WO2018174418A1 - 패킷 중복을 위한 데이터 처리 방법 및 장치 - Google Patents
패킷 중복을 위한 데이터 처리 방법 및 장치 Download PDFInfo
- Publication number
- WO2018174418A1 WO2018174418A1 PCT/KR2018/002264 KR2018002264W WO2018174418A1 WO 2018174418 A1 WO2018174418 A1 WO 2018174418A1 KR 2018002264 W KR2018002264 W KR 2018002264W WO 2018174418 A1 WO2018174418 A1 WO 2018174418A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- logical channel
- packet
- duplication
- message
- packet duplication
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000012545 processing Methods 0.000 title abstract description 19
- 238000013507 mapping Methods 0.000 claims description 40
- 238000010295 mobile communication Methods 0.000 claims description 9
- 230000003213 activating effect Effects 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 abstract description 57
- 238000004891 communication Methods 0.000 abstract description 21
- 238000005516 engineering process Methods 0.000 abstract description 18
- 238000012546 transfer Methods 0.000 abstract description 4
- 230000036541 health Effects 0.000 abstract description 2
- 230000004913 activation Effects 0.000 description 51
- 230000009849 deactivation Effects 0.000 description 42
- 238000010586 diagram Methods 0.000 description 38
- 230000008569 process Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 8
- 230000010076 replication Effects 0.000 description 8
- 238000004590 computer program Methods 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 2
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 206010042135 Stomatitis necrotising Diseases 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 201000008585 noma Diseases 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0252—Traffic management, e.g. flow control or congestion control per individual bearer or channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0252—Traffic management, e.g. flow control or congestion control per individual bearer or channel
- H04W28/0263—Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/08—Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1614—Details of the supervisory signal using bitmaps
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0096—Indication of changes in allocation
- H04L5/0098—Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0278—Traffic management, e.g. flow control or congestion control using buffer status reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/02—Data link layer protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/08—Upper layer protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
Definitions
- the present invention relates to a data processing method and apparatus for packet duplication, and moreover, to a data structure for packet duplication.
- a 5G communication system or a pre-5G communication system is called a Beyond 4G network communication system or a post LTE system.
- 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
- mmWave ultra-high frequency
- FD-MIMO massive array multiple input / output
- FD-MIMO massive array multiple input / output
- Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
- 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation
- cloud RAN cloud radio access network
- ultra-dense network ultra-dense network
- D2D Device to Device communication
- wireless backhaul moving network
- cooperative communication Coordinated Multi-Points (CoMP), and interference cancellation
- Hybrid FSK and QAM Modulation FQAM
- SWSC Slide Window Superposition Coding
- ACM Advanced Coding Modulation
- FBMC Fan Bank Multi Carrier
- NOMA non orthogonal multiple access
- SCMA sparse code multiple access
- IoT Internet of Things
- IoE Internet of Everything
- M2M machine to machine
- MTC Machine Type Communication
- IT intelligent Internet technology services can be provided that collect and analyze data generated from connected objects to create new value in human life.
- IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing information technology (IT) technology and various industries. It can be applied to.
- An object of the present invention is to provide a data processing method and apparatus, and further a data structure for packet duplication.
- the present invention has been made in an effort to provide a radio bearer setup method, a packet duplication operation, and a buffer status reporting method when performing packet duplication.
- a method of a terminal in a mobile communication system includes receiving information for mapping a logical channel from a base station to a component carrier (CC) and a data packet mapped in the logical channel according to the information. It may include transmitting to the base station through.
- CC component carrier
- a terminal of a mobile communication system receives information for mapping a logical channel to a component carrier (CC) from a transceiver and a base station for transmitting and receiving a signal, and receives a data packet processed in the logical channel. It may include a controller configured to transmit to the base station through the CC mapped according to the information.
- CC component carrier
- a method of a base station in a mobile communication system is a step of transmitting information for mapping a logical channel to the CC (Component Carrier) to the terminal and mapping the data packet processed in the logical channel according to the information It may include receiving from the terminal through the CC.
- CC Component Carrier
- a base station of a mobile communication system transmits a transceiver for transmitting and receiving a signal and information for mapping a logical channel to a component carrier (CC) to a terminal, and transmits the data packet processed in the logical channel. It may include a control unit configured to receive from the terminal through the CC mapped according to the information.
- CC component carrier
- An object of the present invention is to provide a data processing method and structure for packet duplication.
- effective redundant transmission is possible in a communication environment having multiple links.
- 1 is a diagram illustrating a radio bearer structure in an LTE CA environment.
- FIG. 2 is a flowchart illustrating a transmitter for performing packet redundancy according to an embodiment of the present invention.
- FIG. 3 is a diagram illustrating an embodiment of a bearer structure for packet duplication according to an embodiment of the present invention.
- FIG. 4 is a diagram illustrating another embodiment of a bearer structure for packet duplication according to an embodiment of the present invention.
- FIG. 5 is a diagram illustrating another embodiment of a bearer structure for packet duplication according to an embodiment of the present invention.
- FIG. 6 illustrates another embodiment of a bearer structure for packet duplication according to an embodiment of the present invention.
- FIG. 7 is a diagram illustrating another embodiment of a bearer structure for packet duplication according to an embodiment of the present invention.
- FIG. 8 is a diagram illustrating another embodiment of a bearer structure for packet duplication according to an embodiment of the present invention.
- FIG. 9 is a diagram illustrating an embodiment of a radio bearer setup message for packet duplication according to an embodiment of the present invention.
- FIG. 10 is a diagram illustrating an embodiment of setting and releasing packet duplication according to an embodiment of the present invention.
- FIG. 11 is a diagram illustrating another embodiment of setting and releasing packet duplication according to an embodiment of the present invention.
- FIG. 12 illustrates another embodiment of setting and releasing packet duplication according to an embodiment of the present invention.
- FIG. 13 is a diagram illustrating an embodiment of a method of starting packet transmission on a logical channel for packet duplication when packet duplication is initiated according to an embodiment of the present invention.
- FIG. 14 is a diagram illustrating another embodiment of a method of starting packet transmission on a logical channel for packet duplication when packet duplication is started according to an embodiment of the present invention.
- 15 is a diagram illustrating another embodiment of a method of starting packet transmission on a logical channel for packet duplication when packet duplication is initiated according to an embodiment of the present invention.
- 16 is a diagram illustrating an embodiment of a procedure to be performed when packet duplication is released according to an embodiment of the present invention.
- FIG. 17 illustrates another embodiment of a procedure performed when packet duplication is released according to an embodiment of the present invention.
- FIG. 18 is a diagram illustrating a specific operation example when packet duplication is performed.
- 19 is a diagram illustrating an embodiment of sending an uplink buffer status report when packet duplication is performed according to an embodiment of the present invention.
- 20 is a diagram illustrating another embodiment of transmitting an uplink buffer status report when packet duplication is performed according to an embodiment of the present invention.
- 21 illustrates another embodiment of transmitting an uplink buffer status report when packet duplication is performed according to an embodiment of the present invention.
- 22 is a diagram illustrating an embodiment of applying a packet overlap count according to an embodiment of the present invention.
- FIG. 23 is a diagram illustrating a format of a packet duplication activation message according to an embodiment of the present invention.
- FIG. 24 is a diagram illustrating another format of a packet duplication activation message according to an embodiment of the present invention.
- 25 is a diagram illustrating another format of a packet duplication activation message according to an embodiment of the present invention.
- FIG. 26 is a diagram illustrating a format of a packet deactivation message according to an embodiment of the present invention.
- FIG. 27 illustrates another format of a packet deactivation message according to an embodiment of the present invention.
- FIG. 28 is a diagram illustrating another format of a packet deactivation message according to an embodiment of the present invention.
- 29 is a diagram illustrating another format of a packet duplicate activation / deactivation message according to an embodiment of the present invention.
- FIG. 30 illustrates another embodiment of a radio bearer setup message for packet duplication according to an embodiment of the present invention.
- 31 illustrates another embodiment of a radio bearer setup message for packet duplication according to an embodiment of the present invention.
- FIG. 32 illustrates another format of a packet duplicate activation message according to an embodiment of the present invention.
- 33 is a view showing another format of a packet duplicate deactivation message according to an embodiment of the present invention.
- 34 illustrates another format of a packet duplicate activation message according to an embodiment of the present invention.
- 35 is a view showing another format of a packet duplicate deactivation message according to an embodiment of the present invention.
- 36 illustrates a format of a message for dynamically changing a mapping relationship between a logical channel and a CC according to an embodiment of the present invention.
- FIG. 37 is a diagram illustrating an embodiment of a procedure for setting packet duplication according to an embodiment of the present invention.
- 38 is a diagram illustrating a terminal according to an embodiment of the present invention.
- 39 is a diagram illustrating a base station according to an embodiment of the present invention.
- FIG. 40 illustrates an embodiment of a bearer structure and primary logical channel determination for packet duplication according to an embodiment of the present invention.
- 41 is a diagram illustrating a receiver operation according to an embodiment of the present invention.
- 43 is a diagram illustrating a receiver operation according to an embodiment of the present invention.
- each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It creates a means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s).
- Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
- each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
- logical function e.g., a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
- the functions noted in the blocks may occur out of order.
- the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
- ' ⁇ part' used in the present embodiment refers to software or a hardware component such as an FPGA or an ASIC, and ' ⁇ part' performs certain roles.
- ' ⁇ ' is not meant to be limited to software or hardware.
- ' ⁇ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors.
- ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
- the functionality provided within the components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'.
- the components and ' ⁇ ' may be implemented to play one or more CPUs in the device or secure multimedia card.
- CA LTE carrier aggregation
- data flow is processed for each bearer, and data is mapped to one radio bearer.
- Each radio bearer is mapped to a logical channel in a 1: 1 manner, and these logical channels are multiplexed in the MAC layer to be transmitted.
- CA is a technology that combines several CC (Component Carrier) to collect and use multiple frequency resources, data multiplexed in the MAC layer is transmitted to one of the CC.
- 1 shows an embodiment in which radio bearers 1 and 2 are mapped to logical channels 1 and 2 with PDCP devices and RLC devices, respectively.
- logical channels 1,2 are multiplexed in the MAC layer and then data is transmitted to one of CC 1,2 and3.
- the CC may be recognized as one cell by the terminal, and may be configured as a primary cell (PCell) or a secondary cell (SCell), and the same will be described below.
- FIG. 2 is a flowchart of a transmitter 200 for performing packet duplication. If packet duplication is set for a specific radio bearer 210, data processed by the radio bearer 210 may go through a packet duplication procedure. Packet duplication is typically performed by duplicating data and then sending the data to different logical channels. At this time, the data packets duplicated by packet duplication are sent to different logical channels 220 and 230, or to different splits in split bearer environments, or to different CCs. , Different numerology (Numerology) or TTI type can be sent. Duplicating the data packet by performing packet duplication may be performed in one of the PDCP, RLC, and MAC layers, which are data processing layers. The data here may be in the form of an IP packet handled by the user. In another embodiment, this data may be a control signal in a protocol such as an RRC message.
- Radio bearer A 310 is a bearer that allows packet duplication and radio bearer B 320 is a bearer that does not allow packet duplication.
- 3 illustrates that a PDCP device (or entity) of a radio bearer A 310 replicates a PDCP PDU (Protocol Data Unit) and then transmits each replicated PDCP PDU to different RLC devices for processing. Each RLC device is mapped to logical channels 1 and 2 (330, 340), respectively.
- the radio bearer B 320 is mapped to one logical channel (logical channel 3) because packet duplication is not allowed.
- mapping between logical channel and CC (Component Carrier) is necessary for efficient packet transmission.
- CC Component Carrier
- the main purpose is to increase the reliability and reduce the transmission latency by transmitting the duplicated packets after processing separate data.
- the duplicated data packets are transmitted to different CCs. It is necessary.
- FIG. 1 In the embodiment of FIG. 1
- logical channel 1 330 is mapped to CC 1 and CC 2 so that data packets of logical channel 1 330 can be transmitted through CC 1 and CC 2, and logical channel 2 340 is mapped to CC 3.
- the data packet of logical channel 2 340 may be transmitted through CC3, and the data packet of logical channel 3 may be transmitted to CC2 and CC3.
- mapping the logical channel to the neurology or TTI. That is, apart from mapping the logical channel to the CC or mapping to the CC, the logical channel may be mapped to a specific numerology and / or TTI for data packet transmission.
- the mapping between the logical channel and the CC is not limited to the above-described packet duplication process, but may be performed separately from packet duplication.
- Whether the bearer allows packet duplication may be determined according to the type of traffic the packet contains.
- the type of traffic may be classified into voice, video streaming, web surfing data, and the like, and according to this classification, a certain kind of traffic may be set to allow packet duplication.
- whether or not to duplicate packets may be set according to the QoS setting value of the data.
- QOS configuration value may be represented by an ID indicating QoS, such as a QoS flow ID. In this case, it is also possible to allow packet duplication for a specific QoS flow ID.
- a bearer in which a packet having a QoS flow ID of 0 to 15 is transmitted may be duplicated, and a bearer in which a packet having a remaining QoS flow ID is transmitted may not be duplicated.
- Whether the bearer allows packet duplication may be determined by each of the aforementioned various criteria or a combination of two or more, and other criteria may be applied in addition to the aforementioned criteria.
- the packet duplication may be applied to both the SRB transmitting the control signal and the DRB transmitting the data.
- Radio bearer A 410 is a bearer that allows packet duplication and radio bearer B 420 is a bearer that does not allow packet duplication.
- 3 illustrates that an RLC device (or entity) of the radio bearer A 410 replicates an RLC Protocol Data Unit (PDU) and then sends each replicated RLC PDU to different logical channels for processing.
- the RLC device of radio bearer A 410 is mapped to logical channels 1,2.
- Radio bearer B is mapped to one logical channel of logical channel 3 because packet duplication is not allowed.
- mapping between logical channel and CC (Component Carrier) is necessary for efficient packet transmission.
- CC Component Carrier
- mapping the logical channel and the CC that is, by setting / defining a mapping relationship between the logical channel and the CC
- the main purpose is to increase the reliability and reduce the transmission latency by transmitting the duplicated packets after processing separate data.
- the duplicated data packets are transmitted to different CCs. It is necessary.
- logical channel 1 is mapped to CC 1 and CC 2 so that data packets of logical channel 1 can be transmitted through CC 1 and CC 2
- logical channel 2 is mapped to CC 3 so that data packets of logical channel 2 are referred to as CC 3.
- the data packet of logical channel 3 may be transmitted through CC2 and CC3.
- mapping the logical channel to the neurology or TTI. That is, apart from mapping the logical channel to the CC or mapping to the CC, the logical channel may be mapped to a specific numerology and / or TTI for data packet transmission.
- the mapping between the logical channel and the CC is not limited to the above-described packet duplication process, but may be performed separately from packet duplication.
- the packet duplication may be applied to both the SRB transmitting the control signal and the DRB transmitting the data.
- logical channel 1 520 is configured as a primary logical channel and logical channel 2 530 is configured as a secondary logical channel for radio bearer A 510 that allows packet duplication.
- the other bearer structure is as defined in FIG.
- the primary and secondary logical channels may be designated by the base station through an RRC configuration.
- the UE may be instructed to transmit data on the secondary logical channel through a packet redundancy activation message. A specific embodiment of such a packet duplication activation message will be described later.
- the packet duplication may be applied to both the SRB transmitting the control signal and the DRB transmitting the data.
- logical channel 1 620 is configured as a primary logical channel and logical channel 2 630 is configured as a secondary logical channel for radio bearer A 610 allowing packet duplication.
- the other bearer structure is as defined in FIG.
- the primary and secondary logical channels may be designated by the base station through an RRC configuration.
- the UE may be instructed to transmit data on the secondary logical channel through a packet redundancy activation message. A specific embodiment of such a packet duplication activation message will be described later.
- the packet duplication may be applied to both the SRB transmitting the control signal and the DRB transmitting the data.
- FIG. 7 is another embodiment of a bearer structure for packet redundancy (700).
- the PDCP device and the RLC device are omitted as a simplified structure in which a single radio bearer shown in the embodiments of FIGS. 3-6 is mapped to multiple logical channels and CCs.
- the PDCP device and the RLC device may be one of the mapping methods of the embodiments of FIGS. 3-6.
- the radio bearer 1 710 is duplicated and transmitted to the logical channels 1 720 and 3 750, and the logical channel 1 720 is connected to the CC1 730 and CC3 740.
- Channel 3 750 is mapped to and transmitted to CC4 760 and CC5 770.
- the packet duplication may be applied to both the SRB transmitting the control signal and the DRB transmitting the data.
- FIG. 8 is another embodiment of a bearer structure for packet redundancy 800.
- the PDCP device and the RLC device are omitted as a simplified structure in which a single radio bearer shown in the embodiments of FIGS. 3-6 is mapped to multiple logical channels and CCs.
- the PDCP device and the RLC device may be one of the mapping methods of the embodiments of FIGS. 3-6.
- the radio bearer 1 810 is transmitted in duplicated packets to logical channels 1 820 and 3 850, and logical channel 1 820 is connected to CC1 830 and CC3 840.
- Channel 3 850 is mapped to and transmitted to CC4 860 and CC5 870.
- FIG. 8 is another embodiment of a bearer structure for packet redundancy 800.
- the PDCP device and the RLC device are omitted as a simplified structure in which a single radio bearer shown in the embodiments of FIGS. 3-6 is mapped to multiple logical channels and CCs.
- each CC further supports a plurality of numerologies or TTI types.
- type 1 of CC1 830 may have a 15 KHz subcarrier spacing and 1 ms TTI
- type 2 835 may have a 30 KHz subcarrier spacing and 0.25 ms TTI.
- Type 2 835 of CC1 830 that performs packet duplication of Radio Bearer 1 810, Type 1 and 2 845 of CC3 840, and Type 1 of CC4 860.
- 2,3 865 which may be sent to type 1 875 of CC5 870.
- the above description is that the specific neuralology and / or TTI type is pre-mapped to a logical channel and / or CC through which packet duplication is performed so that duplicate data packets are transmitted.
- the above-described mapping is an embodiment and may be differently designated according to the configuration of the base station or the terminal, the type of traffic, the QoS flow ID, and the like.
- the packet duplication may be applied to both the SRB transmitting the control signal and the DRB transmitting the data.
- FIG. 9 illustrates an embodiment of a radio bearer setup message for packet duplication described in FIGS. 3 to 8.
- the DRB ID set in FIG. 9 is 6 and the DuplicationMode field is set to True to indicate that packet duplication is allowed.
