WO2018174184A1 - 無線端末、プロセッサ及び基地局 - Google Patents

無線端末、プロセッサ及び基地局 Download PDF

Info

Publication number
WO2018174184A1
WO2018174184A1 PCT/JP2018/011487 JP2018011487W WO2018174184A1 WO 2018174184 A1 WO2018174184 A1 WO 2018174184A1 JP 2018011487 W JP2018011487 W JP 2018011487W WO 2018174184 A1 WO2018174184 A1 WO 2018174184A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
time
wireless communication
data
transmission
Prior art date
Application number
PCT/JP2018/011487
Other languages
English (en)
French (fr)
Inventor
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019506985A priority Critical patent/JP6849789B2/ja
Publication of WO2018174184A1 publication Critical patent/WO2018174184A1/ja
Priority to US16/577,990 priority patent/US10973080B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • H04W76/36Selective release of ongoing connections for reassigning the resources associated with the released connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to a wireless terminal, a processor, and a base station.
  • the wireless terminal receives user data from the E-UTRAN or transmits user data to the E-UTRAN based on scheduling information indicating the radio resource allocated from the E-UTRAN (Evolved Universal Terrestrial Radio Access Network). To do.
  • E-UTRAN can execute not only dynamic scheduling but also semi-persistent scheduling (SPS: Semi-Persistent Scheduling). Even if the radio terminal does not receive scheduling information each time, the radio terminal receives user data from the E-UTRAN using a plurality of time / frequency resources allocated in the time direction allocated by the SPS, or sends the user data to the E-UTRAN. User data can be transmitted.
  • SPS Semi-persistent Scheduling
  • the first wireless communication device uses a plurality of time / frequency resources allocated to transmit data to the second wireless communication device and arranged in the time direction. Start sending.
  • the second wireless communication device starts monitoring the plurality of time / frequency resources in order to receive data from the first wireless communication device.
  • the first wireless communication apparatus transmits the last data to be transmitted to the second wireless communication apparatus, the second identification information indicating the transmission of the last data is added to the second data together with the last data. To the wireless communication device.
  • the processor is a processor for controlling a wireless communication device (first wireless communication device).
  • a process of transmitting the last identification information indicating the transmission of the last data together with the last data to the second wireless communication device is executed.
  • the wireless terminal transmits uplink information to the network device at least once in a predetermined cycle.
  • the network device holds the downlink information until the uplink information is received.
  • the network device starts transmission of the downlink information in response to reception of the uplink information.
  • the wireless terminal starts monitoring the downlink information in response to the transmission of the uplink information.
  • the processor is a processor for controlling a wireless terminal.
  • the processor transmits the uplink information to the network device at a predetermined cycle at least once, and the downlink information is received until the uplink information is received when the downlink information to be transmitted to the wireless terminal is generated.
  • the processor is a processor for controlling a network device.
  • the processor when downlink information to be transmitted to a wireless terminal configured to transmit uplink information to the network device at least once in a predetermined cycle occurs, the downlink until the uplink information is received.
  • FIG. 1 is a diagram illustrating a configuration of a mobile communication system.
  • FIG. 2 is a protocol stack diagram of the radio interface.
  • FIG. 3 is a configuration diagram of a radio frame used in the LTE system.
  • FIG. 4 is a block diagram of the UE 100.
  • FIG. 5 is a block diagram of BS 200.
  • FIG. 6 is a block diagram of the MME 300.
  • FIG. 7 is a sequence diagram for explaining an operation example 1 of the first embodiment.
  • FIG. 8 is a flowchart for explaining the operation of the BS 200 according to the operation example 1 of the first embodiment.
  • FIG. 9 is a flowchart for explaining the operation of the UE 100 according to the operation example 1 of the first embodiment.
  • FIG. 10 is a diagram for explaining an operation example 1 of the first embodiment.
  • FIG. 10 is a diagram for explaining an operation example 1 of the first embodiment.
  • FIG. 11 is a sequence diagram for explaining an operation example 2 of the first embodiment.
  • FIG. 12 is a flowchart for explaining the operation of the BS 200 according to the operation example 2 of the first embodiment.
  • FIG. 13 is a flowchart for explaining the operation of the UE 100 according to the operation example 2 of the first embodiment.
  • FIG. 14 is a sequence diagram for explaining an operation example of the second embodiment.
  • FIG. 15 is a flowchart for explaining the operation of the BS 200 according to the operation example of the second embodiment.
  • FIG. 16 is a flowchart for explaining the operation of the UE 100 according to the operation example of the second embodiment.
  • the first wireless communication device uses a plurality of time / frequency resources allocated to transmit data to the second wireless communication device and arranged in the time direction. Start sending.
  • the second wireless communication device starts monitoring the plurality of time / frequency resources in order to receive data from the first wireless communication device.
  • the first wireless communication apparatus transmits the last data to be transmitted to the second wireless communication apparatus, the second identification information indicating the transmission of the last data is added to the second data together with the last data. To the wireless communication device.
  • the second wireless communication device may end the monitoring in response to receiving the last identification information.
  • the second wireless communication apparatus may execute a process of releasing the plurality of time / frequency resources in response to reception of the last identification information.
  • the first wireless communication device may execute a process of releasing the plurality of time / frequency resources in response to the transmission of the last identification information.
  • the first wireless communication apparatus may predict that new data to be transmitted to the second wireless communication apparatus does not occur during a predetermined period after transmitting the last data.
  • the first wireless communication device may transmit the last identification information to the second wireless communication device according to the prediction.
  • the processor is a processor for controlling a wireless communication device (first wireless communication device).
  • a process of transmitting the last identification information indicating the transmission of the last data together with the last data to the second wireless communication device is executed.
  • the wireless terminal transmits uplink information to the network device at least once in a predetermined cycle.
  • the network device holds the downlink information until the uplink information is received.
  • the network device starts transmission of the downlink information in response to reception of the uplink information.
  • the wireless terminal starts monitoring the downlink information in response to the transmission of the uplink information.
  • the wireless terminal may notify the network device of information indicating the predetermined cycle.
  • the wireless terminal may end the monitoring of the downlink information in response to completion of reception of all the downlink information held by the network device.
  • the wireless terminal may end the monitoring of the downlink information in response to the elapse of a predetermined period from the start of the monitoring.
  • the network device may notify the wireless terminal of information indicating the upper limit value of the predetermined cycle.
  • the procedure may be started.
  • the processor is a processor for controlling a wireless terminal.
  • the processor transmits the uplink information to the network device at a predetermined cycle at least once, and the downlink information is received until the uplink information is received when the downlink information to be transmitted to the wireless terminal is generated.
  • the processor is a processor for controlling a network device.
  • the processor when downlink information to be transmitted to a wireless terminal configured to transmit uplink information to the network device at least once in a predetermined cycle occurs, the downlink until the uplink information is received.
  • FIG. 1 is a diagram illustrating a configuration of a mobile communication system.
  • An LTE system will be described as an example of a mobile communication system.
  • the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a wireless communication device (wireless terminal).
  • the UE 100 is a mobile communication device.
  • UE100 performs radio
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes a BS (Base Station) 200.
  • BS 200 corresponds to a (wireless) base station.
  • the BS 200 is, for example, an eNB 200 (evolved Node-B).
  • the BS 200 may be gNB (next Generation Node-B).
  • BS 200 may be a node that can execute radio communication with UE 100. Therefore, BS 200 may be referred to as a wireless communication device.
  • BS 200 may be referred to as a network device because it is included in E-UTRAN 10.
  • the BSs 200 may be connected to each other via an X2 interface. The configuration of BS 200 will be described later.
  • BS 200 manages one or a plurality of cells.
  • BS 200 performs radio communication with UE 100 that has established a connection with a cell managed by BS 200.
  • BS 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter also referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating the minimum unit of a wireless communication area. “Cell” may also be used as a term indicating a function of performing wireless communication with the UE 100.
  • a “cell” may be a downlink resource.
  • a “cell” may be a combination of downlink resources and uplink resources.
  • a link between the carrier frequency of the downlink resource and the carrier frequency of the uplink resource may be included in the system information transmitted on the downlink resource.
  • Cell may be used as a term indicating carrier and / or frequency.
  • the EPC 20 corresponds to a core network.
  • the EPC 20 may form a network together with the E-UTRAN 10.
  • the EPC 20 includes an MME (Mobility Management Entity) 300 and an SGW (Serving Gateway) 400.
  • MME Mobility Management Entity
  • SGW Serving Gateway
  • the MME 300 performs various mobility controls for the UE 100, for example.
  • the SGW 400 performs data transfer control.
  • the MME 300 and the SGW 400 are connected to the BS 200 via the S1 interface.
  • FIG. 2 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into the first layer (layer 1) to the third layer (layer 3) of the OSI reference model.
  • the first layer is a physical (PHY) layer (physical layer).
  • the second layer (layer 2) includes a MAC (Medium Access Control) layer (MAC layer), an RLC (Radio Link Control) layer (RLC layer), and a PDCP (Packet Data Convergence Protocol) layer (PRCP layer).
  • the third layer (layer 3) includes an RRC (Radio Resource Control) layer (RRC layer).
  • RRC Radio Resource Control
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • Data and control signals are transmitted between the physical layer of the UE 100 and the physical layer of the BS 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control signals are transmitted between the MAC layer of the UE 100 and the MAC layer of the BS 200 via a transport channel.
  • the MAC layer of BS 200 includes a scheduler (MAC scheduler). The scheduler determines the uplink / downlink transport format (transport block size, modulation and coding scheme (MCS)) and the resource blocks allocated to the UE 100.
  • MCS modulation and coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the BS 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption (ciphering) / decryption (deciphering).
  • the RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the BS 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connections between the RRC of the UE 100 and the RRC of the BS 200
  • the UE 100 is in the RRC connected state.
  • the UE 100 is in the RRC idle state.
  • a NAS (Non-Access Stratum) layer located above the RRC layer performs, for example, session management and mobility management.
  • FIG. 3 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms.
  • the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB: Resource Block) in the frequency direction.
  • Each subframe includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • a radio resource time / frequency resource
  • radio resources frequency resources
  • radio resources are configured by resource blocks.
  • radio resources (time resources) are configured by subframes (or slots).
  • the section of the first several symbols of each subframe is an area that can be used as a physical downlink control channel (PDCCH: Physical Downlink. Control Channel) for transmitting a downlink control signal.
  • the remaining part of each subframe is an area that can be used as a physical downlink shared channel (PDSCH) for transmitting downlink data.
  • PDCH Physical Downlink control channel
  • PDSCH physical downlink shared channel
  • both ends in the frequency direction in each subframe are areas that can be used as physical uplink control channels (PUCCH: Physical Uplink Control Channels) for transmitting uplink control signals.
  • PUCCH Physical Uplink Control Channels
  • the remaining part of each subframe is an area that can be used as a physical uplink shared channel (PUSCH) for transmitting uplink data.
  • PUSCH physical uplink shared channel
  • FIG. 4 is a block diagram of the UE 100. As illustrated in FIG. 4, the UE 100 includes a receiver (receiver) 110, a transmitter (transmitter) 120, and a controller (controller) 130. The receiver 110 and the transmitter 120 may be an integrated transceiver (transmission / reception unit).
  • the receiver 110 performs various types of reception under the control of the controller 130.
  • the receiver 110 includes an antenna.
  • the receiver 110 converts a radio signal received by the antenna into a baseband signal (received signal).
  • the receiver 110 outputs a baseband signal to the controller 130.
  • the transmitter 120 performs various transmissions under the control of the controller 130.
  • the transmitter 120 includes an antenna.
  • the transmitter 120 converts the baseband signal (transmission signal) output from the controller 130 into a radio signal.
  • the transmitter 130 transmits a radio signal from the antenna.
  • the controller 130 performs various controls in the UE 100.
  • the controller 130 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor performs, for example, modulation / demodulation and encoding / decoding of a baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor may include a codec that performs encoding / decoding of an audio / video signal.
  • the processor executes various processes described later and various communication protocols described above.
  • the UE 100 may include a GNSS (Global Navigation Satellite System) receiver.
  • the GNSS receiver can receive a GNSS signal in order to obtain location information indicating the geographical location of the UE 100.
  • the GNSS receiver outputs a GNSS signal to the controller 130.
  • the UE 100 may have a GPS (Global Positioning System) function for acquiring location information of the UE 100.
  • a process executed by at least one of the receiver 110, the transmitter 120, and the controller 130 included in the UE 100 will be described as a process (operation) executed by the UE 100 for convenience.
  • FIG. 5 is a block diagram of BS 200.
  • the BS 200 includes a receiver (reception unit) 210, a transmitter (transmission unit) 220, a controller (control unit) 230, and a network interface 240.
  • the transmitter 210 and the receiver 220 may be an integrated transceiver (transmission / reception unit).
  • the receiver 210 performs various types of reception under the control of the controller 230.
  • the receiver 210 includes an antenna.
  • the receiver 210 converts a radio signal received by the antenna into a baseband signal (received signal).
  • the receiver 210 outputs a baseband signal to the controller 230.
  • the transmitter 220 performs various transmissions under the control of the controller 230.
  • the transmitter 220 includes an antenna.
  • the transmitter 220 converts the baseband signal (transmission signal) output from the controller 230 into a radio signal.
  • the transmitter 220 transmits a radio signal from the antenna.
  • the controller 230 performs various controls in the BS 200.
  • the controller 230 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor and a CPU.
  • the baseband processor performs, for example, modulation / demodulation and encoding / decoding of a baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor executes various processes described later and various communication protocols described above.
  • the network interface 240 is connected to the adjacent BS 200 via the X2 interface.
  • the network interface 240 is connected to the MME 300 and the SGW 400 via the S1 interface.
  • the network interface 240 is used for communication performed on the X2 interface and communication performed on the S1 interface, for example.
  • a process executed by at least one of the transmitter 210, the receiver 220, the controller 230, and the network interface 240 included in the BS 200 will be described as a process (operation) executed by the BS 200 for convenience.
  • FIG. 6 is a block diagram of the MME 300.
  • FIG. 6 is an example of a network device included in a core network (for example, EPC 20).
  • Other network devices for example, SGW 400
  • the network device may have the functions of the MME 300 and the SGW 400.
  • the MME 300 includes a controller (control unit) 330 and a network interface 340.
  • the controller 330 performs various controls in the MME 300.
  • the controller 330 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor and a CPU.
  • the baseband processor performs, for example, modulation / demodulation and encoding / decoding of a baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor executes various processes described later and various communication protocols described above.
  • the network interface 340 is connected to another node (the BS 200 and / or another network device) via a predetermined interface.
  • the network interface 340 is used for communication with other network devices performed on a predetermined interface.
  • a process executed by at least one of a controller and a network interface included in the network device will be described as a process (operation) executed by the network device for convenience.
  • FIG. 7 is a sequence diagram for explaining an operation example 1 of the first embodiment.
  • FIG. 8 is a flowchart for explaining the operation of the BS 200 according to the operation example 1 of the first embodiment.
  • FIG. 9 is a flowchart for explaining the operation of the UE 100 according to the operation example 1 of the first embodiment.
  • FIG. 10 is a diagram for explaining an operation example 1 of the first embodiment.
  • Operation example 1 is a case where the UE 100 transmits data to the BS 200 (E-UTRAN 10) using a plurality of time / frequency resources.
  • the UE 100 exists in a range in which signaling from the BS 200 can be received.
  • the UE 100 is in a cell managed by the BS 200.
  • the UE 100 exists in the coverage or enhanced coverage (CE) of the cell.
  • CE enhanced coverage
  • a case where the UE 100 is in the RRC inactive state will be described as an example.
  • the RRC inactive state is an intermediate state between the RRC connected state and the RRC idle state.
  • the RRC inactive state is an RRC state applied when data transmission / reception is (temporarily) inactive, but is not limited thereto.
  • the UE 100 may transmit information (Data volume) indicating the communication data amount to the BS 200.
  • Data volume information indicating the communication data amount
  • the information indicating the amount of communication data may be a buffer status report (BSR) indicating the amount of data available for transmission.
  • BSR may include a buffer size and a logical channel group identifier associated with the buffer size.
  • the buffer size is information for identifying the total amount of data that can be used across all the logical channels of the logical channel group.
  • the information indicating the amount of communication data may be the amount of communication data calculated based on the (identifier) of the application that the UE 100 uses (or starts using).
  • the information indicating the communication data amount may be an identifier of an application used (or started to be used) by the UE 100.
  • the BS 200 determines whether or not to allow the UE 100 to transmit using a plurality of time / frequency resources (S210 in FIG. 8).
  • the plurality of time / frequency resources are radio resources allocated for transmitting UL data to the BS 200 and arranged in the time direction.
  • the plurality of time / frequency resources may be radio resources arranged in each of the plurality of subframes. That is, the plurality of time / frequency resources includes a time / frequency resource arranged in the first subframe and a time / frequency resource arranged in the second subframe (after the first subframe). And may be included.
  • the plurality of time / frequency resources may be composed of time / frequency resources included in a plurality of subframes.
  • the plurality of time / frequency resources may not be composed of only the time / frequency resources included in one subframe.
  • the BS 200 may determine whether to allow the UE 100 to transmit using a plurality of time / frequency resources based on information indicating the communication data amount from the UE 100.
  • the BS 200 may determine that the UE 100 is permitted to perform the transmission when the communication data amount exceeds the threshold value.
