WO2018174305A1 - 상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 방법 및 이를 위한 장치 - Google Patents

상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018174305A1
WO2018174305A1 PCT/KR2017/002936 KR2017002936W WO2018174305A1 WO 2018174305 A1 WO2018174305 A1 WO 2018174305A1 KR 2017002936 W KR2017002936 W KR 2017002936W WO 2018174305 A1 WO2018174305 A1 WO 2018174305A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
cell
terminal
interference
transmission
Prior art date
Application number
PCT/KR2017/002936
Other languages
English (en)
French (fr)
Inventor
최국헌
김규석
안민기
이길봄
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2017/002936 priority Critical patent/WO2018174305A1/ko
Publication of WO2018174305A1 publication Critical patent/WO2018174305A1/ko

Links

Images

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for controlling inter-cell interference in an environment for performing uplink beam sweeping.
  • New RAT When a new radio access technology (RAT) system is introduced, as more communication devices require larger communication capacities, there is a need for improved mobile broadband communication compared to the existing RAT.
  • massive MTC Machine Type Communications
  • massive MTC Machine Type Communications
  • eMBB enhanced mobile broadband communication
  • massive MTC massive MTC
  • URLLC Ultra-Reliable and Low Latency Communication
  • An object of the present invention is to provide a method for a base station to control inter-cell interference in an environment for performing uplink beam sweeping according to an embodiment of the present invention.
  • An object of the present invention is to provide a method for a base station to control inter-cell interference in an environment for performing uplink beam sweeping according to another embodiment of the present invention.
  • Another object of the present invention is to provide a base station for controlling inter-cell interference in an environment for performing uplink beam sweeping according to an embodiment of the present invention.
  • Another object of the present invention is to provide a base station for controlling inter-cell interference in an environment for performing uplink beam sweeping according to another embodiment of the present invention.
  • a method for controlling inter-cell interference by a base station in an environment in which uplink beam sweeping is performed includes: Receiving information indicating that a terminal in a cell transmits SRSs for the uplink beam sweeping in a predetermined subframe; Allocating an interference measurement resource corresponding to an SRS transmission resource for uplink beam sweeping in the predetermined subframe based on the information; And transmitting information on the allocated interference measurement resource to the terminal.
  • the method may further comprise measuring interference at the allocated interference measurement resource.
  • the length of the allocated interference measurement resource in the time domain may be equal to the symbol length of at least one SRS for the uplink beam sweep.
  • the allocated interference measurement resource may correspond to some bands among bands in which the predetermined subframe is located in the frequency domain.
  • the allocated interference measurement resource may correspond to a frequency band different from the interference measurement resource allocated by the second neighboring base station.
  • a method for controlling inter-cell interference by a base station in an environment for performing uplink beam sweeping includes: Transmitting control information indicating that SRS transmission is triggered to a terminal in a cell to which the base station belongs; Transmitting information indicating at least one transmission beam of the terminal to the terminal so as not to interfere with an adjacent base station; And receiving from the terminal at least one SRS transmitted through at least one transmission beam of the indicated terminal.
  • the at least one SRS is plural, the plurality of SRSs may be received through a plurality of consecutive symbols.
  • the at least one SRS may be received in a subframe after a predetermined number from the subframe in which the control information is received.
  • a base station for controlling inter-cell interference in an environment for performing uplink beam sweeping is a cell to which the first neighboring base station belongs from a first neighboring base station.
  • a receiver configured to receive information indicating that a user equipment performs SRS transmission for the uplink beam sweeping in a predetermined subframe;
  • a processor configured to allocate an interference measurement resource corresponding to a transmission resource of SRSs for the uplink beam sweeping in the predetermined subframe based on the information;
  • a transmitter configured to transmit information about the allocated interference measurement resource to the terminal.
  • the processor may be configured to measure interference in the allocated interference measurement resource.
  • a base station for controlling inter-cell interference in an environment for performing uplink beam sweeping an SRS for the uplink beam sweeping in a predetermined subframe
  • a transmitter configured to transmit control information indicating that transmission has been triggered to a terminal in a cell to which the base station belongs and to transmit information indicating at least one transmission beam of the terminal to prevent interference with a neighboring base station;
  • a receiver configured to receive at least one SRS transmitted through at least one transmission beam of the indicated terminal from the terminal.
  • the receiver may receive the plurality of SRSs through a plurality of consecutive symbols.
  • the SRS when used for uplink interference and uplink channel state measurement in an environment in which interference change may appear in subband, symbol, or subsymbol unit in New RAT, it may be set according to each SRS configuration. Can provide hypothesis. In addition, it is possible to perform efficient uplink ICIC through accurate uplink interference measurement.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • FIG. 2 is a diagram illustrating a structure of a subframe in which a data channel and a control channel are TDM.
  • 3 is a diagram illustrating a hybrid CSI-RS (wideband, sub-band) structure for supporting various services in New RAT.
  • FIG. 4 is a diagram illustrating Localized URS (Uplink RS) unit bandwidth (BW) definition and placement (including a transmission comb).
  • URS Uplink RS
  • BW unit bandwidth
  • FIG. 5 is a diagram illustrating interference occurrence according to various resource structures (localized SRS + xPUCCH, xPUCCH only, and xSRS only structures) configuration.
  • 6 is an exemplary diagram for describing interference due to different uplink resource configuration between cells.
  • FIG. 7 is a diagram illustrating a structure between 3GPP NR multiple numerology.
  • FIG. 8 is a diagram illustrating an interference problem according to different multi-numerologies configuration, (a) is a diagram illustrating uplink inter-cell interference between different numerologies, and (b) is a diagram illustrating another multi-numerologies configuration between cells.
  • FIG. 10 is an exemplary diagram for describing another cell interference when tracking a UE transmission beam
  • FIG. 11 is an exemplary diagram for explaining SRS transmission and interference when UE 2 (UE 2) of FIG. 7 is beam tracking.
  • FIG. 12 is a diagram illustrating a CSI reporting method.
  • 13 is a diagram illustrating an example of a Hypothesis (transmission) message structure.
  • FIG. 14 is a diagram illustrating another SRS period and hypothesis sharing between cells in a network.
  • FIG. 15 is a diagram illustrating a hypothesis transmission message based on another SRS period and hypothesis sharing example between cells of FIG. 14.
  • 16 is a diagram illustrating a zero power region in an SRS according to an SRS configuration index.
  • 17 is a diagram illustrating an example of explicitly setting hypothesis and zero power resource regions in a specific SRS transmission region.
  • 18 is a diagram illustrating an example of acquiring uplink interference measurement hypothesis according to aperiodic SRS transmission.
  • 19 is a diagram illustrating another zero power resource configuration and SRS-IM processing according to aperiodic SRS transmission.
  • 20 is a diagram illustrating a transmission structure of periodic consecutive SRSs for uplink beam sweeping.
  • 21 is a diagram illustrating a case of setting different SRS transmission timing in each cell for uplink beam sweeping.
  • FIG. 22 is an exemplary diagram for describing a zero power resource configuration method according to Embodiment 2 of the present invention.
  • FIG. 22 is an exemplary diagram for describing a zero power resource configuration method according to Embodiment 2 of the present invention.
  • 23 is a diagram illustrating setting of a zero power resource.
  • FIG. 24 is a diagram illustrating matters related to an uplink neighbor cell interference measurement procedure (Change 3 above).
  • FIG. 25 is a diagram illustrating a method for measuring uplink neighbor cell interference (change 3 above) to prevent interference between serving cells and neighbor cell (s) when performing uplink beam sweeping.
  • FIG. 26 is a diagram illustrating a procedure of muting an uplink data transmission channel.
  • FIG. 27 is a diagram illustrating a UL grant based procedure for changing an uplink resource location for mitigating interference between uplink cells
  • FIG. 28 is a diagram illustrating a procedure for specifying uplink data resource location.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a terminal or a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more terminals. .
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
  • the terminal For Tx beam tracking of the terminal, the terminal needs to transmit the SRS according to each candidate terminal transmission beam (Tx beam). Since SRS transmission according to many beam directions (transmission beam set of UE in all directions) generates a large amount of resource loss, according to the present invention, SRS transmission is flexibly transmitted according to UE change pattern, thereby adaptive UE transmission.
  • Tx beam candidate terminal transmission beam
  • a UE shall transmit Sounding Reference Symbol (SRS) on per serving cell SRS resources based on two trigger types: trigger type 0: higher layer signaling-trigger type 1: DCI formats 0/4 / 1A for FDD and TDD and DCI formats 2B / 2C / 2D for TDD.
  • trigger type 0 higher layer signaling-trigger type 1: DCI formats 0/4 / 1A for FDD and TDD and DCI formats 2B / 2C / 2D for TDD.
  • both trigger type 0 and trigger type 1 SRS transmissions would occur in the same subframe in the same serving cell, the UE shall only transmit the trigger type 1 SRS transmission.
  • a UE may be configured with SRS parameters for trigger type 0 and trigger type 1 on each serving cell.
  • SRS parameters are serving cell specific and semi-statically configurable by higher layers for trigger type 0 and for trigger type 1.
  • -Transmission comb as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1-Starting physical resource block assignment n RRC , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - duration: single or indefinite (until disabled), as defined in [11] for trigger type 0 - srs-ConfigIndex I sRS for sRS periodicity T sRS and sRS subframe offset T offset, as defined in Table 8.2-1 and Table 8.2-2 for trigger type 0 and SRS periodicity T SRS, 1 , and SRS subframe offset T SRS, 1 , as defined in Table 8.2-4 and Table 8.2-5 trigger type 1-SRS bandwidth B SRS , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1-Frequency hopping bandwidth
  • the 2-bit SRS request field [4] in DCI format 4 indicates the SRS parameter set given in Table 8.1-1.
  • a single set of SRS parameters srs-ConfigApDCI-Format0
  • a single common set of SRS parameters srs-ConfigApDCI-Format1a2b2c
  • the SRS request field is 1 bit [4] for DCI formats 0 / 1A / 2B / 2C / 2D, with a type 1 SRS triggered if the value of the SRS request field is set to '1'.
  • a 1-bit SRS request field shall be included in DCI formats 0 / 1A for frame structure type 1 and 0 / 1A / 2B / 2C / 2D for frame structure type 2 if the UE is configured with SRS parameters for DCI formats 0 / 1A / 2B / 2C / 2D by higher-layer signalling.
  • Table 2 below shows a SRS Request Value for trigger type 1 in DCI format 4 in 3GPP LTE / LTE-A system.
  • Table 3 is a table for further explaining the additional information related to the SRS transmission in the 3GPP LTE / LTE-A system.
  • the serving cell specific SRS transmission bandwidths C SRS are configured by higher layers.
  • the allowable values are given in subclause 5.5.3.2 of [3].
  • the serving cell specific SRS transmission sub-frames are configured by higher layers.
  • the allowable values are given in subclause 5.5.3.3 of [3].
  • SRS transmissions can occur in UpPTS and uplink subframes of the UL / DL configuration indicated by the higher layer parameter subframeAssignment for the serving cell.
  • a UE may be configured to transmit SRS on Np antenna ports of a serving cell where Np may be configured by higher layer signalling.
  • Np may be configured by higher layer signalling.
  • a UE configured for SRS transmission on multiple antenna ports of a serving cell shall transmit SRS for all the configured transmit antenna ports within one SC-FDMA symbol of the same subframe of the serving cell.
  • the SRS transmission bandwidth and starting physical resource block assignment are the same for all the configured antenna ports of a given serving cell.
  • a UE not configured with multiple TAGs shall not transmit SRS in a symbol whenever SRS and PUSCH transmissions happen to overlap in the same symbol.
  • TDD serving cell when one SC-FDMA symbol exists in UpPTS of the given serving cell, it can be used for SRS transmission.
  • both can be used for SRS transmission and for trigger type 0 SRS both can be assigned to the same UE.
  • a UE is not configured with multiple TAGs, or if a UE is configured with multiple TAGs and SRS and PUCCH format 2 / 2a / 2b happen to coincide in the same subframe in the same serving cell, -The UE shall not transmit type 0 triggered SRS whenever type 0 triggered SRS and PUCCH format 2 / 2a / 2b transmissions happen to coincide in the same subframe;
  • the UE shall not transmit type 1 triggered SRS whenever type 1 triggered SRS and PUCCH format 2a / 2b or format 2 with HARQ-ACK transmissions happen to coincide in the same subframe;
  • -The UE shall not transmit PUCCH format 2 without HARQ-ACK whenever type 1 triggered SRS and PUCCH format 2 without HARQ-ACK transmissions happen to coincide in the same subframe.
  • the UE shall transmit SRS whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and / or positive SR using shortened format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe if the parameter ackNackSRS-SimultaneousTransmission is TRUE.
  • a UE not configured with multiple TAGs shall not transmit SRS whenever SRS transmission on any serving cells and PUCCH transmission carrying HARQ-ACK and / or positive SR using normal PUCCH format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe.
  • the UE shall not transmit SRS whenever SRS transmission instance overlaps with the PRACH region for preamble format 4 or exceeds the range of uplink system bandwidth configured in the serving cell.
  • the parameter ackNackSRS-Simultaneous Transmission provided by higher layers determines if a UE is configured to support the transmission of HARQ-ACK on PUCCH and
  • the cell specific SRS subframes of the primary cell UE shall transmit HARQ-ACK and SR using the shortened PUCCH format as defined in subclauses 5.4. 1 and 5.4.2A of [3], where the HARQ-ACK or the SR symbol corresponding to the SRS location is punctured.
  • This shortened PUCCH format shall be used in a cell specific SRS subframe of the primary cell even if the UE does not transmit SRS in that subframe.
  • the cell specific SRS subframes are defined in subclause 5.5.3.3 of [3].
  • the UE shall use the normal PUCCH format 1 / 1a / 1b as defined in subclause 5.4.1 of [3] or normal PUCCH format 3 as defined in subclause 5.4.2A of [3] for the transmission of HARQ-ACK and SR.Trigger type 0 SRS configuration of a UE in a serving cell for SRS periodicity, T SRS , and SRS subframe offset, T offset , is defined in Table 8.2-1 and Table 8.2-2, for FDD and TDD serving cell, respectively .
  • the periodicity T SRS of the SRS transmission is serving cell specific and is selected from the set ⁇ 2, 5, 10, 20, 40, 80, 160, 320 ⁇ ms or subframes.
  • T SRS For the SRS periodicity T SRS of 2 ms in TDD serving cell, two SRS resources are configured in a half frame containing UL subframe (s) of the given serving cell.
