WO2018174430A1 - Steel fiber and fiber reinforced concrete composite including same - Google Patents

Steel fiber and fiber reinforced concrete composite including same Download PDF

Info

Publication number
WO2018174430A1
WO2018174430A1 PCT/KR2018/002635 KR2018002635W WO2018174430A1 WO 2018174430 A1 WO2018174430 A1 WO 2018174430A1 KR 2018002635 W KR2018002635 W KR 2018002635W WO 2018174430 A1 WO2018174430 A1 WO 2018174430A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
fiber
cement
reinforced concrete
Prior art date
Application number
PCT/KR2018/002635
Other languages
French (fr)
Korean (ko)
Inventor
최현석
김필립
Original Assignee
최현석
(주)장성산업
주식회사 웨스텍글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180023562A external-priority patent/KR101992203B1/en
Application filed by 최현석, (주)장성산업, 주식회사 웨스텍글로벌 filed Critical 최현석
Publication of WO2018174430A1 publication Critical patent/WO2018174430A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/02Controlling the operation of the mixing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a steel fiber and a fiber reinforced concrete composite comprising the same.
  • the present invention relates to steel fibers for concrete and fiber-reinforced concrete composites thereof having been modified in shape to increase the surface area.
  • the present invention is to provide a steel fiber for concrete and a fiber-reinforced concrete composite containing the same by increasing the surface area by processing in the spring (Spring) form or twisted form.
  • Fiber-reinforced concrete composite according to the present invention is a cement, a zirconium-containing silica fine powder having a specific surface area of 85,000 ⁇ 120,000cm2 / g relative to 100 parts by weight of the cement and metakaolin having a specific surface area 10,000 ⁇ 20,000 cm2 / g 2: 1 ⁇ 20 to 30 parts by weight of admixture mixed in a ratio of 3: 1, 100 to 130 parts by weight of sand relative to 100 parts by weight of cement, and 10 to 25 parts by weight of stone powder having 3,000 to 4,000 cm2 / g of powder to 100 parts by weight of cement
  • the steel fiber is blended 2 to 5% of the total volume, the copper (Cu) coating, the diameter is 0.2 ⁇ 0.5mm, the length is 10 ⁇ 15mm, the tensile strength is 2,500 ⁇ 3,000Mpa, It may be characterized by being a coil spring type.
  • the steel fiber may have a pitch greater than an inner diameter.
  • the steel fiber may have an inner diameter greater than a thickness.
  • the steel fiber may have an inner diameter larger than that of the sand.
  • Another fiber-reinforced concrete composite according to the present invention is a cement, a zirconium-containing silica fine powder having a specific surface area of 85,000 ⁇ 120,000cm2 / g compared to 100 parts by weight of the cement and metakaolin having a specific surface area of 10,000 ⁇ 20,000 cm2 / g 2: 1 20 to 30 parts by weight of admixture mixed at a ratio of 3 to 1, 100 to 130 parts by weight of sand relative to 100 parts by weight of cement, and 10 to 25 parts by weight of stone powder having a 3,000 to 4,000 cm2 / g of powder to 100 parts by weight of cement;
  • a first portion having a plate shape, a second portion having a plate shape, and having a cross section intersecting with a cross section of the first portion, and the first portion and the steel fiber.
  • Located between the second portion it may include a torsion part (Torsion Part) having a twisted shape.
  • the length of the twist portion may be shorter than the length of the first portion and the length of the second portion.
  • the steel fiber is copper (Cu) coating, 2 to 5% of the total volume is compounded, copper (Cu) coating, the tensile strength may be 2,500 ⁇ 3,000Mpa.
  • the present invention by increasing the surface area by processing the steel fibers contained in the concrete in the form of a spring or twisted, there is an effect of improving the bonding strength of the steel fibers and concrete composite.
  • the present invention has the effect of improving the mechanical performance, such as bending strength, tensile strength of the fiber reinforced concrete composite.
  • the present invention has an effect of improving the economics by using a zirconium-containing silica-based fine powder and metakaolin mixture in place of expensive silica fume.
  • the present invention uses a mixture of fine zirconium-containing silica-like powder and metakaolin, including dust generated in the process of electromelting zirconium sand at 800 degrees or higher, to replace expensive silica fume, thereby reducing the viscosity of the concrete composite without deteriorating strength and performance. Lowering the mixing time can be shortened, and workability can be improved.
  • the present invention can prevent the destruction of the interface area between the cement paste and the aggregate or the interface area between the cement paste and the steel fiber by using the stone powder together with the steel fiber.
  • 1 to 5 are views for explaining the steel fiber of the coil spring form.
  • 6 to 9 are views for explaining the steel fiber in the form of a plate.
  • first and second may be used to describe various components, but the components may not be limited by the terms. The terms may be used only for the purpose of distinguishing one component from another component.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • This example is to analyze the effects of the zirconium-containing silica-based fine powder and metakaline presented in the present invention on the fiber reinforced concrete composite.
  • Table 1 shows the data on the compressive strength measured while varying the zirconium-containing silicate powder to 0, 5, 10, 20, 25, 30, 40 parts by weight based on 100 parts by weight of cement.
  • cement is mixed with 20 parts by weight of quartz powder filler to 100 parts by weight of cement and 110 parts by weight of quartz sand having a particle size of 5 mm or less.
  • the mixed material is mixed evenly for 6 minutes at a speed of 30rpm, mixed for 10 minutes at 100rpm so that the proportion of the blended water binder is 0.2, then mixed for 3 minutes at a speed of 50rpm and then 0.2mm in diameter, 13mm in length (Use the existing straight steel fiber) is added to 2% of the total volume and mixed for 3 minutes at a speed of 40rpm to produce a fiber reinforced concrete composite.
  • the prepared concrete composites were subjected to viscosity and slump flow tests by the following method, to prepare cylindrical specimens of ⁇ 100 ⁇ 200 mm, to undergo wet curing for 2 days, and to steam curing at 90 ° for 3 days, and then to KSF 2405. The compressive strength was measured accordingly.
  • Viscosity test was carried out using a Brookfieid viscometer using a Linder spindle, and the slump flow was measured by the diameter of the circular spread in a circular shape by KS F 2594. Firing with increasing use of fine zirconium-containing silica powder The reduced viscosity resulted in the lowest plastic viscosity of 205 Pas when 25% of zirconium-containing silica powder was used.
  • the total amount of the mixture was fixed at 25 based on 100 parts by weight of cement, and the ratio of the zirconium-containing silica fine powder and metakaolin was 1.
  • the fiber reinforced concrete composite was prepared by mixing at a speed of 3 minutes, and the viscosity and slump flow test was performed by the following method, and a cylindrical specimen of ⁇ 100 ⁇ 200 mm was produced and wetted for 2 days. Performing production, which was measured for compressive strength according to performed for 3 days and then steam curing at 90 ° KSF 2405.
  • This example is to analyze the effect of the finely divided powder with a powder degree of 2,000 ⁇ 4,500cm2 / g proposed in the present invention on the fiber reinforced concrete composite.
  • Example 1 the mixture of the finely mixed zirconium-containing silica-like powder and metakaolin 2: 1 was fixed to 25 by weight of cement, and the powder degree was 2,000 to 4,500 cm 2 instead of 20 parts by weight of the quartz powder filler.
  • the powder content of the stone powder was selected as 3,500 and the mixing test results of the stone powder in the cement weight part 100 were 0, 5, 10, 20, 25, 30, 35, 40. It was. The rest of the test conditions were carried out under the same conditions as in Example 1. As shown in Table 5, when no powder was used, there was a serious problem in dispersibility, such as agglomeration of fibers, and low compressive strength and flexural strength.
  • the amount of stone powder is preferably used in the range of 10 to 25%.
  • This example was carried out to analyze the effect of the shape of the steel fiber on the properties of the fiber-reinforced concrete composite, based on the test results of Examples 1 and 2, Zirconium-containing silica-based silica powder and meta to 100 parts by weight of cement It contains 25 parts by weight of a mixture of kaolin 2: 1, powdered fine powder having a powder degree of 2,000 to 4,500 cm2 / g, containing 20 parts by weight of filler, and having a particle size of 5 mm or less compared to 100 parts by weight of cement. Based on the mortar further comprising 110 parts by weight of sand, a test was performed to compare the conventional straight steel fibers with steel fibers in the form of a coil spring. The remaining test conditions were tested under the same conditions as in Example 1 and Example 2.
  • Fiber of the present invention (inner diameter 0.25mm, pitch 2.8mm use) Fiber diameter (tensile strength 3,000 MPa, length 13 mm) 0.15 630 Good 197 58 20.5 0.2 620 Good 210 66 22.1 0.3 610 Good 208 62 19.7 0.4 580 Good 201 52 16.2 Fiber length (tensile strength 3,000 MPa, diameter 0.2 mm) 10 615 Good 207 62 20.2 13 620 Good 210 66 22.1 20 610 Good 207 61 20.4 30 600 Good 205 58 18.3
  • the diameter of steel fiber showed the highest value in compressive strength, flexural strength and flexural toughness at 0.2mm, and the fiber length showed the highest compressive strength, flexural strength and flexural toughness at 13mm and ranged in diameter from 0.2 to 0.5mm. 10 ⁇ 15mm, twisted 3 to 6 times spiral (coil spring form), using a steel fiber characterized in that the tensile strength of 2,500 ⁇ 3,000Mpa 150% improvement in bending strength compared to the conventional straight steel fiber, bending The toughness can be improved by more than 200%.
  • the steel fibers used in the fiber reinforced concrete composite will be described in more detail.
  • 1 to 5 are views for explaining the steel fiber of the coil spring form. Hereinafter, the description of the above-described parts may be omitted.
  • the steel fiber 10 according to the present invention may have a coil spring twisted spirally.
  • Steel fibers may be preferably copper (Cu) coating to improve the bonding strength (adhesion) with the cement.
  • Cu copper
  • Such steel fibers may be combined with cement particles 21, fine powder particles 22, sand particles 23, and zirconium silicate fine particles 24 in a concrete composite to improve physical properties. .
  • Figure 2 conceptually represents the side cross-section of the steel fiber 10 included in the fiber reinforced concrete composite.
  • Figure 3 conceptually represents a cross section cut in the width direction of the steel fiber 10 included in the fiber reinforced concrete composite.
  • cement particles 21, fine powder powder particles 22, sand particles 23, and zirconium silica fine powder particles 24 may be disposed inside the coil spring-shaped steel fiber 10.
  • the physical properties of the concrete composite can be further improved as compared with the conventional one using a straight steel fiber.
  • the inner diameter may be larger than the diameter of the sand particles 23.
  • Figure 4 (A) is a straight steel fiber 100 according to the first comparative example
  • Figure 4 (B) is a steel fiber 10 in the form of a spirally coiled coil spring according to the present invention.
  • the pitch (Pitch, D1) of the steel fiber 10 according to the invention may be larger than the inner diameter (W1).
  • the inner diameter W1 of the steel fiber 10 according to the present invention may be larger than the thickness T1.
  • the sand particles 23 and the like can be effectively positioned inside the steel fiber 10.
  • Figure 5 (A) is a steel fiber 110 according to the second comparative example
  • Figure 5 (B) is a steel fiber 10 according to the present invention.
  • the pitch D2 is smaller than the inner diameter W2.
  • the production cost may be excessively high because the use of a high amount of resources in order to manufacture the steel fiber 110 long enough.
  • the steel fiber 10 according to the present invention may also have a plate shape rather than a coil spring shape. This will be described below with reference to the accompanying drawings.
  • 6 to 9 are views for explaining the steel fiber in the form of a plate.
  • the description of the above-described parts may be omitted.
  • the steel fiber 10 according to the present invention may have a plate shape having a predetermined thickness (Y), width (X) and length (L).
  • Steel plate 10 in the form of a plate is also possible to improve the physical properties in the fiber reinforced concrete composite.
  • Steel fiber 10 according to the present invention in order to improve the bonding force in the concrete composite, it is possible to have a twisted form, as shown in Figure 7 to 8 (A).
  • the steel fiber 10 may be twisted in a direction at least partially perpendicular to the longitudinal direction.
  • the steel fiber 10 has a first portion (First Portion, MA1) and the second portion (Second Portion, MA2) and the first portion (MA1) and the second having a plate shape as shown in FIG. It may include a torsion port (TA) located between the portions MA2.
  • the warpage portion TA may be generated by twisting the plate-shaped steel fiber 10 by a predetermined angle.
  • the cross section of the first portion MA1 and the cross section of the second portion MA may cross each other.
  • the surface area is increased by the twisting portion TA, thereby improving the bonding force in the concrete composite.
  • the direction toward which the wide surface of the first portion MA1 faces and the direction toward which the wide surface of the second portion MA2 faces is approximately 90 degrees (°).
  • the length of the warpage portion TA may be relatively shorter than that of the other portions. none.
  • the length S1 of the warpage portion TA may be shorter than the length S2 of the first portion MA1 and the length S3 of the second portion MA2.
  • the steel fiber 10 according to the present invention may include a plurality of twists (TA1, TA2).
  • the number of the twist portion TA included in the steel fiber 10 may be 3 to 6 pieces.
  • the steel fiber 10 can further improve the bonding force in the concrete composite.

