WO2018174222A1 - 通信装置、通信方法及びプログラム - Google Patents

通信装置、通信方法及びプログラム Download PDF

Info

Publication number
WO2018174222A1
WO2018174222A1 PCT/JP2018/011580 JP2018011580W WO2018174222A1 WO 2018174222 A1 WO2018174222 A1 WO 2018174222A1 JP 2018011580 W JP2018011580 W JP 2018011580W WO 2018174222 A1 WO2018174222 A1 WO 2018174222A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
wireless terminal
time
access technology
communication device
Prior art date
Application number
PCT/JP2018/011580
Other languages
English (en)
French (fr)
Inventor
譚生 李
健夫 大西
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2019507006A priority Critical patent/JPWO2018174222A1/ja
Publication of WO2018174222A1 publication Critical patent/WO2018174222A1/ja

Links

Images

Definitions

  • the present invention is based on the priority claim of Japanese Patent Application No. 2017-059344 (filed on Mar. 24, 2017), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a communication device, a communication method, and a program.
  • the new wireless access technology When introducing a new wireless access technology in the mobile network, in order to ensure the connectivity of wireless terminals that are compatible only with the old wireless access technology, the new wireless access technology will be transferred to the mobile network while leaving the old wireless access technology for a certain period of time. Often introduced. Therefore, a plurality of different radio access technologies may coexist.
  • the third generation mobile communication system is HSDPA (High-Speed Downlink Packet Access)
  • the fourth generation mobile communication system is LTE (Long Term Revolution).
  • TCP Transmission Control Protocol
  • the amount of initial data transmission after establishing a TCP session is determined by the initial congestion window set before transmitting the first payload.
  • the payload is a data body to be originally transferred, excluding a header portion which is additional information such as a destination in a communication packet.
  • Patent Document 1 describes a technique for reducing erroneous occurrence of congestion control by recognizing a radio access technology of a terminal and adjusting TCP parameters (for example, transmission rate and retransmission timing).
  • each wireless module acquires wireless information using a wireless environment recognition unit (for example, a sensor antenna).
  • Radio information includes, for example, RSSI (Received Signal Strength Indication), background noise level, modulation method, amount of data waiting for communication stored in the transmission buffer, and NACK (Negative ACKnowledgement) signal indicating transmission failure from the other station.
  • RSSI Receiveived Signal Strength Indication
  • background noise level for example, modulation method
  • NACK Negative ACKnowledgement
  • Patent Document 2 discloses a technique for identifying a wireless method (for example, 3G, LTE) being used by a terminal device by using a TCP characteristic amount, for example, round-trip delay (RTT) or throughput. . Specifically, since the communication capabilities differ between 3G and LTE, the average values of TCP RTT, throughput, etc. within a certain period of time are calculated, and the average values are compared to identify the radio access technology used by the terminal. ing.
  • a wireless method for example, 3G, LTE
  • TCP characteristic amount for example, round-trip delay (RTT) or throughput.
  • Patent Document 3 discloses a technique for determining whether or not a wireless access technology used by a terminal device is 3G using a TCP RTT and a threshold. Specifically, the difference between the transmission time of the SYN / ACK packet and the reception time of the corresponding ACK packet in the server is measured as RTT, and when the RTT exceeds a set reference value, 3G and the fixed network Identify
  • the initial transmission rate of TCP communication is determined by the communication originator (server or proxy) adjusting the initial congestion window, but the sender identifies the wireless access technology of the terminal before determining the initial congestion window. Can not.
  • This fact is the cause of the above problem.
  • the radio access technology of the terminal cannot be identified before the first payload is transmitted.
  • there are many technologies for identifying radio access technologies using delays such as RTT, such as Patent Document 2 and Patent Document 3, but the above-mentioned documents and the like are affected by factors such as communication area congestion and radio wave intensity. Since the RTT to be used greatly fluctuates, the identification accuracy of the radio access technology is greatly reduced depending on the congestion degree of the communication area, radio wave intensity, and the like.
  • the acquisition of the communication environment of the terminal terminal is performed in the physical layer or the MAC (Media Access Control) layer, so a dedicated facility (wireless environment identification unit) is required.
  • a dedicated facility wireless environment identification unit
  • the server or the proxy device does not include a wireless physical layer or MAC layer interface, the wireless access technology of the terminal cannot be identified on the transmission side.
  • the present invention has been made to solve the above-described problems, and a main object of the present invention is to provide a communication device, a communication method, and a program that can identify a radio access technology used by a radio terminal before payload transmission.
  • a communication device that transmits / receives data to / from a wireless terminal, wherein a first time related to transmission / reception of a specific packet generated between the wireless terminal and the own device for session establishment. Based on the first time and the second time, a second acquisition unit for acquiring a second time related to a packet transmitted from the wireless terminal after the session is established, And a determination unit that determines a radio access technology used by the terminal.
  • the first time related to transmission / reception of a specific packet generated between the wireless terminal and the own device for session establishment is acquired.
  • a step of acquiring a second time regarding a packet transmitted from the wireless terminal after the session is established, and a wireless access technology used by the wireless terminal based on the first time and the second time. Determining a communication method.
  • the present invention relates to transmission / reception of a specific packet generated between the wireless terminal and the own apparatus for establishing a session in a computer installed in a communication apparatus that transmits / receives data to / from the wireless terminal.
  • a process for obtaining a first time, a process for obtaining a second time regarding a packet transmitted from the wireless terminal after the session is established, and the wireless terminal uses the first time and the second time.
  • a program for executing a process for determining a wireless access technology can be recorded on a computer-readable storage medium.
  • the storage medium may be non-transient such as a semiconductor memory, a hard disk, a magnetic recording medium, an optical recording medium, or the like.
  • the present invention can also be embodied as a computer program product.
  • a communication device, a communication method, and a program that contribute to identifying a radio access technology used by a radio terminal before payload transmission is provided.
  • FIG. It is a block diagram which shows the structural example of the communication part shown in FIG. It is a sequence diagram for demonstrating communication of a radio
  • connection lines between the blocks in each drawing include both bidirectional and unidirectional directions.
  • the unidirectional arrow schematically shows the main signal (data) flow and does not exclude bidirectionality.
  • an input port and an output port exist at each of an input end and an output end of each connection line, although they are not explicitly shown. The same applies to the input / output interface.
  • the communication apparatus 10 transmits and receives data to and from a wireless terminal, and includes a first acquisition unit 31, a second acquisition unit 32, and a determination unit 33 (see FIG. 1).
  • the 1st acquisition part 31 acquires the 1st time regarding transmission / reception of the specific packet which generate
  • the second acquisition unit 32 acquires a second time regarding a packet transmitted from the wireless terminal after session establishment.
  • the determination unit 33 determines the wireless access technology used by the wireless terminal based on the first time and the second time.
  • the communication device 10 uses the fact that the communication speed is different before and after session establishment according to the radio access technology, and identifies the type of radio access technology used by the radio terminal before payload transmission.
  • the feature that the communication speed differs before and after the session establishment is unique to the radio access technology and is not affected by the communication environment or the like. Therefore, according to the communication device 10, it is possible to identify the radio access technology used by the radio terminal before the communication payload transmission with high accuracy, and to prevent the communication performance from being lowered before the payload transmission.
  • FIG. 2 is a diagram illustrating a configuration example of a communication network (wireless communication system) 100 to which the communication device 11 according to the first embodiment is applied.
  • the communication network 100 includes networks 101-1 to 101-n (n is a natural number; hereinafter the same).
  • the networks 101-1 to 101-n are configured using a plurality of radio access technologies (for example, 3G, LTE, etc.).
  • the networks 101-1 to 101-n are configured using, for example, an LTE public mobile phone network, a third generation mobile communication system (3G), a home Wi-Fi, a LAN in a building, and the like.
  • 3G is an abbreviation for 3rd Generation.
  • Wi-Fi is an abbreviation for Wireless Fidelity.
  • LAN is an abbreviation for Local Area Network.
  • LTE is an abbreviation for Long Term Revolution.
  • the communication network 100 shown in FIG. 2 includes a plurality of wireless terminals and servers, and these devices communicate with each other via the networks 101-1 to 101-n.
  • two wireless terminals 12-1 and 12-2 and one server 105 are illustrated.
  • wireless terminal 12 when there is no particular reason for distinguishing between the wireless terminals 12-1 and 12-2, they are simply expressed as “wireless terminal 12”.
  • configurations other than the wireless terminal 12 such as a base station are also expressed in the same manner as the wireless terminal 12 unless there is a special reason.
  • the wireless terminal 12 accesses a server on the Internet via the connected network 101 and performs data communication.
  • the wireless terminal 12 can use 3G, for example.
  • the communication device 11 operates as a proxy device. For example, when the wireless terminal 12 downloads an HTTP (Hypertext Transfer Protocol) file from the server 105, the communication device 11 communicates with the wireless terminal 12 and the server 105 as an HTTP proxy.
  • HTTP Hypertext Transfer Protocol
  • the communication device 11 is installed on a connection path between a network (for example, a mobile network) and the Internet on the communication path
  • a network for example, a mobile network
  • the installation location of the communication device 11 is not limited to the connection portion between the mobile network and the Internet, but may be a device on a communication path other than the connection portion.
  • the communication device 11 may be installed in the server 105 on the communication path.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of the communication device 11 according to the first embodiment.
  • the communication device 11 includes, for example, the configuration illustrated in FIG.
  • the communication device 11 includes a CPU (Central Processing Unit) 81, a memory 82, an input / output interface 83, a NIC (Network Interface Card) 84 serving as communication means, and the like, which are connected to each other via an internal bus.