  • TDD serving cell For TDD serving cell, and a UE configured for type 0 triggered SRS transmission in serving cell c, and the UE configured with the parameter EIMTA-MainConfigServCell-r12 for serving cell c, if the UE does not detect an UL / DL configuration indication for radio frame m (as described in section 13.1), the UE shall not transmit trigger type 0 SRS in a subframe of radio frame m that is indicated by the parameter eimta-HarqReferenceConfig-r12 as a downlink subframe unless the UE transmits PUSCH in the same subframe.
  • Trigger type 1 SRS configuration of a UE in a serving cell for SRS periodicity, T SRS, 1 , and SRS subframe offset, T offset, 1 is defined in Table 8.2-4 and Table 8.2-5, for FDD and TDD serving cell, respectively.
  • the periodicity T SRS, 1 of the SRS transmission is serving cell specific and is selected from the set ⁇ 2, 5, 10 ⁇ ms or subframes.
  • a UE configured for type 1 triggered SRS transmission in serving cell c and not configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH / EPDCCH scheduling PUSCH / PDSCH on serving cell c
  • a UE configured for type 1 triggered SRS transmission in serving cell c and configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH / EPDCCH scheduling PUSCH / PDSCH with the value of carrier indicator field corresponding to serving cell c .
  • a UE configured for type 1 triggered SRS transmission is not expected to receive type 1 SRS triggering events associated with different values of trigger type 1 SRS transmission parameters, as configured by higher layer signaling, for the same subframe and the same serving cell.
  • the UE shall not transmit SRS in a subframe of a radio frame that is indicated by the corresponding eIMTA-UL / DL-con
  • Table 4 shows a subframe offset configuration (T offset) and UE-specific SRS periodicity (T SRS ) for trigger type 0 in FDD.
  • Table 5 below shows subframe offset configuration (T offset) and UE-specific SRS periodicity (T SRS ) for trigger type 0 in TDD.
  • Table 7 shows k SRS for TDD.
  • Table 8 shows a subframe offset configuration (T offset, 1 ) and UE-specific SRS periodicity (T SRS, 1 ) for trigger type 1 in FDD.
  • Table 9 shows a subframe offset configuration (T offset, 1 ) and UE-specific SRS periodicity (T SRS, 1 ) for trigger type 1 in TDD.
  • FIG. 2 is a diagram illustrating a structure of a subframe in which a data channel and a control channel are TDM.
  • the hatched region represents a downlink control region (that is, a resource region for transmitting a downlink control channel), and a black portion represents an uplink control region (that is, a resource region for transmitting an uplink control channel).
  • an area without an indication may be used for downlink data transmission or may be used for uplink data transmission.
  • the feature of such a structure is that downlink (DL) transmission and uplink (UL) transmission are sequentially performed in one subframe, and can transmit downlink data in a subframe and receive uplink ACK / NACK. As a result, when a data transmission error occurs, the time required for data retransmission is reduced, thereby minimizing latency of final data transmission.
  • a time gap is required for a base station and a UE to switch from a transmission mode to a reception mode or a process from a reception mode to a transmission mode.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the hatched region indicates a transmission region of a physical downlink control channel (eg, a physical downlink control channel (PDCCH)) for transmitting downlink control information (DCI), and the last symbol conveys uplink control information (UCI).
  • a physical downlink control channel eg, Physical Uplink Control CHannel (PUCCH)
  • the DCI which is control information transmitted from the base station to the terminal, includes information about cell configuration that the terminal needs to know, downlink-specific information such as downlink scheduling, and uplink-specific information such as UL grant. Information and the like.
  • the UCI which is control information delivered to the base station, may include a HARQ ACK / NACK report for downlink data, a CSI report for downlink channel state, and a scheduling request (SR).
  • SR scheduling request
  • an area without an indication may be used as a data channel (eg, a physical downlink shared channel) for downlink data transmission, or a data channel (eg, uplink data transmission).
  • a data channel eg, a physical downlink shared channel
  • a data channel eg, uplink data transmission
  • Physical Uplink Shared CHannel (PUSCH) may be used.
  • the feature of this structure is that downlink transmission and uplink transmission are sequentially performed in one subframe, so that a base station sends downlink data in a subframe, and transmits HARQ ACK / NACK signal for the downlink data from a terminal. Can be received. As a result, when a data transmission error occurs, the time required for data retransmission is reduced, thereby minimizing latency of final data transmission.
  • a time gap is required for a base station and a terminal to switch from a transmission mode to a reception mode or a process of switching from a reception mode to a transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in a self-contained subframe structure are set to guard period (GP).
  • each section is represented in the temporal order within the subframe.
  • New RAT system requirements will be an environment where multiple measurement requirements and multiple services that require different control information transmissions coexist.
  • the present invention proposes a resource allocation method for measuring in order to mitigate interference between uplink cells on a New RAT structure.
  • 3 is a diagram illustrating a hybrid CSI-RS (wideband, sub-band) structure for supporting various services in New RAT.
  • heterogeneous CSI-RSs need to be formed in a wideband and sub-band structure from a downlink perspective. Therefore, if the structure of FIG. 3 is regarded as one of the requirements of the New RAT, the uplink resource is also likely to be corresponding thereto.
  • FIG. 4 is a diagram illustrating Localized URS (Uplink RS) unit bandwidth (BW) definition and placement (including a transmission comb).
  • URS Uplink RS
  • BW unit bandwidth
  • the uplink SRS (which can be expressed as xSRS in New RAT) structure, not only the whole band transmission of the terminal, but also localized or distributed forms can be transmitted on one symbol according to other service requirements.
  • the SRS also needs to consider a structure of multiplexing with other uplink channels (eg, uplink control channels).
  • the entire band can be divided into four Localized SRS unit bandwidths.
  • ZC Zadoff-Chu
  • SC pseudo random
  • New RAT system is expected to increase base station and terminal requirements as follows.
  • -Terminal TRP increase Request for increased Sounding RS dimensioning (port, Cyclic Shift (CS), Orthogonal Cover Code (OCC), Transmission Comb, etc.)
  • Advanced transceiver Requires an advanced transceiver structure for enhanced interference measurement reporting (network assistant interference control).
  • UL Beam tracking A structure for UL Beam tracking is required when not only the downlink but also the beam tracking of the uplink channel is required (multi-symbol-wise SRS transmission).
  • Channel reciprocity A structure is needed when the reciprocity between the downlink channel and the uplink channel is established or not (UL SRS support for downlink channel estimation is required).
  • uplink inter-cell interference received by a target terminal is transmitted to neighboring cells (especially prepared cells: cells of a specific terminal) transmitted to a resource location such as a resource allocated to a serving cell. It is largely caused by UE Tx beamforming in cells having strong RSRP during RS measurement.
  • the information necessary for controlling such interference is UE-specific information (ie, beamforming pattern information of a neighboring cell terminal directed to the serving cell (information that the serving base station (or serving cell) can use to extract the receiving RSRP of the terminal)), Site-specific information (ie, information indicating the Tx beam direction of neighboring cell terminals that cause terminals inside prepared cells to interfere with the target terminal in a serving cell), and resource-specific information (ie, Orthogonality of resources that interfere with allocated resources). Therefore, the serving cell needs to receive the terminal-specific information / location-specific information / resource-specific information from neighboring cells for interference control.
  • UE-specific information ie, beamforming pattern information of a neighboring cell terminal directed to the serving cell (information that the serving base station (or serving cell) can use to extract the receiving RSRP of the terminal)
  • Site-specific information ie, information indicating the Tx beam direction of neighboring cell terminals that cause terminals inside prepared cells to interfere with the target terminal in a serving cell
  • resource-specific information
  • FIG. 5 is a diagram illustrating interference occurrence according to various resource structures (localized SRS + xPUCCH, xPUCCH only, and xSRS only structures) configuration.
  • FIG. 5 illustrates that the UE is allocated the same resource region from each serving cell (serving cell, prepared cell 0, prepared cell M).
  • serving cell serving cell, prepared cell 0, prepared cell M in FIG. 5
  • different channels or usages localized SRS in serving cell, xPUCCH in prepared cell 0, whole band SRS in prepared cell M
  • assigning the resource of it can be seen that a problem may occur that the channel or resource orthogonality is not established by generating a sequence having a different length when generating each channel.
  • each base station or cell needs to know a set of sequences of all different lengths in advance, and prepared cells are prepared cells. It is necessary to accurately inform the serving cell of information (location where the channel is generated and mapped to the physical resource) on the channel region where interference occurs. Meanwhile, in the case of a channel having the same length, interference can be easily mitigated by a method designed from the perspective of channel orthogonality among the methods for mitigating inter-cell interference.
  • 6 is an exemplary diagram for describing interference due to different uplink resource configuration between cells.
  • inter-cell interference between the SRS and the xPUCCH may occur according to the configuration of the SRS in cell A and the physical uplink channel (for example, referred to as xPUCCH) in cell B.
  • the following method is performed.
  • xPUCCH formats 1, 1a, and 1b and SRS are designed using Zadoff Chu (ZC) sequences.
  • u for setting the root of the ZC sequence is set for each channel (SRS, xPUCCH) using a different group hopping method.
  • each base station can detect each channel through ZC sequence detection between the SRS and the xPUCCH even in the inter-cell interference between the SRS and the xPUCCH.
  • this is a method that can be used by other channels for a sequence that satisfies orthogonality, but especially when an SRS and a signal generation method overlap with another channel such as an xPUCCH format (eg, xPUCCH format 2), Inter-cell interference may occur, resulting in performance degradation.
  • an xPUCCH format eg, xPUCCH format 2
  • FIG. 7 is a diagram illustrating a structure between 3GPP NR multiple numerology.
  • RBs for different numerologies should be placed on a fixed grid.
  • RB grids are defined as subset / superset as nested manner of 15KHz subcarrier spacing RB grid.
  • the frequency domain multiplexing case is FFS.
  • Allow control channels for the start / end symbols of the mini-slot (both or either)
  • the smallest mini-slot is the smallest scheduling unit (FFS, number of symbols)
  • FFS NR needs to determine whether slots or mini-slots support coexisting structures
  • FIG. 8 is a diagram illustrating an interference problem according to different multi-numerologies configuration, (a) is a diagram illustrating uplink inter-cell interference between different numerologies, and (b) is a diagram illustrating another multi-numerologies configuration between cells.
  • the beam sweeping may be performed by measuring a reference signal received power (RSRP) of the BRS as the Rx beam direction of the UE changes in each BRS (beam reference signal) using the BRS.
  • RSRP reference signal received power
  • the reciprocity of the Tx / Rx beam pair for downlink ie, base station transmit beam / terminal receive beam pair and terminal transmit beam / base station receive beam
  • the obtained transmit / receive beam pair can be applied to uplink.
  • the uplink case may use SRS.
  • the SRS corresponding to the entire transmission beam ID of each terminal should be transmitted. This means that a physical uplink shared channel (PUSCH) transmission interval becomes smaller according to SRS transmission, and impairs uplink throughput performance.
  • PUSCH physical uplink shared channel
  • the SRS transmission area increases.
  • the number of SRS transmissions for fixed UE transmission candidate beams is fixedly set in a higher layer.
  • the base station may inform the number of SRS transmission of the terminal transmission candidate beams fixed by the higher layer signal (RRC signal, etc.)).
  • RRC signal higher layer signal
  • FIG. 10 is an exemplary diagram for describing another cell interference when tracking a UE transmission beam
  • FIG. 11 is an exemplary diagram for explaining SRS transmission and interference when UE 2 (UE 2) of FIG. 7 is beam tracking.
  • the uplink candidate beam transmits the SRS with a beam ID (beam ID) that greatly interferes with another cell (
  • the SRS is transmitted in a full bandwidth in a beamformed state, and an uplink control channel (e.g., xPUCCH) or an uplink data channel (e.g., in an uplink of a cell subjected to the interference at that timing) If xPUSCH) is transmitted, the SRS in the uplink channel causes large inter-ell interference as shown in FIG. 11, thereby degrading reception performance.
  • an xPUSCH (k, l) resource of UE 1 (UE 1) received by the serving base station may be represented by Equation 1 below. However, the channel is assumed to be AWGN.
  • an SRS for beam tracking of UE 2 may be transmitted over the entire band in a corresponding symbol.
  • Uplink control is performed by UE 1 or UE 3 in the corresponding symbol. If a channel or uplink data channel transmission is transmitted, the interference is increased by the SRS of the terminal 2 in the corresponding symbol.
  • the terminal For Tx beam tracking of the terminal, the terminal needs to transmit the SRS according to each candidate Tx beam. As the number of candidate Tx beams of the UE increases, the number of SRS symbols increases due to repetitive SRS transmission for beam tracking. Accordingly, not only the serving cell but also adjacent cells may have different frame structures. In particular, a phenomenon in which an SRS channel strongly interferes with another cell during Tx beam tracking of a terminal in uplink occurs.
  • interference measurement is to measure inter-cell interference using CRS (Cell-specific RS) or CSI-RS or ZP (Zero Power) -CSI RS.
  • CRS Cell-specific RS
  • CSI-RS Cell-specific RS
  • ZP Zero Power
  • Table 10 almost blank subframe (ABS): subframe with reduced transmit power (including no transmission) on some physical channels and / or reduced activity.
  • ABS subframe with reduced transmit power (including no transmission) on some physical channels and / or reduced activity.
  • the eNB ensures backwards compatibility towards UEs by transmitting necessary control channels and physical signals as well as System Information.
  • Bits indicating the two sets (bitmap indicating the subframe in which ABS is transmitted) and the ABS subset for measurement, as the aggressor cell is the victim cell Map) is transmitted through X2 signaling. Through the X2 signaling, the aggressor cell can share information with the victim cell.
  • the serving base station may inform the victim terminal (the terminal affected by the interference) of the subframe set information.
  • There are two subframe sets (a subframe set for RLF and RRM and a subframe set for CSI reporting).
  • the subframe set for RLF (radio link failure) and RRM (radio resource management) is a subframe set for RLF and RRM determination.
  • the subframe set is relatively static and may be set to a long term.
  • the subframe set for CSI reporting indicates a CSI type for ABS and non-ABS, and a reporting subframe for CSI type for ABS of Aggressor cell 1 and ABS of aggressor cell 2.
  • FIG. 12 is a diagram illustrating a CSI reporting method.
  • the subframes for the CSI types may be set so as not to overlap.
  • FIG. 12 (a) is for periodic CSI reporting.
  • the subframe set (subframe # 0) associated with each type is illustrated.
  • periodic CSI reporting is performed in subframe # n + 3.
  • RSRP or RSRQ should be measured for a specific period based on the CRS.
  • the minimum measurement length is a subframe length and is processed by a method of average out the CRS in the subframe.