- Logical channel IDs (indicated by the LogicalChannelIdentity field) that perform packet redundancy are 4 and 5, and packets sent to logical channel 4 can only be sent in 15KHz, 30KHz neutrals (indicated by the Correspondingnumerology field) of CC 1,2,3 This means that a packet transmitted on logical channel 5 uses all CC and can only be transmitted in 15KHz of neurology.
- the numerology may be displayed at frequency intervals as shown in FIG. 9, but may be designated as a previously set numerology or TTI type.
- Logical channel 4 is the primary logical channel and logical channel 5 is the secondary logical channel (indicated by the DuplicationType field).
- each logical channel may independently send the same packet repeatedly, but may also perform an independent packet duplication by the value set in the NumberOfDuplication field.
- Independent packet transmission means that the transmitter determines the NACK of the ARQ without receiving and performs the transmission once more.
- the base station may set a packet duplication of the radio bearer by sending a duplication configuration message to the terminal (S1010). This message may include some of the configuration message of FIG. 9.
- the UE upon receiving a duplication configuration message, the UE establishes a bearer for packet duplication and performs packet duplication (S1020). Thereafter, when the terminal receives a duplication release message from the base station (S1030), the terminal may release a bearer for packet duplication, release a secondary logical channel for packet duplication, or perform a procedure of not performing packet duplication ( S1040).
- the base station may set the packet duplication of the radio bearer by sending a duplication configuration message to the terminal (S1110). This message may include some of the configuration message of FIG. 9.
- the UE upon receiving a duplication configuration message, the UE configures a bearer for packet duplication. Subsequently, when the UE receives the duplication activation message (S1120), it performs the actual packet duplication (S1130). Until the duplication activation message is received, the logical channel for packet duplication is created but no actual data is sent to the logical channel. In this case, data transmission may be performed only through the primary logical channel.
- the UE After the UE receives the duplication deactivation message from the base station (S1140) and stops the actual packet duplication (S1150). However, this does not change the bearer structure such as logical channels for packet duplication. If there is a secondary logical channel, data transmission to the secondary logical channel can be stopped. Thereafter, when the terminal receives a duplication release message from the base station (S1160), the terminal may release a bearer for packet duplication, release a secondary logical channel for packet duplication, or perform a procedure not performing packet duplication.
- the base station may set the packet duplication of the radio bearer by sending a duplication configuration message to the terminal (S1210). This message may include some of the configuration message of FIG. 9.
- the UE upon receiving a duplication configuration message, the UE establishes a bearer for packet duplication. Subsequently, when the terminal receives the duplication activation message (S1220) and the condition for the packet duplication (duplication condition) set in advance is satisfied (S1230), the terminal performs the actual packet duplication (S1240).
- the condition for packet duplication may be when the radio link quality of the terminal and the base station is below a certain level.
- the logical channel for packet duplication is created but no actual data is sent to the logical channel. In this case, data transmission may be performed only through the primary logical channel. If the condition for packet duplication is no longer satisfied or the condition for canceling packet duplication transmission is satisfied, packet duplication may not be performed even after receiving a duplication activation message.
- the terminal receives the duplication deactivation message from the base station (S1250)
- the actual packet duplication is stopped (S1260). However, this does not change the bearer structure such as logical channels for packet duplication. If there is a secondary logical channel, data transmission to the secondary logical channel can be stopped. Thereafter, when the terminal receives a duplication release message from the base station (S1270), the terminal may release a bearer for packet duplication, release a secondary logical channel for packet duplication, or perform a procedure of not performing packet duplication.
- FIG. 13 illustrates an embodiment of a method of initiating packet transmission on a logical channel for packet duplication when packet duplication is initiated (1300).
- transmission is performed only to the logical channel 1 (LC1, 1310) before the redundant transmission, and the transmission is also performed on the logical channel 2 (LC2, 1320) when packet duplication starts.
- Packet redundancy may be based on a time point at which actual packet redundancy starts according to various embodiments shown and described with reference to FIGS. 10 to 12.
- the packet in the buffer is selected from the earliest having the earliest sequence number (SN) among the packets transmitted from the existing logical channel 1 1310 but not receiving an ACK.
- SN sequence number
- the RLC SN (order number) of the logical channel 2 1320 may be started from the beginning, or the sequence number of the RLC device of the logical channel 1 1320 may be used as it is. If the same sequence numbers of the logical channel 1 1310 and the logical channel 2 1320 are used, the RLC device corresponding to the logical channel 2 1320 of the receiver is informed of a part of the RLC state information of the logical channel 1 1310. Can be. In this case, the corresponding information may be, for example, the beginning of the RLC SN (the RLC SN of the packet B) or the entire RLC variable (Variable). Also, according to an embodiment, it may be a PDCP SN or a PDCP COUNT corresponding to each RLC packet.
- FIG. 14 illustrates another embodiment of a method of starting packet transmission on a logical channel for packet duplication when packet duplication is initiated (1400).
- transmission is performed only to the logical channel 1 (LC1, 1410) before the redundant transmission, and then the transmission is also performed on the logical channel 2 (LC2, 1420) when packet duplication starts.
- Packet redundancy may be based on a time point at which actual packet redundancy starts according to various embodiments shown and described with reference to FIGS. 10 to 12.
- the logical channel is transmitted from the earliest sequence number (SN) to the untransmitted packet transmitted in the existing logical channel 1 1410 but not ACK and the untransmitted packet in the buffer.
- SN earliest sequence number
- the RLC SN (order number) of the logical channel 2 1420 may be started from the beginning, or the sequence number of the RLC device of the logical channel 1 1410 may be used as it is. If the same sequence numbers of the logical channel 1 1410 and the logical channel 2 1420 are used, the RLC device corresponding to the logical channel 2 1420 of the receiver is informed of a part of the RLC state information of the logical channel 1 1410. Can be. In this case, the corresponding information may be, for example, the beginning of the RLC SN (the RLC SN of the packet B) or the entire RLC variable (Variable). Also, according to an embodiment, it may be a PDCP SN or a PDCP COUNT corresponding to each RLC packet.
- FIG. 15 illustrates another embodiment of a method of initiating packet transmission on a logical channel for packet duplication when packet duplication starts.
- transmission is performed only to the logical channel 1 (LC1, 1510) before the redundant transmission, and the transmission is also performed on the logical channel 2 (LC2, 1520) when packet duplication starts.
- Packet redundancy may be based on a time point at which actual packet redundancy starts according to various embodiments shown and described with reference to FIGS. 10 to 12.
- a packet not transmitted in the existing logical channel 1 1510 may be transferred to the logical channel 2 1520 from the earliest having the highest sequence number (SN) (ie, Can be duplicated).
- SN sequence number
- packet duplication is performed from untransmitted packet E to logical channel 1 1510 and logical channel 2 1520.
- Packet transfer can be performed (ie, replicated). In other words, data packets not sent down to logical channel 1 1510 may be replicated to logical channel 2 1520.
- the RLC SN (order number) of logical channel 2 1520 may start from the beginning, or the sequence number of the RLC device of logical channel 1 1510 may be used as it is. If the same sequence numbers of the logical channel 1 1510 and the logical channel 2 1520 are used, the RLC device corresponding to the logical channel 2 1520 of the receiver is informed of a part of the RLC state information of the logical channel 1 1510. Can be.
- the corresponding information may be, for example, the beginning of the RLC SN (the RLC SN of the packet B) or the entire RLC variable (Variable). Also, according to an embodiment, it may be a PDCP SN or a PDCP COUNT corresponding to each RLC packet.
- FIG. 16 illustrates an embodiment of a procedure to be performed when packet duplication is released while performing data transmission by performing packet duplication (1600).
- packet transmission is performed by performing packet duplication on logical channels 1 and 2 (1610 and 1620)
- a time point at which actual packet duplication is released according to various embodiments described in the description of FIGS. 10 to 12. Indicates the action to be taken by.
- packets A, C, and E receive an ACK on logical channel 1 (1610) at the moment when packet duplication is released, and B and D transmit, but ACK is not received, and packet B on logical channel 2 (1620).
- E received an ACK, and A, C, and D transmitted, but ACK was not received.
- a specific condition may be a method of continuously transmitting to the primary logical channel and the secondary logical channel emptying data and not transmitting.
- FIG. 17 illustrates another embodiment of a procedure performed when packet duplication is released while performing data transmission by performing packet duplication (1700).
- packet transmission is performed by performing packet duplication on logical channels 1 and 2 (1710, 1720)
- a time point at which actual packet duplication is released according to various embodiments described in the description of FIGS. Indicates the action to be taken by.
- packets A, C, and E receive an ACK on logical channel 1 (1710) at the moment when packet duplication is released, and B and D transmit, but ACK is not received, and packet B on logical channel 2 (1720).
- E received an ACK, and A, C, and D transmitted, but ACK was not received.
- a logical channel may be selected according to a specific condition.
- a specific condition may be a method of continuously transmitting to the primary logical channel and the secondary logical channel emptying data and not transmitting.
- the RLC device (or entity) of the logical channel 2 1720 notifies the RLC device of the logical channel 1 1710 that the packets successfully received the ACK are B and E.
- the RLC device of 1710 may update the state of Packet B, which has not received an ACK, to a successful reception and may assume that the RLC device has successfully received.
- the transmission of this information may directly inform the RLC sequence number (SN) of the packet transmitted from the RLC device of logical channel 2 1720 to the RLC device of logical channel 1 1720, or the RLC device of logical channel 2 1720
- the PDCP sequence number (or RLC SN) of the packet is informed to the PDCP device of the radio bearer so that the PDCP device informs the RLC device of logical channel 1 (1710) the packet sequence number (RLC or PDCP SN). It may be. If the RLC sequence numbers of the logical channel 1 1710 and the logical channel 2 1720 for each packet are different, this value may be converted. At this time, the PDCP sequence number or PDCP COUNT value may be used in the process of conversion.
- the RLC device of one logical channel may directly inform the RLC device of another logical channel of PDCP SN or PDCP COUNT information of the received packet with ACK or NACK of the corresponding packet.
- FIG. 17 illustrates an embodiment in which a transmission state of each logical channel described above, that is, an RLC state information or an ACK reception state, is transmitted to another logical channel and reflected when the packet duplication transmission is released.
- a transmission state of each logical channel described above that is, an RLC state information or an ACK reception state
- such an operation is not limited to the time point at which the packet duplication transmission is released, and even in a situation in which normal packet duplication is performed, the procedure of reflecting the logical channel transmission between the logical channels can be performed.
- the transmission of this information may directly inform the RLC sequence number (SN) of the packet transmitted from the RLC device of logical channel 2 1720 to the RLC device of logical channel 1 1720, or the RLC device of logical channel 2 1720
- the PDCP order number of the corresponding packet may be informed to the PDCP device of the radio bearer so that the PDCP device informs the RLC device of logical channel 1 1710 of the corresponding packet order number. If the RLC sequence numbers of the logical channel 1 1710 and the logical channel 2 1720 for each packet are different, this value may be converted. At this time, the PDCP sequence number or PDCP COUNT value may be used in the process of conversion.
- the transmission interval may be applied to a preset value so that this information transfer process does not occur too often.
- the transmission status of a logical channel may be set to be transmitted from one logical channel to another every 10 ms.
- Such an operation may also be applied to packet duplication applied to different HARQ devices in a HARQ situation instead of ARQ.
- packet transmission may continue without packet duplication for packets that exist in the PDCP buffer and are not delivered to a lower layer such as an RLC.
- PDCP PDU 1 1810 receives a packet arriving at the PDCP layer of the transmitter to the RLC layer, adds an RLC header, and then forwards to a lower layer below the MAC layer or is transmitting to the receiver.
- PDCP PDU 2 1820 a packet arriving at the PDCP layer of the transmitter is delivered to the RLC layer and an RLC header is added, but it is not yet delivered to a lower layer below the MAC layer.
- PDCP PDU 2 1820 may occur when a packet is pre-processed before being allocated radio resources of a UL grant.
- PDCP PDU 3 1830 may be interpreted as a packet arriving at the PDCP layer of the transmitter does not request processing to the lower layer.
- duplicate transmission may be started for packets that have not been delivered to the RLC layer among packets arriving at the PDCP layer of the transmitter.
- PDCP PDU 3 1830 corresponds to this.
- packets arriving at the PDCP layer of the transmitter are delivered to the RLC layer to which the RLC header is added, delivered to a lower layer below the MAC, or transmitted thereafter (eg, in FIG. 18).
- PDCP PDU 1 1810) a packet arriving at the PDCP layer of the transmitter is delivered to the RLC layer to which an RLC header is added but not delivered to a lower layer below the MAC (for example, PDCP PDU 2 1820 of FIG. 18).
- redundant transmission may be started for a packet (for example, PDCP PDU 3 18930 of FIG. 18) in which a packet arriving at the transmitter's PDCP layer is not delivered to the RLC layer.
- the transmitter may transmit (or report) the packet information of the packet transmitted to the RLC layer, which has not been confirmed to be successfully received, to the PDCP layer.
- the packet information transmitted to the PDCP layer may include a PDCP SN.
- the transmitter may start packet duplication transmission by selecting packets corresponding to the received packet information.
- an RLC or PDCP layer may manage which RLC sequence number (SN) and PDCP SN have a value. Based on this, the PDCP sequence number values of the packets in the RLC buffer that have not been successfully transmitted can be known.
- radio bearers 1 and 2 do not duplicate packets and are mapped to logical channels 1 and 2, respectively. However, it is assumed that radio bearer 3 is mapped to logical channel 3 1910 and logical channel 4 1920 by applying packet overlap. Buffer status reporting is based on the buffer status of each logical channel. Therefore, at the time of sending the buffer status report, it is necessary to determine which buffer status should be sent to the logical channel with the packet duplication.
- a logical channel may share the RLC state information or the ACK reception state described in the description of FIG. 17 before reporting the buffer status to another logical channel.
- FIG. 20 illustrates another embodiment in which a terminal sends an uplink buffer status report to a base station when packet duplication is performed (2000).
- radio bearers 1 and 2 do not duplicate packets and are mapped to logical channels 1 and 2, respectively.
- radio bearer 3 is mapped to logical channel 3 (2010) and logical channel 4 (2020) by applying packet overlap.
- Buffer status reporting is based on the buffer status of each logical channel. Therefore, at the time of sending the buffer status report, it is necessary to determine which buffer status should be sent to the logical channel with the packet duplication.
- logical channel 4 (2020) set as a primary logical channel.
- the base station may inform in advance which logical channel the terminal arbitrarily selects or which logical channel to use for buffer status reporting.
- a logical channel may share the RLC state information or the ACK reception state described in the description of FIG. 17 before reporting the buffer status to another logical channel.
- FIG. 21 illustrates an embodiment in which a terminal sends an uplink buffer status report to a base station when packet duplication is performed (2100).
- radio bearers 1 and 2 do not have packet duplication and are mapped to logical channels 1 and 2, respectively.
- radio bearer 3 is mapped to logical channel 3 2110 and logical channel 4 2120 by applying packet overlap.
- Buffer status reporting is based on the buffer status of each logical channel. Therefore, at the time of sending the buffer status report, it is necessary to determine which buffer status should be sent to the logical channel with the packet duplication.
- a logical channel may share the RLC state information or the ACK reception state described in the description of FIG. 17 before reporting the buffer status to another logical channel.
- Packet duplication may be performed by applying the NumberOfDuplication described in FIG. 9, where the NumberOfDuplication field means to apply the number (or number of times) of packet duplication to a logical channel. In this case, it is necessary to apply a constant interval because too fast the packet duplication transmission can reduce the packet duplication efficiency.
- the NumberOfDuplication value is set to 3, and when the packet is first transmitted, the duplication count is set to 3, which is the NumberOfDuplication value, to start the first transmission (2210). After that, the duplicated packet can be transmitted after the timer value set in advance, and the duplication count can be lowered to 2.
- a duplicate packet may be transmitted after a predetermined timer value 2220 to reduce the duplication count to one. If duplication count is 0, no further duplicated packet transmission is performed (2240).
- transmission of the duplicated packet may be performed by different logical channels or different HARQ devices.
- FIG. 23 illustrates an embodiment of a format and a related embodiment of a duplication activation message defined in FIGS. 11 and 12 (2300).
- the duplication activation message 2310 may be transmitted in a MAC CE (Control Element) format, and may be transmitted by indicating that the duplication activation message is displayed in the LCID (Logical Channel ID, Logical Channel ID) portion of the MAC CE.
- LCID Logical Channel ID
- a specific message may indicate that this message is a duplication activation message, and this message may be transmitted in DCI format.
- the duplication activation message 2410 may be transmitted in a MAC CE (Control Element) format, and at this time, the duplication activation message 2410 may be transmitted by indicating that the duplication activation message is in the LCID (Logical Channel ID) portion of the MAC CE. Alternatively, if there is an ID field of the message in addition to the LCID, it may be displayed by indicating that it is a duplication activation message. Alternatively, a specific message may indicate that this message is a duplication activation message. In addition, a duplication activation message 2410 may be sent by adding an ID of a logical channel allowing packet duplication to the radio bearer. This message may also be sent in DCI format.
- MAC CE Control Element
- the duplication activation message 2410 may be transmitted by indicating that the duplication activation message is in the LCID (Logical Channel ID) portion of the MAC CE. Alternatively, if there is an ID field of the message in addition to the LCID, it may be displayed by indicating
- FIG. 25 illustrates an exemplary embodiment of a format of a duplication activation message defined in FIGS. 11 and 12 (2500).
- the duplication activation message 2510 may be transmitted in a MAC CE (Control Element) format, and at this time, the duplication activation message may be transmitted by indicating that it is a duplication activation message in the LCID (Logical Channel ID) portion of the MAC CE.
- LCID Logical Channel ID
- a specific message may indicate that this message is a duplication activation message.
- it may be sent to the radio bearer including the CC information that allows packet duplication.
- packet replication may be performed by activating a logical channel (or a logical channel mapped to the CC) that can be transmitted to the CC. This message may also be sent in DCI format.
- FIG. 26 illustrates an exemplary embodiment of a format of a duplication deactivation message defined in FIGS. 11 and 12 (2600).
- the duplication deactivation message 2610 may be transmitted in a MAC CE (Control Element) format, and may be transmitted by indicating that the duplication deactivation message is displayed in the LCID (Logical Channel ID, Logical Channel ID) portion of the MAC CE.
- LCID Logical Channel ID
- a specific message may indicate that this message is a duplication deactivation message, and such a message may be transmitted in DCI format.
- FIG. 27 illustrates an embodiment of a format and a related embodiment of a duplication deactivation message defined in FIGS. 11 and 12 (2700).