  • CPU 81 is a chip having a function of executing a program.
  • it may be a general CPU or an FPGA (Field Programmable Gate Gate Array).
  • the memory 82 is a RAM (Random Access Memory), a ROM (Read Only Memory), or an auxiliary storage device (hard disk or the like).
  • the input / output interface 83 is a means to be an interface of a display device and an input device (not shown).
  • the display device is, for example, a liquid crystal display.
  • the input device is a device that accepts user operations such as a keyboard and a mouse, for example.
  • the NIC 84 is hardware used for communication.
  • the configuration illustrated in FIG. 3 is not intended to limit the hardware configuration of the communication device 11.
  • the communication device 11 may include hardware (not shown) or may not include the input / output interface 83 as necessary.
  • the number of CPUs and the like included in the communication device 11 is not limited to the example illustrated in FIG. 3. For example, a plurality of CPUs may be included in the communication device 11.
  • the function of the communication device 11 is realized by various processing modules described later.
  • the processing module is realized, for example, by the CPU 81 executing a program stored in the memory 82.
  • the program can be downloaded through a network or updated using a storage medium storing the program.
  • the processing module may be realized by a semiconductor chip. That is, it is only necessary that the function performed by the processing module can be realized by some hardware or software executed using the hardware.
  • the wireless terminal 12 has, for example, the configuration illustrated in FIG.
  • the wireless terminal 12 includes an RF (Radio (Frequency) circuit 94 including an antenna 95.
  • the RF circuit 94 is a circuit for realizing wireless communication, and exchanges wireless signals with the base station 103 via the antenna 95.
  • the CPU 91, the memory 92, and the input / output interface 93 can be the same as the CPU 81, the memory 82, and the input / output interface 83 of the communication device 11. .
  • processing configurations (processing modules) of the communication device 11 and the wireless terminal 12 will be described.
  • FIG. 5 is a diagram illustrating an example of a processing configuration of each device according to the first embodiment.
  • FIG. 5 shows a communication device 11, a wireless terminal 12, and a network 101 (mobile network).
  • the wireless terminal 12 includes a wireless terminal communication unit 121.
  • the network 101 is a mobile network including the base station 103.
  • the communication device 11 includes a communication unit 111, a communication header extraction unit 112, and a radio access technology identification unit 113.
  • the wireless terminal communication unit 121 of the wireless terminal 12 is connected to be communicable with the base station 103 of the network 101.
  • the network 101 is communicably connected to the communication unit 111 of the communication device 11.
  • the communication header extraction unit 112 is communicably connected to the communication unit 111 and the radio access technology identification unit 113. The functions of the communication unit 111, the communication header extraction unit 112, and the wireless access technology identification unit 113 will be described later.
  • FIG. 6 is a block diagram showing a configuration example of the U-Plane (User Plane) protocol in the wireless terminal communication unit 121 of the wireless terminal 12 shown in FIG.
  • the wireless terminal communication unit 121 has a general configuration of an OSI (Open Systems Interconnection) model.
  • the wireless terminal communication unit 121 includes an application layer 1211 and a transport layer 1212.
  • FIG. 6 is a diagram for explaining the configuration of the wireless terminal communication unit 121, and description regarding the configuration other than the wireless terminal communication unit 121 is omitted.
  • the communication unit 111 of the communication device 11 illustrated in FIG. 5 communicates with the wireless terminal 12. Specifically, the communication unit 111 operates as an HTTP proxy and transfers a request from the wireless terminal 12 to the server 105. Then, the communication unit 111 transfers the data transmitted from the server 105 to the wireless terminal 12.
  • FIG. 7 is a block diagram showing a configuration example of the communication unit 111 shown in FIG.
  • the communication unit 111 includes a general configuration of an OSI (Open Systems Interconnection) reference model. Specifically, the communication unit 111 includes an application layer 1111, a transport layer 1112, a network layer 1113, a MAC layer 1114, and a physical layer 1115. Note that FIG. 7 is a diagram for explaining the configuration of the communication unit 111, and omits descriptions regarding configurations other than the configuration related to the communication unit 111 (communication header extraction unit 112, radio access technology identification unit 113). Yes.
  • OSI Open Systems Interconnection
  • the communication header extraction unit 112 records each header signal type (eg, TCP header, HTTP request), transmission time, and reception time based on the header obtained from the application layer 1111 and the transport layer 1112 of the communication unit 111. To do.
  • the communication header extraction unit 112 outputs the transmission time and reception time of the extracted header and the time difference between these two times to the radio access technology identification unit 113.
  • the wireless access technology identifying unit 113 identifies (determines) the wireless network usage status of the wireless terminal 12. Specifically, the radio access technology identification unit 113 selects the radio access technology (for example, 3G or LTE) that the radio terminal 12 is using based on the header type and transmission / reception time of each layer extracted by the communication header extraction unit 112. Identify (determine).
  • the radio access technology for example, 3G or LTE
  • the communication shown in FIG. 8 uses the TCP protocol in the transport layer and the HTTP protocol in the application layer.
  • the transport layer and application layer protocols are not limited to the above-described TCP and HTTP, and other protocols may be used.
  • UDP User Datagram Protocol
  • HTTPS Hypertext Transfer Protocol Secure
  • FTP File Transfer Protocol
  • the wireless terminal 12 downloads a file from the server 105 via the communication device 11 operating as a proxy device.
  • a communication process (communication sequence) between the wireless terminal 12 and the communication device 11 at that time is shown.
  • the communication process between the communication device 11 and the server 105 is the same as general TCP / HTTP communication, and is omitted.
  • the wireless terminal 12 performs a three-way handshake as a normal operation in TCP. Specifically, the transport layer 1212 of the wireless terminal 12 transmits a SYN signal (synchronization request packet) to the communication device 11 (Step 01).
  • SYN signal synchronization request packet
  • the transport layer 1112 of the communication device 11 transmits a SYN / ACK signal (response packet to the synchronization request) to the wireless terminal 12 (Step 02).
  • the transport layer 1212 of the wireless terminal 12 transmits an ACK signal (response packet) to the communication device 11. (Step 03).
  • the application layer 1111 of the wireless terminal 12 sends an application layer request (in this embodiment) to the communication device 11.
  • HTTP GET is transmitted (Step 04).
  • the application layer 1211 of the wireless terminal 12 since the application layer uses the HTTP protocol, the application layer 1211 of the wireless terminal 12 transmits an HTTP request.
  • the communication device 11 After receiving the HTTP GET, the communication device 11 transmits a payload (HTTP data) to the wireless terminal 12 (Step 05).
  • an execution time related to transmission / reception of a packet transmitted / received between the wireless terminal 12 and the communication device 11 is defined.
  • the time when the SYN signal from the wireless terminal 12 arrives at the communication device 11 is set as time T1
  • the time when the communication device 11 transmits the SYN / ACK signal is set as time T2
  • the time when the communication device 11 receives the ACK signal is set as time T3.
  • the time when the communication device 11 receives the HTTP GET signal is time T4 (see FIG. 8).
  • FIG. 9 is a flowchart illustrating an operation example of the communication device 11 according to the first embodiment.
  • the wireless terminal 12 When a user operating the wireless terminal (mobile terminal) 12 downloads a file from the server 105 (for example, viewing a web page), the wireless terminal 12 transmits a TCP SYN signal to the communication device 11, and the wireless terminal 12 communicates. Data communication with the apparatus 11 is started (Step 11). That is, the communication unit 111 of the communication device 11 receives the SYN signal from the wireless terminal 12.
  • the communication header extraction unit 112 of the communication device 11 is connected to the application layer 1111 and the transport layer 1112 of the communication unit 111, the transmission / reception time of at least one header from the application layer 1111, and at least one header from the transport layer 1112. Get the transmission / reception time.
  • the communication header extraction unit 112 acquires the reception time (T3) of the ACK signal received from the wireless terminal 12 and the reception time (T4) of the header of the application layer 1111 (for example, HTTP GET) from the communication unit 111, Recording is performed on a storage medium or the like (Step 12).
  • the communication header extraction unit 112 calculates a time difference T4-T3 between the two times, and outputs the two acquired transmission / reception times and the calculated time difference T4-T3 to the radio access technology identification unit 113 (Step 13).
  • the time difference calculated by the communication header extraction unit 112 is not limited to the above time difference (T4 ⁇ T3), and any time difference between transmission / reception times of packets exchanged before and after the data payload transmission and before and after the session establishment.
  • a time difference for example, T4-T1, T4-T2
  • the transmission / reception times of the packets exchanged before and after the session establishment include the transmission time of a DNS (Domain Name (System) query and the reception time of a response to the DNS query.
  • the wireless terminal 12 accesses a server on the Internet, it is necessary to specify the domain of the server. At that time, the wireless terminal 12 transmits a DNS query by UDP before the TCP three-way handshake. As described above, the communication header extraction unit 112 may calculate a time difference between the transmission / reception time of the DNS query and the response transmitted / received by the UDP and the transmission / reception time of the packet by TCP (for example, the reception time of HTTP GET). .
  • the radio access technology identifying unit 113 performs threshold processing on the time difference received from the communication header extracting unit 112. Specifically, the radio access technology identifying unit 113 compares the received time difference with one or more (one series) “radio access technology calculation threshold values” set in advance (Step 14).
  • the wireless access technology identification unit 113 determines that the wireless terminal 12 is using 3G and performs processing. The process ends (Step 15).
  • the wireless access technology identifying unit 113 determines that the wireless terminal 12 is using LTE and ends the process (Step 16).
  • the communication header extraction unit 112 acquires the first time related to transmission / reception of a specific packet (for example, a SYN signal) generated between the wireless terminal 12 and its own device for session establishment, and session establishment. And a function of acquiring a second time concerning a packet (packet transmitted first from the application layer; for example, HTTP GET) transmitted from the wireless terminal 12 later.
  • the communication header extraction unit 112 includes a submodule including a first acquisition unit 131 and a second acquisition unit 132 (see FIG. 10).