  • the frequency resources allocated to each service are also different, and when the uplink interference is measured when uplink beam sweeping is introduced, the amount of interference per symbol may vary due to the beam sweeping per uplink symbol. It is not preferable to use RSRP or RSRQ measurement method for uplink in New RAT. That is, a method of measuring RSRP or RSRQ per symbol or per sub-band may be needed.
  • the present invention describes the New RAT UL ICIC method. More specifically, the present invention proposes a method for reducing uplink interference when the channel level reciprocity and the beam level reciprocity do not match.
  • Embodiment 1 proposes to set different hypothesis for uplink interference between cells on a network according to periodic / aperiodic / semi-persistent SRS transmission.
  • Embodiment 1-1 sets different transmission timings between cells during periodic SRS transmission (using cell ID for the period setting method), and measures uplink cell interference measurement and base station transmission hypothesis information X2. It is proposed to use for uplink interference measurement by transmitting through an interface.
  • 13 is a diagram illustrating an example of a Hypothesis (transmission) message structure.
  • the hypothesis head shown in FIG. 13 may include a subframe range to which each hypothesis is applied and SRS configuration index information (encrypted and transmitted).
  • the subframe range may indicate a subframe where the hypothesis starts and a subframe that ends.
  • Table 11 shows the SRS configuration and the SRS period.
  • SRS configuration Index I SRS is represented as a function of Cell ID. If the cells in the network consist of cell A, cell B, and cell C, each SRS configuration Index is If it is represented by, the SRS transmission subframe index can be found according to the following equation (2).
  • Table 14 is a diagram illustrating another SRS period and hypothesis sharing between cells in a network.
  • Table 12 shows the tables described with the hypothesis index.
  • FIG. 15 is a diagram illustrating a hypothesis transmission message based on another SRS period and hypothesis sharing example between cells of FIG. 14.
  • uplink cell interference measurement can be precisely performed.
  • cell A can measure interference of an uplink channel transmitted by cell B through SRS power measurement of subframe index 5 and transmit an uplink channel in cell B through SRS power measurement of subframe index 15. And the interference caused by the SRS transmission of the cell C can be measured. With these two subframe measurements, the amount of uplink transmission interference transmitted by the cell B and the interference caused by the SRS transmission of the cell C can be precisely measured. have.
  • 16 is a diagram illustrating a zero power region in an SRS according to an SRS configuration index.
  • Embodiment 1-2 determines the location of a zero power resource (sub-band) according to the SRS transmission configuration index, and measures the interference during uplink channel transmission between cells. After a certain time, the zero power resource position can be varied (by hopping, the zero power resource position can be varied).
  • received signal strength for example, RSRP
  • 17 is a diagram illustrating an example of explicitly setting hypothesis and zero power resource regions in a specific SRS transmission region.
  • Embodiments 1-3 designate a transmission scenario for a specific SRS transmission subframe index n, measure the hypothesis of the transmission scenario specified in the SRS measurement of the subframe (subframe of index n), and measure a zero power resource region. Suggest to specify.
  • the hatched parts indicate an area for performing periodic SRS transmission in each cell.
  • some of the periodic SRS transmission regions in the same subframe of cell A and cell C are muted at the same position.
  • the resource corresponding to the cell A zero power resource in the periodic SRS transmission region of the cell C may be muted.
  • Cell C can measure interference from cell B using the zero power resource of cell A.
  • 18 is a diagram illustrating an example of acquiring uplink interference measurement hypothesis according to aperiodic SRS transmission.
  • Embodiments 1-4 propose to measure uplink interference for a specific hypothesis through a Zero Power resource region of an aperiodic SRS when triggering aperiodic SRS to each UE by DCI in each serving cell.
  • cell A when aperiodic SRS is triggered in cell A in a subframe of index n, and cell A determines the periodic SRS transmission position of cell B, cell A may measure interference of cell C. .
  • the periodic SRS sequence of cell B and the periodic SRS sequence of cell A must be orthogonal. That is, the aperiodic SRS sequence is designed with an orthogonal set to the periodic SRS sequence.
  • 19 is a diagram illustrating another zero power resource configuration and SRS-IM processing according to aperiodic SRS transmission.
  • Example 1-5 proposes to perform uplink interference measurement for a specific purpose by varying the position of the zero power region of the aperiodic SRS.
  • SRS-IM Interference Measurement
  • the location of the zero power region of the aperiodic SRS is transmitted by each cell (or base station) to the terminal through DCI.
  • a part of the sequence of the cell B can also be obtained.
  • the amount of interference of the cell B can be determined through continuous IM processing.
  • the lower right figure of FIG. 19 illustrates IM measurements in the following same hypothesis (assuming no interference change during the next measurement), and IM measurements between aperiodic SRS and aperiodic SRS may also apply above.
  • Uplink interference due to uplink beam sweeping has a high possibility of dominant interference caused by uplink beamforming. There is a need for periodic continuous SRSs for uplink beam sweeping.
  • 20 is a diagram illustrating a transmission structure of periodic consecutive SRSs for uplink beam sweeping.
  • the Rx beam of the base station When performing the uplink beam sweeping, when the other terminal Tx beams change when transmitting continuous SRS symbols, the Rx beam of the base station needs to be fixed. Therefore, in order to perform uplink beam refinement on another Rx beam of the base station, when the Rx beam of the base station changes, it is necessary to transmit consecutive SRS symbols again to measure a beam pair. After the Rx beam of the base station changes, the Rx beam of the base station does not change during the next time the Rx beam of the base station changes, but after that time, transmission of consecutive SRS symbols is required.
  • Points to consider for interference measurement and avoidance in the transmission structure of periodic continuous SRSs for uplink beam sweeping are as follows.
  • IM resources may need to be in an uplink data channel (eg, PUSCH).
  • PUSCH uplink data channel
  • an uplink beam sweeping SRS is also considered in a neighboring cell.
  • uplink swept SRS transmission is preferred to avoid this case.
  • the interference change is severe. That is, when the uplink beam sweeping is performed in the serving cell, an SRS for uplink beam sweeping of the neighboring cell may be transmitted, thereby greatly causing interference, and thus an incorrect uplink beam refinement may be performed.
  • Tx beam configuration and SRS transmission of the terminal for minimizing interference are required.
  • the Tx beam ID of the terminal is changed to reduce uplink interference.
  • frequency division multiplexing (FDM) may be performed between sub-band SRSs.
  • 21 is a diagram illustrating a case of setting different SRS transmission timing in each cell for uplink beam sweeping.
  • the present invention proposes to set SRS transmission timing for uplink beam sweeping differently by using cell ID in advance.
  • Each cell may allocate an SRS transmission region for uplink beam sweeping at different transmission timings in units of different subframes and slots.
  • IM resource setting in PUSCH or PUCCH for interference measurement (provided by UL grant)
  • FIG. 22 is an exemplary diagram for describing a zero power resource configuration method according to Embodiment 2 of the present invention.
  • FIG. 22 is an exemplary diagram for describing a zero power resource configuration method according to Embodiment 2 of the present invention.
  • the cell when the UE continuously transmits SRS symbols when performing uplink beam sweeping for uplink beam refinement, the cell (or base station) may perform uplink data to confirm that uplink dominant cell interference occurs.
  • Zero power resources can be allocated to channels for transmission.
  • the UE can know the information on the location of the zero power resource through the UL grant of the DCI.
  • the UL grant may include zero power resource transmission region information, zero power resource transmission symbol index and length (start symbol, last symbol), frequency side index (RE unit, RB unit, etc.).
  • each cell may allocate a zero power resource having a length corresponding to the length of consecutive SRS symbols for uplink beam sweeping to an uplink data transmission channel.
  • Each cell may share length information of consecutive SRS transmission symbols, that is, through an X2 interface.
  • Interference measurement scenarios vary depending on the location of zero power resources.
  • 23 is a diagram illustrating setting of a zero power resource.
  • neighboring cells may allocate IM resources to different locations.
  • Cell B may perform IM including interference due to uplink beam sweeping of cell A and interference of cell C.
  • cell C may perform IM including interference due to uplink beam sweeping of cell A and interference of cell B.
  • neighboring cells may allocate IM resources at the same location. have.
  • Each neighbor cell may perform an SRS IM according to uplink beam sweeping of cell A.
  • the zero power resource is also capable of frequency hopping.
  • the UE If transmission of aperiodic continuous SRSs for uplink beam sweeping is triggered to the UE of the serving cell, the UE transmits SRSs after n subframes from the subframe in which the DCI indicating triggering is received.
  • the serving cell knows SRS (periodic) transmission subframe information for uplink beam sweeping of the neighbor cell. If the subframe for the transmission of aperiodic continuous SRSs for uplink beam sweeping in the serving cell and the periodic SRS transmission subframe in the neighboring cell are the same (overlap), the serving cell is determined by the UE for uplink beam sweeping. It may be configured not to transmit aperiodic continuous SRSs. The serving cell may also be configured not to perform uplink beam sweeping on edge terminals.
  • the terminal of the serving cell may perform Tx beam sweeping in the Tx beam direction of the terminal that minimizes interference to neighboring cells.
  • the serving cell may transmit information (eg, beam sweeping subframe index information) indicating that uplink beam sweeping is performed to the neighbor cell through the X2 interface.
  • information eg, beam sweeping subframe index information
  • the IM resource is configured in the PUSCH region of each neighboring cell or the uplink beam sweeping is triggered in the corresponding subframe of the neighboring cell, it is necessary to configure the uplink beam sweeping in a direction that minimizes interference in the serving cell.
  • FIG. 24 is a diagram illustrating matters related to an uplink neighbor cell interference measurement procedure (Change 3 above).
  • the serving cell when a serving cell triggers an SRS for uplink beam sweeping, the serving cell performs uplink beam sweeping after n subframes by triggering an SRS for uplink beam sweeping to adjacent cell (s). Inform them.
  • the serving cell may indicate to the UE that SRS for uplink beam sweeping is triggered through DCI.
  • the neighbor cell (s) may allocate IM resources in corresponding SRS symbols or resources for uplink beam sweeping in the corresponding subframe where the serving cell performs uplink beam sweeping (see FIG. 23). And, the adjacent cell (s) may deliver information indicating the location of the IM resource to its serving terminals.
  • UEs of neighboring cell perform uplink transmission in a corresponding subframe after the n subframes, and a UE of a serving cell transmits consecutive SRSs in the corresponding subframe.
  • the neighbor cell (s) can measure interference at each IM resource.
  • FIG. 25 is a diagram illustrating a method for measuring uplink neighbor cell interference (change 3 above) to prevent interference between serving cells and neighbor cell (s) when performing uplink beam sweeping.
  • the serving cell if the serving cell triggers an SRS for uplink beam sweeping, the serving cell will trigger uplink beam sweeping after n subframes by triggering an SRS for uplink beam sweeping to adjacent cell (s). Inform.
  • the serving cell may indicate to the UE that SRS for uplink beam sweeping is triggered through DCI.
  • the adjacent cell (s) can trigger the SRS for uplink beam sweeping.
  • the neighbor cell (s) may instruct uplink beam sweeping to terminals in the cell.
  • the neighbor cell (s) may transmit beam information (terminal-specific beam information) that does not interfere with the serving cell to terminals in the cell.
  • terminals in the adjacent cell (s) may transmit consecutive SRSs in terminal beams that do not significantly interfere with the serving cell based on the received beam information.
  • the terminal of the serving cell may also transmit consecutive SRSs in the corresponding subframe after the n subframes.
  • Embodiment 3 of the present invention proposes a method for mitigating interference between uplink cells.
  • the ICIC control for the uplink is basically performed by the cell (or base station). Accordingly, the base station allocates an uplink resource to the terminal so as not to interfere with the neighboring cell (UL grant and PUCCH triggering by DCI), and information about the terminal Tx beam to prevent interference with the neighboring cell (terminal-specific Information).
  • FIG. 26 is a diagram illustrating a procedure of muting an uplink data transmission channel.
  • the serving cell (Cell C) may trigger uplink beam sweeping. Subsequently, the serving cell (cell C) may provide the best Tx beam information of the terminal to the terminal (s) UE x in the serving cell through DCI or the like. UEs in the serving cell transmit an uplink signal on the best Tx beam based on the received DCI. Thereafter, the neighboring cell (s) may inform the serving cell that a lot of interference occurs in a specific resource. Then, the serving cell may transmit a UL grant for muting to a terminal using the specific resource based on the interference information received from the neighbor cell (s), and transmit a UL grant for resource allocation to another terminal.
  • FIG. 27 is a diagram illustrating a UL grant based procedure for changing an uplink resource location for mitigating interference between uplink cells
  • FIG. 28 is a diagram illustrating a procedure for specifying uplink data resource location.
  • the serving cell may trigger uplink beam sweeping.
  • the serving cell (cell C) may provide the best Tx beam information of the terminal to the terminal (s) UE x in the serving cell through DCI or the like.
  • UEs in the serving cell transmit an uplink signal on the best Tx beam based on the received DCI.
  • the neighbor cell (s) may also inform the serving cell of information on resource location not used by the neighbor cell (s) along with information indicating that a particular resource has a lot of interference.
  • the serving cell grants a UL grant to the UE in the serving cell to use the unused resource indicated by the neighbor cell (s) based on the interference information received from the neighbor cell (s) and the information on the unused resource location.
  • I can send it. That is, cell C shows resources allocated to UE x of cell C in FIG. 28 as resources for terminal x in the right diagram based on information on unused resource positions received from neighbor cells. You can change it as you did.
  • the base station can be used for fast downlink interference between cells through uplink interference measurement.
  • the SRS when used for uplink interference and uplink channel state measurement in an environment in which interference change may appear in subband, symbol, or subsymbol unit in New RAT It can provide hypothesis that can be set according to SRS configuration. In addition, it is possible to perform efficient uplink ICIC through accurate uplink interference measurement.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • a method for controlling inter-cell interference in an environment for performing uplink beam sweeping and an apparatus therefor may be industrially used in various wireless communication systems such as 3GPP LTE / LTE-A system and 5G communication system.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

