WO2018174068A1 - Laminated article - Google Patents

Laminated article Download PDF

Info

Publication number
WO2018174068A1
WO2018174068A1 PCT/JP2018/011105 JP2018011105W WO2018174068A1 WO 2018174068 A1 WO2018174068 A1 WO 2018174068A1 JP 2018011105 W JP2018011105 W JP 2018011105W WO 2018174068 A1 WO2018174068 A1 WO 2018174068A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer layer
polymer
laminate
latex
young
Prior art date
Application number
PCT/JP2018/011105
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 早坂
実紗 山本
伊賀 隆志
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019507696A priority Critical patent/JPWO2018174068A1/en
Publication of WO2018174068A1 publication Critical patent/WO2018174068A1/en

Links

Images

Definitions

  • the present invention relates to a laminate comprising a substrate and a polymer layer formed from a polymer latex. Moreover, this invention relates also to the method for measuring the softness
  • Patent Document 1 a sample is taken from a protective glove, and the flexibility is evaluated by measuring the bending rigidity of the collected sample using a bending tester.
  • the softness was appropriately evaluated because the correlation between the results and the feeling of use (softness) when actually worn was low. Therefore, in the past, there was a situation in which the flexibility cannot be properly evaluated for a thin sample such as a laminate such as a protective glove, so what kind of laminate would be excellent in flexibility. It has not been clarified whether it will be a product, and it has been difficult to produce a laminate having excellent flexibility.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a laminate having excellent flexibility.
  • the present inventors have permeated the substrate out of the polymer layers in a laminate comprising a substrate and a polymer layer formed from a polymer latex.
  • the thickness of the portion and the thickness of the portion of the polymer layer that covers the surface of the base material are controlled so as to be in a predetermined state, and the laminate in the portion where the polymer layer is laminated on the base material.
  • a laminate comprising a substrate and a polymer layer formed from a polymer latex, wherein the polymer layer partially penetrates the substrate.
  • the ratio of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer (t 1 / t) where t 2 is the thickness of the surface polymer layer from the surface of the substrate. 2 ) is 0.15 to 5.0, and a laminate having a Young's modulus of 800 kPa or less at a portion where the polymer layer is laminated on the substrate is provided.
  • the thickness t 1 of the osmotic polymer layer is preferably 0.05 to 0.6 mm.
  • the polymer latex for forming the polymer layer has a Young's modulus of the film molded body of 10,000 kPa or less when the volatile matter is removed to form a film molded body. preferable.
  • the polymer latex for forming the polymer layer contains a conjugated diene rubber having a conjugated diene monomer unit content of 52 to 78% by weight as the polymer. Is preferred.
  • the polymer latex for forming the polymer layer is a conjugated polymer in which the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is 20 to 40% by weight. It is preferable to contain a diene rubber.
  • the polymer latex for forming the polymer layer is a conjugated diene-based polymer having a carboxyl group-containing ethylenically unsaturated monomer unit content of 2 to 10% by weight as the polymer. It is preferable to contain rubber.
  • a method for measuring the flexibility of a rubber film molded body or a laminate having a rubber layer, wherein an indenter is pushed into the film molded body or the laminated body with a predetermined pushing load Provided is a method for measuring the flexibility of a rubber film molded body or a laminate having a rubber layer, in which the flexibility is measured based on the indentation load and the displacement due to the indentation when the indenter is indented.
  • the film molded body or the laminated body is used in contact with a human body.
  • a laminate having excellent flexibility can be provided.
  • FIG. 1 (A) is a cross-sectional view of a fiber base material before forming a polymer layer
  • FIG. 1 (B) is formed by laminating a polymer layer on the fiber base material shown in FIG. 1 (A).
  • FIG. 2 is a diagram illustrating an example of an indentation test apparatus 20 that can be used in the measurement method of the present invention.
  • FIG. 3 is a characteristic curve showing the relationship between the indentation load on the measurement sample 10 and the displacement caused by the indentation of the measurement sample 10.
  • FIG. 4 is a graph plotting the measurement results of the Young's modulus of the film molded body and the Young's modulus of the protective gloves in association with the results of the sensory test.
  • FIG. 5 is a graph plotting Young's modulus and bending test results in association with sensory test results.
  • the laminate of the present invention is a laminate comprising a substrate and a polymer layer formed from a polymer latex, The polymer layer partially covers the base material in a state of permeating the base material, Wherein one of the polymer layers, which is a penetration portion to the substrate osmopolymers layer, the thickness from the surface of the substrate and t 1, the surface polymer layer is a portion that covers the substrate, When the thickness from the surface of the base material is t 2 , the ratio of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer (t 1 / t 2 ) is 0.15 to 5.0, The Young's modulus in the portion where the polymer layer is laminated on the base material is 800 kPa or less.
  • the laminate of the present invention comprises a substrate and a polymer layer.
  • the laminated body of this invention can be used for the use for which a softness
  • a laminated body which has a polymer layer the laminated body which has a fiber base material and polymer layer used in contact with human bodies, such as a protective glove, is illustrated and demonstrated.
  • the fiber base material is not particularly limited as long as it is made of fiber, but natural fibers such as cotton, wool, hemp, and wool, and synthetic fibers such as polyester, polyurethane, acrylic, and nylon may be used as a material. Among these, nylon is preferably used.
  • the fiber base material may be knitted or sewn, and may be a woven fabric or a non-woven fabric.
  • the thickness of the fiber base material (base material layer average thickness d of the fiber base material described later) is not particularly limited, but is preferably 0.05 to 3.00 mm, more preferably 0.10 to 2.00 mm, and still more preferably. 0.15 to 1.5 mm.
  • the linear density of the fiber base material is not particularly limited, but is preferably 50 to 500 denier.
  • the gauge number of the fiber base material is not particularly limited, but is preferably 7 to 18 gauge. Here, the number of gauges refers to the number of knitting machine needles between 1 inch.
  • a polymer latex containing a polymer is brought into contact with the fiber substrate to which the coagulant solution is adhered. It can be obtained by solidifying the polymer in the combined latex to form a polymer layer on the fiber substrate. In this case, the coagulant solution adhering to the fiber base material penetrates between the fibers constituting the fiber base material. In this state, when the polymer latex is brought into contact with the fiber base material into which the coagulant solution has permeated, a part of the polymer latex penetrates between the fibers constituting the fiber base material, and the polymer inside is solidified. By doing so, as shown in FIG.
  • a polymer layer is formed on the surface of the fiber substrate, and a part of the polymer layer constitutes the fiber substrate. It penetrates to the gap between the fibers.
  • 1A is a cross-sectional view of the fiber base material before forming the polymer layer
  • FIG. 1B is a view in which the polymer layer is laminated on the fiber base material shown in FIG. It is sectional drawing of the laminated body formed.
  • the polymer layer formed by coagulating the polymer in the polymer latex may have a multilayer laminated structure by performing the above method a plurality of times.
  • the polymer layer covers the fiber base material in a state where a part of the polymer layer penetrates between the fibers constituting the fiber base material.
  • transmitted the clearance gap between the fibers from the surface of a fiber base material among the polymer layers which comprise a laminated body is made into a permeation
  • covers a fiber base material from the surface of a base material is shown as a surface polymer layer.
  • the polymer layer will be described as appropriately consisting of a osmotic polymer layer and a surface polymer layer. Usually, the osmotic polymer layer and the surface polymer layer are integrally formed. It becomes.
  • the ratio of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer may be 0.15 to 5.0, and the durability From the viewpoint of highly balancing flexibility and comfort when worn, it is preferably 0.2 to 0.5, more preferably 0.25 to 4.80, and still more preferably 0.30 to 4.60.
  • the thickness t 1 of the penetrating polymer layer is preferably 0.05 to 0.6 mm, more preferably 0.10 to 0.00 mm, from the viewpoint of durability when the laminate is used as a protective glove or the like. It is 55 mm, more preferably 0.10 to 0.50 mm.
  • the thickness t 1 of the osmotic polymer layer is preferably 0.01 to 3.00 mm, more preferably 0.02 to 2.5 mm, from the viewpoint of durability when the laminate is used as a protective glove or the like. More preferably, it is 0.03 to 2.0 mm.
  • the thickness of the osmotic polymer layer with respect to the average thickness d of the base material layer of the fiber base material from the viewpoint of highly balancing the durability, flexibility, and comfort during wearing when the laminate is used as a protective glove or the like.
  • the ratio of t 1 (t 1 / d) is preferably 0.1 to 0.95, and more preferably from 0.1 to 0.9 and more preferably 0.15 to 0.8.
  • the total thickness of the laminate (total of the surface polymer layer thickness t 2 and the fiber substrate base layer average thickness d) is preferably 0.75 to 3.70 mm, more preferably 0.75. ⁇ 3.5 mm.
  • the thickness may be different between the portion where the fiber overlap is dense and the portion where the fiber overlap is sparse.
  • the base material layer average thickness d of a base material shall be calculated
  • the polymer constituting the polymer latex used for obtaining the laminate of the present invention is not particularly limited. Natural rubber; conjugated diene rubber obtained by polymerizing or copolymerizing conjugated dienes such as butadiene and isoprene Among these, conjugated diene rubbers are preferable.
  • conjugated diene rubber include so-called nitrile rubber, isoprene rubber, styrene-butadiene rubber, chloroprene rubber and the like obtained by copolymerizing nitrile, and among these, nitrile rubber is particularly preferable.
  • the nitrile rubber is not particularly limited, and a nitrile rubber obtained by copolymerizing an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer and other copolymerizable monomers used as necessary can be used.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited, and an ethylenically unsaturated compound having a nitrile group and preferably having 3 to 18 carbon atoms can be used.
  • Examples of such ⁇ , ⁇ -ethylenically unsaturated nitrile monomers include acrylonitrile, methacrylonitrile, halogen-substituted acrylonitrile and the like, and among these, acrylonitrile is particularly preferable.
  • These ⁇ , ⁇ -ethylenically unsaturated nitrile monomers may be used alone or in combination of two or more.
  • the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the nitrile rubber is preferably 10 to 45% by weight, more preferably 20 to 40% by weight, still more preferably based on the total monomer units. It is 21 to 38% by weight, particularly preferably 22 to 37% by weight.
  • a conjugated diene monomer unit is provided from the viewpoint of imparting rubber elasticity and more effectively preventing cracks from occurring in the polymer layer of the obtained laminate.
  • the thing containing is preferable.
  • the conjugated diene monomer forming the conjugated diene monomer unit include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, chloroprene and the like having 4 to 4 carbon atoms. 6 conjugated diene monomers are preferred, 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is particularly preferred.
  • these conjugated diene monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content ratio of the conjugated diene monomer unit is preferably 40 to 80% by weight, more preferably 52 to 78% by weight, still more preferably 54 to 76% by weight, based on all monomer units constituting the nitrile rubber. Particularly preferred is 56 to 74% by weight.
  • Nitrile rubber is also a monomer that forms ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units and other ethylenically unsaturated monomers that are copolymerizable with monomers that form conjugated diene monomer units.
  • An acid monomer may be included.
  • Such other copolymerizable ethylenically unsaturated acid monomer is not particularly limited, and examples thereof include a carboxyl group-containing ethylenically unsaturated monomer, a sulfonic acid group-containing ethylenically unsaturated monomer, Examples thereof include phosphoric acid group-containing ethylenically unsaturated monomers.
  • the carboxyl group-containing ethylenically unsaturated monomer is not particularly limited, but ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; fumaric acid, maleic acid, itaconic acid, maleic anhydride, anhydrous And ethylenically unsaturated polyvalent carboxylic acids such as itaconic acid and anhydrides thereof; partially esterified products of ethylenically unsaturated polyvalent carboxylic acids such as methyl maleate and methyl itaconic acid; and the like.
  • monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid
  • fumaric acid, maleic acid, itaconic acid, maleic anhydride anhydrous And ethylenically unsaturated polyvalent carboxylic acids such as itaconic acid and anhydrides thereof
  • the sulfonic acid group-containing ethylenically unsaturated monomer is not particularly limited, but vinyl sulfonic acid, methyl vinyl sulfonic acid, styrene sulfonic acid, (meth) allyl sulfonic acid, (meth) acrylic acid-2-sulfonic acid ethyl And 2-acrylamido-2-hydroxypropanesulfonic acid.
  • the phosphoric acid group-containing ethylenically unsaturated monomer is not particularly limited, but includes (meth) acrylic acid-3-chloro-2-propyl phosphate, (meth) acrylic acid-2-ethyl phosphate, 3-allyloxy. Examples include -2-hydroxypropane phosphoric acid.
  • These other copolymerizable ethylenically unsaturated acid monomers can also be used as alkali metal salts or ammonium salts, and can be used alone or in combination of two or more. .
  • carboxyl group-containing ethylenically unsaturated monomers are preferable, ethylenically unsaturated monocarboxylic acids are more preferable, and methacrylic acid is particularly preferable.
  • the content ratio of the ethylenically unsaturated acid monomer unit is preferably 2 to 10% by weight, more preferably 2.5 to 9.0% by weight, and still more preferably 3.0 to 8.0% by weight. .
  • the polymer latex can be obtained, for example, by emulsion polymerization of a monomer mixture containing the above monomers.
  • emulsion polymerization commonly used polymerization auxiliary materials such as an emulsifier, a polymerization initiator, and a molecular weight modifier can be used.
  • the polymer latex used for obtaining the laminate of the present invention a film in the case of forming a film molded body by removing volatile components from the viewpoint that a laminate having excellent flexibility can be suitably obtained.
  • a molded product having a Young's modulus of 10,000 kPa or less it is preferable to use a molded product having a Young's modulus of 10,000 kPa or less.
  • the Young's modulus of the film molded body may be 10,000 kPa or less, preferably 9,500 kPa or less, more preferably 9,000 kPa or less, further preferably 8,000 kPa or less, and particularly preferably 7, 000 kPa or less.
  • the lower limit of the Young's modulus of the film molded body is not particularly limited, but is usually 0.01 kPa or more, preferably 0.02 kPa or more.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is preferably 20 to 40% by weight, more preferably 21 to 38% by weight, More preferably, it is contained in the range of 22 to 37% by weight, and the conjugated diene monomer unit is preferably 52 to 78% by weight, more preferably 54 to 76% by weight, still more preferably 56 to 74% by weight.
  • the unit of the carboxyl group-containing ethylenically unsaturated monomer is preferably 2 to 10% by weight, more preferably 2.5 to 9.0% by weight. Further, it is particularly preferable to contain in the range of 3.0 to 8.0% by weight. In this case, as the monomer constituting each monomer unit, those described above can be used.
  • the Young's modulus in the case of forming a film molded body by removing volatile matter can be further reduced.
  • flexibility of the laminated body obtained can be improved more appropriately.
  • by making the content rate of a conjugated diene monomer unit into the said range it can suppress more effectively that a gel generate
  • the polymer layer is prevented from becoming a non-uniform film due to the generation of such a gel, and cracks are generated in the polymer layer of the obtained laminate.
  • the laminate can be excellent in solvent resistance and texture. Furthermore, by including the unit of the carboxyl group-containing ethylenically unsaturated monomer in the above content ratio, the Young's modulus in the case of forming a film molded body by removing the volatile matter can be further reduced. Thus, the flexibility of the obtained laminate can be improved more appropriately.
  • a polymer constituting the polymer latex having a methylethylketone insoluble content is preferably 90% by weight or less, more preferably 85% by weight or less, and further preferably 80% by weight or less. Is preferred.
  • a latex blended with a compounding agent such as a crosslinking agent or a thickener may be used as polymer latex. That is, as polymer latex, you may mix
  • blend compounding agents such as a crosslinking agent and a thickener
  • the Young's modulus of the film molded body in the case where the film molded body is removed to form a film molded body may be 10,000 kPa or less.
  • the crosslinking agent it is preferable to use a sulfur-based crosslinking agent.
  • a sulfur type crosslinking agent Sulfur, such as powder sulfur, sulfur white, precipitation sulfur, colloidal sulfur, surface treatment sulfur, insoluble sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothia Sulfur-containing compounds such as zildisulfide, caprolactam disulfide, phosphorus-containing polysulfide, and polymer polysulfides; sulfur-donating compounds such as tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, and 2- (4′-morpholinodithio) benzothiazole; Is mentioned.
  • These crosslinking agents may be used alone or in combination of two or more.
  • crosslinking accelerator vulcanization accelerator
  • zinc oxide a crosslinking accelerator (vulcanization accelerator) and zinc oxide.
  • the crosslinking accelerator (vulcanization accelerator) is not particularly limited.
  • dithiocarbamine such as diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyldithiocarbamic acid, dicyclohexyldithiocarbamic acid, diphenyldithiocarbamic acid, and dibenzyldithiocarbamic acid.
  • zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate, 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc is preferred.
  • These crosslinking accelerators may be used alone or in combination of two or more.
  • the viscosity of the polymer latex may be adjusted so that a thickener is added from the viewpoint of controlling the thickness t 1 of the penetrating polymer layer and the thickness t 2 of the surface polymer layer.
  • a thickener for example, Vinyl compounds, such as polyvinyl alcohol and polyvinyl pyrrolidone; Cellulose derivatives, such as hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethylcellulose salt; Polycarboxylic acid compound and its sodium salt; Polyethylene And polyoxyethylene derivatives such as glycol ethers.
  • the 1% viscosity of the thickener used is preferably 20 mPa ⁇ s or more, more preferably 50 mPa ⁇ s or more, and even more preferably 200 mPa ⁇ s or more.
  • the 1% viscosity of the thickener is obtained by dissolving the thickener in water to obtain an aqueous solution having a concentration of 1% by weight, and measuring the viscosity at 25 ° C. using a B-type viscometer at a rotation speed of 10 rpm. Can be obtained.
  • the particle size of the insoluble component when the thickener to be used is dissolved in water is preferably 30 ⁇ m or less, more preferably 28 ⁇ m or less, and still more preferably 25 ⁇ m or less.
  • the content of the thickener in the polymer latex is preferably 0.1 to 5.0% by weight, more preferably 0.1 to 4.0% by weight. %, And further 0.1 to 3.0% by weight.
  • the method of adding the polymer latex to the thickener is not particularly limited, but when a polymer latex to which a crosslinking agent is added is used, it is prevented that aggregates are generated in the polymer latex. From the viewpoint of enabling better transfer of the polymer latex, a method of adding a thickener after aging the polymer latex, or a portion of the thickener before aging the polymer latex It is preferable to use a method in which a thickener is further added after aging, and a method in which a thickener is added after aging of the polymer latex is particularly preferable.
  • the laminated body of this invention does not specifically limit as a method to manufacture the laminated body of this invention.
  • the following methods can be used. That is, in a laminate having a fiber base material and a polymer layer, for example, a coagulant solution is attached to the fiber base material, and then a polymer latex is brought into contact with the fiber base material to which the coagulant solution is attached.
  • the method of obtaining the laminated body which consists of a fiber base material and a polymer layer by forming a polymer layer on a fiber base material by coagulating a polymer can be used.
  • stacked several times after polymer layer formation may be sufficient.
  • the method for attaching the polymer latex to the fiber substrate is not particularly limited, and examples thereof include a method of immersing the fiber substrate in the polymer latex.
  • the fiber base material when attaching the coagulant solution to the fiber base material, it is preferable to immerse the fiber base material in the coagulant solution in a state where the fiber base material is previously covered with a molding die of a desired shape, It is preferable to immerse the polymer latex in the fiber base material to which the coagulant solution is attached.
  • mold which covers a fiber base material Various things, such as a product made from porcelain, glass, metal, and plastics, can be used.
  • the shape of the molding die may be a desired shape according to the shape of the final product.
  • the mold for various gloves such as a mold having a shape from the wrist to the fingertip, is used as a mold for covering the fiber substrate. Is preferably used.
  • the drying temperature at this time is not particularly limited and may be selected according to the solvent to be used, but is preferably 10 to 80 ° C., more preferably 15 to 70 ° C.
  • the drying time is not particularly limited, but is preferably 1 to 600 seconds, more preferably 5 to 300 seconds.
  • the polymer latex is brought into contact with the fiber base material to which the coagulant solution is adhered in this manner, so that the polymer in the polymer latex is coagulated to form a polymer layer on the fiber base material. .
  • the method of bringing the polymer latex into contact with the fiber base material to which the coagulant solution is attached is not particularly limited, and examples thereof include a method in which the fiber base material to which the coagulant solution is attached is immersed in the polymer latex.
  • the fiber base material to which the coagulant solution is attached is immersed in the polymer latex
  • the fiber base material to which the coagulant solution is attached is put on the polymer latex in a state where the fiber base material is put on a molding die having a desired shape. It is preferable to immerse.
  • the fiber base material is coated with the coagulant solution as described above in a state where the fiber base material is previously covered with a molding die having a desired shape, and then the coagulant solution is adhered to the fiber base material. Is preferably immersed in a polymer latex while being covered with a molding die.
  • the drying temperature at this time is not particularly limited, but is preferably 10 to 80 ° C., more preferably 15 to 80 ° C.
  • the drying time is not particularly limited, but is preferably 5 seconds to 120 minutes, more preferably 10 seconds to 60 minutes.
  • the fiber base material may be dipped in polymer latex and dried, and then polymer latex may be further dipped and laminated multiple times.
  • crosslinking agent when blended in the polymer latex, it may be crosslinked by heating as necessary.
  • the laminate is obtained by detaching the fiber base material on which the polymer layer is formed from the molding die. Can do.
  • the desorption method it is possible to adopt a method of peeling from the mold by hand, or peeling by water pressure or compressed air pressure.
  • the laminated body which has a fiber base material and a polymer layer as an example of the laminated body which has a polymer layer can be obtained.
  • the laminate of the present invention measures the Young's modulus at the portion where the polymer layer is laminated on the substrate (that is, the measurement is performed on the substrate and the polymer layer at the place where the polymer layer is laminated on the substrate).
  • the Young's modulus obtained by carrying out is 800 kPa or less, preferably 750 kPa or less, more preferably 700 kPa or less, further preferably 600 kPa or less, and particularly preferably 500 kPa or less.
  • the Young's modulus within the above range, the obtained laminate can be remarkably excellent in flexibility when used as protective gloves or the like.
  • the lower limit of the Young's modulus in the part of the laminate in which the polymer layer is laminated on the base material is not particularly limited, but is usually 0.01 kPa or more, preferably 0.02 kPa or more.
  • the present inventors have found a method that can appropriately measure the Young's modulus for a thin sample such as a laminated body such as a protective glove by a method described later, and in this way.
  • the Young's modulus measured in this way was found to be highly correlated with the flexibility of the laminate. Based on such knowledge, the present invention obtains a laminate that is remarkably excellent in flexibility by controlling the Young's modulus of the laminate in which the polymer layer is laminated on the base material within the above range. It is something that can be done.
  • the method of controlling the Young's modulus in the portion where the polymer layer is laminated on the base material within the above range is not particularly limited, but the type and composition of the polymer constituting the polymer latex are not limited.
  • the method of adjusting, the method of adjusting the type and amount of the thickener added to the polymer latex, and the ratio of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer (t 1 / t 2 ) Examples of the method include controlling each of the above ranges.
  • a method using a polymer latex having a Young's modulus of 10,000 kPa or less in the case of forming a film molded body by removing volatile components is also suitable.
  • the Young's modulus of the laminate of the present invention is measured based on the indentation load and the displacement due to indentation when the indenter is pushed into the laminate having a polymer layer with a predetermined indentation load. be able to. Since the Young's modulus measured by this method serves as an index indicating flexibility, according to this method, the flexibility of a laminate having a rubber layer such as the laminate of the present invention can be measured.
  • the method for measuring the Young's modulus of the laminate of the present invention will be described.
  • the Young's modulus of the film molded body obtained using the polymer latex that is, the film molded body obtained using the polymer latex, etc.
  • the flexibility of the rubber film molding can also be measured in the same manner.
  • the indenter is pushed with at least one indentation load into the laminate having the polymer layer, and when the indenter is indented with at least one indentation load. It is sufficient to measure the Young's modulus based on the displacement, but from the viewpoint that the Young's modulus can be measured more appropriately, the indentation load when the indenter is pushed in with different indentations and indented with different indentations It is preferable to measure the Young's modulus based on the corresponding displacement due to the pressing.
  • FIG. 2 is a diagram showing an example of an indentation test apparatus 20 that can be used for measuring Young's modulus.
  • the measurement method of Young's modulus in the case of using the indentation test apparatus 20 shown in FIG. 2 will be described as an example.
  • the measurement method of Young's modulus is a method using the indentation test apparatus 20 shown in FIG. It is not particularly limited.
  • the indentation test apparatus 20 shown in FIG. 2 includes a suction table 30 for placing a measurement sample 10 to be measured for Young's modulus on a measurement table 21, and above the measurement table 21 and the suction table 30.
  • a support arm 22 that holds the spherical indenter 29 is provided. Further, the support arm 22 is provided with a horizontal arm 23, and the spherical indenter 29 is moved in the in-plane direction of the measurement table 21 and the suction table 30 by the horizontal drive mechanism provided in the horizontal arm 23, that is, in the drawing.
  • the indentation test apparatus 20 can perform tests on various portions of the measurement sample 10.
  • a stage 26 is provided so as to be movable in the Z direction in the figure via a coarse moving vertical moving mechanism 24 and a fine moving vertical moving mechanism 25.
  • a spherical indenter 29 is connected to the stage 26 via a load cell 27 and a load shaft 28.
  • the coarse movement vertical movable mechanism 24 can be provided with a movable mechanism using a ball nut, for example, and the stage 26 can be moved in the Z direction in the figure by the rotation of the motor.
  • the fine moving vertical moving mechanism 25 can be provided with a voice coil motor as a moving mechanism, for example, and the stage 26 can be moved in the Z direction with a fine pitch with high accuracy.
  • the spherical indenter 29 is moved by the fine moving vertical movable mechanism 25 via the stage 26.
  • the indenter 29 can be pushed into the measurement sample 10 with a fine pitch with high accuracy.
  • the indentation load at this time can be detected by the load cell 27.
  • the fine movement vertical movable mechanism 25 includes, for example, an optical position detection mechanism using a laser, and the like, and thereby, with a high degree of accuracy, the amount of pressing with respect to the measurement sample 10, that is, the displacement due to the pressing of the measurement sample 10. (Displacement in the thickness direction) can be detected.
  • the suction table 30 has a plurality of suction holes formed in the vicinity of a measurement location (that is, a location where the spherical indenter 29 abuts) on the surface thereof, and is connected to a suction pump (not shown).
  • the measurement sample 10 can be fixed by suction from a plurality of suction holes. In the present invention, the measurement can be performed with high accuracy by performing the measurement while being fixed by suction.
  • the laminated body that is the object of measurement often suffers from sagging of the sample during measurement and cannot be measured satisfactorily.
  • the suction table 30 by performing measurement while being fixed by suction, it is possible to effectively prevent the occurrence of such a defect, thereby realizing highly accurate measurement.
  • a resin tape is applied to a portion corresponding to the plurality of suction holes of the suction table 30 out of the surface opposite to the measurement surface. It is preferable that the measurement is performed by placing it on the suction table 30 after it is in a pasted state.
  • the spherical indenter 29 is driven by the coarse moving vertical movable mechanism 24 through the stage 26, and the spherical indenter 29 is moved to the vicinity of the surface of the measurement sample 10 fixed on the suction table 30 by suction. Thereafter, the spherical indenter 29 is gradually pushed into the measurement sample 10 at a fine pitch through the stage 26 of the vertical moving mechanism 25 for fine movement, and the indentation load on the measurement sample 10 detected by the load cell 27 at this time,
  • the measurement sample as shown in FIG. 3 can be detected by continuously detecting the amount of pushing detected by the position detection mechanism provided in the fine moving vertical moving mechanism 25, that is, the displacement caused by the pushing of the measurement sample 10.
  • a characteristic curve showing the relationship between the indentation load with respect to 10 and the displacement due to indentation of the measurement sample 10 can be obtained.
  • a SUS product can be used as the spherical indenter 29, and the diameter is preferably 40 mm or less, more preferably 20 mm or less.
  • the indentation speed during measurement is preferably 0.1 to 10 mm / s, more preferably 0.1 to 2 mm / s, and the maximum load in measurement is 0.5 to 50 N. Is preferable, and 0.5 to 20 N is more preferable.
  • the Young's modulus of the measurement sample 10 can be obtained based on the characteristic curve showing the relationship between the indentation load on the measurement sample 10 shown in FIG. 3 and the displacement caused by the indentation of the measurement sample 10 obtained by the measurement.
  • a method for calculating the Young's modulus of the measurement sample 10 will be described.
  • the flexibility coefficient ⁇ can be obtained by the least square method or the like
  • the Young's modulus E of the measurement sample 10 can be obtained from the following equation (3) obtained by modifying the above equation (2).
  • the measurement sample 10 as a measurement object is the laminate of the present invention, and these are thin as described above. Therefore, when the spherical indenter 29 is pushed in, it is accompanied by pushing. Since the increase in the indentation load becomes significant, the above formula (1) based on the Hertz elastic contact theory cannot be applied with high accuracy in many cases. Therefore, when the thickness is thin like this, it is preferable to apply the following formula (4).
  • the pressing load F and the pressing amount related to the pressing of the spherical indenter 29 are used. (That is, the displacement of the measurement sample 10) ⁇ can be expressed appropriately.
  • is a coefficient representing the influence of the thinness of the measurement sample 10 on the load. Therefore, in the present invention, even when the measurement sample 10 is a thin sample like the laminate of the present invention, the indentation load on the measurement sample 10 shown in FIG.
  • the coefficient ⁇ representing the influence on the load and the flexibility coefficient ⁇ can be obtained using the characteristic curve indicating the relationship with the displacement due to the pressing of the sample. Further, the Young of the measurement sample 10 can be obtained from the above equation (4).
  • the rate E can be determined.
  • the method for measuring the Young's modulus of the laminate of the present invention has been described.
  • the Young's modulus of the film molded body in the case of forming a film molded body by removing volatile components as the polymer latex is 10,000 kPa.
  • the above method may be used also when measuring the Young's modulus of the film molded body. That is, the volatile matter of the polymer latex is removed by a known method such as heating to obtain a film molded body, and the Young's modulus of the obtained film molded body may be measured according to the above method.
  • the thickness of the film molded body produced here is a thickness that is difficult to measure the Young's modulus by the conventional method, specifically, usually 3.0 mm or less, preferably 2.5 mm or less. it can.
  • the solid content obtained from the polymer latex can be measured as long as the solid content is in a bulk state, but the polymer latex is thin like a film molding. When used as a sample, it was difficult to measure the Young's modulus.
  • the Young's modulus can be measured even for a thin film molded body produced using a polymer latex.
  • the indenter when the indenter is pushed in with a predetermined pushing load, the rubber film molded body or the laminate having the rubber layer to be measured, when the indenter is pushed in, Since the flexibility is measured based on the indentation load and the displacement caused by the indentation, the flexibility of the rubber film molded body or the laminate having the rubber layer can be appropriately measured. More specifically, the indenter Based on the indentation load and the displacement due to the indentation, the Young's modulus of the rubber film molded body or the laminate having the rubber layer is obtained. By using it as an index, the flexibility of a rubber film molded body or a laminate having a rubber layer can be appropriately measured.
  • the content ratio of butadiene units was calculated by measuring the iodine value of nitrile rubber (according to JIS K 6235).
  • the content ratio of the acrylonitrile unit was calculated by measuring the nitrogen content in the nitrile rubber by the Kjeldahl method according to JIS K6384.
  • Methyl ethyl ketone insoluble polymer latex was poured onto a framed glass plate and allowed to stand for 48 hours at a humidity of 23 ° C. and a relative humidity of 50% to obtain a dry film having a thickness of 1 mm.
  • About 0.2 g of the obtained dried film was precisely weighed, and this was defined as the weight (W1) of the film before immersion.
  • W1 weight of the film before immersion.
  • the film before immersion was placed in an 80 mesh cage wire mesh and immersed in 100 mL of methyl ethyl ketone for 24 hours in a state of being placed in the cage wire mesh.
  • a 1% viscosity thickener of a thickener is dissolved in water to make an aqueous solution having a concentration of 1% by weight, and a viscosity measured at 25 ° C. using a B-type viscometer at a rotation speed of 60 rpm is 1% viscosity. As sought.
  • Insoluble component particle size of thickener The particle size of the insoluble component was determined by dissolving the thickener in water to a concentration of 1% by weight using a grind gauge (JIS-K5101) to JIS-K5600-5-2. The particle diameter measured by the linear method is shown. Specifically, the aqueous solution is placed on a particle size gauge, and the scraper is pulled toward the front so as to be perpendicular to the gauge, and the scale at the position where three or more lines of 10 mm or more appear continuously is read. The particle size of the insoluble component was determined by the wire method evaluation. In addition, the particle diameter measured by the said method does not exclude what the insoluble component whose particle diameter exceeds 30 micrometers contains in trace amount in a solution at all.
  • the absolute value of the difference between two average values obtained by measuring twice is 95% probability and 20% of the gauge range. It is expected to be (targeted). Therefore, in the range of accuracy and reproducibility required by JIS, an insoluble component having a particle diameter exceeding 30 ⁇ m may exist in the aqueous solution.
  • the thickness t 1 of the osmotic polymer layer and the thickness t 2 of the surface polymer layer For the protective gloves (laminated body), by observing the cross section where the polymer layer of the palm portion of 12 cm from the tip of the middle finger was laminated using an optical microscope (product name “VHX-200”, manufactured by Keyence Corporation), The thickness t 1 of the osmotic polymer layer and the thickness t 2 of the surface polymer layer were measured. A specific measurement method will be described with reference to FIG. 1.
  • the thickness t 1 of the osmotic polymer layer is measured at 10 points from the surface of the fiber base to the deepest part of the infiltrated rubber. The number average value was calculated by calculating.
  • the thickness t 2 of the surface polymer layer from the surface of the fiber substrate, the distance to the surface of the polymer layer was measured 10 locations were determined by calculating the number average value of the measurement results.
  • Sensory test gloves (laminated body) are worn by 10 people, and their flexibility is evaluated by the following five grades. The average score is obtained, and the average score is the highest. The closest score was used as the evaluation score in each example (for example, when the average value was 4.1, “4: soft” or the like). 5: Very soft 4: Soft 3: Slightly soft 2: Hard 1: Very hard
  • the resin tape is attached to the portions corresponding to the plurality of suction holes of the suction table 30 of the measurement sample, and the spherical indenter is applied from the polymer layer side while performing suction by the suction table 30.
  • the measurement was performed by pushing.
  • a polymer tape is applied to the surface opposite to the surface (measurement surface) on which the polymer layer of the measurement sample is formed, and suction is performed by the suction table 30 while the polymer is being suctioned. Measurement was performed by pushing a spherical indenter from the layer side.
  • a sample for measurement was obtained by cutting the palm portion of the bending stiffness protective glove (laminate) into a shape of 60 mm ⁇ 60 mm. Then, when the measurement sample was bent using a bending tester (product name “KES-FB2” manufactured by Kato Tech Co., Ltd.) with the test conditions set to SENS20 and bending 2 cm ⁇ 1 , the rubber layer was attached to the inner surface. The bending stiffness was measured by bending in the direction. The measurement was performed 5 times, and the average value was defined as the bending rigidity of each example.
  • a bending tester product name “KES-FB2” manufactured by Kato Tech Co., Ltd.
  • the abrasion resistance abrasion test was evaluated using a Martindale abrasion tester (product name “STM633”, manufactured by SATRA) in accordance with the method described in EN388. Specifically, for the protective gloves (laminated body), friction was repeated while applying a predetermined load, and the number of frictions until breakage was obtained. According to the number of frictions until breakage, it is divided into levels from level 0 to level 4, and the higher the level, the better the wear resistance. LEVEL 4: 8,000 or more revolutions LEVEL 3: 2,000 or more revolutions and less than 8,000 revolutions LEVEL 2: 500 or more revolutions and less than 2,000 revolutions LEVEL 1: 100 or more revolutions and 500 Less than rotation LEVEL 0: Number of rotations less than 100
  • the reactor was kept at 5 ° C., and 0.1 parts of cumene hydroperoxide (polymerization initiator), a reducing agent, and a chelating agent were charged in appropriate amounts, and the polymerization reaction was continued for about 16 hours with stirring. Subsequently, 0.1 part of a 10 wt% hydroquinone aqueous solution (polymerization terminator) was added to stop the polymerization reaction at a polymerization conversion rate of 85%, and then the residual monomer was removed using a rotary evaporator at a water temperature of 60 ° C. Thereafter, it was concentrated to obtain a nitrile rubber latex (A-1) (solid content concentration of about 30% by weight).
  • A-1 solid content concentration of about 30% by weight
  • Production Example 2 (Production of nitrile rubber latex (A-2))
  • the amount of acrylonitrile used is 20 to 27 parts
  • the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.6 to 0.5 parts
  • the amount of 1,3-butadiene is 75 to 68 parts.
  • a nitrile rubber latex (A-2) was obtained in the same manner as in Production Example 1, except that the respective changes were made. The results are shown in Table 2.
  • Production Example 3 (Production of nitrile rubber latex (A-3))
  • the amount of acrylonitrile used is 20 to 37 parts
  • the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.6 to 0.3 parts
  • the amount of 1,3-butadiene is 75 to 58 parts.
  • a nitrile rubber latex (A-3) was obtained in the same manner as in Production Example 1, except that the respective changes were made. The results are shown in Table 2.
  • Production Example 4 (Production of nitrile rubber latex (A-4))
  • the amount of acrylonitrile used is 20 to 15 parts
  • the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.6 to 0 parts
  • the amount of 1,3-butadiene is 75 to 80 parts.
  • a nitrile rubber latex (A-4) was obtained in the same manner as in Production Example 1 except that each was changed, and the measurement was performed in the same manner. The results are shown in Table 2.
  • Production Example 5 (Production of nitrile rubber latex (A'-5))
  • the amount of acrylonitrile used is 20 to 42 parts
  • the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.6 to 0.4 parts
  • the amount of 1,3-butadiene is 75 to 53 parts.
  • a nitrile rubber latex (A′-5) was obtained in the same manner as in Production Example 1, except that each was changed. The results are shown in Table 2.
  • Production Example 6 (Production of nitrile rubber latex (A'-6))
  • the amount of acrylonitrile used is 20 to 30 parts
  • the amount of methacrylic acid is 5 to 12 parts
  • the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.6 to 0.5 parts
  • 1 A nitrile rubber latex (A′-6) was obtained and measured in the same manner as in Production Example 1 except that the amount of 1,3-butadiene was changed from 75 parts to 58 parts. The results are shown in Table 2.
  • Example 1 Preparation of latex composition for dip molding
  • the latex (A-2) of the nitrile rubber produced in Production Example 2 was prepared, and each 100 parts of the nitrile rubber in the latex of the nitrile rubber was converted into solid content.
  • water of each compounding agent was prepared so that colloidal sulfur (manufactured by Hosoi Chemical Co., Ltd.) 1.0 part, zinc dibutyldithiocarbamate (manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) 0.5 part, and zinc oxide 2.0 parts.
  • a dispersion was prepared, and the prepared aqueous dispersion was added to obtain a latex composition.
  • a predetermined amount of the aqueous dispersion of each compounding agent was slowly added while the latex was stirred. Thereafter, the solid content concentration of the latex composition was adjusted, and then aging (also referred to as pre-vulcanization) was performed at a temperature of 30 ° C. for 48 hours.
  • carboxymethylcellulose (B-1) (trade name “WS-C”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a thickener for the latex composition after aging (insoluble component particle size: 20 ⁇ m, 1% Viscosity: 250 mPa ⁇ s, degree of etherification: 0.6 to 0.7) was added at a rate of 0.7% by weight, and a B-type viscometer was used at a temperature of 25 ° C. and a solid content concentration of 45% by weight.
  • a latex composition for dip molding was obtained by adjusting the viscosity measured at a rotation speed of 10 rpm to 2,800 mPa ⁇ s.
  • a metal glove mold covered with a glove-shaped fiber substrate (material: nylon, substrate layer average thickness d of fiber substrate: 0.7 mm, 13 gauge) It was immersed in the solution for 5 seconds, pulled up from the coagulant solution, and then dried under conditions of a temperature of 30 ° C. for 60 seconds. Thereafter, the metal glove mold was dipped in the above dip molding latex composition for 3 seconds, pulled up from the dip molding latex composition, and then dried under the conditions of a temperature of 30 ° C. for 30 minutes. Next, the nitrile rubber in the polymer layer was subjected to a crosslinking treatment by performing a heat treatment under conditions of a temperature of 100 ° C. for 60 minutes.
  • protective gloves were obtained by peeling the fiber base material on which the polymer layer was formed from the metal glove mold.
  • the measurement of the thickness t 1 of the penetrating polymer layer, the measurement of the thickness t 2 of the surface polymer layer, the sensory test, the measurement of Young's modulus, the wear resistance, And the appearance was evaluated. The results are shown in Table 1.
  • Example 2 As a thickener to be added to the latex composition, carboxymethylcellulose (B-2) (trade name “Daicel1150”, manufactured by Daicel Finechem) instead of carboxymethylcellulose (B-1) (insoluble component particle size: 28 ⁇ m, 1 % Viscosity: 300 mPa ⁇ s, degree of etherification: 0.6 to 0.8) at a ratio of 0.65 wt%, the viscosity of the latex composition for dip molding was adjusted to 3,000 mPa ⁇ s. Except for the above, protective gloves (laminated body) were obtained in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1.
  • Example 3 As a thickener to be added to the latex composition, carboxymethylcellulose (B-3) (trade name “Daicel1190”, manufactured by Daicel Finechem) instead of carboxymethylcellulose (B-1) (insoluble component particle size: 25 ⁇ m, 1 % Viscosity: 1,800 mPa ⁇ s, degree of etherification: 0.6 to 0.8) at a ratio of 0.4% by weight, the viscosity of the latex composition for dip molding is 3,200 mPa ⁇ s. Except having adjusted, it carried out similarly to Example 1, obtained the protective glove (laminated body), and evaluated similarly. The results are shown in Table 1.
  • Example 4 After pulling up from the coagulant solution, a protective glove (laminated body) was obtained and evaluated in the same manner as in Example 1 except that it was dried at a temperature of 30 ° C. for 20 seconds. The results are shown in Table 1.
  • Comparative Example 2 As a thickener to be added to the latex composition, carboxymethyl cellulose (B′-5) (trade name “Daicel 1120”, manufactured by Daicel Finechem) instead of carboxymethyl cellulose (B-1) (insoluble component particle size: 15 ⁇ m, The viscosity of the latex composition for dip molding is adjusted to 2,500 mPa ⁇ s by using 1.5% by weight of 1% viscosity: 20 mPa ⁇ s, degree of etherification: 0.6 to 0.8). A protective glove (laminate) was obtained in the same manner as in Example 1 except that the evaluation was performed in the same manner. The results are shown in Table 1.
  • Comparative Examples 1 to 3 when the Young's modulus of the laminate was too high, the laminate had a poor sensory test evaluation result and was inferior in flexibility (Comparative Examples 1 to 3).
  • Comparative Example 1 by the thickness t 1 of the osmopolymer layer of the laminate is thicker, the Young's modulus of the laminate becomes higher, by which the evaluation results of the sensory test is deteriorated, flexibility It was particularly inferior.
  • Example 5 Preparation of Dip Molding Latex Composition
  • Colloidal sulfur made by Hosoi Chemical Industry Co., Ltd.
  • the liquid was added to obtain a latex composition.
  • aqueous dispersion of each compounding agent a predetermined amount of the aqueous dispersion of each compounding agent was slowly added while the latex was stirred.
  • the solid content concentration of the latex composition was adjusted, and then aging (also referred to as pre-vulcanization) was performed at a temperature of 30 ° C. for 48 hours. Then, a thickener (trade name “Aron A-7100”, manufactured by Toagosei Co., Ltd.) was added to the latex composition after aging at a ratio of 0.4% by weight, and the temperature was 25 ° C. and the solid content concentration was 45.
  • a latex composition for dip molding was obtained by using a B-type viscometer under the condition of wt% and adjusting the viscosity measured at a rotational speed of 10 rpm to 3,000 mPa ⁇ s.
  • a metal glove mold covered with a glove-shaped fiber substrate (material: nylon, substrate layer average thickness d of fiber substrate: 0.7 mm, 13 gauge) It was immersed in the solution for 5 seconds, pulled up from the coagulant solution, and then dried under conditions of a temperature of 30 ° C. for 60 seconds. Thereafter, the metal glove mold was dipped in the above dip molding latex composition for 3 seconds, pulled up from the dip molding latex composition, and then dried under the conditions of a temperature of 30 ° C. for 30 minutes. Next, the nitrile rubber in the polymer layer was subjected to a crosslinking treatment by performing a heat treatment under conditions of a temperature of 100 ° C. for 60 minutes.
  • protective gloves were obtained by peeling the fiber base material on which the polymer layer was formed from the metal glove mold.
  • the measurement of the thickness t 1 of the penetrating polymer layer, the measurement of the thickness t 2 of the surface polymer layer, the sensory test, the measurement of Young's modulus, and the evaluation of the appearance Went are shown in Table 2.
  • Example 6 A protective glove (laminate) was obtained in the same manner as in Example 5 except that the nitrile rubber latex (A-2) produced in Production Example 2 was used instead of the nitrile rubber latex (A-1). The same evaluation was performed. The results are shown in Table 2.
  • Example 7 A protective glove (laminate) was obtained in the same manner as in Example 5 except that the nitrile rubber latex (A-3) produced in Production Example 3 was used instead of the nitrile rubber latex (A-1). The same evaluation was performed. The results are shown in Table 2.
  • Example 8 A protective glove (laminate) was obtained in the same manner as in Example 5 except that the nitrile rubber latex (A-4) produced in Production Example 5 was used instead of the nitrile rubber latex (A-1). The same evaluation was performed. The results are shown in Table 2.
  • Comparative Example 4 A protective glove (laminate) was prepared in the same manner as in Example 5 except that the nitrile rubber latex (A′-5) produced in Production Example 5 was used instead of the nitrile rubber latex (A-1). Obtained and evaluated in the same manner. The results are shown in Table 2.
  • Comparative Example 5 A protective glove (laminate) was prepared in the same manner as in Example 5 except that the nitrile rubber latex (A′-6) produced in Production Example 6 was used instead of the nitrile rubber latex (A-1). Obtained and evaluated in the same manner. The results are shown in Table 2.
  • FIG. 4 shows a graph in which the measurement results of the Young's modulus of the film molded body and the Young's modulus of the protective gloves are plotted in association with the results of the sensory test. That is, exemplifying Example 5, the sensory test was 5, the Young's modulus of the film molded body was 2,100 kPa, and the Young's modulus of the protective glove was 211 kPa, so the measurement results of the Young's modulus of the film molded body are shown.
  • the Young's modulus of the film molded body and the Young's modulus of the laminate obtained according to the measurement method described above are in good agreement with the results of the sensory test for protective gloves.
  • the lower the Young's modulus of the film molded body and the Young's modulus of the laminated body the better the result of the sensory test.
  • the higher the Young's modulus of the film molded body and the Young's modulus of the laminated body the worse the result of the sensory test.
  • the Young's modulus of the film molded body and the Young's modulus of the laminate obtained according to the measurement method described above are appropriate as an index of the flexibility of the protective gloves. It can be confirmed that it can be used.
  • Example 9 Preparation of Dip Molding Latex Composition
  • a nitrile rubber latex (A-2) produced in Production Example 2 was prepared as a polymer latex, and 100 parts of nitrile rubber in the nitrile rubber latex was prepared. Respectively, in terms of solid content, 1.0 part of colloidal sulfur (manufactured by Hosoi Chemical Co., Ltd.), 0.5 part of zinc dibutyldithiocarbamate (manufactured by Ouchi Shinsei Chemical Co., Ltd.), and 2.0 parts of zinc oxide.
  • the aqueous dispersion of each compounding agent was prepared, and the prepared aqueous dispersion was added to obtain a latex composition.
  • aqueous dispersion of each compounding agent when adding the aqueous dispersion of each compounding agent, a predetermined amount of the aqueous dispersion of each compounding agent was slowly added while the latex was stirred. Thereafter, the solid content concentration of the latex composition was adjusted, and then aging (also referred to as pre-vulcanization) was performed at a temperature of 30 ° C. for 48 hours. Then, Aron A-7100 (manufactured by Toa Gosei Co., Ltd.) is added as a thickener to the latex composition after aging at a ratio of 0.4% by weight, and the temperature is 25 ° C. and the solid content concentration is 45% by weight.
  • a latex composition for dip molding was obtained by using a B-type viscometer and adjusting the viscosity measured at 10 rpm to 3,000 mPa ⁇ s.
  • a metal glove mold covered with a glove-shaped fiber substrate (material: nylon, substrate layer average thickness d of fiber substrate: 0.7 mm, 13 gauge) It was immersed in the solution for 5 seconds, pulled up from the coagulant solution, and then dried at a temperature of 30 ° C. for 1 minute. Thereafter, the metal glove mold was dipped in the above dip molding latex composition for 3 seconds, pulled up from the dip molding latex composition, and then dried under the conditions of a temperature of 30 ° C. for 30 minutes. Next, the nitrile rubber in the rubber layer was subjected to a crosslinking treatment by performing a heat treatment under conditions of a temperature of 100 ° C. for 60 minutes.
  • a crosslinking treatment by performing a heat treatment under conditions of a temperature of 100 ° C. for 60 minutes.
  • protective gloves were obtained by peeling the fiber base material on which the rubber layer was formed from the metal glove mold.
  • the measurement of the thickness t 1 of the osmotic rubber layer, the measurement of the thickness t 2 of the surface rubber layer, the sensory test, the measurement of Young's modulus, the bending rigidity, and the wear resistance was measured. The results are shown in Table 3.
  • Example 10 As a thickener added to the latex composition after aging, Aron A-7100 (manufactured by Toa Gosei Co., Ltd.) is used in a proportion of 0.3% by weight, so that the viscosity of the dip molding latex composition is 2,000 mPas. -Except having adjusted to s, it carried out similarly to Example 9, obtained the protective glove (laminated body), and evaluated similarly. The results are shown in Table 3.
  • Example 11 A protective glove (laminate) was obtained in the same manner as in Example 9 except that the drying condition after lifting the metal glove mold from the coagulant solution was 30 ° C. for 30 seconds. Went. The results are shown in Table 3.
  • Example 12 As a thickener added to the latex composition after aging, Aron A-7100 (manufactured by Toa Gosei Co., Ltd.) is used at a ratio of 0.6% by weight, so that the viscosity of the dip-molding latex composition is 5,000 mPas. -Adjusting to s and obtaining a protective glove (laminate) in the same manner as in Example 9 except that the time for immersing the metal glove mold in the dip-forming latex composition was changed to 5 seconds, Evaluation was performed in the same manner. The results are shown in Table 3.
  • Comparative Example 6 A protective glove (laminate) was obtained and evaluated in the same manner as in Example 9 except that the drying conditions after the metal glove mold was pulled up from the coagulant solution were set to a temperature of 30 ° C. and 90 seconds. Went. The results are shown in Table 3.
  • Comparative Example 7 After pulling up the metal glove mold from the coagulant solution, drying it at a temperature of 30 ° C. for 60 seconds, and then immersing the metal glove mold in the latex composition for dip molding, that is, the metal glove mold Was dipped in a latex composition for dip molding for 3 seconds, pulled up, and then subjected to protective gloves (as in Example 9) except that the operation of drying at a temperature of 30 ° C. for 30 minutes was repeated twice. A laminate was obtained and evaluated in the same manner. The results are shown in Table 3.
  • Table 3 shows the measurement results of Examples 9 to 12 and Comparative Examples 6 and 7. Further, FIG. 5 shows the Young's modulus and the results of the bending test plotted in correspondence with the results of the sensory test. That is, exemplifying Example 9, the sensory test was 4, the Young's modulus was 359 kPa, and the bending stiffness was 0.340 gf ⁇ cm 2 / cm.
  • the Young's modulus obtained according to the measurement method of the present invention was in good agreement with the results of the sensory test. That is, the worse the sensory test result, the higher the Young's modulus, and the better the sensory test result, the lower the Young's modulus, and there is a certain correlation between them. It can be confirmed that the Young's modulus obtained according to the measuring method can be appropriately used as an index of flexibility. On the other hand, the result of the bending stiffness was inconsistent with the result of the sensory test and was not appropriate as an index of flexibility.