  • the radio access technology identification unit 113 operates as a determination unit that determines the radio access technology used by the radio terminal 12 based on the acquired first time and second time.
  • the wireless access technology identification unit 113 outputs the determination result of the wireless access technology used by the wireless terminal 12 to an external device such as a display device, a printing device, or a storage device such as a USB (Universal Serial ⁇ ⁇ ⁇ Bus) memory. May be.
  • an external device such as a display device, a printing device, or a storage device such as a USB (Universal Serial ⁇ ⁇ ⁇ Bus) memory. May be.
  • USB Universal Serial ⁇ ⁇ ⁇ Bus
  • 3G or LTE is identified as a radio access technology used by the radio terminal 12, but the radio access technology to be identified is not limited to 3G and LTE.
  • a plurality of threshold values may be prepared and 3G, 4G, and 5G may be identified.
  • another threshold value may be prepared to identify WiFi and LTE.
  • the wireless terminal 12 it is possible to specify the radio access technology that the radio terminal 12 is using before transmitting the data payload. This is because the behavior when the wireless terminal 12 transmits a large packet and a small packet differs depending on the wireless access technology being used.
  • the wireless terminal 12 using 3G has a low-speed communication mode, and when transmitting a small packet of about several tens of bytes such as a TCP three-way handshake packet, it is transmitted in the low-speed communication mode.
  • the packet when transmitting a large packet of about several hundred bytes such as an HTTP GET signal, the packet is transmitted after the mode of the wireless terminal 12 is changed to the high-speed communication mode.
  • the communication apparatus 11 can identify the radio access technology of the radio terminal 12 by detecting the time difference (for example, the time difference between T3 and T4) and performing threshold processing on the time difference.
  • the time difference is not affected by external factors such as line congestion and transmission distance. Therefore, the communication device 11 can specify the radio access technology of the radio terminal 12 with high accuracy without being affected by external factors by detecting the time difference.
  • FIG. 11 is a block diagram illustrating a configuration example of the communication device 21 according to the second embodiment.
  • the communication device 21 includes a communication unit 211, a communication header extraction unit 212, a radio access technology identification unit 213, and a communication control unit 216.
  • the communication header extraction unit 212 is communicably connected to the communication unit 211 and the wireless access technology identification unit 213.
  • the communication control unit 216 is communicably connected to the communication unit 211 and the radio access technology identification unit 213.
  • the communication header extraction unit 212 extracts the transmission / reception time of the communication header from the transport layer and the application layer of the communication unit 211 and transmits them to the radio access technology identification unit 213 as in the first embodiment.
  • the wireless access technology identifying unit 213 identifies (determines) the wireless network usage status of the wireless terminal 12. Specifically, the radio access technology identification unit 213 identifies the radio access technology (3G or LTE) being used by the radio terminal 12 based on the header type and transmission / reception time of each layer extracted by the communication header extraction unit 212 ( judge.
  • 3G or LTE radio access technology
  • the communication control unit 216 controls the communication unit 211 based on the radio access technology in use of the radio terminal 12 received from the radio access technology identification unit 213. For example, the communication control unit 216 calculates the maximum communication capacity of the radio access technology based on the radio access technology in use by the radio terminal 12. The calculation of the maximum communication capacity is, for example, the maximum bandwidth described in the specification of each radio access technology. Then, the communication control unit 216 controls the initial congestion window of the communication unit 211 according to the calculated maximum communication capacity of the wireless terminal 12.
  • FIG. 12 is a block diagram showing an example of an internal configuration example of the radio access technology identification unit 213.
  • the radio access technology identification unit 213 includes a timer 2131 and a trigger 2132.
  • the timer 2131 is a functional module that is realized by hardware or software and calculates time.
  • the trigger 2132 is a functional module that is realized by hardware or software, receives a signal from the timer 2131, and outputs a trigger signal.
  • one timer 2131 and one trigger 2132 are provided, but the number of timers 2131 and triggers 2132 is not limited to one each. For example, you may have two or more timers and two or more triggers.
  • the radio access technology identification unit 213 has the same function as the radio access technology identification unit 113 of the first embodiment, other parts are omitted.
  • FIG. 13 is a flowchart illustrating an operation example of the communication device 21 according to the second embodiment.
  • the communication unit 211 starts communication with the wireless terminal 12 (Step 21).
  • the communication header extraction unit 212 of the communication device 21 is connected to the communication unit 211, and measures the transport layer header of the communication unit 211, for example, the transmission time (T2) of SYN / ACK (Step 22).
  • the communication header extraction unit 212 may extract not only T2 but also T1 or T3.
  • the communication header extracting unit 212 outputs the extracted transport layer header type (SYN, SYN / ACK, ACK) and the transmission / reception time related to the header to the radio access technology identifying unit 213 (Step 23).
  • the radio access technology identification unit 213 After receiving the time of the transport layer header (for example, T2), the radio access technology identification unit 213 starts the timer 2131 (Step 24).
  • the communication header extraction unit 212 monitors whether or not a request has arrived at the application layer of the communication unit 211 after Step 22 (Step 25).
  • the communication header extraction unit 212 monitors the application layer request until the application layer request of the communication unit 211 arrives (No in Step 26, execution of Step 25).
  • the communication header extraction unit 212 confirms the arrival of the request of the application layer of the communication unit 211 (Step 26, Yes)
  • the communication header extraction unit 212 transmits the arrival notification of the request and the arrival time of the request packet wirelessly. It outputs to the access technology identification part 213 (Step27).
  • the radio access technology identification unit 213 compares the count value (elapsed time from Step 24) by the timer 2131 with a preset “radio access technology calculation threshold”. At this time, the wireless access technology calculation threshold value to be used is selected according to the type and number of wireless access scheduled to be identified.
  • one radio access technology calculation threshold is used to identify two radio access technologies (eg, 3G, LTE). Also, in order to identify three radio access technologies (eg, 2G, 3G, LTE), two radio access technology calculation thresholds are used.
  • radio access technology calculation threshold two radio access technologies (3G / LTE) are identified using one radio access technology calculation threshold.
  • the threshold for LTE calculation is set to N1 seconds as the threshold of time difference T4-T2 (radio access technology calculation threshold).
  • the radio access technology identification unit 213 determines that the time difference T4-T2 is It is determined that the threshold value is not exceeded, and the trigger 2132 is activated. Further, even when the count time of the timer 2131 reaches the threshold value N1 seconds, when the application layer request does not arrive (Step 28, No), the radio access technology identifying unit 213 does not activate the trigger 2132.
  • the radio access technology identification unit 213 determines that the radio terminal 12 is using LTE, and outputs the result to the communication control unit 216 (Step 29).
  • the communication control unit 216 controls the communication unit 211 using parameters corresponding to the LTE network (Step 30). For example, the communication control unit 216 changes the transmission buffer size of the transport layer of the communication unit 211 or another layer of the OSI model. Further, the communication control unit 216 may control the congestion window of the TCP session of the communication unit 211, particularly the initial congestion window. In addition, the communication control unit 216 may control the packet transmission timing of the communication unit 211.
  • the radio access technology identification unit 213 determines that the terminal is using 3G, and transfers the result to the communication control unit 216 (Step 31).
  • the communication control unit 216 controls the communication unit 211 using parameters corresponding to the 3G network when the received radio access technology of the terminal is 3G. (Step 32).
  • the wireless access technology identification unit 213 transmits a packet (for example, HTTP GET) transmitted from the wireless terminal 12 after the session is established and a specific packet (for example, SYN / ACK).
  • a packet for example, HTTP GET
  • a specific packet for example, SYN / ACK
  • radio access technology calculation threshold For the sake of brevity, the operation when one “radio access technology calculation threshold” is used has been described. However, the present disclosure is not limited to the use of one “radio access technology calculation threshold”.
  • a plurality of radio access technologies may be identified at the same time according to the radio access technology calculation threshold used and the number of timers and triggers. For example, if two timers and triggers are used simultaneously using two radio access technology calculation thresholds, not only 3G and LTE but also other radio access technologies (for example, 5G) can be identified.
  • the identification time can be shortened as compared with the first embodiment.
  • the reason is that the radio access technology identifying unit 213 uses the timer 2131 and the trigger 2132 so that when the timer 2131 reaches the threshold value, a specific radio access technology can be identified without receiving an application layer request. is there.
  • the communication unit 211 is controlled according to the radio access technology. By controlling transmission parameters (for example, congestion window and buffer size) based on the identified radio access technology, it is possible to prevent performance degradation of the communication network.
  • the time related to transmission / reception of the specific packet is at least one of a reception time of a synchronization request packet of a TCP (Transmission Control Protocol) three-way handshake, a transmission time of a response packet to the synchronization request, and a reception time of a response packet
  • the communication apparatus according to 1.
  • the communication device according to mode 1 or 2 wherein a packet transmitted from the wireless terminal after the session is established is a first packet transmitted from an application layer.
  • a wireless terminal and a communication device that transmits and receives data to and from the wireless terminal, wherein the communication device obtains a first time related to transmission and reception of a specific packet generated between the wireless terminal and the own device for session establishment Based on the first time and the second time, a second acquisition unit that acquires a second time related to a packet transmitted from the wireless terminal after the session is established,
  • a wireless communication system comprising: a determination unit configured to determine a wireless access technology used.
  • Forms 12 to 14 can be developed like forms 2 to 11 as in form 1.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