- the duplication deactivation message 2710 may be transmitted in a MAC CE (Control Element) format, and may be transmitted by indicating that the duplication deactivation message is in the LCID (Logical Channel ID, Logical Channel ID) portion of the MAC CE. Alternatively, if there is an ID field of the message in addition to the LCID, it may be displayed by indicating that it is a duplication deactivation message. Alternatively, a specific message may indicate that this message is a duplication deactivation message.
- a duplication deactivation message 2710 may be transmitted by adding an ID of a logical channel to stop packet duplication to the radio bearer. This message may also be sent in DCI format.
- FIG. 28 illustrates an embodiment of a format and a related embodiment of a duplication deactivation message defined in FIGS. 11 and 12 (2800).
- the duplication deactivation message 2810 may be transmitted in a MAC CE (Control Element) format, and may be transmitted by indicating that the duplication deactivation message is in the LCID (Logical Channel ID) portion of the MAC CE.
- LCID Logical Channel ID
- a specific message may indicate that this message is a duplication deactivation message.
- It may also send CC information to stop the packet duplication to the radio bearer.
- packet replication may be stopped by deactivating a logical channel (or a logical channel mapped to the CC) that can be transmitted to the CC. This message may also be sent in DCI format.
- FIG. 29 is a diagram illustrating another format of a packet redundancy enable / disable message according to an embodiment of the present invention (2900).
- the duplication activation / deactivation message 2910 may be transmitted in a MAC CE format, and in this case, the duplication activation / deactivation message may be displayed on the LCID portion of the MAC CE.
- FIG. 29 describes an embodiment of on-off, activating or deactivating packet duplication based on a duplication index. That is, as shown in FIG. 29, the duplication activation / deactivation message 2910 includes I1, I2,...
- Duplication index of I8 is included, and each Duplication index may have a value of 1 (activated) or 0 (deactivated), and the values 1 and 0 may be reversed.
- packet duplication is activated or deactivated based on the bitmap of the duplication index, thereby enabling / disabling packet duplication for a plurality of radio bearers / logical channels / CCs.
- FIG. 30 illustrates another embodiment of a radio bearer setup message for packet duplication according to an embodiment of the present invention (3000).
- a duplication index is allocated for each duplication radio bearer.
- the duplication index value described in FIG. 29 is set to 1 to indicate activation, packet replication of the duplication radio bearer is activated.
- FIG. 31 is a diagram illustrating another embodiment of a radio bearer setup message for packet duplication according to an embodiment of the present invention (3100).
- a duplication index is allocated for each logical channel.
- the duplication index value described in FIG. 29 is set to 1 to indicate activation, packet replication of the corresponding logical channel is activated.
- the duplication index value is set to 0 to indicate deactivation, packet replication of the corresponding logical channel is deactivated.
- the duplication activation message 3210 may be transmitted in the form of MAC CE (Control Element), and may be transmitted by indicating that the duplication activation message is in the LCID (Logical Channel ID) portion of the MAC CE. Alternatively, if there is an ID field of the message in addition to the LCID, it may be displayed by indicating that it is a duplication activation message. Alternatively, a specific message may indicate that this message is a duplication activation message.
- the duplication activation message may be transmitted with an ID of a radio bearer that allows packet duplication. At this time, packet replication may be performed on the data packet transmitted through the corresponding radio bearer. This message may also be sent in DCI format.
- the duplication deactivation message 3310 may be transmitted in a MAC CE (Control Element) format, and may be transmitted by indicating that the duplication deactivation message is in the LCID (Logical Channel ID, Logical Channel ID) portion of the MAC CE. Alternatively, if there is an ID field of the message in addition to the LCID, it may be displayed by indicating that it is a duplication deactivation message. Alternatively, a specific message may indicate that this message is a duplication deactivation message.
- the duplication deactivation message may include an ID of a radio bearer that stops packet duplication separately and may be transmitted. At this time, packet replication for data packets transmitted through the corresponding radio bearer may be stopped / stopped. This message may also be sent in DCI format.
- the duplication activation message 3410 may be transmitted in a MAC CE (Control Element) format, and may be transmitted by indicating that the duplication activation message is in the LCID (Logical Channel ID) portion of the MAC CE. Alternatively, if there is an ID field of the message in addition to the LCID, it may be displayed by indicating that it is a duplication activation message. Alternatively, a specific message may indicate that this message is a duplication activation message.
- MAC CE Control Element
- LCID Logical Channel ID
- the duplication activation message may include a plurality of logical channel IDs and an E field for each logical channel ID, and when the specific E field has a value of 1 (or 0), the logic corresponding to the corresponding E field may be transmitted.
- the channel ID may be added to the next byte.
- the RadioBearerID may be included in the duplication activation message instead of the plurality of logical channel IDs. This message may also be sent in DCI format.
- the duplication deactivation message 3510 may be transmitted in a MAC CE (Control Element) format, and may be transmitted by indicating that the duplication deactivation message is in the LCID (Logical Channel ID, Logical Channel ID) portion of the MAC CE. Alternatively, if there is an ID field of the message in addition to the LCID, it may be displayed by indicating that it is a duplication deactivation message. Alternatively, a specific message may indicate that this message is a duplication deactivation message.
- MAC CE Control Element
- LCID Logical Channel ID
- a specific message may indicate that this message is a duplication deactivation message.
- the duplication deactivation message may include a plurality of logical channel IDs and an E field for each logical channel ID, and when a specific E field has a value of 1 (or 0), the logic corresponding to the corresponding E field may be transmitted.
- the channel ID may be added to the next byte.
- the Duplication Deactivation message may include RadioBearerID instead of the plurality of logical channel IDs. This message may also be sent in DCI format.
- the duplication carrier mapping message 3610 may be transmitted in a MAC CE (Control Element) format, and may be transmitted by indicating that it is a duplication carrier mapping message in the LCID (Logical Channel ID) portion of the MAC CE. Alternatively, if there is an ID field of the message in addition to the LCID, this may be indicated by a duplication carrier mapping message and transmitted. Alternatively, a specific message may indicate that this message is a duplication carrier mapping message.
- MAC CE Control Element
- LCID Logical Channel ID
- the UE may change the mapping between the logical channel and the CC by receiving the duplication carrier mapping message 3610 of FIG. 36. However, even if the mapping between the logical channel and the CC is changed, the retransmission (for example, HARQ) operation in progress in the specific logical channel may be performed as it is.
- the UE determines whether a triggering condition of a measurement report set in advance is met and measures a reference signal (RS), etc. (S3710). At this time, if the measured value satisfies the triggering condition (S3720), the terminal sends a measurement report message to the base station (S3730), and based on this, the base station instructs radio bearer setup for packet duplication (S3740).
- This setting may be in the message format of FIG. 9 and some of the fields included in FIG. 9 may be applied.
- the terminal and the base station may set up a radio bearer that performs packet duplication (S3750).
- the format of this bearer may be one of the formats described in FIGS. 3-8.
- 38 is a diagram illustrating a terminal according to an embodiment of the present invention (3800).
- the terminal 3800 may include a transceiver 3810 and a controller 3830.
- the controller 3830 may include at least one processor.
- the transceiver 3810 and the controller 3830 may be electrically connected to each other.
- the controller 3830 may control the transceiver 3810 to transmit and receive a signal. Transmitting and / or receiving a signal, information, a message, etc. by the controller 3830 may be interpreted by the controller 3830 controlling the transceiver 3810 to transmit and / or receive a signal, a message, and the like.
- the terminal 3800 may transmit and / or receive a signal through the transceiver 3810.
- the controller 3830 may control the overall operation of the terminal 3800.
- the controller 3830 may control the operation of the terminal described with reference to FIGS. 1 to 37.
- 39 is a diagram illustrating a base station according to an embodiment of the present invention (3900).
- the base station 3900 may include a transceiver 3910 and a controller 3930.
- the controller 3930 may include at least one processor.
- the transceiver 3910 and the controller 3930 may be electrically connected to each other.
- the controller 3930 may control the transceiver 3910 to transmit and receive a signal. Transmitting and / or receiving a signal, information, a message, etc. by the controller 3930 may be interpreted as the controller 3930 controlling the transceiver 3910 to transmit and / or receive a signal, a regular message, and the like.
- the base station 3900 may transmit and / or receive a signal through the transceiver 3910.
- the controller 3930 may control overall operations of the base station 3900.
- the controller 3930 may control the operation of the base station described with reference to FIGS. 1 to 37.
- 40 is an embodiment of a bearer structure for packet redundancy (4000).
- one radio bearer is set to allow packet duplication and a radio bearer ID value is set to x.
- the base station and the terminal may have one or more Signaling Radio Bearer (SRB) and Data Radio Bearer (Data Radio Bearer).
- SRB Signaling Radio Bearer
- Data Radio Bearer Data Radio Bearer
- 40 illustrates that a PDCP device (or entity) of a radio bearer replicates a PDCP PDU (Protocol Data Unit) and then sends each replicated PDCP PDU to different RLC devices for processing.
- Each RLC device is mapped to a logical channel respectively.
- each logical channel ID is represented by y1 4010 and y2 4020.
- mapping with a cell is necessary for efficient packet transmission.
- a logical channel and a cell it is possible to limit the cells to which specific logical channel data can be sent.
- Such a cell may be replaced with a component carrier (CC), a band width part (BWP), or the like.
- CC component carrier
- BWP band width part
- logical channel 4010 with logical channel ID y1 is mapped to PCell (or PSCell, having PSCell if it is a secondary cell group) and SCell2, and logical channel 4020 with logical channel ID y2 is SCell3. Is mapped to.
- data packets copied through packet duplication may be prevented from being transmitted to the same cell (or the same CC, the same BWP) even though the MAC device (entity) undergoes multiplexing.
- the MAC device entity
- two or more data packets duplicated in the same MAC PDU are not included, and the original PDCP PDU and the duplicated PDCP PDU are not transmitted in the same transport block.
- the primary logical channel and the secondary logical channel described above with reference to FIGS. 5, 6, 9, 30, and 31 may be configured for bearers allowed for packet duplication.
- the primary logical channel always transmits / receives a packet regardless of enabling packet redundancy, but the secondary logical channel transmits / receives a packet only when packet redundancy is enabled. That is, when packet redundancy is activated, the same PDCP PDU is transmitted on the primary logical channel and the secondary logical channel, respectively.
- the PDCP PDUs may be called original PDCP PDUs and cloned PDCP PDUs, respectively. If packet redundancy is disabled, the PDCP PDUs are sent only on the primary logical channel.
- the RLC device of the secondary logical channel may be re-establihsment.
- Whether a specific logical channel is a primary logical channel or a secondary logical channel may be designated by an RRC configuration (RRC configuration) or the like, but may define a rule for distinguishing when the configuration is not necessary.
- RRC configuration RRC configuration
- the primary logical channel can be determined using one of the following rules:
- -Logical channel with small logical channel ID value becomes primary logical channel. If there are three or more logical channels, the logical channel with the smallest logical channel ID value becomes the primary logical channel. The remaining logical channels become secondary logical channels.
- -A logical channel with a large logical channel ID value becomes a primary logical channel. If there are three or more logical channels, the logical channel with the largest logical channel ID value becomes the primary logical channel. The remaining logical channels become secondary logical channels.
- FIG. 41 illustrates a procedure of processing a packet corresponding to a bearer allowed for packet duplication (4100).
- the receiver transmits the packet to the corresponding logical channel to process the packet (S4120, S4130). If the packet duplication is inactivated state, it is possible to check whether the corresponding packet corresponds to the primary logical channel (S4120, S4140), and if the packet is a primary logical channel, the packet is transmitted to the corresponding logical channel to be processed (S4130). Otherwise, this may be determined as a packet of the secondary logical channel, and the packet is discarded and not transmitted to the logical channel (S4150).
- the MAC subheader informs the information of MAC layer data called MAC SDU (Service Data Unit).
- the MAC subheader may include an R (Reserved, Reserved), F (Format, Format), LCID (Logical Channel ID, Logical Channel ID), L (Length, Length) field.
- the R field is a reserved field and is usually set to 0, which is a default value.
- the F field indicates the length of the L field.
- the LCID field indicates a logical channel ID of data (MAC SDU).
- the L field indicates the length of the MAC SDU. Normally, this value should be set to the correct value, and if an unset value (invalid value) is set, it can be considered that there is an error in the packet. For example, when the R field is set to 1, it may be treated as an unused value.
- FIG. 43 illustrates a procedure of a receiver when a packet is received (4300).
- the embodiment of FIG. 43 illustrates an embodiment of processing when a MAC PDU is received by a MAC entity.
- the received MAC PDU may include a MAC SDU (S4310).
- S4310 MAC SDU
- At this time at least one unused value may be included in the MAC PDU.
- the SDU including the corresponding value or its subheader can be checked. If the SDU cannot be identified correctly, the entire received MAC PDU can be discarded. Otherwise, if the MAC SDU can be identified, the MAC SDU or subheader is checked for unused values.
- data is sent to the corresponding logical channel to process the packet (S4320, S4330). If the unused value is included, it is necessary to check whether the value is the LCID field used in the last RRC reset (the last reset of the last RRC reset) (S4320, S4340). If the LCID field was used for the last RRC reset, it may be a part generated before the latest RRC reset, and this part may not be an error in the transmission / reception process. In other words, the value used in the last reset may be a value not used by the last reset. In this case, only the corresponding MAC SDU may be discarded (S4350).
- the unused value is an ID of a logical channel in which packet duplication is inactivated, it may be data generated when packet duplication is activated or data transmitted by a transmitter not aware of the deactivation. If such packet duplication is allowed, but the ID of the inactive logical channel is included, only the corresponding MAC SDU may be discarded (S4360, S4350). If an unused value other than the case described above is included, the entire MAC PDU may be discarded (S4360, S4370).
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 개시는 LTE와 같은 4G 통신 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 또는 pre-5G 통신 시스템에 관련된 것이다. 본 발명의 실시 예는 패킷 중복을 위한 데이터 처리 방법 및 구조에 관한 것으로, 본 발명의 실시 예에 따르면 패킷 중복을 수행할 때의 무선 베어러 설정 방식, 패킷 복제 동작, 버퍼상태보고 방식이 개시된다.
Description
본 발명은 패킷 중복을 위한 데이터 처리 방법 및 장치에 관한 것이며, 나아가 패킷 중복을 위한 데이터 구조에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 시스템이라 불리어지고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
한편, 패킷에 기반한 이동 통신 시스템에서 패킷 중복을 위한 데이터 처리 방법 및 구조에 관한 연구가 필요하다.
본 발명의 실시 예에서 이루고자 하는 기술적 과제는 패킷 중복을 위한 데이터 처리 방법 및 장치, 나아가 데이터 구조를 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 패킷 중복을 수행할 때의 무선 베어러 설정 방식, 패킷 복제 동작, 버퍼상태보고 방식을 제공하는 것이다.
본 발명의 실시 예에 따르면, 이동 통신 시스템에서 단말의 방법은 기지국으로부터 논리 채널을 CC(Component Carrier)에 매핑시키기 위한 정보를 수신하는 단계 및 논리 채널에서 처리된 데이터 패킷을 정보에 따라 매핑된 CC를 통해서 기지국으로 전송하는 단계를 포함할 수 있다.
본 발명의 또 다른 실시 예에 따르면, 이동 통신 시스템의 단말은 신호를 송수신하는 송수신부 및 기지국으로부터 논리 채널을 CC(Component Carrier)에 매핑시키기 위한 정보를 수신하고, 논리 채널에서 처리된 데이터 패킷을 정보에 따라 매핑된 CC를 통해서 기지국으로 전송하도록 설정된 제어부를 포함할 수 있다.
본 발명의 또 다른 실시 예에 따르면, 이동 통신 시스템에서 기지국의 방법은 논리 채널을 CC(Component Carrier)에 매핑시키기 위한 정보를 단말로 전송하는 단계 및 논리 채널에서 처리된 데이터 패킷을 정보에 따라 매핑된 CC를 통해서 단말로부터 수신하는 단계를 포함할 수 있다.
본 발명의 또 다른 실시 예에 따르면, 이동 통신 시스템의 기지국은 신호를 송수신하는 송수신부 및 논리 채널을 CC(Component Carrier)에 매핑시키기 위한 정보를 단말로 전송하고, 논리 채널에서 처리된 데이터 패킷을 정보에 따라 매핑된 CC를 통해서 단말로부터 수신하도록 설정된 제어부를 포함할 수 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에서 이루고자 하는 기술적 과제는 패킷 중복을 위한 데이터 처리 방법 및 구조를 제공할 수 있다. 또한, 본 발명의 일 실시 예에 따르면 여러 개의 링크를 가지는 통신 환경에서 효과적인 중복 전송이 가능하다.
도 1은 LTE CA 환경에서의 무선 베어러 구조를 나타낸 도면이다.
도 2는 본 발명의 일 실시 예에 따른 패킷 중복을 수행하는 송신기 기본 흐름도를 나타낸 도면이다.
도 3은 본 발명의 일 실시 예에 따른 패킷 중복을 위한 베어러 구조의 실시예를 나타낸 도면이다.
도 4는 본 발명의 일 실시 예에 따른 패킷 중복을 위한 베어러 구조의 다른 실시예를 나타낸 도면이다.
도 5는 본 발명의 일 실시 예에 따른 패킷 중복을 위한 베어러 구조의 다른 실시예를 나타낸 도면이다.
도 6은 본 발명의 일 실시 예에 따른 패킷 중복을 위한 베어러 구조의 다른 실시예를 나타낸 도면이다.
도 7은 본 발명의 일 실시 예에 따른 패킷 중복을 위한 베어러 구조의 다른 실시예를 나타낸 도면이다.
도 8은 본 발명의 일 실시 예에 따른 패킷 중복을 위한 베어러 구조의 다른 실시예를 나타낸 도면이다.
도 9는 본 발명의 일 실시 예에 따른 패킷 중복을 위한 무선 베어러 설정 메시지의 실시예를 나타낸 도면이다.
도 10은 본 발명의 일 실시 예에 따른 패킷 중복의 설정 및 해제를 수행하는 실시예를 나타낸 도면이다.
도 11은 본 발명의 일 실시 예에 따른 패킷 중복의 설정 및 해제를 수행하는 다른 실시예를 나타낸 도면이다.
도 12는 본 발명의 일 실시 예에 따른 패킷 중복의 설정 및 해제를 수행하는 다른 실시예를 나타낸 도면이다.
도 13은 본 발명의 일 실시 예에 따른 패킷 중복을 시작하는 경우에 패킷 중복을 위한 논리 채널로 패킷 전송을 시작하는 방식의 실시예를 나타낸 도면이다.