Abstract

A laminated article provided with a substrate and a polymer layer formed from polymer latex, wherein: the polymer layer covers the substrate in a state in which part of the polymer layer has infiltrated the substrate; the ratio (t1/t2) of the thickness t1 of an infiltration polymer layer, which is the portion of the polymer layer that infiltrates the substrate, with respect to the thickness t2 of a surface polymer layer, which is the portion of the polymer layer that covers the substrate, is 0.15-5.0, where t1 is the thickness of the infiltration polymer layer from the surface of the substrate, and t2 is the thickness of the surface polymer layer from the surface of the substrate; and the Young's modulus of the portion of the substrate on which the polymer layer is laminated is 800 kPa or less.

Description

積層体Laminated body
 本発明は、基材と、重合体ラテックスから形成される重合体層とを備える積層体に関する。また、本発明は、このような積層体や、このような積層体を形成するための膜成形体の柔軟性を測定するための方法にも関する。 The present invention relates to a laminate comprising a substrate and a polymer layer formed from a polymer latex. Moreover, this invention relates also to the method for measuring the softness | flexibility of such a laminated body and the film forming body for forming such a laminated body.
 従来、工場での製造作業、軽作業、工事作業、農作業等の様々な用途で、繊維製手袋をゴムや樹脂等により被覆することで、耐溶剤性、グリップ性、耐摩耗性等を向上させた保護手袋が用いられている。 Conventionally, by covering fiber gloves with rubber or resin for various purposes such as factory manufacturing, light work, construction work, and farm work, solvent resistance, grip properties, wear resistance, etc. are improved. Protective gloves are used.
 このような保護手袋は、通常、人体と接触して使用されるものであるため、耐摩耗性などの機械的強度や耐久性に優れていることに加え、柔軟性に優れていることが求められている。 Since such protective gloves are usually used in contact with the human body, in addition to being excellent in mechanical strength and durability such as wear resistance, it is required to have excellent flexibility. It has been.
 一方で、このような保護手袋は、柔軟性を定量的に測定することが困難であり、そのため、柔軟性を評価するためには、実際に手袋形状のサンプルを作製し、複数の被験者に実際に装着してもらい、軽作業を行ってもらうことで、使用感(柔らかさ)を確かめてもらう必要があり、柔軟性の評価に時間や手間が掛かるという課題があった。 On the other hand, it is difficult to quantitatively measure the flexibility of such a protective glove. Therefore, in order to evaluate the flexibility, a glove-shaped sample is actually made and actually used by a plurality of subjects. It is necessary to check the feeling of use (softness) by having the wearer wear it and perform light work, and there is a problem that it takes time and effort to evaluate flexibility.
 これに対し、たとえば、特許文献1では、保護手袋からサンプルを採取し、採取したサンプルに対し、曲げ試験機を用いて曲げ剛性の測定を行うことで柔軟性を評価しているものの、曲げ剛性の結果と、実際に装着した場合における使用感(柔らかさ)との相関が低く、柔軟性を適切に評価できているとは言い難いものであった。したがって、従来においては、保護手袋などの積層体のように厚みの薄い試料について、柔軟性を適切に評価することができない状況にあったため、どのような積層体を製造すれば柔軟性に優れたものとなるかが明らかにされておらず、実際に柔軟性に優れる積層体を製造することは、困難であった。 On the other hand, for example, in Patent Document 1, a sample is taken from a protective glove, and the flexibility is evaluated by measuring the bending rigidity of the collected sample using a bending tester. Thus, it was difficult to say that the softness was appropriately evaluated because the correlation between the results and the feeling of use (softness) when actually worn was low. Therefore, in the past, there was a situation in which the flexibility cannot be properly evaluated for a thin sample such as a laminate such as a protective glove, so what kind of laminate would be excellent in flexibility. It has not been clarified whether it will be a product, and it has been difficult to produce a laminate having excellent flexibility.
国際公開第2012/070576号International Publication No. 2012/070576
 本発明は、このような実状に鑑みてなされたものであり、柔軟性に優れた積層体を提供することを目的とする。 The present invention has been made in view of such a situation, and an object thereof is to provide a laminate having excellent flexibility.
 本発明者等は、上記目的を達成するために鋭意検討を行った結果、基材と、重合体ラテックスから形成される重合体層とを備える積層体において、重合体層のうち基材に浸透した部分の厚みと、重合体層のうち基材の表面を被覆する部分の厚みとを、所定の状態となるように制御し、さらに、基材に重合体層が積層された部分における積層体のヤング率を特定の範囲に制御することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have permeated the substrate out of the polymer layers in a laminate comprising a substrate and a polymer layer formed from a polymer latex. The thickness of the portion and the thickness of the portion of the polymer layer that covers the surface of the base material are controlled so as to be in a predetermined state, and the laminate in the portion where the polymer layer is laminated on the base material The inventors have found that the above-described object can be achieved by controlling the Young's modulus within a specific range, and have completed the present invention.
 すなわち、本発明によれば、基材と、重合体ラテックスから形成される重合体層とを備える積層体であって、前記重合体層は、一部が、前記基材に浸透した状態で前記基材を被覆しており、前記重合体層のうち、前記基材に浸透した部分である浸透重合体層の、前記基材の表面からの厚みをtとし、前記基材を被覆する部分である表面重合体層の、前記基材の表面からの厚みをtとした場合に、前記表面重合体層の厚みtに対する前記浸透重合体層の厚みtの比(t/t)が、0.15~5.0であり、前記基材に前記重合体層が積層された部分におけるヤング率が、800kPa以下である積層体が提供される。 That is, according to the present invention, a laminate comprising a substrate and a polymer layer formed from a polymer latex, wherein the polymer layer partially penetrates the substrate. A portion of the polymer layer that coats the base material and is a portion of the polymer layer that penetrates the base material, where the thickness from the surface of the base material is t 1 and covers the base material The ratio of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer (t 1 / t) where t 2 is the thickness of the surface polymer layer from the surface of the substrate. 2 ) is 0.15 to 5.0, and a laminate having a Young's modulus of 800 kPa or less at a portion where the polymer layer is laminated on the substrate is provided.
 本発明の積層体において、前記浸透重合体層の厚みtが、0.05~0.6mmであることが好ましい。
 本発明の積層体において、前記重合体層を形成するための重合体ラテックスが、揮発分を除去して膜成形体とした場合における該膜成形体のヤング率が10,000kPa以下であることが好ましい。
 本発明の積層体において、前記重合体層を形成するための重合体ラテックスが、重合体として、共役ジエン単量体単位の含有割合が52~78重量%である共役ジエン系ゴムを含有することが好ましい。
 本発明の積層体において、前記重合体層を形成するための重合体ラテックスが、重合体として、α,β-エチレン性不飽和ニトリル単量体単位の含有割合が20~40重量%である共役ジエン系ゴムを含有することが好ましい。
 本発明の積層体において、前記重合体層を形成するための重合体ラテックスが、重合体として、カルボキシル基含有エチレン性不飽和単量体単位の含有割合が2~10重量%である共役ジエン系ゴムを含有することが好ましい。
In the laminate of the present invention, the thickness t 1 of the osmotic polymer layer is preferably 0.05 to 0.6 mm.
In the laminate of the present invention, the polymer latex for forming the polymer layer has a Young's modulus of the film molded body of 10,000 kPa or less when the volatile matter is removed to form a film molded body. preferable.
In the laminate of the present invention, the polymer latex for forming the polymer layer contains a conjugated diene rubber having a conjugated diene monomer unit content of 52 to 78% by weight as the polymer. Is preferred.
In the laminate of the present invention, the polymer latex for forming the polymer layer is a conjugated polymer in which the content of the α, β-ethylenically unsaturated nitrile monomer unit is 20 to 40% by weight. It is preferable to contain a diene rubber.
In the laminate of the present invention, the polymer latex for forming the polymer layer is a conjugated diene-based polymer having a carboxyl group-containing ethylenically unsaturated monomer unit content of 2 to 10% by weight as the polymer. It is preferable to contain rubber.
 また、本発明においては、ゴムの膜成形体またはゴム層を有する積層体の柔軟性を測定する方法であって、前記膜成形体または前記積層体に対し、所定の押込荷重で圧子を押し込み、前記圧子を押し込んだ際の、押込荷重と、押し込みによる変位とに基づいて、柔軟性を測定する、ゴムの膜成形体またはゴム層を有する積層体の柔軟性の測定方法が提供される。
 本発明の測定方法において、異なる複数の押込荷重で圧子を押し込んだ際の、押込荷重と、押し込みによる変位とに基づいて、柔軟性を測定することが好ましい。
 本発明の測定方法において、前記圧子を押し込んだ際の、押込荷重と、押し込みによる変位とに基づいて、前記膜成形体または前記積層体のヤング率を求めることが好ましい。
 本発明の測定方法において、前記膜成形体または前記積層体が、人体に接触して使用されるものであることが好ましい。
Further, in the present invention, a method for measuring the flexibility of a rubber film molded body or a laminate having a rubber layer, wherein an indenter is pushed into the film molded body or the laminated body with a predetermined pushing load, Provided is a method for measuring the flexibility of a rubber film molded body or a laminate having a rubber layer, in which the flexibility is measured based on the indentation load and the displacement due to the indentation when the indenter is indented.
In the measurement method of the present invention, it is preferable to measure flexibility based on the indentation load and the displacement due to the indentation when the indenter is indented with a plurality of different indentation loads.
In the measurement method of the present invention, it is preferable to determine the Young's modulus of the film molded body or the laminate based on the indentation load when the indenter is indented and the displacement due to the indentation.
In the measurement method of the present invention, it is preferable that the film molded body or the laminated body is used in contact with a human body.
 本発明によれば、柔軟性に優れた積層体を提供することができる。 According to the present invention, a laminate having excellent flexibility can be provided.
図1(A)は、重合体層を形成する前の繊維基材の断面図であり、図1(B)は、図1(A)に示す繊維基材に重合体層が積層されてなる積層体の断面図である。FIG. 1 (A) is a cross-sectional view of a fiber base material before forming a polymer layer, and FIG. 1 (B) is formed by laminating a polymer layer on the fiber base material shown in FIG. 1 (A). It is sectional drawing of a laminated body. 図2は、本発明の測定方法に用いることができる押込試験装置20の一例を示す図である。FIG. 2 is a diagram illustrating an example of an indentation test apparatus 20 that can be used in the measurement method of the present invention. 図3は、測定試料10に対する押込荷重と、測定試料10の押し込みによる変位との関係を示す特性曲線である。FIG. 3 is a characteristic curve showing the relationship between the indentation load on the measurement sample 10 and the displacement caused by the indentation of the measurement sample 10. 図4は、膜成形体のヤング率、および保護手袋のヤング率の測定結果を、官能性試験の結果と対応付けてプロットして示したグラフである。FIG. 4 is a graph plotting the measurement results of the Young's modulus of the film molded body and the Young's modulus of the protective gloves in association with the results of the sensory test. 図5は、ヤング率、および曲げ試験の結果を、官能性試験の結果と対応付けてプロットして示したグラフである。FIG. 5 is a graph plotting Young's modulus and bending test results in association with sensory test results.
 本発明の積層体は、基材と、重合体ラテックスから形成される重合体層とを備える積層体であって、
 前記重合体層は、一部が、前記基材に浸透した状態で前記基材を被覆しており、
 前記重合体層のうち、前記基材に浸透した部分である浸透重合体層の、前記基材の表面からの厚みをtとし、前記基材を被覆する部分である表面重合体層の、前記基材の表面からの厚みをtとした場合に、前記表面重合体層の厚みtに対する前記浸透重合体層の厚みtの比(t/t)が、0.15~5.0であり、
 前記基材に前記重合体層が積層された部分におけるヤング率が、800kPa以下である。
The laminate of the present invention is a laminate comprising a substrate and a polymer layer formed from a polymer latex,
The polymer layer partially covers the base material in a state of permeating the base material,
Wherein one of the polymer layers, which is a penetration portion to the substrate osmopolymers layer, the thickness from the surface of the substrate and t 1, the surface polymer layer is a portion that covers the substrate, When the thickness from the surface of the base material is t 2 , the ratio of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer (t 1 / t 2 ) is 0.15 to 5.0,
The Young's modulus in the portion where the polymer layer is laminated on the base material is 800 kPa or less.
<積層体>
 本発明の積層体は、基材と重合体層とを備える。本発明の積層体は、柔軟性が必要とされる用途に用いることができ、特に限定されないが、たとえば、基材として繊維基材を用いて、繊維基材と重合体層とを備える積層体として用いることが好ましく、作業用手袋、特に家庭用、農業用、漁業用および工業用などの保護手袋などの人体と接触して用いられるものとして用いることが特に好ましい。
 以下においては、重合体層を有する積層体として、保護手袋などの人体と接触して用いられる、繊維基材と重合体層とを有する積層体を例示して説明する。
<Laminated body>
The laminate of the present invention comprises a substrate and a polymer layer. Although the laminated body of this invention can be used for the use for which a softness | flexibility is required and it does not specifically limit, For example, a laminated body provided with a fiber base material and a polymer layer using a fiber base material as a base material. It is preferably used as a work glove, particularly a protective glove for home use, agriculture use, fishery use, industrial use and the like used in contact with the human body.
Below, as a laminated body which has a polymer layer, the laminated body which has a fiber base material and polymer layer used in contact with human bodies, such as a protective glove, is illustrated and demonstrated.
 繊維基材としては、繊維製のものであればよく、特に限定されないが、綿、毛、麻、羊毛などの天然繊維、ポリエステル、ポリウレタン、アクリル、ナイロンなどの合成繊維などを素材として用いることができ、これらの中でも、ナイロンを用いることが好ましい。また、繊維基材は、編まれたものであってもよいし、縫製されたものであってもよく、織布であっても、不織布であってもよい。 The fiber base material is not particularly limited as long as it is made of fiber, but natural fibers such as cotton, wool, hemp, and wool, and synthetic fibers such as polyester, polyurethane, acrylic, and nylon may be used as a material. Among these, nylon is preferably used. The fiber base material may be knitted or sewn, and may be a woven fabric or a non-woven fabric.
 繊維基材の厚み(後述する繊維基材の基材層平均厚みd)は、特に限定されないが、好ましくは0.05~3.00mm、より好ましくは0.10~2.00mm、さらに好ましくは0.15~1.5mmである。繊維基材の線密度は、特に限定されないが、好ましくは50~500デニールである。繊維基材のゲージ数は、特に限定されないが、好ましくは7~18ゲージである。ここで、ゲージ数は、1インチの間にある編機の針の数をいう。 The thickness of the fiber base material (base material layer average thickness d of the fiber base material described later) is not particularly limited, but is preferably 0.05 to 3.00 mm, more preferably 0.10 to 2.00 mm, and still more preferably. 0.15 to 1.5 mm. The linear density of the fiber base material is not particularly limited, but is preferably 50 to 500 denier. The gauge number of the fiber base material is not particularly limited, but is preferably 7 to 18 gauge. Here, the number of gauges refers to the number of knitting machine needles between 1 inch.
 本発明の積層体は、たとえば、このような繊維基材に、凝固剤溶液を付着させた後、凝固剤溶液が付着した繊維基材に、重合体を含有する重合体ラテックスを接触させて重合体ラテックス中の重合体を凝固させることで、繊維基材上に重合体層を形成することにより得ることができる。この際においては、繊維基材に付着した凝固剤溶液は、繊維基材を構成する繊維の間に浸透する。そして、この状態で、凝固剤溶液が浸透した繊維基材に重合体ラテックスを接触させると、重合体ラテックスは一部が繊維基材を構成する繊維の間に浸透して中の重合体が凝固されることにより、図1(A)および図1(B)に示すように、繊維基材の表面上に重合体層が形成されるとともに、重合体層の一部が繊維基材を構成する繊維の隙間まで浸透したものとなる。なお、図1(A)は、重合体層を形成する前の繊維基材の断面図であり、図1(B)は、図1(A)に示す繊維基材に重合体層が積層されてなる積層体の断面図である。
 なお、前記の重合体ラテックス中の重合体を凝固させて形成される重合体層は、前記方法を複数回実施することで多層積層構造としてもよい。
In the laminate of the present invention, for example, after a coagulant solution is adhered to such a fiber substrate, a polymer latex containing a polymer is brought into contact with the fiber substrate to which the coagulant solution is adhered. It can be obtained by solidifying the polymer in the combined latex to form a polymer layer on the fiber substrate. In this case, the coagulant solution adhering to the fiber base material penetrates between the fibers constituting the fiber base material. In this state, when the polymer latex is brought into contact with the fiber base material into which the coagulant solution has permeated, a part of the polymer latex penetrates between the fibers constituting the fiber base material, and the polymer inside is solidified. By doing so, as shown in FIG. 1 (A) and FIG. 1 (B), a polymer layer is formed on the surface of the fiber substrate, and a part of the polymer layer constitutes the fiber substrate. It penetrates to the gap between the fibers. 1A is a cross-sectional view of the fiber base material before forming the polymer layer, and FIG. 1B is a view in which the polymer layer is laminated on the fiber base material shown in FIG. It is sectional drawing of the laminated body formed.
In addition, the polymer layer formed by coagulating the polymer in the polymer latex may have a multilayer laminated structure by performing the above method a plurality of times.
 図1(B)に示す積層体においては、重合体層は、一部が、繊維基材を構成する繊維の間に浸透した状態で繊維基材を被覆している。また、図1(B)においては、積層体を構成する重合体層のうち、繊維基材の表面から繊維の隙間に浸透した部分を浸透重合体層とし、また、重合体層のうち、繊維基材の表面から繊維基材を被覆する部分を表面重合体層として示している。なお、以下においては、重合体層を、適宜、浸透重合体層および表面重合体層からなるものとして説明するが、通常、これら浸透重合体層および表面重合体層は、一体として形成されることとなる。 In the laminate shown in FIG. 1 (B), the polymer layer covers the fiber base material in a state where a part of the polymer layer penetrates between the fibers constituting the fiber base material. Moreover, in FIG. 1 (B), the part which permeate | transmitted the clearance gap between the fibers from the surface of a fiber base material among the polymer layers which comprise a laminated body is made into a permeation | polymerization polymer layer, and fiber is used among polymer layers. The part which coat | covers a fiber base material from the surface of a base material is shown as a surface polymer layer. In the following description, the polymer layer will be described as appropriately consisting of a osmotic polymer layer and a surface polymer layer. Usually, the osmotic polymer layer and the surface polymer layer are integrally formed. It becomes.
 本発明の積層体においては、表面重合体層の厚みtに対する浸透重合体層の厚みtの比(t/t)は、0.15~5.0であればよく、耐久性、柔軟性および装着時の快適性を高度にバランスさせるという観点より、好ましくは0.2~0.5、より0.25~4.80、さらに好ましくは0.30~4.60である。また、浸透重合体層の厚みtは、積層体を保護手袋等として用いた際の耐久性の観点より、好ましくは0.05~0.6mmであり、より好ましくは0.10~0.55mm、さらに好ましくは0.10~0.50mmである。浸透重合体層の厚みtを、上記範囲とすることにより、積層体を保護手袋等として用いた際の耐久性をより適切に高めることができる。また、表面重合体層の厚みtは、積層体を保護手袋等として用いた際の耐久性の観点より、好ましくは0.01~3.00mm、より好ましくは0.02~2.5mm、さらに好ましくは0.03~2.0mmである。 In the laminate of the present invention, the ratio of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer (t 1 / t 2 ) may be 0.15 to 5.0, and the durability From the viewpoint of highly balancing flexibility and comfort when worn, it is preferably 0.2 to 0.5, more preferably 0.25 to 4.80, and still more preferably 0.30 to 4.60. The thickness t 1 of the penetrating polymer layer is preferably 0.05 to 0.6 mm, more preferably 0.10 to 0.00 mm, from the viewpoint of durability when the laminate is used as a protective glove or the like. It is 55 mm, more preferably 0.10 to 0.50 mm. By setting the thickness t 1 of the osmotic polymer layer within the above range, durability when the laminate is used as a protective glove or the like can be more appropriately increased. The thickness t 2 of the surface polymer layer is preferably 0.01 to 3.00 mm, more preferably 0.02 to 2.5 mm, from the viewpoint of durability when the laminate is used as a protective glove or the like. More preferably, it is 0.03 to 2.0 mm.
 また、積層体を保護手袋等として用いた際の耐久性、柔軟性および装着時の快適性を高度にバランスさせるという観点より、繊維基材の基材層平均厚みdに対する浸透重合体層の厚みtの比(t/d)は、好ましくは0.1~0.95であり、より好ましくは0.1~0.9、さらに好ましくは0.15~0.8である。また、積層体の全厚み(表面重合体層の厚みtと、繊維基材の基材層平均厚みdとの合計)は、好ましくは0.75~3.70mm、より好ましくは0.75~3.5mmである。なお、繊維基材は、そのミクロ構造においては、繊維の重なり度合いが密になっている部分と、繊維の重なり度合いが疎になっている部分とで、その厚みが異なる場合があるが、繊維基材の基材層平均厚みdは、繊維基材について、繊維の重なり度合いが密になっている部分の厚みを、その厚みとした平均値として、求めることとする。 Further, the thickness of the osmotic polymer layer with respect to the average thickness d of the base material layer of the fiber base material from the viewpoint of highly balancing the durability, flexibility, and comfort during wearing when the laminate is used as a protective glove or the like. the ratio of t 1 (t 1 / d) is preferably 0.1 to 0.95, and more preferably from 0.1 to 0.9 and more preferably 0.15 to 0.8. The total thickness of the laminate (total of the surface polymer layer thickness t 2 and the fiber substrate base layer average thickness d) is preferably 0.75 to 3.70 mm, more preferably 0.75. ~ 3.5 mm. In the microstructure of the fiber base, the thickness may be different between the portion where the fiber overlap is dense and the portion where the fiber overlap is sparse. The base material layer average thickness d of a base material shall be calculated | required as the average value which made the thickness of the part with which the overlapping degree of a fiber is dense about the fiber base material the thickness.
 また、本発明の積層体を得るために用いる重合体ラテックスを構成する重合体としては、特に限定されないが、天然ゴム;ブタジエンやイソプレンなどの共役ジエンを重合または共重合してなる共役ジエン系ゴム;等が挙げられ、これらの中でも、共役ジエン系ゴムが好ましい。共役ジエン系ゴムとしては、ニトリルを共重合してなるいわゆるニトリルゴム、イソプレンゴム、スチレン-ブタジエンゴム、クロロプレンゴム等が挙げられ、これらの中でも、ニトリルゴムが特に好ましい。 The polymer constituting the polymer latex used for obtaining the laminate of the present invention is not particularly limited. Natural rubber; conjugated diene rubber obtained by polymerizing or copolymerizing conjugated dienes such as butadiene and isoprene Among these, conjugated diene rubbers are preferable. Examples of the conjugated diene rubber include so-called nitrile rubber, isoprene rubber, styrene-butadiene rubber, chloroprene rubber and the like obtained by copolymerizing nitrile, and among these, nitrile rubber is particularly preferable.
 ニトリルゴムとしては、特に限定されないが、α,β-エチレン性不飽和ニトリル単量体および必要に応じて用いられる共重合可能なその他の単量体を共重合したものを用いることができる。 The nitrile rubber is not particularly limited, and a nitrile rubber obtained by copolymerizing an α, β-ethylenically unsaturated nitrile monomer and other copolymerizable monomers used as necessary can be used.
 α,β-エチレン性不飽和ニトリル単量体としては、特に限定されないが、ニトリル基を有し、炭素数が、好ましくは3~18であるエチレン性不飽和化合物を用いることができる。このようなα,β-エチレン性不飽和ニトリル単量体としては、たとえば、アクリロニトリル、メタクリロニトリル、ハロゲン置換アクリロニトリルなどが挙げられ、これらの中でも、アクリロニトリルが特に好ましい。なお、これらのα,β-エチレン性不飽和ニトリル単量体は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。 The α, β-ethylenically unsaturated nitrile monomer is not particularly limited, and an ethylenically unsaturated compound having a nitrile group and preferably having 3 to 18 carbon atoms can be used. Examples of such α, β-ethylenically unsaturated nitrile monomers include acrylonitrile, methacrylonitrile, halogen-substituted acrylonitrile and the like, and among these, acrylonitrile is particularly preferable. These α, β-ethylenically unsaturated nitrile monomers may be used alone or in combination of two or more.
 ニトリルゴムにおけるα,β-エチレン性不飽和ニトリル単量体単位の含有割合は、全単量体単位に対して、好ましくは10~45重量%、より好ましくは20~40重量%、さらに好ましくは21~38重量%、特に好ましくは22~37重量%である。α,β-エチレン性不飽和ニトリル単量体単位の含有割合を上記範囲にすることにより、積層体を、耐溶剤性に優れ、かつ、風合いに優れたものとすることができる。 The content of the α, β-ethylenically unsaturated nitrile monomer unit in the nitrile rubber is preferably 10 to 45% by weight, more preferably 20 to 40% by weight, still more preferably based on the total monomer units. It is 21 to 38% by weight, particularly preferably 22 to 37% by weight. By setting the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit within the above range, the laminate can be excellent in solvent resistance and in texture.
 また、ニトリルゴムとしては、ゴム弾性を付与し、かつ、得られる積層体の重合体層にクラックが発生してしまうことをより有効に防止することができるという観点より、共役ジエン単量体単位を含有するものが好ましい。共役ジエン単量体単位を形成する共役ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレンなどの炭素数4~6の共役ジエン単量体が好ましく、1,3-ブタジエンおよびイソプレンがより好ましく、1,3-ブタジエンが特に好ましい。なお、これらの共役ジエン単量体は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。 Further, as a nitrile rubber, a conjugated diene monomer unit is provided from the viewpoint of imparting rubber elasticity and more effectively preventing cracks from occurring in the polymer layer of the obtained laminate. The thing containing is preferable. Examples of the conjugated diene monomer forming the conjugated diene monomer unit include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, chloroprene and the like having 4 to 4 carbon atoms. 6 conjugated diene monomers are preferred, 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is particularly preferred. In addition, these conjugated diene monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
