γ * H * Q[kgm/sec]의 식으로 표현되며,
    여기서, γ = 물의 비중량으로 1,000 [kg/㎥]을 나타내고, H = 수력 에너지수두[m], Q = 유량[㎥/sec] 을 나타내고,
    또한, 발전 가능량을 결정하는 주요 요인으로 수력에너지수두[m] 와 유량 Q = 유량[㎥/sec]의 산정은 다음과 같이 계산되고,
    H = Ho + Hd + Vo2/(2 * g)[m] 과 Q = AoVo 이므로,
    발전 가능량 Pw= γ * (Ho + Hd + Vo2/(2 * g)) * AoVo [kg m/sec]가 되며,
    여기에, 각각의 값은 다음의 설명으로 산정된다.
    γ=1,000 [kg/㎥]: 물의 비중량 값이고,
    Ho=발전설비가 설치 되기 전 원 수로의 낙차 수위[m]이고,
    Hd=발전설비의 설치로 인한 배수면의 상승수위[m]이고,
    Vo=유량 유도로에 의해 증가된 유출부유속[m/sec]이고,
    Ao=유출부의 단면적[㎡]이고,
    g=9.8[m/sec2]이고,
    상기 수학식 2는 하기의 수학식 3으로 변환되고,
    [수학식 3]
    Pw = γ * (Ho + Hd + Vo2/(2 * g)) * AoVo [kg m/sec]에서 1 KW는 102 kg m/sec가 되므로 발전 가능량은 다음의 식으로 산출되고,
    Pw = γ * (Ho + Hd + Vo2/(2 * g)) * AoVo / 102 [KW]인,
    유속 가중화 수차 발전 시스템.
  13. 제12 항에 있어서,
    상기 수차와 상기 동기발전기 설비의 효율을 반영하여 실제 생산 가능한 전력량은 하기의 수학식 4와 같이 산출되는,
    [수학식 4]
    실질 생산전력량; Pw = γ * (Ho + Hd + Vo2/(2 * g)) * AoVo / 102 * ηt * ηg [KW],
    여기서, ηt 는 프로펠러 수차의 효율로 0.85~0.9의 범위이고, ηg 는 발전기의 효율로 0.9~0.95인,
    유속 가중화 수차 발전 시스템.
  14. 제10 항에 있어서,
    상기 복수의 유량 유도관을 통해 생성된 상기 충동 에너지의 출력 가능한 전기 에너지 량은 하기의 수학식 5와 같이 산출되고,
    [수학식 5]
    유입구 측 단면적; ai = π/4(Di12-Di22) * 1/8 (여기서, Di1은 외통의 유입구 직경, Di2는 내통의 유입구의 직경)
    분출구 측 단면적; ao = π/4(Do12-Do22) * 1/8 (여기서, Do1은 외통의 분출구 직경, Do2는 내통의 분출구 직경)
    또한 Q = ai * Vi = ao * vo에서,
    Vo = ai/ao * Vi 이므로, 물의 충동에너지가 프로펠러 수차에 전달하는 운동량 Em=M(질량) x V(속도)이고, M(질량)은 ρ(밀도) x Q(유량)로 표시되고, 또한 γ(비중량)= ρ(밀도) x g(중력가속도) 이므로,
    충동에너지 즉 발생 전력량 Pw = M x Vo = ρ x Q x Vo 로부터,
    Pw = γ * Q * Vo/g = ρ * Q * Vi * (Di12-Di22)/(Do12-Do22)인,
    유속 가중화 수차 발전 시스템.
PCT/KR2018/003354 2017-03-23 2018-03-22 유속 가중화 수차 발전 시스템 WO2018174594A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170036977A KR101838901B1 (ko) 2017-03-23 2017-03-23 유속 가중화 수차 발전 시스템
KR10-2017-0036977 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018174594A1 true WO2018174594A1 (ko) 2018-09-27

Family

ID=62082332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003354 WO2018174594A1 (ko) 2017-03-23 2018-03-22 유속 가중화 수차 발전 시스템

Country Status (2)