  • the BS 200 may determine that the UE 100 does not permit the transmission when the communication data amount is equal to or less than the threshold.
  • the threshold value may be, for example, a value indicating the amount of time / frequency resources (maximum value) that can be allocated to the UE 100 with one scheduling information (for example, uplink (UL) grant).
  • the BS 200 determines to permit the UE 100 to perform the transmission when it is necessary to allocate time / frequency resources to the UE 100 over a plurality of subframes (in consideration of radio resource usage in the BS 200). May be.
  • the BS 200 may determine that the UE 100 is not permitted to transmit the user data when the UE 100 can sufficiently transmit user data by using time / frequency resources in one subframe.
  • the BS 200 may determine that the UE 100 is permitted to transmit the traffic when the traffic from the UE 100 is predicted to be generated continuously (continuously).
  • the BS 200 may determine that the UE 100 is not permitted to perform transmission when it is predicted that traffic from the UE 100 will not continuously (continuously) occur (that is, temporary traffic occurs).
  • the BS 200 may predict whether or not traffic from the UE 100 is generated continuously (continuously) based on the identifier of the application. For example, when the application uses voice (call) and / or video (for example, VoLTE: Voice over LTE), the BS 200 predicts that traffic from the UE 100 is generated continuously (continuously). May be. Otherwise, the BS 200 may predict that traffic from the UE 100 will not occur continuously (continuously).
  • the BS 200 may determine that the UE 100 is allowed to transmit using a plurality of time / frequency resources when traffic from the UE 100 has already occurred continuously.
  • the BS 200 can execute the process of step S120 in response to determining that the UE 100 is permitted to transmit using a plurality of time / frequency resources (S210: YES).
  • the BS 200 may terminate the process in response to determining that the UE 100 is not permitted to transmit using a plurality of time / frequency resources (S210: NO). In this case, the BS 200 may perform dynamic scheduling to allocate time / frequency resources in one subframe to the UE 100 as usual.
  • step S120 BS 200 transmits signaling (Signaling for using resources) for allowing UE 100 to transmit using a plurality of time / frequency resources (individually) to UE 100 (S220 in FIG. 8).
  • the BS 200 may execute, for example, semi-persistent scheduling (SPS). That is, BS 200 may allocate a semi-persistent uplink resource to UE 100.
  • the BS 200 may individually transmit the SPS configuration (for uplink) (SPS-Config) used for specifying the semi-persistent scheduling configuration to the UE 100.
  • SPS-Config SPS configuration (for uplink)
  • the BS 200 uses the temporary identifier (SPS C-RNTI) included in the SPS settings to perform signaling (DCI: Downlink Control Information / uplink) for enabling the SPS settings.
  • DCI Downlink Control Information / uplink
  • (UL) Grant) may be transmitted to the UE 100.
  • the BS 200 may transmit, to the UE 100, an identifier (determination identifier) used for the UE 100 to determine whether or not to transmit final identification information (end marker) indicating transmission of the last data in the signaling.
  • the BS 200 may include the determination identifier in the SPS setting.
  • the determination identifier may indicate that the UE 100 should transmit the last identification information (permission to transmit the last identification information).
  • the determination identifier may indicate that the UE 100 should not transmit the last identification information (last identification information transmission is not permitted). Thereby, the BS 200 can determine whether or not the UE 100 for which the SPS setting has been performed transmits the last identification information.
  • the BS 200 may execute, for example, multi-subframe scheduling as dynamic scheduling.
  • the BS 200 may allocate time / frequency resources in each of the plurality of subframes to the UE 100.
  • the BS 200 may transmit scheduling information (UL grant) indicating the time / frequency resources allocated to the UE 100 to the UE 100.
  • the BS 200 may include the determination identifier in the scheduling information.
  • step S120 the UE 100 determines whether or not transmission using a plurality of time / frequency resources is permitted in response to receiving the above-described signaling from the BS 200 (S310 in FIG. 9).
  • the UE 100 can determine that transmission using a plurality of time / frequency resources is permitted.
  • the UE 100 receives (decodes) signaling (DCI) for enabling the SPS setting using the SPS C-RNTI. After the SPS setting becomes valid, the UE 100 regards that the Nth grant is generated in a subframe that satisfies the following conditions (that is, use of time / frequency resources in the subframe is permitted).
  • DCI decodes signaling
  • SFN start time is a system frame number (SFN) when the set UL grant is (re) started.
  • the “subframe start time ” is a subframe when the set UL grant is (re) started.
  • SemiPersistSchedIntervalUL indicates a semi-persistent scheduling interval (a value indicating the number of subframes) in the uplink.
  • the UE 100 may determine that transmission using a plurality of time / frequency resources is not permitted when the above signaling is not received from the BS 200.
  • the UE 100 may determine that transmission using a plurality of time / frequency resources is not permitted in response to receiving normal scheduling information indicating the time / frequency resources in one subframe.
  • the UE 100 may end the process in response to determining that the transmission is not permitted (S310: NO).
  • the UE 100 may transmit UL data (user data) using time / frequency resources indicated by the scheduling information.
  • step S130 the UE 100 executes (starts) transmission using a plurality of time / frequency resources in response to determining that the transmission is permitted (S310: YES) (S320 in FIG. 9).
  • the UE 100 may transmit data to the BS 200 using time / frequency resources in each of a plurality of subframes in which the UL grant has occurred.
  • time / frequency resources in each of a plurality of subframes are allocated from the BS 200, the UE 100 transmits data to the BS 200 using the allocated time / frequency resources.
  • UE 100 determines whether or not the last data is transmitted (S330 in FIG. 9). UE100 performs the process of step S140 according to having determined with the last data being transmitted.
  • the UE 100 may determine that the last data is transmitted when the last MAC SDU (Service Data Unit) is used.
  • MAC PDU Protocol Data Unit
  • transmission data (packet) does not exist in the upper layer by sending transmission data (packet) from the upper layer (for example, at least one of RRC, PDCP, RLC, and MAC) in the UE 100 to the lower layer,
  • the UE 100 may determine that the last data is transmitted.
  • the UE 100 determines that the last data (in the next transmission) You may determine with transmitting.
  • the UE 100 predicts whether or not new data to be transmitted to the BS 200 will be generated (immediately) after the last data transmission in order to finally determine whether or not to transmit the last identification information described later. Also good. For example, in response to determining that the last data is transmitted, the UE 100 may predict whether or not new data is generated during a predetermined period.
  • the predetermined period is a period that starts after the last data is transmitted.
  • the UE 100 may predict that no new data is generated during a predetermined period in accordance with the end of the application.
  • the UE 100 may predict that new data will be generated during a predetermined period in response to the application being continued.
  • the UE100 may perform the process of step S140 according to prediction. Specifically, the process of step S140 is performed only when the UE 100 determines that the last data is transmitted, and predicts that no new data will be generated during a predetermined period after the last data is transmitted. May be executed. Even if it is determined that the last data is transmitted, the UE 100 does not need to execute the process of step S140 if it is predicted that new data will be generated during the predetermined period. That is, the UE 100 may transmit the last data to the BS 200 without transmitting the last identification information.
  • the UE 100 can avoid the occurrence of new data immediately after the last data is transmitted even though the UE 100 has transmitted the last identification information. Since the UE 100 can transmit new data generated using already allocated time / frequency resources, the UE 100 may omit requesting the BS 200 to allocate time / frequency resources for transmitting new data. it can.
  • the UE 100 may determine whether or not there is an unused time / frequency resource among a plurality of time / frequency resources allocated to the UE 100.
  • the UE 100 may determine that there are no unused time / frequency resources when receiving signaling from the BS 200 for releasing and / or disabling the SPS setting. When the SPS setting is valid, the UE 100 may determine that there are unused time / frequency resources.
  • the UE 100 may determine that there is no unused time / frequency resource when transmitting the last data using the time / frequency resource in the last subframe allocated by multi-subframe scheduling. UE 100 may determine that there is an unused time / frequency resource if a subframe (internal time / frequency resource) subsequent to the subframe used for transmission of the last data is allocated. Good.
  • the UE 100 may execute the process of step S140 when it is determined that the last data is transmitted and there are unused time / frequency resources. Thereby, the UE 100 can omit requesting the BS 200 to allocate time / frequency resources when new data is generated.
  • the UE 100 may determine whether or not to transmit the last identification information in the process of step S140 based on the determination identifier.
  • the UE 100 may determine to transmit the last identification information.
  • UE100 may determine not to transmit last identification information, when the determination identifier is not received from BS200.
  • step S140 in response to determining that the last data is transmitted (S330: YES), the UE 100 transmits to the BS 200 the last identification information (end marker) indicating the transmission of the last data together with the last data. It may also be done (S340 in FIG. 9).
  • the UE 100 may include the last identification information in the MAC PDU (see FIG. 10) including the last data (MAC SDU). Specifically, the UE 100 may include the last identification information in at least one of a MAC header (that is, a MAC sub-header), a MAC CE (MAC Control Element), and a MAC SDU.
  • a MAC header that is, a MAC sub-header
  • MAC CE MAC Control Element
  • 1 bit in the MAC subheader corresponding to the last data may be used as an end marker flag indicating the last identification information. For example, when the flag indicates “0”, it may indicate that the corresponding MAC SDU is not the last data. When the flag indicates “1”, it may indicate that the corresponding MAC SDU is the last data.
  • the UE 100 may transmit the last identification information to the BS 200 together with the last data by handling the last identification information as data (MAC SDU).
  • the UE 100 may transmit the last identification information together with the data to the BS 200 by an RRC message.
  • UE 100 executes (continues) transmission using a plurality of time / frequency resources in response to determining that the last data is not transmitted (S330: NO).
  • the BS 200 executes (starts) monitoring of a plurality of time / frequency resources allocated to the UE 100 in response to the transmission of signaling in step S120 (S230 in FIG. 8).
  • BS 200 receives a radio signal from UE 100 by the monitor.
  • BS 200 determines whether or not the received signal from UE 100 includes the last identification information (S240 in FIG. 8). That is, the BS 200 determines the last identification information whether or not the last data is transmitted.
  • BS 200 determines that the last data is transmitted when the received signal from UE 100 includes the last identification information.
  • the BS 200 can grasp that data transmission from the UE 100 is not performed in subsequent time / frequency resources.
  • the BS 200 When the received signal from the UE 100 does not include the last identification information (S240: NO), the BS 200 continues the transmission from the UE 100 using a plurality of time / frequency resources (the last data is not transmitted). ).
  • the BS 200 may end monitoring on a plurality of time / frequency resources allocated to the UE 100 in response to reception of the last identification information. That is, the BS 200 may end the monitoring in response to the reception signal from the UE 100 including the last identification information (S240: YES) (S250 in FIG. 8).
  • the BS 200 can grasp that the UE 100 does not have data to be transmitted by the last identification information. As a result, the BS 200 does not need to perform unnecessary monitoring, and thus can save power.
  • BS 200 executes (continues) monitoring when the received signal does not include the last identification information.
  • the BS 200 When the BS 200 allocates the same time / frequency resource to another UE 100, even if the received signal from the UE 100 includes the last identification information, the BS 200 receives the radio signal from the other UE 100. Monitoring with the time / frequency resource may be executed.
  • the BS 200 may execute a process of releasing a plurality of time / frequency resources (unused time / frequency resources) allocated to the UE 100 (S260 in FIG. 8). Thereby, the BS 200 can allocate the released time / frequency resource to another UE 100. As a result, resource utilization efficiency is improved.
  • the BS 200 may consider that a plurality of time / frequency resources allocated to the UE 100 are released. For example, the BS 200 may consider that a plurality of time / frequency resources allocated to the UE 100 are invalid. That is, the BS 200 may consider that the UE 100 holds the SPS setting without discarding it.
  • the BS 200 may consider that the SPS setting set in the UE 100 is deconfigured.
  • the BS 200 may consider that the SPS setting set for the UE 100 has been discarded.
  • the BS 200 may discard the resource information stored for receiving the radio signal from the UE 100, that is, information on a plurality of time / frequency resources.
  • the BS 200 may execute the process of step S160 as the releasing process.
  • the BS 200 may execute a process of implicitly releasing a plurality of time / frequency resources to the UE 100 without executing the process of step S160.
  • the BS 200 may transmit to the UE 100 signaling for releasing a plurality of time / frequency resources (unused time / frequency resources).
  • the BS 200 may transmit signaling (for example, an RRC message) for the UE 100 to deconfigure the SPS setting to the UE 100, for example.
  • the BS 200 may transmit signaling (for example, PDCCH) for the UE 100 to invalidate (deactivate) the SPS setting to the UE 100.
  • the BS 200 may release the time / frequency resources allocated to the UE 100 after transmitting the signaling in step S160, that is, execute the process of step S150.
  • step S170 the UE 100 may execute a process of releasing a plurality of time / frequency resources (unused time / frequency resources among them) (S350 in FIG. 9).
  • the UE 100 may execute a process of releasing a plurality of time / frequency resources (unused time / frequency resources) in accordance with signaling from the BS 200.
  • the UE 100 may deconfigure or discard the SPS setting in response to reception of signaling for releasing the SPS setting.
  • the UE 100 may invalidate the SPS setting in response to reception of signaling for invalidating the SPS setting. In this case, the UE 100 stores the SPS setting without discarding it.
  • the UE 100 may execute a process of releasing a plurality of time / frequency resources (unused time / frequency resources) according to the transmission of the last identification information. For example, since the UE 100 can release time / frequency resources without transmitting empty data for implicit release, the use efficiency of the time / frequency resources can be improved.
  • the UE 100 may deconfigure or discard the SPS setting in response to the transmission of the last identification information.
  • the UE 100 may invalidate the SPS setting in response to the transmission of the last identification information.
  • the UE 100 can transmit the last identification information together with the last data when a plurality of time / frequency resources arranged in the time direction are allocated.
  • BS200 can grasp
  • the BS 200 can omit monitoring of time / frequency resources allocated to the UE 100.
  • the BS 200 can allocate time / frequency resources allocated to the UE 100 to other UEs 100. Thereby, the utilization efficiency of a time / frequency resource can be improved.
  • FIG. 11 is a sequence diagram for explaining an operation example 2 of the first embodiment.
  • FIG. 12 is a flowchart for explaining the operation of the BS 200 according to the operation example 2 of the first embodiment.
  • FIG. 13 is a flowchart for explaining the operation of the UE 100 according to the operation example 2 of the first embodiment. Description of the same parts as those described above is omitted.
  • Operation example 2 is a case where the BS 200 transmits data to the UE 100 using a plurality of time / frequency resources.
  • the BS 200 may receive data (DL data) to be transmitted to the UE 100 from an upper network (for example, the SGW 400).
  • an upper network for example, the SGW 400.
  • the BS 200 determines whether to transmit data to UE 100 using a plurality of time / frequency resources (S510 in FIG. 12). The BS 200 may start the determination in response to reception of data to be transmitted to the UE 100.
  • the BS 200 may determine to perform the transmission when the data is equal to or greater than the threshold.
  • the BS 200 may determine not to perform the transmission when the data is less than the threshold.
  • the threshold may be a value indicating the amount of time / frequency resources (maximum value) that can be allocated to the UE 100 with one scheduling information (for example, downlink (DL) grant), for example.
  • the BS 200 may determine to perform the transmission when it is necessary to allocate time / frequency resources to the UE 100 over a plurality of subframes (in consideration of radio resource usage in the BS 200). The BS 200 may determine not to perform the transmission when the UE 100 can sufficiently transmit the user data using the time / frequency resources in one subframe.
  • the BS 200 may determine that the transmission is permitted when the traffic to the UE 100 is predicted to continuously occur. When it is predicted that the traffic to UE 100 does not continuously occur, BS 200 may determine that the UE 100 does not permit the transmission. For example, the BS 200 may predict whether or not traffic to the UE 100 continuously occurs based on the identifier of the application acquired from the UE 100. The BS 200 may determine to perform the transmission when the traffic from the UE 100 has already occurred continuously.
  • the BS 200 can execute the process of step S420 in response to determining that data is transmitted to the UE 100 using a plurality of time / frequency resources (S510: YES).
  • the BS 200 may terminate the process in response to determining that the transmission is not performed (S510: NO).
  • the BS 200 may perform dynamic scheduling to allocate time / frequency resources in one subframe to the UE 100 as usual.
  • the BS 200 can transmit signaling (signaling for using resources) for transmitting data to the UE 100 using a plurality of time / frequency resources (individually) to the UE 100 (S520 in FIG. 12).
  • the BS 200 may allocate a semi-persistent downlink resource to the UE 100, for example.
  • the BS 200 may individually transmit the SPS configuration (for downlink) to the UE 100.
  • the BS 200 may transmit signaling for validating the SPS setting using the temporary identifier included in the SPS setting.
  • BS 200 may transmit a determination identifier to UE 100 in the signaling.
  • the BS 200 may include the determination identifier in the SPS setting.
  • the determination identifier may indicate that the BS 200 transmits the last identification information.
  • the determination identifier may indicate that the BS 200 does not transmit the last identification information.
  • the UE 100 can determine whether or not the BS 200 transmits the last identification information.
  • the BS 200 may allocate time / frequency resources in each of a plurality of subframes to the UE 100 (multi-subframe scheduling).
  • the BS 200 may transmit scheduling information (DL grant) indicating time / frequency resources allocated to the UE 100 to the UE 100.
  • the BS 200 may include the determination identifier in the scheduling information.
  • the UE 100 can determine whether or not the BS 200 transmits data to the UE 100 using a plurality of time / frequency resources (S610 in FIG. 13).
  • the UE 100 can determine that the BS 200 transmits to the UE 100 using a plurality of time / frequency resources.
  • the UE 100 receives (decodes) signaling for enabling the SPS setting using the SPS C-RNTI. After the SPS setting becomes valid, the UE 100 considers that the Nth grant is generated in a subframe that satisfies the following conditions (that is, determines to monitor time / frequency resources in the subframe).
  • SFN start time is a system frame number (SFN) when the set UL grant is (re) started.
  • the “subframe start time ” is a subframe when the set UL grant is (re) started.
  • SemiPersistSchedIntervalDL is a semi-persistent scheduling interval (a value indicating the number of subframes) in the downlink.
  • the UE 100 may determine that the BS 200 does not transmit to the UE 100 using a plurality of time / frequency resources.
  • UE100 may complete
  • Step S430 the BS 200 executes (starts) transmission using a plurality of time / frequency resources in response to determining that the transmission is performed (S610: NO) (S530 in FIG. 12).