도 14는 본 발명의 일 실시 예에 따른 패킷 중복을 시작하는 경우에 패킷 중복을 위한 논리 채널로 패킷 전송을 시작하는 방식의 다른 실시예를 나타낸 도면이다.
도 15는 본 발명의 일 실시 예에 따른 패킷 중복을 시작하는 경우에 패킷 중복을 위한 논리 채널로 패킷 전송을 시작하는 방식의 다른 실시예를 나타낸 도면이다.
도 16은 본 발명의 일 실시 예에 따른 패킷 중복이 해제되었을 때 수행하는 절차의 실시예를 나타낸 도면이다.
도 17은 본 발명의 일 실시 예에 따른 패킷 중복이 해제되었을 때 수행하는 절차의 다른 실시예를 나타낸 도면이다.
도 18은 패킷 중복이 수행되는 경우의 구체적인 동작 예를 도시하는 도면이다.
도 19는 본 발명의 일 실시 예에 따른 패킷 중복을 수행하는 경우에 상향링크 버퍼상태보고를 보내는 실시예를 나타낸 도면이다.
도 20은 본 발명의 일 실시 예에 따른 패킷 중복을 수행하는 경우에 상향링크 버퍼상태보고를 보내는 다른 실시예를 나타낸 도면이다.
도 21은 본 발명의 일 실시 예에 따른 패킷 중복을 수행하는 경우에 상향링크 버퍼상태보고를 보내는 다른 실시예를 나타낸 도면이다.
도 22는 본 발명의 일 실시 예에 따른 패킷 중복 횟수를 적용하는 실시예를 나타낸 도면이다.
도 23은 본 발명의 일 실시 예에 따른 패킷 중복 활성화 메시지의 형식을 나타낸 도면이다.
도 24는 본 발명의 일 실시 예에 따른 패킷 중복 활성화 메시지의 다른 형식을 나타낸 도면이다.
도 25는 본 발명의 일 실시 예에 따른 패킷 중복 활성화 메시지의 다른 형식을 나타낸 도면이다.
도 26은 본 발명의 일 실시 예에 따른 패킷 중복 비활성화 메시지의 형식을 나타낸 도면이다.
도 27은 본 발명의 일 실시 예에 따른 패킷 중복 비활성화 메시지의 다른 형식을 나타낸 도면이다.
도 28은 본 발명의 일 실시 예에 따른 패킷 중복 비활성화 메시지의 다른 형식을 나타낸 도면이다.
도 29는 본 발명의 일 실시 예에 따른 패킷 중복 활성화/비활성화 메시지의 다른 형식을 나타낸 도면이다.
도 30은 본 발명의 일 실시 예에 따른 따른 패킷 중복을 위한 무선 베어러 설정 메시지의 또 다른 실시 예를 나타낸 도면이다.
도 31은 본 발명의 일 실시 예에 따른 따른 패킷 중복을 위한 무선 베어러 설정 메시지의 또 다른 실시 예를 나타낸 도면이다.
도 32는 본 발명의 일 실시 예에 따른 패킷 중복 활성화 메시지의 다른 형식을 나타낸 도면이다.
도 33은 본 발명의 일 실시 예에 따른 패킷 중복 비활성화 메시지의 다른 형식을 나타낸 도면이다.
도 34는 본 발명의 일 실시 예에 따른 패킷 중복 활성화 메시지의 다른 형식을 나타낸 도면이다.
도 35는 본 발명의 일 실시 예에 따른 패킷 중복 비활성화 메시지의 다른 형식을 나타낸 도면이다.
도 36은 본 발명의 일 실시 예에 따른 논리 채널과 CC 간의 매핑 관계를 동적으로 변경하는 메시지의 형식을 나타내는 도면이다.
도 37은 본 발명의 일 실시 예에 따른 패킷 중복의 설정이 시작되는 절차의 실시예를 나타낸 도면이다.
도 38은 본 발명의 일 실시 예에 따른 단말을 나타낸 도면이다.
도 39는 본 발명의 일 실시 예에 따른 기지국을 나타낸 도면이다.
도 40은 본 발명의 일 실시 예에 따른 패킷 중복을 위한 베어러 구조 및 프라이머리 논리 채널 결정의 실시예를 나타낸 도면이다.
도 41은 본 발명의 일 실시 예에 따른 수신기 동작을 나타낸 도면이다.
도 42는 본 발명의 일 실시 예에 따른 서브헤더 형식을 나타낸 도면이다.
도 43은 본 발명의 일 실시 예에 따른 수신기 동작을 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예들을 상세히 설명한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의해야 한다. 또한 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다.
본 명세서에서 실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이 때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이 때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.
도 1은 LTE CA(Carrier Aggregation) 환경에서의 무선 베어러(Radio Bearer) 구조이다(100). LTE CA에서는 각각의 베어러 별로 데이터 플로우(Data Flow)를 처리하게 되며 데이터가 하나의 무선 베어러에 맵핑 된다. 이 무선 베어러는 각각 논리채널(Logical Channel)에 1:1로 맵핑되고 이들 논리채널은 MAC 계층에서 멀티플렉싱(Multiplexing) 되어 전송이 된다. CA는 여러 CC(Component Carrier)들을 묶어서 여러 주파수 자원을 모아서 사용하는 기술로써 MAC 계층에서 멀티플렉싱 된 데이터는 CC들 중 하나로 전송되게 된다. 도 1에서는 무선 베어러 1, 2가 각각 PDCP 장치, RLC 장치를 가지고 논리채널 1, 2에 맵핑된 실시예를 나타낸다. 이들 논리채널 1,2는 MAC 계층에서 멀티플렉싱 된 후 CC 1,2,3 중 하나로 데이터가 전송된다. 각 논리 채널 또는 무선 베어러 별로 전송할 수 있는 CC의 제한은 없다. 이때, CC는 단말에게 하나의 셀(cell)로 인식될 수 있어, PCell(Primary Cell) 또는 SCell(Secondary Cell) 로써 설정될 수 있으며, 이하의 설명에 대해서도 마찬가지이다.
도 2는 패킷 중복(Packet Duplication)을 수행하는 송신기 기본 흐름도이다(200). 특정 무선 베어러(210)에 대해 패킷 중복을 설정하게 되면 해당 무선 베어러(210)로 처리되는 데이터는 패킷 중복 절차를 거칠 수 있다. 통상적으로 패킷 중복 절차는 데이터를 복제한 후 서로 다른 논리 채널로 데이터를 보내는 과정으로 수행된다. 이 때 패킷 중복을 수행해서 복제된 데이터 패킷들은 각각 다른 논리채널(220, 230)로 보내어 지거나, 스프릿 베어러(Split Bearer) 환경에서 각각 다른 스플릿(Split)으로 보내어지거나, 각각 다른 CC로 보내게 되거나, 서로 다른 뉴머롤로지(Numerology) 또는 TTI 타입으로 보내어질 수 있다. 패킷 중복을 수행하여 데이터 패킷을 복제하는 것은 데이터를 처리하는 계층인 PDCP, RLC, MAC 계층 중 하나에서 할 수 있다. 그리고 여기에서의 데이터는 사용자(User)가 처리하는 IP 패킷 같은 형식이 될 수도 있다. 또 어떤 실시예에서는 이 데이터는 RRC 메시지 같은 프로토콜 내의 제어 신호(Control Signal)일 수도 있다.
도 3은 패킷 중복을 위한 베어러 구조의 실시예이다(300). 도 3의 실시예에서는 무선베어러 A(310)와 무선 베어러 B(320)가 설정되어 있다. 통상적으로 기지국과 단말 사이에는 하나 이상의 신호 무선 베어러(Signaling Radio Bearer, SRB)와 데이터 무선 베어러(Data Radio Bearer)를 가질 수 있다. 무선 베어러 A(310)는 패킷 중복이 허용되는 베어러이고 무선 베어러 B(320)는 패킷 중복이 허용되지 않는 베어러이다. 도 3의 실시예에서는 무선 베어러 A(310)의 PDCP 장치(또는, 엔티티)에서 PDCP PDU(Protocol Data Unit)을 복제한 후 서로 다른 RLC 장치로 각각의 복제된 PDCP PDU를 보내어 처리하는 것을 나타낸다. 각각의 RLC 장치는 논리채널1, 2(330, 340)에 각각 맵핑된다. 무선베어러 B(320)는 패킷 중복이 허용되지 않기 때문에 하나의 논리채널(논리채널3)에 맵핑된다.
이 때 효율적인 패킷 전송을 위해서 논리채널과 CC(Component Carrier)와의 맵핑이 필요하다. 다시 말해서, 논리채널과 CC를 매핑 시킴으로써(즉, 논리채널과 CC 간의 매핑 관계를 설정/정의함으로써) 특정 논리 채널 데이터를 보낼 수 있는 CC를 제한하여 지정할 수 있다. 패킷 중복의 경우 복제한 패킷을 별도의 데이터 처리 후 전송하여 안정성(Reliability)을 높이고 전송 지연(Latency)을 줄이는 것이 주된 목적인데 이러한 목적을 효과적으로 달성시키기 위해서는 복제된 데이터 패킷들이 각각 다른 CC로 전송되는 것이 필요하다. 도 3의 실시예에서 논리채널1(330)은 CC1, CC2와 매핑되어 논리채널1(330)의 데이터 패킷은 CC1, CC2를 통해 전송될 수 있고, 논리채널 2(340)는 CC3과 매핑되어 논리채널2(340)의 데이터 패킷은 CC3을 통해 전송될 수 있고, 논리채널3의 데이터 패킷은 CC2, CC3으로 전송될 수 있다. 이와 같이 논리채널과 CC 가 매핑됨으로써, 패킷 중복을 통해 복제된 데이터 패킷들이 MAC 장치(엔티티)에서 멀티플렉싱 과정을 거치더라도 동일한 CC로 전송되는 것을 방지할 수 있다. 다시 말해서, 같은 MAC PDU 내에 복제된 둘 이상의 데이터 패킷이 포함되지 않게 되며, 오리지널 PDCP PDU와 복제된 PDCP PDU가 동일한 전송 블록에서 전송되지 않게 된다.
한편, 상술한 실시 예와는 달리 논리채널을 뉴머롤로지나 TTI에 매핑하는 것도 가능하다. 즉, 논리채널을 CC로 매핑시키는 것과 조합하거나 CC로 매핑시키는 것과는 별도로, 논리채널을 데이터 패킷 전송을 위한 특정 뉴머롤로지 및/또는 TTI에 매핑시킬수도 있다. 또한, 이러한 논리채널과 CC 간의 매핑은 상술한 패킷 중복 과정에 한정하여 수행되는 것은 아니며, 패킷 중복과는 별도로 수행될 수도 있다.
베어러가 패킷 중복을 허용할지의 여부는 패킷이 담고 있는 트래픽의 종류에 따라 정해질 수 있다. 트래픽의 종류는 음성, 비디오 스트리밍, 웹서핑 데이터 등으로 구분될 수 있으며 이러한 구분에 의해 특정 종류의 트래픽은 패킷 중복을 허용하게 설정될 수 있다. 또한 데이터의 QoS 설정 값에 따라 패킷 중복 여부가 설정될 수도 있다. 한편 이런 QOS 설정 값은 QoS 플로우 ID같은 QoS를 나타내는 ID로 표현될 수 있는데, 이럴 때 특정 QoS 플로우 ID에 대해 패킷 중복을 허용하는 것도 가능하다. 예를 들어 QoS 플로우 ID가 0에서 15번의 값을 가지는 패킷이 전송되는 베어러는 패킷 중복을 하고 나머지 QoS 플로우 ID를 가지는 패킷이 전송되는 베어러는 패킷 중복을 하지 않게 하는 것도 가능하다. 베어러가 패킷 중복을 허용할지는 상술한 여러 가지 기준들 각각 또는 둘 이상의 조합에 의해 정해질 수 있으며, 상술한 기준들 외에도 다른 기준들이 얼마든지 적용될 수 있음은 물론이다.
그리고 패킷 중복이 적용되는 것은 제어 신호를 전송하는 SRB나 데이터를 전송하는 DRB 모두에 적용될 수 있다.
도 4는 패킷 중복을 위한 베어러 구조의 다른 실시예이다(400). 도 4의 실시예에서는 무선베어러 A(410)와 무선 베어러 B(420)가 설정되어 있다. 통상적으로 기지국과 단말 사이에는 하나 이상의 신호 무선 베어러(Signaling Radio Bearer, SRB)와 데이터 무선 베어러(Data Radio Bearer)를 가질 수 있다. 무선 베어러 A(410)는 패킷 중복이 허용되는 베어러이고 무선 베어러 B(420)는 패킷 중복이 허용되지 않는 베어러이다. 도 3의 실시예에서는 무선 베어러 A(410)의 RLC 장치(또는, 엔티티)에서 RLC PDU(Protocol Data Unit)을 복제한 후 서로 다른 논리채널로 각각의 복제된 RLC PDU를 보내어 처리하는 것을 나타낸다. 무선 베어러 A(410)의 RLC 장치는 논리채널1,2에 맵핑된다. 무선베어러 B는 패킷 중복이 허용되지 않기 때문에 논리채널3 하나의 논리채널에 맵핑된다.
이 때 효율적인 패킷 전송을 위해서 논리채널과 CC(Component Carrier)와의 맵핑이 필요하다. 다시 말해서, 논리채널과 CC를 매핑시킴으로써(즉, 논리채널과 CC 간의 매핑 관계를 설정/정의함으로써) 특정 논리 채널 데이터를 보낼 수 있는 CC를 제한하여 지정할 수 있다. 패킷 중복의 경우 복제한 패킷을 별도의 데이터 처리 후 전송하여 안정성(Reliability)을 높이고 전송 지연(Latency)을 줄이는 것이 주된 목적인데 이러한 목적을 효과적으로 달성시키기 위해서는 복제된 데이터 패킷들이 각각 다른 CC로 전송되는 것이 필요하다. 도 4의 실시예에서 논리채널1은 CC1, CC2와 매핑되어 논리채널1의 데이터 패킷은 CC1, CC2를 통해 전송될 수 있고, 논리채널 2는 CC3과 매핑되어 논리채널2의 데이터 패킷은 CC3을 통해 전송될 수 있고, 논리채널3의 데이터 패킷은 CC2, CC3으로 전송될 수 있다. 이와 같이 논리채널과 CC 가 매핑됨으로써, 패킷 중복을 통해 복제된 데이터 패킷들이 MAC 장치(엔티티)에서 멀티플렉싱 과정을 거치더라도 동일한 CC로 전송되는 것을 방지할 수 있다. 다시 말해서, 같은 MAC PDU 내에 복제된 둘 이상의 데이터 패킷이 포함되지 않게 되며, 오리지널 PDCP PDU와 복제된 PDCP PDU가 동일한 전송 블록에서 전송되지 않게 된다.
한편, 상술한 실시 예와는 달리 논리채널을 뉴머롤로지나 TTI에 매핑하는 것도 가능하다. 즉, 논리채널을 CC로 매핑시키는 것과 조합하거나 CC로 매핑시키는 것과는 별도로, 논리채널을 데이터 패킷 전송을 위한 특정 뉴머롤로지 및/또는 TTI에 매핑시킬수도 있다. 또한, 이러한 논리채널과 CC 간의 매핑은 상술한 패킷 중복 과정에 한정하여 수행되는 것은 아니며, 패킷 중복과는 별도로 수행될 수도 있다.
그리고 패킷 중복이 적용되는 것은 제어 신호를 전송하는 SRB나 데이터를 전송하는 DRB 모두에 적용될 수 있다.
도 5는 패킷 중복을 위한 베어러 구조의 다른 실시예이다(500). 패킷 중복은 사전에 정의된 특정 상황에서 수행하는 것이 통신망의 효율을 위해 필요할 수 있다. 이것을 위해서 논리채널을 패킷 중복을 하지 않을 때와 패킷 중복을 시행할 때 모두 사용하는 논리 채널 (프라이머리 (Primary) 논리 채널)과 패킷 중복을 시행할 때만 데이터 전송에 사용하는 논리채널 (세컨더리 (Secondary) 논리채널)로 구분하여 정의될 수 있다. 도 5의 실시예에서는 패킷 중복을 허용하는 무선 베어러 A(510)에 대하여 논리채널 1(520)은 프라이머리(primary) 논리채널로, 논리채널 2(530)는 세컨더리(secondary) 논리 채널로 설정된 경우를 나타낸다. 그 외 베어러 구조는 도 3에 정의된 것과 같다. 프라이머리, 세컨더리 논리 채널은 RRC 설정(RRC Configuration) 등으로 기지국에서 지정할 수 있다. 또한 단말은 세컨더리 논리 채널로 데이터가 전송되는 것을 패킷 중복 활성화 메시지 등을 통해서 지시받을 수 있다. 이러한 패킷 중복 활성화 메시지에 대한 구체적인 실시 예는 후술한다.
그리고 패킷 중복이 적용되는 것은 제어 신호를 전송하는 SRB나 데이터를 전송하는 DRB 모두에 적용될 수 있다.
도 6은 패킷 중복을 위한 베어러 구조의 다른 실시예이다(600). 패킷 중복은 사전에 정의된 특정 상황에서 수행하는 것이 통신망의 효율을 위해 필요할 수 있다. 이것을 위해서 논리채널을 패킷 중복을 하지 않을 때와 패킷 중복을 시행할 때 모두 사용하는 논리 채널 (프라이머리 (Primary) 논리 채널)과 패킷 중복을 시행할 때만 데이터 전송에 사용하는 논리채널 (세컨더리 (Secondary) 논리채널)로 구분하여 정의될 수 있다. 도 6의 실시예에서는 패킷 중복을 허용하는 무선 베어러 A(610)에 대하여 논리채널 1(620)은 프라이머리 논리채널로, 논리채널 2(630)는 세컨더리 논리 채널로 설정된 경우를 나타낸다. 그 외 베어러 구조는 도 4에 정의된 것과 같다. 프라이머리, 세컨더리 논리 채널은 RRC 설정(RRC Configuration) 등으로 기지국에서 지정할 수 있다. 또한 단말은 세컨더리 논리 채널로 데이터가 전송되는 것을 패킷 중복 활성화 메시지 등을 통해서 지시받을 수 있다. 이러한 패킷 중복 활성화 메시지에 대한 구체적인 실시 예는 후술한다.
그리고 패킷 중복이 적용되는 것은 제어 신호를 전송하는 SRB나 데이터를 전송하는 DRB 모두에 적용될 수 있다.