無線端末が利用する無線アクセス技術をペイロード伝送前に識別する通信装置を提供する。通信装置は、無線端末とデータを送受信し、第1の取得部と、第2の取得部と、判断部と、を有する。第1の取得部は、セッション確立のために無線端末と自装置の間で発生する特定パケットの送受信に関する第1時刻を取得する。第2の取得部は、セッション確立後に無線端末から送信されたパケットに関する第2時刻を取得する。判断部は、第1時刻と第2時刻に基づき、無線端末が使用している無線アクセス技術を判断する。

Description

通信装置、通信方法及びプログラム
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2017-059344号(2017年3月24日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、通信装置、通信方法及びプログラムに関する。
 モバイル網における新しい無線アクセス技術の導入時には、旧来の無線アクセス技術にのみ対応した無線端末の接続性を確保するため、旧来の無線アクセス技術を一定期間残したまま、新しい無線アクセス技術をモバイル網に導入することが多い。そのため、複数の異なる無線アクセス技術が共存することがある。例えば、出願時の日本において、第3世代移動通信システム(3G)と第4世代移動通信システム(4G)が共存している。例えば、第3世代移動通信システムはHSDPA(High-Speed Downlink Packet Access)であり、第4世代移動通信システムはLTE(Long Term Revolution)である。
 また、モバイル網技術は既存サーバとの接続性を確保するため、上位層のプロトコルは、既存の有線通信技術の上位層プロトコルを使用することが多い。例えば、モバイル網の上位層プロトコルとして、TCP(Transmission Control Protocol)を代表とするインターネットなどで標準的に用いられるトランスポート層の通信プロトコルが使用される。TCPでは送信レートを制御するため、一回のデータ送信の量を輻輳ウィンドと呼ばれるパラメータで制御する。TCPセッション確立後の最初のデータ送信の量は、最初のペイロードを伝送する前に設定される初期輻輳ウィンドにより定まる。ペイロードとは、通信パケットの内、宛先等の付加情報であるヘッダ部分を除いた、本来転送したいデータ本体である。
 TCPなどの上位層プロトコルは、下位層を意識せずに、独立した制御を行うため、TCPの送信レートの設定範囲を適切に制御できず、通信性能が劣化する問題がある。複数の無線アクセス技術が共存する環境下では、無線アクセス技術が有する通信性能を十分に引き出せていないためである。例えば、トランスポート層から、LTEを利用中の端末に対しLTEの送信可能レートに比べて著しく低い送信レートでデータが送信されると、無線資源の利用率が低下し、LTEで期待される性能を発揮できない。また、3Gを利用中の端末に対し、トランスポート層から高い送信レートでデータが送信されると、モバイル網の帯域が不足するため、各パケットの遅延が急激に増加したり、パケットがバッファで破棄されるためにパケットのロス率が増加したりする。
 このような問題に対し、トランスポート層が、端末の下位層の特徴(例えば、最大帯域)を認識することで通信性能の劣化を防止する技術が存在する。例えば、特許文献1には、端末の無線アクセス技術を認識した上でTCPパラメータ(例えば、送信レート、再送タイミング)を調整し、輻輳制御の誤発動を低減する技術が記載されている。具体的には、各無線モジュールが無線環境認識部(例えば、センサアンテナ)を利用して、無線情報を取得することが記載されている。無線情報は、例えば、RSSI(Received Signal Strength Indication)、バックグラウンド雑音レベル、変調方式、送信バッファに蓄積されている通信待ちのデータ量、送信失敗を示すNACK(Negative ACKnowledgement)信号を相手局から受信した回数、相手局から受信した無線フレームの不良率などであるとしている。
 特許文献2は、TCPの特徴量、例えば、往復遅延(RTT;Round Trip Time)やスループットを使用して、端末装置が使用中の無線方式(例えば、3G、LTE)を識別する技術を開示する。具体的には、3GとLTEでは通信能力が異なるため、一定時間内のTCPのRTT、スループット等の平均値を計算し、平均値を比較して端末が使用している無線アクセス技術を識別している。
 特許文献3は、TCPのRTTと閾値を使用して、端末装置が使用中の無線アクセス技術が3Gであるか否かを判定する技術を開示する。具体的には、サーバにおけるSYN/ACKパケットの送信時とこれに対応するACKパケットの受信時との差をRTTとして測定し、そのRTTが設定された基準値を超過する場合、3Gと固定網を識別する。
特開2010-213013号公報 特開2016-149638号公報 特開2013-115824号公報
 なお、上記先行技術文献の各開示を、本書に引用をもって繰り込むものとする。以下の分析は、本発明者らによってなされたものである。
 上述の各特許文献に開示された技術では、通信開始直後の性能が劣化するという問題がある。この問題は、サーバまたはプロキシ装置が、最初のペイロードを伝送する前に、適切な送信レートを決定できないことに起因する。
 上記問題の原因について詳しく説明する。TCP通信の最初の送信レートは通信の発信側(サーバまたはプロキシ)が初期輻輳ウィンドを調整することで決定するが、送信側では、当該初期輻輳ウィンドを決定する前に端末の無線アクセス技術を識別できない。当該事実が、上記問題の原因である。つまり、初期輻輳ウィンドはペイロードの伝送前に設定されるため、最初のペイロードを伝送する前に端末の無線アクセス技術を識別できないことが原因となる。さらには、特許文献2や特許文献3などRTTなどの遅延を用いて無線アクセス技術を識別する技術が多く存在するが、通信エリア混雑度や電波強度等などの要因の影響により、上記文献等が使用するRTTは大きく変動してしまうので、通信エリアの混雑度や電波強度等によっては無線アクセス技術の識別精度が大きく低下してしまう。
 特許文献1の技術では、終端端末の通信環境の取得は、物理層またはMAC(Media Access Control)層で行われるため、専用設備(無線環境識別部)が必要となる。通常、サーバまたはプロキシ装置は、無線の物理層やMAC層のインターフェイスを備えていないため、送信側で端末の無線アクセス技術を識別することができない。
 また、特許文献2の技術では、ペイロード伝送中のトランスポート層の通信特徴を抽出し、平均値を使用して通信環境を特定するため、ペイロードの伝送前(初期輻輳ウィンドの決定前)に無線網アクセス技術を識別することができない。
 また、特許文献3の技術では、RTTはネットワークの混雑度、基地局のバッファ滞留状況、電波強度、伝送距離等の外部要因に影響されるため、無線網アクセス技術を高精度に識別できない。
 本発明は、上記課題を解決するためになされたものであり、無線端末が利用する無線アクセス技術をペイロード伝送前に識別することが可能な通信装置、通信方法及びプログラムを提供することを主たる目的とする。
 本発明乃至開示の第1の視点によれば、無線端末とデータを送受信する通信装置であって、セッション確立のために前記無線端末と自装置の間で発生する特定パケットの送受信に関する第1時刻を取得する第1の取得部と、前記セッション確立後に前記無線端末から送信されたパケットに関する第2時刻を取得する第2の取得部と、前記第1時刻と前記第2時刻に基づき、前記無線端末が使用している無線アクセス技術を判断する判断部と、を有する通信装置が提供される。
 本発明乃至開示の第2の視点によれば、無線端末とデータを送受信する通信装置において、セッション確立のために前記無線端末と自装置の間で発生する特定パケットの送受信に関する第1時刻を取得するステップと、前記セッション確立後に前記無線端末から送信されたパケットに関する第2時刻を取得するステップと、前記第1時刻と前記第2時刻に基づき、前記無線端末が使用している無線アクセス技術を判断するステップと、を含む、通信方法が提供される。
 本発明乃至開示の第3の視点によれば、無線端末とデータを送受信する通信装置に搭載されたコンピュータに、セッション確立のために前記無線端末と自装置の間で発生する特定パケットの送受信に関する第1時刻を取得する処理と、前記セッション確立後に前記無線端末から送信されたパケットに関する第2時刻を取得する処理と、前記第1時刻と前記第2時刻に基づき、前記無線端末が使用している無線アクセス技術を判断する処理と、を実行させるプログラムが提供される。
 なお、このプログラムは、コンピュータが読み取り可能な記憶媒体に記録することができる。記憶媒体は、半導体メモリ、ハードディスク、磁気記録媒体、光記録媒体等の非トランジェント(non-transient)なものとすることができる。本発明は、コンピュータプログラム製品として具現することも可能である。
 本発明乃至開示の各視点によれば、無線端末が利用する無線アクセス技術をペイロード伝送前に識別することに寄与する通信装置、通信方法及びプログラムが、提供される。
一実施形態の概要を説明するための図である。 第1の実施形態に係る通信装置が適用される通信網(無線通信システム)の構成例を示す図である。 第1の実施形態に係る通信装置のハードウェア構成の一例を示すブロック図である。 第1の実施形態に係る無線端末のハードウェア構成の一例を示すブロック図である。 第1の実施形態に係る各装置の処理構成の一例を示す図である。 図5に示す無線端末の無線端末通信部におけるU-Planeのプロトコルの構成例を示すブロック図である。 図5に示す通信部の構成例を示すブロック図である。 無線端末と通信装置の通信を説明するためのシーケンス図である。 第1の実施形態の通信装置の動作例を示すフローチャートである。 第1の実施形態に係る通信ヘッダ抽出部の一構成例を示すブロック図である。 第2の実施形態に係る通信装置の構成例を示すブロック図である。 第2の実施形態に係る無線アクセス技術識別部の構成例の一例を示すブロック図である。 第2の実施形態の通信装置の動作例を示すフローチャートである。