Abstract

The present invention relates to a steel fiber and fiber reinforced concrete including the same. A fiber reinforced concrete composite according to the present invention comprises: cement; 20 to 30 parts by weight of an admixture of zirconium-containing silica fine powder having a specific surface area of 85,000 to 120,000 cm2/g and metakaolin having a specific surface area of 10,000 to 20,000 cm2/g mixed at a ratio of between 2:1 and 3:1 with respect to 100 parts by weight of the cement; 100 to 130 parts by weight of sand with respect to 100 parts by weight of the cement; 10 to 25 parts by weight of stone flour having a fineness of 3,000 to 4,000 cm2/g with respect to 100 parts by weight of the cement; and steel fiber, wherein the steel fiber is blended in an amount that is 2 to 5% of the total volume, is coated with copper (Cu), has a diameter of 0.2 to 0.5 mm, a length of 10 to 15 mm, a tensile strength of 2,500 to 3,000 MPa, and is in a coil spring type.

Description

강섬유 및 그를 포함하는 섬유보강 콘크리트 복합체Steel fiber and fiber reinforced concrete composite comprising the same
본 발명은 강섬유 및 그를 포함하는 섬유보강 콘크리트 복합체에 관한 것이다.The present invention relates to a steel fiber and a fiber reinforced concrete composite comprising the same.
보다 상세하게는, 본 발명은 표면적을 증가시키기 위해 형태를 변형시킨 콘크리트용 강섬유 및 그를 포함하는 섬유보강 콘크리트 복합체에 관한 것이다.More specifically, the present invention relates to steel fibers for concrete and fiber-reinforced concrete composites thereof having been modified in shape to increase the surface area.
콘크리트는 경제성과 내구성이 우수한 재료로서 전세계적으로 널리 사용되고 있다.Concrete is widely used around the world as an economical and durable material.
그러나, 종래의 콘크리트는 인장강도와 휨강도가 낮고 균열이 발생하기 쉬운 문제점이 있다.However, conventional concrete has problems of low tensile strength and flexural strength and easy cracking.
이러한 문제점을 해결하기 위해 종래에는 강섬유를 콘트리트에 혼합하여 사용하였다.In order to solve this problem, conventionally, steel fibers were mixed and used in concrete.
그러나, 강섬유를 이용하는 종래의 콘크리트는 강섬유의 가격이 매우 비싸 경제성이 떨어지고, 시멘트와 골재 또는 강섬유의 계면영역의 파괴가 발생하는 문제점이 있다.However, conventional concrete using steel fibers has a problem that the cost of steel fibers is very expensive and economical, and the destruction of the interface area between cement and aggregate or steel fibers occurs.
상기 문제점을 해결하기 위해 본 발명은 스프링(Spring) 형태 또는 뒤틀린 형태로 가공하여 표면적을 증가시킨 콘크리트용 강섬유 및 그를 포함하는 섬유보강 콘크리트 복합체를 제공하는데 그 목적이 있다.In order to solve the above problems, the present invention is to provide a steel fiber for concrete and a fiber-reinforced concrete composite containing the same by increasing the surface area by processing in the spring (Spring) form or twisted form.
본 발명에 따른 섬유보강 콘크리트 복합체는 시멘트, 상기 시멘트 100 중량부 대비 비표면적 85,000 ~ 120,000cm2/g을 가진 지르코늄 함유 실리카질 미분말과 비표면적 10,000 ~ 20,000 cm2/g을 가진 메타카올린을 2:1 ~ 3:1의 비율로 섞은 혼화재 20 ~ 30 중량부, 상기 시멘트 100 중량부 대비 모래 100 ~ 130 중량부, 상기 시멘트 100 중량비 대비 분말도 3,000 ~ 4,000cm2/g을 가진 석분 10 ~ 25 중량부 및 강섬유를 포함하고, 상기 강섬유는 전체체적대비 2~ 5%가 배합되고, 구리(Cu) 코팅이 되고, 직경이 0.2 ~ 0.5mm 이고, 길이가 10 ~ 15mm이고, 인장강도가 2,500 ~ 3,000Mpa이고, 코일 스프링(Coil Spring) 타입인 것을 특징으로 할 수 있다.Fiber-reinforced concrete composite according to the present invention is a cement, a zirconium-containing silica fine powder having a specific surface area of 85,000 ~ 120,000cm2 / g relative to 100 parts by weight of the cement and metakaolin having a specific surface area 10,000 ~ 20,000 cm2 / g 2: 1 ~ 20 to 30 parts by weight of admixture mixed in a ratio of 3: 1, 100 to 130 parts by weight of sand relative to 100 parts by weight of cement, and 10 to 25 parts by weight of stone powder having 3,000 to 4,000 cm2 / g of powder to 100 parts by weight of cement To include, the steel fiber is blended 2 to 5% of the total volume, the copper (Cu) coating, the diameter is 0.2 ~ 0.5mm, the length is 10 ~ 15mm, the tensile strength is 2,500 ~ 3,000Mpa, It may be characterized by being a coil spring type.
또한, 상기 강섬유는 피치(Pitch)가 내경(Inner Diameter)보다 클 수 있다.In addition, the steel fiber may have a pitch greater than an inner diameter.
또한, 상기 강섬유는 상기 내경이 두께보다 클 수 있다.In addition, the steel fiber may have an inner diameter greater than a thickness.
또한, 상기 강섬유는 내경이 상기 모래의 직경보다 클 수 있다.In addition, the steel fiber may have an inner diameter larger than that of the sand.
본 발명에 따른 다른 섬유보강 콘크리트 복합체는 시멘트, 상기 시멘트 100 중량부 대비 비표면적 85,000 ~ 120,000cm2/g을 가진 지르코늄 함유 실리카질 미분말과 비표면적 10,000 ~ 20,000 cm2/g을 가진 메타카올린을 2:1 ~ 3:1의 비율로 섞은 혼화재 20 ~ 30 중량부, 상기 시멘트 100 중량부 대비 모래 100 ~ 130 중량부, 상기 시멘트 100 중량비 대비 분말도 3,000 ~ 4,000cm2/g을 가진 석분 10 ~ 25 중량부 및 강섬유를 포함하고, 상기 강섬유는 판 형태를 갖는 제 1 부분(First Portion), 판 형태를 갖고, 단면이 상기 제 1 부분의 단면과 교차하는 제 2 부분(Second Portion) 및 상기 제 1 부분과 상기 제 2 부분의 사이에 위치하고, 뒤틀린 형태를 갖는 뒤틀림부(Torsion Part)를 포함할 수 있다.Another fiber-reinforced concrete composite according to the present invention is a cement, a zirconium-containing silica fine powder having a specific surface area of 85,000 ~ 120,000cm2 / g compared to 100 parts by weight of the cement and metakaolin having a specific surface area of 10,000 ~ 20,000 cm2 / g 2: 1 20 to 30 parts by weight of admixture mixed at a ratio of 3 to 1, 100 to 130 parts by weight of sand relative to 100 parts by weight of cement, and 10 to 25 parts by weight of stone powder having a 3,000 to 4,000 cm2 / g of powder to 100 parts by weight of cement; A first portion having a plate shape, a second portion having a plate shape, and having a cross section intersecting with a cross section of the first portion, and the first portion and the steel fiber. Located between the second portion, it may include a torsion part (Torsion Part) having a twisted shape.
또한, 상기 뒤틀림부의 길이는 상기 제 1 부분의 길이 및 상기 제 2 부분의 길이보다 짧을 수 있다.In addition, the length of the twist portion may be shorter than the length of the first portion and the length of the second portion.
또한, 상기 강섬유는 구리(Cu) 코팅이 되고, 전체체적대비 2~ 5%가 배합되고, 구리(Cu) 코팅이 되고, 인장강도가 2,500 ~ 3,000Mpa일 수 있다.In addition, the steel fiber is copper (Cu) coating, 2 to 5% of the total volume is compounded, copper (Cu) coating, the tensile strength may be 2,500 ~ 3,000Mpa.
본 발명은 콘크리트에 포함되는 강섬유를 스프링 또는 뒤틀린 형태로 가공하여 표면적을 증가시킴으로써, 강섬유와 콘크리트 복합체의 결합력을 향상시키는 효과가 있다.The present invention by increasing the surface area by processing the steel fibers contained in the concrete in the form of a spring or twisted, there is an effect of improving the bonding strength of the steel fibers and concrete composite.
본 발명은 섬유보강 콘크리트 복합체의 휨강도, 인장강도 등 역학적 성능을 개선할 수 있는 효과가 있다.The present invention has the effect of improving the mechanical performance, such as bending strength, tensile strength of the fiber reinforced concrete composite.
본 발명은 지르코튬함유 실리카질 미분말과 메타카올린 혼합체를 고가인 실리카퓸을 대체하여 사용함으로써 경제성을 개선할 수 있는 효과가 있다.The present invention has an effect of improving the economics by using a zirconium-containing silica-based fine powder and metakaolin mixture in place of expensive silica fume.
본 발명은 지르코늄모래를 800도 이상에서 전기융해하는 과정에서 발생하는 분진을 포함한 지르코튬함유 실리카질 미분말과 메타카올린 혼합체를 고가인 실리카퓸을 대체하여 사용함으로써 강도 및 성능저하 없이 콘크리트 복합체의 점성을 낮춰 믹싱시간을 단축시킬 수 있으며 시공성을 향상시킬 수 있는 효과가 있다.The present invention uses a mixture of fine zirconium-containing silica-like powder and metakaolin, including dust generated in the process of electromelting zirconium sand at 800 degrees or higher, to replace expensive silica fume, thereby reducing the viscosity of the concrete composite without deteriorating strength and performance. Lowering the mixing time can be shortened, and workability can be improved.