도 7는 패킷 중복을 위한 베어러 구조의 또 다른 실시예이다(700). 도 3-6의 실시예에 나타난 단일 무선베어러가 다수의 논리채널과 CC에 맵핑되는 구조의 단순화 된 것으로 PDCP 장치, RLC 장치가 생략되어 있다. PDCP 장치와 RLC 장치는 도 3-6의 실시예의 맵핑 방법 중 하나로 될 수 있다. 도 7의 실시예에서는 무선 베어러1(710)이 논리 채널 1(720), 3(750)으로 패킷 중복이 되어 전송되고 논리채널 1(720)은 CC1(730)과 CC3(740)에, 논리채널 3(750)은 CC4(760)와 CC5(770)에 맵핑되어 전송된다.
그리고 패킷 중복이 적용되는 것은 제어 신호를 전송하는 SRB나 데이터를 전송하는 DRB 모두에 적용될 수 있다.
도 8은 패킷 중복을 위한 베어러 구조의 또 다른 실시예이다(800). 도 3-6의 실시예에 나타난 단일 무선베어러가 다수의 논리채널과 CC에 맵핑되는 구조의 단순화 된 것으로 PDCP 장치, RLC 장치가 생략되어 있다. PDCP 장치와 RLC 장치는 도 3-6의 실시예의 맵핑 방법 중 하나로 될 수 있다. 도 8의 실시예에서는 무선 베어러1(810)이 논리 채널 1(820), 3(850)으로 패킷 중복이 되어 전송되고 논리채널 1(820)은 CC1(830)과 CC3(840)에, 논리채널 3(850)은 CC4(860)와 CC5(870)에 맵핑되어 전송된다. 도 8의 실시예에서는 각 CC가 다수의 뉴머롤로지(Numerology)나 TTI 타입(Type)을 지원하는 것을 추가로 나타낸다. 가령 CC1(830)의 타입 1은 15 KHz 서브캐리어 간격(Subcarrier Spacing)과 1ms TTI를 가지고, 타입 2(835)는 30 KHz 서브캐리어 간격과 0.25ms TTI를 가질 수 있다. 도 8의 실시예에서는 무선 베어러1(810)의 패킷 중복을 수행하는 CC1(830)의 타입2(835)로, CC3(840)의 타입1과 2(845), CC4(860)의 타입 1,2,3(865), CC5(870)의 타입 1(875)로 전송될 수 있는 것을 나타낸다. 상술한 내용은 패킷 중복이 수행되어 복제된 데이터 패킷들이 전송되는 논리채널 및/또는 CC에 특정 뉴머롤로지 및/또는 TTI타입이 미리 매핑된 것으로 이해될 수도 있다. 한편, 상술한 맵핑은 일 실시예이며 기지국이나 단말의 설정, 트래픽의 종류, QoS 플로우 ID 등에 따라 다르게 지정될 수 있다.
그리고 패킷 중복이 적용되는 것은 제어 신호를 전송하는 SRB나 데이터를 전송하는 DRB 모두에 적용될 수 있다.
도 9에서는 도 3 내지 도 8에서 설명한 패킷 중복을 위한 무선 베어러 설정 메시지의 실시예를 나타낸다(900). 도 9에서 설정된 DRB ID는 6이며 DuplicationMode 필드가 True로 설정됨으로써 패킷 중복을 허용한다는 지시를 할 수 있다. 패킷 중복을 수행하는 논리 채널 ID(LogicalChannelIdentity 필드로 표시됨)는 4와 5이며 논리채널 4로 전송되는 패킷은 CC 1,2,3의 15KHz, 30KHz 뉴머롤로지로(Correspondingnumerology 필드로 표시됨)만 전송될 수 있고 논리채널 5로 전송되는 패킷은 CC 전체(All)를 다 사용하고 이 중 15KHz 뉴머롤로지로만 전송될 수 있음을 나타낸다. 뉴머롤로지는 도 9와 같이 주파수 간격으로 표시될 수도 있지만 사전에 설정된 뉴머롤로지, TTI 타입으로 지정될 수도 있다. 이 중 논리채널 4는 프라이머리 논리채널이며 논리채널 5는 세컨더리 논리채널이다(DuplicationType 필드로 표시됨). 그리고 각 논리채널이 독자적으로 같은 패킷을 중복해서 보낼 수도 있는데 NumberOfDuplication 필드에 설정된 값만큼 독자적인 패킷 중복 전송을 수행할 수도 있다. 독자적인 패킷 중복 전송이란 ARQ의 NACK이 수신 없이 송신기가 판단하여 전송을 한번 더 수행하는 것을 의미한다.
도 10은 패킷 중복의 설정 및 해제를 수행하는 하나의 실시예이다(1000). 기지국은 단말에게 Duplication 설정 메시지를 보내어 무선 베어러의 패킷 중복을 설정할 수 있다(S1010). 이 메시지에는 도 9의 설정 메시지 중 일부가 포함될 수 있다. 도 10의 실시예에서는 Duplication 설정 메시지를 수신하면 단말은 패킷 중복을 위한 베어러를 설정 하고 패킷 중복을 수행한다(S1020). 이후 단말이 기지국에서 Duplication 해제 메시지를 수신하면(S1030), 단말은 패킷 중복을 위한 베어러를 해제하거나, 패킷중복을 위한 세컨더리 논리채널을 해제하거나, 패킷 중복을 수행하지 않는 절차를 수행할 수 있다(S1040).
도 11은 패킷 중복의 설정 및 해제를 수행하는 다른 실시예이다(1100). 기지국은 단말에게 Duplication 설정 메시지를 보내어 무선 베어러의 패킷 중복을 설정할 수 있다(S1110). 이 메시지에는 도 9의 설정 메시지 중 일부가 포함될 수 있다. 도 11의 실시예에서는 Duplication 설정 메시지를 수신하면 단말은 패킷 중복을 위한 베어러를 설정 한다. 이후에 단말이 Duplication 활성화 메시지를 수신하면(S1120) 실제 패킷 중복을 수행한다(S1130). Duplication 활성화 메시지를 수신하기 전까지는 패킷 중복을 위한 논리채널은 생성하되 실제 데이터를 해당 논리채널로 보내진 않는다. 이 때에는 프라이머리 논리채널로만 데이터 전송을 수행 할 수도 있다. 이후 단말이 기지국에서 Duplication 비활성화 메시지를 수신하면(S1140) 실제 패킷 중복을 중단한다(S1150). 하지만 이 때에 패킷 중복을 위한 논리 채널 등 베어러 구조를 변경하지는 않는다. 세컨더리 논리 채널이 있는 경우 세컨더리 논리 채널로의 데이터 전송을 중지할 수 있다. 이후 단말이 기지국에서 Duplication 해제 메시지를 수신하면(S1160), 단말은 패킷 중복을 위한 베어러를 해제하거나, 패킷중복을 위한 세컨더리 논리채널을 해제하거나, 패킷 중복을 수행하지 않는 절차를 수행할 수 있다.
도 12는 패킷 중복의 설정 및 해제를 수행하는 다른 실시예이다(1200). 기지국은 단말에게 Duplication 설정 메시지를 보내어 무선 베어러의 패킷 중복을 설정할 수 있다(S1210). 이 메시지에는 도 9의 설정 메시지 중 일부가 포함될 수 있다. 도 12의 실시예에서는 Duplication 설정 메시지를 수신하면 단말은 패킷 중복을 위한 베어러를 설정 한다. 이후에 단말이 Duplication 활성화 메시지를 수신하고(S1220) 사전에 설정된 패킷 중복을 위한 조건(Duplication 조건)이 만족하는 경우(S1230), 단말은 실제 패킷 중복을 수행한다(S1240). 패킷 중복을 위한 조건은 단말과 기지국의 무선 링크 품질(Link Quality)가 일정 수준 이하인 경우인 것이 될 수 있다. Duplication 활성화 메시지를 수신하기 전까지는 패킷 중복을 위한 논리채널은 생성하되 실제 데이터를 해당 논리채널로 보내진 않는다. 이 때에는 프라이머리 논리채널로만 데이터 전송을 수행 할 수도 있다. 만약 사전에 설정된 패킷 중복을 위한 조건을 더 이상 만족하지 않거나 또는 패킷 중복 전송 취소를 위한 조건이 만족되는 경우 Duplication 활성화 메시지를 받은 이후라도 패킷 중복을 수행하지 않을 수도 있다. 그리고 단말이 기지국에서 Duplication 비활성화 메시지를 수신하면(S1250) 실제 패킷 중복을 중단한다(S1260). 하지만 이 때에 패킷 중복을 위한 논리 채널 등 베어러 구조를 변경하지는 않는다. 세컨더리 논리 채널이 있는 경우 세컨더리 논리 채널로의 데이터 전송을 중지할 수 있다. 이후 단말이 기지국에서 Duplication 해제 메시지를 수신하면(S1270), 단말은 패킷 중복을 위한 베어러를 해제하거나, 패킷중복을 위한 세컨더리 논리채널을 해제하거나, 패킷 중복을 수행하지 않는 절차를 수행할 수 있다.
도 13은 패킷 중복을 시작하는 경우에 패킷 중복을 위한 논리 채널로 패킷 전송을 시작하는 방식의 실시예를 나타낸다(1300). 도 13의 실시예에서는 중복 전송 이전에 논리채널1(LC1, 1310)로 전송으로만 전송을 수행하다가 패킷 중복이 시작된 경우 논리채널2(LC2, 1320)에서도 전송을 수행하는 것을 가정한다. 패킷 중복은 도 10 내지 도 12에 도시 및 설명된 여러 가지 실시 예들에 따라 실제 패킷 중복이 시작되는 시점을 기준으로 할 수 있다. 도 13의 실시예에서는 패킷 중복이 시작되는 경우 기존 논리 채널1(1310)에서 전송되었으나 ACK을 받지 않은 패킷 중 가장 순서 번호(SN, Sequence Number)가 빠른 것부터 이후 버퍼에 있는 패킷을 논리채널2(1320)로 옮길 수 있다(즉, 복제할 수 있다). 도 13의 실시예에서는 패킷 A-E가 전송되었으나 패킷 중복 시작 시점에는 패킷 A, C, E만 수신 상태이므로 ACK을 받지 않은 패킷 B, D 중 순서번호가 가장 빠른 B부터의 모든 패킷(즉, B-E)을 논리 채널2(1320)로 옮겨서(즉, 복제하여) 패킷 전송을 수행할 수 있다.
이 때 논리 채널2(1320)의 RLC SN(순서 번호)는 처음부터 시작할 수 있고, 그렇지 않으면 논리채널 1(1320)의 RLC 장치의 순서 번호를 그대로 사용할 수도 있다. 만약 논리 채널1(1310)과 논리 채널2(1320)의 순서번호를 동일하게 사용한다면 수신기의 논리채널 2(1320)에 해당하는 RLC 장치에게 논리채널 1(1310)의 RLC 상태 정보의 일부를 알려줄 수 있다. 이 때 해당되는 정보는 전송이 시작되는 RLC SN의 시작(패킷 B의 RLC SN) 또는 RLC 변수(Variable) 전체 등이 될 수도 있다. 또한 실시예에 따라 각 RLC 패킷에 대응되는 PDCP SN나 PDCP COUNT가 될 수도 있다.
도 14는 패킷 중복을 시작하는 경우에 패킷 중복을 위한 논리 채널로 패킷 전송을 시작하는 방식의 다른 실시예를 나타낸다(1400). 도 14의 실시예에서는 중복 전송 이전에 논리채널1(LC1, 1410)로 전송으로만 전송을 수행하다가 패킷 중복이 시작된 경우 논리채널2(LC2, 1420)에서도 전송을 수행하는 것을 가정한다. 패킷 중복은 도 10 내지 도 12에 도시 및 설명된 여러 가지 실시 예들에 따라 실제 패킷 중복이 시작되는 시점을 기준으로 할 수 있다. 도 14의 실시예에서는 패킷 중복이 시작되는 경우 기존 논리 채널1(1410)에서 전송되었으나 ACK을 받지 않은 패킷과 버퍼에 있는 전송되지 않은 패킷을 가장 순서 번호(SN, Sequence Number)가 빠른 것부터 논리채널2(1420)로 옮길 수 있다(즉, 복제할 수 있다). 도 14의 실시예에서는 패킷 A-E가 전송되었으나 패킷 중복 시작 시점에는 패킷 A, C, E만 수신 상태이므로 ACK을 받지 않은 패킷 B, D를 논리 채널2(1420)로 옮겨서(즉, 복제하여) 패킷 전송을 수행할 수 있다. 만약 ACK을 수신하지 않은 패킷이 없다면 버퍼에 있는 잔여 패킷부터 논리 채널2(1420)로 복제하여 전송할 수 있다.
이 때 논리 채널2(1420)의 RLC SN(순서 번호)는 처음부터 시작할 수 있고, 그렇지 않으면 논리채널 1(1410)의 RLC 장치의 순서 번호를 그대로 사용할 수도 있다. 만약 논리 채널1(1410)과 논리 채널2(1420)의 순서번호를 동일하게 사용한다면 수신기의 논리채널 2(1420)에 해당하는 RLC 장치에게 논리채널 1(1410)의 RLC 상태 정보의 일부를 알려줄 수 있다. 이 때 해당되는 정보는 전송이 시작되는 RLC SN의 시작(패킷 B의 RLC SN) 또는 RLC 변수(Variable) 전체 등이 될 수도 있다. 또한 실시예에 따라 각 RLC 패킷에 대응되는 PDCP SN나 PDCP COUNT가 될 수도 있다.
도 15는 패킷 중복을 시작하는 경우에 패킷 중복을 위한 논리 채널로 패킷 전송을 시작하는 방식의 다른 실시예를 나타낸다(1500). 도 15의 실시예에서는 중복 전송 이전에 논리채널1(LC1, 1510)로 전송으로만 전송을 수행하다가 패킷 중복이 시작된 경우 논리채널2(LC2, 1520)에서도 전송을 수행하는 것을 가정한다. 패킷 중복은 도 10 내지 도 12에 도시 및 설명된 여러 가지 실시 예들에 따라 실제 패킷 중복이 시작되는 시점을 기준으로 할 수 있다. 도 15의 실시예에서는 패킷 중복이 시작되는 경우 기존 논리 채널1(1510)에서 전송되지 않은 패킷을 가장 순서 번호(SN, Sequence Number)가 빠른 것부터 논리채널2(1520)로 옮길 수 있다(즉, 복제할 수 있다). 도 15의 실시예에서는 패킷 A-D가 전송되었으나 패킷 중복 시작 시점에는 패킷 A, C만 수신 상태이므로 전송되지 않은 패킷 E부터 패킷 중복을 수행하여 논리 채널 1(1510)과 논리 채널2(1520)로 옮겨서(즉, 복제하여) 패킷 전송을 수행할 수 있다. 다시 말해서, 논리 채널1(1510)이 내려보내지 않은 데이터 패킷이 논리 채널2(1520)로 복제될 수 있다.
이 때 논리 채널2(1520)의 RLC SN(순서 번호)는 처음부터 시작할 수 있고, 그렇지 않으면 논리채널 1(1510)의 RLC 장치의 순서 번호를 그대로 사용할 수도 있다. 만약 논리 채널1(1510)과 논리 채널2(1520)의 순서번호를 동일하게 사용한다면 수신기의 논리채널 2(1520)에 해당하는 RLC 장치에게 논리채널 1(1510)의 RLC 상태 정보의 일부를 알려줄 수 있다. 이 때 해당되는 정보는 전송이 시작되는 RLC SN의 시작(패킷 B의 RLC SN) 또는 RLC 변수(Variable) 전체 등이 될 수도 있다. 또한 실시예에 따라 각 RLC 패킷에 대응되는 PDCP SN나 PDCP COUNT가 될 수도 있다.
도 16는 패킷 중복을 수행하여 데이터 전송을 하다가 패킷 중복이 해제 되었을 때 수행하는 절차의 실시예를 나타낸다(1600). 도 16의 실시예에서는 논리채널 1과 2(1610, 1620)로 패킷 중복을 수행하여 패킷 전송을 수행하다가 도 10 내지 도 12의 설명에 기술된 여러 가지 실시 예들에 따라 실제 패킷 중복이 해제되는 시점에서 시행하는 동작을 나타낸다. 도 16의 실시예에서 패킷 중복이 해제되는 순간 논리채널 1(1610)에서는 패킷 A, C, E가 ACK을 받았고, B, D는 송신하였으나 ACK은 미수신되었고, 논리채널 2(1620)에서는 패킷 B, E가 ACK을 받았고, A, C, D는 송신하였으나 ACK이 미수신되었다. 이 때 패킷 중복을 수행하지 않기 위해 논리채널 중 하나의 데이터를 비우는 것을 수행하게 된다. 도 16에서는 임의로 논리 채널2(1620)의 데이터를 비우는 것을 가정하였으나 특정 조건에 따라 논리 채널을 선택할 수 있다. 이 때 특정 조건은 프라이머리 논리 채널로는 계속 전송하고 세컨더리 논리 채널은 데이터를 비우고 전송을 수행하지 않는 방식이 될 수도 있다.
도 17은 패킷 중복을 수행하여 데이터 전송을 하다가 패킷 중복이 해제 되었을 때 수행하는 절차의 다른 실시예를 나타낸다(1700). 도 17의 실시예에서는 논리채널 1과 2(1710, 1720)로 패킷 중복을 수행하여 패킷 전송을 수행하다가 도 10 내지 도 12의 설명에 기술된 여러 가지 실시 예들에 따라 실제 패킷 중복이 해제되는 시점에서 시행하는 동작을 나타낸다. 도 17의 실시예에서 패킷 중복이 해제되는 순간 논리채널 1(1710)에서는 패킷 A, C, E가 ACK을 받았고, B, D는 송신하였으나 ACK은 미수신되었고, 논리채널 2(1720)에서는 패킷 B, E가 ACK을 받았고, A, C, D는 송신하였으나 ACK이 미수신되었다. 이 때 패킷 중복을 수행하지 않기 위해 논리채널 중 하나의 데이터를 비우는 것을 수행하게 된다. 도 17에서는 임의로 논리 채널2(1720)의 데이터를 비우는 것을 가정하였으나 특정 조건에 따라 논리 채널을 선택할 수 있다. 이 때 특정 조건은 프라이머리 논리 채널로는 계속 전송하고 세컨더리 논리 채널은 데이터를 비우고 전송을 수행하지 않는 방식이 될 수도 있다.