 共役ジエン単量体単位の含有割合は、ニトリルゴムを構成する全単量体単位に対して、好ましくは40~80重量%、より好ましくは52~78重量%、さらに好ましくは54~76重量%、特に好ましくは56~74重量%である。共役ジエン単量体単位の含有割合を上記範囲にすることにより、積層体を、耐溶剤性に優れ、かつ、風合いに優れたものとすることができる。 The content ratio of the conjugated diene monomer unit is preferably 40 to 80% by weight, more preferably 52 to 78% by weight, still more preferably 54 to 76% by weight, based on all monomer units constituting the nitrile rubber. Particularly preferred is 56 to 74% by weight. By making the content rate of a conjugated diene monomer unit into the said range, a laminated body can be made excellent in solvent resistance and excellent in texture.
 また、ニトリルゴムは、α,β-エチレン性不飽和ニトリル単量体単位を形成する単量体、および共役ジエン単量体単位を形成する単量体と共重合可能なその他のエチレン性不飽和酸単量体を含んでいてもよい。 Nitrile rubber is also a monomer that forms α, β-ethylenically unsaturated nitrile monomer units and other ethylenically unsaturated monomers that are copolymerizable with monomers that form conjugated diene monomer units. An acid monomer may be included.
 このような共重合可能なその他のエチレン性不飽和酸単量体としては、特に限定されないが、たとえば、カルボキシル基含有エチレン性不飽和単量体、スルホン酸基含有エチレン性不飽和単量体、リン酸基含有エチレン性不飽和単量体などが挙げられる。 Such other copolymerizable ethylenically unsaturated acid monomer is not particularly limited, and examples thereof include a carboxyl group-containing ethylenically unsaturated monomer, a sulfonic acid group-containing ethylenically unsaturated monomer, Examples thereof include phosphoric acid group-containing ethylenically unsaturated monomers.
 カルボキシル基含有エチレン性不飽和単量体としては、特に限定されないが、アクリル酸、メタクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のエチレン性不飽和多価カルボン酸およびその無水物;マレイン酸メチル、イタコン酸メチル等のエチレン性不飽和多価カルボン酸の部分エステル化物;などが挙げられる。 The carboxyl group-containing ethylenically unsaturated monomer is not particularly limited, but ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; fumaric acid, maleic acid, itaconic acid, maleic anhydride, anhydrous And ethylenically unsaturated polyvalent carboxylic acids such as itaconic acid and anhydrides thereof; partially esterified products of ethylenically unsaturated polyvalent carboxylic acids such as methyl maleate and methyl itaconic acid; and the like.
 スルホン酸基含有エチレン性不飽和単量体としては、特に限定されないが、ビニルスルホン酸、メチルビニルスルホン酸、スチレンスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-ヒドロキシプロパンスルホン酸などが挙げられる。 The sulfonic acid group-containing ethylenically unsaturated monomer is not particularly limited, but vinyl sulfonic acid, methyl vinyl sulfonic acid, styrene sulfonic acid, (meth) allyl sulfonic acid, (meth) acrylic acid-2-sulfonic acid ethyl And 2-acrylamido-2-hydroxypropanesulfonic acid.
 リン酸基含有エチレン性不飽和単量体としては、特に限定されないが、(メタ)アクリル酸-3-クロロ-2-リン酸プロピル、(メタ)アクリル酸-2-リン酸エチル、3-アリロキシ-2-ヒドロキシプロパンリン酸などが挙げられる。 The phosphoric acid group-containing ethylenically unsaturated monomer is not particularly limited, but includes (meth) acrylic acid-3-chloro-2-propyl phosphate, (meth) acrylic acid-2-ethyl phosphate, 3-allyloxy. Examples include -2-hydroxypropane phosphoric acid.
 これらの共重合可能なその他のエチレン性不飽和酸単量体は、アルカリ金属塩またはアンモニウム塩として用いることもでき、また、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。上記の共重合可能なその他のエチレン性不飽和酸単量体のなかでも、カルボキシル基含有エチレン性不飽和単量体が好ましく、エチレン性不飽和モノカルボン酸がより好ましく、メタクリル酸が特に好ましい。 These other copolymerizable ethylenically unsaturated acid monomers can also be used as alkali metal salts or ammonium salts, and can be used alone or in combination of two or more. . Among the other copolymerizable ethylenically unsaturated acid monomers, carboxyl group-containing ethylenically unsaturated monomers are preferable, ethylenically unsaturated monocarboxylic acids are more preferable, and methacrylic acid is particularly preferable.
 エチレン性不飽和酸単量体の単位の含有割合は、好ましくは2~10重量%、より好ましくは2.5~9.0重量%、さらに好ましくは3.0~8.0重量%である。 The content ratio of the ethylenically unsaturated acid monomer unit is preferably 2 to 10% by weight, more preferably 2.5 to 9.0% by weight, and still more preferably 3.0 to 8.0% by weight. .
 重合体ラテックスは、たとえば、上記の単量体を含有してなる単量体混合物を乳化重合することにより得ることができる。乳化重合に際しては、通常用いられる、乳化剤、重合開始剤、分子量調整剤等の重合副資材を使用することができる。 The polymer latex can be obtained, for example, by emulsion polymerization of a monomer mixture containing the above monomers. In the emulsion polymerization, commonly used polymerization auxiliary materials such as an emulsifier, a polymerization initiator, and a molecular weight modifier can be used.
 また、本発明の積層体を得るために用いる重合体ラテックスとしては、柔軟性に優れた積層体を好適に得ることができるという点より、揮発分を除去して膜成形体とした場合における膜成形体のヤング率が10,000kPa以下であるものを用いることが好ましい。この場合における、膜成形体のヤング率は、10,000kPa以下であればよいが、好ましくは9,500kPa以下、より好ましくは9,000kPa以下、さらに好ましくは8,000kPa以下、特に好ましくは7,000kPa以下である。ヤング率を上記範囲とすることにより、得られる積層体の柔軟性をより適切に高めることができる。なお、上記の膜成形体のヤング率の下限は、特に限定されないが、通常0.01kPa以上、好ましくは0.02kPa以上である。 In addition, as the polymer latex used for obtaining the laminate of the present invention, a film in the case of forming a film molded body by removing volatile components from the viewpoint that a laminate having excellent flexibility can be suitably obtained. It is preferable to use a molded product having a Young's modulus of 10,000 kPa or less. In this case, the Young's modulus of the film molded body may be 10,000 kPa or less, preferably 9,500 kPa or less, more preferably 9,000 kPa or less, further preferably 8,000 kPa or less, and particularly preferably 7, 000 kPa or less. By setting the Young's modulus within the above range, the flexibility of the obtained laminate can be more appropriately increased. The lower limit of the Young's modulus of the film molded body is not particularly limited, but is usually 0.01 kPa or more, preferably 0.02 kPa or more.
 重合体ラテックスとして、揮発分を除去して膜成形体とした場合における膜成形体のヤング率が10,000kPa以下であるものを用いる場合における、ヤング率を、上記範囲に制御する方法としては、特に限定されないが、重合体ラテックスを構成する重合体の種類および組成を上記した範囲において調整する方法、重合体ラテックスに添加する増粘剤の種類および量を調整する方法などが挙げられる。 As a method for controlling the Young's modulus within the above range when using a polymer latex having a Young's modulus of 10,000 kPa or less when removing a volatile component to form a film molded product, as a polymer latex, Although it does not specifically limit, The method of adjusting the kind and composition of a polymer which comprise polymer latex in the above-mentioned range, The method of adjusting the kind and quantity of a thickener added to polymer latex, etc. are mentioned.
 たとえば、重合体ラテックスを共役ジエン系ゴムのラテックスとする場合には、α,β-エチレン性不飽和ニトリル単量体単位を、好ましくは20~40重量%、より好ましくは21~38重量%、さらに好ましくは22~37重量%の範囲で含有し、かつ、共役ジエン単量体単位を、好ましくは52~78重量%、より好ましくは54~76重量%、さらに好ましくは56~74重量%の範囲で含有するものとすることが好ましく、これらに加えて、カルボキシル基含有エチレン性不飽和単量体の単位を、好ましくは2~10重量%、より好ましくは2.5~9.0重量%、さらに好ましくは3.0~8.0重量%の範囲で含有するものとすることが特に好ましい。なお、この場合において、各単量体単位を構成する単量体としては、上述したものを用いることができる。 For example, when the polymer latex is a conjugated diene rubber latex, the α, β-ethylenically unsaturated nitrile monomer unit is preferably 20 to 40% by weight, more preferably 21 to 38% by weight, More preferably, it is contained in the range of 22 to 37% by weight, and the conjugated diene monomer unit is preferably 52 to 78% by weight, more preferably 54 to 76% by weight, still more preferably 56 to 74% by weight. In addition to these, the unit of the carboxyl group-containing ethylenically unsaturated monomer is preferably 2 to 10% by weight, more preferably 2.5 to 9.0% by weight. Further, it is particularly preferable to contain in the range of 3.0 to 8.0% by weight. In this case, as the monomer constituting each monomer unit, those described above can be used.
 α,β-エチレン性不飽和ニトリル単量体単位の含有割合を上記範囲とすることにより、揮発分を除去して膜成形体とした場合におけるヤング率をより低下させることができ、これにより、得られる積層体の柔軟性をより適切に向上させることができる。また、共役ジエン単量体単位の含有割合を上記範囲とすることにより、重合体ラテックス中にゲルが発生してしまうことをより有効に抑制することができ、これにより、重合体ラテックスにより重合体層を形成した際における、このようなゲルの発生に起因して重合体層が不均一な膜になってしまうことを防止し、得られる積層体について、重合体層にクラックが発生してしまうことをより有効に防止することができ、外観に優れたものとすることができるとともに、積層体を、耐溶剤性に優れ、かつ、風合いに優れたものとすることができる。さらに、カルボキシル基含有エチレン性不飽和単量体の単位を上記含有割合にて含有させることにより、揮発分を除去して膜成形体とした場合におけるヤング率をより低下させることができ、これにより、得られる積層体の柔軟性をより適切に向上させることができる。 By setting the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit in the above range, the Young's modulus in the case of forming a film molded body by removing volatile matter can be further reduced. The softness | flexibility of the laminated body obtained can be improved more appropriately. Moreover, by making the content rate of a conjugated diene monomer unit into the said range, it can suppress more effectively that a gel generate | occur | produces in polymer latex, and, thereby, a polymer is made by polymer latex. When the layer is formed, the polymer layer is prevented from becoming a non-uniform film due to the generation of such a gel, and cracks are generated in the polymer layer of the obtained laminate. This can be more effectively prevented, the appearance can be improved, and the laminate can be excellent in solvent resistance and texture. Furthermore, by including the unit of the carboxyl group-containing ethylenically unsaturated monomer in the above content ratio, the Young's modulus in the case of forming a film molded body by removing the volatile matter can be further reduced. Thus, the flexibility of the obtained laminate can be improved more appropriately.
 また、重合体ラテックスとしては、重合体ラテックスを構成する重合体のメチルエチルケトン不溶解分量が、好ましくは90重量%以下、より好ましくは85重量%以下、さらに好ましくは80重量%以下のものを用いることが好ましい。メチルエチルケトン不溶解分量を上記範囲にすることにより、重合体ラテックス中にゲルが発生してしまうことをより有効に抑制することができ、これにより、重合体ラテックスにより重合体層を形成した際における、このようなゲルの発生に起因して重合体層が不均一な膜になってしまうことを防止し、得られる積層体について、重合体層にクラックが発生してしまうことをより有効に防止することができ、外観により優れたものとすることができる。なお、メチルエチルケトン不溶解分量は、たとえば、次の方法により測定することができる。すなわち、まず、重合体ラテックス中に含まれる重合体のフィルムを得て、メチルエチルケトンへの浸漬前の乾燥フィルムの重量(W1)を測定しておき、該フィルムを、80メッシュのかご状金網に入れた状態にて、室温下において、メチルエチルケトン中に24時間浸漬させる。次いで、浸漬後のフィルムを105℃で乾燥することによりメチルエチルケトンを除去することで、乾燥フィルムを得て、浸漬後の乾燥フィルムの重量(W2)を測定する。そして、得られた測定結果に基づいて、下記式により算出することができる。
  メチルエチルケトン不溶解分量(単位:重量%)=(浸漬後の乾燥フィルムの重量(W2)/浸漬前の乾燥フィルムの重量(W1))×100
Further, as the polymer latex, a polymer constituting the polymer latex having a methylethylketone insoluble content is preferably 90% by weight or less, more preferably 85% by weight or less, and further preferably 80% by weight or less. Is preferred. By making the methyl ethyl ketone insoluble content in the above range, it is possible to more effectively suppress the occurrence of gel in the polymer latex, and thereby, when the polymer layer is formed with the polymer latex, The polymer layer is prevented from becoming a non-uniform film due to the occurrence of such a gel, and the resulting laminate is more effectively prevented from cracking in the polymer layer. And the appearance can be improved. In addition, the amount insoluble in methyl ethyl ketone can be measured, for example, by the following method. That is, first, a polymer film contained in the polymer latex is obtained, and the weight (W1) of the dried film before being immersed in methyl ethyl ketone is measured, and the film is placed in an 80-mesh cage net. And immersed in methyl ethyl ketone for 24 hours at room temperature. Next, the dried film is obtained by drying the immersed film at 105 ° C. to obtain a dried film, and the weight (W2) of the dried film after the immersion is measured. And based on the obtained measurement result, it is computable by a following formula.
Methyl ethyl ketone insoluble content (unit:% by weight) = (weight of dry film after immersion (W2) / weight of dry film before immersion (W1)) × 100
 また、重合体ラテックスとしては、架橋剤や増粘剤等の配合剤を配合したものを用いてもよい。すなわち、重合体ラテックスとしては、架橋剤や増粘剤等の配合剤を配合して、ラテックスの組成物として用いてもよい。この場合において、重合体ラテックスとして、揮発分を除去して膜成形体とした場合における膜成形体のヤング率が10,000kPa以下であるものを用いる場合には、ラテックス組成物について、揮発分の除去を行い、膜成形体とした場合における膜成形体のヤング率が10,000kPa以下であるものとすればよい。 Further, as the polymer latex, a latex blended with a compounding agent such as a crosslinking agent or a thickener may be used. That is, as polymer latex, you may mix | blend compounding agents, such as a crosslinking agent and a thickener, and may use it as a composition of a latex. In this case, when a polymer latex having a Young's modulus of 10,000 kPa or less in the case of using a film molded body by removing volatile components as the polymer latex, The Young's modulus of the film molded body in the case where the film molded body is removed to form a film molded body may be 10,000 kPa or less.
 架橋剤としては、硫黄系架橋剤を用いることが好ましい。硫黄系架橋剤としては、特に限定されないが、粉末硫黄、硫黄華、沈降性硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの硫黄;塩化硫黄、二塩化硫黄、モルホリンジスルフィド、アルキルフェノールジスルフィド、ジベンゾチアジルジスルフィド、カプロラクタムジスルフィド、含リンポリスルフィド、高分子多硫化物などの含硫黄化合物;テトラメチルチウラムジスルフィド、ジメチルジチオカルバミン酸セレン、2-(4’-モルホリノジチオ)ベンゾチアゾールなどの硫黄供与性化合物;などが挙げられる。これらの架橋剤は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。 As the crosslinking agent, it is preferable to use a sulfur-based crosslinking agent. Although it does not specifically limit as a sulfur type crosslinking agent, Sulfur, such as powder sulfur, sulfur white, precipitation sulfur, colloidal sulfur, surface treatment sulfur, insoluble sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothia Sulfur-containing compounds such as zildisulfide, caprolactam disulfide, phosphorus-containing polysulfide, and polymer polysulfides; sulfur-donating compounds such as tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, and 2- (4′-morpholinodithio) benzothiazole; Is mentioned. These crosslinking agents may be used alone or in combination of two or more.
 また、架橋剤として硫黄を使用する場合には、架橋促進剤(加硫促進剤)や、酸化亜鉛を併用することが好ましい。
 架橋促進剤(加硫促進剤)としては、特に限定されないが、たとえば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、4-モルホリニル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられ、これらの中でも、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛が好ましい。これらの架橋促進剤は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。
Moreover, when using sulfur as a crosslinking agent, it is preferable to use together a crosslinking accelerator (vulcanization accelerator) and zinc oxide.
The crosslinking accelerator (vulcanization accelerator) is not particularly limited. For example, dithiocarbamine such as diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyldithiocarbamic acid, dicyclohexyldithiocarbamic acid, diphenyldithiocarbamic acid, and dibenzyldithiocarbamic acid. Acids and their zinc salts; 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2- (2,4-dinitrophenylthio) benzothiazole, 2- (N, N-diethylthio-carbylthio) benzothiazole, 2- (2,6-dimethyl-4-morpholinothio) benzothiazole, 4-morpholinyl-2-benzothiazyl disulfide, 1,3 Bis (2-benzothiazyl mercaptomethyl) such as urea. Among these, zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate, 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc is preferred. These crosslinking accelerators may be used alone or in combination of two or more.
 また、重合体ラテックスには、その粘度を調整し、これにより、浸透重合体層の厚みt、および表面重合体層の厚みtを制御するという観点より、増粘剤を配合してもよい。増粘剤としては、特に限定されないが、たとえば、ポリビニルアルコール、ポリビニルピロリドン等のビニル系化合物;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース塩等のセルロース誘導体;ポリカルボン系酸化合物およびそのナトリウム塩;ポリエチレングリコールエーテル等のポリオキシエチレン誘導体;等が挙げられる。 Further, the viscosity of the polymer latex may be adjusted so that a thickener is added from the viewpoint of controlling the thickness t 1 of the penetrating polymer layer and the thickness t 2 of the surface polymer layer. Good. Although it does not specifically limit as a thickener, For example, Vinyl compounds, such as polyvinyl alcohol and polyvinyl pyrrolidone; Cellulose derivatives, such as hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethylcellulose salt; Polycarboxylic acid compound and its sodium salt; Polyethylene And polyoxyethylene derivatives such as glycol ethers.
 重合体ラテックスに増粘剤を配合する場合には、使用する増粘剤の1%粘度は、好ましくは20mPa・s以上、より好ましくは50mPa・s以上、さらに好ましくは200mPa・s以上である。なお、増粘剤の1%粘度は、増粘剤を水に溶解させて濃度1重量%の水溶液とし、25℃にてB型粘度計を使用し回転数10rpmの条件で粘度を測定することにより、求めることができる。増粘剤の1%粘度を上記範囲とすることにより、重合体ラテックス中にゲルが発生し、このゲルに起因して、得られる積層体の重合体層の表面に粒子が発生してしまうことによる外観の不良をより有効に抑制することができ、しかも、増粘剤の使用量を少なくすることができるようになるため、増粘剤の使用量が増加することによる、得られる積層体の重合体層の硬化をより有効に抑制することができるようになる。 When a thickener is blended in the polymer latex, the 1% viscosity of the thickener used is preferably 20 mPa · s or more, more preferably 50 mPa · s or more, and even more preferably 200 mPa · s or more. The 1% viscosity of the thickener is obtained by dissolving the thickener in water to obtain an aqueous solution having a concentration of 1% by weight, and measuring the viscosity at 25 ° C. using a B-type viscometer at a rotation speed of 10 rpm. Can be obtained. By setting the 1% viscosity of the thickener within the above range, a gel is generated in the polymer latex, and due to this gel, particles are generated on the surface of the polymer layer of the resulting laminate. It is possible to more effectively suppress the appearance defect due to the above, and the amount of the thickener used can be reduced, so that the amount of the thickener used is increased. Curing of the polymer layer can be suppressed more effectively.
 また、重合体ラテックスに増粘剤を配合する場合には、使用する増粘剤を水に溶解させた際における不溶成分の粒径は、好ましくは30μm以下、より好ましくは28μm以下、さらに好ましくは25μm以下である。増粘剤の不溶成分の粒径を上記範囲とすることにより、得られる積層体の重合体層の表面に粒子が発生してしまうことによる外観の不良をより有効に抑制することができるようになる。 In addition, when a thickener is blended in the polymer latex, the particle size of the insoluble component when the thickener to be used is dissolved in water is preferably 30 μm or less, more preferably 28 μm or less, and still more preferably 25 μm or less. By setting the particle size of the insoluble component of the thickener in the above range, it is possible to more effectively suppress poor appearance due to generation of particles on the surface of the polymer layer of the obtained laminate. Become.
 重合体ラテックスに増粘剤を配合する場合には、重合体ラテックス中における増粘剤の含有割合は、好ましくは0.1~5.0重量%、より好ましくは0.1~4.0重量%、さらに0.1~3.0重量%である。増粘剤の含有割合を上記範囲とすることにより、重合体ラテックスの粘度をより適度なものとすることができる。 When a thickener is blended in the polymer latex, the content of the thickener in the polymer latex is preferably 0.1 to 5.0% by weight, more preferably 0.1 to 4.0% by weight. %, And further 0.1 to 3.0% by weight. By making the content rate of a thickener into the said range, the viscosity of polymer latex can be made more moderate.
 重合体ラテックスに増粘剤に添加する方法としては、特に限定されないが、重合体ラテックスとして架橋剤を添加したものを用いる場合には、重合体ラテックス中に凝集物が発生してしまうことを防止し、重合体ラテックスの移送をより良好に行うことができるようになるという観点より、重合体ラテックスの熟成後に増粘剤を添加する方法、または重合体ラテックスの熟成前に一部の増粘剤を添加した後、熟成後にさらに増粘剤を添加する方法を用いることが好ましく、重合体ラテックスの熟成後に増粘剤を添加する方法が特に好ましい。 The method of adding the polymer latex to the thickener is not particularly limited, but when a polymer latex to which a crosslinking agent is added is used, it is prevented that aggregates are generated in the polymer latex. From the viewpoint of enabling better transfer of the polymer latex, a method of adding a thickener after aging the polymer latex, or a portion of the thickener before aging the polymer latex It is preferable to use a method in which a thickener is further added after aging, and a method in which a thickener is added after aging of the polymer latex is particularly preferable.
 本発明の積層体を製造する方法としては、特に限定されないが、たとえば、以下の方法を用いることができる。
 すなわち、繊維基材と重合体層とを有する積層体は、たとえば、繊維基材に凝固剤溶液を付着させ、次いで、凝固剤溶液を付着させた繊維基材に、重合体ラテックスを接触させて重合体を凝固させることで、繊維基材上に重合体層を形成することにより、繊維基材と重合体層からなる積層体を得る方法を用いることができる。また、重合体層形成後、複数回積層させた多層構造であっても良い。繊維基材に重合体ラテックスを付着させる方法としては、特に限定されないが、たとえば、繊維基材を、重合体ラテックスに浸漬させる方法などが挙げられる。
Although it does not specifically limit as a method to manufacture the laminated body of this invention, For example, the following methods can be used.
That is, in a laminate having a fiber base material and a polymer layer, for example, a coagulant solution is attached to the fiber base material, and then a polymer latex is brought into contact with the fiber base material to which the coagulant solution is attached. The method of obtaining the laminated body which consists of a fiber base material and a polymer layer by forming a polymer layer on a fiber base material by coagulating a polymer can be used. Moreover, the multilayer structure laminated | stacked several times after polymer layer formation may be sufficient. The method for attaching the polymer latex to the fiber substrate is not particularly limited, and examples thereof include a method of immersing the fiber substrate in the polymer latex.
 なお、繊維基材に凝固剤溶液を付着させる際には、予め繊維基材を所望の形状の成形用型に被せた状態で、繊維基材を凝固剤溶液に浸漬させることが好ましく、その後、凝固剤溶液を付着させた繊維基材を、重合体ラテックスを浸漬させることが好ましい。繊維基材を被せる成形用型としては、特に限定されないが、材質は磁器製、ガラス製、金属製、プラスチック製など種々のものを用いることができる。成形用型の形状は、最終製品の形状に合わせて、所望の形状とすればよい。たとえば、重合体層を有する積層体が、保護手袋である場合には、繊維基材を被せる成形用型として、手首から指先までの形状を有する成形用型など、各種の手袋用の成形用型を用いることが好ましい。 In addition, when attaching the coagulant solution to the fiber base material, it is preferable to immerse the fiber base material in the coagulant solution in a state where the fiber base material is previously covered with a molding die of a desired shape, It is preferable to immerse the polymer latex in the fiber base material to which the coagulant solution is attached. Although it does not specifically limit as a shaping | molding type | mold which covers a fiber base material, Various things, such as a product made from porcelain, glass, metal, and plastics, can be used. The shape of the molding die may be a desired shape according to the shape of the final product. For example, when the laminate having a polymer layer is a protective glove, the mold for various gloves, such as a mold having a shape from the wrist to the fingertip, is used as a mold for covering the fiber substrate. Is preferably used.
 凝固剤溶液を繊維基材に付着させた後、乾燥を行うことで、凝固剤溶液に含まれている溶媒を除去することが好ましい。この際の乾燥温度は、特に限定されず、用いる溶媒に応じて選択すればよいが、好ましくは10~80℃、より好ましくは15~70℃である。また、乾燥時間は、特に限定されないが、好ましくは1~600秒間、より好ましくは5~300秒間である。 It is preferable to remove the solvent contained in the coagulant solution by attaching the coagulant solution to the fiber substrate and then drying. The drying temperature at this time is not particularly limited and may be selected according to the solvent to be used, but is preferably 10 to 80 ° C., more preferably 15 to 70 ° C. The drying time is not particularly limited, but is preferably 1 to 600 seconds, more preferably 5 to 300 seconds.
 次いで、このようにして凝固剤溶液を付着させた繊維基材に、重合体ラテックスを接触させることで、重合体ラテックス中の重合体を凝固させて、繊維基材上に重合体層を形成する。 Next, the polymer latex is brought into contact with the fiber base material to which the coagulant solution is adhered in this manner, so that the polymer in the polymer latex is coagulated to form a polymer layer on the fiber base material. .
 凝固剤溶液が付着した繊維基材に重合体ラテックスを接触させる方法としては、特に限定されないが、たとえば、凝固剤溶液が付着した繊維基材を、重合体ラテックスに浸漬させる方法などが挙げられる。 The method of bringing the polymer latex into contact with the fiber base material to which the coagulant solution is attached is not particularly limited, and examples thereof include a method in which the fiber base material to which the coagulant solution is attached is immersed in the polymer latex.