본 발명은 강섬유와 함께 석분을 사용함으로써 시멘트 페이스트와 골재사이의 계면영역 또는 시멘트 페이스트와 강섬유 사이의 계면영역의 파괴를 방지할 수 있다. 아울러, 콘크리트 복합체 내에서 강섬유의 분산성을 향상시키고, 이에 따라 콘크리트 복합체의 역학적 성능을 개선할 수 있는 효과가 있다.The present invention can prevent the destruction of the interface area between the cement paste and the aggregate or the interface area between the cement paste and the steel fiber by using the stone powder together with the steel fiber. In addition, there is an effect that can improve the dispersibility of the steel fiber in the concrete composite, thereby improving the mechanical performance of the concrete composite.
도 1 내지 도 5는 코일 스프링 형태의 강섬유에 대해 설명하기 위한 도면이다.1 to 5 are views for explaining the steel fiber of the coil spring form.
도 6 내지 도 9는 판 형태의 강섬유에 대해 설명하기 위한 도면이다.6 to 9 are views for explaining the steel fiber in the form of a plate.
이하, 첨부된 도면을 참조하여 본 발명에 따른 강섬유 및 그를 포함하는 섬유보강 콘크리트 복합체에 대해 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the steel fiber and the fiber reinforced concrete composite comprising the same.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해될 수 있다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. It is not intended to limit the invention to the specific embodiments, it can be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명을 설명함에 있어서 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지 않을 수 있다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다.In describing the present invention, terms such as first and second may be used to describe various components, but the components may not be limited by the terms. The terms may be used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함할 수 있다.The term and / or may include a combination of a plurality of related items or any item of a plurality of related items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급되는 경우는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해될 수 있다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해될 수 있다.When a component is referred to as being "connected" or "connected" to another component, it may be directly connected or connected to that other component, but other components may be present in between. Can be understood. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it may be understood that there is no other component in between.
본 문서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions may include plural expressions unless the context clearly indicates otherwise.
본 문서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로서, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해될 수 있다.In this document, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It may be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or a combination thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석될 수 있으며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않을 수 있다.Unless defined otherwise, all terms used herein, including technical or scientific terms, may have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries may be interpreted to have meanings consistent with the meanings in the context of the related art, and shall be interpreted in ideal or excessively formal meanings unless expressly defined in the present application. It may not be.
아울러, 이하의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 보다 완전하게 설명하기 위해서 제공되는 것으로서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.In addition, the following embodiments are provided to more fully describe those skilled in the art, and the shape and size of elements in the drawings may be exaggerated for clarity.
본 문서에서 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있다.In the following description of the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description may be omitted.
[실시예 1]Example 1
본 실시예는 본 발명에서 제시한 지르코늄 함유 실리카질 미분말과 메타카울린이 섬유보강 콘크리트 복합체에 미치는 영향을 분석하기 위한 것이다.This example is to analyze the effects of the zirconium-containing silica-based fine powder and metakaline presented in the present invention on the fiber reinforced concrete composite.
표 1은 지르코늄 함유 실리카질 미분말을 시멘트 100중량부를 기준으로 0, 5, 10, 20, 25, 30, 40 중량부로 변화시키면서 측정한 압축강도에 대한 데이터를 제시한다.Table 1 shows the data on the compressive strength measured while varying the zirconium-containing silicate powder to 0, 5, 10, 20, 25, 30, 40 parts by weight based on 100 parts by weight of cement.
시멘트에, 지르코늄 함유 실리카질 미분말 이외에, 시멘트 100중량부 대비 석영질 분말 충진제를 20중량부, 입자크기 5mm 이하의 석영질 모래 110중량부를 혼합한다.In addition to the fine zirconium-containing silica powder, cement is mixed with 20 parts by weight of quartz powder filler to 100 parts by weight of cement and 110 parts by weight of quartz sand having a particle size of 5 mm or less.
이후, 혼합한 재료를 30rpm의 속도로 6분간 골고루 혼합하고, 배합수 결합재의 비율이 0.2가 되도록 100rpm으로 10분간 혼합하고, 다시 50rpm의 속도로 3분간 혼합한 다음 직경 0.2mm, 길이 13mm인 강섬유(기존 일자형 강섬유 사용)를 전체제적 대비 2%를 투입하여 40rpm의 속도로 3분간 혼합하여 섬유보강 콘크리트 복합체를 제조한다.Then, the mixed material is mixed evenly for 6 minutes at a speed of 30rpm, mixed for 10 minutes at 100rpm so that the proportion of the blended water binder is 0.2, then mixed for 3 minutes at a speed of 50rpm and then 0.2mm in diameter, 13mm in length (Use the existing straight steel fiber) is added to 2% of the total volume and mixed for 3 minutes at a speed of 40rpm to produce a fiber reinforced concrete composite.
제조한 콘크리트 복합체를 다음의 방법에 의해 점도, 슬럼프 플로 시험을 실시하였고, Ø100×200mm의 원주 공시체를 제작하여, 2일간 습윤양생을 실시하고, 90도에서 3일간 증기양생을 실시한 다음 KSF 2405에 준하여 압축강도를 측정하였다.The prepared concrete composites were subjected to viscosity and slump flow tests by the following method, to prepare cylindrical specimens of Ø100 × 200 mm, to undergo wet curing for 2 days, and to steam curing at 90 ° for 3 days, and then to KSF 2405. The compressive strength was measured accordingly.
지르코늄함유 실리카질 미분말의 품질 Quality of Zirconium-Containing Silica Powder
항목Item 지르코늄함유 실리카질 미분말Fine Zirconium-Containing Silica Powder 메타카올린Metakaolin 실리카 퓸Silica fume KS F 2567KS F 2567
cm2/gcm 2 / g 87,00087,000 10,00010,000 200,000200,000 150,000 이상More than 150,000
SiO2 (%)SiO 2 (%) 94.894.8 46.546.5 96.296.2 85 이상85 or more
MgO (%)MgO (%) -- 0.700.70 1.721.72 5.0 이하5.0 or less
SO3 (%)SO 3 (%) -- 0.650.65 0.410.41 3.0 이하3.0 or less
ZrO2 (%)ZrO 2 (%) 3.93.9 -- -- --
강열감량 (%)Ignition loss (%) 0.110.11 1.381.38 1.621.62 5 이하5 or less
밀도 (g/cm3)Density (g / cm 3 ) 2.382.38 2.182.18 2.22.2 --
점도 시험은 린더형 스핀들을 사용한 Brookfieid 점도계를 이용하여 소성점도를 측정하였고, 슬럼프 플로는 KS F 2594에 의해 원형으로 넓게 퍼진 원형의 지름을 측정하였다.지르코늄함유 실리카질 미분말의 사용량을 증가함에 따라 소성 점도가 감소하여 25%의 지르코늄함유 실리카질 미분말을 사용했을 때 가장 낮은 205 Pas 의 소성점도를 나타내었으며, 사용량이 증가하면 다시 소성점도가 증가되었다.Viscosity test was carried out using a Brookfieid viscometer using a Linder spindle, and the slump flow was measured by the diameter of the circular spread in a circular shape by KS F 2594. Firing with increasing use of fine zirconium-containing silica powder The reduced viscosity resulted in the lowest plastic viscosity of 205 Pas when 25% of zirconium-containing silica powder was used.