그러나 패킷 B의 경우 이미 성공적으로 전송이 되었기 때문에 논리 채널 2(1720)를 비우기 전에 논리 채널 1(1710)에 이 정보를 알려주어 불필요한 재전송을 막게 할 수 있다. 도 17의 실시예에서는 논리채널 2(1720)의 RLC 장치(또는, 엔티티)가 성공적으로 ACK을 받은 패킷이 B와 E임을 논리채널 1(1710)의 RLC 장치에 알려주게 되고, 논리채널 1(1710)의 RLC 장치는 이 중 ACK을 받지 않은 패킷 B의 상태를 성공적인 수신으로 업데이트 하고 성공적으로 수신한 것으로 가정할 수 있다. 이러한 정보의 전송은 논리 채널 2(1720)의 RLC 장치에서 논리 채널 1(1710)의 RLC 장치로 전송한 패킷의 RLC 순서 번호(SN)를 직접 알려주거나, 논리채널2(1720)의 RLC 장치가 해당 패킷의 PDCP 순서번호(또는 RLC SN)를 무선 베어러의 PDCP 장치에게 알려주어 PDCP 장치가 논리채널 1(1710)의 RLC 장치에 해당 패킷의 순서 번호(RLC 또는 PDCP SN)를 알려주는 방식으로 할 수도 있다. 만약 각 패킷에 대한 논리채널 1(1710)과 논리채널2(1720)의 RLC 순서 번호가 다를 경우 이 값을 변환하는 과정을 거칠 수도 있다. 이 때 PDCP 순서 번호나 PDCP COUNT 값 등이 변환되는 과정에 사용될 수도 있다. 또한 실시예에 따라 하나의 논리채널의 RLC 장치가 다른 논리채널의 RLC 장치에 해당 패킷의 ACK 또는 NACK 수신한 패킷의 PDCP SN나 PDCP COUNT 정보를 직접 알려줄 수도 있다.
도 17의 실시예에서는 패킷 중복전송이 해제되는 시점에 위에 기술한 각 논리 채널의 전송 상황, 다시 말해서 RLC 상태 정보나 ACK 수신 상황을 다른 논리 채널에 전달하여 그것을 반영하는 실시예를 도시하고 있다. 그러나 이런 동작이 패킷 중복 전송이 해제되는 시점에 한정되는 것은 아니며 보통의 패킷 중복을 수행하여 전송하는 상황에서도 논리 채널 간에 논리 채널의 전송 상황을 알려주어 그것을 반영하는 절차를 수행할 수 있다. 이러한 정보의 전송은 논리 채널 2(1720)의 RLC 장치에서 논리 채널 1(1710)의 RLC 장치로 전송한 패킷의 RLC 순서 번호(SN)를 직접 알려주거나, 논리채널2(1720)의 RLC 장치가 해당 패킷의 PDCP 순서번호를 무선 베어러의 PDCP 장치에게 알려주어 PDCP 장치가 논리채널 1(1710)의 RLC 장치에 해당 패킷의 순서 번호를 알려주는 방식으로 할 수도 있다. 만약 각 패킷에 대한 논리채널 1(1710)과 논리채널2(1720)의 RLC 순서 번호가 다를 경우 이 값을 변환하는 과정을 거칠 수도 있다. 이 때 PDCP 순서 번호나 PDCP COUNT 값 등이 변환되는 과정에 사용될 수도 있다. 실시예에 따라 이러한 정보 전달 과정이 너무 자주 일어나지 않게 전송 간격을 사전에 설정된 값으로 적용될 수 있다. 예를 들어 10ms 마다 하나의 논리 채널에서 다른 논리채널로 논리채널의 전송상황을 전송하게 설정할 수도 있다. 그리고 이러한 동작은 ARQ가 아닌 HARQ 상황에서 서로 다른 HARQ 장치로 패킷 중복이 적용된 경우에도 적용할 수 있다.
한편, 도 16 및 도 17의 실시 예에서 설명한 바에 따라 패킷 중복이 해제되는 경우, PDCP 버퍼에 존재하고 RLC 등 하위 계층으로 전달되지 않은 패킷들에 대해서는 패킷 중복 없이 패킷 전송을 계속 수행할 수 있다.
도 18은 패킷 중복이 수행되는 경우의 구체적인 동작 예를 도시하는 도면이다(1800). 도 18에는 PDCP PDU 1(1810), PDCP PDU 2(1820), PDCP PDU 3(1830)의 임의 시점에서의 상태가 예시로써 도시된다. PDCP PDU 1(1810)은 송신기의 PDCP 계층에 도착한 패킷이 RLC 계층에 전달되어 RLC 헤더가 추가되고, 이어서 MAC 계층 이하의 하위 계층으로 전달되거나 수신기로 전송 중이다. PDCP PDU 2(1820)는 송신기의 PDCP 계층에 도착한 패킷이 RLC 계층에 전달되어 RLC 헤더가 추가되었으나, 아직 MAC 계층 이하의 하위 계층으로 전달되지는 않은 상태이다. PDCP PDU 2(1820)는 UL 그랜트(grant)의 무선 자원을 할당 받기 전에 패킷을 미리 생성하는 (pre-processing) 경우에 발생할 수 있다. PDCP PDU 3(1830)은 송신기의 PDCP 계층에 도착한 패킷이 하위 계층에 처리를 요청하지 않은 상태로 해석될 수 있다.
일 실시 예에 의하면, 패킷 중복이 수행되는 경우 송신기의 PDCP 계층에 도착한 패킷 중 RLC 계층에 전달되지 않은 상태인 패킷들에 대해서 중복 전송이 시작될 수 있다. 도 18의 실시 예에서는 PDCP PDU 3(1830)이 이에 해당한다. PDCP PDU 1(1810), PDCP PDU 2(1820) 와 같이 이미 RLC 계층으로 전달된 패킷의 중복 전송은 시작하지 않는다.
또 다른 실시 예에 의하면, 패킷 중복이 수행되는 경우 송신기의 PDCP 계층에 도착한 패킷 중 RLC 계층에 전달되어 RLC 헤더가 추가되고 MAC 이하 하위 계층으로 전달되었거나 이후 전송 중인 패킷(예를 들어, 도 18의 PDCP PDU 1(1810)), 송신기의 PDCP 계층에 도착한 패킷이 RLC 계층에 전달되어 RLC 헤더가 추가되었으나 MAC 이하 하위 계층으로 전달되지 않은 패킷(예를 들어, 도 18의 PDCP PDU 2(1820)), 및 송신기의 PDCP 계층에 도착한 패킷이 RLC 계층에 전달되지 않은 패킷(예를 들어, 도 18의 PDCP PDU 3(18930))에 대해서 중복 전송이 시작될 수 있다. 이를 위해서, 송신기는 중복 전송이 시작되는 경우 RLC 계층으로 전달된 패킷 중 아직 성공적으로 수신을 확인받지 못한 상태의 패킷 정보를 PDCP 계층으로 보내줄 수 있다(또는, 보고할 수 있다). 이때, PDCP 계층으로 전송되는 패킷 정보는 PDCP SN 등이 포함될 수 있다. 이를 바탕으로, 송신기는 수신된 패킷 정보에 해당하는 패킷들을 선별하여 패킷 중복 전송을 시작할 수 있다. 상기 패킷 정보를 전달하기 위해서 RLC 또는 PDCP 계층에서는 패킷들의 RLC 순서 번호(SN, Sequence Number)와 PDCP SN이 어떤 값을 가지는지 관리할 수 있다. 이를 바탕으로, 성공적으로 전송되지 않은 RLC 버퍼에 있는 패킷들의 PDCP 순서 번호 값을 알 수 있게 된다.
도 19에서는 패킷 중복을 수행하는 경우에 단말이 기지국에게 상향링크 버퍼상태보고(Buffer Status Report)를 보내는 실시예를 나타낸다(1900). 도 19의 실시예에서는 무선 베어러 1과 2는 패킷 중복을 하지 않으며 각각 논리 채널 1과 2에 맵핑된다. 하지만 무선 베어러 3은 패킷 중복이 적용되어 논리 채널3(1910)과 논리 채널 4(1920)에 맵핑되는 것을 가정한다. 버퍼 상태 보고는 각 논리 채널들의 버퍼 상태를 바탕으로 만들어진다. 따라서, 버퍼상태보고를 보내는 시점에 패킷 중복이 된 논리 채널은 어떤 버퍼 상태를 보내야 하는지 결정하는 것이 필요하다.
도 19의 실시예에서는 논리채널 1,2에 대해서는 패킷 중복이 수행되지 않기 때문에 해당 버퍼 상태를 그대로 사용하고 논리채널 3과 4(1910, 1920)에 대해서는 둘 중 버퍼에 있는 데이터(버퍼 상태)가 많은 논리 채널3(1910)의 버퍼 상태가 보고에 사용되는 것을 나타낸다(1930). 실시예에 따라 버퍼 상태 보고 전에 도 17의 설명에서 기술한 RLC 상태 정보나 ACK 수신 상황을 어떤 논리 채널이 다른 논리 채널에 공유할 수도 있다.
도 20에서는 패킷 중복을 수행하는 경우에 단말이 기지국에게 상향링크 버퍼상태보고(Buffer Status Report)를 보내는 다른 실시예를 나타낸다(2000). 도 20의 실시예에서는 무선 베어러 1과 2는 패킷 중복을 하지 않으며 각각 논리 채널 1과 2에 맵핑된다. 하지만 무선 베어러 3은 패킷 중복이 적용되어 논리 채널3(2010)과 논리 채널 4(2020)에 맵핑되는 것을 가정한다. 버퍼 상태 보고는 각 논리 채널들의 버퍼 상태를 바탕으로 만들어진다. 따라서, 버퍼상태보고를 보내는 시점에 패킷 중복이 된 논리 채널은 어떤 버퍼 상태를 보내야 하는지 결정하는 것이 필요하다.
도 20의 실시예에서는 논리채널 1,2에 대해서는 패킷 중복이 수행되지 않기 때문에 해당 버퍼 상태를 그대로 사용하고 논리채널 3과 4(2010, 2020)에 대해서는 프라이머리 논리 채널로 설정된 논리 채널 4(2020)의 버퍼 상태만 보고하는 것을 나타낸다(2030). 또는 단말이 임의로 논리 채널을 선택 하거나 버퍼상태보고에 사용할 논리 채널이 어떤 것인지 기지국이 사전에 알려줄 수도 있다. 실시예에 따라 버퍼 상태 보고 전에 도 17의 설명에서 기술한 RLC 상태 정보나 ACK 수신 상황을 어떤 논리 채널이 다른 논리 채널에 공유할 수도 있다.
도 21에서는 패킷 중복을 수행하는 경우에 단말이 기지국에게 상향링크 버퍼상태보고(Buffer Status Report)를 보내는 실시예를 나타낸다(2100). 도 21의 실시예에서는 무선 베어러 1과 2는 패킷 중복을 하지 않으며 각각 논리 채널 1과 2에 맵핑된다. 하지만 무선 베어러 3은 패킷 중복이 적용되어 논리 채널3(2110)과 논리 채널 4(2120)에 맵핑되는 것을 가정한다. 버퍼 상태 보고는 각 논리 채널들의 버퍼 상태를 바탕으로 만들어진다. 따라서, 버퍼상태보고를 보내는 시점에 패킷 중복이 된 논리 채널은 어떤 버퍼 상태를 보내야 하는지 결정하는 것이 필요하다.
도 21의 실시예에서는 논리채널 1,2에 대해서는 패킷 중복이 수행되지 않기 때문에 해당 버퍼 상태를 그대로 사용하고 논리채널 3과 4(2110, 2120)에 대해서도 각각의 논리 채널 버퍼 상태를 그대로 사용하여 버퍼상태보고 메시지를 작성한다(2130). 실시예에 따라 버퍼 상태 보고 전에 도 17의 설명에서 기술한 RLC 상태 정보나 ACK 수신 상황을 어떤 논리 채널이 다른 논리 채널에 공유할 수도 있다.
도 22에서는 패킷 중복을 수행할 때 패킷 중복의 횟수를 적용하는 실시예를 나타낸다(2200). 패킷 중복은 도9에서 설명한 NumberOfDuplication을 적용하여 수행될 수 있는데, NumberOfDuplication 필드는 논리 채널에 대해서 패킷 중복의 수(또는, 횟수)를 적용하는 것을 의미한다. 이 때 패킷 중복을 수행한 전송을 너무 빨리 하는 것은 패킷 중복의 효율을 낮출 수 있기 때문에 일정한 간격을 적용하는 것이 필요하다. 도 22의 실시예에서는 NumberOfDuplication 값이 3으로 설정되어, 패킷의 첫 전송 때에는 Duplication Count를 NumberOfDuplication 값인 3으로 설정되어 첫 전송을 시작할 수 있다(2210). 이후에 사전에 설정된 타이머(Timer) 값 이후 복제된 패킷을 전송하고 Duplication Count를 2로 낮출 수 있다. 유사하게, 소정의 타이머 값(2220) 이후에 복제된 패킷을 전송하여 Duplication Count를 1로 낮추는 동작을 수행할 수 있다. Duplication Count가 0이 되면 더 이상의 복제된 패킷 전송을 수행하지 않는다(2240).
이 때 복제된 패킷의 전송은 서로 다른 논리 채널 또는 서로 다른 HARQ 장치로 수행될 수도 있다.
도 23는 도 11과 12에서 정의한 Duplication 활성화 메시지의 형식과 관련 실시예를 나타낸다(2300). 이 때 Duplication 활성화 메시지(2310)는 MAC CE(Control Element) 형식으로 전송될 수 있고, 이 때 MAC CE의 LCID(Logical Channel ID, 논리채널 ID) 부분에 Duplication 활성화 메시지임을 표시하여 전달될 수 있다. 또는 LCID 이외에 메시지의 ID 필드가 있을 경우 여기에 Duplication 활성화 메시지임을 표시하여 전달할 수도 있다. 또는 특정 메시지에 이 메시지가 Duplication 활성화 메시지임을 나타낼 수도 있으며, 이러한 메시지는 DCI 형식으로 전송될 수도 있다.
도 24은 도 11과 12에서 정의한 Duplication 활성화 메시지의 형식과 관련 실시예를 나타낸다(2400). 이 때 Duplication 활성화 메시지(2410)는 MAC CE(Control Element) 형식으로 전송될 수 있고, 이 때 MAC CE의 LCID(Logical Channel ID, 논리채널 ID) 부분에 Duplication 활성화 메시지임을 표시하여 전달될 수 있다. 또는 LCID 이외에 메시지의 ID 필드가 있을 경우 여기에 Duplication 활성화 메시지임을 표시하여 전달할 수도 있다. 또는 특정 메시지에 이 메시지가 Duplication 활성화 메시지임을 나타낼 수도 있다. 또한 무선 베어러에 패킷 중복을 허용하는 논리채널의 ID를 추가하여 Duplication 활성화 메시지(2410)를 보낼 수 있다. 또한 이 메시지는 DCI 형식으로 전송될 수도 있다.
도 25은 도 11과 12에서 정의한 Duplication 활성화 메시지의 형식과 관련 실시예를 나타낸다(2500). 이 때 Duplication 활성화 메시지(2510)는 MAC CE(Control Element) 형식으로 전송될 수 있고, 이 때 MAC CE의 LCID(Logical Channel ID, 논리채널 ID) 부분에 Duplication 활성화 메시지임을 표시하여 전달될 수 있다. 또는 LCID 이외에 메시지의 ID 필드가 있을 경우 여기에 Duplication 활성화 메시지임을 표시하여 전달할 수도 있다. 또는 특정 메시지에 이 메시지가 Duplication 활성화 메시지임을 나타낼 수도 있다. 또한 무선 베어러에 패킷 중복을 허용하는 CC 정보를 포함하여 보낼 수도 있다. 이 때 해당 CC로 전송할 수 있는 논리 채널(또는, 해당 CC에 매핑된 논리 채널)을 활성화 하는 방식으로 패킷 복제를 수행할 수도 있다. 또한 이 메시지는 DCI 형식으로 전송될 수도 있다.
도 26는 도 11과 12에서 정의한 Duplication 비활성화 메시지의 형식과 관련 실시예를 나타낸다(2600). 이 때 Duplication 비활성화 메시지(2610)는 MAC CE(Control Element) 형식으로 전송될 수 있고, 이 때 MAC CE의 LCID(Logical Channel ID, 논리채널 ID) 부분에 Duplication 비활성화 메시지임을 표시하여 전달될 수 있다. 또는 LCID 이외에 메시지의 ID 필드가 있을 경우 여기에 Duplication 비활성화 메시지임을 표시하여 전달할 수도 있다. 또는 특정 메시지에 이 메시지가 Duplication 비활성화 메시지임을 나타낼 수도 있으며, 이러한 메시지는 DCI 형식으로 전송될 수도 있다.
도 27은 도 11과 12에서 정의한 Duplication 비활성화 메시지의 형식과 관련 실시예를 나타낸다(2700). 이 때 Duplication 비활성화 메시지(2710)는 MAC CE(Control Element) 형식으로 전송될 수 있고, 이 때 MAC CE의 LCID(Logical Channel ID, 논리채널 ID) 부분에 Duplication 비활성화 메시지임을 표시하여 전달될 수 있다. 또는 LCID 이외에 메시지의 ID 필드가 있을 경우 여기에 Duplication 비활성화 메시지임을 표시하여 전달할 수도 있다. 또는 특정 메시지에 이 메시지가 Duplication 비활성화 메시지임을 나타낼 수도 있다. 또한 무선 베어러에 패킷 중복을 중지할 논리채널의 ID를 추가하여 Duplication 비활성화 메시지(2710)를 보낼 수 있다. 또한 이 메시지는 DCI 형식으로 전송될 수도 있다.
도 28은 도 11과 12에서 정의한 Duplication 비활성화 메시지의 형식과 관련 실시예를 나타낸다(2800). 이 때 Duplication 비활성화 메시지(2810)는 MAC CE(Control Element) 형식으로 전송될 수 있고, 이 때 MAC CE의 LCID(Logical Channel ID, 논리채널 ID) 부분에 Duplication 비활성화 메시지임을 표시하여 전달될 수 있다. 또는 LCID 이외에 메시지의 ID 필드가 있을 경우 여기에 Duplication 비활성화 메시지임을 표시하여 전달할 수도 있다. 또는 특정 메시지에 이 메시지가 Duplication 비활성화 메시지임을 나타낼 수도 있다. 또한 무선 베어러에 패킷 중복을 중지하는 CC 정보를 포함하여 보낼 수도 있다. 이 때 해당 CC로 전송할 수 있는 논리 채널(또는, 해당 CC에 매핑된 논리 채널)을 비활성화 하는 방식으로 패킷 복제를 중지할 수도 있다. 또한 이 메시지는 DCI 형식으로 전송될 수도 있다.