상향링크 빔 스위핑을 수행하는 환경에서 기지국이 셀 간 간섭을 제어하기 위한 방법은, 제 1 인접 기지국으로부터 상기 제 1 인접 기지국이 속한 셀 내 단말이 소정 서브프레임에서 상기 상향링크 빔 스위핑을 위한 SRS들의 전송함을 지시하는 정보를 수신하는 단계; 상기 정보에 기초하여 상기 소정 서브프레임에서 상향링크 빔 스위핑을 위한 SRS 전송 자원에 대응하는 간섭 측정 자원을 할당하는 단계; 및 상기 할당된 간섭 측정 자원에 대한 정보를 상기 단말에게 전송하는 단계를 포함할 수 있다.

Description

상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 방법 및 이를 위한 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 방법 및 이를 위한 장치에 관한 것이다.
New radio access technology (RAT) 시스템이 도입되는 경우 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존 RAT에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 reliability 및 latency 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이, New RAT에서는 enhanced mobile broadband communication (eMBB), massive MTC (mMTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 서비스들을 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제는 본 발명의 일 실시예에 따른 상향링크 빔 스위핑을 수행하는 환경에서 기지국이 셀 간 간섭을 제어하기 위한 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제는 본 발명의 다른 일 실시예에 따른 상향링크 빔 스위핑을 수행하는 환경에서 기지국이 셀 간 간섭을 제어하기 위한 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 본 발명의 일 실시예에 따른 상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 기지국을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 본 발명의 다른 일 실시예에 따른 상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 기지국을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, 본 발명의 일 실시예에 따른 상향링크 빔 스위핑을 수행하는 환경에서 기지국이 셀 간 간섭을 제어하기 위한 방법은, 제 1 인접 기지국으로부터 상기 제 1 인접 기지국이 속한 셀 내 단말이 소정 서브프레임에서 상기 상향링크 빔 스위핑을 위한 SRS들의 전송함을 지시하는 정보를 수신하는 단계; 상기 정보에 기초하여 상기 소정 서브프레임에서 상향링크 빔 스위핑을 위한 SRS 전송 자원에 대응하는 간섭 측정 자원을 할당하는 단계; 및 상기 할당된 간섭 측정 자원에 대한 정보를 상기 단말에게 전송하는 단계를 포함할 수 있다. 상기 방법은 상기 할당된 간섭 측정 자원에서 간섭을 측정하는 단계를 더 포함할 수 있다. 시간 도메인 상에서 상기 할당된 간섭 측정 자원의 길이는 상기 상향링크 빔 스위핑을 위한 적어도 하나의 SRS의 심볼 길이와 동일할 수 있다.
상기 할당된 간섭 측정 자원은 주파수 도메인 상에서 상기 소정의 서브프레임이 위치하는 대역 중 일부 대역에 해당할 수 있다. 상기 할당된 간섭 측정 자원은 제 2 인접 기지국에서 할당된 간섭 측정 자원과 서로 다른 주파수 대역에 해당할 수 있다.
상기의 기술적 과제를 달성하기 위한, 본 발명의 다른 일 실시예에 따른 상향링크 빔 스위핑을 수행하는 환경에서 기지국이 셀 간 간섭을 제어하기 위한 방법은, 소정 서브프레임에서 상기 상향링크 빔 스위핑을 위한 SRS 전송이 트리거링되었음을 지시하는 제어 정보를 상기 기지국이 속한 셀 내 단말에게 전송하는 단계; 인접 기지국에 간섭을 미치지 않도록 하는 상기 단말의 적어도 하나의 송신 빔을 지시하는 정보를 상기 단말에게 전송하는 단계; 및 상기 지시된 단말의 적어도 하나의 송신 빔을 통해 전송된 적어도 하나의 SRS를 상기 단말로부터 수신하는 단계를 포함할 수 있다. 상기 적어도 하나의 SRS가 복수 개인 경우, 복수개의 SRS들은 연속적인 복수의 심볼들을 통해 수신될 수 있다. 상기 적어도 하나의 SRS는 상기 제어 정보를 수신한 서브프레임으로부터 소정 개수 이후의 서브프레임에서 수신될 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, 본 발명의 일 실시예에 따른 상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 기지국은, 제 1 인접 기지국으로부터 상기 제 1 인접 기지국이 속한 셀 내 단말이 소정 서브프레임에서 상기 상향링크 빔 스위핑을 위한 SRS 전송을 수행함을 지시하는 정보를 수신하도록 설정된 수신기; 상기 정보에 기초하여 상기 소정 서브프레임에서 상기 상향링크 빔 스위핑을 위한 SRS들의 전송 자원에 대응하는 간섭 측정 자원을 할당하도록 설정된 프로세서; 및 상기 할당된 간섭 측정 자원에 대한 정보를 상기 단말에게 전송하도록 설정된 송신기를 포함할 수 있다. 상기 프로세서는 상기 할당된 간섭 측정 자원에서 간섭을 측정하도록 구성될 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, 본 발명의 다른 일 실시예에 따른 상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 기지국은, 소정 서브프레임에서 상기 상향링크 빔 스위핑을 위한 SRS 전송이 트리거링되었음을 지시하는 제어 정보를 상기 기지국이 속한 셀 내 단말에게 전송하고, 인접 기지국에 간섭을 미치지 않도록 하는 상기 단말의 적어도 하나의 송신 빔을 지시하는 정보를 상기 단말에게 전송하도록 설정된 송신기; 및 상기 지시된 단말의 적어도 하나의 송신 빔을 통해 전송된 적어도 하나의 SRS를 상기 단말로부터 수신하도록 설정된 수신기를 포함할 수 있다. 상기 적어도 하나의 SRS가 복수 개인 경우, 상기 수신기는 상기 복수개의 SRS들을 연속적인 복수의 심볼들을 통해 수신할 수 있다.
[발명의 효과]
본 발명의 실시예에 따라, New RAT에서 간섭 변화가 subband, symbol 또는 sub symbol 단위로 나타날 수 있는 환경에서의 상향링크 간섭 및 상향링크 채널 상태 측정을 위해 SRS를 이용할 시 각 SRS configuration에 따라 설정할 수 있는 hypothesis를 제공할 수 있다. 또한, 정밀한 상향링크 간섭 측정을 통해 효율적인 상향링크 ICIC를 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 2는 데이터 채널과 제어 채널이 TDM된 서브프레임의 구조를 예시적으로 나타낸 도면이다.
도 3은 New RAT에서 다양한 서비스 지원을 위한 Hybrid CSI-RS(wideband, sub-band) 구조를 예시한 도면이다.
도 4는 Localized URS(Uplink RS) unit 대역폭(BW) 정의 및 배치 (Transmission Comb 포함)를 예시한 도면이다.
도 5는 다양한 자원 구조(localized SRS+xPUCCH, xPUCCH only, xSRS only 구조) 설정에 따른 간섭 발생을 예시한 도면이다.
도 6은 셀 간 다른 상향링크 자원 설정에 따른 간섭을 설명하기 위한 예시적 도면이다.
도 7은 3GPP NR 다중 numerology 간의 구조를 도시한 도면이다.
도 8은 다른 다중 numerologies 구성에 따른 간섭 문제를 예시한 도면으로서 (a)는 다른 numerologies 간의 상향링크 셀 간 간섭을, (b)는 셀 간의 다른 다중 numerologies 구성을 예시한 도면이다.
도 9는 단말 빔 ID에 대응되는 SRS 전송을 예시한 도면이다(단말 송신 빔 ID 수=8).
도 10은 단말 송신 빔 트래킹 시 다른 셀 간섭을 설명하기 위한 예시적 도면이며, 도 11은 도 7의 단말 2(UE 2)가 빔 트래킹시 SRS 전송과 간섭을 설명하기 위한 예시적 도면이다.
도 12는 CSI 리포팅 방법을 예시한 도면이다.
도 13은 Hypothesis (전송) 메시지 구조의 일 예를 도시한 도면이다.
도 14는 네트워크 내 셀 간의 다른 SRS 주기와 hypothesis 공유를 예시한 도면이다.
도 15는 도 14의 셀 간의 다른 SRS 주기와 hypothesis 공유 예시에 기초하여 hypothesis 전송 메시지를 구성한 도면이다.
도 16은 SRS 설정 인덱스에 따른 SRS 내의 Zero Power 영역을 예시한 도면이다.
도 17은 특정 SRS 전송 영역에서 명시적으로 hypothesis 와 Zero power 자원 영역을 설정하는 예를 도시한 도면이다.
도 18은 비주기적 SRS 전송에 따른 상향링크 간섭 측정 hypothesis의 획득 예를 도시한 도면이다.
도 19는 비주기적 SRS 전송에 따른 다른 zero power 자원 설정과 SRS-IM 프로세싱의 예를 도시한 도면이다.
도 20은 상향링크 빔 스위핑을 위한 주기적인 연속적 SRS들의 전송 구조를 예시한 도면이다.
도 21은 상향링크 빔 스위핑을 위한 각 셀에 다른 SRS 전송 타이밍을 설정하는 경우를 예시한 도면이다.
도 22는 본 발명의 실시예 2에 따른 Zero Power 자원 구성 방법을 설명하기 위한 예시적 도면이다.
도 23은 Zero Power 자원의 설정을 예시한 도면이다.
도 24는 상향링크 인접 셀 간섭 측정 절차(상기 변경 사항 3)에 대한 사항을 예시한 도면이다.
도 25는 상향링크 인접 셀 간섭 측정 절차(상기 변경 사항 3)에 대한 사항으로 서빙 셀과 인접 셀(들)이 상향링크 빔 스위핑 수행 시 간섭을 서로 주지 않기 위한 방법을 예시한 도면이다.
도 26은 상향링크 데이터 전송 채널을 뮤팅(muting) 시키는 절차를 예시한 도면이다.
도 27은 상향링크 셀 간 간섭을 완화를 위해 상향링크 자원 위치를 변경시키는 UL grant 기반 절차를 예시한 도면이고, 도 28은 상향링크 데이터 자원 위치를 지정하는 절차를 예시한 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다.
이동 통신 시스템에서 단말 혹은 사용자 기기(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서 (150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능 및 저장 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
단말의 전송 빔 트래킹(Tx beam tracking)을 위해 단말은 각 후보 단말 전송 빔(Tx beam)에 따라 SRS를 전송할 필요가 있다. 많은 빔 방향(전 방향에 따른 단말의 전송 빔 세트)에 따른 SRS 전송은 많은 자원 손실을 발생시키기 때문에, 본 발명에서는 SRS 전송을 단말 변화 패턴에 따라, 유연하게 SRS를 전송하여, 적응적 단말 전송 빔 트래킹을 수행하기 위한 방법을 제안한다.
먼저, 3GPP LTE/LTE-A 시스템에서의 SRS 전송과 관련된 내용을 다음 표 1에서 설명한다.
표 1
A UE shall transmit Sounding Reference Symbol (SRS) on per serving cell SRS resources based on two trigger types: trigger type 0: higher layer signalling - trigger type 1: DCI formats 0/4/1A for FDD and TDD and DCI formats 2B/2C/2D for TDD. In case both trigger type 0 and trigger type 1 SRS transmissions would occur in the same subframe in the same serving cell, the UE shall only transmit the trigger type 1 SRS transmission.A UE may be configured with SRS parameters for trigger type 0 and trigger type 1 on each serving cell. The following SRS parameters are serving cell specific and semi-statically configurable by higher layers for trigger type 0 and for trigger type 1. - Transmission comb
Figure PCTKR2017002936-appb-I000001
, as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - Starting physical resource block assignment nRRC , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - duration: single or indefinite (until disabled), as defined in [11] for trigger type 0 - srs-ConfigIndex ISRS for SRS periodicity TSRS and SRS subframe offset Toffset , as defined in Table 8.2-1 and Table 8.2-2 for trigger type 0 and SRS periodicity TSRS,1,and SRS subframe offset TSRS,1 , as defined in Table 8.2-4 and Table 8.2-5 trigger type 1 - SRS bandwidth BSRS , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - Frequency hopping bandwidth, bhop , as defined in subclause 5.5.3.2 of [3] for trigger type 0 - Cyclic shift
Figure PCTKR2017002936-appb-I000002
, as defined in subclause 5.5.3.1 of [3] for trigger type 0 and each configuration of trigger type 1 - Number of antenna ports Np for trigger type 0 and each configuration of trigger type 1For trigger type 1 and DCI format 4 three sets of SRS parameters, srs-ConfigApDCI-Format4, are configured by higher layer signalling. The 2-bit SRS request field [4] in DCI format 4 indicates the SRS parameter set given in Table 8.1-1. For trigger type 1 and DCI format 0, a single set of SRS parameters, srs-ConfigApDCI-Format0, is configured by higher layer signalling. For trigger type 1 and DCI formats 1A/2B/2C/2D, a single common set of SRS parameters, srs-ConfigApDCI-Format1a2b2c, is configured by higher layer signalling. The SRS request field is 1 bit [4] for DCI formats 0/1A/2B/2C/2D, with a type 1 SRS triggered if the value of the SRS request field is set to '1'. A 1-bit SRS request field shall be included in DCI formats 0/1A for frame structure type 1 and 0/1A/2B/2C/2D for frame structure type 2 if the UE is configured with SRS parameters for DCI formats 0/1A/2B/2C/2D by higher-layer signalling.
다음 표 2는 3GPP LTE/LTE-A 시스템에서 DCI 포맷 4에서의 트리거 타입 1를 위한 SRS Request Value를 나타낸 표이다.
표 2
Value of SRS request field Description
'00' No type 1 SRS trigger
'01' The 1st SRS parameter set configured by higher layers
'10' The 2nd SRS parameter set configured by higher layers
'11' The 3rd SRS parameter set configured by higher layers
다음 표 3은 3GPP LTE/LTE-A 시스템에서의 SRS 전송과 관련된 추가 내용을 더 설명하기 위한 표이다.
표 3
The serving cell specific SRS transmission bandwidths CSRS are configured by higher layers. The allowable values are given in subclause 5.5.3.2 of [3]. The serving cell specific SRS transmission sub-frames are configured by higher layers. The allowable values are given in subclause 5.5.3.3 of [3]. For a TDD serving cell, SRS transmissions can occur in UpPTS and uplink subframes of the UL/DL configuration indicated by the higher layer parameter subframeAssignment for the serving cell.When closed-loop UE transmit antenna selection is enabled for a given serving cell for a UE that supports transmit antenna selection, the index a(nSRS), of the UE antenna that transmits the SRS at time nSRS is given bya(nSRS) = nSRS mod 2, for both partial and full sounding bandwidth, and when frequency hopping is disabled (i.e.,
Figure PCTKR2017002936-appb-I000003
),
Figure PCTKR2017002936-appb-I000004
when frequency hopping is enabled (i.e.
Figure PCTKR2017002936-appb-I000005
),where values BSRS, bhop, Nb, and nSRS are given in subclause 5.5.3.2 of [3], and
Figure PCTKR2017002936-appb-I000006
(where
Figure PCTKR2017002936-appb-I000007
regardless of the Nb value), except when a single SRS transmission is configured for the UE. If a UE is configured with more than one serving cell, the UE is not expected to transmit SRS on different antenna ports simultaneously.A UE may be configured to transmit SRS on Np antenna ports of a serving cell where Np may be configured by higher layer signalling. For PUSCH transmission mode 1
Figure PCTKR2017002936-appb-I000008
and for PUSCH transmission mode 2
Figure PCTKR2017002936-appb-I000009
with two antenna ports configured for PUSCH and
Figure PCTKR2017002936-appb-I000010