 初めに、一実施形態の概要について説明する。なお、この概要に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、この概要の記載はなんらの限定を意図するものではない。また、各図におけるブロック間の接続線は、双方向及び単方向の双方を含む。一方向矢印については、主たる信号(データ)の流れを模式的に示すものであり、双方向性を排除するものではない。さらに、本願開示に示す回路図、ブロック図、内部構成図、接続図などにおいて、明示は省略するが、入力ポート及び出力ポートが各接続線の入力端及び出力端のそれぞれに存在する。入出力インターフェイスも同様である。
 一実施形態に係る通信装置10は、無線端末とデータを送受信し、第1の取得部31と、第2の取得部32と、判断部33と、を有する(図1参照)。第1の取得部31は、セッション確立のために無線端末と自装置の間で発生する特定パケットの送受信に関する第1時刻を取得する。第2の取得部32は、セッション確立後に無線端末から送信されたパケットに関する第2時刻を取得する。判断部33は、第1時刻と第2時刻に基づき、無線端末が使用している無線アクセス技術を判断する。
 通信装置10は、無線アクセス技術に応じて、セッション確立前後で通信速度が違うことを利用し、ペイロード伝送前に無線端末が使用している無線アクセス技術の種別を特定する。このセッション確立前後で通信速度が異なるという特徴は、無線アクセス技術固有のものであり、通信環境等に影響されるものではない。そのため、通信装置10によれば、通信ペイロード伝送の前に無線端末が利用する無線アクセス技術を高精度で識別でき、ペイロード伝送の前に通信性能の低下を防止することが可能となる。
 以下に具体的な実施の形態について、図面を参照してさらに詳しく説明する。なお、各実施形態において同一構成要素には同一の符号を付し、その説明を省略する。
[第1の実施形態]
[構成の説明]
 図2は、第1の実施形態に係る通信装置11が適用される通信網(無線通信システム)100の構成例を示す図である。
 上記通信網100は、ネットワーク101-1~101-n(nは、自然数。以下、同じ)を備える。ネットワーク101-1~101-nは、複数の無線アクセス技術(例えば、3GやLTE等)を用いて構成される。ネットワーク101-1~101-nは、例えば、LTEの公衆携帯電話網、第3世代移動通信システム(3G)、家庭用Wi-Fi、建物内のLANなどを用いて構成される。
 尚、上記において、3Gは、3rd Generationの略である。Wi-Fiは、Wireless Fidelityの略である。LANは、Local Area Networkの略である。LTEは、Long Term Revolutionの略である。
 図2に示す通信網100には、複数の無線端末やサーバが含まれ、これらの装置はネットワーク101-1~101-nを介して互いに通信する。なお、図2には、2台の無線端末12-1、12-2と、1台のサーバ105を図示している。また、以降の説明において、無線端末12-1、12-2を区別する特段の理由が無い場合には、単に「無線端末12」と表記する。また、基地局等の無線端末12以外の構成についても、特段の理由がなければ、無線端末12と同様に表記する。
 無線端末12は、接続しているネットワーク101を経由し、インターネット上のサーバにアクセスし、データ通信を行う。また、無線端末12は、例えば、3Gを使用できる。
 通信装置11は、プロキシ装置として動作する。例えば、無線端末12がサーバ105からHTTP(Hypertext Transfer Protocol)ファイルをダウンロードする際、通信装置11は、HTTPプロキシとして無線端末12とサーバ105と通信を行う。
 本実施形態では、通信装置11が通信経路上、ネットワーク(例えば、携帯網)とインターネットの接続部に設置される場合を例に挙げる。もちろん、通信装置11の設置場所は、携帯網とインターネットの接続部に限定されず、接続部以外の他の通信経路上の装置であってもよい。たとえば、通信装置11が、通信経路上のサーバ105に設置される場合であってもよい。
 次に、第1の実施形態に係る通信網100を構成する各種装置のハードウェア構成を説明する。
 図3は、第1の実施形態に係る通信装置11のハードウェア構成の一例を示すブロック図である。
 通信装置11は、例えば、図3に例示する構成を備える。例えば、通信装置11は、内部バスにより相互に接続される、CPU(Central Processing Unit)81、メモリ82、入出力インターフェイス83及び通信手段であるNIC(Network Interface Card)84等を備える。
 CPU81は、プログラムを実行する機能を有するチップである。例えば、一般的なCPU、またはFPGA(Field Programmable Gate Array)であっても良い。
 メモリ82は、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置(ハードディスク等)である。
 入出力インターフェイス83は、図示しない表示装置や入力装置のインターフェイスとなる手段である。表示装置は、例えば、液晶ディスプレイ等である。入力装置は、例えば、キーボードやマウス等のユーザ操作を受け付ける装置である。
 NIC84は、通信を行うために使用されるハードウェアである。
 但し、図3に示す構成は、通信装置11のハードウェア構成を限定する趣旨ではない。通信装置11は、図示しないハードウェアを含んでもよいし、必要に応じて入出力インターフェイス83を備えていなくともよい。また、通信装置11に含まれるCPU等の数も図3の例示に限定する趣旨ではなく、例えば、複数のCPUが通信装置11に含まれていてもよい。
 通信装置11の機能は、後述する各種処理モジュールにより実現される。当該処理モジュールは、例えば、メモリ82に格納されたプログラムをCPU81が実行することで実現される。また、そのプログラムは、ネットワークを介してダウンロードするか、あるいは、プログラムを記憶した記憶媒体を用いて、更新することができる。さらに、上記処理モジュールは、半導体チップにより実現されてもよい。即ち、上記処理モジュールが行う機能を何らかのハードウェア、或いはハードウェアを利用して実行されるソフトウェアにより実現できればよい。
 無線端末12は、例えば、図4に例示する構成を備える。無線端末12は、アンテナ95を備えるRF(Radio Frequency)回路94を含んで構成される。RF回路94は、無線通信を実現するための回路であり、アンテナ95を介して基地局103との間で無線信号の授受を行う。なお、無線端末12が備えるハードウェアのうち、CPU91、メモリ92、入出力インターフェイス93は、通信装置11のCPU81、メモリ82、入出力インターフェイス83と同様とすることができるので、その説明を省略する。
 また、基地局103のハードウェア構成は当業者にとって明らかなものであるため、説明を省略する。
 続いて、通信装置11及び無線端末12の処理構成(処理モジュール)について説明する。
 図5は、第1の実施形態に係る各装置の処理構成の一例を示す図である。図5には、通信装置11と、無線端末12と、ネットワーク101(携帯網)が記載されている。
 無線端末12は、無線端末通信部121を備える。
 ネットワーク101は、基地局103を含むモバイルネットワークである。
 通信装置11は、通信部111と、通信ヘッダ抽出部112と、無線アクセス技術識別部113と、を備える。
 無線端末12の無線端末通信部121は、ネットワーク101の基地局103と通信可能に接続されている。ネットワーク101は、通信装置11の通信部111と通信可能に接続されている。通信ヘッダ抽出部112は、通信部111と無線アクセス技術識別部113と通信可能に接続されている。通信部111、通信ヘッダ抽出部112、無線アクセス技術識別部113の機能は後述する。
 図6は、図5に示される無線端末12の無線端末通信部121におけるU-Plane(User Plane)のプロトコルの構成例を示すブロック図である。図6に示すように、無線端末通信部121は、OSI(Open Systems Interconnection)モデルの一般的な構成を備える。具体的には、無線端末通信部121は、アプリケーション層1211と、トランスポート層1212と、を備える。なお、図6は、無線端末通信部の121の構成を説明するための図であり、無線端末通信部121以外の構成に関する記載を省略している。
 図5に示す通信装置11の通信部111は、無線端末12と通信を行う。具体的には、通信部111は、HTTPプロキシとして動作し、無線端末12からのリクエストをサーバ105に転送する。そして、通信部111は、サーバ105から送られたデータを無線端末12に転送する。
 図7は、図5に示される通信部111の構成例を示すブロック図である。通信部111は、OSI(Open Systems Interconnection)参照モデルの一般的な構成を備える。具体的には、通信部111は、アプリケーション層1111と、トランスポート層1112と、ネットワーク層1113と、MAC層1114と、物理層1115と、を備える。なお、図7は、通信部111の構成を説明するための図であり、通信部111に関与する構成(通信ヘッダ抽出部112、無線アクセス技術識別部113)以外の構成に関する記載を省略している。
 通信ヘッダ抽出部112は、通信部111のアプリケーション層1111と、トランスポート層1112から得られるヘッダに基づき、各ヘッダ信号の種類(例:TCPヘッダ、HTTPリクエスト)と、送信時刻と受信時刻を記録する。通信ヘッダ抽出部112は、抽出したヘッダの送信時刻と受信時刻と、これら2つの時刻の時間差と、を無線アクセス技術識別部113に出力する。
 無線アクセス技術識別部113は、無線端末12の無線網使用状況を識別(判断)する。具体的には、無線アクセス技術識別部113は、通信ヘッダ抽出部112が抽出した各層のヘッダの種類と送受信時刻に基づき、無線端末12が利用中の無線アクセス技術(例えば、3GまたはLTE)を識別(判定)する。