섬유보강 콘크리트 복합체의 특성 분석 Characterization of Fiber Reinforced Concrete Composites
종류Kinds 0 %0 % 5 %5% 10 %10% 20 %20% 25 %25% 30 %30% 40 %40%
지르코늄함유 실리카질미분말Zirconium-containing silica fine powder 소성점도(Pa s)Plastic viscosity (Pa s) 259259 253253 245245 238238 220220 229229 250250
슬럼프플로(mm)Slump Flow (mm) 550550 600600 620620 634634 645645 652652 648648
압축강도(MPa) Compressive strength (MPa) 157157 165165 172172 186186 191191 187187 167167
실리카 퓸Silica fume 소성점도(Pa s)Plastic viscosity (Pa s) 259259 269269 272272 284284 290290 298298 307307
슬럼프플로(mm)Slump Flow (mm) 550550 552552 567567 573573 598598 601601 609609
압축강도(MPa)Compressive strength (MPa) 157157 182182 201201 215215 217217 219219 192192
표2에서 보는 것 같이 지르코늄함유 실리카질 미분말 함유량이 증가함에 따라 소성점도가 낮아져 슬럼프 플로가 증가되는 것을 알 수 있으며 25%에서 소성점도가 가장 낮아졌으며, 반면에 압축강도는 최대값을 보였다.이에 반하여 실리카 퓸을 사용한 경우는 첨가량이 증가됨에 따라 소성점도가 증가되고 슬럼프 플로의 증가는 미미한 것으로 볼 수 있다. 따라서 실리카 퓸의 사용이 시공성 면에서 불리한 것으로 볼 수 있다.As shown in Table 2, as the zirconium-containing silica fine powder content increases, the plastic viscosity decreases and the slump flow increases. At 25%, the plastic viscosity is the lowest, while the compressive strength is the maximum value. On the other hand, when silica fume is used, the firing viscosity increases and the increase in slump flow is insignificant. Therefore, the use of silica fume can be seen as a disadvantage in terms of workability.
표 3에 제시한 지르코늄 함유 실리카질 미분말과 메타카올린을 혼합했을 때의 효과를 분석하기 위하여 혼합체의 총량을 시멘트 100중량부를 기준으로 25로 고정하고, 지르코늄 함유 실리카질 미분말과 메타카올린의 비율을 1:1, 2:1, 3:1, 4:1 중량부로 변화 시키고, 석영질 분말 충진제를 20중량부, 입자크기 5mm 이하의 석영질 모래 110중량부로 구성하여 30rpm의 속도로 6분간 골고루 혼합하고, 배합수 결합재의 비율이 0.2가 되도록 100rpm으로 10분간 혼합하여 다시 50rpm의 속도로 3분간 혼합한 다음 직경 0.2mm, 길이 13mm인 강섬유(기존 일자형 강섬유 사용)를 전체제적 대비 2%를 투입하여 40rpm의 속도로 3분간 혼합하여 섬유보강 콘크리트 복합체를 제조하여 다음의 방법에 의해 점도, 슬럼프 플로 시험을 실시하였고, Ø100×200mm의 원주 공시체를 제작하여, 2일간 습윤양생을 실시하고, 90도에서 3일간 증기양생을 실시한 다음 KSF 2405에 준하여 압축강도를 측정하였다.In order to analyze the effect of mixing the zirconium-containing silica fine powder and metakaolin shown in Table 3, the total amount of the mixture was fixed at 25 based on 100 parts by weight of cement, and the ratio of the zirconium-containing silica fine powder and metakaolin was 1. : 1, 2: 1, 3: 1, 4: 1 parts by weight, 20 parts by weight of the quartz powder filler, 110 parts by weight of quartz sand with a particle size of 5mm or less, evenly mixed for 6 minutes at a speed of 30rpm , Mix for 10 minutes at 100rpm so that the proportion of water mixture is 0.2, and then mix again for 3 minutes at a speed of 50rpm, and then add 2% of 0.2mm diameter and 13mm length steel fiber (using conventional straight steel fiber) to 40rpm The fiber reinforced concrete composite was prepared by mixing at a speed of 3 minutes, and the viscosity and slump flow test was performed by the following method, and a cylindrical specimen of Ø100 × 200 mm was produced and wetted for 2 days. Performing production, which was measured for compressive strength according to performed for 3 days and then steam curing at 90 ° KSF 2405.
섬유보강 콘크리트 복합체의 특성 분석(2)Characterization of Fiber Reinforced Concrete Composites (2)
종류Kinds 메타카올린Metakaolin 1:11: 1 2:12: 1 3:13: 1 4:14: 1 메타카올린 0%Metakaolin 0%
지르코늄함유 실리카질미분말Zirconium-containing silica fine powder 소성점도(Pas)Plastic viscosity (Pas) 215215 200200 204204 216216 220220
슬럼프플로(nm)Slump Flow (nm) 652652 662662 660660 650650 645645
압축강도(MPa)Compressive strength (MPa) 208208 218218 220220 210210 191191
표 3에서 보는 바와 같이 시멘트 100중량부 지르코늄 함유 실리카질 미분말만을 25 사용한 경우보다 메타카올린을 일부 대체하여 사용한 경우 소성점도가 낮아지고 슬럼프플로 값이 증가하여 작업성이 좋아지는 결과가 있었으며, 압축강도는 증가하였다. 그러나 지르코늄 함유 실리카질 미분말과 메타카올린의 비율을 1:1에서 4:1까지 변화하며 실험을 수행한 결과 지르코늄 함유 실리카질 미분말과 메타카올린의 비율이 2:1 ~ 3:1에서 소성점도가 가장 낮게 나타났으며 압축강도 역시 지르코늄 함유 실리카질 미분말만을 사용한 경우보다 증가하는 경향이 있었으며, 실리카퓸을 사용한 경우보다도 오히려 높은 압축강도를 나타내었다.As shown in Table 3, the use of 100 parts by weight of silica powder containing 100 parts by weight of zirconium-containing silicate powder replaced the metakaolin in part, resulting in lower plastic viscosity and increased slump flow, resulting in better workability. Increased. However, the ratio of the fine zirconium-containing silica powder and metakaolin was changed from 1: 1 to 4: 1. The compressive strength tended to be higher than that of using only zirconium-containing silica-based fine powder, and showed higher compressive strength than that of silica fume.
[실시예 2]Example 2
본 실시예는 본 발명에서 제시한 분말도 2,000 ~ 4,500cm2/g을 가진 석분 미분말이 섬유보강 콘크리트 복합체에 미치는 영향을 분석하기 위한 것이다.This example is to analyze the effect of the finely divided powder with a powder degree of 2,000 ~ 4,500cm2 / g proposed in the present invention on the fiber reinforced concrete composite.
상기 실시예1 에서 시멘트 중량부 100에 대하여 지르코늄함유 실리카질 미분말과 메타카올린을2:1로 혼합한 혼합체를 25로 고정하고, 석영질 분말 충진제를 20중량부를 대신하여 분말도 2,000 ~ 4,500cm 2/g를 가진 석분 미분말을 여러가지 형태로 대체하여 그 특성을 파악하고자 하였고, 석분의 혼합률에 따른 특성을 파악하였다. 입자크기 5mm 이하의 석영질 모래 110중량부 및 강섬유와 시험 방법은 동일하게 실시하였다.In Example 1, the mixture of the finely mixed zirconium-containing silica-like powder and metakaolin 2: 1 was fixed to 25 by weight of cement, and the powder degree was 2,000 to 4,500 cm 2 instead of 20 parts by weight of the quartz powder filler. We tried to find out the characteristics of the fine powders with / g by replacing them with various forms and the characteristics according to the mixing ratio of the fine powders. 110 parts by weight of quartz sand with a particle size of 5 mm or less and steel fibers were tested in the same manner.
석분의 분말도에 따른 섬유보강 콘크리트 융합체의 특성 Characteristics of Fiber Reinforced Concrete Fusion with Different Powder Levels
석분 분말도Stone powder 슬럼프 플로(mm)Slump Flow (mm) 섬유분산성Fiber dispersion 압축강도 (MPa)Compressive strength (MPa) 휨강도 (MPa)Flexural strength (MPa)
2,0002,000 649649 보통usually 174174 3535
2,5002,500 630630 보통usually 198198 4242
3,0003,000 625625 양호Good 212212 4949
3,5003,500 620620 양호Good 224224 5252
4,0004,000 590590 양호Good 217217 5050
4,5004,500 542542 양호Good 197197 4242
표 3의 결과에 따르면 분말도가 낮은 석분을 사용할 경우 슬럼프 플로는 증가하나 섬유의 분산성이 나빠지는 경향이 있으며, 압축강도와 휨강도도 저하되는 경향이 있다. 이는 분말도가 낮은 석분을 사용할 경우 점성의 저하와 시멘트 복합체와 모래 및 강섬유와의 경계에 충진되는 효과가 떨어지기 때문으로 보인다.According to the results of Table 3, when the powder powder is used, the slump flow increases, but the dispersibility of the fiber tends to worsen, and the compressive strength and the flexural strength tend to decrease. This may be due to the decrease in viscosity and the filling effect on the boundary between cement composites and sand and steel fibers.
석분의 혼입률(시멘트 중량부)에 따른 강섬유보강 콘크리트 융합체의 특성Characteristics of Steel Fiber Reinforced Concrete Fusions According to the Content of Cement Contents (by Cement Weight)
석분혼입률 (시멘트 중량부)Stone mixing rate (by weight of cement) 슬럼프 플로 (mm)Slump Flow (mm) 섬유 분산성Fiber dispersibility 압축강도(MPa)Compressive strength (MPa) 휨강도(MPa)Flexural strength (MPa)
00 608608 불량Bad 152152 3535
55 613613 보통usually 191191 4242
1010 615615 양호Good 199199 4545
2020 615615 양호Good 208208 5252
2525 616616 양호Good 224224 4949
3030 592592 보통usually 203203 4444
3535 527527 보통usually 187187 3737
4040 471471 불량Bad 165165 3131