with 4 antenna ports configured for PUSCH. A UE configured for SRS transmission on multiple antenna ports of a serving cell shall transmit SRS for all the configured transmit antenna ports within one SC-FDMA symbol of the same subframe of the serving cell. The SRS transmission bandwidth and starting physical resource block assignment are the same for all the configured antenna ports of a given serving cell.A UE not configured with multiple TAGs shall not transmit SRS in a symbol whenever SRS and PUSCH transmissions happen to overlap in the same symbol.For TDD serving cell, when one SC-FDMA symbol exists in UpPTS of the given serving cell, it can be used for SRS transmission. When two SC-FDMA symbols exist in UpPTS of the given serving cell, both can be used for SRS transmission and for trigger type 0 SRS both can be assigned to the same UE.If a UE is not configured with multiple TAGs, or if a UE is configured with multiple TAGs and SRS and PUCCH format 2/2a/2b happen to coincide in the same subframe in the same serving cell, -The UE shall not transmit type 0 triggered SRS whenever type 0 triggered SRS and PUCCH format 2/2a/2b transmissions happen to coincide in the same subframe; -The UE shall not transmit type 1 triggered SRS whenever type 1 triggered SRS and PUCCH format 2a/2b or format 2 with HARQ-ACK transmissions happen to coincide in the same subframe; -The UE shall not transmit PUCCH format 2 without HARQ-ACK whenever type 1 triggered SRS and PUCCH format 2 without HARQ-ACK transmissions happen to coincide in the same subframe.If a UE is not configured with multiple TAGs, or if a UE is configured with multiple TAGs and SRS and PUCCH happen to coincide in the same subframe in the same serving cell, -The UE shall not transmit SRS whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and/or positive SR happen to coincide in the same subframe if the parameter ackNackSRS-SimultaneousTransmission is FALSE; -For FDD-TDD and primary cell frame structure 1, the UE shall not transmit SRS in a symbol whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and/or positive SR using shortened format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to overlap in the same symbol if the parameter ackNackSRS-SimultaneousTransmission is TRUE. -Unless otherwise prohibited, the UE shall transmit SRS whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and/or positive SR using shortened format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe if the parameter ackNackSRS-SimultaneousTransmission is TRUE.A UE not configured with multiple TAGs shall not transmit SRS whenever SRS transmission on any serving cells and PUCCH transmission carrying HARQ-ACK and/or positive SR using normal PUCCH format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe.In UpPTS, whenever SRS transmission instance overlaps with the PRACH region for preamble format 4 or exceeds the range of uplink system bandwidth configured in the serving cell, the UE shall not transmit SRS.The parameter ackNackSRS-SimultaneousTransmission provided by higher layers determines if a UE is configured to support the transmission of HARQ-ACK on PUCCH and SRS in one subframe. If it is configured to support the transmission of HARQ-ACK on PUCCH and SRS in one subframe, then in the cell specific SRS subframes of the primary cell UE shall transmit HARQ-ACK and SR using the shortened PUCCH format as defined in subclauses 5.4.1 and 5.4.2A of [3], where the HARQ-ACK or the SR symbol corresponding to the SRS location is punctured. This shortened PUCCH format shall be used in a cell specific SRS subframe of the primary cell even if the UE does not transmit SRS in that subframe. The cell specific SRS subframes are defined in subclause 5.5.3.3 of [3]. Otherwise, the UE shall use the normal PUCCH format 1/1a/1b as defined in subclause 5.4.1 of [3] or normal PUCCH format 3 as defined in subclause 5.4.2A of [3] for the transmission of HARQ-ACK and SR.Trigger type 0 SRS configuration of a UE in a serving cell for SRS periodicity, TSRS, and SRS subframe offset, Toffset, is defined in Table 8.2-1 and Table 8.2-2, for FDD and TDD serving cell, respectively. The periodicity TSRS of the SRS transmission is serving cell specific and is selected from the set {2, 5, 10, 20, 40, 80, 160, 320} ms or subframes. For the SRS periodicity TSRS of 2 ms in TDD serving cell, two SRS resources are configured in a half frame containing UL subframe(s) of the given serving cell. Type 0 triggered SRS transmission instances in a given serving cell for TDD serving cell with TSRS > 2 and for FDD serving cell are the subframes satisfying
Figure PCTKR2017002936-appb-I000011
, where for FDD kSRS ={0, 1,,,,0} is the subframe index within the frame, for TDD serving cell kSRS is defined in Table 8.2-3. The SRS transmission instances for TDD serving cell with TSRS =2 are the subframes satisfying kSRS - Toffset . For TDD serving cell, and a UE configured for type 0 triggered SRS transmission in serving cell c, and the UE configured with the parameter EIMTA-MainConfigServCell-r12 for serving cell c, if the UE does not detect an UL/DL configuration indication for radio frame m (as described in section 13.1), the UE shall not transmit trigger type 0 SRS in a subframe of radio frame m that is indicated by the parameter eimta-HarqReferenceConfig-r12 as a downlink subframe unless the UE transmits PUSCH in the same subframe.Trigger type 1 SRS configuration of a UE in a serving cell for SRS periodicity, TSRS,1, and SRS subframe offset, Toffset,1, is defined in Table 8.2-4 and Table 8.2-5, for FDD and TDD serving cell, respectively. The periodicity TSRS,1 of the SRS transmission is serving cell specific and is selected from the set {2, 5, 10} ms or subframes. For the SRS periodicity TSRS,1 of 2 ms in TDD serving cell, two SRS resources are configured in a half frame containing UL subframe(s) of the given serving cell. A UE configured for type 1 triggered SRS transmission in serving cell c and not configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH/EPDCCH scheduling PUSCH/PDSCH on serving cell c.A UE configured for type 1 triggered SRS transmission in serving cell c and configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH/EPDCCH scheduling PUSCH/PDSCH with the value of carrier indicator field corresponding to serving cell c. A UE configured for type 1 triggered SRS transmission on serving cell c upon detection of a positive SRS request in subframe n of serving cell c shall commence SRS transmission in the first subframe satisfying
Figure PCTKR2017002936-appb-I000012
and
Figure PCTKR2017002936-appb-I000013
for TDD serving cell c with TSRS,1 > 2 and for FDD serving cell c,
Figure PCTKR2017002936-appb-I000014
for TDD serving cell c with TSRS,1 =2where for FDD serving cell c
Figure PCTKR2017002936-appb-I000015
is the subframe index within the frame nf , for TDD serving cell c kSRS is defined in Table 8.2-3.A UE configured for type 1 triggered SRS transmission is not expected to receive type 1 SRS triggering events associated with different values of trigger type 1 SRS transmission parameters, as configured by higher layer signalling, for the same subframe and the same serving cell.For TDD serving cell c, and a UE configured with EIMTA-MainConfigServCell-r12 for a serving cell c, the UE shall not transmit SRS in a subframe of a radio frame that is indicated by the corresponding eIMTA-UL/DL-configuration as a downlink subframe.A UE shall not transmit SRS whenever SRS and a PUSCH transmission corresponding to a Random Access Response Grant or a retransmission of the same transport block as part of the contention based random access procedure coincide in the same subframe.
다음 표 4는 FDD에서 트리거 타입 0을 위한 서브프레임 옵셋 설정(Toffset) 및 UE-specific SRS periodicity (TSRS)를 나타낸 표이다.
표 4
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 - 1 2 ISRS
2 - 6 5 ISRS - 2
7 - 16 10 ISRS - 7
17 - 36 20 ISRS - 17
37 - 76 40 ISRS - 37
77 - 156 80 ISRS - 77
157 - 316 160 ISRS - 157
317 - 636 320 ISRS - 317
637 - 1023 reserved reserved
다음 표 5는 TDD에서 트리거 타입 0을 위한 서브프레임 옵셋 설정(Toffset) 및 UE-specific SRS periodicity (TSRS)를 나타낸 표이다.
표 5
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 - 1 2 ISRS
2 - 6 5 ISRS - 2
7 - 16 10 ISRS - 7
17 - 36 20 ISRS -17
37 - 76 40 ISRS - 37
77 - 156 80 ISRS -77
157 - 316 160 ISRS - 157
317 - 636 320 ISRS -317
637 - 1023 reserved reserved
표 6
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 2 0, 1
1 2 0, 2
2 2 1, 2
3 2 0, 3
4 2 1, 3
5 2 0, 4
6 2 1, 4
7 2 2, 3
8 2 2, 4
9 2 3, 4
10 - 14 5 ISRS - 10
15 - 24 10 ISRS - 15
25 - 44 20 ISRS - 25
45 - 84 40 ISRS - 45
85 - 164 80 ISRS - 85
165 - 324 160 ISRS - 165
325 - 644 320 ISRS - 325
645 - 1023 reserved reserved
표 7은 TDD를 위한 kSRS를 나타낸 표이다.
표 7
subframe index n
0 1 2 3 4 5 6 7 8 9
1st symbol of UpPTS 2nd symbol of UpPTS 1st symbol of UpPTS 2nd symbol of UpPTS
kSRS in case UpPTS length of 2 symbols 0 1 2 3 4 5 6 7 8 9
kSRS in case UpPTS length of 1 symbol 1 2 3 4 6 7 8 9
다음 표 8은 FDD에서 트리거 타입 1을 위한 서브프레임 옵셋 설정(Toffset,1) 및 UE-specific SRS periodicity (TSRS,1)를 나타낸 표이다.
표 8
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 - 1 2 ISRS
2 - 6 5 ISRS - 2
7 - 16 10 ISRS - 7
17 - 31 reserved reserved
다음 표 9는 TDD에서 트리거 타입 1을 위한 서브프레임 옵셋 설정(Toffset, 1) 및 UE-specific SRS periodicity (TSRS, 1)를 나타낸 표이다.
표 9
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 reserved reserved
1 2 0, 2
2 2 1, 2
3 2 0, 3
4 2 1, 3
5 2 0, 4
6 2 1, 4
7 2 2, 3
8 2 2, 4
9 2 3, 4
10 - 14 5 ISRS - 10
15 - 24 10 ISRS - 15
25 - 31 reserved reserved
도 2는 데이터 채널과 제어 채널이 TDM된 서브프레임의 구조를 예시적으로 나타낸 도면이다.
도 2는 데이터 채널과 제어 채널이 TDM(Time Division Multiplexing)된 한 서브프레임을 도시하고 있다. 도 2를 참조하면, 빗금친 영역은 하향링크 제어 영역(즉, 하향링크 제어 채널이 전송되는 자원 영역)을 나타내고, 검정색 부분은 상향링크 제어 영역(즉, 상향링크 제어 채널이 전송되는 자원 영역)을 나타낸다. 도 2에 도시된 서브프레임에서 표시가 없는 영역은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다. 이러한 구조의 특징은 한 개의 서브프레임 내에서 하향링크(DL) 전송과 상향링크(UL) 전송이 순차적으로 진행되어, 서브프레임 내에서 하향링크 데이터를 보내고, 상향링크 ACK/NACK을 받을 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 latency를 최소화할 수 있다.
이러한 데이터 채널과 제어 채널이 TDM된 서브프레임 구조에서 기지국과 UE가 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환 과정을 위한 time gap이 필요하다. 이를 위하여 서브프레임 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM(Orthogonal Frequency Division Multiplexing) 심볼이 guard period(GP)로 설정되게 된다.
도 2에서 빗금 친 영역은 DCI(Downlink Control Information) 전달을 위한 물리 하향링크 제어 채널 (예를 들어, Physical Downlink Control Channel (PDCCH))의 전송 영역을 나타내고, 마지막 심볼은 UCI(Uplink Control Information) 전달을 위한 물리 상향링크 제어 채널 (예를 들어, Physical Uplink Control CHannel (PUCCH))의 전송 영역을 나타낸다. 여기서 기지국이 단말에게 전달하는 제어 정보인 DCI는 단말이 알아야 하는 cell configuration 에 관한 정보, 하향링크 스케줄링 등의 하향링크-특정(DL specific) 정보, 그리고 UL grant 등과 같은 상향링크-특정(UL specific) 정보 등을 포함할 수 있다. 또한 단말이 기지국에게 전달하는 제어 정보인 UCI는 하향링크 데이터에 대한 HARQ ACK/NACK report, 하향링크 채널 상태에 대한 CSI report, 그리고 SR(Scheduling Request) 등을 포함할 수 있다.