 また、凝固剤溶液が付着した繊維基材を重合体ラテックスに浸漬させる際には、凝固剤溶液が付着した繊維基材を、所望の形状の成形用型に被せた状態で、重合体ラテックスに浸漬させることが好ましい。この際においては、予め繊維基材を所望の形状の成形用型に被せた状態で、上述したように繊維基材に凝固剤溶液を付着させて、その後、凝固剤溶液が付着した繊維基材を、成形用型に被せたまま、重合体ラテックスに浸漬させることが好ましい。なお、重合体ラテックスとして、架橋剤を添加したものを用いる場合には、重合体ラテックスとして、予め熟成(前加硫ともいう。)させたものを用いてもよい。 In addition, when the fiber base material to which the coagulant solution is attached is immersed in the polymer latex, the fiber base material to which the coagulant solution is attached is put on the polymer latex in a state where the fiber base material is put on a molding die having a desired shape. It is preferable to immerse. In this case, the fiber base material is coated with the coagulant solution as described above in a state where the fiber base material is previously covered with a molding die having a desired shape, and then the coagulant solution is adhered to the fiber base material. Is preferably immersed in a polymer latex while being covered with a molding die. In addition, when using what added the crosslinking agent as polymer latex, you may use what was age | cured previously (it is also called pre-vulcanization) as polymer latex.
 また、凝固剤溶液が付着した繊維基材を重合体ラテックスに浸漬させた後、乾燥を行うことが好ましい。この際における乾燥温度は、特に限定されないが、好ましくは10~80℃、より好ましくは15~80℃である。また、乾燥時間は、特に限定されないが、好ましくは5秒間~120分間、より好ましくは10秒間~60分間である。 Further, it is preferable to perform drying after immersing the fiber substrate to which the coagulant solution is adhered in the polymer latex. The drying temperature at this time is not particularly limited, but is preferably 10 to 80 ° C., more preferably 15 to 80 ° C. The drying time is not particularly limited, but is preferably 5 seconds to 120 minutes, more preferably 10 seconds to 60 minutes.
 さらに、繊維基材を重合体ラテックス浸漬させ、乾燥した後に、さらに重合体ラテックスを浸漬させ、複数回積層させた多層構造としてもよい。 Furthermore, the fiber base material may be dipped in polymer latex and dried, and then polymer latex may be further dipped and laminated multiple times.
 また、重合体ラテックスに架橋剤を配合した場合には、必要に応じて、加熱することにより架橋させてもよい。 In addition, when a crosslinking agent is blended in the polymer latex, it may be crosslinked by heating as necessary.
 さらに、繊維基材を成形用型に被せた状態で重合体層を形成した場合には、重合体層が形成された繊維基材を、成形用型から脱着することによって、積層体を得ることができる。脱着方法としては、手で成形用型から剥したり、水圧や圧縮空気の圧力により剥したりする方法を採用することができる。
 このようにして、重合体層を有する積層体の一例としての、繊維基材と重合体層とを有する積層体を得ることができる。
Furthermore, when the polymer layer is formed in a state where the fiber base material is put on the molding die, the laminate is obtained by detaching the fiber base material on which the polymer layer is formed from the molding die. Can do. As the desorption method, it is possible to adopt a method of peeling from the mold by hand, or peeling by water pressure or compressed air pressure.
Thus, the laminated body which has a fiber base material and a polymer layer as an example of the laminated body which has a polymer layer can be obtained.
 本発明の積層体は、基材に重合体層が積層された部分におけるヤング率(すなわち、基材に重合体層が積層された箇所にて、基材と重合体層とに対して測定を行うことにより得られるヤング率)が、800kPa以下であり、好ましくは750kPa以下、より好ましくは700kPa以下、さらに好ましくは600kPa以下、特に好ましくは500kPa以下である。ヤング率を上記範囲とすることにより、得られる積層体について、保護手袋等として用いた場合に、顕著に柔軟性に優れたものとすることができる。なお、積層体における、基材に重合体層が積層された部分におけるヤング率の下限は、特に限定されないが、通常0.01kPa以上、好ましくは0.02kPa以上である。 The laminate of the present invention measures the Young's modulus at the portion where the polymer layer is laminated on the substrate (that is, the measurement is performed on the substrate and the polymer layer at the place where the polymer layer is laminated on the substrate). The Young's modulus obtained by carrying out is 800 kPa or less, preferably 750 kPa or less, more preferably 700 kPa or less, further preferably 600 kPa or less, and particularly preferably 500 kPa or less. By setting the Young's modulus within the above range, the obtained laminate can be remarkably excellent in flexibility when used as protective gloves or the like. In addition, the lower limit of the Young's modulus in the part of the laminate in which the polymer layer is laminated on the base material is not particularly limited, but is usually 0.01 kPa or more, preferably 0.02 kPa or more.
 特に、従来においては、保護手袋などの積層体のような厚みの薄い試料について、柔軟性を適切に評価することができない状況にあったため、どのような積層体を製造すれば、柔軟性に優れたものとなるかが明らかにされていない状況にあった。これに対して、本発明者等は、保護手袋などの積層体のような厚みの薄い試料について、後述する方法により、適切にヤング率を測定することができる方法を見出し、さらに、このようにして測定されたヤング率が、積層体の柔軟性と高い相関があるとの知見を得た。本発明は、このような知見に基づいて、積層体について、基材に重合体層が積層された部分におけるヤング率を上記範囲に制御することにより、顕著に柔軟性に優れた積層体を得ることができるものである。 In particular, in the past, there was a situation where flexibility could not be properly evaluated for thin samples such as laminates such as protective gloves. It was in a situation where it was not made clear what would happen. On the other hand, the present inventors have found a method that can appropriately measure the Young's modulus for a thin sample such as a laminated body such as a protective glove by a method described later, and in this way. The Young's modulus measured in this way was found to be highly correlated with the flexibility of the laminate. Based on such knowledge, the present invention obtains a laminate that is remarkably excellent in flexibility by controlling the Young's modulus of the laminate in which the polymer layer is laminated on the base material within the above range. It is something that can be done.
 本発明の積層体における、基材に重合体層が積層された部分におけるヤング率を、上記範囲に制御する方法としては、特に限定されないが、重合体ラテックスを構成する重合体の種類および組成を調整する方法、重合体ラテックスに添加する増粘剤の種類および量を調整する方法、および表面重合体層の厚みtに対する浸透重合体層の厚みtの比(t/t)をそれぞれ上記範囲に制御する方法などが挙げられる。また、重合体ラテックスとして、揮発分を除去して膜成形体とした場合における膜成形体のヤング率が10,000kPa以下であるものを用いる方法も好適である。 In the laminate of the present invention, the method of controlling the Young's modulus in the portion where the polymer layer is laminated on the base material within the above range is not particularly limited, but the type and composition of the polymer constituting the polymer latex are not limited. The method of adjusting, the method of adjusting the type and amount of the thickener added to the polymer latex, and the ratio of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer (t 1 / t 2 ) Examples of the method include controlling each of the above ranges. In addition, a method using a polymer latex having a Young's modulus of 10,000 kPa or less in the case of forming a film molded body by removing volatile components is also suitable.
<ヤング率の測定方法>
 次いで、本発明の積層体のヤング率を測定する方法について、説明する。
 本発明の積層体のヤング率は、重合体層を有する積層体に対し、所定の押込荷重で圧子を押し込み、圧子を押し込んだ際の、押込荷重と、押し込みによる変位とに基づいて、測定することができる。この方法により測定されるヤング率は、柔軟性を示す指標となるため、本方法によれば、本発明の積層体などのゴム層を有する積層体の柔軟性を測定できるものである。
<Measurement method of Young's modulus>
Next, a method for measuring the Young's modulus of the laminate of the present invention will be described.
The Young's modulus of the laminate of the present invention is measured based on the indentation load and the displacement due to indentation when the indenter is pushed into the laminate having a polymer layer with a predetermined indentation load. be able to. Since the Young's modulus measured by this method serves as an index indicating flexibility, according to this method, the flexibility of a laminate having a rubber layer such as the laminate of the present invention can be measured.
 以下においては、本発明の積層体のヤング率の測定方法について説明するが、重合体ラテックスを用いて得られる膜成形体のヤング率(すなわち、重合体ラテックスを用いて得られる膜成形体などのゴムの膜成形体の柔軟性)についても、同様にして測定できるものである。 In the following, the method for measuring the Young's modulus of the laminate of the present invention will be described. However, the Young's modulus of the film molded body obtained using the polymer latex (that is, the film molded body obtained using the polymer latex, etc.) The flexibility of the rubber film molding can also be measured in the same manner.
 本発明のヤング率の測定においては、重合体層を有する積層体に対し、少なくとも1つの押込荷重にて圧子を押し込み、少なくとも1つの押込荷重で圧子を押し込んだ際の、押込荷重と、押し込みによる変位とに基づいて、ヤング率を測定すればよいが、ヤング率をより適切に測定できるという観点より、異なる複数の押込荷重で圧子を押し込み、異なる複数の押込荷重で押し込んだ際の、押込荷重と、これに対応する押し込みによる変位とに基づいて、ヤング率を測定することが好ましい。 In the measurement of the Young's modulus of the present invention, the indenter is pushed with at least one indentation load into the laminate having the polymer layer, and when the indenter is indented with at least one indentation load. It is sufficient to measure the Young's modulus based on the displacement, but from the viewpoint that the Young's modulus can be measured more appropriately, the indentation load when the indenter is pushed in with different indentations and indented with different indentations It is preferable to measure the Young's modulus based on the corresponding displacement due to the pressing.
 図2は、ヤング率の測定に用いることができる押込試験装置20の一例を示す図である。以下においては、図2に示す押込試験装置20を用いた場合における、ヤング率の測定方法を例示して説明するが、ヤング率の測定方法は、図2に示す押込試験装置20を用いる方法に特に限定されるものではない。 FIG. 2 is a diagram showing an example of an indentation test apparatus 20 that can be used for measuring Young's modulus. In the following, the measurement method of Young's modulus in the case of using the indentation test apparatus 20 shown in FIG. 2 will be described as an example. The measurement method of Young's modulus is a method using the indentation test apparatus 20 shown in FIG. It is not particularly limited.
 図2に示す押込試験装置20は、測定台21上に、ヤング率の測定の対象となる測定試料10を載置するための吸引台30を備え、測定台21および吸引台30の上方に、球状圧子29を保持する支持アーム22が設けられている。また、支持アーム22には、水平アーム23が設けられており、水平アーム23に設けられた水平駆動機構により、球状圧子29が、測定台21および吸引台30の面内方向、すなわち、図中のX方向およびY方向(紙面に垂直な方向)に移動可能となっている。これにより、押込試験装置20は、測定試料10の様々な個所について試験を行うことができるものである。 The indentation test apparatus 20 shown in FIG. 2 includes a suction table 30 for placing a measurement sample 10 to be measured for Young's modulus on a measurement table 21, and above the measurement table 21 and the suction table 30. A support arm 22 that holds the spherical indenter 29 is provided. Further, the support arm 22 is provided with a horizontal arm 23, and the spherical indenter 29 is moved in the in-plane direction of the measurement table 21 and the suction table 30 by the horizontal drive mechanism provided in the horizontal arm 23, that is, in the drawing. Are movable in the X direction and the Y direction (direction perpendicular to the paper surface). Accordingly, the indentation test apparatus 20 can perform tests on various portions of the measurement sample 10.
 そして、押込試験装置20には、粗動用垂直可動機構24、および微動用垂直可動機構25を介して、ステージ26が、図中のZ方向に可動可能に設けられている。また、ステージ26には、ロードセル27、および荷重軸28を介して、球状圧子29が接続されている。なお、粗動用垂直可動機構24は、たとえば、ボールナットによる可動機構を備えるものとすることができ、モータの回転により、ステージ26を図中のZ方向に可動可能なものとすることができる。また、微動用垂直可動機構25は、たとえば、可動機構としてボイスコイルモータを備えるものとするこができ、ステージ26を細かなピッチで精度良く、Z方向に可動できるものとすることができる。 In the indentation test apparatus 20, a stage 26 is provided so as to be movable in the Z direction in the figure via a coarse moving vertical moving mechanism 24 and a fine moving vertical moving mechanism 25. A spherical indenter 29 is connected to the stage 26 via a load cell 27 and a load shaft 28. The coarse movement vertical movable mechanism 24 can be provided with a movable mechanism using a ball nut, for example, and the stage 26 can be moved in the Z direction in the figure by the rotation of the motor. Further, the fine moving vertical moving mechanism 25 can be provided with a voice coil motor as a moving mechanism, for example, and the stage 26 can be moved in the Z direction with a fine pitch with high accuracy.
 そして、押込試験装置20によれば、粗動用垂直可動機構24によりステージ17を介して球状圧子29を、測定試料10に接近させた後、微動用垂直可動機構25のよりステージ26を介して球状圧子29を、細かなピッチで精度良く測定試料10に押し込むことができる。また、この際における、押込荷重をロードセル27により検出可能となっている。さらに、微動用垂直可動機構25は、たとえば、レーザーを使用した光学的な位置検出機構などを備えており、これにより高い精度で、測定試料10に対する、押込み量、すなわち測定試料10の押し込みによる変位(厚み方向における変位)を検出可能となっている。 According to the indentation test apparatus 20, after the spherical indenter 29 is brought close to the measurement sample 10 by the coarse moving vertical movable mechanism 24 via the stage 17, the spherical indenter 29 is moved by the fine moving vertical movable mechanism 25 via the stage 26. The indenter 29 can be pushed into the measurement sample 10 with a fine pitch with high accuracy. Further, the indentation load at this time can be detected by the load cell 27. Further, the fine movement vertical movable mechanism 25 includes, for example, an optical position detection mechanism using a laser, and the like, and thereby, with a high degree of accuracy, the amount of pressing with respect to the measurement sample 10, that is, the displacement due to the pressing of the measurement sample 10. (Displacement in the thickness direction) can be detected.
 そして、このような押込試験装置20を用いた具体的な測定方法について説明すると、まず、ヤング率の測定対象となる積層体について、基材に重合体層が積層されている部分を、必要に応じて、適切なサイズに加工することで測定試料10とし、測定試料10を吸引台30上に載置する。なお、吸引台30は、その表面において、測定箇所(すなわち、球状圧子29が当接する箇所)の近傍に、複数の吸引孔が形成されており、不図示の吸引ポンプと接続されることで、複数の吸引孔より、測定試料10を吸引により固定することのできるものである。本発明においては、このように吸引により固定しながら測定を行うことで、高精度に測定を行うことができるものである。特に、測定対象である積層体は、吸引による固定を行わずに測定を行うと、測定中に、試料のたるみなどが発生してしまい、良好に測定を行うことができない場合が多い。これに対し、吸引により固定しながら測定を行うことで、このような不具合の発生を有効に防止することができ、これにより、高精度な測定を実現できるものである。なお、積層体の測定を行う際には、吸引台30による吸引を適切に行うために、測定面と反対の面のうち、吸引台30の複数の吸引孔に対応する部分に、樹脂テープを貼り付けた状態とした上で、吸引台30上に載置して測定を行うことが好ましい。 Then, a specific measurement method using such an indentation test apparatus 20 will be described. First, for a laminate to be measured for Young's modulus, a portion where a polymer layer is laminated on a base material is necessary. Accordingly, the sample 10 is processed to an appropriate size, and the sample 10 is placed on the suction table 30. The suction table 30 has a plurality of suction holes formed in the vicinity of a measurement location (that is, a location where the spherical indenter 29 abuts) on the surface thereof, and is connected to a suction pump (not shown). The measurement sample 10 can be fixed by suction from a plurality of suction holes. In the present invention, the measurement can be performed with high accuracy by performing the measurement while being fixed by suction. In particular, when the measurement is performed without fixing by suction, the laminated body that is the object of measurement often suffers from sagging of the sample during measurement and cannot be measured satisfactorily. On the other hand, by performing measurement while being fixed by suction, it is possible to effectively prevent the occurrence of such a defect, thereby realizing highly accurate measurement. When performing measurement of the laminate, in order to appropriately perform suction by the suction table 30, a resin tape is applied to a portion corresponding to the plurality of suction holes of the suction table 30 out of the surface opposite to the measurement surface. It is preferable that the measurement is performed by placing it on the suction table 30 after it is in a pasted state.
 次いで、粗動用垂直可動機構24によりステージ26を介して球状圧子29を駆動させ、球状圧子29を、吸引台30上に吸引により固定させた測定試料10の表面近傍まで移動させる。その後、微動用垂直可動機構25のよりステージ26を介して球状圧子29を、細かなピッチで測定試料10に徐々に押し込み、この際における、ロードセル27により検出された測定試料10に対する押込荷重と、微動用垂直可動機構25に備えられた位置検出機構により検出された押込み量、すなわち測定試料10の押し込みによる変位とを、連続的に検出することで、たとえば、図3に示すような、測定試料10に対する押込荷重と、測定試料10の押し込みによる変位との関係を示す特性曲線を得ることができる。 Next, the spherical indenter 29 is driven by the coarse moving vertical movable mechanism 24 through the stage 26, and the spherical indenter 29 is moved to the vicinity of the surface of the measurement sample 10 fixed on the suction table 30 by suction. Thereafter, the spherical indenter 29 is gradually pushed into the measurement sample 10 at a fine pitch through the stage 26 of the vertical moving mechanism 25 for fine movement, and the indentation load on the measurement sample 10 detected by the load cell 27 at this time, For example, the measurement sample as shown in FIG. 3 can be detected by continuously detecting the amount of pushing detected by the position detection mechanism provided in the fine moving vertical moving mechanism 25, that is, the displacement caused by the pushing of the measurement sample 10. A characteristic curve showing the relationship between the indentation load with respect to 10 and the displacement due to indentation of the measurement sample 10 can be obtained.
 なお、具体的な測定条件としては、球状圧子29としては、たとえば、SUS製のものを用いることができ、その直径は、好ましくは40mm以下、より好ましくは20mm以下である。また、測定時の押込速度は、0.1~10mm/sとすることが好ましく、0.1~2mm/sとすることがより好ましく、測定における最大荷重は、0.5~50Nとすることが好ましく、0.5~20Nとすることがより好ましい。 As specific measurement conditions, for example, a SUS product can be used as the spherical indenter 29, and the diameter is preferably 40 mm or less, more preferably 20 mm or less. The indentation speed during measurement is preferably 0.1 to 10 mm / s, more preferably 0.1 to 2 mm / s, and the maximum load in measurement is 0.5 to 50 N. Is preferable, and 0.5 to 20 N is more preferable.
 そして、測定により得られた、図3に示す測定試料10に対する押込荷重と、測定試料10の押し込みによる変位との関係を示す特性曲線に基づいて、測定試料10のヤング率を求めることができる。以下、測定試料10のヤング率の算出方法について説明する。 Then, the Young's modulus of the measurement sample 10 can be obtained based on the characteristic curve showing the relationship between the indentation load on the measurement sample 10 shown in FIG. 3 and the displacement caused by the indentation of the measurement sample 10 obtained by the measurement. Hereinafter, a method for calculating the Young's modulus of the measurement sample 10 will be described.
 まず、測定試料10に対して、十分に硬い球状圧子29を押込む場合、球状圧子29の押し込みに係る押込荷重Fと押込量(すなわち、測定試料10の変位)δとの関係は、Hertzの弾性接触理論によって、下記式(1)により示される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 上記式(1)、(2)中、φは球状圧子29の直径、Eは測定試料10のヤング率、vは測定試料10のポアソン比である。また、αは測定試料10の柔軟性を表す係数であり、以下においては、柔軟性係数とする。
First, when a sufficiently hard spherical indenter 29 is pushed into the measurement sample 10, the relationship between the pushing load F related to the pushing of the spherical indenter 29 and the pushing amount (that is, displacement of the measurement sample 10) δ is Hertz's. It is shown by the following formula (1) by the elastic contact theory.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
In the above formulas (1) and (2), φ is the diameter of the spherical indenter 29, E is the Young's modulus of the measurement sample 10, and v is the Poisson's ratio of the measurement sample 10. In addition, α is a coefficient representing the flexibility of the measurement sample 10, and is hereinafter referred to as a flexibility coefficient.
 そして、図3に示す測定試料10に対する押込荷重と、測定試料10の押し込みによる変位との関係を示す特性曲線を使用して、最小二乗法等により柔軟性係数αを求めることができ、さらに、上記式(2)を変形することにより得られる下記式(3)により、測定試料10のヤング率Eを求めることができる。
Figure JPOXMLDOC01-appb-M000003
Then, using the characteristic curve showing the relationship between the indentation load on the measurement sample 10 shown in FIG. 3 and the displacement due to the indentation of the measurement sample 10, the flexibility coefficient α can be obtained by the least square method or the like, The Young's modulus E of the measurement sample 10 can be obtained from the following equation (3) obtained by modifying the above equation (2).
Figure JPOXMLDOC01-appb-M000003
 その一方で、測定対象としての測定試料10は、本発明の積層体であり、これらは、上述した通り、その厚みが薄いものであることから、球状圧子29を押し込んだ際に、押し込みに伴う押込荷重の増加が顕著となるため、Hertzの弾性接触理論による上記式(1)を精度良く適用できない場合が多い。そのため、このように厚みが薄い場合には、下記式(4)を適用することが好ましく、このような式(4)を使用することにより、球状圧子29の押し込みに係る押込荷重Fと押込量(すなわち、測定試料10の変位)δとの関係を適切に表現できるものである。
Figure JPOXMLDOC01-appb-M000004
On the other hand, the measurement sample 10 as a measurement object is the laminate of the present invention, and these are thin as described above. Therefore, when the spherical indenter 29 is pushed in, it is accompanied by pushing. Since the increase in the indentation load becomes significant, the above formula (1) based on the Hertz elastic contact theory cannot be applied with high accuracy in many cases. Therefore, when the thickness is thin like this, it is preferable to apply the following formula (4). By using such a formula (4), the pressing load F and the pressing amount related to the pressing of the spherical indenter 29 are used. (That is, the displacement of the measurement sample 10) δ can be expressed appropriately.
Figure JPOXMLDOC01-appb-M000004
 上記式(4)中、βは、測定試料10の薄さが荷重へ与える影響を表す係数である。そのため、本発明においては、測定試料10が、本発明の積層体のように厚みの薄い試料である場合でも、上述した方法にしたがって、図3に示す測定試料10に対する押込荷重と、測定試料10の押し込みによる変位との関係を示す特性曲線を使用して、荷重へ与える影響を表す係数β、および柔軟性係数αを求めることができ、さらに、上記式(4)より、測定試料10のヤング率Eを求めることができる。 In the above equation (4), β is a coefficient representing the influence of the thinness of the measurement sample 10 on the load. Therefore, in the present invention, even when the measurement sample 10 is a thin sample like the laminate of the present invention, the indentation load on the measurement sample 10 shown in FIG. The coefficient β representing the influence on the load and the flexibility coefficient α can be obtained using the characteristic curve indicating the relationship with the displacement due to the pressing of the sample. Further, the Young of the measurement sample 10 can be obtained from the above equation (4). The rate E can be determined.
 なお、上記においては、本発明の積層体のヤング率の測定方法について説明したが、重合体ラテックスとして、揮発分を除去して膜成形体とした場合における膜成形体のヤング率が10,000kPa以下であるものを用いる場合において、該膜成形体のヤング率を測定する際にも、上記方法を用いればよい。すなわち、重合体ラテックスの揮発分を、加熱などの公知の方法により除去し、膜成形体を得て、得られた膜成形体について上記方法にしたがって、ヤング率の測定を行えばよい。ここで作製する膜成形体の厚みは、従来の方法ではヤング率の測定が困難であった薄さ、具体的には、通常3.0mm以下であり、好ましくは2.5mm以下とすることができる。従来においては、重合体ラテックスから得られる固形分についても、固形分がバルク(塊)の状態であれば、ヤング率を測定することができたものの、重合体ラテックスを膜成形体のような薄い試料とした場合には、ヤング率を測定することが困難であった。これに対し、上述した本発明のヤング率の測定方法によれば、重合体ラテックスを用いて作製される薄い膜成形体についても、ヤング率を測定することが可能となる。 In the above description, the method for measuring the Young's modulus of the laminate of the present invention has been described. However, the Young's modulus of the film molded body in the case of forming a film molded body by removing volatile components as the polymer latex is 10,000 kPa. In the case of using the following, the above method may be used also when measuring the Young's modulus of the film molded body. That is, the volatile matter of the polymer latex is removed by a known method such as heating to obtain a film molded body, and the Young's modulus of the obtained film molded body may be measured according to the above method. The thickness of the film molded body produced here is a thickness that is difficult to measure the Young's modulus by the conventional method, specifically, usually 3.0 mm or less, preferably 2.5 mm or less. it can. Conventionally, the solid content obtained from the polymer latex can be measured as long as the solid content is in a bulk state, but the polymer latex is thin like a film molding. When used as a sample, it was difficult to measure the Young's modulus. On the other hand, according to the method of measuring the Young's modulus of the present invention described above, the Young's modulus can be measured even for a thin film molded body produced using a polymer latex.
 以上の本発明のヤング率の測定方法によれば、測定対象となる、ゴムの膜成形体またはゴム層を有する積層体に対し、所定の押込荷重で圧子を押し込み、圧子を押し込んだ際の、押込荷重と、押し込みによる変位とに基づいて、柔軟性を測定するため、ゴムの膜成形体またはゴム層を有する積層体の柔軟性を適切に測定できるものであり、より具体的には、圧子を押し込んだ際の、押込荷重と、押し込みによる変位とに基づいて、ゴムの膜成形体またはゴム層を有する積層体のヤング率を求め、求めたヤング率として数値化されたものを柔軟性の指標とすることにより、ゴムの膜成形体またはゴム層を有する積層体の柔軟性を適切に測定できるものである。 According to the method of measuring the Young's modulus of the present invention described above, when the indenter is pushed in with a predetermined pushing load, the rubber film molded body or the laminate having the rubber layer to be measured, when the indenter is pushed in, Since the flexibility is measured based on the indentation load and the displacement caused by the indentation, the flexibility of the rubber film molded body or the laminate having the rubber layer can be appropriately measured. More specifically, the indenter Based on the indentation load and the displacement due to the indentation, the Young's modulus of the rubber film molded body or the laminate having the rubber layer is obtained. By using it as an index, the flexibility of a rubber film molded body or a laminate having a rubber layer can be appropriately measured.