도 29은 본 발명의 일 실시 예에 따른 패킷 중복 활성화/비활성화 메시지의 다른 형식을 나타낸 도면이다(2900). 도 29에서 Duplication 활성화/비활성화 메시지(2910)는 MAC CE 형식으로 전송될 수 있고, 이때 MAC CE의 LCID 부분에 Duplication 활성화/비활성화 메시지임이 표시되어 전달될 수 있다. 한편, 도 29에서는 Duplication 인덱스(index)에 기반하여 패킷 중복을 온-오프(on-off) 또는 활성화 또는 비활성화하는 실시 예를 설명한다. 즉, 도 29에 도시된 바와 같이 Duplication 활성화/비활성화 메시지(2910)에는 I1, I2, …, I8 의 Duplication 인덱스가 포함되고, Duplication 인덱스 각각은 1(활성화) 또는 0(비활성화)의 값을 가질 수 있으며, 값 1과 0이 나타내는 바는 반대로 설정될 수도 있다. 이와 같이 Duplication 인덱스의 비트맵 기반으로 패킷 중복이 활성화 또는 비활성화됨으로써, 복수의 무선베어러/논리채널/CC에 대하여 패킷 중복을 활성화/비활성화하는 것이 가능하게 된다.
도 30는 본 발명의 일 실시 예에 따른 따른 패킷 중복을 위한 무선 베어러 설정 메시지의 또 다른 실시 예를 나타낸 도면이다(3000). 도 30에 도시된 무선 베어러 설정 메시지에서, Duplication Index는 Duplication Radio Bearer 별로 할당된다. 이러한 경우, 도 29에서 설명한 Duplication Index 값이 1로 설정되어 활성화를 지시하면 해당 Duplication Radio Bearer의 패킷 복제가 활성화된다.
도 31은 본 발명의 일 실시 예에 따른 따른 패킷 중복을 위한 무선 베어러 설정 메시지의 또 다른 실시 예를 나타낸 도면이다(3100). 도 31에 도시된 무선 베어러 설정 메시지에서, Duplication Index는 논리 채널 별로 할당된다. 이러한 경우, 도 29에서 설명한 Duplication Index 값이 1로 설정되어 활성화를 지시하면 해당 논리 채널의 패킷 복제가 활성화된다. 반대로, Duplication Index 값이 0으로 설정되어 비활성화를 지시하면 해당 논리 채널의 패킷 복제가 비활성화된다.
도 32은 본 발명의 일 실시 예에 따른 패킷 중복 활성화 메시지의 다른 형식을 나타낸 도면이다(3200). 이 때 Duplication 활성화 메시지(3210)는 MAC CE(Control Element) 형식으로 전송될 수 있고, 이 때 MAC CE의 LCID(Logical Channel ID, 논리채널 ID) 부분에 Duplication 활성화 메시지임을 표시하여 전달될 수 있다. 또는 LCID 이외에 메시지의 ID 필드가 있을 경우 여기에 Duplication 활성화 메시지임을 표시하여 전달할 수도 있다. 또는 특정 메시지에 이 메시지가 Duplication 활성화 메시지임을 나타낼 수도 있다. 또한 Duplication 활성화 메시지에 패킷 중복이 허용되는 무선 베어러의 ID가 개별적으로 포함되어 전송될 수도 있다. 이 때 해당 무선 베어러를 통해 전송되는 데이터 패킷에 대해서는 패킷 복제를 수행할 수 있다. 또한 이 메시지는 DCI 형식으로 전송될 수도 있다.
도 33는 본 발명의 일 실시 예에 따른 패킷 중복 비활성화 메시지의 다른 형식을 나타낸 도면이다(3300). 이 때 Duplication 비활성화 메시지(3310)는 MAC CE(Control Element) 형식으로 전송될 수 있고, 이 때 MAC CE의 LCID(Logical Channel ID, 논리채널 ID) 부분에 Duplication 비활성화 메시지임을 표시하여 전달될 수 있다. 또는 LCID 이외에 메시지의 ID 필드가 있을 경우 여기에 Duplication 비활성화 메시지임을 표시하여 전달할 수도 있다. 또는 특정 메시지에 이 메시지가 Duplication 비활성화 메시지임을 나타낼 수도 있다. 또한 Duplication 비활성화 메시지에 패킷 중복이 중단되는 무선 베어러의 ID가 개별적으로 포함되어 전송될 수도 있다. 이 때 해당 무선 베어러를 통해 전송되는 데이터 패킷에 대한 패킷 복제가 중단/중지될 수 있다. 또한 이 메시지는 DCI 형식으로 전송될 수도 있다.
도 34은 본 발명의 일 실시 예에 따른 패킷 중복 활성화 메시지의 다른 형식을 나타낸 도면이다(3400). 이 때 Duplication 활성화 메시지(3410)는 MAC CE(Control Element) 형식으로 전송될 수 있고, 이 때 MAC CE의 LCID(Logical Channel ID, 논리채널 ID) 부분에 Duplication 활성화 메시지임을 표시하여 전달될 수 있다. 또는 LCID 이외에 메시지의 ID 필드가 있을 경우 여기에 Duplication 활성화 메시지임을 표시하여 전달할 수도 있다. 또는 특정 메시지에 이 메시지가 Duplication 활성화 메시지임을 나타낼 수도 있다. 또한 Duplication 활성화 메시지에 복수의 논리 채널 ID와 각각의 논리 채널ID에 대한 E 필드가 포함되어 전송될 수 있으며, 이때 특정 E 필드가 1(또는, 0) 값을 가지는 경우 해당 E 필드에 대응하는 논리 채널 ID가 다음 바이트에 추가될 수 있다. 본 실시 예에서, Duplication 활성화 메시지에 복수의 논리 채널 ID 대신에 RadioBearerID가 포함될 수도 있다. 또한 이 메시지는 DCI 형식으로 전송될 수도 있다.
도 35는 본 발명의 일 실시 예에 따른 패킷 중복 비활성화 메시지의 다른 형식을 나타낸 도면이다(3500). 이 때 Duplication 비활성화 메시지(3510)는 MAC CE(Control Element) 형식으로 전송될 수 있고, 이 때 MAC CE의 LCID(Logical Channel ID, 논리채널 ID) 부분에 Duplication 비활성화 메시지임을 표시하여 전달될 수 있다. 또는 LCID 이외에 메시지의 ID 필드가 있을 경우 여기에 Duplication 비활성화 메시지임을 표시하여 전달할 수도 있다. 또는 특정 메시지에 이 메시지가 Duplication 비활성화 메시지임을 나타낼 수도 있다. 또한 Duplication 비활성화 메시지에 복수의 논리 채널 ID와 각각의 논리 채널 ID에 대한 E 필드가 포함되어 전송될 수 있으며, 이때 특정 E 필드가 1(또는, 0) 값을 가지는 경우 해당 E 필드에 대응하는 논리 채널 ID가 다음 바이트에 추가될 수 있다. 본 실시 예에서, Duplication 비활성화 메시지에 복수의 논리 채널 ID 대신에 RadioBearerID가 포함될 수도 있다. 또한 이 메시지는 DCI 형식으로 전송될 수도 있다.
도 36는 본 발명의 일 실시 예에 따른 논리 채널과 CC 간의 매핑 관계를 동적으로 변경하는 메시지의 형식을 나타내는 도면이다(3600). 이 때 Duplication 캐리어 매핑 메시지(3610)는 MAC CE(Control Element) 형식으로 전송될 수 있고, MAC CE의 LCID(Logical Channel ID, 논리채널 ID) 부분에 Duplication 캐리어 매핑 메시지임을 표시하여 전달될 수 있다. 또는 LCID 이외에 메시지의 ID 필드가 있을 경우 여기에 Duplication 캐리어 매핑 메시지임을 표시하여 전달할 수도 있다. 또는 특정 메시지에 이 메시지가 Duplication 캐리어 매핑 메시지임을 나타낼 수도 있다.
한편, Duplication 캐리어 매핑 메시지(3610)는 패킷 복제가 수행되는 논리 채널과 캐리어 간의 매핑을 동적(dynamic)으로 변경하는 메시지이며, 도 36에 도시된 바와 같이 복수의 CC 각각에 대한 Ci 값(i=1, 2, 3, …)들을 포함할 수 있다. Ci 값이 0을 나타내는 경우 해당 CC는 프라이머리 논리채널에서 사용됨을 나타내고, Ci 값이 1을 나타내는 경우 해당 CC는 세컨더리 논리채널에서 사용됨을 나타낸다. 단말은 도 36의 Duplication 캐리어 매핑 메시지(3610)를 수신함으로써 논리 채널과 CC 간의 매핑을 변경할 수 있다. 다만, 논리 채널과 CC 간의 매핑이 변경되더라도 특정 논리 채널에서 진행 중인 재전송(예를 들어, HARQ) 동작은 그대로 진행될 수 있다.
도 37은 패킷 중복의 설정이 시작되는 절차의 하나의 실시예를 나타낸다(3700). 도 37의 실시예에서는 단말이 사전에 설정된 측정보고(Measurement Report)의 트리거링(Triggering) 조건이 맞는지를 판단하며 기준 신호(Reference Signal, RS) 등을 측정한다(S3710). 이 때 측정된 값이 트리거링 조건을 만족하면(S3720) 단말은 측정 보고 메시지를 기지국에 보내고(S3730), 이를 바탕으로 기지국은 패킷 중복을 하는 무선 베어러 설정을 지시한다(S3740). 이러한 설정은 도 9의 메시지 형식이 될 수 있고 도 9에 포함된 필드의 일부가 적용될 수 있다. 이 메시지를 수신한 대로 단말과 기지국은 패킷 중복을 수행하는 무선 베어러를 설정할 수 있다(S3750). 이 베어러의 형식은 도 3-8에서 기술한 형식 중 하나가 될 수 있다.
도 38는 본 발명의 일 실시 예에 따른 단말을 나타낸 도면이다(3800).
도 38을 참조하면, 단말(3800)은 송수신부(transceiver, 3810) 및 제어부(3830)를 포함할 수 있다. 상기 제어부(controller, 3830)는 적어도 하나의 프로세서를 포함할 수 있다. 송수신부(3810)와 제어부(3830)는 전기적으로 연결될 수 있다. 제어부(3830)는 송수신부(3810)가 신호를 송수신하도록 제어할 수 있다. 제어부(3830)가 신호, 정보, 메시지 등을 송신 및/또는 수신하는 것은 제어부(3830)가 송수신부(3810)를 제어하여 신호, 정모 메시지 등을 송신 및/또는 수신하는 것으로 해석할 수 있다.
송수신부(3810)를 통해 단말(3800)은 신호를 송신 및/또는 수신할 수 있다. 제어부(3830)는 상기 단말(3800)의 전반적인 동작을 제어할 수 있다. 또한, 제어부(3830)는 도 1 내지 도 37을 통해 설명한 단말의 동작을 제어할 수 있다.
도39은 본 발명의 일 실시 예에 따른 기지국을 나타낸 도면이다(3900).
도 39을 참조하면, 기지국(3900)은 송수신부(transceiver, 3910) 및 제어부(controller, 3930)를 포함할 수 있다. 상기 제어부(3930)는 적어도 하나의 프로세서를 포함할 수 있다. 송수신부(3910)와 제어부(3930)는 전기적으로 연결될 수 있다. 제어부(3930)는 송수신부(3910)가 신호를 송수신하도록 제어할 수 있다. 제어부(3930)가 신호, 정보, 메시지 등을 송신 및/또는 수신하는 것은 제어부(3930)가 송수신부(3910)를 제어하여 신호, 정모 메시지 등을 송신 및/또는 수신하는 것으로 해석할 수 있다.
송수신부(3910)를 통해 기지국(3900)은 신호를 송신 및/또는 수신할 수 있다. 제어부(3930)는 상기 기지국(3900)의 전반적인 동작을 제어할 수 있다. 또한, 제어부(3930)는 도 1 내지 도 37을 통해 설명한 기지국의 동작을 제어할 수 있다.
도 40은 패킷 중복을 위한 베어러 구조의 실시예이다(4000). 도 40의 실시예에서는 하나의 무선베어러(Radio Bearer)가 패킷 중복이 허용되도록 설정되어 있고 무선 베어러 ID 값이 x로 설정되어 있다. 통상적으로 기지국과 단말 사이에는 하나 이상의 신호 무선 베어러(Signaling Radio Bearer, SRB)와 데이터 무선 베어러(Data Radio Bearer)를 가질 수 있다. 도 40의 실시예에서는 무선 베어러의 PDCP 장치(또는, 엔티티)에서 PDCP PDU(Protocol Data Unit)을 복제한 후 서로 다른 RLC 장치로 각각의 복제된 PDCP PDU를 보내어 처리하는 것을 나타낸다. 각각의 RLC 장치는 논리 채널에 각각 매핑된다. 도 40의 실시예에서는 각각의 논리채널 ID를 y1(4010), y2(4020)로 나타낸다.
이 때 효율적인 패킷 전송을 위해서 셀(Cell)과의 매핑이 필요하다. 다시 말해서 논리 채널과 셀을 매핑 시킴으로써 특정 논리 채널 데이터를 보낼 수 있는 셀을 제한하여 지정할 수 있다. 이러한 셀은 CC (Component Carrier), BWP(Band Width Part) 등으로 대체될 수 있다. 도 40의 실시예에서 논리 채널 ID y1을 갖는 논리 채널(4010)은 PCell(또는 PSCell, Secondary Cell Group일 경우 PSCell을 가짐)과 SCell2에 매핑되고 논리 채널 ID y2를 갖는 논리 채널(4020)은 SCell3에 매핑된다. 이와 같이 논리 채널과 셀이 매핑됨으로써, 패킷 중복을 통해 복제된 데이터 패킷들이 MAC 장치(엔티티)에서 멀티플렉싱 과정을 거치더라도 동일한 셀(또는 동일한 CC, 동일한 BWP)로 전송되는 것을 방지할 수 있다. 다시 말해서, 같은 MAC PDU 내에 복제된 둘 이상의 데이터 패킷이 포함되지 않게 되며, 오리지널 PDCP PDU와 복제된 PDCP PDU가 동일한 전송 블록에서 전송되지 않게 된다.
이 때 패킷 중복이 허용된 베어러에 대하여, 도 5, 6, 9, 30, 31 등에서 상술한 프라이머리 논리 채널과 세컨더리 논리 채널을 설정할 수 있다. 프라이머리 논리 채널은 패킷 중복의 활성화에 관계 없이 항상 패킷을 송/수신하게 되지만 세컨더리 논리 채널은 패킷 중복이 활성화 된 경우에만 패킷을 송/수신하게 된다. 즉, 패킷 중복이 활성화 된 경우에는 동일 PDCP PDU가 각각 프라이머리 논리 채널과 세컨더리 논리 채널로 전송된다. 이 때 PDCP PDU는 각각 오리지널 PDCP PDU, 복제된 PDCP PDU로 불릴 수 있다. 패킷 중복이 비활성화 된 경우에는 PDCP PDU는 프라이머리 논리 채널로만 전송된다. 패킷 중복이 비활성화되는 경우 세컨더리 논리 채널의 RLC 장치는 재설립(Re-establihsment)될 수 있다. 특정 논리채널이 프라이머리 논리 채널인지 세컨더리 논리 채널인지는 기지국이 RRC 설정(RRC Configuration) 등으로 지정할 수 있으나, 설정이 필요하지 않은 경우 구분하는 규칙을 정의할 수 있다. 패킷 중복 구조에서는 프라이머리 논리 채널을 다음 규칙 중 하나를 사용하여 결정할 수 있다.
- 논리 채널 ID 값이 작은 논리 채널이 프라이머리 논리 채널이 됨. 논리 채널이 3개 이상일 경우 논리 채널 ID 값이 가장 작은 논리 채널이 프라이머리 논리 채널이 됨. 나머지 논리 채널은 세컨더리 논리 채널이 됨.
- 논리 채널 ID 값이 큰 논리 채널이 프라이머리 논리 채널이 됨. 논리 채널이 3개 이상일 경우 논리 채널 ID 값이 가장 큰 논리 채널이 프라이머리 논리 채널이 됨. 나머지 논리 채널은 세컨더리 논리 채널이 됨.
- 논리 채널에 매핑된 셀 중에 PCell이 있는 논리 채널이 프라이머리 논리 채널이 됨. 나머지 논리 채널은 세컨더리 논리 채널이 됨
- 논리 채널에 매핑된 셀 중에 PCell이나 PSCell이 있는 논리 채널이 프라이머리 논리 채널이 됨. 나머지 논리 채널은 세컨더리 논리 채널이 됨
- 논리 채널에 매핑된 셀 중에 PCell이나 PSCell이 있는 논리 채널이 프라이머리 논리 채널이 됨. 이 방법으로 프라이머리 논리 채널이 정해지지 않을 경우 매핑된 SCell들 중 SCell Index 값의 최소값이 가장 작은 논리 채널이 프라이머리 논리 채널이 됨. 나머지 논리 채널은 세컨더리 논리 채널이 됨
- 논리 채널에 매핑된 셀 중에 PCell이나 PSCell이 있는 논리 채널이 프라이머리 논리 채널이 됨. 이 방법으로 프라이머리 논리 채널이 정해지지 않을 경우 매핑된 SCell들 중 SCell Index 값의 최대값이 가장 큰 논리 채널이 프라이머리 논리 채널이 됨. 나머지 논리 채널은 세컨더리 논리 채널이 됨
도 41은 패킷 중복이 허용된 베어러에 해당하는 패킷을 수신하였을 때 처리하는 절차를 나타낸다(4100). 패킷을 수신하였을 때(S4110) 패킷 중복이 활성화 된 상태라면 수신기는 패킷을 해당하는 논리 채널로 전송하여 처리하게 한다(S4120, S4130). 만약에 패킷 중복이 비활성화 된 상태라면 해당 패킷이 프라이머리 논리 채널에 해당하는지 확인할 수 있고(S4120, S4140), 프라이머리 논리 채널의 패킷이라면 해당 논리 채널로 전송하여 처리하게 한다(S4130). 하지만 그렇지 않은 경우 이것은 세컨더리 논리 채널의 패킷으로 판단될 수 있고 이 패킷은 버리고 논리채널로 전송하지 않는다(S4150).
도 42는 MAC 서브헤더(Subheader) 형식을 나타낸다(4200). MAC 서브헤더는 MAC SDU(Service Data Unit)으로 불리는 MAC 계층 데이터의 정보를 알려준다. MAC 서브헤더는 R(Reserved, 예비), F(Format, 형식), LCID(Logical Channel ID, 논리채널ID), L (Length, 길이) 필드 등을 포함할 수 있다. R필드는 예비 필드로 통상 기본 값인 0으로 설정된다. F 필드는 L 필드의 길이를 나타낸다. LCID 필드는 데이터(MAC SDU)의 논리 채널 ID를 나타낸다. L 필드는 MAC SDU의 길이를 나타낸다. 통상적으로 이 값은 정확한 값으로 설정되어야 하며 설정되지 않은 값(사용되지 않는 값, invalid value)이 설정될 경우 패킷의 오류가 있는 것으로 생각할 수 있다. 가령 R필드가 1로 설정된 경우 사용되지 않는 값으로 처리될 수 있다.