  • the BS 100 determines whether or not the last data is transmitted (S540 in FIG. 12).
  • the determination method is the same as in Operation Example 1.
  • the BS 100 may determine whether or not there is an unused time / frequency resource among a plurality of time / frequency resources allocated to the UE 100.
  • the BS 200 may determine that there is no unused time / frequency resource when transmitting signaling for releasing and / or disabling (deactivating) the SPS setting to the UE 100.
  • the BS 200 may determine that there is no unused time / frequency resource when transmitting the last data using the time / frequency resource in the last subframe allocated by multi-subframe scheduling. Otherwise, the BS 100 may determine that there are unused time / frequency resources.
  • step S440 in response to determining that the last data is transmitted (S540: YES), the BS 200 transmits the last identification information (end marker) indicating the transmission of the last data to the UE 100 together with the last data. It may be done (S550 in FIG. 12).
  • the method of transmitting the last identification information is the same as that in the first operation example.
  • the BS 200 may determine whether or not to transmit the last identification information in the process of step S440 based on the determination identifier.
  • the BS 200 may determine to transmit the last identification information when the determination identifier is transmitted to the UE 100.
  • the BS 200 may determine not to transmit the last identification information when the determination identifier is not transmitted to the UE 100.
  • the BS 200 executes (continues) transmission using a plurality of time / frequency resources in response to determining that the last data is not transmitted (S540: NO).
  • the UE 100 executes (starts) monitoring on a plurality of time / frequency resources allocated to the UE 100 in response to the reception of the signaling in step S420 (S620 in FIG. 13). That is, the UE 100 executes (starts) monitoring in response to the BS 200 determining to transmit to the UE 100 using a plurality of time / frequency resources (S610: YES).
  • the UE 100 receives a radio signal from BS 200 by the monitor.
  • the UE 100 determines whether or not the last data is transmitted as in the operation example 1 (S630 in FIG. 13). That is, the UE 100 determines whether or not the received signal from the BS 200 includes the last identification information.
  • the UE 100 may end the monitoring on a plurality of time / frequency resources allocated to the UE 100 (S640 in FIG. 13).
  • the UE 100 may determine that monitoring of the plurality of time / frequency resources is not requested in response to reception of the last identification information.
  • the UE 100 may end monitoring on a plurality of time / frequency resources allocated to the UE 100 in response to reception of the last identification information.
  • the UE 100 does not need to perform unnecessary monitoring, and thus can save power.
  • the UE 100 executes (continues) monitoring when the received signal does not include the last identification information. That is, the UE 100 executes (continues) monitoring in response to determining that the last data is not transmitted (S630: NO).
  • the BS 200 may execute a process of releasing a plurality of time / frequency resources (unused time / frequency resources) allocated to the UE 100 in response to the transmission of the last identification information (FIG. 13). S560). Thereby, the BS 200 can allocate the released time / frequency resource to another UE 100. As a result, resource utilization efficiency is improved.
  • the BS 200 may execute the process of step S460 as the releasing process.
  • the BS 200 may execute a process of implicitly releasing a plurality of time / frequency resources for the UE 100 without executing the process of step S460.
  • the BS 200 may transmit signaling to the UE 100 to release a plurality of time / frequency resources (unused time / frequency resources among the time / frequency resources) as in the first operation example.
  • step S470 the UE 100 may execute a process of releasing a plurality of time / frequency resources (unused time / frequency resources among them) (S650 in FIG. 13).
  • the UE 100 may execute a process of releasing a plurality of time / frequency resources (unused time / frequency resources) in accordance with signaling from the BS 200.
  • UE100 may perform the process which releases several time and frequency resources according to reception of the last identification information.
  • the BS 200 can transmit the last identification information together with the last data when a plurality of time / frequency resources arranged in the time direction are allocated to the UE 100.
  • UE100 can grasp
  • the UE 100 can omit monitoring of time / frequency resources allocated to the UE 100.
  • the BS 200 can allocate time / frequency resources allocated to the UE 100 to other UEs 100. Thereby, the utilization efficiency of a time / frequency resource can be improved.
  • FIG. 14 is a sequence diagram for explaining an operation example of the second embodiment.
  • FIG. 15 is a flowchart for explaining the operation of the BS 200 according to the operation example of the second embodiment.
  • FIG. 16 is a flowchart for explaining the operation of the UE 100 according to the operation example of the second embodiment. Description of the same parts as those described above is omitted.
  • the network apparatus starts transmission of downlink information in response to reception of uplink information.
  • BS 200 will be described as an example of a network device.
  • the BS 200 may notify (transmit) the control information to the UE 100.
  • the control information may include information indicating an upper limit value of a predetermined cycle (predetermined cycle) at which the UE 100 should transmit uplink information (UL Information) to the BS 200.
  • the control information may include information indicating the upper limit value of the first period (period) based on a predetermined cycle. The first period may be equal to the time length of the predetermined cycle.
  • the control information may include information for setting a predetermined cycle in the UE 100.
  • the control information may include a timer setting (and / or timer value) for measuring the first period.
  • the control information may include time information for specifying the second period.
  • the second period indicates a period during which the UE 100 ends monitoring downlink information.
  • the time information may be a timer setting (and / or timer value) for measuring the second period.
  • the BS 200 may transmit the control information to the UE 100 by individual signaling (for example, RRC connection reconfiguration message).
  • the BS 200 may transmit the control information to the UE 100 by broadcast signaling (for example, SIB (System Information Block)) / group cast signaling.
  • SIB System Information Block
  • the UE 100 may notify the BS 200 of cycle information indicating a predetermined cycle (Cycle Information).
  • the cycle information may indicate, for example, a cycle (period) in which the UE 100 transmits uplink information at least once a day.
  • the cycle information may indicate a first period (period).
  • Cycle information may be information indicating the capability of the UE 100 (for example, UE category).
  • the cycle information may be terminal information of the UE 100.
  • the UE 100 may determine the predetermined cycle based on information indicating the upper limit value of the predetermined cycle.
  • the predetermined cycle may be defined in advance.
  • the BS 200 may grasp a predetermined cycle in which the UE 100 should transmit uplink information to the BS 200 based on the cycle information received from the UE 100.
  • the BS 200 may grasp a predetermined cycle in which the UE 100 should transmit uplink information to the BS 200 based on the cycle information acquired from the upper network.
  • the predetermined cycle of the UE 100 may be defined in advance.
  • the BS 200 can grasp the predetermined cycle of the UE 100 without receiving the cycle information from the UE 100.
  • the BS 200 may receive information (data and / or control information) to be transmitted from the upper network (for example, the SGW 400) to the UE 100.
  • the BS 200 may determine that downlink information to be transmitted to the UE 100 has occurred due to reception of the information.
  • the BS 200 may determine whether the uplink information has been received from the UE 100 according to the occurrence of the downlink information (S810 in FIG. 15).
  • BS200 holds downlink information until it receives uplink information from UE100, when downlink information generate
  • the UE 100 determines whether there is information (data and / or control information) to be transmitted to the BS 200 (S910 in FIG. 16).
  • UE100 may perform the process (S930 of FIG. 16) of step S740, when the information which should be transmitted to BS200 exists (S910: YES). If the transmission timing to the BS 200 is defined in advance, the UE 100 may wait for the execution of the process of step S740 until the transmission timing.
  • UE100 may determine whether the 1st period based on a predetermined cycle passes when the information which should be transmitted to BS200 does not exist (S910: NO) (S920 of FIG. 16).
  • the UE 100 may measure the first period. For example, the UE 100 may (re) start a first timer for measuring the first period in response to transmission of uplink information. The UE 100 may determine that the first period has elapsed in response to the expiration of the first timer.
  • the UE100 may perform the process of step S740 (S930 in FIG. 16) when the first period has elapsed (S920: YES). Thereby, the UE 100 can transmit uplink information to the BS 200 at least once in a predetermined cycle. The UE 100 may transmit uplink information a plurality of times in a predetermined cycle.
  • UE100 may perform the process of step S910 when the first period does not elapse (S920: NO).
  • step S740 the UE 100 can transmit uplink information to the BS 200.
  • the UE 100 When there is information to be transmitted to the BS 200, the UE 100 transmits the information to the BS 200.
  • the UE 100 does not necessarily have to transmit uplink information once in a predetermined cycle.
  • the UE 100 may transmit uplink information to the BS 200 even when there is no information to be transmitted to the BS 200.
  • the uplink information may be dummy data.
  • the uplink information may be information indicating that there is no transmission data.
  • the uplink information may be information indicating null.
  • the UE100 performs (starts) the monitoring of downlink information according to transmission of uplink information (S940 in FIG. 16).
  • the UE 100 may stop monitoring downlink information until transmission of uplink information is started.
  • the UE 100 may not be requested (expected) to monitor the downlink information until transmission of the uplink information is started. Accordingly, the UE 100 may determine whether or not to start monitoring downlink information in a period before transmitting uplink information.
  • the UE 100 may monitor downlink information (if necessary) even before starting transmission of uplink information.
  • the UE 100 may end a DRX (Discontinuous Reception) sleep operation that does not receive downlink information monitoring as an operation to start monitoring downlink information. That is, the UE 100 may wake up from the DRX sleep operation and wait for receiving the PDCCH.
  • DRX Continuous Reception
  • the UE 100 may shift from a state in which downlink information (for example, PDCCH) cannot be received (reception off state) to a state in which downlink information can be received (reception on state).
  • the UE 100 may switch from the DRX operation using the long DRX cycle to the DRX operation using the short DRX cycle as an operation to start monitoring downlink information.
  • the UE 100 may start monitoring the downlink information after the third period has elapsed since the transmission of the uplink information. For example, the UE 100 may start monitoring in a subframe in which the third period has elapsed from the subframe in which the uplink information is transmitted.
  • the time information described above may include information indicating an offset indicating the third period.
  • the UE 100 may measure the second period according to the transmission of the uplink information. For example, the UE 100 may start a second timer for measuring a second period in which the UE 100 finishes monitoring the downlink information in response to transmission of the uplink information. The UE 100 may monitor downlink information while the second timer is activated.
  • the second timer may be an inactivity timer indicating a duration in a downlink subframe in which the UE 100 waits for decoding the PDCCH.
  • BS 200 receives uplink information from UE 100.
  • BS200 performs the process of step S750, when uplink information is received.
  • the BS 200 may determine whether or not the first period based on a predetermined cycle has elapsed (S820 in FIG. 15). The BS 200 may start a first timer to measure the first period. The BS 200 may start the first timer in response to reception of the uplink information from the UE 100.
  • the BS 200 may execute the process of step S810 when the first period has not elapsed (S820: NO).
  • BS 200 may determine that an abnormal situation (abnormal situation) has occurred in UE 100 when uplink information is not received even after the first period has elapsed.
  • the BS 200 may determine that the UE 100 has become unreachable (Unreachable). For example, the BS 200 may determine that communication with the UE 100 has become impossible. BS 200 may determine that UE 100 has moved from a communication area (cell) managed by BS 200.
  • Unreachable For example, the BS 200 may determine that communication with the UE 100 has become impossible.
  • BS 200 may determine that UE 100 has moved from a communication area (cell) managed by BS 200.
  • the BS 200 may start the release procedure when the first period has elapsed (S820: YES) (S830 in FIG. 15). That is, the BS 200 executes a procedure for releasing the information of the UE 100 when the next uplink information is not received from the UE 100 even if the first period based on a predetermined cycle has elapsed since the uplink information was received. May be.
  • the BS 200 may discard the data to be transmitted to the UE 100 received in step S730, for example.
  • the BS 200 may start a procedure (S1 UE Context Release Request) for releasing the context of the UE 100 (eNB triggered). Specifically, the BS 200 may send a request (S1 UE Context Release Request) to release the context of the UE 100 to the EPC 10 (MME 300). The MME 300 may release the context of the UE 100 in response to receiving the request. The MME 300 may send a command (S1 UE Context Release Command) for releasing the context of the UE 100 in the BS 200 in response to receiving the request. The BS 200 may release the context of the UE 100 in response to receiving the command. The BS 200 may send a message indicating completion of the release of the context of the UE 100 to the EPC 10 (MME 300).
  • step S750 the BS 200 executes (starts) transmission of the downlink information in response to reception of the uplink information (S810: YES) (S840 in FIG. 15).
  • UE100 receives the downlink information from BS200.
  • the BS 200 may transmit a paging message for the UE 100 to receive the downlink information to the UE 100 before transmitting the downlink information.
  • BS200 may transmit downlink information after transmitting a paging message to UE100.
  • the BS 200 transmits downlink information indicating that there is no information (storage information: DL data and / or control information) to be transmitted to the UE 100 to the UE 100. Also good.
  • the downlink information may include an identifier indicating that there is no storage information.
  • the UE 100 may determine whether or not reception of all downlink information to be transmitted to the UE 100 held by the BS 200 is completed (S950 in FIG. 16). The UE 100 may determine that the reception has been completed when the period in which the next downlink information is not received after the downlink information is last received from the BS 200 exceeds the threshold. UE100 may determine with the said reception not being completed according to the said period being less than a threshold value.
  • the UE 100 may determine that reception of all downlink information has been completed in response to reception of the last identification information in the first embodiment. The UE 100 may determine that reception of all downlink information has not been completed until the last identification information is received.
  • the UE 100 may end the monitoring of the downlink information in response to the completion of reception of all the downlink information (S950: YES) (S960 in FIG. 16). Thereby, UE100 can achieve power saving.
  • the UE 100 executes (continues) monitoring of downlink information in response to determining that reception of all downlink information has not been completed (S950: NO).
  • the UE 100 may determine whether or not the second period has elapsed since the start of monitoring (S950 in FIG. 16). UE100 may determine with the 2nd period having passed according to expiration of the 2nd timer. The UE 100 may determine that the second period has not elapsed in response to the second timer being activated.
  • the UE 100 may end the monitoring of the downlink information in response to the second period having elapsed after starting the monitoring (S950: YES) (S960 in FIG. 16).
  • UE100 may complete
  • UE 100 executes (continues) monitoring of downlink information in response to determining that the second period has not elapsed (S950: NO).
  • the UE 100 may start the DRX sleep operation as an operation for ending the downlink information monitoring.
  • the UE 100 may transition from the reception on state to the reception off state.
  • the UE 100 may switch from the DRX operation using the short DRX cycle to the DRX operation using the long DRX cycle as an operation to start monitoring downlink information.
  • the UE 100 When the UE 100 has finished monitoring the downlink information, the UE 100 can continue to stop monitoring the downlink information until transmission of the uplink information is started. Thereby, UE100 can achieve power saving.
  • UE100 may perform the process of step S910, when monitoring of downlink information is complete
  • UE 100 since UE 100 transmits uplink information to BS 200 at least once in a predetermined cycle, even when BS 200 starts transmission of downlink information in response to reception of uplink information, The UE 100 can receive downlink information in a predetermined cycle. Since UE 100 is not required to monitor downlink information until transmission of uplink information is started, power saving can be achieved.
  • the last identification information is transmitted together with the data, but the present invention is not limited to this.
  • the last identification information may be transmitted using a time / frequency resource among a plurality of time / frequency resources allocated to the UE 100.
  • the UE 100 and / or the BS 200 transmits the last data using the time / frequency resource arranged in the first subframe, and uses the time / frequency resource arranged in the second subframe.
  • the last identification information may be transmitted.
  • the BS 200 has been described as an example of the network device, but is not limited thereto.
  • the network device may be, for example, the MME 300. Therefore, the BS 200 may be replaced with the MME 300.
  • the signaling between the UE 100 and the MME 300 may be NAS signaling.
  • the BS 200 may send a command (S1 UE Context Release Command) for releasing the context of the UE 100 in the BS 200 (EPC triggered). ).
  • the UE 100 is in the RRC inactive state has been described as an example, but the present invention is not limited thereto.
  • the UE 100 may be in any of an RRC connection state, an RRC idle state, and other RRC states.
  • the UE 100 may be an IoT (Internet of Things) device.
  • the UE 100 may be a wireless communication device that uses Nb-IoT (Narrow Band Internet of Things).
  • Nb-IoT allows access to network services via E-UTRAN 10 with a channel bandwidth limited to 180 kHz.
  • the above-mentioned PDCCH may be replaced with NPDCCH (Narrowband Physical Downlink Control Channel).
  • the NPDCCH is a channel for informing the NB-IoT UE of resource allocation (for NPSCH (Narrowband Physical Downlink Shared Channel)).
  • the NPDCCH can carry uplink scheduling information (UL scheduling grant) for the NB-IoT UE.
  • NPDSCH can carry DL-SCH (downlink synchronization channel) and PCH (paging channel) for NB-IoT UE.
  • the UE 100 may be a sensor module (M2M device).
  • the UE 100 may be a wireless communication device (for example, IoT GW (Internet of Things Gateway)) that manages the sensor module (s).
  • the IoT GW may execute communication with the network on behalf of the sensor module (s) managed by the IoT GW.
  • the sensor module may not have a function of executing communication with the network.
  • the sensor module managed by the IoT GW may have a function of executing communication with the IoT GW.
  • a program for causing a computer to execute each process performed by any of the above-described nodes may be provided.
  • the program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • a chip configured by a memory that stores a program for executing each process performed by either the UE 100 or the BS 200 and a processor that executes the program stored in the memory may be provided.
  • the LTE system has been described as an example of the mobile communication system, but the present invention is not limited to the LTE system, and the content according to the present application may be applied to a system other than the LTE system.
  • the content according to the present application may be applied to a communication system in 5G.
  • the present invention is useful in the field of wireless communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一の実施形態に係る通信方法では、第1の無線通信装置が、第2の無線通信装置へデータを送信するために割り当てられ、かつ時間方向に配置された複数の時間・周波数リソースを用いた送信を開始する。前記第2の無線通信装置が、前記第1の無線通信装置からのデータを受信するために、前記複数の時間・周波数リソースにおけるモニタを開始する。前記第1の無線通信装置が、前記第2の無線通信装置へ送信すべき最後のデータを送信する際に、前記最後のデータと共に、前記最後のデータの送信を示す最後識別情報を前記第2の無線通信装置へ送信する。