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明はこの実施例に限られるものではない。以下において、特記しない限り、「部」は重量基準である。物性および特性の試験または評価方法は以下のとおりである。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In the following, “part” is based on weight unless otherwise specified. Tests or evaluation methods for physical properties and characteristics are as follows.
 ブタジエン単位の含有量測定
 ブタジエン単位の含有割合は、ニトリルゴムのヨウ素価(JIS K 6235による)を測定することにより算出した。
Content measurement of butadiene units The content ratio of butadiene units was calculated by measuring the iodine value of nitrile rubber (according to JIS K 6235).
 アクリロニトリル単位の含有量測定
 アクリロニトリル単位の含有割合は、JIS K6384に従い、ケルダール法により、ニトリルゴム中の窒素含量を測定することにより算出した。
Content measurement of acrylonitrile unit The content ratio of the acrylonitrile unit was calculated by measuring the nitrogen content in the nitrile rubber by the Kjeldahl method according to JIS K6384.
 メタクリル酸単位の含有量測定
 2mm角のニトリルゴム0.2gに、2-ブタノン100mlを加えて16時間攪拌した後、エタノール20mlおよび水10mlを加え、攪拌しながら水酸化カリウムの0.02N含水エタノール溶液を用いて、室温でチモールフタレインを指示薬とする滴定により、ニトリルゴム100gに対するカルボキシル基のモル数として求め(単位:ephr)、求めたカルボキシル基のモル数をメタクリル酸単位の量に換算することにより、ニトリルゴムにおけるメタクリル酸単位の含有割合を算出した。
Measurement of content of methacrylic acid unit To 0.2 g of 2 mm square nitrile rubber, 100 ml of 2-butanone was added and stirred for 16 hours, then 20 ml of ethanol and 10 ml of water were added, and 0.02N aqueous ethanol containing potassium hydroxide with stirring. Using a solution, titration with thymolphthalein as an indicator at room temperature is used to determine the number of moles of carboxyl groups relative to 100 g of nitrile rubber (unit: ephr), and the calculated number of moles of carboxyl groups is converted to the amount of methacrylic acid units. Thus, the content ratio of the methacrylic acid unit in the nitrile rubber was calculated.
 メチルエチルケトン不溶解分量
 重合体ラテックスを枠付きガラス板に流涎し、湿度23℃、相対湿度50%で48時間放置することで、厚みが1mmの乾燥フィルムを得た。得られた乾燥フィルム約0.2gを精秤し、これを浸漬前のフィルムの重量(W1)とした。そして、浸漬前のフィルムを80メッシュのかご状金網に入れて、かご状金網に入れた状態にて、メチルエチルケトン100mLに24時間浸漬させた。そして、浸漬後のフィルムを105℃で、1時間乾燥することにより、メチルエチルケトンを除去した後、得られた乾燥フィルムの重量を測定し、これを浸漬後の乾燥フィルムの重量(W2)とした。そして、得られた結果より、下記式にしたがって、メチルエチルケトン不溶解分量(MEK不溶解分量)を算出した。
  メチルエチルケトン不溶解分量(単位:重量%)=(浸漬後の乾燥フィルムの重量(W2)/浸漬前の乾燥フィルムの重量(W1))×100
Methyl ethyl ketone insoluble polymer latex was poured onto a framed glass plate and allowed to stand for 48 hours at a humidity of 23 ° C. and a relative humidity of 50% to obtain a dry film having a thickness of 1 mm. About 0.2 g of the obtained dried film was precisely weighed, and this was defined as the weight (W1) of the film before immersion. Then, the film before immersion was placed in an 80 mesh cage wire mesh and immersed in 100 mL of methyl ethyl ketone for 24 hours in a state of being placed in the cage wire mesh. And after removing methyl ethyl ketone by drying the film after immersion at 105 degreeC for 1 hour, the weight of the obtained dry film was measured and this was made into the weight (W2) of the dry film after immersion. And from the obtained result, according to the following formula, methyl ethyl ketone insoluble content (MEK insoluble content) was calculated.
Methyl ethyl ketone insoluble content (unit:% by weight) = (weight of dry film after immersion (W2) / weight of dry film before immersion (W1)) × 100
 増粘剤の1%粘度
 増粘剤を水に溶解させて濃度1重量%の水溶液とし、25℃にてB型粘度計を使用し回転数60rpmの条件で測定される粘度を、1%粘度として求めた。
A 1% viscosity thickener of a thickener is dissolved in water to make an aqueous solution having a concentration of 1% by weight, and a viscosity measured at 25 ° C. using a B-type viscometer at a rotation speed of 60 rpm is 1% viscosity. As sought.
 増粘剤の不溶成分粒径
 不溶成分の粒径は、増粘剤を水に溶解させて濃度1重量%とした前記水溶液を、グラインドゲージ(JIS-K5101)によりJIS-K5600-5―2に準じ線条法にて測定した粒径を示す。具体的には、前記水溶液を粒度ゲージの上に乗せ、スクレーパーをゲージと垂直になるように当てながら手前に引き、連続して10mm以上の線が3本以上並んで現れた位置の目盛りを読み取る線条法評価により不溶成分の粒径を決定した。
 なお、前記方法により測定した粒径は、粒径が30μmを超える不溶成分が溶液中に極微量含むものを一切排除するものではない。前記測定法の精度及び再現性についてはJISに記載されているように、2回測定して得た2個の平均値間の差の絶対値は、確率95%で、ゲージ範囲の20%であることが期待されている(目標とされている)。したがって、JISの要求する精度、再現性の範囲において、水溶液中には、粒子径が30μmを超える不溶成分が存在していてもよい。
Insoluble component particle size of thickener The particle size of the insoluble component was determined by dissolving the thickener in water to a concentration of 1% by weight using a grind gauge (JIS-K5101) to JIS-K5600-5-2. The particle diameter measured by the linear method is shown. Specifically, the aqueous solution is placed on a particle size gauge, and the scraper is pulled toward the front so as to be perpendicular to the gauge, and the scale at the position where three or more lines of 10 mm or more appear continuously is read. The particle size of the insoluble component was determined by the wire method evaluation.
In addition, the particle diameter measured by the said method does not exclude what the insoluble component whose particle diameter exceeds 30 micrometers contains in trace amount in a solution at all. As described in JIS for the accuracy and reproducibility of the measurement method, the absolute value of the difference between two average values obtained by measuring twice is 95% probability and 20% of the gauge range. It is expected to be (targeted). Therefore, in the range of accuracy and reproducibility required by JIS, an insoluble component having a particle diameter exceeding 30 μm may exist in the aqueous solution.
 浸透重合体層の厚みt 、および表面重合体層の厚みt
 保護手袋(積層体)について、中指の先から12cmの掌部分の重合体層が積層された断面を、光学顕微鏡(製品名「VHX-200」、キーエンス社製)を用いて観察することで、浸透重合体層の厚みt、および表面重合体層の厚みtを測定した。具体的な測定方法について図1を参照して説明すると、浸透重合体層の厚みtは、繊維基材の表面から、浸透したゴムの最深部までの距離を、10カ所測定し、測定結果の数平均値を算出することにより求めた。また、表面重合体層の厚みtは、繊維基材の表面から、重合体層の表面までの距離を、10カ所測定し、測定結果の数平均値を算出することにより求めた。
The thickness t 1 of the osmotic polymer layer and the thickness t 2 of the surface polymer layer
For the protective gloves (laminated body), by observing the cross section where the polymer layer of the palm portion of 12 cm from the tip of the middle finger was laminated using an optical microscope (product name “VHX-200”, manufactured by Keyence Corporation), The thickness t 1 of the osmotic polymer layer and the thickness t 2 of the surface polymer layer were measured. A specific measurement method will be described with reference to FIG. 1. The thickness t 1 of the osmotic polymer layer is measured at 10 points from the surface of the fiber base to the deepest part of the infiltrated rubber. The number average value was calculated by calculating. The thickness t 2 of the surface polymer layer from the surface of the fiber substrate, the distance to the surface of the polymer layer was measured 10 locations were determined by calculating the number average value of the measurement results.
 官能試験
 保護手袋(積層体)を10人にそれぞれ着用してもらい、その柔軟性を下記の5段階の評価点で評価してもらい、評価点の平均値を求め、評価点の平均値が最も近いものを、各実施例における評価点とした(たとえば、平均値が4.1である場合には、「4:柔らかい」等とした。)。
  5:非常に柔らかい
  4:柔らかい
  3:やや柔らかい
  2:硬い
  1:非常に硬い
Sensory test gloves (laminated body) are worn by 10 people, and their flexibility is evaluated by the following five grades. The average score is obtained, and the average score is the highest. The closest score was used as the evaluation score in each example (for example, when the average value was 4.1, “4: soft” or the like).
5: Very soft 4: Soft 3: Slightly soft 2: Hard 1: Very hard
 膜成形体および保護手袋のヤング率
 重合体ラテックスの揮発分を除去して作製した膜成形体、または保護手袋(積層体)の掌部分を、60mm×60mmの形状に裁断することで、測定用サンプルを得た。そして、測定用サンプルに対し、図2に示す押込試験装置20(測定部として、製品名「HG1003-SL」、堀内電機社製を使用したもの)を用いて、上述した方法に従って、膜成形体または保護手袋のヤング率の測定を行った。具体的な条件については、下記に示す通りとした。なお、測定に際しては、測定用サンプルの吸引台30の複数の吸引孔に対応する部分に、樹脂テープを貼り付けた状態とし、吸引台30による吸引を行いながら、重合体層側から、球状圧子を押し込むことで測定を行った。なお、保護手袋の測定の際には、測定用サンプルの重合体層が形成された面(測定面)と反対側の面に樹脂テープを貼り付け、吸引台30による吸引を行いながら、重合体層側から、球状圧子を押し込むことで測定を行った。また、測定は、60mm×60mmの測定用サンプルの3箇所について行い、3箇所のヤング率の測定結果の平均値を求め、これを各実施例のヤング率とした。
  球状圧子:直径10mmのSUS製の球状圧子
  押込速度:0.5mm/s
  最大荷重:0.5N
  球状圧子の初期位置:-6mm(吸引台30から6mmの高さ位置)
Membrane molded body and protective glove Young's modulus Polymer for measurement by cutting the film molded body prepared by removing the volatile content of latex or protective gloves (laminate) into 60mm x 60mm shape A sample was obtained. Then, for the measurement sample, using the indentation test apparatus 20 shown in FIG. 2 (product name “HG1003-SL”, manufactured by Horiuchi Electric Co., Ltd. as the measurement unit), a film molded body is obtained according to the method described above. Alternatively, the Young's modulus of protective gloves was measured. Specific conditions were as shown below. In the measurement, the resin tape is attached to the portions corresponding to the plurality of suction holes of the suction table 30 of the measurement sample, and the spherical indenter is applied from the polymer layer side while performing suction by the suction table 30. The measurement was performed by pushing. In the measurement of the protective gloves, a polymer tape is applied to the surface opposite to the surface (measurement surface) on which the polymer layer of the measurement sample is formed, and suction is performed by the suction table 30 while the polymer is being suctioned. Measurement was performed by pushing a spherical indenter from the layer side. Moreover, the measurement was performed about three places of the measurement sample of 60 mm x 60 mm, the average value of the measurement result of three Young's modulus was calculated | required, and this was made into the Young's modulus of each Example.
Spherical indenter: SUS spherical indenter with a diameter of 10 mm Indentation speed: 0.5 mm / s
Maximum load: 0.5N
Initial position of spherical indenter: -6 mm (height position from suction table 30 to 6 mm)
 曲げ剛性
 保護手袋(積層体)の掌部分を、60mm×60mmの形状に裁断することで、測定用サンプルを得た。そして、測定用サンプルに対し、曲げ試験機(製品名「KES-FB2」 カトーテック株式会社製)を用いて、試験条件をSENS20および曲げ2cm-1として、曲げた際に、ゴム層を内面となる方向に曲げることで、曲げ剛性を測定した。測定は、5回行い、その平均値を各実施例の曲げ剛性とした。
A sample for measurement was obtained by cutting the palm portion of the bending stiffness protective glove (laminate) into a shape of 60 mm × 60 mm. Then, when the measurement sample was bent using a bending tester (product name “KES-FB2” manufactured by Kato Tech Co., Ltd.) with the test conditions set to SENS20 and bending 2 cm −1 , the rubber layer was attached to the inner surface. The bending stiffness was measured by bending in the direction. The measurement was performed 5 times, and the average value was defined as the bending rigidity of each example.
 耐摩耗性
 摩耗試験はEN388に記載の方法に則って、マーチンデール式摩耗試験機(製品名「STM633」、SATRA社製)を用いて評価を実施した。具体的には、保護手袋(積層体)について、所定の加重をかけながら摩擦を繰り返し、破損までの摩擦回数を得た。破損に至るまでの摩擦回数に従い、レベル0からレベル4までのレベルに分けられ、レベルが高いほど耐摩耗性に優れる。
  LEVEL 4:回転数8,000回転以上
  LEVEL 3:回転数2,000回転以上、8,000回転未満
  LEVEL 2:回転数500回転以上、2,000回転未満
  LEVEL 1:回転数100回転以上、500回転未満
  LEVEL 0:回転数100回転未満
The abrasion resistance abrasion test was evaluated using a Martindale abrasion tester (product name “STM633”, manufactured by SATRA) in accordance with the method described in EN388. Specifically, for the protective gloves (laminated body), friction was repeated while applying a predetermined load, and the number of frictions until breakage was obtained. According to the number of frictions until breakage, it is divided into levels from level 0 to level 4, and the higher the level, the better the wear resistance.
LEVEL 4: 8,000 or more revolutions LEVEL 3: 2,000 or more revolutions and less than 8,000 revolutions LEVEL 2: 500 or more revolutions and less than 2,000 revolutions LEVEL 1: 100 or more revolutions and 500 Less than rotation LEVEL 0: Number of rotations less than 100
 外観
 保護手袋(積層体)について、目視により重合体層を観察し、以下の基準により外観の評価を行った。
  A:重合体層にクラックもピンホールも確認されなかった
  B:重合体層にクラックのみ確認された
  C:重合体層にピンホールのみ確認された
About the appearance protective gloves (laminated body), the polymer layer was observed visually and the appearance was evaluated according to the following criteria.
A: No cracks or pinholes were confirmed in the polymer layer B: Only cracks were confirmed in the polymer layer C: Only pinholes were confirmed in the polymer layer
重合体ラテックスの製造方法
 製造例1(ニトリルゴムのラテックス(A-1)の製造)
 反応器に、イオン交換水180部、濃度10重量%のドデシルベンゼンスルホン酸ナトリウム水溶液25部、アクリロニトリル20部、メタクリル酸5部、およびt-ドデシルメルカプタン(分子量調整剤)0.6部を、この順に仕込み、内部の気体を窒素で3回置換した後、1,3-ブタジエン75部を仕込んだ。反応器を5℃に保ち、クメンハイドロパーオキサイド(重合開始剤)0.1部、還元剤、およびキレート剤を適量仕込み、攪拌しながら約16時間重合反応を継続した。次いで、濃度10重量%のハイドロキノン水溶液(重合停止剤)0.1部を加えて重合転化率85%で重合反応を停止した後、水温60℃のロータリーエバポレータを用いて残留単量体を除去した後、濃縮しニトリルゴムのラテックス(A-1)(固形分濃度約30重量%)を得た。得られたニトリルゴムのラテックス(A-1)における、ニトリルゴムの組成、およびメチルエチルケトン不溶解分量の測定、揮発分を除去することにより得られる膜成形体のヤング率の測定を行った。結果を表2に示す。
Production Example 1 of Polymer Latex (Production of Nitrile Rubber Latex (A-1))
In a reactor, 180 parts of ion-exchanged water, 25 parts of an aqueous sodium dodecylbenzenesulfonate solution having a concentration of 10% by weight, 20 parts of acrylonitrile, 5 parts of methacrylic acid, and 0.6 part of t-dodecyl mercaptan (molecular weight regulator) were added. In order, the internal gas was replaced with nitrogen three times, and then 75 parts of 1,3-butadiene was charged. The reactor was kept at 5 ° C., and 0.1 parts of cumene hydroperoxide (polymerization initiator), a reducing agent, and a chelating agent were charged in appropriate amounts, and the polymerization reaction was continued for about 16 hours with stirring. Subsequently, 0.1 part of a 10 wt% hydroquinone aqueous solution (polymerization terminator) was added to stop the polymerization reaction at a polymerization conversion rate of 85%, and then the residual monomer was removed using a rotary evaporator at a water temperature of 60 ° C. Thereafter, it was concentrated to obtain a nitrile rubber latex (A-1) (solid content concentration of about 30% by weight). In the resulting latex (A-1) of nitrile rubber, the composition of the nitrile rubber and the amount of methyl ethyl ketone insoluble matter were measured, and the Young's modulus of the molded film obtained by removing the volatile matter was measured. The results are shown in Table 2.
 製造例2(ニトリルゴムのラテックス(A-2)の製造)
 アクリロニトリルの使用量を20部から27部に、t-ドデシルメルカプタン(分子量調整剤)の使用量を0.6部から0.5部に、1,3-ブタジエンの使用量を75部から68部に、それぞれ変更した以外は、製造例1と同様にして、ニトリルゴムのラテックス(A-2)を得て、同様に測定を行った。結果を表2に示す。
Production Example 2 (Production of nitrile rubber latex (A-2))
The amount of acrylonitrile used is 20 to 27 parts, the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.6 to 0.5 parts, and the amount of 1,3-butadiene is 75 to 68 parts. A nitrile rubber latex (A-2) was obtained in the same manner as in Production Example 1, except that the respective changes were made. The results are shown in Table 2.
 製造例3(ニトリルゴムのラテックス(A-3)の製造)
 アクリロニトリルの使用量を20部から37部に、t-ドデシルメルカプタン(分子量調整剤)の使用量を0.6部から0.3部に、1,3-ブタジエンの使用量を75部から58部に、それぞれ変更した以外は、製造例1と同様にして、ニトリルゴムのラテックス(A-3)を得て、同様に測定を行った。結果を表2に示す。
Production Example 3 (Production of nitrile rubber latex (A-3))
The amount of acrylonitrile used is 20 to 37 parts, the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.6 to 0.3 parts, and the amount of 1,3-butadiene is 75 to 58 parts. A nitrile rubber latex (A-3) was obtained in the same manner as in Production Example 1, except that the respective changes were made. The results are shown in Table 2.
 製造例4(ニトリルゴムのラテックス(A-4)の製造)
 アクリロニトリルの使用量を20部から15部に、t-ドデシルメルカプタン(分子量調整剤)の使用量を0.6部から0部に、1,3-ブタジエンの使用量を75部から80部に、それぞれ変更した以外は、製造例1と同様にして、ニトリルゴムのラテックス(A-4)を得て、同様に測定を行った。結果を表2に示す。
Production Example 4 (Production of nitrile rubber latex (A-4))
The amount of acrylonitrile used is 20 to 15 parts, the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.6 to 0 parts, and the amount of 1,3-butadiene is 75 to 80 parts. A nitrile rubber latex (A-4) was obtained in the same manner as in Production Example 1 except that each was changed, and the measurement was performed in the same manner. The results are shown in Table 2.
 製造例5(ニトリルゴムのラテックス(A’-5)の製造)
 アクリロニトリルの使用量を20部から42部に、t-ドデシルメルカプタン(分子量調整剤)の使用量を0.6部から0.4部に、1,3-ブタジエンの使用量を75部から53部に、それぞれ変更した以外は、製造例1と同様にして、ニトリルゴムのラテックス(A’-5)を得て、同様に測定を行った。結果を表2に示す。
Production Example 5 (Production of nitrile rubber latex (A'-5))
The amount of acrylonitrile used is 20 to 42 parts, the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.6 to 0.4 parts, and the amount of 1,3-butadiene is 75 to 53 parts. A nitrile rubber latex (A′-5) was obtained in the same manner as in Production Example 1, except that each was changed. The results are shown in Table 2.
 製造例6(ニトリルゴムのラテックス(A’-6)の製造)
 アクリロニトリルの使用量を20部から30部に、メタクリル酸の使用量を5部から12部に、t-ドデシルメルカプタン(分子量調整剤)の使用量を0.6部から0.5部に、1,3-ブタジエンの使用量を75部から58部に、それぞれ変更した以外は、製造例1と同様に、ニトリルゴムのラテックス(A’-6)を得て、同様に測定を行った。結果を表2に示す。
Production Example 6 (Production of nitrile rubber latex (A'-6))
The amount of acrylonitrile used is 20 to 30 parts, the amount of methacrylic acid is 5 to 12 parts, the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.6 to 0.5 parts, 1 A nitrile rubber latex (A′-6) was obtained and measured in the same manner as in Production Example 1 except that the amount of 1,3-butadiene was changed from 75 parts to 58 parts. The results are shown in Table 2.
 実施例1
 ディップ成形用ラテックス組成物の調製
 重合体ラテックスとして、製造例2で製造したニトリルゴムのラテックス(A-2)を準備し、ニトリルゴムのラテックス中のニトリルゴム100部に対して、それぞれ固形分換算で、コロイド硫黄(細井化学工業社製)1.0部、ジブチルジチオカルバミン酸亜鉛(大内新興化学工業社製)0.5部、酸化亜鉛2.0部となるように、各配合剤の水分散液を調製し、調製した水分散液を添加し、ラテックス組成物を得た。なお、各配合剤の水分散液を添加する際には、ラテックスを撹拌した状態で、各配合剤の水分散液を所定の量をゆっくり添加した。その後、ラテックス組成物の固形分濃度を調整し、次いで、温度30℃、48時間の条件で、熟成(前加硫ともいう。)を施した。そして、熟成後のラテックス組成物に対して、増粘剤としてのカルボキシメチルセルロース(B-1)(商品名「WS-C」、第一工業製薬社製)(不溶成分粒径:20μm、1%粘度:250mPa・s、エーテル化度:0.6~0.7)を0.7重量%の割合で添加し、温度25℃かつ固形分濃度45重量%の条件においてB型粘度計を使用し回転数10rpmの条件で測定される粘度を2,800mPa・sに調整することで、ディップ成形用ラテックス組成物を得た。
Example 1
Preparation of latex composition for dip molding As the polymer latex, the latex (A-2) of the nitrile rubber produced in Production Example 2 was prepared, and each 100 parts of the nitrile rubber in the latex of the nitrile rubber was converted into solid content. Thus, water of each compounding agent was prepared so that colloidal sulfur (manufactured by Hosoi Chemical Co., Ltd.) 1.0 part, zinc dibutyldithiocarbamate (manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) 0.5 part, and zinc oxide 2.0 parts. A dispersion was prepared, and the prepared aqueous dispersion was added to obtain a latex composition. In addition, when adding the aqueous dispersion of each compounding agent, a predetermined amount of the aqueous dispersion of each compounding agent was slowly added while the latex was stirred. Thereafter, the solid content concentration of the latex composition was adjusted, and then aging (also referred to as pre-vulcanization) was performed at a temperature of 30 ° C. for 48 hours. Then, carboxymethylcellulose (B-1) (trade name “WS-C”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a thickener for the latex composition after aging (insoluble component particle size: 20 μm, 1% Viscosity: 250 mPa · s, degree of etherification: 0.6 to 0.7) was added at a rate of 0.7% by weight, and a B-type viscometer was used at a temperature of 25 ° C. and a solid content concentration of 45% by weight. A latex composition for dip molding was obtained by adjusting the viscosity measured at a rotation speed of 10 rpm to 2,800 mPa · s.
 凝固剤溶液の調製
 凝固剤としての硝酸カルシウム2.0重量%をメタノールに溶解させてなるメタノール溶液を、凝固剤溶液として調製した。
Preparation of Coagulant Solution A methanol solution prepared by dissolving 2.0% by weight of calcium nitrate as a coagulant in methanol was prepared as a coagulant solution.
 積層体(保護手袋)の製造
 手袋形状の繊維基材(材質:ナイロン、繊維基材の基材層平均厚みd:0.7mm、13ゲージ)を被せた金属製手袋型を、上記の凝固剤溶液に5秒間浸漬し、凝固剤溶液から引き上げた後、温度30℃、60秒間の条件で乾燥させた。その後、金属製手袋型を、上記のディップ成形用ラテックス組成物に3秒間浸漬し、ディップ成形用ラテックス組成物から引き上げた後、温度30℃、30分間の条件で乾燥させた。次いで、温度100℃、60分間の条件で熱処理を行う事で、重合体層中のニトリルゴムに架橋処理を施した。次いで、重合体層が形成された繊維基材を金属製手袋型から剥がすことで、保護手袋(積層体)を得た。得られた保護手袋(積層体)について、上述した方法に従い、浸透重合体層の厚みtの測定、表面重合体層の厚みtの測定、官能試験、ヤング率の測定、耐摩耗性、および外観の評価を行った。結果を表1に示す。
Manufacture of laminate (protective gloves) A metal glove mold covered with a glove-shaped fiber substrate (material: nylon, substrate layer average thickness d of fiber substrate: 0.7 mm, 13 gauge) It was immersed in the solution for 5 seconds, pulled up from the coagulant solution, and then dried under conditions of a temperature of 30 ° C. for 60 seconds. Thereafter, the metal glove mold was dipped in the above dip molding latex composition for 3 seconds, pulled up from the dip molding latex composition, and then dried under the conditions of a temperature of 30 ° C. for 30 minutes. Next, the nitrile rubber in the polymer layer was subjected to a crosslinking treatment by performing a heat treatment under conditions of a temperature of 100 ° C. for 60 minutes. Next, protective gloves (laminate) were obtained by peeling the fiber base material on which the polymer layer was formed from the metal glove mold. About the obtained protective gloves (laminated body), according to the method mentioned above, the measurement of the thickness t 1 of the penetrating polymer layer, the measurement of the thickness t 2 of the surface polymer layer, the sensory test, the measurement of Young's modulus, the wear resistance, And the appearance was evaluated. The results are shown in Table 1.
 実施例2
 ラテックス組成物に添加する増粘剤として、カルボキシメチルセルロース(B-1)に代えて、カルボキシメチルセルロース(B-2)(商品名「Daicel1150」、ダイセルファインケム社製)(不溶成分粒径:28μm、1%粘度:300mPa・s、エーテル化度:0.6~0.8)を0.65重量%の割合で使用することで、ディップ成形用ラテックス組成物の粘度を3,000mPa・sに調整した以外は、実施例1と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表1に示す。
Example 2
As a thickener to be added to the latex composition, carboxymethylcellulose (B-2) (trade name “Daicel1150”, manufactured by Daicel Finechem) instead of carboxymethylcellulose (B-1) (insoluble component particle size: 28 μm, 1 % Viscosity: 300 mPa · s, degree of etherification: 0.6 to 0.8) at a ratio of 0.65 wt%, the viscosity of the latex composition for dip molding was adjusted to 3,000 mPa · s. Except for the above, protective gloves (laminated body) were obtained in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1.
 実施例3
 ラテックス組成物に添加する増粘剤として、カルボキシメチルセルロース(B-1)に代えて、カルボキシメチルセルロース(B-3)(商品名「Daicel1190」、ダイセルファインケム社製)(不溶成分粒径:25μm、1%粘度:1,800mPa・s、エーテル化度:0.6~0.8)を0.4重量%の割合で使用することで、ディップ成形用ラテックス組成物の粘度を3,200mPa・sに調整した以外は、実施例1と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表1に示す。
Example 3
As a thickener to be added to the latex composition, carboxymethylcellulose (B-3) (trade name “Daicel1190”, manufactured by Daicel Finechem) instead of carboxymethylcellulose (B-1) (insoluble component particle size: 25 μm, 1 % Viscosity: 1,800 mPa · s, degree of etherification: 0.6 to 0.8) at a ratio of 0.4% by weight, the viscosity of the latex composition for dip molding is 3,200 mPa · s. Except having adjusted, it carried out similarly to Example 1, obtained the protective glove (laminated body), and evaluated similarly. The results are shown in Table 1.