[動作の説明]
 本実施形態に係る通信装置11の動作の説明に先立ち、図8を用いてアプリケーション層とトランスポート層通信の一般的な挙動を時系列で説明する。図8に示された通信は、トランスポート層ではTCPプロトコルを使用し、アプリケーション層ではHTTPプロトコルを使用する。なお、トランスポート層とアプリケーション層のプロトコルは上記TCPやHTTPに限定されず、他のプロトコルでも良いことは勿論である。例えば、トランスポート層にてUDP(User Datagram Protocol)を使用しても良いし、アプリケーション層でHTTPS(Hypertext Transfer Protocol Secure)やFTP(File Transfer Protocol)などを使用しても良い。
 無線端末12は、プロキシ装置として作動している通信装置11を経由してサーバ105からファイルをダウンロードする。以下では、その際の無線端末12と通信装置11の通信過程(通信シーケンス)を示す。なお、通信装置11とサーバ105の間の通信過程は一般的なTCP/HTTP通信と同じため、省略する。
 まず、無線端末12は、ファイルをダウンロードするため、TCPにおける通常の動作として、スリーウェイハンドシェイクを行う。具体的には、無線端末12のトランスポート層1212が、通信装置11にSYN信号(同期要求パケット)を送信する(Step01)。
 次に、通信装置11のトランスポート層1112はSYN信号を受信した後、無線端末12にSYN/ACK信号(同期要求に対する応答パケット)を送信する(Step02)。
 次に、無線端末12のトランスポート層1212はSYN/ACK信号を受信した後、通信装置11にACK信号(応答パケット)を送信する。(Step03)。
 次に、無線端末12のスリーウェイハンドシェイクが終了した後(いわゆるStep03のACK信号を送信した後)、無線端末12のアプリケーション層1111は、通信装置11に、アプリケーション層のリクエスト(本実施形態における図7の例ではHTTP GET)を送信する(Step04)。本実施形態では、アプリケーション層はHTTPプロトコルを用いるため、無線端末12のアプリケーション層1211は、HTTPリクエストを送信する。
 最後に、通信装置11は、HTTP GETを受信した後、無線端末12にペイロード(HTTPデータ)を送信する(Step05)。
 以下、説明のため、無線端末12と通信装置11の間で送受信されるパケットの送受信に関する実行時刻を定義する。無線端末12からのSYN信号が通信装置11に到達する時刻を時刻T1とし、通信装置11がSYN/ACK信号を送信する時刻を時刻T2とし、通信装置11がACK信号を受信する時刻を時刻T3とし、通信装置11がHTTP GET信号を受信する時刻を時刻T4とする(図8参照)。
 図9は、第1の実施形態の通信装置11の動作例を示すフローチャートである。
 無線端末(携帯端末)12を操作するユーザが、サーバ105からファイルをダウンロード(例えば、ウェブページを見る)すると、無線端末12がTCPのSYN信号を通信装置11に送信し、無線端末12が通信装置11とデータ通信を始める(Step11)。つまり、通信装置11の通信部111は、無線端末12からSYN信号を受信する。
 通信装置11の通信ヘッダ抽出部112は、通信部111のアプリケーション層1111とトランスポート層1112に接続し、アプリケーション層1111から少なくとも1つのヘッダの送受信時刻と、トランスポート層1112から少なくとも1つのヘッダの送受信時刻を取得する。例えば、通信ヘッダ抽出部112は、無線端末12から受信したACK信号の受信時刻(T3)と、アプリケーション層1111のヘッダ(例えば、HTTP GET)の受信時刻(T4)を通信部111から取得し、記憶媒体等に記録する(Step12)。
 その後、通信ヘッダ抽出部112は、上記2つの時刻の時間差T4-T3を算出し、上記取得した2つの送受信時刻と算出した時間差T4-T3を無線アクセス技術識別部113に出力する(Step13)。なお、通信ヘッダ抽出部112が算出する時間差は、上記の時間差(T4-T3)に限定されず、データペイロード送信前、且つ、セッション確立前後にやり取りされるパケットの送受信時刻の時間差であればどのような時間差(例えば、T4-T1、T4-T2)であってもよい。また、上記セッション確立前後にやり取りされるパケットの送受信時刻は、DNS(Domain Name System)クエリの送信時刻と、当該DNSクエリに対する応答の受信時刻も含む。つまり、無線端末12は、インターネット上のサーバへアクセスする際、当該サーバのドメインを特定する必要がある。その際、無線端末12は、TCPスリーウェイハンドシェイクの前にDNSクエリをUDPにより送信する。このように、通信ヘッダ抽出部112は、このUDPにより送受信されるDNSクエリ及びその応答の送受信時刻と、TCPによるパケットの送受信時刻(例えば、HTTP GETの受信時刻)の時間差を算出してもよい。
 無線アクセス技術識別部113は、通信ヘッダ抽出部112から受信した時間差に対して閾値処理を実行する。具体的には、無線アクセス技術識別部113は、事前に設定された1つまたは複数の(一系列の)「無線アクセス技術計算閾値」と受信した時間差を比較する(Step14)。
 時間差(上述の例では、T4-T3の時間差)が無線アクセス技術計算閾値よりも大きい場合(Step14、Yes)、無線アクセス技術識別部113は、無線端末12は3Gを使用中と判断し処理を終了する(Step15)。
 時間差が無線アクセス技術計算閾値以下の場合(Step14、No)、無線アクセス技術識別部113は、無線端末12はLTEを使用中と判断し処理を終了する(Step16)。
 以上のように、通信ヘッダ抽出部112は、セッション確立のために無線端末12と自装置の間で発生する特定パケット(例えば、SYN信号)の送受信に関する第1時刻を取得する機能と、セッション確立後に無線端末12から送信されたパケット(アプリケーション層から最初に送信されるパケット;例えば、HTTP GET)に関する第2時刻を取得する機能と、を備える。つまり、通信ヘッダ抽出部112は、第1の取得部131と、第2の取得部132と、からなるサブモジュールを備える(図10参照)。また、無線アクセス技術識別部113は、上記取得された第1時刻と第2時刻に基づき、無線端末12が使用している無線アクセス技術を判断する、判断部として動作する。
 また、無線アクセス技術識別部113は、無線端末12が使用している無線アクセス技術の判断結果を、表示装置、印刷装置、USB(Universal Serial Bus)メモリ等の記憶装置等の外部装置に出力してもよい。
 本実施形態では、無線端末12が使用中の無線アクセス技術として3GまたはLTEを識別しているが、識別する無線アクセス技術は3G及びLTEに限定されない。例えば、複数の閾値を用意し、3G、4G及び5Gを識別してもよい。更には、別の1つのしきい値を用意し、WiFiとLTEを識別してもよい。
 以上説明した第1の実施形態の通信装置11において、無線端末12が使用中の無線アクセス技術を、データペイロードを伝送する前に特定することが可能となる。その理由は、無線端末12がサイズの大きいパケットと小さいパケットを伝送する際の挙動が、使用中の無線アクセス技術に応じて異なるためである。例えば、3Gを使用中の無線端末12には低速通信モードが存在し、TCPのスリーウェイハンドシェイクパケットのような数十バイト程度の小さなパケットを伝送する場合は、低速通信モードで伝送される。一方で、HTTP GET信号のような数百バイト程度の大きなパケットを伝送する場合は、無線端末12のモードが高速通信モードに遷移した後にパケットが伝送される。無線端末12が低速通信モードから高速通信モードに遷移する過程は数百ミリ秒程度の固定の時間を要するため、T3とT4の時刻には数百ミリ秒の時間差が生じる。当該時間差(小サイズのパケットに関する送受信時刻と大サイズのパケットに関する送受信時刻の時間差)は、3Gの固有仕様で生じ、LTEでは発生しない。したがって、通信装置11は、上記時間差(例えば、T3とT4の時間差)を検出し、当該時間差に閾値処理を施すことで、無線端末12の無線アクセス技術を特定できる。また、上記の時間差は、回線の混雑や伝送距離等の外部要因に影響されるものではない。したがって、通信装置11は、上記時間差を検出することで、無線端末12の無線アクセス技術を外部要因に影響されることなく、高精度に特定できる。
[第2の実施形態]
[構成の説明]
 図11は、第2の実施形態に係る通信装置21の構成例を示すブロック図である。
 図11を参照すると、通信装置21は、通信部211と、通信ヘッダ抽出部212と、無線アクセス技術識別部213と、通信制御部216と、を備える。通信ヘッダ抽出部212は、通信部211と無線アクセス技術識別部213と通信可能に接続されている。通信制御部216は、通信部211と無線アクセス技術識別部213と通信可能に接続されている。
 通信ヘッダ抽出部212は、第1の実施形態と同様に、通信部211のトランスポート層とアプリケーション層から通信のヘッダの送受信時刻を抽出し、無線アクセス技術識別部213に伝送する。
 無線アクセス技術識別部213は、無線端末12の無線網使用状況を識別(判定)する。具体的には、無線アクセス技術識別部213は、通信ヘッダ抽出部212が抽出した各層のヘッダの種類と送受信時刻に基づき、無線端末12が利用中の無線アクセス技術(3GまたはLTE)を識別(判定)する。
 通信制御部216は、無線アクセス技術識別部213から受信した無線端末12の使用中の無線アクセス技術に基づいて、通信部211を制御する。例えば、通信制御部216は、無線端末12の使用中の無線アクセス技術に基づいて、その無線アクセス技術の最大通信容量を計算する。最大通信容量の計算は、例えば、各無線アクセス技術の仕様書で記載された最大帯域である。そして、通信制御部216は、計算した無線端末12の最大通信容量に応じて、通信部211の初期輻輳ウィンド(イニシャル輻輳ウィンド)を制御する。