도 43은 패킷을 수신하였을 때 수신기에서 처리하는 절차를 나타낸다(4300). 도 43의 실시예에서는 MAC 장치(MAC Entity)에서 MAC PDU를 수신했을 때 처리하는 실시예를 나타낸다. 수신한 MAC PDU는 MAC SDU를 포함할 수 있다(S4310). 이 때 MAC PDU에 적어도 하나의 사용되지 않는 값이 포함될 수 있다. 이 때 해당 값이 포함된 SDU 또는 그 서브헤더를 확인할 수 있다. 만약 SDU를 정확히 구분할 수 없다면 수신한 MAC PDU 전체를 버릴 수 있다. 그렇지 않고 MAC SDU를 구분할 수 있다면 MAC SDU 또는 서브헤더에 사용되지 않는 값이 포함되었는지를 체크하게 된다. 만약 사용되지 않는 값이 없다면 해당 논리 채널로 데이터(SDU)를 보내어 패킷을 처리하게 한다(S4320, S4330). 사용되지 않는 값이 포함되어 있다면 이 값이 직전 RRC 재설정(최근 RRC 재설정의 직전 재설정)에서 사용된 LCID 필드인지를 확인할 필요가 있다(S4320, S4340). 직전 RRC 재설정에 사용했던 LCID 필드였다면 최근 RRC 재설정 이전에 생성된 부분일 수 있고 이 부분은 송/수신 과정의 오류가 아닐 수 있다. 다시 말해서 직전 재설정에서 사용되던 값이 최근 재설정에 의해 사용되지 않는 값이 된 것일 수 있다. 이 경우 해당 MAC SDU만 버릴 수 있다(S4350). 이러한 것은 MAC 리셋(Reset)이나 RLC 재설립이 없는 RRC 재설정인 경우에 발생할 수 있다. 만약 사용되지 않는 값이 패킷 중복이 비활성화 되어있는 논리채널의 ID인 경우, 패킷 중복이 활성화 되었을 때 발생한 데이터이거나, 비활성화를 인지하지 못한 송신기가 전송한 데이터일 수 있다. 이러한 패킷 중복이 허용되었지만 비활성화 되어 있는 논리채널의 ID가 포함된 경우 해당 MAC SDU만 버리는 동작을 수행할 수 있다(S4360, S4350). 위에 기술한 경우가 아닌 다른 사용되지 않는 값이 포함될 경우 MAC PDU 전체를 버릴 수 있다(S4360, S4370).
그리고 본 명세서와 도면에 개시된 실시 예들은 본 발명의 내용을 쉽게 설명하고, 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 따라서 본 발명의 범위는 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상을 바탕으로 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Claims (15)
- 이동 통신 시스템에서 단말의 방법에 있어서,기지국으로부터 논리 채널을 CC(Component Carrier)에 매핑시키기 위한 정보를 수신하는 단계; 및상기 논리 채널에서 처리된 데이터 패킷을 상기 정보에 따라 매핑된 상기 CC를 통해서 상기 기지국으로 전송하는 단계를 포함하는, 방법.
- 제1항에 있어서,상기 데이터 패킷은 패킷 중복(packet duplication)을 통해 복제된 데이터 패킷인 것인, 방법.
- 제1항에 있어서,상기 논리 채널에서 처리된 상기 데이터 패킷은 다른 논리 채널에서 처리된 데이터 패킷과 상이한 CC를 통해 전송되는 것인, 방법.
- 제1항에 있어서,상기 방법은,상기 논리 채널의 무선 베어러에 설정된 패킷 중복을 활성화 또는 비활성화하는 메시지를 상기 기지국으로부터 수신하는 단계를 더 포함하는 것인, 방법.
- 이동 통신 시스템의 단말에 있어서,신호를 송수신하는 송수신부; 및기지국으로부터 논리 채널을 CC(Component Carrier)에 매핑시키기 위한 정보를 수신하고, 상기 논리 채널에서 처리된 데이터 패킷을 상기 정보에 따라 매핑된 상기 CC를 통해서 상기 기지국으로 전송하도록 설정된 제어부를 포함하는 것인, 단말.
- 제5항에 있어서,상기 데이터 패킷은 패킷 중복(packet duplication)을 통해 복제된 데이터 패킷인 것인, 단말.
- 제5항에 있어서,상기 논리 채널에서 처리된 상기 데이터 패킷은 다른 논리 채널에서 처리된 데이터 패킷과 상이한 CC를 통해 전송되는 것인, 단말.
- 제5항에 있어서,상기 제어부는,상기 논리 채널의 무선 베어러에 설정된 패킷 중복을 활성화 또는 비활성화하는 메시지를 상기 기지국으로부터 수신하도록 설정된 것인, 단말.
- 이동 통신 시스템에서 기지국의 방법에 있어서,논리 채널을 CC(Component Carrier)에 매핑시키기 위한 정보를 단말로 전송하는 단계; 및상기 논리 채널에서 처리된 데이터 패킷을 상기 정보에 따라 매핑된 상기 CC를 통해서 상기 단말로부터 수신하는 단계를 포함하는, 방법.
- 제9항에 있어서,상기 데이터 패킷은 패킷 중복(packet duplication)을 통해 복제된 데이터 패킷이며,상기 논리 채널에서 처리된 상기 데이터 패킷은 다른 논리 채널에서 처리된 데이터 패킷과 상이한 CC를 통해 수신되는 것인, 방법.
- 제9항에 있어서,상기 방법은,상기 논리 채널의 무선 베어러에 설정된 패킷 중복을 활성화 또는 비활성화하는 메시지를 상기 단말로 전송하는 단계를 더 포함하는 것인, 방법.
- 이동 통신 시스템의 기지국에 있어서,신호를 송수신하는 송수신부; 및논리 채널을 CC(Component Carrier)에 매핑시키기 위한 정보를 단말로 전송하고, 상기 논리 채널에서 처리된 데이터 패킷을 상기 정보에 따라 매핑된 상기 CC를 통해서 상기 단말로부터 수신하도록 설정된 제어부를 포함하는 것인, 기지국.
- 제12항에 있어서,상기 데이터 패킷은 패킷 중복(packet duplication)을 통해 복제된 데이터 패킷인 것인, 기지국.
- 제12항에 있어서,상기 논리 채널에서 처리된 상기 데이터 패킷은 다른 논리 채널에서 처리된 데이터 패킷과 상이한 CC를 통해 수신되는 것인, 기지국.
- 제12항에 있어서,상기 제어부는,상기 논리 채널의 무선 베어러에 설정된 패킷 중복을 활성화 또는 비활성화하는 메시지를 상기 단말로 전송하도록 설정된 것인, 기지국.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21191862.8A EP3934314B1 (en) | 2017-03-23 | 2018-02-23 | Method and apparatus for processing data for packet duplication |
US16/496,940 US11140571B2 (en) | 2017-03-23 | 2018-02-23 | Method and apparatus for processing data for packet duplication |
EP18772600.5A EP3589009B1 (en) | 2017-03-23 | 2018-02-23 | Method and apparatus for processing data for packet duplication |
CN202310580157.5A CN116567716A (zh) | 2017-03-23 | 2018-02-23 | 用于处理用于分组复制的数据的方法和设备 |
CN201880020299.3A CN110463255B (zh) | 2017-03-23 | 2018-02-23 | 用于处理用于分组复制的数据的方法和设备 |
US17/486,761 US11700542B2 (en) | 2017-03-23 | 2021-09-27 | Method and apparatus for processing data for packet duplication |
US18/349,816 US12137367B2 (en) | 2017-03-23 | 2023-07-10 | Method and apparatus for processing data for packet duplication |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170036822 | 2017-03-23 | ||
KR10-2017-0036822 | 2017-03-23 | ||
KR10-2017-0075075 | 2017-06-14 | ||
KR20170075075 | 2017-06-14 | ||
KR10-2017-0126578 | 2017-09-28 | ||
KR1020170126578A KR102357594B1 (ko) | 2017-03-23 | 2017-09-28 | 패킷 중복을 위한 데이터 처리 방법 및 장치 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/496,940 A-371-Of-International US11140571B2 (en) | 2017-03-23 | 2018-02-23 | Method and apparatus for processing data for packet duplication |
US17/486,761 Continuation US11700542B2 (en) | 2017-03-23 | 2021-09-27 | Method and apparatus for processing data for packet duplication |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018174418A1 true WO2018174418A1 (ko) | 2018-09-27 |
Family
ID=63586155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/002264 WO2018174418A1 (ko) | 2017-03-23 | 2018-02-23 | 패킷 중복을 위한 데이터 처리 방법 및 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11700542B2 (ko) |
CN (1) | CN116567716A (ko) |
WO (1) | WO2018174418A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110972335A (zh) * | 2018-09-29 | 2020-04-07 | 华为技术有限公司 | 一种模式切换方法、数据流分流方法及装置 |
CN111510950A (zh) * | 2019-01-31 | 2020-08-07 | 电信科学技术研究院有限公司 | 传输处理方法、终端及网络设备 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110324860B (zh) * | 2018-03-29 | 2021-05-25 | 维沃移动通信有限公司 | 数据发送方法、接收方法及用户设备 |
EP3777416A4 (en) * | 2018-04-04 | 2021-12-15 | Lenovo (Beijing) Limited | BUFFER STATUS REPORT FOR PACKAGE DUPLICATION |
US11304092B2 (en) * | 2018-09-12 | 2022-04-12 | Ofinno, Llc | Session packet duplication control |
JP7285853B2 (ja) * | 2018-10-31 | 2023-06-02 | 株式会社Nttドコモ | 端末、基地局、通信システム及び通信方法 |
CN111314970B (zh) * | 2018-12-11 | 2024-07-30 | 夏普株式会社 | 用户设备及其方法、基站及其方法 |
EP3918835A4 (en) * | 2019-01-28 | 2022-04-13 | ZTE Corporation | DYNAMIC PACKET DUPLICATION CONVERGENCE PROTOCOL CONFIGURATION |
WO2020197237A1 (en) * | 2019-03-25 | 2020-10-01 | Lg Electronics Inc. | Conditional supplementary link activation and transmission |
CN117715208A (zh) * | 2019-03-29 | 2024-03-15 | 华为技术有限公司 | 一种数据传输方法及装置 |
WO2020204774A1 (en) * | 2019-04-02 | 2020-10-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Ims registration |
US11678314B2 (en) * | 2019-06-24 | 2023-06-13 | Qualcomm Incorporated | Packet duplication carrier enhancements |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100122054A (ko) * | 2009-05-11 | 2010-11-19 | 엘지전자 주식회사 | 다중 반송파를 지원하는 무선 통신 시스템에서 중복 데이터를 송신 및 수신하는 방법 및 장치 |
US20160094446A1 (en) * | 2013-05-16 | 2016-03-31 | Zaigham Kazmi | Multiple radio link control (rlc) groups |
KR20160095203A (ko) * | 2012-11-07 | 2016-08-10 | 퀄컴 인코포레이티드 | 듀얼 접속의 버퍼 상태 리포팅 및 로직 채널 우선순위화 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602004031676D1 (de) | 2004-05-07 | 2011-04-14 | Ericsson Telefon Ab L M | Aufbau einer verlustlosen funkstreckensteuerentität (rlc) unter vermeidung einer duplikation der dienstdateneinheit (sdu) |
CA2668062C (en) | 2006-11-01 | 2014-04-15 | Young Dae Lee | Method of transmitting and receiving downlink data in wireless communication system |
US8989004B2 (en) | 2010-11-08 | 2015-03-24 | Qualcomm Incorporated | System and method for multi-point HSDPA communication utilizing a multi-link PDCP sublayer |
KR102157798B1 (ko) | 2013-10-29 | 2020-09-18 | 삼성전자 주식회사 | 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치 |
CN110691425B (zh) | 2013-10-29 | 2023-04-07 | 三星电子株式会社 | 在移动通信系统中的终端、基站及其方法 |
US10004098B2 (en) | 2014-01-29 | 2018-06-19 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving data using a plurality of carriers in mobile communication system |
US20190098606A1 (en) | 2016-02-18 | 2019-03-28 | Nokia Solutions And Networks Oy | Uplink selection for wireless network based on network based on network cell weight and linkspecific weight for wireless links |
ES2962322T3 (es) | 2017-03-24 | 2024-03-18 | Nokia Technologies Oy | Gestión de duplicación de pdcp y recuperación de datos en una nueva tecnología de acceso por radio |
-
2018
- 2018-02-23 WO PCT/KR2018/002264 patent/WO2018174418A1/ko unknown
- 2018-02-23 CN CN202310580157.5A patent/CN116567716A/zh active Pending
-
2021
- 2021-09-27 US US17/486,761 patent/US11700542B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100122054A (ko) * | 2009-05-11 | 2010-11-19 | 엘지전자 주식회사 | 다중 반송파를 지원하는 무선 통신 시스템에서 중복 데이터를 송신 및 수신하는 방법 및 장치 |
KR20160095203A (ko) * | 2012-11-07 | 2016-08-10 | 퀄컴 인코포레이티드 | 듀얼 접속의 버퍼 상태 리포팅 및 로직 채널 우선순위화 |
US20160094446A1 (en) * | 2013-05-16 | 2016-03-31 | Zaigham Kazmi | Multiple radio link control (rlc) groups |
Non-Patent Citations (2)
Title |
---|
ERICSSON: "Data duplication in lower layers (HARQ", R2-1702032, 3GPP TSG-RAN WG2 #97, 20 February 2017 (2017-02-20), XP051212561 * |
HUAWEI: "Redundancy Schemes below PDCP Layer", R2-1701201, 3GPP TSG-RAN2 MEETING #97, 4 February 2017 (2017-02-04), XP051211890 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110972335A (zh) * | 2018-09-29 | 2020-04-07 | 华为技术有限公司 | 一种模式切换方法、数据流分流方法及装置 |
EP3852481A4 (en) * | 2018-09-29 | 2021-11-10 | Huawei Technologies Co., Ltd. | METHOD FOR MODE SWITCHING AND METHOD AND DEVICE FOR DATA FLOW DISTRIBUTION |
CN110972335B (zh) * | 2018-09-29 | 2022-04-12 | 华为技术有限公司 | 一种模式切换方法、数据流分流方法及装置 |
US11973589B2 (en) | 2018-09-29 | 2024-04-30 | Huawei Technologies Co., Ltd. | Mode switching method, data flow splitting method, and apparatus |
CN111510950A (zh) * | 2019-01-31 | 2020-08-07 | 电信科学技术研究院有限公司 | 传输处理方法、终端及网络设备 |
CN111510950B (zh) * | 2019-01-31 | 2021-12-17 | 大唐移动通信设备有限公司 | 传输处理方法、终端及网络设备 |
Also Published As
Publication number | Publication date |
---|---|
US20220014961A1 (en) | 2022-01-13 |
CN116567716A (zh) | 2023-08-08 |
US20230354084A1 (en) | 2023-11-02 |
US11700542B2 (en) | 2023-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018174418A1 (ko) | 패킷 중복을 위한 데이터 처리 방법 및 장치 | |
WO2018230920A1 (ko) | 패킷 전송 제어 방법 및 장치 | |
WO2020027599A1 (ko) | 무선 통신 시스템에서 패킷 중복 전송을 제어하는 방법 및 장치 | |
WO2021071244A1 (ko) | Nr v2x에서 harq 피드백을 기지국에게 전송하는 방법 및 장치 | |
WO2016163690A1 (ko) | 비면허 주파수 대역을 사용하는 통신 시스템에서 harq를 지원하는 방법 및 이를 적용한 장치 | |
WO2010131850A2 (ko) | 다중 반송파를 지원하는 무선 통신 시스템에서 중복 데이터를 송신 및 수신하는 방법 및 장치 | |
WO2015111965A1 (ko) | Lte 복수 기지국의 우선순위 데이터 전송 시스템 및 방법 | |
WO2022086239A1 (en) | Method and system for handling lossless operations for mbs in 5g communication network | |
WO2021066613A1 (ko) | Nr v2x에서 전송 블록을 전송하는 방법 및 장치 | |
WO2021125712A1 (ko) | 차세대 이동통신 시스템에서 rrc 메시지의 분할 전송과 관련된 타이머 관리 방법 및 장치 | |
WO2017026847A1 (ko) | 무선 통신 시스템에서 복수 개의 자원 요청을 처리하는 장치 및 방법 | |
WO2021075937A1 (ko) | Nr v2x에서 단말의 사이드링크 전송과 상향링크 전송의 동시 전송을 지원하는 방법 및 장치 | |
WO2022014992A1 (ko) | Mbs 수신을 위한 sps의 동작 방법 및 장치 | |
WO2021215757A1 (ko) | Nr v2x에서 pucch 프로세싱 시간에 기반하여 사이드링크 전송을 수행하는 방법 및 장치 | |
WO2021206532A1 (ko) | Nr v2x에서 harq 프로세스를 운영하는 방법 및 장치 | |
WO2021206528A1 (ko) | Nr v2x에서 sci 상의 ndi 값을 결정하는 방법 및 장치 | |
WO2021071243A1 (ko) | Nr v2x에서 harq 피드백을 기지국에게 보고하는 방법 및 장치 | |
WO2022030975A1 (ko) | Nr v2x에서 기지국에 의해 할당되는 자원을 기반으로 sl 통신을 수행하는 방법 및 장치 | |
WO2022086184A1 (ko) | Nr v2x에서 sl csi를 보고하는 방법 및 장치 | |
WO2022080843A1 (ko) | Nr v2x에서 자원을 결정하는 방법 및 장치 | |
WO2021230727A1 (ko) | Nr v2x에서 사이드링크 전송 자원을 재선택하는 방법 및 장치 | |
WO2021145585A1 (ko) | 통신 시스템에서 사이드링크 데이터의 송수신을 위한 방법 및 장치 | |
WO2022014860A1 (ko) | 전력 절약 모드를 기반으로 통신을 수행하는 방법 및 장치 | |
WO2021040435A1 (ko) | Nr v2x에서 단말이 자원 예약을 수행하는 방법 및 장치 | |
WO2022154526A1 (ko) | Nr v2x에서 우선화 절차를 수행하는 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18772600 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018772600 Country of ref document: EP Effective date: 20190923 |