도 2에서 표시가 없는 영역은 하향링크 데이터 전송을 위한 데이터 채널(예를 들어, 물리 하향링크 공유 채널 (Physical Downlink Shared Channel))로 사용될 수도 있고, 상향링크 데이터 전송을 위한 데이터 채널(예를 들어, 물리 상향링크 공유 채널(Physical Uplink Shared CHannel, PUSCH))가 사용될 수도 있다. 이러한 구조의 특징은 한 개의 서브프레임 내에서 하향링크 전송과 상향링크 전송의 순차적으로 진행되어, 기지국이 서브프레임 내에서 하향링크 데이터를 보내고, 단말로부터 상기 하향링크 데이터에 대한 HARQ ACK/NACK 신호를 수신할 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 latency를 최소화할 수 있다.
이러한 self-contained subframe 구조에서 기지국과 단말이 송신 모드에서 수신모드로 전환 과정 또는 수신모드에서 송신모드로 전환 과정을 위한 time gap이 필요하다. 이를 위하여 self-contained subframe 구조에서 하향링크(DL)에서 상향링크(UL)로 전환되는 시점의 일부 OFDM 심볼이 guard period(GP)로 설정되게 된다.
New RAT을 기반으로 동작하는 시스템에서 구성/설정 가능한 상기 self-contained 서브프레임 타입의 예로서, 적어도 다음과 같은 4가지 서브프레임 타입을 고려할 수 있다. 4가지 서브프레임 타입에서 각 구간을 subframe 내의 시간 순서상으로 표현한다.
1) DL control 구간 + DL data 구간 + GP + UL control 구간
2) DL control 구간 + DL data 구간
3) DL control 구간 + GP + UL data 구간 + UL control 구간
4) DL control 구간 + GP + UL data 구간
New RAT 시스템 요구 사항 중에 특히 중요한 부분은 다른 측정 요구 사항, 다른 제어 정보 전송이 필요한 다수의 서비스들이 동시에 공존하는 환경이 될 것이다.
New RAT에서는 다양한 numerology/service들이 공존하고, 다양한 상향링크 채널의 구조 등이 공존하며, 기존에 없었던 상향링크 빔 스위핑(UL beam sweeping)과 같은 설정에 따른 상향링크 채널과 측정에 관한 변화가 심하게 발생할 것으로 예상된다. 따라서, 이에 따른 셀 간 간섭(ICI) 또한 변화가 다양하게 나타날 수 있고, 기존의 측정 및 보고 방법으로는 다양하게 변화가 나타나게 될 셀 간 간섭 정보 획득 및 판단하기에는 부족하기 때문에 New RAT 환경에 적합한 간섭 측정 및 보고 방법을 고려할 필요가 있다. 특히 본 발명에서는 New RAT 구조 상에서 상향링크 셀 간 간섭을 완화하기 위해 측정하는 자원 할당 방법을 제안한다.
도 3은 New RAT에서 다양한 서비스 지원을 위한 Hybrid CSI-RS(wideband, sub-band) 구조를 예시한 도면이다.
도 3에 도시한 바와 같이, New RAT의 다양한 서비스 동시 지원을 위해서는 하향링크 관점에서 볼 때, 이질의 CSI-RS 들이 wideband, sub-band 구조로 형성되는 것이 필요하다. 따라서 만약 도 3의 구조를 New RAT의 요구사항 중 하나로 본다면, 상향링크 자원도 이에 대응되는 형태가 될 가능성이 크다.
도 4는 Localized URS(Uplink RS) unit 대역폭(BW) 정의 및 배치 (Transmission Comb 포함)를 예시한 도면이다.
특히 상향링크 SRS (New RAT에서는 xSRS로 표현될 수 있음) 구조에서 단말의 전대역(whole band) 전송뿐만 아니라, 다른 서비스 요구사항에 따라, 한 심볼 상에서 localized 또는 distributed 형태도 전송될 수 있으며, 이러한 구조 속에서 효율적 자원 할당을 위해, SRS는 다른 상향링크 채널(예를 들어, 상향링크 제어 채널)과 다중화하는 구조도 고려할 필요가 있다.
도 4에 도시한 바와 같이, 전대역이 4개의 Localized SRS 유닛 대역폭으로 나눌 수 있음을 알 수 있다. 특히 Localized SRS 시퀀스 생성 시 자도프-츄 (ZC) 계열 root index 값 또는 PR(Pseudo Random) 계열 scrambling seed 값을 이용한다면, physical cell ID, virtual cell ID, UE-dedicated ID (e.g. C-RNTI), UE-common ID (e.g. UE-common RNTI), beam ID (or index), subframe index, symbol index, AP index 중 적어도 하나에 따라(예를 들어, 이들 중 적어도 하나의 함수로) 결정될 수 있다.
New RAT에서의 단말 Capability 요구 사항에 따른 구조
New RAT 시스템은 LTE 대비 기지국과 단말 요구 사항이 다음과 같이 증가 될 것으로 예상된다.
- 단말 TRP 증가: Sounding RS dimensioning 증가 요구(port, Cyclic Shift(CS), Orthogonal Cover Code (OCC), Transmission Comb 등)
- Advanced transceiver: 향상된 간섭 측정 보고를 위한 Advanced transceiver 구조가 필요하다(network assistant 간섭 제어).
- UL Beam tracking: 하향링크뿐만 아니라 상향링크 채널의 빔 트래킹 요구 시 UL Beam tracking을 위한 구조가 필요하다(다중 symbol-wise SRS 전송).
- Channel reciprocity: 하향링크 채널과 상향링크 채널 간의 reciprocity 가 성립할 경우와 성립하지 않은 경우의 구조가 필요하다(하향링크 채널 추정을 위한 UL SRS 지원이 필요).
이러한 다양한 단말 capability 요구 사항을 위해서는, 동적(dynamic)이고 유연한(flexible) SRS 설정이 필요하고, 효율적인 제어를 위해 단일 상향링크 프레임웍(UL framework) 안에서 설정 지원이 될 수 있는 구조가 될 필요가 있다.
다수의 셀들이 밀집(dense) 배치된 상황에서, 타겟 단말이 받는 상향링크 inter-cell 간섭은 상기 특정 단말이 서빙 셀에게 할당받은 자원과 같은 자원 위치로 전송하는 인접 셀들(특히 prepared cells: 셀들의 RS 측정 시 강한 RSRP를 갖는 셀들)안의 단말들 Tx beamforming에 의해 크게 발생한다. 이러한 간섭을 제어하기 위해 필요한 정보들은 단말-특정 정보(즉, 서빙 셀로 향하는 인접 셀 단말의 beam 형성 패턴 정보(서빙 기지국(혹은 서빙 셀)이 그 단말의 수신 RSRP 추출 시 사용할 수 있는 정보)), 위치-특정(site-specific) 정보(즉, prepared cells 내부의 단말들이 서빙 셀 안에 상기 타겟 단말에 간섭을 주게 하는 인접 셀 단말들의 Tx beam 방향을 나타내는 정보)들, 및 자원-특정 정보(즉, 할당받은 자원과 간섭하는 자원의 직교 여부)를 포함할 수 있다. 따라서, 서빙 셀이 간섭 제어를 위해서는 인접 셀들로부터 상기 단말-특정 정보/위치-특정 정보/자원-특정 정보 등을 제공받을 필요가 있다.
그러나, 이러한 간섭 제어를 위한 정보들을 Xn signaling을 통하여 전송하는 경우 Xn signaling overhead는 상당히 크다. 따라서, 각 상향링크 채널 자원 할당 시 채널 간의 직교성, 빔 관리(beam management)를 ICIC(Inter-Cell Interference Coordination) 관점에서 제약을 두어, 합리적인 Xn signaling overhead를 갖도록 할 필요가 있다. 이를 위해, 자원 설정을 통해 간섭 측정 및 완화 시키는 방법이 고려될 필요가 있다. 단, New RAT에서 요구되는 flexibility 자원 구조를 지원하도록 하는 방법으로 자원 설정을 설계할 필요가 있다.
도 5는 다양한 자원 구조(localized SRS+xPUCCH, xPUCCH only, xSRS only 구조) 설정에 따른 간섭 발생을 예시한 도면이다.
도 5는 각 서빙 셀(서빙 셀, prepared 셀 0, prepared 셀 M)로부터 각각 단말이 동일 자원 영역을 할당받은 것을 도시하고 있다. 각 서빙 셀(도 5에서는 서빙 셀, prepared 셀 0, prepared 셀 M)에서 각 단말에게 동일 자원에서 서로 다른 채널 혹은 용도(서빙 셀에서는 localized SRS, prepared 셀 0에서는 xPUCCH, prepared 셀 M에서는 whole band SRS)의 자원을 할당으로 인해, 각 채널 생성 시 다른 길이의 시퀀스로 생성됨으로써 채널 혹은 자원 직교성이 성립하지 않게 되는 문제가 발생할 수 있음을 알 수 있다.
만약, 서빙 셀과 prepared 셀(혹은 인접 셀)들은 서로 다른 길이의 시퀀스로 채널을 생성한다면, 각 기지국(혹은 셀)은 모든 다른 길이의 시퀀스 집합을 미리 알고 있을 필요가 있으며, prepared 셀들은 prepared 셀에서 간섭이 발생하는 채널 영역에 대한 정보(그 채널을 생성하고, 물리 자원에 맵핑한 위치)를 정확하게 서빙 셀에 알려줄 필요가 있다. 한편, 같은 길이의 채널 경우에는 셀 간 간섭(Inter-cell interference)을 완화하는 방법 중 채널 간 직교성 관점에서 설계하는 방법으로 간단히 간섭을 완화 시킬 수 있다.
도 6은 셀 간 다른 상향링크 자원 설정에 따른 간섭을 설명하기 위한 예시적 도면이다.
도 6과 같이 셀 A에서의 SRS 와 셀 B에서의 물리 상향링크 채널(예를 들어, 이하 xPUCCH 로 표현)설정에 따라, SRS와 xPUCCH 간의 셀 간 간섭이 발생할 수 있다. 셀 간 간섭 발생 문제를 해결하기 위해, 다음과 같은 방법을 수행하고 있다.
1) xPUCCH formats 1,1a, and 1b 와 SRS는 자도프 츄(ZC) 시퀀스를 사용하여 설계한다.
Figure PCTKR2017002936-appb-I000016
2) ZC 시퀀스의 root 설정을 위한 u를 채널(SRS, xPUCCH) 마다, 다른 그룹 호핑(Group hopping) 방법을 사용하여 설정한다.
Figure PCTKR2017002936-appb-I000017
3) xPUCCH:
Figure PCTKR2017002936-appb-I000018
Sounding reference signals:
Figure PCTKR2017002936-appb-I000019
상기 방법을 이용하면, SRS와 xPUCCH 간의 셀 간 간섭에도 SRS 와 xPUCCH 간에 다른 ZC 시퀀스 검출을 통해 각 기지국이 각 채널을 검출할 수 있다. 그러나, 이 것은 직교성(orthogonality)를 만족시키는 시퀀스를 다른 채널들이 사용 시 가능한 방법이지만, 특히 xPUCCH 포맷 (예를 들어, xPUCCH format 2)과 같이 SRS와 신호 생성 방법이 다른 채널과 SRS 자원이 겹치면, 셀 간 간섭이 발생하여 성능 열화가 발생할 수 있다.
다른 셀의 다른 numerology 간의 셀 간 간섭
도 7은 3GPP NR 다중 numerology 간의 구조를 도시한 도면이다.
현재 3GPP numerology 간의 기본 설계 방향은 도 7과 같이 다른 다수 numerology가 공존하는 방식이다. 도 7에 도시한 3GPP NR 다중 numerology 간의 구조에 대해 설명하면 아래와 같다.
- 다른 numerologies를 위한 RB들은 서로 고정된 grid에 위치 되어야 한다.
- 15KHz × 2n의 subcarrier spacing을 위해, RB grid들은 15KHz subcarrier spacing RB grid의 nested manner 로써 subset/superset으로 정의한다.
- 도 7의 numbering은 예시이다.
- 주파수 영역 multiplexing 경우는 FFS이다.
NR에서 지원하는 시간 축 자원에 대하여 3GPP에서 승인된 내용을 설명하면 아래와 같다.
- Subframe
-참조 numerology로 x=14(normal CP 경우)로 한다
- FFS: y=x 또는 y=x/2 또는 y는 signaling
- Slot
- y개의 symbol로 구성
- 한 subframe안에 정수 배의 슬롯으로 구성된다
- Slot 내의 첫 심볼에 제어 채널 사용 허용
- Slot 내의 끝 심볼에 제어 채널 사용 허용
- Slot 내의 시작과 끝 심볼에 제어 채널 사용 허용
- 다른 구조는 규정하지 않는다.
- Mini-slot
- 전송을 위한 사용한 numerology에서 y OFDM 심볼 보다 짧은 전송 단위 지원 해야 한다.
- Mini-slot의 시작/끝 심볼에 제어 채널 허용(둘 다 또는 둘 중 하나)
- 가장 작은 mini-slot이 가장 작은 scheduling 단위로 함(FFS, 심볼 수)
- FFS: NR은 slot 또는 mini-slot 등이 공존하는 구조를 지원하는지 아닌지 결정해야 할 필요가 있음
도 8은 다른 다중 numerologies 구성에 따른 간섭 문제를 예시한 도면으로서 (a)는 다른 numerologies 간의 상향링크 셀 간 간섭을, (b)는 셀 간의 다른 다중 numerologies 구성을 예시한 도면이다.
일반적으로 다른 Subcarrier spacing을 가지는 서비스들의 UL 자원들이 서로 겹치는 경우(ex. eMBB와 URLLC) 각 서비스 내에서의 직교성을 위한 시퀀스 설계뿐만 아니라, 서비스 간의 다른 numerologies 갖는 경우의 직교성을 위한 시퀀스 설계도 필요하다.
상향링크 빔 스위핑(UL beam sweeping)에 따른 강한 셀 간 간섭
빔 스위핑은 하향링크의 경우 BRS를 이용하여 각 BRS(beam reference signal)에 단말의 수신 빔(Rx beam) 방향이 변함에 따라 그때의 BRS의 RSRP(Reference Signal Received Power) 등을 측정하여 수행할 수 있다. 만약 하향링크를 위한 송신/수신 빔 페어(Tx/Rx beam pair)의 상호관계(reciprocity)(즉 기지국 송신 빔/단말 수신 빔 페어와 단말 송신 빔/기지국 수신 빔)가 성립 할 경우, BRS에 의해 얻어진 송신/수신 빔 페어를 상향링크에 적용할 수 있다. 그러나, 그렇지 않은 때 상향링크 경우는 SRS 등을 이용할 수 있다. 가장 확실한 상향링크 빔 스위핑 시 각 단말의 전체 송신 빔 ID에 대응되는 SRS를 전송해야 한다. 이것은 SRS 전송에 따라 PUSCH(Physical Uplink Shared CHannel) 전송 구간이 작아지는 것을 의미하며, 상향링크 쓰루풋(throughput) 성능을 저해한다.
도 9는 단말 빔 ID에 대응되는 SRS 전송을 예시한 도면이다(단말 송신 빔 ID 수=8).
도 9에 도시한 바와 같이, 단말 빔 ID가 많아질 수록 SRS 전송 영역은 커짐을 알 수 있다. 단말 송신 빔(UE Tx Beam) 과 기지국 수신 빔(BS Rx beam) 페어를 맞추기 위한 빔 트래킹을 위해 주기적 SRS 전송을 고려할 경우, 고정된 단말 송신 후보 빔들에 대한 SRS 전송 개수를 상위 레이어에서 고정적으로 설정할 수 있다(예를 들어, 기지국이 상위 레이어 시그널(RRC 시그널 등)로 고정된 단말 송신 후보 빔들의 SRS 전송 개수를 알려줄 수 있다). 그러나, 비주기적 SRS(aperiodic SRS) 전송을 고려할 경우 추가되는 단말 송신 후보 빔들에 대해 추가적인 SRS 전송 영역이 필요하고, 비주기적 빔 트래킹을 위해 발생하는 SRS 전송 설정은 단말 또는 기지국에서 트리거링 함에 따라, 각 빔 트래킹 서브프레임에서 상이하게 나타날 수 있고 빔 트래킹을 위한 시그널링 정보도 비주기적 SRS가 트리거링 될때 마다 단말에 제공하게 되어 시그널링 오버헤드가 증가 될 수 있다. 따라서 이와 관련 하여, 효율적으로 SRS 전송과 PUSCH 전송 영역을 배치하고, 이와 관련된 시그널링 오버헤드를 줄일 수 있는 방법이 요구된다.
도 10은 단말 송신 빔 트래킹 시 다른 셀 간섭을 설명하기 위한 예시적 도면이며, 도 11은 도 7의 단말 2(UE 2)가 빔 트래킹시 SRS 전송과 간섭을 설명하기 위한 예시적 도면이다.
도 10에 예시한 것과 같이, 상향링크 빔 트래킹이 트리거링되어 상향링크 빔 트래킹이 수행될 때, 상향링크 후보 빔이 다른 셀에 크게 간섭을 주는 빔 식별자(beam ID)를 가지고 SRS를 전송하게 되어(일반적으로 SRS는 빔포밍된(beamformed) 상태로 전대역으로 전송), 그 타이밍에 그 간섭을 받는 셀의 상향링크에서 상향링크 제어 채널(예를 들어, xPUCCH) 또는 상향링크 데이터 채널(예를 들어, xPUSCH)가 전송된다면 그 상향링크 채널에 SRS가 도 11과 같이 크게 셀 간 간섭(inter-ell interference)을 일으키게 되어, 수신 성능을 열화 시킬 수 있다.
도 11에서 서빙 기지국에서 수신된 단말 1(UE 1)의 xPUSCH (k,l) 자원은 다음 수학식 1과 같이 나타날 수 있다. 단, 채널은 AWGN으로 가정하였다.
수학식 1
Figure PCTKR2017002936-appb-M000001
도 11을 참조하면, 단말 2(UE 2)의 빔 트래킹을 위한 SRS가 해당 심볼에서 전대역으로 전송될 수 있는데, 상기 해당 심볼에 단말 1(UE 1)이나 단말 3(UE 3)이 상향링크 제어 채널 또는 상향링크 데이터 채널 전송이 전송된다면, 상기 해당 심볼에서 단말 2의 SRS에 의해 간섭이 커지게 된다.
단말의 Tx 빔 tracking을 위해, 단말은 각 후보 Tx 빔에 따라 SRS를 전송할 필요가 있다. 단말의 후보 Tx 빔들이 많을수록 빔 tracking을 위한 반복적인 SRS 전송으로 인해 SRS 심볼 수는 증가하게 되는데, 이에 따라 serving 셀 뿐만 아니라 인접 셀 들은 서로 다른 프레임 구조가 구성(configuration)될 수 있다. 특히 상향링크에서 단말의 Tx 빔 tracking 시에 SRS 채널이 다른 셀에 강하게 간섭을 주게 되는 현상이 발생한다.
3GPP LTE/LTE-A 시스템에서는 하향링크 reciprocity를 이용한 상향링크 beam refinement 개념 자체가 없을뿐더러, 하향링크를 위한 ICIC에 대한 측정 및 보고 방법에 대해서만 기술이 되어 있다. 일반적으로 간섭 측정은 CRS(Cell-specific RS) 또는 CSI-RS 또는 ZP(Zero Power)-CSI RS을 이용하여 셀 간 간섭을 측정하게 되어 있다. 단말이 RSRP 나 RSRQ 등을 기지국으로 보고하여, 이에 따른 셀 간 간섭을 피하는 조정(coordination) 방법은 알려져 왔다. 대표적인 예가 almost blank subframe 과 cell Range Expansion 이다. 다음 표 10은 almost blank subframe (ABS)의 정의를 나타낸 표이다.
표 10
almost blank subframe (ABS): subframe with reduced transmit power (including no transmission) on some physical channels and/or reduced activity. The eNB ensures backwards compatibility towards UEs by transmitting necessary control channels and physical signals as well as System Information.
aggressor cell(간섭을 발생시킨 셀)이 victim cell (간섭을 받은 셀)로 두 개의 세트(ABS가 전송되는 서브프레임을 가르키는 비트맵(bitmap) 및 측정을 위한 ABS 서브세트(subset)을 나타내는 비트맵)에 대한 정보를 X2 시그널링을 통해 전송한다. X2 시그널링을 통해 aggressor cell이 victim cell이 정보를 공유할 수 있다.
단말 측정/보고 방법
단말은 어떤 서브프레임이 ABS 인지 모르기 때문에 자원-특정(Resource specific) 측정 및 보고를 수행한다. 서빙 기지국은 victim 단말(간섭의 영향을 받는 단말)에게 서브프레임 세트의 정보를 알려줄 수 있다. 서브프레임 세트에는 두 가지(RLF 및 RRM을 위한 서브프레임 세트와 CSI 리포팅을 위한 서브프레임 세트)가 있다.
RLF (radio link failure) 및 RRM(radio resource management)을 위한 서브프레임 세트는 RLF 와 RRM 판단을 위한 서브프레임 세트로서, relative static 하게 설정되고, long term으로 설정될 수 있다. CSI 리포팅을 위한 서브프레임 세트는 ABS와 non-ABS를 위한 CSI 타입과 Aggressor cell 1의 ABS 와 aggressor cell 2의 ABS를 위한 CSI 타입에 대한 리포팅 서브프레임을 가리킨다.
CSI 리포팅 방법에 대해 다음 도 11을 참조하여 설명한다.
도 12는 CSI 리포팅 방법을 예시한 도면이다.
도 12의 (a)에 예시한 바와 같이 CSI 타입에 대한 서브프레임은 오버랩되지 않도록 설정할 수 있다 도 12의 (a)는 주기적 CSI 리포팅에 대한 것으로서, 각 타입에 연관된 서브프레임 세트(subframe #0)에 대해 주기적 CSI 리포팅은 subframe #n+3 에서 수행된다.