표4의 결과를 토대로 석분의 분말도를 3,500으로 선정하고 시멘트 중량부 100에 석분의 혼입률을 0, 5, 10, 20, 25, 30, 35, 40으로 달리하여 시험한 결과를 표4에 나타내었다. 나머지 시험 조건은 실시예 1과 같은 조건으로 시행하였다.표5에서 보듯이 석분을 전혀 사용하지 않은 경우 섬유의 뭉침현상이 나타나는 등 분산성에 심각한 문제를 보였으며, 압축강도와 휨강도 역시 낮게 나타났다.Based on the results in Table 4, the powder content of the stone powder was selected as 3,500 and the mixing test results of the stone powder in the cement weight part 100 were 0, 5, 10, 20, 25, 30, 35, 40. It was. The rest of the test conditions were carried out under the same conditions as in Example 1. As shown in Table 5, when no powder was used, there was a serious problem in dispersibility, such as agglomeration of fibers, and low compressive strength and flexural strength.
또한 석분의 혼입률이 30% 이상인 경우 섬유의 분산성이 저하되었으며, 압축강도와 휨강도 모두 저하되는 결과를 나타냈다. 따라서 석분의 사용량은 10 ~ 25% 범위에서 사용하는 것이 바람직 하다.In addition, when the mixing ratio of stone powder is more than 30%, the dispersibility of the fiber was reduced, and both compressive strength and flexural strength were reduced. Therefore, the amount of stone powder is preferably used in the range of 10 to 25%.
[실시예 3]Example 3
본 실시예는 강섬유의 형태가 섬유보강 콘크리트 복합체의 특성에 미치는 영향을 분석하기 위하여 실시하였으며, 실시예 1과 실시예 2의 시험결과를 토대로 하여, 시멘트 100중량부 대비 지르코늄 함유 실리카질 미분말과 메타카올린을 2:1로 혼합한 혼합체를 25 중량부를 포함하고, 분말도 2,000 ~ 4,500cm2/g를 가진 석분 미분말을 충진제로 중량부 20를 포함하며, 시멘트 100중량부 대비 5mm이하의 입자 크기를 갖는 모래 110 중량부를 더 포함하는 모르타르를 기본으로 하여 기존의 일자형 강섬유와 코일 스프링(Coil Spring) 형태의 강섬유를 비교하는 시험을 실시하였다. 나머지 시험조건은 실시예 1 및 실시예 2와 동일한 조건에서 시험을 시행하였다.This example was carried out to analyze the effect of the shape of the steel fiber on the properties of the fiber-reinforced concrete composite, based on the test results of Examples 1 and 2, Zirconium-containing silica-based silica powder and meta to 100 parts by weight of cement It contains 25 parts by weight of a mixture of kaolin 2: 1, powdered fine powder having a powder degree of 2,000 to 4,500 cm2 / g, containing 20 parts by weight of filler, and having a particle size of 5 mm or less compared to 100 parts by weight of cement. Based on the mortar further comprising 110 parts by weight of sand, a test was performed to compare the conventional straight steel fibers with steel fibers in the form of a coil spring. The remaining test conditions were tested under the same conditions as in Example 1 and Example 2.
섬유의 종류에 따른 섬유보강 콘크리트 융합체의 특성Characteristics of Fiber Reinforced Concrete Fusion with Different Fiber Types
섬유의 종류Type of fiber 슬로프풀로(mm)Slope pulley (mm) 섬유의 분산성Dispersibility of the Fiber 압축강도(MPa)Compressive strength (MPa) 휨강도(MPa)Flexural strength (MPa) 휨인성(MPa)Flexural Toughness (MPa)
종래의 섬유Conventional fiber 인장강도 3,000MPa, 직경 0.2mm, 길이 13mmTensile Strength 3,000MPa, Diameter 0.2mm, Length 13mm 625625 양호Good 204204 4242 10.110.1
본 발명의 섬유(내경 0.25mm, 피치 2.8mm사용)Fiber of the present invention (inner diameter 0.25mm, pitch 2.8mm use) 섬유직경 (인장강도 3,000MPa, 길이 13mm사용)Fiber diameter (tensile strength 3,000 MPa, length 13 mm) 0.150.15 630630 양호Good 197197 5858 20.520.5
0.20.2 620620 양호Good 210210 6666 22.122.1
0.30.3 610610 양호Good 208208 6262 19.719.7
0.40.4 580580 양호Good 201201 5252 16.216.2
섬유길이 (인장강도 3,000MPa,직경 0.2mm사용)Fiber length (tensile strength 3,000 MPa, diameter 0.2 mm) 1010 615615 양호Good 207207 6262 20.220.2
1313 620620 양호Good 210210 6666 22.122.1
2020 610610 양호Good 207207 6161 20.420.4
3030 600600 양호Good 205205 5858 18.318.3
강섬유의 직경은 0.2mm에서 압축강도 및 휨강도, 휨인성에서 가장높은 값을 보였으며, 섬유 길이의 경우에는 13mm에서 가장 높은 압축강도, 휨강도, 휨인성을 보여 직경이 0.2 ~ 0.5mm 이고, 길이가 10 ~ 15mm이며, 3 ~ 6회 나선형(코일 스프링 형태)으로 꼬이고, 인장강도가 2,500 ~ 3,000Mpa인 것을 특징으로 하는 강섬유를 사용하는 것이 기존의 일자형 강섬유에 비교하여 휨강도가 150% 향상되고, 휨인성의 경우도 200% 이상 향상시킬 수 있다.이하에서는 섬유보강 콘크리트 복합체에 사용되는 강섬유에 대해 보다 상세히 살펴보기로 한다.The diameter of steel fiber showed the highest value in compressive strength, flexural strength and flexural toughness at 0.2mm, and the fiber length showed the highest compressive strength, flexural strength and flexural toughness at 13mm and ranged in diameter from 0.2 to 0.5mm. 10 ~ 15mm, twisted 3 to 6 times spiral (coil spring form), using a steel fiber characterized in that the tensile strength of 2,500 ~ 3,000Mpa 150% improvement in bending strength compared to the conventional straight steel fiber, bending The toughness can be improved by more than 200%. Hereinafter, the steel fibers used in the fiber reinforced concrete composite will be described in more detail.
도 1 내지 도 5는 코일 스프링 형태의 강섬유에 대해 설명하기 위한 도면이다. 이하에서는 이상에서 설명한 부분에 대한 설명은 생략될 수 있다.1 to 5 are views for explaining the steel fiber of the coil spring form. Hereinafter, the description of the above-described parts may be omitted.
도 1을 살펴보면, 본 발명에 따른 강섬유(10)는 나선형으로 꼬인 코일 스프링 형태를 가질 수 있다.Referring to Figure 1, the steel fiber 10 according to the present invention may have a coil spring twisted spirally.
강섬유는 시멘트와의 결합력(부착력)을 향상시키기 위해 구리(Cu) 코팅이 되는 것이 바람직할 수 있다.Steel fibers may be preferably copper (Cu) coating to improve the bonding strength (adhesion) with the cement.
이러한 강섬유는, 도 2와 같이, 콘크리트 복합체 내에서 시멘트 입자(21), 미분말 석분 입자(22), 모래 입자(23), 지르코늄 실리카질 미분말 입자(24)와 결합하여 물리적 특성을 향상시킬 수 있다.Such steel fibers, as shown in FIG. 2, may be combined with cement particles 21, fine powder particles 22, sand particles 23, and zirconium silicate fine particles 24 in a concrete composite to improve physical properties. .
도 2는 섬유보강 콘크리트 복합체에 포함된 강섬유(10)의 측단면을 개념적으로 표현한 것이다.Figure 2 conceptually represents the side cross-section of the steel fiber 10 included in the fiber reinforced concrete composite.
도 3은 섬유보강 콘크리트 복합체에 포함된 강섬유(10)를 폭방향으로 절단한 단면을 개념적으로 표현한 것이다.Figure 3 conceptually represents a cross section cut in the width direction of the steel fiber 10 included in the fiber reinforced concrete composite.
도 3을 살펴보면, 코일 스프링 형태의 강섬유(10)의 내측에 시멘트 입자(21), 미분말 석분 입자(22), 모래 입자(23), 지르코늄 실리카질 미분말 입자(24)가 위치할 수 있다.Referring to FIG. 3, cement particles 21, fine powder powder particles 22, sand particles 23, and zirconium silica fine powder particles 24 may be disposed inside the coil spring-shaped steel fiber 10.
이에 따라, 일자형의 강섬유를 사용하는 종래에 비해 콘크리트 복합체의 물리적 특성을 더욱 향상시킬 수 있다.Accordingly, the physical properties of the concrete composite can be further improved as compared with the conventional one using a straight steel fiber.
이처럼, 코일 스프링 형태의 강섬유(10)의 내측에 시멘트 입자(21), 미분말 석분 입자(22), 모래 입자(23), 지르코늄 실리카질 미분말 입자(24)가 위치하기 위해서는, 강섬유(10)의 내경(Inner Diameter)이 모래 입자(23)의 직경보다 큰 것이 바람직할 수 있다.Thus, in order to locate the cement particles 21, fine powder powder particles 22, sand particles 23, zirconium silica fine powder particles 24 inside the coil spring-shaped steel fiber 10, It may be desirable for the inner diameter to be larger than the diameter of the sand particles 23.
도 4의 (A)는 제 1 비교예에 따른 일자형 강섬유(100)이고, 도 4의 (B)는 본 발명에 따른 나선형으로 꼬인 코일 스프링 형태의 강섬유(10)이다.4 (A) is a straight steel fiber 100 according to the first comparative example, Figure 4 (B) is a steel fiber 10 in the form of a spirally coiled coil spring according to the present invention.
도 4의 (B)를 살펴보면, 발명에 따른 강섬유(10)의 피치(Pitch, D1)가 내경(W1)보다 클 수 있다.Looking at Figure 4 (B), the pitch (Pitch, D1) of the steel fiber 10 according to the invention may be larger than the inner diameter (W1).