 図12は、無線アクセス技術識別部213の内部構成例の一例を示すブロック図である。図12を参照すると、無線アクセス技術識別部213は、タイマ2131とトリガー2132を含んで構成される。タイマ2131は、ハードウェアまたはソフトウェアで実現され、時間を計算する機能モジュールである。トリガー2132は、ハードウェアまたはソフトウェアで実現され、タイマ2131から信号を受信し、トリガー信号を出力する機能モジュールである。なお、本実施形態では、タイマ2131とトリガー2132は1個ずつとするが、タイマ2131とトリガー2132の数はそれぞれ1つに限定されない。例えば、2個以上のタイマと2個以上のトリガーを有しても良い。また、無線アクセス技術識別部213は、第1の実施形態の無線アクセス技術識別部113と同じ機能を有するため、他の部分を省略する。
[動作の説明]
 図13は、第2の実施形態の通信装置21の動作例を示すフローチャートである。
 通信部211が無線端末12と通信を始める(Step21)。
 通信装置21の通信ヘッダ抽出部212は、通信部211に接続し、通信部211のトランスポート層のヘッダ、例えば、SYN/ACKの送信時刻(T2)を測定する(Step22)。但し、通信ヘッダ抽出部212は、T2だけでなく、T1またはT3を抽出してもよい。
 通信ヘッダ抽出部212は、抽出したトランスポート層のヘッダの種類(SYN、SYN/ACK、ACK)と、当該ヘッダに関する送受信時刻を、無線アクセス技術識別部213に出力する(Step23)。
 無線アクセス技術識別部213は、トランスポート層のヘッダ(例えば、T2)の時刻を受信した後、タイマ2131を起動する(Step24)。
 また、通信ヘッダ抽出部212は、Step22以降に、通信部211のアプリケーション層へのリクエストの到着有無を監視する(Step25)。
 通信ヘッダ抽出部212は、通信部211のアプリケーション層のリクエストが到着するまで、アプリケーション層のリクエストを監視する(Step26のNo、Step25の実行)。通信ヘッダ抽出部212は、通信部211のアプリケーション層のリクエストの到着を確認した場合(Step26、Yes)、通信ヘッダ抽出部212は、当該リクエストの到着通知と、リクエストのパケットの到着時間を、無線アクセス技術識別部213に出力する(Step27)。
 無線アクセス技術識別部213は、タイマ2131によるカウント値(Step24からの経過時間)と事前に設定された「無線アクセス技術計算閾値」とを比較する。その際、識別予定の無線アクセス種類及びその数に応じて、使用する無線アクセス技術計算閾値を選択する。
 例えば、2つの無線アクセス技術(例えば、3G、LTE)を識別するためには1つの無線アクセス技術計算閾値を使用する。また、3つの無線アクセス技術(例えば、2G、3G、LTE)を識別用するためには、2つの無線アクセス技術計算閾値を使用する。
 ここでは、1つの無線アクセス技術計算閾値を使用して、2つの無線アクセス技術(3G/LTE)を識別することを説明する。例えば、時間差T4-T2の閾値(無線アクセス技術計算閾値)として、LTE計算用の閾値がN1秒に設定されている場合を考える。タイマ2131のカウント時間が閾値N1秒に達する前に通信ヘッダ抽出部212からアプリケーション層のリクエスト到着指示の受信があった場合(Step28、Yes)、無線アクセス技術識別部213は、時間差T4-T2が閾値を超えないと判断し、トリガー2132をアクティベイトする。また、タイマ2131のカウント時間が閾値N1秒に到達しても、アプリケーション層のリクエストが到着しない場合(Step28、No)、無線アクセス技術識別部213は、トリガー2132をアクティベイトしない。
 トリガー2132がアクティベイトされると、無線アクセス技術識別部213は、無線端末12はLTEを使用中と判断し、その結果を通信制御部216に出力する(Step29)。
 通信制御部216は、受信した無線端末12の無線アクセス技術がLTEである場合、通信部211を、LTE網に対応するパラメータを使用して制御する(Step30)。例えば、通信制御部216は、通信部211のトランスポート層、またはOSIモデルの他の層の送信バッファサイズを変更する。また、通信制御部216は、通信部211のTCPセッションの輻輳ウィンド、特に初期輻輳ウィンド等を制御しても良い。また、通信制御部216は、通信部211のパケット送信のタイミングを制御しても良い。
 トリガー2132がアクティベイトされなければ、無線アクセス技術識別部213は、端末は3Gを使用中と判断し、その結果を通信制御部216に転送する(Step31)。
 通信制御部216は、受信した端末の無線アクセス技術が3Gである場合、通信部211を、3G網に対応するパラメータを使用して制御する。(Step32)。
 このように、第2の実施形態に係る無線アクセス技術識別部213は、セッション確立後に無線端末12から送信されたパケット(例えば、HTTP GET)が、特定パケット(例えば、SYN/ACK)が送信されてから所定の期間内に到着したか否かに基づき無線アクセス技術を判断する。
 上述の説明は、説明の簡潔を図るため、1つの「無線アクセス技術計算閾値」を使用した場合の動作を説明したが、本願開示は1つの「無線アクセス技術計算閾値」の使用に限定されない。使用する無線アクセス技術計算閾値と、タイマとトリガーの数により、同時に複数の無線アクセス技術を識別してもよい。例えば、2つの無線アクセス技術計算閾値を使用して、同時に2つのタイマとトリガーを使用すれば、3GとLTEだけでなく、他の無線アクセス技術(例えば5G)も識別できるようになる。
 以上説明した第2の実施形態では、実施形態1と比較して、識別時間を短縮することができる。その理由は、無線アクセス技術識別部213はタイマ2131とトリガー2132を使用することで、タイマ2131が閾値に到達すると、アプリケーション層のリクエストが届かなくても、特定の無線アクセス技術を識別できるためである。更に、第2の実施形態では、通信部211を無線アクセス技術に応じて制御する。識別した無線アクセス技術に基づいて、送信パラメータ(例えば、輻輳ウィンド、バッファサイズ)を制御することで、通信ネットワークの性能劣化を防止できる。
 上記の実施形態の一部又は全部は、以下の形態のようにも記載され得るが、以下には限られない。
[形態1]
 上述の第1の視点に係る通信装置のとおりである。
[形態2]
 前記特定パケットの送受信に関する時刻は、TCP(Transmission Control Protocol)のスリーウェイハンドシェイクの同期要求パケットの受信時刻、同期要求に対する応答パケットの送信時刻及び応答パケットの受信時刻の少なくとも1つである、形態1に記載の通信装置。
[形態3]
 前記セッション確立後に前記無線端末から送信されるパケットは、アプリケーション層から送信される最初のパケットである、形態1又は2に記載の通信装置。
[形態4]
 前記判断部は、前記第1時刻と第2時刻の時間差に基づき前記無線アクセス技術を判断する、形態1ないし3のいずれか1に記載の通信装置。
[形態5]
 前記判断部は、前記セッション確立後に前記無線端末から送信されたパケットが、前記特定パケットが送信されてから所定の期間内に到着したか否かに基づき前記無線アクセス技術を判断する、形態1ないし3のいずれか1に記載の通信装置。
[形態6]
 前記判断部が判断する無線アクセス技術には、少なくとも3G(3rd Generation)とLTE(Long Term Revolution)が含まれる、形態1ないし5のいずれか1に記載の通信装置。
[形態7]
 前記無線端末が使用している無線アクセス技術に基づいて、前記無線端末との間の通信流量を制御する通信制御部をさらに有する、形態1ないし6のいずれか1に記載の通信装置。
[形態8]
 前記通信制御部は、TCPの輻輳ウィンドを制御することで前記無線端末との間の通信量を制御する、形態7に記載の通信装置。
[形態9]
 前記通信制御部は、送信バッファのサイズを制御することで前記無線端末との間の通信量を制御する、形態7に記載の通信装置。
[形態10]
 前記通信制御部は、パケットの送信タイミングを制御することで前記無線端末との間の通信量を制御する、形態7に記載の通信装置。
[形態11]
 前記判断部は、前記無線端末が使用している無線アクセス技術の判断結果を外部装置に出力する、形態1乃至10のいずれか1に記載の通信装置。
[形態12]
 上述の第2の視点に係る通信方法のとおりである。
[形態13]
 上述の第3の視点に係るプログラムのとおりである。
[形態14]
 無線端末と、前記無線端末とデータを送受信する通信装置と、を含み、前記通信装置は、セッション確立のために前記無線端末と自装置の間で発生する特定パケットの送受信に関する第1時刻を取得する第1の取得部と、前記セッション確立後に前記無線端末から送信されたパケットに関する第2時刻を取得する第2の取得部と、前記第1時刻と前記第2時刻に基づき、前記無線端末が使用している無線アクセス技術を判断する判断部と、を有する、無線通信システム。
 なお、形態12~14は、形態1と同様に、形態2~形態11のように展開することが可能である。
 なお、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし、選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
10、11、21 通信装置
12、12-1、12-2 無線端末
31、131 第1の取得部
32、132 第2の取得部
33 判断部
81、91 CPU
82、92 メモリ
83、93 入出力インターフェイス
84 NIC
94 RF回路
95 アンテナ
100 無線通信システム
101、101-1~101-n ネットワーク
103、103-1、103-2 基地局
105 サーバ
111、211 通信部
112、212 通信ヘッダ抽出部
113、213 無線アクセス技術識別部
121 無線端末通信部
216 通信制御部
1111、1211 アプリケーション層
1112、1212 トランスポート層
1113 ネットワーク層
1114 MAC層
1115 物理層
2131 タイマ
2132 トリガー