도 12의 (b)는 하향링크 트리거링 기반의 비주기적 CSI 리포팅 방법을 예시하고 있다.
기존 RSRP 와 RSRQ 측정에 따른 문제
3GPP LTE/LTE-A 시스템에서 간섭 측정을 위해서는 CRS 등에 기초하여 특정 기간 동안 RSRP 또는 RSRQ를 측정해야 한다. ABS 경우 측정 최소 길이는 서브프레임 길이로서, 서브프레임 내부 CRS를 average out 하는 방법으로 처리되고 있다. New RAT의 경우 서비스 마다 할당되는 주파수 자원도 다르며, 상향링크 빔 스위핑이 도입되는 상황에서 상향링크 간섭을 측정할 경우, 상향링크 심볼 당 빔 스위핑으로 인해 심볼 당 간섭량이 달라질 수 있기 때문에, 이런 기존의 RSRP 또는 RSRQ 측정 방법을 New RAT에서의 상향링크를 위해서 사용하는 것은 바람직하지 않다. 즉, 심볼 당 혹은 부대역(sub-band) 당 RSRP 또는 RSRQ를 측정하는 방법이 필요할 수 있다.
New RAT 요구 사항에 맞는 ICIC 설정이 필요하지만, 본 발명에서는 New RAT UL ICIC 방법에 대해 기술한다. 보다 구체적으로, 채널 레벨 reciprocity, 빔 레벨 reciprocity가 맞지 않을 경우의 상향링크 간섭을 줄이기 위한 방법을 제안한다.
실시예 1
본 발명의 실시예로서, 실시예 1은 주기적/비주기적/semi-persistent SRS 전송에 따라, 네트워크 상의 셀 간 상향링크 간섭에 대한 hypothesis를 다르게 설정할 것을 제안한다.
실시예 1의 구체적인 실시예로서, 실시예 1-1은 주기적 SRS 전송 시 셀 간의 전송 타이밍을 다르게 설정하고(주기 설정 방법에 cell ID 이용), 상향링크 셀 간섭 측정 및 기지국들 전송 hypothesis 정보를 X2 인터페이스를 통해 전송하여, 상향링크 간섭 측정에 이용하는 것을 제안한다.
도 13은 Hypothesis (전송) 메시지 구조의 일 예를 도시한 도면이다.
도 13에 도시한 Hypothesis head는 각 Hypothesis가 적용되는 서브프레임 범위 및 SRS configuration 인덱스 정보(암호화 하여 전송)를 포함할 수 있다. 서브프레임 범위는 hypothesis가 시작하는 서브프레임과 끝나는 서브프레임을 나타낼 수 있다.
표 11은 SRS configuration과 SRS 주기를 나타낸 표이다.
표 11
Figure PCTKR2017002936-appb-T000001
표 11과 같이 SRS configuration 테이블을 그 네트워크 상 셀들이 공통으로 가지고 있을 때, SRS configuration Index ISRS은 Cell ID의 함수로 나타낸다. 만약에 네트워크 상에서 셀들이 셀 A, 셀 B, 셀 C로 구성되어 있을 때, 각 SRS configuration Index가
Figure PCTKR2017002936-appb-I000020
으로 나타낸다면, 다음 수학식 2에 따라, SRS 전송 서브프레임 인덱스를 찾을 수 있다.
수학식 2
Figure PCTKR2017002936-appb-M000002
nf =1 인덱스를 갖는 무선 프레임 내의 서브프레임 개수가 Nsubframe =20 라고 할 때, 각 셀 당 SRS 가 전송되는 서브프레임은
Figure PCTKR2017002936-appb-I000021
에 의해 아래와 같이 나타낼 수 있다.
Figure PCTKR2017002936-appb-I000022
도 14는 네트워크 내 셀 간의 다른 SRS 주기와 hypothesis 공유를 예시한 도면이다. 표 12는 hypothesis 인덱스와 설명한 나타낸 표이다.
표 12
Figure PCTKR2017002936-appb-T000002
표 2의 hypothesis HSRS 는 SRS Hypothesis 가 서브프레임 별로 X2 인터페이스를 통해 전송될 수 있다.
도 15는 도 14의 셀 간의 다른 SRS 주기와 hypothesis 공유 예시에 기초하여 hypothesis 전송 메시지를 구성한 도면이다.
각 기지국은 네트워크 내의 인접 셀들의 SRS를 전송하는 서브프레임들을 알고 있고, 이에 따른 hypothesis를 알고 있기 때문에, 상향링크 셀 간섭 측정을 정밀히 수행할 수 있다. 일 예로, 셀 A는 서브프레임 인덱스 5의 SRS 전력 측정을 통해, 셀 B에서 전송하는 상향링크 채널의 간섭 측정이 가능하고, 서브프레임 인덱스 15의 SRS 전력 측정을 통해 셀 B에서의 상향링크 채널 전송에 의한 간섭과 셀 C의 SRS 전송에 따른 간섭을 측정할 수 있어서, 이 두 가지 서브프레임 측정으로 셀 B에서 전송하는 상향링크 전송 간섭량 측정과 셀 C의 SRS 전송에 따른 간섭량을 정밀하게 측정할 수 있다.
도 16은 SRS 설정 인덱스에 따른 SRS 내의 Zero Power 영역을 예시한 도면이다.
실시예 1-2는 SRS 전송 설정 인덱스에 따라 Zero power 자원(sub-band)의 위치를 정하여, 셀 간 상향링크 채널 전송 시 간섭을 측정한다. 특정 시간 후 Zero power 자원 위치는 가변될 수 있다(호핑(Hopping)에 의해 zero power 자원 위치는 가변될 수 있음).
Figure PCTKR2017002936-appb-I000023
는 SRS 설정 인덱스와 Zero Power 자원 위치를 연계하기 위한 함수로서, 무선 프레임 단위, 서브프레임 단위, 슬롯 단위 등의 단위로 변할 수 있다. 각 셀의 정해진 Zero Power 위치를 사전에 파악하여, 효율적인 상향링크 간섭 측정을 위해, Zero Power 자원 영역의 수신신호 세기(예를 들어, RSRP) 측정 등으로 정밀한 상향링크 간섭 측정을 가능하게 하기 위한 것이다.
도 17은 특정 SRS 전송 영역에서 명시적으로 hypothesis 와 Zero power 자원 영역을 설정하는 예를 도시한 도면이다.
실시예 1-3은 특정 SRS 전송 서브프레임 인덱스 n을 위해 전송 시나리오를 지정하고, 그 서브프레임(인덱스 n의 서브프레임)의 SRS 측정 시 지정한 전송 시나리오에 대한 hypothesis로 측정하고, Zero power 자원 영역도 지정하는 것을 제안한다.
도 17에서 해칭된 부분은 각 셀에서 주기적 SRS 전송하는 영역을 나타낸 것이다. 도 17을 참조하면, 셀 A와 셀 C의 동일한 서브프레임에서의 주기적 SRS 전송 영역 중 일부가 동일 위치에서 뮤팅되었음을 알 수 있다. 예를 들어, 도 17에 도시한 인덱스 n의 서브프레임(혹은 심볼 또는 서브심볼(sub-symbol))에서는 셀 C의 주기적 SRS 전송 영역 내의 셀 A Zero power 자원에 대응되는 자원을 뮤팅(muting) 시킬 수 있다. 즉, 셀 C는 셀 A의 Zero power 자원을 이용하여 셀 B로부터의 간섭을 측정할 수 있다.
도 18은 비주기적 SRS 전송에 따른 상향링크 간섭 측정 hypothesis의 획득 예를 도시한 도면이다.
실시예 1-4는 각 서빙 셀에서 DCI로 비주기적 SRS를 각 단말들에 트리거링하면, 비주기적 SRS의 Zero Power 자원 영역을 통해 특정 hypothesis에 대한 상향링크 간섭을 측정하는 것을 제안한다.
도 18에 도시한 바와 같이, 인덱스 n의 서브프레임에서 셀 A에 비주기적 SRS가 트리거링되고, 셀 A는 셀 B의 주기적 SRS 전송 위치가 파악되면, 셀 A에서 셀 C의 간섭을 측정할 수 있다. 단, 셀 B의 주기적 SRS 시퀀스와 셀 A의 주기적 SRS 시퀀스는 직교해야 한다. 즉, 비주기적 SRS 시퀀스는 주기적 SRS 시퀀스에 직교 세트를 가지고 설계한다.
도 19는 비주기적 SRS 전송에 따른 다른 zero power 자원 설정과 SRS-IM 프로세싱의 예를 도시한 도면이다.
실시예 1-5는 비주기적 SRS의 Zero power 영역 위치를 가변시켜서, 특정 목적으로 상향링크 간섭 측정을 수행할 것을 제안한다. SRS-IM(Interference Measurement) 프로세싱을 정의하고, 관련 상향링크 간섭을 측정한다. 비주기적 SRS의 zero power 영역 위치는 DCI를 통해 각 셀(혹은 기지국)이 단말에게 전송한다.
예를 들어, 셀 A의 비주기적 SRS Zero power 영역 조절을 통해, 부분적으로 셀 B의 시퀀스 부분도 획득 가능 하다. 그리고, 연속적인 IM 프로세싱을 통해 셀 B의 간섭량 파악이 가능하다.
도 19의 오른쪽 하단의 그림은 다음 동일 hypothesis에서 IM 측정을 예시 (다음 측정 동안 간섭량 변화가 없다는 가정에서 성립)하고 있으며 위에서 aperiodic SRS-aperiodic SRS 간의 IM 측정도 해당될 수 있다.
상향링크 빔 스위핑에 따른 상향링크 간섭은 상향링크 빔포밍에 의해 dominant 간섭이 발생한 가능성이 높다. 상향링크 빔 스위핑을 위한 주기적인 연속적 SRS들이 필요하다.
도 20은 상향링크 빔 스위핑을 위한 주기적인 연속적 SRS들의 전송 구조를 예시한 도면이다.
상향링크 빔 스위핑 수행할 때, 연속적인 SRS 심볼들을 전송하는 경우 다른 단말 Tx beam이 변함에 따라, 기지국의 Rx beam은 고정될 필요가 있다. 따라서, 기지국의 다른 Rx beam에 대한 상향링크 빔 refinement를 수행하기 위해서는, 기지국의 Rx beam이 변할 때, 다시 연속적인 SRS 심볼들을 전송하여, 빔 페어(beam pair)를 측정해야 한다. 기지국의 Rx beam이 변한 후, 그 기지국의 Rx beam이 변하는 다음 시간 동안 기지국의 Rx beam은 변하지 않지만, 그 시간이 지나면, 연속적인 SRS 심볼들의 전송이 필요하다.
상향링크 빔 스위핑을 위한 주기적인 연속적 SRS들의 전송 구조에서 간섭 측정 및 회피를 위해 고려할 점은 다음과 같다.
A. 주기적 빔 스위핑의 주기 마다 IM 자원이 상향링크 데이터 채널(예를 들어, PUSCH) 내에 있어야 할 수 있다.
B. 단말이 서빙 셀에 빔 스위핑 SRS 전송 시 인접 셀에서도 상향링크 빔 스위핑 SRS 전송될 경우도 고려해야 한다. 일반적으로는 이러한 경우를 회피하게 하는 상향링크 스위핑 SRS 전송이 바람직하다. 단말이 서빙 셀에 빔 스위핑 SRS 전송 시 인접 셀에서도 빔 스위핑 SRS 전송될 경우를 허용하면, 간섭 변화가 심해진다. 즉, 서빙 셀에서 상향링크 빔 스위핑 시 인접 셀의 상향링크 빔 스위핑을 위한 SRS가 전송되어 간섭 발생이 크게 발생할 수 있어서, 잘못된 상향링크 빔 refinement 수행될 수 있다. 이러한 문제에도 불구하고 인접 셀의 상향링크 빔 스위핑을 허용한다면, 간섭을 최소화하는 단말의 Tx beam 설정 및 SRS 전송이 필요하다. 일 예로서, 단말의 Tx beam ID를 상향링크 간섭을 줄이는 방향으로 변경한다. 또는, sub-band SRS로 셀 간 주파수 분할 다중화(FDM)를 수행할 수도 있다.
도 21은 상향링크 빔 스위핑을 위한 각 셀에 다른 SRS 전송 타이밍을 설정하는 경우를 예시한 도면이다.
도 21에 도시한 바와 같이, 본 발명에서는 미리 cell ID 등으로 상향링크 빔 스위핑을 위한 SRS 전송 타이밍을 각 셀 들이 다르게 가져가는 설정할 것을 제안한다. 각 셀은 서로 다른 서브프레임, 슬롯 등의 단위로 서로 다른 전송 타이밍에 상향링크 빔 스위핑을 SRS 전송 영역을 할당할 수 있다.
간섭 측정을 위한 PUSCH 또는 PUCCH 내의 IM resource 설정(UL grant로 제공)
실시예 2
도 22는 본 발명의 실시예 2에 따른 Zero Power 자원 구성 방법을 설명하기 위한 예시적 도면이다.
본 발명의 실시예 2로서, 단말이 상향링크 빔 refinement를 위해 상향링크 빔 스위핑 수행 시 SRS 심볼들을 연속적으로 전송할 때, 셀(혹은 기지국)은 상향링크 dominant 셀 간섭이 발생 확인을 위해, 상향링크 데이터 전송을 위한 채널에 Zero power 자원을 할당할 수 있다. 단말은 이 Zero Power 자원 위치에 대한 정보를 DCI의 UL grant를 통해 알 수 있다. UL grant에는 Zero Power 자원 전송 영역 정보, Zero Power 자원 전송 심볼 인덱스 및 길이(시작 심볼, 마지막 심볼), 주파수 측 인덱스(RE 단위, RB 단위 등) 등을 포함할 수 있다.
도 22에 도시한 바와 같이, 각 셀은 상향링크 데이터 전송 채널에 상향링크 빔 스위핑을 위한 연속적인 SRS 심볼들 길이에 해당하는 길이를 갖는 Zero Power 자원을 할당할 수 있다. 각 셀들은 연속적인 SRS 전송 심볼들의 길이 정보를 즉 X2 인터페이스를 통해 공유할 수 있다.
Zero Power 자원 위치에 따라 간섭 측정 시나리오가 달라진다.
도 23은 Zero Power 자원의 설정을 예시한 도면이다.
도 23의 왼쪽 그림에서 알 수 있는 바와 같이, 셀 A에서 상향링크 빔 스위핑을 위한 연속적인 SRS 심볼 전송 구간에서, 인접 셀들(셀 B 및 셀 C)은 서로 다른 위치에 IM 자원을 할당할 수 있다. 셀 B는 셀 A의 상향링크 빔 스위핑에 따른 간섭과 셀 C의 간섭이 포함된 IM 수행할 수 있다. 마찬가지로, 셀 C는 셀 A의 상향링크 빔 스위핑에 따른 간섭과 셀 B의 간섭이 포함된 IM 수행할 수 있다.
또한, 도 23의 중간에 도시한 그림에서와 같이, 셀 A에서 상향링크 빔 스위핑을 위한 연속적인 SRS 심볼 전송 구간에서, 인접 셀들(셀 B 및 셀 C)은 동일한 위치에 IM 자원을 할당할 수 있다. 각 인접 셀은 셀 A의 상향링크 빔 스위핑에 따른 SRS IM을 수행할 수 있다. 상기 Zero Power 자원은 주파수 호핑도 가능하다.
상향링크 빔 스위핑을 위한 비주기적 연속적인 SRS들의 전송을 트리거링(DCI로 트리거링)시 다음의 변경 사항이 존재한다.
서빙 셀의 단말에게 상향링크 빔 스위핑을 위한 비주기적 연속적인 SRS들의 전송이 트리거링되면, 단말은 트리거링을 지시하는 DCI가 수신된 서브프레임으로부터 n개 서브프레임 뒤에서 SRS들을 전송한다.
변경 사항 1로서, 서빙 셀은 인접 셀의 상향링크 빔 스위핑을 위한 SRS(periodic) 전송 서브프레임 정보는 알고 있다는 가정한다. 서빙 셀에서의 상향링크 빔 스위핑을 위한 비주기적 연속적인 SRS들의 전송을 위한 상기 서브프레임과 인접 셀에서의 주기적 SRS 전송 서브프레임이 같으면(오버랩되면), 서빙 셀은 단말이 상향링크 빔 스위핑을 위한 비주기적 연속 SRS들을 전송하지 않도록 설정할 수 있다. 그리고, 서빙 셀은 edge 단말 들에는 상향링크 빔 스위핑을 하지 않도록 설정할 수도 있다.
변경 사항 2로서, 서빙 셀에서의 상향링크 빔 스위핑을 위한 비주기적 연속적인 SRS들의 전송을 위한 상기 서브프레임과 인접 셀에서의 주기적 SRS 전송 서브프레임이 같으면(오버랩되면), 서빙 셀에서의 상향링크 빔 스위핑을 위한 비주기적 연속적인 SRS들을 전송하더라도, 인접 셀들에게 간섭을 최소한으로 주는 단말의 Tx beam 방향으로 서빙 셀의 단말이 Tx beam 스위핑을 수행하도록 할 수 있다.
변경 사항 3으로서, 서빙 셀은 상향링크 빔 스위핑을 수행한다는 정보(예를 들어, 빔 스위핑 서브프레임 인덱스 정보)를 X2 인터페이스를 통해 인접 셀에게 전송할 수 있다. 각 인접 셀들의 PUSCH 영역에 IM 자원이 설정되거나, 또는 인접 셀의 해당 서브프레임에 상향링크 빔 스위핑이 트리거링 되더라도, 서빙 셀에 간섭을 최소화하는 방향으로 상향링크 빔 스위핑을 설정할 필요가 있다.
도 24는 상향링크 인접 셀 간섭 측정 절차(상기 변경 사항 3)에 대한 사항을 예시한 도면이다.
도 24를 참조하면, 서빙 셀은 상향링크 빔 스위핑을 위한 SRS를 트리거링하면, 서빙 셀은 인접 셀(들)에게 상향링크 빔 스위핑을 위한 SRS가 트리거링되어 n개 서브프레임 후에 상향링크 빔 스위핑을 수행 것임을 알려준다. 그리고, 서빙 셀은 단말에게 DCI 등을 통해 상향링크 빔 스위핑을 위한 SRS가 트리거링되었음을 지시해 줄 수 있다.
인접 셀(들)은 서빙 셀이 상향링크 빔 스위핑을 수행하는 해당 서브프레임 내에서 상향링크 빔 스위핑을 위한 해당 SRS 심볼들 또는 자원 내에 IM 자원을 할당할 수 있다(도 23 참조). 그리고,인접 셀(들)은 자신의 서빙 단말들에게 IM 자원의 위치를 지시하는 정보를 전달할 수 있다.
인접 셀(들)의 단말들은 상기 n개 서브프레임 후의 해당 서브프레임에서 상향링크 전송을 수행하고, 서빙 셀의 단말은 상기 해당 서브프레임에서 연속적인 SRS들을 전송한다. 인접 셀(들)은 각 IM 자원에서 간섭을 측정할 수 있다.
도 25는 상향링크 인접 셀 간섭 측정 절차(상기 변경 사항 3)에 대한 사항으로 서빙 셀과 인접 셀(들)이 상향링크 빔 스위핑 수행 시 간섭을 서로 주지 않기 위한 방법을 예시한 도면이다.
도 24과 마찬가지로, 서빙 셀은 상향링크 빔 스위핑을 위한 SRS를 트리거링하면, 서빙 셀은 인접 셀(들)에게 상향링크 빔 스위핑을 위한 SRS가 트리거링되어 n개 서브프레임 후에 상향링크 빔 스위핑을 수행 것임을 알려준다. 그리고, 서빙 셀은 단말에게 DCI 등을 통해 상향링크 빔 스위핑을 위한 SRS가 트리거링되었음을 지시해 줄 수 있다.
인접 셀(들)은 상향링크 빔 스위핑을 위한 SRS를 트리거링 할 수 있다. 인접 셀(들)은 셀 내 단말들에게 상향링크 빔 스위핑을 지시할 수 있다. 그리고, 인접 셀(들)은 셀 내 단말들에게 서빙 셀에 간섭을 미치지 않는 빔 정보(단말-특정 빔 정보)를 전송해 줄 수 있다. 그러면, 인접 셀(들)내 단말들은 상기 수신한 빔 정보에 기초하여 서빙 셀에 간섭을 크게 주지 않는 단말 빔들로 연속적인 SRS들을 전송할 수 있다. 서빙 셀의 단말도 상기 n개 서브프레임 후의 해당 서브프레임에서 연속적인 SRS들을 전송할 수 있다.
실시예 3
본 발명의 실시예 3은 상향링크 셀 간 간섭을 완화하는 방법을 제안한다. 그 방법은 기본적으로 상향링크에 대한 ICIC 제어는 셀(혹은 기지국)이 수행한다. 따라서, 기지국이 단말에게 인접 셀에 간섭을 가능한 주지 않도록 하는 상향링크 자원을 할당하고(UL grant와 PUCCH triggering by DCI), 인접 셀에 간섭을 가능한 주지 않도록 하는 단말 Tx beam 에 대한 정보(단말-특정 정보)를 제공할 수 있다.
상향링크 셀 간 간섭을 완화를 위해 기존 상향링크 데이터 전송 채널을 뮤팅(muting) 시키는 UL grant 기반 절차를 제안한다.
도 26은 상향링크 데이터 전송 채널을 뮤팅(muting) 시키는 절차를 예시한 도면이다.
도 26을 참조하면, 서빙 셀(셀 C)은 상향링크 빔 스위핑을 트리거링 할 수 있다. 이후, 서빙 셀(셀 C)은 DCI 등을 통해 서빙 셀 내 단말(들)(UE x)에게 단말의 Best Tx 빔 정보를 제공할 수 있다. 서빙 셀 내 단말들은 수신한 DCI에 기초하여 Best Tx 빔에 대해여 상향링크 신호를 전송한다. 이후, 인접 셀(들)은 서빙 셀에게 특정 자원에 간섭이 많이 들어온다는 것을 알려줄 수 있다. 그러면, 서빙 셀은 인접 셀(들)로부터 수신한 간섭 정보에 기초하여 상기 특정 자원을 사용하는 단말에게 뮤팅을 위한 UL grant를 전송하고, 다른 단말에 자원 할당을 위한 UL grant를 전송할 수 있다.
도 27은 상향링크 셀 간 간섭을 완화를 위해 상향링크 자원 위치를 변경시키는 UL grant 기반 절차를 예시한 도면이고, 도 28은 상향링크 데이터 자원 위치를 지정하는 절차를 예시한 도면이다.
도 27을 참조하면, 서빙 셀은 상향링크 빔 스위핑을 트리거링 할 수 있다. 이후, 서빙 셀(셀 C)은 DCI 등을 통해 서빙 셀 내 단말(들)(UE x)에게 단말의 Best Tx 빔 정보를 제공할 수 있다. 서빙 셀 내 단말들은 수신한 DCI에 기초하여 Best Tx 빔에 대해여 상향링크 신호를 전송한다. 이후, 인접 셀(들)은 서빙 셀에게 특정 자원에 간섭이 많이 들어온다는 것을 가리키는 정보와 함께 인접 셀(들)에서 사용하지 않는 자원 위치에 대한 정보도 알려줄 수 있다. 그러면, 서빙 셀은 인접 셀(들)로부터 수신한 간섭 정보와 사용하지 않는 자원 위치에 대한 정보에 기초하여 인접 셀(들)이 알려준 상기 사용되지 않는 자원을 사용하도록 서빙 셀 내 단말에게 UL grant를 전송해 줄 수 있다. 즉, 셀 C는 인접 셀로부터 수신한 사용하지 않는 자원 위치에 대한 정보에 기초하여 도 28의 왼쪽 도면에서 셀 C의 단말(UE) x에 할당된 자원을 오른쪽 도면에서 단말 x를 위한 자원으로 도시한 것처럼 변경할 수 있다.
Reciprocity가 성립하는 환경에서, 상향링크의 간섭 측정을 통해 기지국이 빠르게 셀 간 하향링크 간섭을 위해서도 활용할 수 있다.
이상에서 살펴본 바와 같이, 본 발명의 실시예에 따라, New RAT에서 간섭 변화가 subband, symbol 또는 sub symbol 단위로 나타날 수 있는 환경에서의 상향링크 간섭 및 상향링크 채널 상태 측정을 위해 SRS를 이용할 시 각 SRS configuration에 따라 설정할 수 있는 hypothesis를 제공할 수 있다. 또한, 정밀한 상향링크 간섭 측정을 통해 효율적인 상향링크 ICIC를 수행할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 방법 및 이를 위한 장치는 3GPP LTE/LTE-A 시스템, 5G 통신 시스템 등과 같은 다양한 무선통신 시스템에서 산업상으로 이용이 가능하다.