 実施例4
 凝固剤溶液から引き上げた後、温度30℃、20秒間の条件で乾燥させた以外は、実施例1と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表1に示す。
Example 4
After pulling up from the coagulant solution, a protective glove (laminated body) was obtained and evaluated in the same manner as in Example 1 except that it was dried at a temperature of 30 ° C. for 20 seconds. The results are shown in Table 1.
 比較例1
 凝固剤溶液から引き上げた後、温度30℃、120秒間の条件で乾燥させた以外は、実施例1と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表1に示す。
Comparative Example 1
After pulling up from the coagulant solution, a protective glove (laminated body) was obtained and evaluated in the same manner as in Example 1 except that it was dried at a temperature of 30 ° C. for 120 seconds. The results are shown in Table 1.
 比較例2
 ラテックス組成物に添加する増粘剤として、カルボキシメチルセルロース(B-1)に代えて、カルボキシメチルセルロース(B’-5)(商品名「Daicel1120」、ダイセルファインケム社製)(不溶成分粒径:15μm、1%粘度:20mPa・s、エーテル化度:0.6~0.8)を1.5重量%の割合で使用することで、ディップ成形用ラテックス組成物の粘度を2,500mPa・sに調整した以外は、実施例1と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表1に示す。
Comparative Example 2
As a thickener to be added to the latex composition, carboxymethyl cellulose (B′-5) (trade name “Daicel 1120”, manufactured by Daicel Finechem) instead of carboxymethyl cellulose (B-1) (insoluble component particle size: 15 μm, The viscosity of the latex composition for dip molding is adjusted to 2,500 mPa · s by using 1.5% by weight of 1% viscosity: 20 mPa · s, degree of etherification: 0.6 to 0.8). A protective glove (laminate) was obtained in the same manner as in Example 1 except that the evaluation was performed in the same manner. The results are shown in Table 1.
 比較例3
 ラテックス組成物の熟成前に添加する増粘剤として、カルボキシメチルセルロース(B-1)に代えて、カルボキシメチルセルロース(B’-7)(商品名「BSH-6」、第一工業製薬社製)(不溶成分粒径:50μm、1%粘度:4,000mPa・s、エーテル化度:0.65~0.75)を0.1重量%の割合で使用することで、ディップ成形用ラテックス組成物の粘度を3,500mPa・sに調整した以外は、実施例1と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表1に示す。
Comparative Example 3
As a thickener added before aging of the latex composition, carboxymethylcellulose (B′-7) (trade name “BSH-6”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) (instead of carboxymethylcellulose (B-1)) Insoluble component particle size: 50 μm, 1% viscosity: 4,000 mPa · s, degree of etherification: 0.65 to 0.75) at a ratio of 0.1% by weight, the latex composition for dip molding A protective glove (laminate) was obtained and evaluated in the same manner as in Example 1 except that the viscosity was adjusted to 3,500 mPa · s. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~4、比較例1~3の評価
 表1に示すように、表面重合体層の厚みtに対する浸透重合体層の厚みtの比(t/t)、および基材に重合体層が積層された部分におけるヤング率が、それぞれ所定の範囲に制御された積層体は、官能試験、および外観の評価結果がいずれも良好であったため、柔軟性に優れ、しかも、外観も良好なものであった(実施例1~4)。
As shown in Evaluation Table 1 of Examples 1 to 4 and Comparative Examples 1 to 3, the ratio of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer (t 1 / t 2 ), and the substrate The laminated body in which the Young's modulus in the portion where the polymer layer was laminated on each was controlled within a predetermined range, both of the sensory test and the appearance evaluation result were good, so it was excellent in flexibility and the appearance Were also good (Examples 1 to 4).
 一方、積層体のヤング率が高すぎる場合には、積層体は、官能試験の評価結果が悪いものであり、柔軟性に劣るものであった(比較例1~3)。特に、比較例1は、積層体の浸透重合体層の厚みtが厚いことにより、積層体のヤング率がより高くなってしまい、これにより、官能試験の評価結果が悪化し、柔軟性に特に劣るものであった。 On the other hand, when the Young's modulus of the laminate was too high, the laminate had a poor sensory test evaluation result and was inferior in flexibility (Comparative Examples 1 to 3). In particular, Comparative Example 1, by the thickness t 1 of the osmopolymer layer of the laminate is thicker, the Young's modulus of the laminate becomes higher, by which the evaluation results of the sensory test is deteriorated, flexibility It was particularly inferior.
 実施例5
 ディップ成形用ラテックス組成物の調製
 製造例1で製造したニトリルゴムのラテックス(A-1)に、ラテックス中のニトリルゴム100部に対して、それぞれ固形分換算で、コロイド硫黄(細井化学工業社製)1.0部、ジブチルジチオカルバミン酸亜鉛(大内新興化学工業社製)0.5部、酸化亜鉛2.0部となるように、各配合剤の水分散液を調製し、調製した水分散液を添加し、ラテックス組成物を得た。なお、各配合剤の水分散液を添加する際には、ラテックスを撹拌した状態で、各配合剤の水分散液を所定の量をゆっくり添加した。その後、ラテックス組成物の固形分濃度を調整し、次いで、温度30℃、48時間の条件で、熟成(前加硫ともいう。)を施した。そして、熟成後のラテックス組成物に対して、増粘剤(商品名「アロン A-7100」、東亜合成社製)を0.4重量%の割合で添加し、温度25℃かつ固形分濃度45重量%の条件においてB型粘度計を使用し回転数10rpmの条件で測定される粘度を3,000mPa・sに調整することで、ディップ成形用ラテックス組成物を得た。
Example 5
Preparation of Dip Molding Latex Composition Colloidal sulfur (made by Hosoi Chemical Industry Co., Ltd.) in terms of solid content with respect to 100 parts of nitrile rubber in latex in the nitrile rubber latex (A-1) produced in Production Example 1. ) 1.0 parts, zinc dibutyldithiocarbamate (manufactured by Ouchi Shinsei Chemical Co., Ltd.), and 0.5 parts of zinc oxide, and 2.0 parts of zinc oxide. The liquid was added to obtain a latex composition. In addition, when adding the aqueous dispersion of each compounding agent, a predetermined amount of the aqueous dispersion of each compounding agent was slowly added while the latex was stirred. Thereafter, the solid content concentration of the latex composition was adjusted, and then aging (also referred to as pre-vulcanization) was performed at a temperature of 30 ° C. for 48 hours. Then, a thickener (trade name “Aron A-7100”, manufactured by Toagosei Co., Ltd.) was added to the latex composition after aging at a ratio of 0.4% by weight, and the temperature was 25 ° C. and the solid content concentration was 45. A latex composition for dip molding was obtained by using a B-type viscometer under the condition of wt% and adjusting the viscosity measured at a rotational speed of 10 rpm to 3,000 mPa · s.
 凝固剤溶液の調製
 凝固剤としての硝酸カルシウム2.0重量%をメタノールに溶解させてなるメタノール溶液を、凝固剤溶液として調製した。
Preparation of Coagulant Solution A methanol solution prepared by dissolving 2.0% by weight of calcium nitrate as a coagulant in methanol was prepared as a coagulant solution.
 積層体(保護手袋)の製造
 手袋形状の繊維基材(材質:ナイロン、繊維基材の基材層平均厚みd:0.7mm、13ゲージ)を被せた金属製手袋型を、上記の凝固剤溶液に5秒間浸漬し、凝固剤溶液から引き上げた後、温度30℃、60秒間の条件で乾燥させた。その後、金属製手袋型を、上記のディップ成形用ラテックス組成物に3秒間浸漬し、ディップ成形用ラテックス組成物から引き上げた後、温度30℃、30分間の条件で乾燥させた。次いで、温度100℃、60分間の条件で熱処理を行う事で、重合体層中のニトリルゴムに架橋処理を施した。次いで、重合体層が形成された繊維基材を金属製手袋型から剥がすことで、保護手袋(積層体)を得た。得られた保護手袋(積層体)について、上述した方法に従い、浸透重合体層の厚みtの測定、表面重合体層の厚みtの測定、官能試験、ヤング率の測定、および外観の評価を行った。結果を表2に示す。
Manufacture of laminate (protective gloves) A metal glove mold covered with a glove-shaped fiber substrate (material: nylon, substrate layer average thickness d of fiber substrate: 0.7 mm, 13 gauge) It was immersed in the solution for 5 seconds, pulled up from the coagulant solution, and then dried under conditions of a temperature of 30 ° C. for 60 seconds. Thereafter, the metal glove mold was dipped in the above dip molding latex composition for 3 seconds, pulled up from the dip molding latex composition, and then dried under the conditions of a temperature of 30 ° C. for 30 minutes. Next, the nitrile rubber in the polymer layer was subjected to a crosslinking treatment by performing a heat treatment under conditions of a temperature of 100 ° C. for 60 minutes. Next, protective gloves (laminate) were obtained by peeling the fiber base material on which the polymer layer was formed from the metal glove mold. About the obtained protective gloves (laminated body), according to the method mentioned above, the measurement of the thickness t 1 of the penetrating polymer layer, the measurement of the thickness t 2 of the surface polymer layer, the sensory test, the measurement of Young's modulus, and the evaluation of the appearance Went. The results are shown in Table 2.
 実施例6
 ニトリルゴムのラテックス(A-1)に代えて、製造例2で製造したニトリルゴムのラテックス(A-2)を使用した以外は、実施例5と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表2に示す。
Example 6
A protective glove (laminate) was obtained in the same manner as in Example 5 except that the nitrile rubber latex (A-2) produced in Production Example 2 was used instead of the nitrile rubber latex (A-1). The same evaluation was performed. The results are shown in Table 2.
 実施例7
 ニトリルゴムのラテックス(A-1)に代えて、製造例3で製造したニトリルゴムのラテックス(A-3)を使用した以外は、実施例5と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表2に示す。
Example 7
A protective glove (laminate) was obtained in the same manner as in Example 5 except that the nitrile rubber latex (A-3) produced in Production Example 3 was used instead of the nitrile rubber latex (A-1). The same evaluation was performed. The results are shown in Table 2.
 実施例8
 ニトリルゴムのラテックス(A-1)に代えて、製造例5で製造したニトリルゴムのラテックス(A-4)を使用した以外は、実施例5と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表2に示す。
Example 8
A protective glove (laminate) was obtained in the same manner as in Example 5 except that the nitrile rubber latex (A-4) produced in Production Example 5 was used instead of the nitrile rubber latex (A-1). The same evaluation was performed. The results are shown in Table 2.
 比較例4
 ニトリルゴムのラテックス(A-1)に代えて、製造例5で製造したニトリルゴムのラテックス(A’-5)を使用した以外は、実施例5と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表2に示す。
Comparative Example 4
A protective glove (laminate) was prepared in the same manner as in Example 5 except that the nitrile rubber latex (A′-5) produced in Production Example 5 was used instead of the nitrile rubber latex (A-1). Obtained and evaluated in the same manner. The results are shown in Table 2.
 比較例5
 ニトリルゴムのラテックス(A-1)に代えて、製造例6で製造したニトリルゴムのラテックス(A’-6)を使用した以外は、実施例5と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表2に示す。
Comparative Example 5
A protective glove (laminate) was prepared in the same manner as in Example 5 except that the nitrile rubber latex (A′-6) produced in Production Example 6 was used instead of the nitrile rubber latex (A-1). Obtained and evaluated in the same manner. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例5~8、比較例4,5の評価
 実施例5~8および比較例4,5の各測定結果を表2に示した。また、図4に、膜成形体のヤング率、および保護手袋のヤング率の測定結果を、官能性試験の結果と対応付けてプロットして示したグラフを示した。すなわち、実施例5を例示して説明すると、官能試験:5、膜成形体のヤング率:2,100kPa、保護手袋のヤング率:211kPaであったため、膜成形体のヤング率の測定結果を示す「丸プロット」を官能試験:5、ヤング率(左軸):2,100kPaの位置にプロットし、また、保護手袋のヤング率の測定結果を示す「四角プロット」を官能試験:5、ヤング率(右軸):211kPaの位置にプロットした。以下、実施例6~8および比較例4,5ついても同様とした。
Table 2 shows the measurement results of Examples 5 to 8 and Comparative Examples 4 and 5, and Evaluation Examples 5 to 8 and Comparative Examples 4 and 5. FIG. 4 shows a graph in which the measurement results of the Young's modulus of the film molded body and the Young's modulus of the protective gloves are plotted in association with the results of the sensory test. That is, exemplifying Example 5, the sensory test was 5, the Young's modulus of the film molded body was 2,100 kPa, and the Young's modulus of the protective glove was 211 kPa, so the measurement results of the Young's modulus of the film molded body are shown. Sensory test: 5, sensory test: 5, Young's modulus (left axis): plot at a position of 2,100 kPa, and “square plot” showing the measurement result of Young's modulus of protective gloves: Sensory test: 5, Young's modulus (Right axis): Plotted at a position of 211 kPa. The same applies to Examples 6 to 8 and Comparative Examples 4 and 5.
 表2の結果からも明らかなように、表面重合体層の厚みtに対する浸透重合体層の厚みtの比(t/t)、および基材に重合体層が積層された部分におけるヤング率が、それぞれ所定の範囲に制御された積層体は、官能試験が良好であり、柔軟性に優れたものであった(実施例5~8)。
 一方、積層体のヤング率が高すぎる場合には、積層体は、官能試験の評価結果が悪いものであり、柔軟性に劣るものであった(比較例4,5)。
As is clear from the results in Table 2, the ratio of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer (t 1 / t 2 ), and the portion where the polymer layer is laminated on the substrate The laminates in which the Young's moduli of each were controlled within a predetermined range had good sensory tests and excellent flexibility (Examples 5 to 8).
On the other hand, when the Young's modulus of the laminate was too high, the laminate had poor sensory test evaluation results and poor flexibility (Comparative Examples 4 and 5).
 なお、表2、図4の結果からも明らかなように、上述した測定方法にしたがって求めた膜成形体のヤング率、および積層体のヤング率は、保護手袋の官能試験の結果とよく一致する結果となった。すなわち、膜成形体のヤング率、および積層体のヤング率が低いほど、官能試験の結果が良好となり、膜成形体のヤング率、および積層体のヤング率が高いほど、官能試験の結果が悪くなる結果となり、これらの間には一定の相関があり、そのため、上述した測定方法にしたがって求めた膜成形体のヤング率、および積層体のヤング率は、保護手袋の柔軟性の指標として適切に用いることができることが確認できる。 As is clear from the results of Table 2 and FIG. 4, the Young's modulus of the film molded body and the Young's modulus of the laminate obtained according to the measurement method described above are in good agreement with the results of the sensory test for protective gloves. As a result. That is, the lower the Young's modulus of the film molded body and the Young's modulus of the laminated body, the better the result of the sensory test. The higher the Young's modulus of the film molded body and the Young's modulus of the laminated body, the worse the result of the sensory test. As a result, there is a certain correlation between them. Therefore, the Young's modulus of the film molded body and the Young's modulus of the laminate obtained according to the measurement method described above are appropriate as an index of the flexibility of the protective gloves. It can be confirmed that it can be used.
 実施例9
 ディップ成形用ラテックス組成物の調製
 実施例5と同様にして、重合体ラテックスとして、製造例2で製造したニトリルゴムのラテックス(A-2)を準備し、ニトリルゴムのラテックス中のニトリルゴム100部に対して、それぞれ固形分換算で、コロイド硫黄(細井化学工業社製)1.0部、ジブチルジチオカルバミン酸亜鉛(大内新興化学工業社製)0.5部、酸化亜鉛2.0部となるように、各配合剤の水分散液を調製し、調製した水分散液を添加し、ラテックス組成物を得た。なお、各配合剤の水分散液を添加する際には、ラテックスを撹拌した状態で、各配合剤の水分散液を所定の量をゆっくり添加した。その後、ラテックス組成物の固形分濃度を調整し、次いで、温度30℃、48時間の条件で、熟成(前加硫ともいう。)を施した。そして、熟成後のラテックス組成物に対して、増粘剤として、アロン A-7100(東亜合成社製)を0.4重量%の割合で添加し、温度25℃かつ固形分濃度45重量%の条件においてB型粘度計を使用し回転数10rpmの条件で測定される粘度を3,000mPa・sに調整することで、ディップ成形用ラテックス組成物を得た。
Example 9
Preparation of Dip Molding Latex Composition In the same manner as in Example 5, a nitrile rubber latex (A-2) produced in Production Example 2 was prepared as a polymer latex, and 100 parts of nitrile rubber in the nitrile rubber latex was prepared. Respectively, in terms of solid content, 1.0 part of colloidal sulfur (manufactured by Hosoi Chemical Co., Ltd.), 0.5 part of zinc dibutyldithiocarbamate (manufactured by Ouchi Shinsei Chemical Co., Ltd.), and 2.0 parts of zinc oxide. Thus, the aqueous dispersion of each compounding agent was prepared, and the prepared aqueous dispersion was added to obtain a latex composition. In addition, when adding the aqueous dispersion of each compounding agent, a predetermined amount of the aqueous dispersion of each compounding agent was slowly added while the latex was stirred. Thereafter, the solid content concentration of the latex composition was adjusted, and then aging (also referred to as pre-vulcanization) was performed at a temperature of 30 ° C. for 48 hours. Then, Aron A-7100 (manufactured by Toa Gosei Co., Ltd.) is added as a thickener to the latex composition after aging at a ratio of 0.4% by weight, and the temperature is 25 ° C. and the solid content concentration is 45% by weight. A latex composition for dip molding was obtained by using a B-type viscometer and adjusting the viscosity measured at 10 rpm to 3,000 mPa · s.
 凝固剤溶液の調製
 凝固剤としての硝酸カルシウム2.0重量%をメタノールに溶解させてなるメタノール溶液を、凝固剤溶液として調製した。
Preparation of Coagulant Solution A methanol solution prepared by dissolving 2.0% by weight of calcium nitrate as a coagulant in methanol was prepared as a coagulant solution.
 積層体(保護手袋)の製造
 手袋形状の繊維基材(材質:ナイロン、繊維基材の基材層平均厚みd:0.7mm、13ゲージ)を被せた金属製手袋型を、上記の凝固剤溶液に5秒間浸漬し、凝固剤溶液から引き上げた後、温度30℃、1分間の条件で乾燥させた。その後、金属製手袋型を、上記のディップ成形用ラテックス組成物に3秒間浸漬し、ディップ成形用ラテックス組成物から引き上げた後、温度30℃、30分間の条件で乾燥させた。次いで、温度100℃、60分間の条件で熱処理を行う事で、ゴム層中のニトリルゴムに架橋処理を施した。次いで、ゴム層が形成された繊維基材を金属製手袋型から剥がすことで、保護手袋(積層体)を得た。得られた保護手袋(積層体)について、上述した方法に従い、浸透ゴム層の厚みtの測定、表面ゴム層の厚みtの測定、官能試験、ヤング率の測定、曲げ剛性、および耐摩耗性の測定を行った。結果を表3に示す。
Manufacture of laminate (protective gloves) A metal glove mold covered with a glove-shaped fiber substrate (material: nylon, substrate layer average thickness d of fiber substrate: 0.7 mm, 13 gauge) It was immersed in the solution for 5 seconds, pulled up from the coagulant solution, and then dried at a temperature of 30 ° C. for 1 minute. Thereafter, the metal glove mold was dipped in the above dip molding latex composition for 3 seconds, pulled up from the dip molding latex composition, and then dried under the conditions of a temperature of 30 ° C. for 30 minutes. Next, the nitrile rubber in the rubber layer was subjected to a crosslinking treatment by performing a heat treatment under conditions of a temperature of 100 ° C. for 60 minutes. Next, protective gloves (laminate) were obtained by peeling the fiber base material on which the rubber layer was formed from the metal glove mold. About the obtained protective gloves (laminated body), according to the method mentioned above, the measurement of the thickness t 1 of the osmotic rubber layer, the measurement of the thickness t 2 of the surface rubber layer, the sensory test, the measurement of Young's modulus, the bending rigidity, and the wear resistance The sex was measured. The results are shown in Table 3.
 実施例10
 ラテックス組成物に、熟成後に添加する増粘剤として、アロン A-7100(東亜合成社製)を0.3重量%の割合で使用することで、ディップ成形用ラテックス組成物の粘度を2,000mPa・sに調整した以外は、実施例9と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表3に示す。
Example 10
As a thickener added to the latex composition after aging, Aron A-7100 (manufactured by Toa Gosei Co., Ltd.) is used in a proportion of 0.3% by weight, so that the viscosity of the dip molding latex composition is 2,000 mPas. -Except having adjusted to s, it carried out similarly to Example 9, obtained the protective glove (laminated body), and evaluated similarly. The results are shown in Table 3.
 実施例11
 金属製手袋型を、凝固剤溶液から引き上げた後の乾燥条件を、温度30℃で、30秒間とした以外は実施例9と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表3に示す。
Example 11
A protective glove (laminate) was obtained in the same manner as in Example 9 except that the drying condition after lifting the metal glove mold from the coagulant solution was 30 ° C. for 30 seconds. Went. The results are shown in Table 3.
 実施例12
 ラテックス組成物に、熟成後に添加する増粘剤として、アロン A-7100(東亜合成社製)を0.6重量%の割合で使用することで、ディップ成形用ラテックス組成物の粘度を5,000mPa・sに調整するとともに、金属製手袋型を、ディップ成形用ラテックス組成物に浸漬する時間を5秒間に変更した以外は、実施例9と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表3に示す。
Example 12
As a thickener added to the latex composition after aging, Aron A-7100 (manufactured by Toa Gosei Co., Ltd.) is used at a ratio of 0.6% by weight, so that the viscosity of the dip-molding latex composition is 5,000 mPas. -Adjusting to s and obtaining a protective glove (laminate) in the same manner as in Example 9 except that the time for immersing the metal glove mold in the dip-forming latex composition was changed to 5 seconds, Evaluation was performed in the same manner. The results are shown in Table 3.
 比較例6
 金属製手袋型を、凝固剤溶液から引き上げた後の乾燥条件を、温度30℃、90秒間とした以外は、実施例9と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表3に示す。
Comparative Example 6
A protective glove (laminate) was obtained and evaluated in the same manner as in Example 9 except that the drying conditions after the metal glove mold was pulled up from the coagulant solution were set to a temperature of 30 ° C. and 90 seconds. Went. The results are shown in Table 3.
 比較例7
 金属製手袋型を、凝固剤溶液から引き上げた後、温度30℃、60秒間の条件で乾燥させた後、金属製手袋型をディップ成形用ラテックス組成物に浸漬させる操作、すなわち、金属製手袋型をディップ成形用ラテックス組成物に3秒間浸漬させ、引き上げた後、温度30℃、30分間の条件で乾燥させる操作を2回繰り返して行った以外は、実施例9と同様にして、保護手袋(積層体)を得て、同様に評価を行った。結果を表3に示す。
Comparative Example 7
After pulling up the metal glove mold from the coagulant solution, drying it at a temperature of 30 ° C. for 60 seconds, and then immersing the metal glove mold in the latex composition for dip molding, that is, the metal glove mold Was dipped in a latex composition for dip molding for 3 seconds, pulled up, and then subjected to protective gloves (as in Example 9) except that the operation of drying at a temperature of 30 ° C. for 30 minutes was repeated twice. A laminate was obtained and evaluated in the same manner. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例9~12、比較例6,7の評価
 実施例9~12および比較例6,7の各測定結果を表3に示した。また、図5に、ヤング率、および曲げ試験の結果を、官能性試験の結果と対応付けてプロットして示した。すなわち、実施例9を例示して説明すると、官能試験:4、ヤング率:359kPa、曲げ剛性:0.340gf・cm/cmであったため、ヤング率の測定結果を示す「四角プロット」を官能試験:4、ヤング率:359kPaの位置にプロットし、また、曲げ剛性の測定結果を示す「丸プロット」を官能試験:4、曲げ剛性:0.340gf・cm/cmの位置にプロットした。以下、実施例10~12、比較例6,7についても同様とした。
Evaluation results of Examples 9 to 12 and Comparative Examples 6 and 7 Table 3 shows the measurement results of Examples 9 to 12 and Comparative Examples 6 and 7. Further, FIG. 5 shows the Young's modulus and the results of the bending test plotted in correspondence with the results of the sensory test. That is, exemplifying Example 9, the sensory test was 4, the Young's modulus was 359 kPa, and the bending stiffness was 0.340 gf · cm 2 / cm. Therefore, the “square plot” indicating the measurement result of the Young's modulus was The test was plotted at a position of 4, Young's modulus: 359 kPa, and a “round plot” showing the measurement result of the bending stiffness was plotted at a position of sensory test: 4, bending stiffness: 0.340 gf · cm 2 / cm. The same applies to Examples 10 to 12 and Comparative Examples 6 and 7.
 表3の結果からも明らかなように、表面重合体層の厚みtに対する浸透重合体層の厚みtの比(t/t)、および基材に重合体層が積層された部分におけるヤング率が、それぞれ所定の範囲に制御された積層体は、官能試験が良好であり、柔軟性に優れたものであった(実施例9~12)。
 一方、表面重合体層の厚みtに対する浸透重合体層の厚みtの比(t/t)が本発明の範囲外であり、さらには、積層体のヤング率が高すぎる場合には、積層体は、官能試験の評価結果が悪いものであり、柔軟性に劣るものであった(比較例6,7)。
As is apparent from the results in Table 3, the ratio of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer (t 1 / t 2 ), and the portion where the polymer layer is laminated on the substrate The laminates in which the Young's moduli of each were controlled within a predetermined range had good sensory tests and excellent flexibility (Examples 9 to 12).
On the other hand, when the ratio (t 1 / t 2 ) of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer is outside the scope of the present invention, and the Young's modulus of the laminate is too high. The laminate had a poor sensory test evaluation result and was inferior in flexibility (Comparative Examples 6 and 7).
 なお、表3、図5の結果からも明らかなように、本発明の測定方法にしたがって求めたヤング率は、官能試験の結果とよく一致する結果となった。すなわち、官能試験の結果が悪い場合ほど、ヤング率は高くなり、官能試験の結果が良好なほど、ヤング率は低くなる結果となり、これらの間には一定の相関があり、そのため、本発明の測定方法にしたがって求めたヤング率は、柔軟性の指標として適切に用いることができることが確認できる。
 一方で、曲げ剛性の結果は、官能試験の結果との一致性が悪く、柔軟性の指標として適切なものではないという結果となった。
As is apparent from the results of Table 3 and FIG. 5, the Young's modulus obtained according to the measurement method of the present invention was in good agreement with the results of the sensory test. That is, the worse the sensory test result, the higher the Young's modulus, and the better the sensory test result, the lower the Young's modulus, and there is a certain correlation between them. It can be confirmed that the Young's modulus obtained according to the measuring method can be appropriately used as an index of flexibility.
On the other hand, the result of the bending stiffness was inconsistent with the result of the sensory test and was not appropriate as an index of flexibility.