Description

無線端末、プロセッサ及び基地局
 本開示は、無線端末、プロセッサ及び基地局に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)により策定された仕様では、動的なスケジューリングが実行される(非特許文献1参照)。無線端末は、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)から割り当てられた無線リソースを示すスケジューリング情報に基づいて、E-UTRANからユーザデータを受信したり、E-UTRANへユーザデータを送信したりする。
 E-UTRANは、動的なスケジューリングでなく、半持続的なスケジューリング(SPS:Semi-Persistent Scheduling)も実行可能である。無線端末は、スケジューリング情報を都度受信しなくても、SPSにより割り当てられた時間方向に配置された複数の時間・周波数リソースを用いて、E-UTRANからユーザデータを受信したり、E-UTRANへユーザデータを送信したりすることができる。
3GPP技術仕様書「TS36.300 V14.1.0」 2016年12月30日
 一の実施形態に係る通信方法では、第1の無線通信装置が、第2の無線通信装置へデータを送信するために割り当てられ、かつ時間方向に配置された複数の時間・周波数リソースを用いた送信を開始する。前記第2の無線通信装置が、前記第1の無線通信装置からのデータを受信するために、前記複数の時間・周波数リソースにおけるモニタを開始する。前記第1の無線通信装置が、前記第2の無線通信装置へ送信すべき最後のデータを送信する際に、前記最後のデータと共に、前記最後のデータの送信を示す最後識別情報を前記第2の無線通信装置へ送信する。
 一の実施形態に係るプロセッサは、無線通信装置(第1の無線通信装置)を制御するためのプロセッサである。前記プロセッサは、第2の無線通信装置へデータを送信するために割り当てられ、かつ時間方向に配置された複数の時間・周波数リソースを用いた送信を開始する処理と、前記第2の無線通信装置へ送信すべき最後のデータを送信する際に、前記最後のデータと共に、前記最後のデータの送信を示す最後識別情報を前記第2の無線通信装置へ送信する処理と、を実行する。
 一の実施形態に係る通信方法では、無線端末が、所定サイクルでネットワーク装置へ上りリンク情報を少なくとも1回送信する。前記ネットワーク装置が、前記無線端末へ送信すべき下りリンク情報が発生した場合には、前記上りリンク情報を受信するまで前記下りリンク情報を保持する。前記ネットワーク装置が、前記上りリンク情報の受信に応じて、前記下りリンク情報の送信を開始する。前記無線端末が、前記上りリンク情報の送信に応じて、前記下りリンク情報のモニタを開始する。
 一の実施形態に係るプロセッサは、無線端末を制御するためのプロセッサである。前記プロセッサは、所定サイクルでネットワーク装置へ上りリンク情報を少なくとも1回送信する処理と、前記無線端末へ送信すべき下りリンク情報が発生した場合に前記上りリンク情報を受信するまで前記下りリンク情報を保持する前記ネットワーク装置からの下りリンク情報のモニタを、前記上りリンク情報の送信に応じて開始する処理と、を実行する。
 一の実施形態に係るプロセッサは、ネットワーク装置を制御するためのプロセッサである。前記プロセッサは、所定サイクルで前記ネットワーク装置へ上りリンク情報を少なくとも1回送信するよう構成された無線端末へ送信すべき下りリンク情報が発生した場合には、前記上りリンク情報を受信するまで前記下りリンク情報を保持する処理と、前記ネットワーク装置が、前記上りリンク情報の受信に応じて、前記下りリンク情報の送信を開始する処理と、を実行する。
図1は、移動通信システムの構成を示す図である。 図2は、無線インターフェイスのプロトコルスタック図である。 図3は、LTEシステムで使用される無線フレームの構成図である。 図4は、UE100のブロック図である。 図5は、BS200のブロック図である。 図6は、MME300のブロック図である。 図7は、第1実施形態の動作例1を説明するためのシーケンス図である。 図8は、第1実施形態の動作例1に係るBS200の動作を説明するためのフローチャートである。 図9は、第1実施形態の動作例1に係るUE100の動作を説明するためのフローチャートである。 図10は、第1実施形態の動作例1を説明するための図である。 図11は、第1実施形態の動作例2を説明するためのシーケンス図である。 図12は、第1実施形態の動作例2に係るBS200の動作を説明するためのフローチャートである。 図13は、第1実施形態の動作例2に係るUE100の動作を説明するためのフローチャートである。 図14は、第2実施形態の動作例を説明するためのシーケンス図である。 図15は、第2実施形態の動作例に係るBS200の動作を説明するためのフローチャートである。 図16は、第2実施形態の動作例に係るUE100の動作を説明するためのフローチャートである。
 [実施形態の概要]
 一の実施形態に係る通信方法では、第1の無線通信装置が、第2の無線通信装置へデータを送信するために割り当てられ、かつ時間方向に配置された複数の時間・周波数リソースを用いた送信を開始する。前記第2の無線通信装置が、前記第1の無線通信装置からのデータを受信するために、前記複数の時間・周波数リソースにおけるモニタを開始する。前記第1の無線通信装置が、前記第2の無線通信装置へ送信すべき最後のデータを送信する際に、前記最後のデータと共に、前記最後のデータの送信を示す最後識別情報を前記第2の無線通信装置へ送信する。
 前記第2の無線通信装置が、前記最後識別情報の受信に応じて、前記モニタを終了してもよい。
 前記第2の無線通信装置が、前記最後識別情報の受信に応じて、前記複数の時間・周波数リソースを解放する処理を実行してもよい。
 前記第1の無線通信装置が、前記最後識別情報の送信に応じて、前記複数の時間・周波数リソースを解放する処理を実行してもよい。
 前記第1の無線通信装置が、前記最後のデータを送信してから所定期間中に前記第2の無線通信装置へ送信すべき新たなデータが発生しないことを予測してもよい。前記第1の無線通信装置が、前記予測に応じて、前記最後識別情報を前記第2の無線通信装置へ送信してもよい。
 一の実施形態に係るプロセッサは、無線通信装置(第1の無線通信装置)を制御するためのプロセッサである。前記プロセッサは、第2の無線通信装置へデータを送信するために割り当てられ、かつ時間方向に配置された複数の時間・周波数リソースを用いた送信を開始する処理と、前記第2の無線通信装置へ送信すべき最後のデータを送信する際に、前記最後のデータと共に、前記最後のデータの送信を示す最後識別情報を前記第2の無線通信装置へ送信する処理と、を実行する。
 一の実施形態に係る通信方法では、無線端末が、所定サイクルでネットワーク装置へ上りリンク情報を少なくとも1回送信する。前記ネットワーク装置が、前記無線端末へ送信すべき下りリンク情報が発生した場合には、前記上りリンク情報を受信するまで前記下りリンク情報を保持する。前記ネットワーク装置が、前記上りリンク情報の受信に応じて、前記下りリンク情報の送信を開始する。前記無線端末が、前記上りリンク情報の送信に応じて、前記下りリンク情報のモニタを開始する。
 前記無線端末が、前記所定サイクルを示す情報を前記ネットワーク装置へ通知してもよい。
 前記無線端末が、前記ネットワーク装置が保持する前記下りリンク情報の全ての受信が完了したことに応じて、前記下りリンク情報のモニタを終了してもよい。
 前記無線端末が、前記モニタを開始してから所定期間が経過したことに応じて、前記下りリンク情報のモニタを終了してもよい。
 前記ネットワーク装置が、前記所定サイクルの上限値を示す情報を前記無線端末へ通知してもよい。
 前記ネットワーク装置が、前記上りリンク情報を受信してから前記所定サイクルに基づく期間が経過しても、前記無線端末から次の上りリンク情報を受信しない場合に、前記無線端末の情報を解放するための手順を開始してもよい。
 一の実施形態に係るプロセッサは、無線端末を制御するためのプロセッサである。前記プロセッサは、所定サイクルでネットワーク装置へ上りリンク情報を少なくとも1回送信する処理と、前記無線端末へ送信すべき下りリンク情報が発生した場合に前記上りリンク情報を受信するまで前記下りリンク情報を保持する前記ネットワーク装置からの下りリンク情報のモニタを、前記上りリンク情報の送信に応じて開始する処理と、を実行する。
 一の実施形態に係るプロセッサは、ネットワーク装置を制御するためのプロセッサである。前記プロセッサは、所定サイクルで前記ネットワーク装置へ上りリンク情報を少なくとも1回送信するよう構成された無線端末へ送信すべき下りリンク情報が発生した場合には、前記上りリンク情報を受信するまで前記下りリンク情報を保持する処理と、前記ネットワーク装置が、前記上りリンク情報の受信に応じて、前記下りリンク情報の送信を開始する処理と、を実行する。
 (移動通信システム)
 以下において、移動通信システムについて説明する。図1は、移動通信システムの構成を示す図である。移動通信システムの一例として、LTEシステムを例に挙げて説明する。
 図1に示すように、LTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、無線通信装置(無線端末)に相当する。UE100は、移動型の通信装置である。UE100は、セル(後述するBS200)と無線通信を行う。UE100の構成は後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、BS(Base Station)200を含む。BS200は、(無線)基地局に相当する。BS200は、例えば、eNB200(evolved Node-B)である。BS200は、gNB(next Generation Node-B)であってもよい。BS200は、UE100と無線通信を実行可能なノードであってもよい。従って、BS200は、無線通信装置と称されてもよい。また、BS200は、E-UTRAN10に含まれるため、ネットワーク装置と称されてもよい。BS200は、X2インターフェイスを介して相互に接続されてもよい。BS200の構成は後述する。
 BS200は、1又は複数のセルを管理する。BS200は、BS200が管理するセルとの接続を確立したUE100との無線通信を行う。BS200は、無線リソース管理(RRM)機能、ユーザデータ(以下、「データ」と称することがある)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。
 「セル」は、無線通信エリアの最小単位を示す用語として使用される。「セル」は、UE100との無線通信を行う機能を示す用語としても使用されてもよい。「セル」は、下りリンクリソースであってもよい。「セル」は、下りリンクリソースと上りリンクリソースとの組み合わせであってもよい。下りリンクリソースのキャリア周波数と上りリソースのキャリア周波数との間のリンクは、下りリンクリソース上で送信されるシステム情報に含まれてもよい。「セル」は、キャリア及び/又は周波数を示す用語として使用されてもよい。
 EPC20は、コアネットワークに相当する。EPC20は、E-UTRAN10と共にネットワークを構成してもよい。EPC20は、MME(Mobility Management Entity)300、及びSGW(Serving Gateway)400を含む。
 MME300は、例えば、UE100に対する各種モビリティ制御を行う。SGW400は、例えば、データの転送制御を行う。MME300及びSGW400は、S1インターフェイスを介してBS200と接続される。
 図2は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図2に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層(レイヤ1)乃至第3層(レイヤ3)に区分されている。第1層は、物理(PHY)層(物理レイヤ)である。第2層(レイヤ2)は、MAC(Medium Access Control)層(MACレイヤ)、RLC(Radio Link Control)層(RLCレイヤ)、及びPDCP(Packet Data Convergence Protocol)層(PRCPレイヤ)を含む。第3層(レイヤ3)は、RRC(Radio Resource Control)層(RRCレイヤ)を含む。
 物理レイヤは、符号化・復号化、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理レイヤとBS200の物理レイヤとの間では、物理チャネルを介してデータ及び制御信号が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMACレイヤとBS200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御信号が伝送される。BS200のMACレイヤは、スケジューラ(MAC スケジューラ)を含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS:Modulation and Coding Scheme))及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとBS200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御信号が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化(サイファリング)・復号化(デサイファリング)を行う。
 RRCレイヤは、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRCレイヤとBS200のRRCレイヤとの間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとBS200のRRCとの間にRRC接続がある場合、UE100は、RRCコネクティッド状態である。UE100のRRCとBS200のRRCとの間にRRC接続がない場合、UE100は、RRCアイドル状態である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、例えば、セッション管理及びモビリティ管理を行う。
 図3は、LTEシステムで使用される無線フレームの構成図である。LTEシステムにおいて、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)が適用される。上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)が適用される。
 図3に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msである。各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数のリソースブロック(RB:Resource Block)を含む。各サブフレームは、時間方向に複数のシンボルを含む。各リソースブロックは、周波数方向に複数のサブキャリアを含む。1つのシンボル及び1つのサブキャリアにより、1つのリソースエレメント(RE:Resource Element)が構成されるUE100には、無線リソース(時間・周波数リソース)が割り当てられる。周波数方向において、無線リソース(周波数リソース)は、リソースブロックにより構成される。時間方向において、無線リソース(時間リソース)は、サブフレーム(又はスロット)により構成される。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、下りリンク制御信号を伝送するための物理下りリンク制御チャネル(PDCCH:Physical Downlink. Control Channel)として使用可能な領域である。各サブフレームの残りの部分は、下りリンクデータを伝送するための物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)として使用可能な領域である。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、上りリンク制御信号を伝送するための物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)として使用可能な領域である。各サブフレームにおける残りの部分は、上りリンクデータを伝送するための物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)として使用可能な領域である。
 (無線端末)
 実施形態に係るUE100(無線端末)について説明する。図4は、UE100のブロック図である。図4に示すように、UE100は、レシーバ(Receiver:受信部)110、トランスミッタ(Transmitter:送信部)120、及びコントローラ(Controller:制御部)130を備える。レシーバ110とトランスミッタ120とは、一体化されたトランシーバ(送受信部)であってもよい。
 レシーバ110は、コントローラ130の制御下で各種の受信を行う。レシーバ110は、アンテナを含む。レシーバ110は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換する。レシーバ110は、ベースバンド信号をコントローラ130に出力する。
 トランスミッタ120は、コントローラ130の制御下で各種の送信を行う。トランスミッタ120は、アンテナを含む。トランスミッタ120は、コントローラ130が出力するベースバンド信号(送信信号)を無線信号に変換する。トランスミッタ130は、無線信号をアンテナから送信する。
 コントローラ130は、UE100における各種の制御を行う。コントローラ130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンドプロセッサとCPU(Central Processing Unit)とを含む。ベースバンドプロセッサは、例えば、ベースバンド信号の変調・復調及び符号化・復号化を行う。CPUは、メモリに記憶されるプログラムを実行することにより、各種の処理を行う。プロセッサは、音声・映像信号の符号化・復号化を行うコーデックを含んでもよい。プロセッサは、後述する各種の処理及び上述した各種の通信プロトコルを実行する。