도 4의 (B)의 경우에는, 강섬유(10)를 제작하는데 소요되는 자원의 소모를 줄일 수 있으면서도, 콘크리트 복합체의 물리적 특성을 향상시키는 것이 가능할 수 있다.In the case of Figure 4 (B), while it is possible to reduce the consumption of resources required to manufacture the steel fiber 10, it may be possible to improve the physical properties of the concrete composite.
반면에, 도 4의 (A)의 경우에는 자원소모는 줄일 수 있으나, 콘크리트 복합체의 물리적 특성(압축강도 등)을 개선하기는 어려울 수 있다.On the other hand, in the case of Figure 4 (A) can reduce the resource consumption, but it may be difficult to improve the physical properties (compressive strength, etc.) of the concrete composite.
아울러, 도 4의 (B)와 같이, 본 발명에 따른 강섬유(10)의 내경(W1)이 두께(T1)보다 클 수 있다. 이러한 경우, 강섬유(10)의 내측에 모래 입자(23) 등을 효과적으로 위치시킬 수 있다.In addition, as shown in FIG. 4B, the inner diameter W1 of the steel fiber 10 according to the present invention may be larger than the thickness T1. In this case, the sand particles 23 and the like can be effectively positioned inside the steel fiber 10.
도 5의 (A)는 제 2 비교예에 따른 강섬유(110)이고, 도 5의 (B)는 본 발명에 따른 강섬유(10)이다.5 (A) is a steel fiber 110 according to the second comparative example, Figure 5 (B) is a steel fiber 10 according to the present invention.
도 5의 (A)의 제 2 비교예에 따른 강섬유(110)는 코일 스프링 형태를 갖지만, 피치(D2)가 내경(W2)보다 작은 경우이다.Although the steel fiber 110 according to the second comparative example of FIG. 5A has a coil spring shape, the pitch D2 is smaller than the inner diameter W2.
도 5의 (A)와 (B)를 비교하면, 도 5의 (A)의 경우에는 코일 스프링 형태의 강섬유(110)의 측면에서 모래 입자(23) 등이 강섬유(110)의 내측으로 침투하기가 어려울 수 있다.5A and 5B, in the case of FIG. 5A, sand particles 23 and the like penetrate into the steel fiber 110 from the side of the coil spring-shaped steel fiber 110. Can be difficult.
아울러, 도 5의 (A)의 경우에는, 강섬유(110)를 충분히 길게 제작하기 위해서는 고도하게 많은 자원을 사용해야 하기 때문에 제작단가가 과도하게 높을 수 있다.In addition, in the case of Figure 5 (A), the production cost may be excessively high because the use of a high amount of resources in order to manufacture the steel fiber 110 long enough.
반면에, 도 5의 (B)와 같은 본 발명에 따른 강섬유(10)는 측면에서 모래 입자(23) 등이 용이하게 침투할 수 있으며, 그 길이를 충분히 길게 제작하더라도 자원소모가 과도하게 증가하는 것을 방지할 수 있다.On the other hand, the steel fiber 10 according to the present invention as shown in FIG. Can be prevented.
본 발명에 따른 강섬유(10)는 코일 스프링 형태가 아닌 판(Plate) 형태를 갖는 것도 가능할 수 있다. 이에 대해, 첨부된 도면을 참조하여 살펴보면 아래와 같다.The steel fiber 10 according to the present invention may also have a plate shape rather than a coil spring shape. This will be described below with reference to the accompanying drawings.
도 6 내지 도 9는 판 형태의 강섬유에 대해 설명하기 위한 도면이다. 이하에서는 이상에서 설명한 부분에 대한 설명은 생략될 수 있다.6 to 9 are views for explaining the steel fiber in the form of a plate. Hereinafter, the description of the above-described parts may be omitted.
도 6을 살펴보면, 본 발명에 따른 강섬유(10)는 소정의 두께(Y), 폭(X) 및 길이(L)를 갖는 판(Plate) 형태를 가질 수 있다.Referring to Figure 6, the steel fiber 10 according to the present invention may have a plate shape having a predetermined thickness (Y), width (X) and length (L).
이러한 판 형태의 강섬유(10)도 섬유보강 콘크리트 복합체 내에서 물리적 특성을 향상시키는 것이 가능하다. Steel plate 10 in the form of a plate is also possible to improve the physical properties in the fiber reinforced concrete composite.
본 발명에 따른 강섬유(10)는 콘크리트 복합체 내에서의 결합력을 향상시키기 위해, 도 7 내지 도 8의 (A)와 같이, 뒤틀린 형태를 갖는 것이 가능하다. Steel fiber 10 according to the present invention, in order to improve the bonding force in the concrete composite, it is possible to have a twisted form, as shown in Figure 7 to 8 (A).
강섬유(10)는 적어도 일부가 길이방향과 수직하는 방향으로 뒤틀릴 수 있다.The steel fiber 10 may be twisted in a direction at least partially perpendicular to the longitudinal direction.
다르게 표현하면, 강섬유(10)는 도 8의 (A)와 같이 판 형태를 갖는 제 1 부분(First Portion, MA1)과 제 2 부분(Second Portion, MA2) 및 제 1 부분(MA1)과 제 2 부분(MA2)의 사이에 위치하는 뒤틀림부(Torsion Portion, TA)를 포함할 수 있다.In other words, the steel fiber 10 has a first portion (First Portion, MA1) and the second portion (Second Portion, MA2) and the first portion (MA1) and the second having a plate shape as shown in FIG. It may include a torsion port (TA) located between the portions MA2.
뒤틀림부(TA)는 판 형태의 강섬유(10)가 소정의 각도만큼 뒤틀려서 생성될 수 있다.The warpage portion TA may be generated by twisting the plate-shaped steel fiber 10 by a predetermined angle.
이에 따라, 제 1 부분(MA1)의 단면과 제 2 부분(MA)의 단면은 서로 교차할 수 있다.Accordingly, the cross section of the first portion MA1 and the cross section of the second portion MA may cross each other.
제 1 부분(MA1)의 단면과 제 2 부분(MA)의 단면이 교차하는 경우가 도 8의 (B) 및 (C)에 나타나 있다.The case where the cross section of 1st part MA1 and the cross section of 2nd part MA cross | intersect is shown to FIG. 8 (B) and (C).
도 8의 (C)는 강섬유(10)가 2번 뒤틀린 경우라고 볼 수 있다. 이는, 도 9를 통해 충분히 해석될 수 있다.8 (C) can be seen that the steel fiber 10 is twisted twice. This can be fully interpreted through FIG. 9.
이처럼, 판 형태의 강섬유(10)가 뒤틀리는 형태를 갖는 경우에는, 뒤틀림부(TA)에 의해 표면적이 증가하여 콘크리트 복합체 내에서 결합력을 향상시킬 수 있다.As such, when the plate-shaped steel fiber 10 has a twisted shape, the surface area is increased by the twisting portion TA, thereby improving the bonding force in the concrete composite.
아울러, 강섬유(10)가 뒤틀리는 형태를 갖는 경우에는, 강섬유(10)의 각 부분이 향하는 방향이 달라질 수 있어서 콘크리트 복합체 내에서 결합력을 향상시킬 수 있다.In addition, when the steel fiber 10 has a shape that is twisted, the direction in which each portion of the steel fiber 10 can be changed to improve the bonding strength in the concrete composite.
예를 들어, 도 8의 (A)의 경우에는, 제 1 부분(MA1)의 넓은 면(Surface)이 향하는 방향과 제 2 부분(MA2)의 넓은 면이 향하는 방향이 대략 90도(°) 차이가 날 수 있다.For example, in the case of FIG. 8A, the direction toward which the wide surface of the first portion MA1 faces and the direction toward which the wide surface of the second portion MA2 faces is approximately 90 degrees (°). Can fly
강섬유(10)에서 뒤틀림부(TA)는 제 1 부분(MA1)과 제 2 부분(MA2)을 엇갈리도록 하는 기능을 한다는 조건하에서, 뒤틀림부(TA)의 길이는 다른 부분에 비해 상대적으로 짧아도 관계없다.Under the condition that the warpage portion TA in the steel fiber 10 functions to stagger the first portion MA1 and the second portion MA2, the length of the warpage portion TA may be relatively shorter than that of the other portions. none.
자세하게는, 뒤틀림부(TA)의 길이(S1)는 제 1 부분(MA1)의 길이(S2) 및 제 2 부분(MA2)의 길이(S3)보다 짧을 수 있다.In detail, the length S1 of the warpage portion TA may be shorter than the length S2 of the first portion MA1 and the length S3 of the second portion MA2.
도 9와 같이, 본 발명에 따른 강섬유(10)는 복수의 뒤틀림부(TA1, TA2)를 포함할 수 있다.As shown in Figure 9, the steel fiber 10 according to the present invention may include a plurality of twists (TA1, TA2).
바람직하게는, 강섬유(10)가 포함하는 뒤틀림부(TA)의 개수는 3 ~ 6개 일 수 있다.Preferably, the number of the twist portion TA included in the steel fiber 10 may be 3 to 6 pieces.
이러한 경우, 강섬유(10)는 콘크리트 복합체 내에서 결합력을 더욱 향상시킬 수 있다.In this case, the steel fiber 10 can further improve the bonding force in the concrete composite.
이상과 같이, 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.As described above, the present specification and drawings have been described with respect to preferred embodiments of the present invention, although specific terms are used, it is only used in a general sense to easily explain the technical contents of the present invention and to help the understanding of the present invention. It is not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.