Country Link
KR (1) KR101838901B1 (ko)
WO (1) WO2018174594A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705715A1 (en) * 2019-03-05 2020-09-09 Mataro Holding BV Systems and methods for generating energy from a liquid flow

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101931184B1 (ko) * 2018-05-10 2019-03-13 주식회사 케이지엔지니어링종합건축사사무소 3단 나선형 수차에 의한 소수력 발전 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110058998A (ko) * 2009-11-27 2011-06-02 이용식 다익형조류발전기
JP2013245766A (ja) * 2012-05-25 2013-12-09 Tokyo Institute Of Technology 整流機構及び該整流機構を有する発電装置
KR20150049759A (ko) * 2013-10-31 2015-05-08 대우조선해양 주식회사 선박용 발전 시스템
KR101623709B1 (ko) * 2015-06-08 2016-05-24 (주)다음기술단 조류를 이용한 발전용 수차구조물
KR20170011063A (ko) * 2015-07-21 2017-02-02 호서대학교 산학협력단 윙팁을 포함하는 덕트형 수차

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110058998A (ko) * 2009-11-27 2011-06-02 이용식 다익형조류발전기
JP2013245766A (ja) * 2012-05-25 2013-12-09 Tokyo Institute Of Technology 整流機構及び該整流機構を有する発電装置
KR20150049759A (ko) * 2013-10-31 2015-05-08 대우조선해양 주식회사 선박용 발전 시스템
KR101623709B1 (ko) * 2015-06-08 2016-05-24 (주)다음기술단 조류를 이용한 발전용 수차구조물
KR20170011063A (ko) * 2015-07-21 2017-02-02 호서대학교 산학협력단 윙팁을 포함하는 덕트형 수차

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705715A1 (en) * 2019-03-05 2020-09-09 Mataro Holding BV Systems and methods for generating energy from a liquid flow
BE1027092B1 (nl) * 2019-03-05 2020-10-05 Mataro Holding Bv Systemen en werkwijzen voor het opwekken van energie uit een vloeistofstroom

Also Published As

Publication number Publication date
KR101838901B1 (ko) 2018-04-26

Similar Documents

Publication Publication Date Title
WO2018174594A1 (ko) 유속 가중화 수차 발전 시스템
CN101965451A (zh) 动能回收涡轮机
CA2647515A1 (en) Apparatus for hydroelectric power production expansion
WO2012165789A2 (ko) 하수방류관용 수력발전장치
WO2016129835A1 (ko) 해수의 밀물과 썰물을 이용한 수력 발전장치
Nasir Suitable selection of components for the micro-hydro-electric power plant
CN102828890B (zh) 一种用于微水头水能开发的水力发电机组
CN104204509A (zh) 水力涡轮机
WO2010071332A2 (ko) 임펠라식 회전날개를 구비하는 조류 발전기
WO2010074381A1 (ko) 파력발전장치
WO2013048007A2 (ko) 고효율 다단 조류 발전기 및 복합 발전 시스템
WO2015163641A1 (ko) 슬라이딩 방식의 파력발전기
CN101886378A (zh) 一种水力真空发电站
WO2020218710A1 (ko) 고출력 발전 와류풍차날개
EP1049872A1 (en) Water turbine arrangement
WO2011019094A1 (ko) 유체 배관을 이용한 발전장치
GB2439832A (en) Turbine in power station cooling tower outlet
WO2013069854A1 (ko) 유체 발전장치
WO2017090791A1 (ko) 부유식 파력 발전장치 및 이를 갖는 복합 발전시스템
WO2014163386A1 (ko) 수력 발전장치 및 수력 발전장치용 수차
Bandyopadhyay Electrical power systems: theory and practice
WO2021010510A1 (ko) 관 양끝의 높이를 다르게 관을 설치하여 관속에서 유체흐름을 유도하고, 그 유체흐름을 이용하는 양수 발전소
JP3246642U (ja) 海水利用型発電システム
KR200309923Y1 (ko) 바지선 방식의 유체의 유동 속도를 이용하는 발전 시스템
WO2015167040A1 (ko) 와류를 이용한 수력 발전 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770481

Country of ref document: EP

Kind code of ref document: A1