 UE100は、GNSS(Global Navigation Satellite System)受信機を備えていてもよい。GNSS受信機は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信できる。GNSS受信機は、GNSS信号をコントローラ130に出力する。UE100は、UE100の位置情報を取得するためのGPS(Global Positioning System)機能を有していてもよい。
 本明細書では、UE100が備えるレシーバ110、トランスミッタ120及びコントローラ130の少なくともいずれかが実行する処理を、便宜上、UE100が実行する処理(動作)として説明する。
 (基地局)
 実施形態に係るBS200(基地局)について説明する。図5は、BS200のブロック図である。図5に示すように、BS200は、レシーバ(受信部)210、トランスミッタ(送信部)220、コントローラ(制御部)230、及びネットワークインターフェイス240を備える。トランスミッタ210とレシーバ220は、一体化されたトランシーバ(送受信部)であってもよい。
 レシーバ210は、コントローラ230の制御下で各種の受信を行う。レシーバ210は、アンテナを含む。レシーバ210は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換する。レシーバ210は、ベースバンド信号をコントローラ230に出力する。
 トランスミッタ220は、コントローラ230の制御下で各種の送信を行う。トランスミッタ220は、アンテナを含む。トランスミッタ220は、コントローラ230が出力するベースバンド信号(送信信号)を無線信号に変換する。トランスミッタ220は、無線信号をアンテナから送信する。
 コントローラ230は、BS200における各種の制御を行う。コントローラ230は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンドプロセッサとCPUとを含む。ベースバンドプロセッサは、例えば、ベースバンド信号の変調・復調及び符号化・復号化等を行う。CPUは、メモリに記憶されるプログラムを実行することにより各種の処理を行う。プロセッサは、後述する各種の処理及び上述した各種の通信プロトコルを実行する。
 ネットワークインターフェイス240は、X2インターフェイスを介して隣接BS200と接続される。ネットワークインターフェイス240は、S1インターフェイスを介してMME300及びSGW400と接続される。ネットワークインターフェイス240は、例えば、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に使用される。
 本明細書では、BS200が備えるトランスミッタ210、レシーバ220、コントローラ230、及びネットワークインターフェイス240の少なくともいずれかが実行する処理を、便宜上、BS200が実行する処理(動作)として説明する。
 (ネットワーク装置)
 実施形態に係るネットワーク装置について説明する。図6は、MME300のブロック図である。図6は、コアネットワーク(例えば、EPC20)に含まれるネットワーク装置の一例である。他のネットワーク装置(例えば、SGW400)は、MME300と同様の構成を有するため、説明を省略する。ネットワーク装置は、MME300及びSGW400の機能を有していてもよい。
 図6に示すように、MME300は、コントローラ(制御部)330及びネットワークインターフェイス340を備える。
 コントローラ330は、MME300における各種の制御を行う。コントローラ330は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンドプロセッサとCPUとを含む。ベースバンドプロセッサは、例えば、ベースバンド信号の変調・復調及び符号化・復号化等を行う。CPUは、メモリに記憶されるプログラムを実行することにより各種の処理を行う。プロセッサは、後述する各種の処理及び上述した各種の通信プロトコルを実行する。
 ネットワークインターフェイス340は、他のノード(BS200及び/又は他のネットワーク装置)と所定のインターフェイスを介して接続される。ネットワークインターフェイス340は、所定のインターフェイス上で行う他のネットワーク装置との通信に使用される。
 本明細書では、ネットワーク装置が備えるコントローラ、及びネットワークインターフェイスの少なくともいずれかが実行する処理を、便宜上、ネットワーク装置が実行する処理(動作)として説明する。
 [第1実施形態]
 第1実施形態に係る動作(動作例1及び動作例2)について説明する。
 (動作例1)
 動作例1について、図7-図10を用いて説明する。図7は、第1実施形態の動作例1を説明するためのシーケンス図である。図8は、第1実施形態の動作例1に係るBS200の動作を説明するためのフローチャートである。図9は、第1実施形態の動作例1に係るUE100の動作を説明するためのフローチャートである。図10は、第1実施形態の動作例1を説明するための図である。
 動作例1は、UE100が、複数の時間・周波数リソースを用いて、BS200(E-UTRAN10)へデータを送信するケースである。
 図7において、UE100は、BS200からのシグナリングを受け取れる範囲に存在する。例えば、UE100は、BS200が管理するセルに在圏する。UE100は、セルのカバレッジ又は強化カバレッジ(CE:Coverage Enhancement)内に存在する。UE100がRRCインアクティブ状態であるケースを例を挙げて説明する。RRCインアクティブ状態は、RRC接続状態とRRCアイドル状態との中間の状態である。RRCインアクティブ状態は、データ送受信が(一時的に)不活性な場合に適用されるRRC状態であるが、これに限定されない。
 図7に示すように、ステップS110において、UE100は、通信データ量を示す情報(Data volume)をBS200へ送信してもよい。
 通信データ量を示す情報は、送信に利用可能なデータ量を示すバッファ状態報告(BSR)であってもよい。BSRは、バッファサイズと当該バッファサイズに対応付けられた論理チャネルグループ識別子とを含んでいてもよい。バッファサイズは、論理チャネルグループの全ての論理チャネルに渡って利用可能なデータの総量を識別する情報である。
 通信データ量を示す情報は、UE100が使用する(又は使用を開始する)アプリケーション(の識別子)に基づいて算出される通信データ量であってもよい。通信データ量を示す情報は、UE100が使用する(又は使用を開始する)アプリケーションの識別子であってもよい。
 BS200は、複数の時間・周波数リソースを用いた送信をUE100に許可するか否かを判定する(図8のS210)。
 複数の時間・周波数リソースは、BS200へULデータを送信するために割り当てられ、かつ時間方向に配置された無線リソースである。複数の時間・周波数リソースは、複数のサブフレームのそれぞれに配置された無線リソースであってもよい。すなわち、複数の時間・周波数リソースは、第1のサブフレーム内に配置された時間・周波数リソースと(第1のサブフレームよりも後の)第2のサブフレーム内に配置された時間・周波数リソースとを含んでいてもよい。複数の時間・周波数リソースは、複数のサブフレーム内に含まれる時間・周波数リソースで構成されてもよい。複数の時間・周波数リソースは、1サブフレーム内に含まれる時間・周波数リソースのみで構成されてなくてもよい。
 BS200は、UE100からの通信データ量を示す情報に基づいて、複数の時間・周波数リソースを用いた送信をUE100に許可するか否かを判定してもよい。BS200は、通信データ量が閾値を超える場合に、当該送信をUE100に許可すると判定してもよい。BS200は、通信データ量が閾値以下である場合に、当該送信をUE100に許可しないと判定してもよい。閾値は、例えば、UE100に対して1つのスケジューリング情報(例えば、上りリンク(UL)グラント)にて割り当て可能な時間・周波数リソース量(の最大値)を示す値であってもよい。
 ステップS210では、BS200は、(BS200における無線リソースの使用状況を考慮して、)複数のサブフレームに渡ってUE100へ時間・周波数リソースを割り当てる必要がある場合に、当該送信をUE100に許可すると判定してもよい。BS200は、1つのサブフレーム内の時間・周波数リソースによりUE100がユーザデータを十分送信可能である場合に、当該送信をUE100に許可しないと判定してもよい。
 BS200は、UE100からのトラフィック連続的に(継続的に)発生することが予測される場合に、当該送信をUE100に許可すると判定してもよい。BS200は、UE100からのトラフィック連続的に(継続的に)発生しないこと(すなわち、一時的なトラフィックの発生)が予測される場合に、当該送信をUE100に許可しないと判定してもよい。BS200は、例えば、アプリケーションの識別子に基づいて、UE100からのトラフィック連続的に(継続的に)発生するか否かを予測してもよい。BS200は、例えば、アプリケーションが音声(通話)及び/又は映像を利用するもの(例えば、VoLTE:Voice over LTE)である場合には、UE100からのトラフィック連続的に(継続的に)発生すると予測してもよい。そうでない場合には、BS200は、UE100からのトラフィック連続的に(継続的に)発生しないと予測してもよい。BS200は、UE100からのトラフィックが連続的に既に発生している場合に、複数の時間・周波数リソースを用いた送信をUE100に許可すると判定してもよい。
 BS200は、複数の時間・周波数リソースを用いた送信をUE100に許可すると判定した(S210:YES)ことに応じて、ステップS120の処理を実行できる。
 BS200は、複数の時間・周波数リソースを用いた送信をUE100に許可しないと判定した(S210:NO)ことに応じて、処理を終了してもよい。この場合、BS200は、通常通りに、1つのサブフレーム内の時間・周波数リソースをUE100へ割り当てる動的なスケジューリングを実行してもよい。
 ステップS120において、BS200は、複数の時間・周波数リソースを用いた送信をUE100に許可するためのシグナリング(Signaling for using resources)をUE100へ(個別に)送信する(図8のS220)。
 BS200は、例えば、半持続なスケジューリング(SPS:Semi-Persistent Scheduling)を実行してもよい。すなわち、BS200は、半持続な上りリンクリソースをUE100へ割り当ててもよい。この場合、BS200は、半持続なスケジューリング設定を特定するために用いられる(上りリンク用の)SPS設定(SPS-Config)をUE100へ個別に送信してもよい。BS200は、SPS設定を個別に送信する場合、SPS設定に含まれる一時識別子(SPS C-RNTI)を用いて、SPS設定を有効(アクティブ)にするためのシグナリング(DCI:Downlink Control Information/上りリンク(UL)グラント)をUE100へ送信してもよい。
 BS200は、当該シグナリングにおいて、最後のデータの送信を示す最後識別情報(end marker)を送信するか否かを判定するためにUE100に用いられる識別子(判定識別子)をUE100へ送信してもよい。例えば、BS200は、判定識別子をSPS設定に含めてもよい。判定識別子は、UE100が最後識別情報を送信すべきであること(最後識別情報の送信許可)を示してもよい。判定識別子は、UE100が最後識別情報を送信すべきでないこと(最後識別情報の送信不許可)を示してもよい。これにより、BS200は、SPS設定が実行されたUE100が最後識別情報を送信するか否かが分かる。
 BS200は、例えば、動的なスケジューリングとして、マルチサブフレームスケジューリング(multi-subframe scheduling)を実行してもよい。この場合、BS200は、複数のサブフレームのそれぞれにおける時間・周波数リソースをUE100へ割り当ててもよい。BS200は、UE100へ割り当てた時間・周波数リソースを示すスケジューリング情報(ULグラント)をUE100へ送信してもよい。BS200は、判定識別子をスケジューリング情報に含めてもよい。
 UE100は、ステップS120において、BS200から上述のシグナリングを受信したことに応じて、複数の時間・周波数リソースを用いた送信が許可されたか否かを判定する(図9のS310)。UE100は、上述のシグナリングをBS200から受信した場合に、複数の時間・周波数リソースを用いた送信が許可されたと判定できる。
 UE100は、SPS C-RNTIを用いて、SPS設定を有効にするためのシグナリング(DCI)を受信(デコード)する。SPS設定が有効になった後、UE100は、以下の条件を満たすサブフレームにおいてN番目のグラントが発生する(すなわち、当該サブフレームにおける時間・周波数リソースの利用が許可される)と見なす。
  (10 * SFN + subframe) = [(10 * SFNstart time + subframestart time) + N * semiPersistSchedIntervalUL + Subframe_Offset * (N modulo 2)] modulo 10240
 「SFNstart time」は、設定されたULグラントが(再)開始された時のシステムフレーム番号(SFN)である。「subframestart time」は、設定されたULグラントが(再)開始された時のサブフレームである。「semiPersistSchedIntervalUL」は、上りリンクにおける半持続なスケジューリング間隔(サブフレームの数を示す値)を示す。
 UE100は、上述のシグナリングをBS200から受信しない場合に、複数の時間・周波数リソースを用いた送信が許可されていないと判定してもよい。UE100は、1つのサブフレーム内の時間・周波数リソースを示す通常通りのスケジューリング情報を受信したことに応じて、複数の時間・周波数リソースを用いた送信が許可されていないと判定してもよい。UE100は、当該送信が許可されていないと判定した(S310:NO)ことに応じて、処理を終了してもよい。UE100は、スケジューリング情報により示される時間・周波数リソースを用いてULデータ(ユーザデータ)を送信してもよい。
 ステップS130において、UE100は、当該送信が許可されたと判定した(S310:YES)ことに応じて、複数の時間・周波数リソースを用いた送信を実行(開始)する(図9のS320)。
 UE100は、SPS設定が有効である場合、ULグラントが発生した複数のサブフレームのそれぞれにおける時間・周波数リソースを用いて、データをBS200へ送信してもよい。UE100は、BS200から複数のサブフレームのそれぞれにおける時間・周波数リソースが割り当てられた場合には、割り当てられた各時間・周波数リソースを用いて、データをBS200へ送信する。
 UE100は、最後のデータが送信されるか否かを判定する(図9のS330)。UE100は、最後のデータが送信されると判定したことに応じて、ステップS140の処理を実行する。
 UE100は、例えば、当該MAC PDU(Protocol Data Unit)を生成する際に、最後のMAC SDU(Service Data Unit)を用いた場合に、最後のデータが送信されると判定してもよい。
 UE100内の上位レイヤ(例えば、RRC、PDCP、RLC及びMACの少なくともいずれか)から下位レイヤへ送信データ(パケット)を送ることによって、上位レイヤにおいて送信データ(パケット)が存在しなくなった場合に、UE100は、最後のデータが送信されると判定してもよい。
 UE100は、バッファに保持される送信に利用可能なデータの量が、1回で送信可能なデータ量(を示す閾値)を下回った場合に、UE100は、(次の送信において)最後のデータが送信されると判定してもよい。
 UE100は、後述の最後識別情報を送信するか否かを最終的に決定するために、BS200へ送信すべき新たなデータが最後のデータ送信後に(すぐに)発生するか否かを予測してもよい。UE100は、例えば、最後のデータが送信されると判定したことに応じて、新たなデータが所定期間中に発生するか否かを予測してもよい。所定期間は、最後のデータを送信してから開始する期間である。
 例えば、UE100は、アプリケーションの終了に応じて、所定期間中に新たなデータが発生しないと予測してもよい。UE100は、アプリケーションが継続されていることに応じて、所定期間中に新たなデータが発生すると予測してもよい。
 UE100は、予測に応じて、ステップS140の処理を実行してもよい。具体的には、UE100は、最後のデータが送信されると判定し、かつ、最後のデータが送信されてから所定期間中に新たなデータが発生しないと予測した場合にのみ、ステップS140の処理を実行してもよい。UE100は、最後のデータが送信されると判定した場合であっても、所定期間中に新たなデータが発生すると予測した場合には、ステップS140の処理を実行しなくてもよい。すなわち、UE100は、最後識別情報を送信せずに、最後のデータをBS200へ送信してもよい。
 これにより、UE100は、最後識別情報を送信したにもかかわらず、最後のデータの送信後にすぐに新たなデータが発生することを回避することができる。UE100は、既に割り当てられている時間・周波数リソースを用いて発生した新たなデータを送信できるため、新たなデータを送信するための時間・周波数リソースの割り当てをBS200へ要求することを省略することができる。
 UE100は、UE100へ割り当てられた複数の時間・周波数リソースのうち未使用の時間・周波数リソースが存在するか否かを判定してもよい。
 UE100は、SPS設定を解放及び/又は無効(ディアクティベート)にするためのシグナリングをBS200から受信した場合には、未使用の時間・周波数リソースが存在しないと判定してもよい。UE100は、SPS設定が有効である場合には、未使用の時間・周波数リソースが存在すると判定してもよい。
 UE100は、マルチサブフレームスケジューリングにより割り当てられた最後のサブフレームにおける時間・周波数リソースを用いて最後のデータを送信する場合には、未使用の時間・周波数リソースが存在しないと判定してもよい。UE100は、最後のデータの送信に利用するサブフレームよりも後のサブフレーム(内の時間・周波数リソース)が割り当てられている場合には、未使用の時間・周波数リソースが存在すると判定してもよい。
 UE100は、最後のデータが送信されると判定し、かつ、未使用の時間・周波数リソースが存在する場合に、ステップS140の処理を実行してもよい。これにより、UE100は、新たなデータが発生した場合に、時間・周波数リソースの割り当てをBS200へ要求することを省略することができる。