Claims (12)

  1. 상향링크 빔 스위핑을 수행하는 환경에서 기지국이 셀 간 간섭을 제어하기 위한 방법에 있어서,
    제 1 인접 기지국으로부터 상기 제 1 인접 기지국이 속한 셀 내 단말이 소정 서브프레임에서 상기 상향링크 빔 스위핑을 위한 SRS 전송함을 지시하는 정보를 수신하는 단계;
    상기 정보에 기초하여 상기 소정 서브프레임에서 상향링크 빔 스위핑을 위한 SRS 전송 자원에 대응하는 간섭 측정 자원을 할당하는 단계; 및
    상기 할당된 간섭 측정 자원에 대한 정보를 상기 단말에게 전송하는 단계를 포함하는, 셀 간 간섭 제어 방법.
  2. 제 1항에 있어서,
    상기 할당된 간섭 측정 자원에서 간섭을 측정하는 단계를 더 포함하는, 셀 간 간섭 제어 방법.
  3. 제 1항에 있어서,
    시간 도메인 상에서 상기 할당된 간섭 측정 자원의 길이는 상기 상향링크 빔 스위핑을 위한 적어도 하나의 SRS의 심볼 길이와 동일한, 셀 간 간섭 제어 방법.
  4. 제 1항에 있어서,
    상기 할당된 간섭 측정 자원은 주파수 도메인 상에서 상기 소정의 서브프레임이 위치하는 대역 중 일부 대역에 해당하는, 셀 간 간섭 제어 방법.
  5. 제 1항에 있어서,
    상기 할당된 간섭 측정 자원은 제 2 인접 기지국에서 할당된 간섭 측정 자원과 서로 다른 주파수 대역에 해당하는, 셀 간 간섭 제어 방법.
  6. 상향링크 빔 스위핑을 수행하는 환경에서 기지국이 셀 간 간섭을 제어하기 위한 방법에 있어서,
    소정 서브프레임에서 상기 상향링크 빔 스위핑을 위한 SRS 전송이 트리거링되었음을 지시하는 제어 정보를 상기 기지국이 속한 셀 내 단말에게 전송하는 단계;
    인접 기지국에 간섭을 미치지 않도록 하는 상기 단말의 적어도 하나의 송신 빔을 지시하는 정보를 상기 단말에게 전송하는 단계; 및
    상기 지시된 단말의 적어도 하나의 송신 빔을 통해 전송된 적어도 하나의 SRS를 상기 단말로부터 수신하는 단계를 포함하는, 셀 간 간섭 제어 방법.
  7. 제 6항에 있어서,
    상기 적어도 하나의 SRS가 복수 개인 경우, 복수개의 SRS들은 연속적인 복수의 심볼들을 통해 수신되는, 셀 간 간섭 제어 방법.
  8. 제 6항에 있어서,
    상기 적어도 하나의 SRS는 상기 제어 정보를 수신한 서브프레임으로부터 소정 개수 이후의 서브프레임에서 수신되는, 셀 간 간섭 제어 방법.
  9. 상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 기지국에 있어서,
    제 1 인접 기지국으로부터 상기 제 1 인접 기지국이 속한 셀 내 단말이 소정 서브프레임에서 상기 상향링크 빔 스위핑을 위한 SRS 전송함을 지시하는 정보를 수신하도록 설정된 수신기;
    상기 정보에 기초하여 상기 소정 서브프레임에서 상향링크 빔 스위핑을 위한 SRS들의 전송 자원에 대응하는 간섭 측정 자원을 할당하도록 설정된 프로세서; 및
    상기 할당된 간섭 측정 자원에 대한 정보를 상기 단말에게 전송하도록 설정된 송신기를 포함하는, 기지국.
  10. 제 9항에 있어서,
    상기 프로세서는 상기 할당된 간섭 측정 자원에서 간섭을 측정하도록 구성되는, 기지국.
  11. 상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 기지국에 있어서,
    소정 서브프레임에서 상기 상향링크 빔 스위핑을 위한 SRS들 전송이 트리거링되었음을 지시하는 제어 정보를 상기 기지국이 속한 셀 내 단말에게 전송하고, 인접 기지국에 간섭을 미치지 않도록 하는 상기 단말의 적어도 하나의 송신 빔을 지시하는 정보를 상기 단말에게 전송하도록 설정된 송신기; 및
    상기 지시된 단말의 적어도 하나의 송신 빔을 통해 전송된 적어도 하나의 SRS를 상기 단말로부터 수신하도록 설정된 수신기를 포함하는, 기지국.
  12. 제 11항에 있어서,
    상기 적어도 하나의 SRS가 복수 개인 경우, 상기 수신기는 복수 개의 SRS들을 연속적인 복수의 심볼들을 통해 수신하는, 기지국.
PCT/KR2017/002936 2017-03-20 2017-03-20 상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 방법 및 이를 위한 장치 WO2018174305A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/002936 WO2018174305A1 (ko) 2017-03-20 2017-03-20 상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 방법 및 이를 위한 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/002936 WO2018174305A1 (ko) 2017-03-20 2017-03-20 상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 방법 및 이를 위한 장치

Publications (1)

Publication Number Publication Date
WO2018174305A1 true WO2018174305A1 (ko) 2018-09-27

Family

ID=63585856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002936 WO2018174305A1 (ko) 2017-03-20 2017-03-20 상향링크 빔 스위핑을 수행하는 환경에서 셀 간 간섭을 제어하기 위한 방법 및 이를 위한 장치

Country Status (1)

Country Link
WO (1) WO2018174305A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021150520A1 (en) * 2020-01-22 2021-07-29 Qualcomm Incorporated Interference measurement configurations in wireless systems
CN113196855A (zh) * 2018-12-07 2021-07-30 株式会社Ntt都科摩 终端以及通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150066841A (ko) * 2013-12-09 2015-06-17 삼성전자주식회사 무선통신 시스템의 빔 스위핑 패턴 조정 방법 및 장치
US20160088617A1 (en) * 2013-05-05 2016-03-24 Mariana Goldhamer Collaborative radio resource allocation in cellular deployments
WO2016163786A1 (ko) * 2015-04-07 2016-10-13 삼성전자 주식회사 빔 포밍을 이용하는 무선 통신 시스템에서 핸드오버 방법 및 장치
WO2017022902A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
WO2017027055A1 (en) * 2015-08-10 2017-02-16 Intel IP Corporation Enhanced sounding reference signaling for uplink beam tracking

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160088617A1 (en) * 2013-05-05 2016-03-24 Mariana Goldhamer Collaborative radio resource allocation in cellular deployments
KR20150066841A (ko) * 2013-12-09 2015-06-17 삼성전자주식회사 무선통신 시스템의 빔 스위핑 패턴 조정 방법 및 장치
WO2016163786A1 (ko) * 2015-04-07 2016-10-13 삼성전자 주식회사 빔 포밍을 이용하는 무선 통신 시스템에서 핸드오버 방법 및 장치
WO2017022902A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
WO2017027055A1 (en) * 2015-08-10 2017-02-16 Intel IP Corporation Enhanced sounding reference signaling for uplink beam tracking

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196855A (zh) * 2018-12-07 2021-07-30 株式会社Ntt都科摩 终端以及通信方法
CN113196855B (zh) * 2018-12-07 2024-03-29 株式会社Ntt都科摩 终端、系统以及通信方法
WO2021150520A1 (en) * 2020-01-22 2021-07-29 Qualcomm Incorporated Interference measurement configurations in wireless systems
CN114982149A (zh) * 2020-01-22 2022-08-30 高通股份有限公司 无线系统中的干扰测量配置
US11877306B2 (en) 2020-01-22 2024-01-16 Qualcomm Incorporated Interference measurement configurations in wireless systems

Similar Documents

Publication Publication Date Title
WO2018151554A1 (ko) Srs 설정 정보를 수신하는 방법 및 이를 위한 단말
WO2017057987A1 (ko) D2d 통신에서의 참조신호 송신 방법 및 단말
WO2018226065A1 (ko) Nr에서 이중 연결을 지원하는 방법 및 장치
WO2016144028A1 (ko) 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
WO2019031942A1 (ko) 무선 통신 시스템에서 신호를 측정 및 보고하는 방법 및 이를 위한 장치
WO2016032219A1 (ko) 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
WO2019074338A1 (ko) 무선 통신 시스템에서 초기 접속을 수행하는 방법 및 장치
WO2016143968A1 (ko) Short tti 내 제어 채널의 전송 자원을 감소시키는 방법 및 이를 사용한 기기
WO2018174312A1 (ko) 무선통신 시스템에서 셀 간 간섭을 제어하는 방법 및 이를 위한 장치
WO2013151395A1 (ko) 하향링크 데이터 수신 방법 및 이를 이용한 무선기기
WO2019022329A1 (ko) Srs를 전송하는 방법 및 이를 위한 단말
WO2013006006A2 (ko) 무선통신시스템에서 신호 전송 방법 및 장치
WO2018030678A1 (ko) 가변 구조 참조신호
WO2012144801A2 (ko) 무선통신시스템에서 신호 전송 방법 및 장치
WO2018084660A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2014185674A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
WO2013125873A1 (ko) 무선 통신 시스템에서 초기 접속 방법 및 장치
WO2019098748A1 (ko) 무선 통신 시스템에서 신호를 수신하는 방법 및 장치
WO2019070091A1 (ko) Lte와 nr간의 이중 연결에서 상향링크를 전송하는 방법 및 사용자 장치
WO2018155734A1 (ko) 무선통신 시스템에서 srs 전송에 의한 셀 간 간섭을 제어하기 방법 및 이를 위한 장치
WO2013176511A1 (ko) Harq ack/nack 전송 방법 및 이를 이용한 무선기기
WO2018159939A1 (ko) 무선통신 시스템에서 srs를 전송하는 방법 및 이를 위한 단말
WO2013147532A1 (ko) 무선 통신 시스템에서 트래킹 참조 신호를 이용한 채널 측정 방법 및 이를 이용하는 장치
WO2019066318A1 (ko) 통신 시스템에서 프리엠션의 지시 방법
WO2019045141A1 (ko) 위치 참조 신호를 전송하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902527

Country of ref document: EP

Kind code of ref document: A1