Claims (10)

  1.  基材と、重合体ラテックスから形成される重合体層とを備える積層体であって、
     前記重合体層は、一部が、前記基材に浸透した状態で前記基材を被覆しており、
     前記重合体層のうち、前記基材に浸透した部分である浸透重合体層の、前記基材の表面からの厚みをtとし、前記基材を被覆する部分である表面重合体層の、前記基材の表面からの厚みをtとした場合に、前記表面重合体層の厚みtに対する前記浸透重合体層の厚みtの比(t/t)が、0.15~5.0であり、
     前記基材に前記重合体層が積層された部分におけるヤング率が、800kPa以下である積層体。
    A laminate comprising a substrate and a polymer layer formed from a polymer latex,
    The polymer layer partially covers the base material in a state of permeating the base material,
    Wherein one of the polymer layers, which is a penetration portion to the substrate osmopolymers layer, the thickness from the surface of the substrate and t 1, the surface polymer layer is a portion that covers the substrate, When the thickness from the surface of the base material is t 2 , the ratio of the thickness t 1 of the osmotic polymer layer to the thickness t 2 of the surface polymer layer (t 1 / t 2 ) is 0.15 to 5.0,
    The laminated body whose Young's modulus in the part by which the said polymer layer was laminated | stacked on the said base material is 800 kPa or less.
  2.  前記浸透重合体層の厚みtが、0.05~0.6mmである請求項1に記載の積層体。 The laminate according to claim 1, wherein the thickness t 1 of the osmotic polymer layer is 0.05 to 0.6 mm.
  3.  前記重合体層を形成するための重合体ラテックスが、揮発分を除去して膜成形体とした場合における該膜成形体のヤング率が10,000kPa以下である請求項1または2に記載の積層体。 3. The laminate according to claim 1, wherein the polymer latex for forming the polymer layer has a Young's modulus of 10,000 kPa or less when the volatile component is removed to form a film molded body. body.
  4.  前記重合体層を形成するための重合体ラテックスが、重合体として、共役ジエン単量体単位の含有割合が52~78重量%である共役ジエン系ゴムを含有する請求項3に記載の積層体。 The laminate according to claim 3, wherein the polymer latex for forming the polymer layer contains, as a polymer, a conjugated diene rubber having a conjugated diene monomer unit content of 52 to 78 wt%. .
  5.  前記重合体層を形成するための重合体ラテックスが、重合体として、α,β-エチレン性不飽和ニトリル単量体単位の含有割合が20~40重量%である共役ジエン系ゴムを含有する請求項3または4に記載の積層体。 The polymer latex for forming the polymer layer contains, as a polymer, a conjugated diene rubber having a content of α, β-ethylenically unsaturated nitrile monomer units of 20 to 40% by weight. Item 5. A laminate according to item 3 or 4.
  6.  前記重合体層を形成するための重合体ラテックスが、重合体として、カルボキシル基含有エチレン性不飽和単量体単位の含有割合が2~10重量%である共役ジエン系ゴムを含有する請求項3~5のいずれかに記載の積層体。 The polymer latex for forming the polymer layer contains, as a polymer, a conjugated diene rubber having a carboxyl group-containing ethylenically unsaturated monomer unit content of 2 to 10% by weight. 6. The laminate according to any one of 5 to 5.
  7.  ゴムの膜成形体またはゴム層を有する積層体の柔軟性を測定する方法であって、
     前記膜成形体または前記積層体に対し、所定の押込荷重で圧子を押し込み、前記圧子を押し込んだ際の、押込荷重と、押し込みによる変位とに基づいて、柔軟性を測定する、ゴムの膜成形体またはゴム層を有する積層体の柔軟性の測定方法。
    A method of measuring the flexibility of a rubber film molded body or a laminate having a rubber layer,
    Rubber film molding for measuring flexibility based on indentation load and displacement due to indentation when the indenter is pushed into the film molding or the laminate with a predetermined indentation load. Method for measuring flexibility of laminate having body or rubber layer.
  8.  異なる複数の押込荷重で圧子を押し込んだ際の、押込荷重と、押し込みによる変位とに基づいて、柔軟性を測定する、請求項7に記載の柔軟性の測定方法。 The flexibility measurement method according to claim 7, wherein the flexibility is measured based on an indentation load and a displacement due to the indentation when the indenter is indented with a plurality of different indentation loads.
  9.  前記圧子を押し込んだ際の、押込荷重と、押し込みによる変位とに基づいて、前記膜成形体または前記積層体のヤング率を求める、請求項7または8に記載の柔軟性の測定方法。 The method of measuring flexibility according to claim 7 or 8, wherein the Young's modulus of the film molded body or the laminate is obtained based on an indentation load when the indenter is indented and a displacement due to the indentation.
  10.  前記膜成形体または前記積層体が、人体に接触して使用される請求項7~9のいずれかに記載の柔軟性の測定方法。 The method for measuring flexibility according to any one of claims 7 to 9, wherein the film molded body or the laminate is used in contact with a human body.
PCT/JP2018/011105 2017-03-23 2018-03-20 Laminated article WO2018174068A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019507696A JPWO2018174068A1 (en) 2017-03-23 2018-03-20 Laminate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017057641 2017-03-23
JP2017057637 2017-03-23
JP2017-057634 2017-03-23
JP2017-057637 2017-03-23
JP2017-057641 2017-03-23
JP2017057634 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018174068A1 true WO2018174068A1 (en) 2018-09-27