 UE100は、判定識別子に基づいて、ステップS140の処理において、最後識別情報を送信するか否かを判定してもよい。UE100は、BS200から判定識別子を受信した場合に、最後識別情報を送信すると判定してもよい。UE100は、BS200から判定識別子を受信していない場合に、最後識別情報を送信しないと判定してもよい。
 ステップS140において、UE100は、最後のデータが送信されると判定した(S330:YES)ことに応じて、最後のデータと共に、最後のデータの送信を示す最後識別情報(end marker)をBS200へ送信してもよい(図9のS340)。
 UE100は、最後のデータ(MAC SDU)を含むMAC PDU(図10参照)に最後識別情報を含めてもよい。具体的には、UE100は、MACヘッダ(すなわち、MACサブヘッダ(MAC sub-header))、MAC CE(MAC Control Element)、及び、MAC SDUの少なくともいずれかに最後識別情報を含めてもよい。
 最後のデータ(MAC SDU)に対応するMACサブヘッダ内の1ビットが、最後識別情報を示すエンドマーカ用のフラグとして用いられてもよい。例えば、フラグが「0」を示す場合、対応するMAC SDUが最後のデータでないことを示してもよい。フラグが「1」を示す場合、対応するMAC SDUが最後のデータであることを示してもよい。
 UE100は、最後識別情報をデータ(MAC SDU)として取り扱うことによって、最後のデータと共に最後識別情報をBS200へ送信してもよい。UE100は、RRCメッセージにより、データと共に最後識別情報をBS200へ送信してもよい。
 UE100は、最後のデータが送信されないと判定した(S330:NO)ことに応じて、複数の時間・周波数リソースを用いた送信を実行(継続)する。
 一方、BS200は、ステップS120におけるシグナリングの送信に応じて、UE100へ割り当てられた複数の時間・周波数リソースにおけるモニタを実行(開始)する(図8のS230)。
 BS200は、当該モニタにより、UE100から無線信号を受信する。BS200は、UE100からの受信信号が最後識別情報を含むか否かを判定する(図8のS240)。すなわち、BS200は、最後のデータが送信されるか否か最後識別情報を判定する。BS200は、UE100からの受信信号が最後識別情報を含む場合には、最後のデータが送信されると判定する。BS200は、受信信号が最後識別情報を含む場合には、その後の時間・周波数リソースにおいて、UE100からのデータの送信が行われないことを把握できる。
 BS200は、UE100からの受信信号が最後識別情報を含まない場合(S240:NO)には、複数の時間・周波数リソースを用いたUE100からの送信が継続される(最後のデータが送信されていない)と判定する。
 BS200は、最後識別情報の受信に応じて、UE100へ割り当てられた複数の時間・周波数リソースにおけるモニタを終了してもよい。すなわち、BS200は、UE100からの受信信号が最後識別情報を含む(S240:YES)ことに応じて、当該モニタを終了してもよい(図8のS250)。BS200は、最後識別情報によりUE100が送信すべきデータを有さないことを把握できる。これにより、BS200は、不要なモニタを実行せずに済むため、省電力化を図ることができる。
 BS200は、受信信号が最後識別情報を含まない場合には、モニタを実行(継続)する。
 BS200は、他のUE100へ同一の時間・周波数リソースを割り当てている場合には、UE100からの受信信号が最後識別情報を含んでいたとしても、当該他のUE100からの無線信号を受信するために、当該時間・周波数リソースでのモニタを実行してもよい。
 ステップS150において、BS200は、UE100へ割り当てた複数の時間・周波数リソース(のうち未使用の時間・周波数リソース)を解放する処理を実行してもよい(図8のS260)。これにより、BS200は、解放された時間・周波数リソースを他のUE100へ割り当てることが可能である。その結果、リソースの利用効率が向上する。
 BS200は、UE100へ割り当てた複数の時間・周波数リソースが解放されたとみなしてもよい。例えば、BS200は、UE100へ割り当てた複数の時間・周波数リソースが無効であるとみなしてもよい。すなわち、BS200は、UE100がSPS設定を破棄せずに保持しているとみなしてもよい。
 BS200は、UE100へ設定したSPS設定がデコンフィグされたとみなしてもよい。BS200は、UE100へ設定したSPS設定が破棄されたとみなしてもよい。BS200は、UE100からの無線信号を受信するために記憶していたリソース情報、すなわち、複数の時間・周波数リソースの情報を破棄してもよい。
 BS200は、解放する処理として、ステップS160の処理を実行してもよい。BS200は、ステップS160の処理を実行せずに、UE100に対して暗示的に複数の時間・周波数リソースを解放する処理を実行してもよい。
 ステップS160において、BS200は、複数の時間・周波数リソース(のうち未使用の時間・周波数リソース)を解放するためのシグナリングをUE100へ送信してもよい。
 BS200は、例えば、UE100がSPS設定をデコンフィグするためのシグナリング(例えば、RRCメッセージ)をUE100へ送信してもよい。BS200は、UE100がSPS設定を無効(ディアクティベート)にするためのシグナリング(例えば、PDCCH)をUE100へ送信してもよい。
 BS200は、ステップS160におけるシグナリングの送信後に、UE100へ割り当てた時間・周波数リソースを解放、すなわち、ステップS150の処理を実行してもよい。
 ステップS170において、UE100は、複数の時間・周波数リソース(のうち未使用の時間・周波数リソース)を解放する処理を実行してもよい(図9のS350)。
 UE100は、BS200からのシグナリングに応じて、複数の時間・周波数リソース(未使用の時間・周波数リソース)を解放する処理を実行してもよい。UE100は、SPS設定を解放するためのシグナリングの受信に応じて、SPS設定をデコンフィグ又は破棄してもよい。UE100は、SPS設定を無効にするためのシグナリングの受信に応じて、SPS設定を無効にしてもよい。この場合、UE100は、SPS設定を破棄せずに保存する。
 UE100は、最後識別情報の送信に応じて、複数の時間・周波数リソース(未使用の時間・周波数リソース)を解放する処理を実行してもよい。UE100は、例えば、暗示的な解放のために空のデータを送信せずに、時間・周波数リソースを解放できるため、時間・周波数リソースの利用効率を向上できる。
 UE100は、最後識別情報の送信に応じて、SPS設定をデコンフィグ又は破棄してもよい。UE100は、最後識別情報の送信に応じて、SPS設定を無効にしてもよい。
 以上のように、UE100は、時間方向に配置された複数の時間・周波数リソースを割り当てられた場合に、最後のデータと共に最後識別情報を送信できる。これにより、BS200は、UE100から送信される最後のデータであることが把握できる。その結果、BS200は、UE100へ割り当てられた時間・周波数リソースにおけるモニタを省略することができる。
 BS200は、UE100へ割り当てた時間・周波数リソースを他のUE100へ割り当てることができる。これにより、時間・周波数リソースの利用効率を向上できる。
 (動作例2)
 動作例2について、図11-図13を用いて説明する。図11は、第1実施形態の動作例2を説明するためのシーケンス図である。図12は、第1実施形態の動作例2に係るBS200の動作を説明するためのフローチャートである。図13は、第1実施形態の動作例2に係るUE100の動作を説明するためのフローチャートである。上述の説明と同様の部分は、説明を省略する。
 動作例2は、BS200が、複数の時間・周波数リソースを用いて、UE100へデータを送信するケースである。
 図11に示すように、ステップS410において、BS200は、上位ネットワーク(例えば、SGW400)からUE100へ送信すべきデータ(DLデータ)を受信してもよい。
 BS200は、複数の時間・周波数リソースを用いてUE100へデータを送信するか否かを判定する(図12のS510)。BS200は、UE100へ送信すべきデータの受信に応じて、判定を開始してもよい。
 BS200は、データが閾値以上である場合に、当該送信を行うと判定してもよい。BS200は、データが閾値未満である場合に、当該送信を行わないと判定してもよい。閾値は、例えば、UE100に対して1つのスケジューリング情報(例えば、下りリンク(DL)グラント)にて割り当て可能な時間・周波数リソース量(の最大値)を示す値であってもよい。
 BS200は、(BS200における無線リソースの使用状況を考慮して、)複数のサブフレームに渡ってUE100へ時間・周波数リソースを割り当てる必要がある場合に、当該送信を行うと判定してもよい。BS200は、1つのサブフレーム内の時間・周波数リソースによりUE100がユーザデータを十分送信可能である場合に、当該送信を行わないと判定してもよい。
 BS200は、UE100へのトラフィック連続的に発生することが予測される場合に、当該送信を行う許可すると判定してもよい。BS200は、UE100へのトラフィック連続的に発生しないことが予測される場合に、当該送信をUE100に許可しないと判定してもよい。BS200は、例えば、UE100から取得したアプリケーションの識別子に基づいて、UE100へのトラフィック連続的に発生するか否かを予測してもよい。BS200は、UE100からのトラフィックが連続的に既に発生している場合に、当該送信を行うと判定してもよい。
 BS200は、複数の時間・周波数リソースを用いてUE100へデータを送信すると判定した(S510:YES)ことに応じて、ステップS420の処理を実行できる。
 BS200は、当該送信を行わないと判定した(S510:NO)ことに応じて、処理を終了してもよい。BS200は、通常通りに、1つのサブフレーム内の時間・周波数リソースをUE100へ割り当てる動的なスケジューリングを実行してもよい。
 ステップS420において、BS200は、複数の時間・周波数リソースを用いてUE100へデータを送信するためのシグナリング(Signaling for using resources)をUE100へ(個別に)送信できる(図12のS520)。
 BS200は、例えば、半持続な下りリンクリソースをUE100へ割り当ててもよい。BS200は、(下りリンク用の)SPS設定をUE100へ個別に送信してもよい。BS200は、SPS設定に含まれる一時識別子を用いて、SPS設定を有効にするためのシグナリングを送信してもよい。BS200は、当該シグナリングにおいて、判定識別子をUE100へ送信してもよい。例えば、BS200は、判定識別子をSPS設定に含めてもよい。判定識別子は、BS200が最後識別情報を送信することを示してもよい。判定識別子は、BS200が最後識別情報を送信しないことを示してもよい。これにより、UE100は、BS200が最後識別情報を送信するか否かが分かる。
 BS200は、複数のサブフレームのそれぞれにおける時間・周波数リソースをUE100へ割り当ててもよい(マルチサブフレームスケジューリング)。BS200は、UE100へ割り当てた時間・周波数リソースを示すスケジューリング情報(DLグラント)をUE100へ送信してもよい。BS200は、判定識別子をスケジューリング情報に含めてもよい。
 UE100は、BS200が複数の時間・周波数リソースを用いてUE100へデータを送信するか否かを判定できる(図13のS610)。
 UE100は、上述のシグナリングをBS200から受信した場合に、BS200が複数の時間・周波数リソースを用いてUE100へ送信すると判定できる。
 UE100は、SPS C-RNTIを用いて、SPS設定を有効にするためのシグナリングを受信(デコード)する。SPS設定が有効になった後、UE100は、以下の条件を満たすサブフレームにおいてN番目のグラントが発生すると見なす(すなわち、当該サブフレームにおける時間・周波数リソースをモニタすると決定する)。
  (10 * SFN + subframe) = [(10 * SFNstart time + subframestart time) + N * semiPersistSchedIntervalDL] modulo 10240
 「SFNstart time」は、設定されたULグラントが(再)開始された時のシステムフレーム番号(SFN)である。「subframestart time」は、設定されたULグラントが(再)開始された時のサブフレームである。「semiPersistSchedIntervalDL」は、下りリンクにおける半持続なスケジューリング間隔(サブフレームの数を示す値)である。
 UE100は、上述のシグナリングをBS200から受信しない場合に、BS200が複数の時間・周波数リソースを用いてUE100へ送信しないと判定してもよい。UE100は、BS200が複数の時間・周波数リソースを用いてUE100へ送信しないと判定した(S610:NO)ことに応じて、処理を終了してもよい。
 ステップS430において、BS200は、当該送信を行うと判定した(S610:NO)ことに応じて、複数の時間・周波数リソースを用いた送信を実行(開始)する(図12のS530)。
 BS100は、最後のデータが送信されるか否かを判定する(図12のS540)。判定方法は、動作例1と同様である。
 BS100は、UE100へ割り当てられた複数の時間・周波数リソースのうち未使用の時間・周波数リソースが存在するか否かを判定してもよい。
 BS200は、SPS設定を解放及び/又は無効(ディアクティベート)にするためのシグナリングをUE100へ送信した場合には、未使用の時間・周波数リソースが存在しないと判定してもよい。BS200は、マルチサブフレームスケジューリングにより割り当てられた最後のサブフレームにおける時間・周波数リソースを用いて最後のデータを送信する場合には、未使用の時間・周波数リソースが存在しないと判定してもよい。そうでない場合には、BS100は、未使用の時間・周波数リソースが存在すると判定してもよい。
 ステップS440において、BS200は、最後のデータが送信されると判定した(S540:YES)ことに応じて、最後のデータと共に、最後のデータの送信を示す最後識別情報(end marker)をUE100へ送信してもよい(図12のS550)。最後識別情報の送信方法は、動作例1と同様である。
 BS200は、判定識別子に基づいて、ステップS440の処理において、最後識別情報を送信するか否かを判定してもよい。BS200は、UE100へ判定識別子を送信した場合に、最後識別情報を送信すると判定してもよい。BS200は、UE100へ判定識別子を送信していない場合に、最後識別情報を送信しないと判定してもよい。
 BS200は、最後のデータが送信されないと判定した(S540:NO)ことに応じて、複数の時間・周波数リソースを用いた送信を実行(継続)する。
 一方、UE100は、ステップS420におけるシグナリングの受信に応じて、UE100へ割り当てられた複数の時間・周波数リソースにおけるモニタを実行(開始)する(図13のS620)。すなわち、UE100は、BS200が複数の時間・周波数リソースを用いてUE100へ送信すると判定した(S610:YES)ことに応じて、モニタを実行(開始)する。
 UE100は、当該モニタにより、BS200から無線信号を受信する。UE100は、動作例1と同様に、最後のデータが送信されるか否かを判定する(図13のS630)。すなわち、UE100は、BS200からの受信信号が最後識別情報を含むか否かを判定する。UE100は、最後のデータが送信されないと判定した(S630:YES)ことに応じて、UE100へ割り当てられた複数の時間・周波数リソースにおけるモニタを終了してもよい(図13のS640)。
 UE100は、最後識別情報の受信に応じて、当該複数の時間・周波数リソースにおけるモニタが要求されないと判定してもよい。UE100は、最後識別情報の受信に応じて、UE100へ割り当てられた複数の時間・周波数リソースにおけるモニタを終了してもよい。
 これにより、UE100は、不要なモニタを実行せずに済むため、省電力化を図ることができる。
 UE100は、受信信号が最後識別情報を含まない場合には、モニタを実行(継続)する。すなわち、UE100は、最後のデータが送信されないと判定した(S630:NO)ことに応じて、モニタを実行(継続)する。
 ステップS450において、BS200は、最後識別情報の送信に応じて、UE100へ割り当てた複数の時間・周波数リソース(のうち未使用の時間・周波数リソース)を解放する処理を実行してもよい(図13のS560)。これにより、BS200は、解放された時間・周波数リソースを他のUE100へ割り当てることが可能である。その結果、リソースの利用効率が向上する。
 BS200は、解放する処理として、ステップS460の処理を実行してもよい。BS200は、ステップS460の処理を実行せずに、UE100に対して暗示的に複数の時間・周波数リソースを解放する処理を実行してもよい。
 ステップS460において、BS200は、上述の動作例1と同様に、複数の時間・周波数リソース(のうち未使用の時間・周波数リソース)を解放するためのシグナリングをUE100へ送信してもよい。
 ステップS470において、UE100は、複数の時間・周波数リソース(のうち未使用の時間・周波数リソース)を解放する処理を実行してもよい(図13のS650)。
 UE100は、BS200からのシグナリングに応じて、複数の時間・周波数リソース(未使用の時間・周波数リソース)を解放する処理を実行してもよい。UE100は、最後識別情報の受信に応じて、複数の時間・周波数リソースを解放する処理を実行してもよい。
 以上のように、BS200は、時間方向に配置された複数の時間・周波数リソースをUE100へ割り当てた場合に、最後のデータと共に最後識別情報を送信できる。これにより、UE100は、BS200からUE100へ送信される最後のデータであることが把握できる。その結果、UE100は、UE100へ割り当てられた時間・周波数リソースにおけるモニタを省略することができる。
 BS200は、UE100へ割り当てた時間・周波数リソースを他のUE100へ割り当てることができる。これにより、時間・周波数リソースの利用効率を向上できる。
 [第2実施形態]