Claims (7)

  1. 섬유보강 콘크리트 복합체에 있어서,In fiber reinforced concrete composite,
    시멘트;cement;
    상기 시멘트 100 중량부 대비 비표면적 85,000 ~ 120,000cm2/g을 가진 지르코늄 함유 실리카질 미분말과 비표면적 10,000 ~ 20,000 cm2/g을 가진 메타카올린을 2:1 ~ 3:1의 비율로 섞은 혼화재 20 ~ 30 중량부;20 to 30 admixture mixed with fine zirconium-containing silica powder having a specific surface area of 85,000 to 120,000 cm2 / g and metakaolin having a specific surface area of 10,000 to 20,000 cm2 / g in a ratio of 2: 1 to 3: 1 relative to 100 parts by weight of the cement. Parts by weight;
    상기 시멘트 100 중량부 대비 모래 100 ~ 130 중량부;100 to 130 parts by weight of sand relative to 100 parts by weight of cement;
    상기 시멘트 100 중량비 대비 분말도 3,000 ~ 4,000cm2/g을 가진 석분 10 ~ 25 중량부; 및10 to 25 parts by weight of stone powder having a powder degree of 3,000 to 4,000 cm 2 / g relative to the cement 100 weight ratio; And
    강섬유;Steel fibers;
    를 포함하고,Including,
    상기 강섬유는 전체체적대비 2~ 5%가 배합되고, 구리(Cu) 코팅이 되고, 직경이 0.2 ~ 0.5mm 이고, 길이가 10 ~ 15mm이고, 인장강도가 2,500 ~ 3,000Mpa이고, 코일 스프링(Coil Spring) 타입인 것을 특징으로 하는 섬유보강 콘크리트 복합체.The steel fiber is 2 to 5% of the total volume, copper (Cu) coating, 0.2 to 0.5mm in diameter, 10 to 15mm in length, tensile strength is 2,500 ~ 3,000Mpa, coil spring Spring) fiber reinforced concrete composite, characterized in that the type.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 강섬유는The steel fiber is
    피치(Pitch)가 내경(Inner Diameter)보다 큰 섬유보강 콘크리트 복합체.Fiber reinforced concrete composite with a pitch greater than the inner diameter.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 강섬유는The steel fiber is
    상기 내경이 두께보다 큰 섬유보강 콘크리트 복합체.Fiber reinforced concrete composite having an inner diameter greater than the thickness.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 강섬유는The steel fiber is
    내경이 상기 모래의 직경보다 큰 섬유보강 콘크리트 복합체.Fiber reinforced concrete composite having an inner diameter larger than the diameter of the sand.
  5. 섬유보강 콘크리트 복합체에 있어서,In fiber reinforced concrete composite,
    시멘트;cement;
    상기 시멘트 100 중량부 대비 비표면적 85,000 ~ 120,000cm2/g을 가진 지르코늄 함유 실리카질 미분말과 비표면적 10,000 ~ 20,000 cm2/g을 가진 메타카올린을 2:1 ~ 3:1의 비율로 섞은 혼화재 20 ~ 30 중량부;20 to 30 admixture mixed with fine zirconium-containing silica powder having a specific surface area of 85,000 to 120,000 cm2 / g and metakaolin having a specific surface area of 10,000 to 20,000 cm2 / g in a ratio of 2: 1 to 3: 1 relative to 100 parts by weight of the cement. Parts by weight;
    상기 시멘트 100 중량부 대비 모래 100 ~ 130 중량부;100 to 130 parts by weight of sand relative to 100 parts by weight of cement;
    상기 시멘트 100 중량비 대비 분말도 3,000 ~ 4,000cm2/g을 가진 석분 10 ~ 25 중량부; 및10 to 25 parts by weight of stone powder having a powder degree of 3,000 to 4,000 cm 2 / g relative to the cement 100 weight ratio; And
    강섬유;Steel fibers;
    를 포함하고,Including,
    상기 강섬유는The steel fiber is
    판 형태를 갖는 제 1 부분(First Portion);First Portion having a plate shape;
    판 형태를 갖고, 단면이 상기 제 1 부분의 단면과 교차하는 제 2 부분(Second Portion); 및A second portion having a plate shape and having a cross section crossing the cross section of the first portion; And
    상기 제 1 부분과 상기 제 2 부분의 사이에 위치하고, 뒤틀린 형태를 갖는 뒤틀림부(Torsion Part);A torsion part disposed between the first part and the second part and having a twisted shape;
    를 포함하는 것을 특징으로 하는 섬유보강 콘크리트 복합체.Fiber-reinforced concrete composite, comprising a.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 뒤틀림부의 길이는 상기 제 1 부분의 길이 및 상기 제 2 부분의 길이보다 짧은 섬유보강 콘크리트 복합체.The length of the twist portion is fiber reinforced concrete composite shorter than the length of the first portion and the length of the second portion.
  7. 제 5 항에 있어서,The method of claim 5, wherein
    상기 강섬유는 구리(Cu) 코팅이 되고, The steel fiber is a copper (Cu) coating,
    전체체적대비 2~ 5%가 배합되고, 구리(Cu) 코팅이 되고, 인장강도가 2,500 ~ 3,000Mpa인 섬유보강 콘크리트 복합체.Fiber reinforced concrete composite with 2 to 5% of total volume, copper (Cu) coating, and tensile strength 2,500 to 3,000 Mpa.
PCT/KR2018/002635 2017-03-24 2018-03-06 Steel fiber and fiber reinforced concrete composite including same WO2018174430A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170037345 2017-03-24
KR10-2017-0037345 2017-03-24
KR10-2018-0023562 2018-02-27
KR1020180023562A KR101992203B1 (en) 2017-03-24 2018-02-27 Steel fiber and fiber reinforcement concrete composite including the same