Claims (13)

  1.  無線端末とデータを送受信する通信装置であって、
     セッション確立のために前記無線端末と自装置の間で発生する特定パケットの送受信に関する第1時刻を取得する第1の取得部と、
     前記セッション確立後に前記無線端末から送信されたパケットに関する第2時刻を取得する第2の取得部と、
     前記第1時刻と前記第2時刻に基づき、前記無線端末が使用している無線アクセス技術を判断する判断部と、
     を有する通信装置。
  2.  前記特定パケットの送受信に関する時刻は、TCP(Transmission Control Protocol)のスリーウェイハンドシェイクの同期要求パケットの受信時刻、同期要求に対する応答パケットの送信時刻及び応答パケットの受信時刻の少なくとも1つである、請求項1に記載の通信装置。
  3.  前記セッション確立後に前記無線端末から送信されるパケットは、アプリケーション層から送信される最初のパケットである、請求項1又は2に記載の通信装置。
  4.  前記判断部は、前記第1時刻と第2時刻の時間差に基づき前記無線アクセス技術を判断する、請求項1ないし3のいずれか1項に記載の通信装置。
  5.  前記判断部は、前記セッション確立後に前記無線端末から送信されたパケットが、前記特定パケットが送信されてから所定の期間内に到着したか否かに基づき前記無線アクセス技術を判断する、請求項1ないし3のいずれか1項に記載の通信装置。
  6.  前記判断部が判断する無線アクセス技術には、少なくとも3G(3rd Generation)とLTE(Long Term Revolution)が含まれる、請求項1ないし5のいずれか1項に記載の通信装置。
  7.  前記無線端末が使用している無線アクセス技術に基づいて、前記無線端末との間の通信流量を制御する通信制御部をさらに有する、請求項1ないし6のいずれかの1項に記載の通信装置。
  8.  前記通信制御部は、輻輳ウィンドを制御することで前記無線端末との間の通信量を制御する、請求項7に記載の通信装置。
  9.  前記通信制御部は、送信バッファのサイズを制御することで前記無線端末との間の通信量を制御する、請求項7に記載の通信装置。
  10.  前記通信制御部は、パケットの送信タイミングを制御することで前記無線端末との間の通信量を制御する、請求項7に記載の通信装置。
  11.  前記判断部は、前記無線端末が使用している無線アクセス技術の判断結果を外部装置に出力する、請求項1乃至10のいずれか一項に記載の通信装置。
  12.  無線端末とデータを送受信する通信装置において、
     セッション確立のために前記無線端末と自装置の間で発生する特定パケットの送受信に関する第1時刻を取得するステップと、
     前記セッション確立後に前記無線端末から送信されたパケットに関する第2時刻を取得するステップと、
     前記第1時刻と前記第2時刻に基づき、前記無線端末が使用している無線アクセス技術を判断するステップと、
     を含む、通信方法。
  13.  無線端末とデータを送受信する通信装置に搭載されたコンピュータに、
     セッション確立のために前記無線端末と自装置の間で発生する特定パケットの送受信に関する第1時刻を取得する処理と、
     前記セッション確立後に前記無線端末から送信されたパケットに関する第2時刻を取得する処理と、
     前記第1時刻と前記第2時刻に基づき、前記無線端末が使用している無線アクセス技術を判断する処理と、
     を実行させるプログラム。
PCT/JP2018/011580 2017-03-24 2018-03-23 通信装置、通信方法及びプログラム WO2018174222A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019507006A JPWO2018174222A1 (ja) 2017-03-24 2018-03-23 通信装置、通信方法及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059344 2017-03-24
JP2017-059344 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018174222A1 true WO2018174222A1 (ja) 2018-09-27

Family

ID=63584542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011580 WO2018174222A1 (ja) 2017-03-24 2018-03-23 通信装置、通信方法及びプログラム

Country Status (2)

Country Link
JP (1) JPWO2018174222A1 (ja)
WO (1) WO2018174222A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4044556A4 (en) * 2019-11-05 2022-11-02 Huawei Technologies Co., Ltd. METHOD FOR DETERMINING TYPE OF ACCESS DEVICE, DEVICE AND SYSTEM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263576A (ja) * 2009-05-11 2010-11-18 Ntt Docomo Inc 接続管理装置及び接続管理方法
JP2013115824A (ja) * 2011-11-28 2013-06-10 Nhn Corp ユーザ端末の接続ネットワーク識別装置、方法及びコンピュータ読み取り可能な記録媒体
WO2018062161A1 (ja) * 2016-09-28 2018-04-05 日本電気株式会社 通信装置、通信方法、無線通信システム及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263576A (ja) * 2009-05-11 2010-11-18 Ntt Docomo Inc 接続管理装置及び接続管理方法
JP2013115824A (ja) * 2011-11-28 2013-06-10 Nhn Corp ユーザ端末の接続ネットワーク識別装置、方法及びコンピュータ読み取り可能な記録媒体
WO2018062161A1 (ja) * 2016-09-28 2018-04-05 日本電気株式会社 通信装置、通信方法、無線通信システム及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4044556A4 (en) * 2019-11-05 2022-11-02 Huawei Technologies Co., Ltd. METHOD FOR DETERMINING TYPE OF ACCESS DEVICE, DEVICE AND SYSTEM

Also Published As

Publication number Publication date
JPWO2018174222A1 (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
US9641650B2 (en) TCP proxy server
KR102203509B1 (ko) 패킷 전송 방법, 단말, 네트워크 디바이스 및 통신 시스템
US10021688B2 (en) Managing pending acknowledgement packets in a communication device
EP3232638B1 (en) Data transmission method, apparatus and system
US9407734B2 (en) System and method for efficient frame aggregation based on aggregation limits or parameters
CN107645409B (zh) 一种确定数据的传输故障原因方法及装置
US20170027016A1 (en) Communication device, wireless communication device, and communication method
CN107005341B (zh) 无线电设备中的sdu的失序递送
US10932159B2 (en) Data transmission method, data receiving device, and data sending device
US10524175B2 (en) Data transmission method and network device
EP3345423A1 (en) Threshold for reduced latency mechanisms
EP3641389B1 (en) Terminal and base station in wireless communication system, and communication method thereof
US9819730B2 (en) System and method for network access based on application layer data
EP3038312A1 (en) Data transmission method, user equipment and proxy equipment
WO2018174222A1 (ja) 通信装置、通信方法及びプログラム
CN108429700B (zh) 一种发送报文的方法及装置
JP4227621B2 (ja) データパケットの伝送方法および送信機
US9385931B1 (en) Determining a reordering timer
JP6973511B2 (ja) 通信装置、通信システム、通信方法及びプログラム
JP5748615B2 (ja) 通信装置
US10932169B2 (en) Systems and methods for determining TCP transfer types in LTE-A communication networks and handling thereof
CN113424578A (zh) 一种传输控制协议加速方法和装置
US20230308373A1 (en) Methods and arrangements for supporting estimation of latency over a communication path in a communication network
WO2021100178A1 (ja) 通信装置、通信システム、通信方法、及びプログラムが格納された非一時的なコンピュータ可読媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772678

Country of ref document: EP

Kind code of ref document: A1