 第2実施形態に係る動作例について、図14-図16を用いて、説明する。図14は、第2実施形態の動作例を説明するためのシーケンス図である。図15は、第2実施形態の動作例に係るBS200の動作を説明するためのフローチャートである。図16は、第2実施形態の動作例に係るUE100の動作を説明するためのフローチャートである。上述の説明と同様の部分は、説明を省略する。
 第2実施形態では、ネットワーク装置が、上りリンク情報の受信に応じて、下りリンク情報の送信を開始するケースである。以下において、ネットワーク装置として、BS200を例に挙げて説明する。
 図14に示すように、ステップS710において、BS200は、制御情報をUE100へ通知(送信)してもよい。
 制御情報は、UE100が上りリンク情報(UL Information)をBS200へ送信すべき所定サイクル(所定周期)の上限値を示す情報を含んでいてもよい。制御情報は、所定サイクルに基づく第1期間(ピリオド)の上限値を示す情報を含んでいてもよい。第1期間は、所定サイクルの時間長さと等しくてもよい。
 制御情報は、所定サイクルをUE100へ設定するための情報を含んでいてもよい。制御情報は、第1期間を計測するためのタイマの設定(及び/又はタイマ値)を含んでいてもよい。
 制御情報は、第2期間を特定するための時間情報を含んでいてもよい。第2期間は、UE100が下りリンク情報のモニタを終了する期間を示す。時間情報は、第2期間を計測するためのタイマの設定(及び/又はタイマ値)であってもよい。
 BS200は、制御情報を個別シグナリング(例えば、RRC接続再設定メッセージなど)により、UE100へ送信してもよい。BS200は、制御情報をブロードキャストシグナリング(例えば、SIB(System Information Block))/グループキャストシグナリングにより、UE100へ送信してもよい。
 ステップS720において、UE100は、所定サイクルを示すサイクル情報(Cycle Information)をBS200へ通知してもよい。サイクル情報は、例えば、UE100が上りリンク情報を1日に少なくとも1回を送信するサイクル(周期)を示してもよい。サイクル情報は、第1期間(ピリオド)を示してもよい。
 サイクル情報は、UE100の能力(例えば、UEカテゴリ)を示す情報であってもよい。サイクル情報は、UE100の端末情報であってもよい。
 UE100は、所定サイクルの上限値を示す情報に基づいて、所定サイクルを決定してもよい。所定サイクルは、予め規定されていてもよい。
 BS200は、UE100から受信したサイクル情報に基づいて、UE100が上りリンク情報をBS200へ送信すべき所定サイクルを把握してもよい。BS200は、上位ネットワークから取得したサイクル情報に基づいて、UE100が上りリンク情報をBS200へ送信すべき所定サイクルを把握してもよい。
 UE100の所定サイクルは、予め規定されていてもよい。BS200は、UE100からサイクル情報を受信しなくても、UE100の所定サイクルを把握できる。
 ステップS730において、BS200は、上位ネットワーク(例えば、SGW400)からUE100へ送信すべき情報(データ及び/又は制御情報)を受信してもよい。BS200は、当該情報の受信により、UE100へ送信すべき下りリンク情報が発生したと判定してもよい。BS200は、下りリンク情報の発生に応じて、BS200は、UE100から上りリンク情報を受信したか否かを判定してもよい(図15のS810)。
 BS200は、下りリンク情報が発生した場合には、UE100から上りリンク情報を受信するまで、下りリンク情報を保持する。すなわち、BS200は、下りリンク情報が発生しても、UE100から上りリンク情報を受信していない場合には、下りリンク情報をUE100へ送信しない。
 一方、UE100は、BS200へ送信すべき情報(データ及び/又は制御情報)が存在するか否かを判定する(図16のS910)。
 UE100は、BS200へ送信すべき情報が存在する場合(S910:YES)、ステップS740の処理(図16のS930)を実行してもよい。UE100は、BS200への送信タイミングが予め規定されている場合には、送信タイミングまでステップS740の処理の実行を待ってもよい。
 UE100は、BS200へ送信すべき情報が存在しない場合(S910:NO)、所定サイクルに基づく第1期間が経過するか否かを判定してもよい(図16のS920)。
 UE100は、第1期間を計測してもよい。例えば、UE100は、上りリンク情報の送信に応じて、第1期間を計測するための第1タイマを(再)起動してもよい。UE100は、第1タイマの満了に応じて、第1期間が経過すると判定してもよい。
 UE100は、第1期間が経過する場合(S920:YES)に、ステップS740の処理(図16のS930)を実行してもよい。これにより、UE100は、所定サイクルでBS200へ上りリンク情報を少なくとも1回送信することができる。UE100は、所定サイクルで、上りリンク情報を複数回送信してもよい。
 UE100は、第1期間が経過しない場合(S920:NO)には、ステップS910の処理を実行してもよい。
 ステップS740において、UE100は、上りリンク情報をBS200へ送信できる。
 UE100は、BS200へ送信すべき情報が存在する場合には、当該情報をBS200へ送信する。
 UE100は、所定サイクルで上りリンク情報を必ず1回送信しなければならなくてもよい。UE100は、BS200へ送信すべき情報が存在しない場合であっても、上りリンク情報をBS200へ送信してもよい。例えば、上りリンク情報は、ダミーデータであってもよい。上りリンク情報は、送信データが存在しないことを示す情報であってもよい。上りリンク情報は、ヌルを示す情報であってもよい。
 UE100は、上りリンク情報の送信に応じて、下りリンク情報のモニタを実行(開始)する(図16のS940)。UE100は、上りリンク情報の送信を開始するまで、下りリンク情報のモニタを停止してもよい。UE100は、上りリンク情報の送信を開始するまで、下りリンク情報のモニタが要求(期待)されなくてもよい。従って、UE100は、上りリンク情報を送信する前の期間に、下りリンク情報のモニタを開始するか否かを決定してもよい。UE100は、上りリンク情報の送信を開始する前であっても、(必要に応じて)下りリンク情報をモニタしてもよい。
 UE100は、下りリンク情報のモニタを開始する動作として、下りリンク情報のモニタを受信しないDRX(Discontinous Reception)スリープ動作を終了してもよい。すなわち、UE100は、DRXスリープ動作からウェイクアップして、PDCCHを受信するために待機してもよい。
 UE100は、下りリンク情報(例えば、PDCCH)を受信不能な状態(受信オフ状態)から、下りリンク情報を受信可能な状態(受信オン状態)へ移行してもよい。UE100は、下りリンク情報のモニタを開始する動作として、ロングDRXサイクルを用いたDRX動作から、ショートDRXサイクルを用いたDRX動作へ切り替えてもよい。
 UE100は、上りリンク情報の送信から第3期間を経過した後に下りリンク情報のモニタを開始してもよい。例えば、UE100は、上りリンク情報を送信したサブフレームから第3期間が経過したサブフレームにおいてモニタを開始してもよい。上述の時間情報は、第3期間を示すオフセットを示す情報を含んでいてもよい。
 UE100は、上りリンク情報の送信に応じて、第2期間を計測してもよい。UE100は、例えば、上りリンク情報の送信に応じて、UE100が下りリンク情報のモニタを終了する第2期間を計測するための第2タイマを起動してもよい。UE100は、第2タイマの起動中は、下りリンク情報のモニタを実行してもよい。
 第2タイマは、UE100がPDCCHをデコードするために待機する下りリンクサブフレームにおける持続時間を示すインアクティビティタイマであってもよい。
 BS200は、UE100からの上りリンク情報を受信する。BS200は、上りリンク情報の受信した場合に、ステップS750の処理を実行する。
 BS200は、上りリンク情報を受信できない場合には(S810:NO)、所定サイクルに基づく第1期間が経過したか否かを判定してもよい(図15のS820)。BS200は、第1期間を計測するために第1タイマを起動してもよい。BS200は、UE100からの上りリンク情報の受信に応じて、第1タイマを起動してもよい。
 BS200は、上述の通り、第1期間が経過していない場合(S820:NO)には、ステップS810の処理を実行してもよい。
 BS200は、第1期間が経過しても上りリンク情報を受信しない場合には、UE100に異常事態(アブノーマルシチュエーション)が発生したと判定してもよい。
 BS200は、第1期間が経過しても上りリンク情報を受信しない場合には、UE100が手の届かない状態(Unreachable)になったと判定してもよい。例えば、BS200は、UE100との通信が不能になったと判定してもよい。BS200は、BS200が管理する通信エリア(セル)からUE100が移動したと判定してもよい。
 BS200は、第1期間が経過した場合(S820:YES)には、解放手順を開始してもよい(図15のS830)。すなわち、BS200は、上りリンク情報を受信してから所定サイクルに基づく第1期間が経過しても、UE100から次の上りリンク情報を受信しない場合に、UE100の情報を解放するための手順を実行してもよい。
 BS200は、例えば、ステップS730において受信したUE100へ送信すべきデータを破棄してもよい。
 BS200は、UE100のコンテキストを解放するための手順(S1 UE Context Release Request)を開始してもよい(eNB triggered)。具体的には、BS200は、UE100のコンテキストを解放するための要求(S1 UE Context Release Request)をEPC10(MME300)へ送ってもよい。MME300は、当該要求の受信に応じて、UE100のコンテキストを解放してもよい。MME300は、当該要求の受信に応じて、BS200においてUE100のコンテキストを解放するための命令(S1 UE Context Release Command)を送ってもよい。BS200は、当該命令の受信に応じて、UE100のコンテキストを解放してもよい。BS200は、UE100のコンテキストの解放の完了を示すメッセージをEPC10(MME300)へ送ってもよい。
 ステップS750において、BS200は、上りリンク情報の受信に応じて(S810:YES)、下りリンク情報の送信を実行(開始)する(図15のS840)。UE100は、BS200からの下りリンク情報を受信する。
 BS200は、下りリンク情報を送信する前に、UE100が当該下りリンク情報を受信するためのページングメッセージをUE100へ送信してもよい。BS200は、ページングメッセージをUE100へ送信した後に、下りリンク情報を送信してもよい。
 BS200は、UE100へ送信すべき情報を保持していない場合には、UE100へ送信すべき情報(保管情報:DLデータ及び/又は制御情報)がないことを示す下りリンク情報をUE100へ送信してもよい。下りリンク情報は、保管情報がないことを示す識別子を含んでいてもよい。
 UE100は、BS200が保持するUE100へ送信すべき下りリンク情報の全ての受信が完了したか否かを判定してもよい(図16のS950)。UE100は、BS200から下りリンク情報を最後に受信してから次の下りリンク情報を受信しない期間が閾値を超えたことに応じて、当該受信が完了したと判定してもよい。UE100は、当該期間が閾値未満であることに応じて、当該受信が完了していないと判定してもよい。
 UE100は、第1実施形態における最後識別情報の受信に応じて、全ての下りリンク情報の受信が完了したと判定してもよい。UE100は、最後識別情報を受信するまで、全ての下りリンク情報の受信が完了していないと判定してもよい。
 UE100は、全ての下りリンク情報の受信が完了した(S950:YES)ことに応じて、下りリンク情報のモニタを終了してもよい(図16のS960)。これにより、UE100は、省電力化を図ることができる。
 UE100は、全ての下りリンク情報の受信が完了していないと判定した(S950:NO)ことに応じて、下りリンク情報のモニタを実行(継続)する。
 UE100は、モニタを開始してから第2期間が経過するか否かを判定してもよい(図16のS950)。UE100は、第2タイマの満了に応じて、第2期間が経過したと判定してもよい。UE100は、第2タイマが起動中であることに応じて、第2期間が経過していないと判定してもよい。
 UE100は、モニタを開始してから第2期間が経過した(S950:YES)ことに応じて、下りリンク情報のモニタを終了してもよい(図16のS960)。UE100は、第2期間を計測するための第2タイマの満了に応じて、下りリンク情報のモニタを終了してもよい。
 UE100は、第2期間が経過していないと判定した(S950:NO)ことに応じて、下りリンク情報のモニタを実行(継続)する。
 UE100は、下りリンク情報のモニタを終了する動作として、DRXスリープ動作を開始してもよい。UE100は、受信オン状態から受信オフ状態へ移行してもよい。UE100は、下りリンク情報のモニタを開始する動作として、ショートDRXサイクルを用いたDRX動作から、ロングDRXサイクルを用いたDRX動作へ切り替えてもよい。
 UE100は、下りリンク情報のモニタを終了した場合、上りリンク情報の送信を開始するまで、下りリンク情報のモニタを停止し続けることができる。これにより、UE100は、省電力化を図ることができる。
 UE100は、下りリンク情報のモニタを終了した場合、ステップS910の処理を実行してもよい。
 以上のように、UE100は、所定サイクルでBS200へ上りリンク情報を少なくとも1回送信するため、BS200が、上りリンク情報の受信に応じて、下りリンク情報の送信を開始する場合であっても、UE100は、所定サイクルで下りリンク情報を受信することができる。UE100は、上りリンク情報の送信を開始するまで、下りリンク情報のモニタが要求されないため、省電力を図ることができる。
 [その他の実施形態]
 上述した実施形態によって、本出願の内容を説明したが、この開示の一部をなす論述及び図面は、本出願の内容を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 上述した第1実施形態では、データと共に最後識別情報が送信されていたが、これに限られない。最後のデータの送信が完了した後に、UE100へ割り当てられた複数の時間・周波数リソースのうちの時間・周波数リソースを用いて最後識別情報が送信されてもよい。例えば、UE100及び/又はBS200は、第1のサブフレーム内に配置された時間・周波数リソースを用いて最後のデータを送信し、第2のサブフレーム内に配置された時間・周波数リソースを用いて最後識別情報を送信してもよい。
 上述した第2実施形態では、ネットワーク装置として、BS200を例に挙げて説明したが、これに限られない。ネットワーク装置は、例えば、MME300であってもよい。従って、BS200をMME300へ置き換えてもよい。この場合、UE100とMME300との間のシグナリングは、NASシグナリングであってもよい。
 MME300は、UE100のコンテキストを解放するための手順(S1 UE Context Release Request)を実行する場合、BS200においてUE100のコンテキストを解放するための命令(S1 UE Context Release Command)を送ってもよい(EPC triggered)。
 上述では、UE100がRRCインアクティブ状態であるケースを例を挙げて説明したが、これに限られない。UE100は、RRC接続状態、RRCアイドル状態、その他のRRC状態のいずれかの状態であってもよい。
 上述した各実施形態において、UE100は、IoT(Internet of Things)デバイスであってもよい。例えば、UE100は、Nb-IoT(Narrow Band Internet of Things)を利用する無線通信装置であってもよい。Nb-IoTは、180kHzに制限されたチャネル帯域幅でE-UTRAN10を介したネットワークサービスへのアクセスを可能とする。この場合、上述のPDCCHは、NPDCCH(Narrowband Physical Downlink Control CHannel)へ置き換えられてもよい。NPDCCHは、(NPDSCH(Narrowband Physical Downlink Shared CHannel)用の)リソース割り当てについてNB-IoT UEへ知らせるためのチャネルである。NPDCCHは、NB-IoT UEのための上りリンクスケジューリング情報(ULスケジューリンググラント)を運ぶことができる。NPDSCHは、NB-IoT UEのためのDL-SCH(下りリンク同期チャネル)及びPCH(ページングチャネル)を運ぶことができる。
 上述した実施形態において、UE100は、センサモジュール(M2Mデバイス)であってもよい。UE100は、(複数の)センサモジュールを管理する無線通信装置(例えば、IoT GW(Internet of Things GateWay))であってもよい。IoT GWは、IoT GWに管理される(複数の)センサモジュールを代表してネットワークとの通信を実行してもよい。センサモジュールは、ネットワークとの通信を実行する機能を有さなくてもよい。IoT GWに管理されるセンサモジュールは、IoT GWとの通信を実行する機能を有してもよい。
 上述した実施形態に係る内容は、適宜組み合わせて実行されてもよい。また、上述した各シーケンスにおいて、必ずしも全ての動作が必須の構成ではない。例えば、各シーケンスにおいて、一部の動作のみが実行されてもよい。
 上述した実施形態では特に触れていないが、上述した各ノード(UE100、BS200、MME300など)のいずれかが行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 UE100及びBS200のいずれかが行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサによって構成されるチップが提供されてもよい。
 上述した実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本出願に係る内容を適用してもよい。例えば、5Gにおける通信システムにおいて、本出願に係る内容が適用されてもよい。
 日本国特許出願第2017-059030号(2017年3月24日出願)の全内容が、参照により本願明細書に組み込まれている。
 本発明は、無線通信分野において有用である。