Publications (1)

Publication Number Publication Date
WO2018174430A1 true WO2018174430A1 (en) 2018-09-27

Family

ID=63584462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002635 WO2018174430A1 (en) 2017-03-24 2018-03-06 Steel fiber and fiber reinforced concrete composite including same

Country Status (1)

Country Link
WO (1) WO2018174430A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200386266Y1 (en) * 2005-03-10 2005-06-10 금강와이어메쉬산업 주식회사 Twisted steel fiber for reinforced concrete
KR20120055119A (en) * 2010-11-23 2012-05-31 한국건설기술연구원 Ultra-high performance fiber reinforced cementitious composites and manufacturing method
KR101365684B1 (en) * 2012-08-20 2014-02-19 아주산업 주식회사 High strength dry concrete mix composition
KR101365664B1 (en) * 2013-12-12 2014-02-20 (주)영광엔지니어링건축사사무소 Ultra high strength concrete
KR20140046175A (en) * 2012-10-10 2014-04-18 한국건설기술연구원 A steel fiber strengthened bondage, method for it, and concrete having it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200386266Y1 (en) * 2005-03-10 2005-06-10 금강와이어메쉬산업 주식회사 Twisted steel fiber for reinforced concrete
KR20120055119A (en) * 2010-11-23 2012-05-31 한국건설기술연구원 Ultra-high performance fiber reinforced cementitious composites and manufacturing method
KR101365684B1 (en) * 2012-08-20 2014-02-19 아주산업 주식회사 High strength dry concrete mix composition
KR20140046175A (en) * 2012-10-10 2014-04-18 한국건설기술연구원 A steel fiber strengthened bondage, method for it, and concrete having it
KR101365664B1 (en) * 2013-12-12 2014-02-20 (주)영광엔지니어링건축사사무소 Ultra high strength concrete

Similar Documents

Publication Publication Date Title
WO2018030728A1 (en) Ultra-high-performance fiber-reinforced concrete and manufacturing method therefor
JP4947507B2 (en) Fiber-containing concrete with ultra-high strength and ductility
WO2020029550A1 (en) Recycled powder concrete for 3d printing construction and preparation method therefor
US20030150364A1 (en) Fire-resistant high performance concrete composition
CN111620591B (en) Wet-spraying ultrahigh-performance concrete rheological property regulator and using method thereof
CN112551988B (en) Ultrahigh-ductility concrete for earthquake-resistant engineering and preparation method thereof
CN106431131A (en) Preparation method of fiber-reinforced cement based composite material with high toughness and high damping
US5250601A (en) High-strength heat insulating material and method of producing such material
CN113480249A (en) Anti-cracking recycled concrete and preparation method thereof
CN112279598B (en) Anti-crack concrete mixture and preparation method thereof
KR101170307B1 (en) Functional Tile Adhesive Using Elasticity Powder
CN113480256A (en) STC (super-high-temperature-coefficient) ultrahigh-toughness concrete with high working performance and production method thereof
Matalkah et al. Effect of fiber type and content on the mechanical properties and shrinkage characteristics of alkali‐activated kaolin
CN109734384B (en) Modified carbon nanotube reinforced cement-based composite slurry and preparation method thereof
WO2018174430A1 (en) Steel fiber and fiber reinforced concrete composite including same
KR102024036B1 (en) Composition for repair mortar comprising mineral fiber
KR100281697B1 (en) Conductive composite
CN109748556B (en) Anti-segregation heavy concrete and preparation method thereof
Ostertag et al. Tensile strength enhancement in interground fiber cement composites
KR20130075334A (en) Amorphous steel fiber cement composites and mortar products using the same
CN109072085B (en) Precast block refractory for coke oven
WO2017179844A1 (en) Gypsum board composition, method for manufacturing gypsum board, and gypsum board manufactured therefrom
KR101992203B1 (en) Steel fiber and fiber reinforcement concrete composite including the same
CN114790099A (en) Dry-mixed mortar and preparation method thereof
CN113173756A (en) High-temperature-resistant 3D printing fiber concrete with steel slag waste as aggregate and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770645

Country of ref document: EP

Kind code of ref document: A1