Claims (14)

  1.  通信方法であって、
     第1の無線通信装置が、第2の無線通信装置へデータを送信するために割り当てられ、かつ時間方向に配置された複数の時間・周波数リソースを用いた送信を開始し、
     前記第2の無線通信装置が、前記第1の無線通信装置からのデータを受信するために、前記複数の時間・周波数リソースにおけるモニタを開始し、
     前記第1の無線通信装置が、前記第2の無線通信装置へ送信すべき最後のデータを送信する際に、前記最後のデータと共に、前記最後のデータの送信を示す最後識別情報を前記第2の無線通信装置へ送信する、通信方法。
  2.  前記第2の無線通信装置が、前記最後識別情報の受信に応じて、前記モニタを終了する請求項1に記載の通信方法。
  3.  前記第2の無線通信装置が、前記最後識別情報の受信に応じて、前記複数の時間・周波数リソースを解放する処理を実行する請求項1に記載の通信方法。
  4.  前記第1の無線通信装置が、前記最後識別情報の送信に応じて、前記複数の時間・周波数リソースを解放する処理を実行する請求項1に記載の通信方法。
  5.  前記第1の無線通信装置が、前記最後のデータを送信してから所定期間中に前記第2の無線通信装置へ送信すべき新たなデータが発生しないことを予測し、
     前記第1の無線通信装置が、前記予測に応じて、前記最後識別情報を前記第2の無線通信装置へ送信する請求項1に記載の通信方法。
  6.  第1の無線通信装置を制御するためのプロセッサであって、
     第2の無線通信装置へデータを送信するために割り当てられ、かつ時間方向に配置された複数の時間・周波数リソースを用いた送信を開始する処理と、
     前記第2の無線通信装置へ送信すべき最後のデータを送信する際に、前記最後のデータと共に、前記最後のデータの送信を示す最後識別情報を前記第2の無線通信装置へ送信する処理と、を実行するプロセッサ。
  7.  通信方法であって、
     無線端末が、所定サイクルでネットワーク装置へ上りリンク情報を少なくとも1回送信し、
     前記ネットワーク装置が、前記無線端末へ送信すべき下りリンク情報が発生した場合には、前記上りリンク情報を受信するまで前記下りリンク情報を保持し、
     前記ネットワーク装置が、前記上りリンク情報の受信に応じて、前記下りリンク情報の送信を開始し、
     前記無線端末が、前記上りリンク情報の送信に応じて、前記下りリンク情報のモニタを開始する通信方法。
  8.  前記無線端末が、前記所定サイクルを示す情報を前記ネットワーク装置へ通知する請求項7に記載の通信方法。
  9.  前記無線端末が、前記ネットワーク装置が保持する前記下りリンク情報の全ての受信が完了したことに応じて、前記下りリンク情報のモニタを終了する請求項7に記載の通信方法。
  10.  前記無線端末が、前記モニタを開始してから所定期間が経過したことに応じて、前記下りリンク情報のモニタを終了する請求項7に記載の通信方法。
  11.  前記ネットワーク装置が、前記所定サイクルの上限値を示す情報を前記無線端末へ通知する請求項7に記載の通信方法。
  12.  前記ネットワーク装置が、前記上りリンク情報を受信してから前記所定サイクルに基づく期間が経過しても、前記無線端末から次の上りリンク情報を受信しない場合に、前記無線端末の情報を解放するための手順を開始する請求項7に記載の通信方法。
  13.  無線端末を制御するためのプロセッサであって、
     所定サイクルでネットワーク装置へ上りリンク情報を少なくとも1回送信する処理と、
     前記無線端末へ送信すべき下りリンク情報が発生した場合に前記上りリンク情報を受信するまで前記下りリンク情報を保持する前記ネットワーク装置からの下りリンク情報のモニタを、前記上りリンク情報の送信に応じて開始する処理と、を実行するプロセッサ。
  14.  ネットワーク装置を制御するためのプロセッサであって、
     所定サイクルで前記ネットワーク装置へ上りリンク情報を少なくとも1回送信するよう構成された無線端末へ送信すべき下りリンク情報が発生した場合には、前記上りリンク情報を受信するまで前記下りリンク情報を保持する処理と、
     前記ネットワーク装置が、前記上りリンク情報の受信に応じて、前記下りリンク情報の送信を開始する処理と、を実行するプロセッサ。
PCT/JP2018/011487 2017-03-24 2018-03-22 無線端末、プロセッサ及び基地局 WO2018174184A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019506985A JP6849789B2 (ja) 2017-03-24 2018-03-22 無線端末、プロセッサ及び基地局
US16/577,990 US10973080B2 (en) 2017-03-24 2019-09-20 Radio terminal, processor, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059030 2017-03-24
JP2017-059030 2017-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/577,990 Continuation US10973080B2 (en) 2017-03-24 2019-09-20 Radio terminal, processor, and base station

Publications (1)

Publication Number Publication Date
WO2018174184A1 true WO2018174184A1 (ja) 2018-09-27

Family

ID=63585841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011487 WO2018174184A1 (ja) 2017-03-24 2018-03-22 無線端末、プロセッサ及び基地局

Country Status (3)

Country Link
US (1) US10973080B2 (ja)
JP (1) JP6849789B2 (ja)
WO (1) WO2018174184A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161925A1 (ja) * 2020-02-12 2021-08-19 京セラ株式会社 中継制御方法及び通信ノード

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128463A1 (ko) * 2017-01-05 2018-07-12 엘지전자 주식회사 단말이 데이터를 송수신하는 방법 및 장치
WO2019095366A1 (en) * 2017-11-20 2019-05-23 Qualcomm Incorporated Dynamic termination of hybrid automatic repeat request retransmissions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535938A (ja) * 2010-08-13 2013-09-12 インターデイジタル パテント ホールディングス インコーポレイテッド デバイス内干渉軽減のための方法およびシステム
JP2016192785A (ja) * 2013-10-11 2016-11-10 京セラ株式会社 通信制御方法、ユーザ端末、プロセッサ、及び通信装置
WO2016185923A1 (ja) * 2015-05-15 2016-11-24 京セラ株式会社 無線端末

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9210624B2 (en) * 2010-08-17 2015-12-08 Google Technology Holdings LLC Method and apparatus for change of primary cell during carrier aggregation
US9854446B2 (en) * 2011-07-07 2017-12-26 Lg Electronics Inc. Method and apparatus for transmitting a signal in a wireless communication system
CN105359604B (zh) * 2014-02-28 2020-02-14 华为技术有限公司 一种使用非授权频谱通信的方法、设备及系统
EP3231242B1 (en) * 2014-12-09 2018-09-19 Telefonaktiebolaget LM Ericsson (publ) Access management of a communication device in a cellular network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535938A (ja) * 2010-08-13 2013-09-12 インターデイジタル パテント ホールディングス インコーポレイテッド デバイス内干渉軽減のための方法およびシステム
JP2016192785A (ja) * 2013-10-11 2016-11-10 京セラ株式会社 通信制御方法、ユーザ端末、プロセッサ、及び通信装置
WO2016185923A1 (ja) * 2015-05-15 2016-11-24 京セラ株式会社 無線端末

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161925A1 (ja) * 2020-02-12 2021-08-19 京セラ株式会社 中継制御方法及び通信ノード

Also Published As

Publication number Publication date
JPWO2018174184A1 (ja) 2020-01-16
US20200015315A1 (en) 2020-01-09
US10973080B2 (en) 2021-04-06
JP6849789B2 (ja) 2021-03-31

Similar Documents

Publication Publication Date Title
KR101164117B1 (ko) 무선 통신 시스템상에서 물리 하향 채널의 모니터링 동작을 효율적으로 제어하는 방법
US9848455B2 (en) User terminal, processor, and base station
US9826562B2 (en) Communication control method, user terminal, processor, storage medium, and base station for D2D communication
US9749834B2 (en) Communication control method, user terminal, processor, and storage medium
US9661635B2 (en) Communication control method, base station, user terminal, processor, and non-transitory storage medium for inter-terminal communication
US10021039B2 (en) Mobile communication system and user terminal
US10973080B2 (en) Radio terminal, processor, and base station
JP6199998B2 (ja) 基地局及び方法
JP7297811B2 (ja) 通信制御方法、無線端末、及び基地局
US20150245342A1 (en) Communication control method and base station
JP6736045B2 (ja) 無線通信装置
JPWO2017183654A1 (ja) 無線端末及び基地局
WO2019159963A1 (ja) 通信方法
JP7271581B2 (ja) 通信制御方法及びユーザ装置
WO2014192629A1 (ja) ユーザ端末、基地局及びプロセッサ
US9900763B2 (en) User terminal for determining whether to transmit synchronization signal in response to a received power
JP7212156B2 (ja) 通信制御方法及びユーザ装置
WO2014163139A1 (ja) 基地局、ユーザ端末、及び通信制御方法
JP6106286B2 (ja) ユーザ端末及びプロセッサ
KR20200071736A (ko) 네트워크 액세스 우선 순위화
JP7039739B2 (ja) 通信制御方法、ユーザ装置、及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772248

Country of ref document: EP

Kind code of ref document: A1