Family

ID=63586112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011105 WO2018174068A1 (en) 2017-03-23 2018-03-20 Laminated article

Country Status (2)

Country Link
JP (1) JPWO2018174068A1 (en)
WO (1) WO2018174068A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241407A1 (en) 2020-05-27 2021-12-02 日本ゼオン株式会社 Latex composition for dip molding and dip-molded article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107813A (en) * 2002-09-17 2004-04-08 Sumitomo Rubber Ind Ltd Supporting glove
JP2009527658A (en) * 2006-02-23 2009-07-30 アンセル・ヘルスケア・プロダクツ・エルエルシー Gloves coated with lightweight thin plastic polymer and method thereof
JP2012037725A (en) * 2010-08-06 2012-02-23 Tokai Rubber Ind Ltd Endless belt for electrophotographic device
JP2012167247A (en) * 2011-01-25 2012-09-06 Hitachi Maxell Ltd Double-sided self-adhesive tape for waterproofing
JP2013245267A (en) * 2012-05-24 2013-12-09 Mitsubishi Pencil Co Ltd Pencil lead
US20150135403A1 (en) * 2013-11-19 2015-05-21 Ansell Limited Polymer blends of nitrile rubber and polychloroprene
US20160262469A1 (en) * 2015-03-10 2016-09-15 Ansell Limited Supported glove having an abrasion resistant nitrile coating
WO2017014029A1 (en) * 2015-07-22 2017-01-26 日本ゼオン株式会社 Molded rubber article and protective glove

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107813A (en) * 2002-09-17 2004-04-08 Sumitomo Rubber Ind Ltd Supporting glove
JP2009527658A (en) * 2006-02-23 2009-07-30 アンセル・ヘルスケア・プロダクツ・エルエルシー Gloves coated with lightweight thin plastic polymer and method thereof
JP2012037725A (en) * 2010-08-06 2012-02-23 Tokai Rubber Ind Ltd Endless belt for electrophotographic device
JP2012167247A (en) * 2011-01-25 2012-09-06 Hitachi Maxell Ltd Double-sided self-adhesive tape for waterproofing
JP2013245267A (en) * 2012-05-24 2013-12-09 Mitsubishi Pencil Co Ltd Pencil lead
US20150135403A1 (en) * 2013-11-19 2015-05-21 Ansell Limited Polymer blends of nitrile rubber and polychloroprene
US20160262469A1 (en) * 2015-03-10 2016-09-15 Ansell Limited Supported glove having an abrasion resistant nitrile coating
WO2017014029A1 (en) * 2015-07-22 2017-01-26 日本ゼオン株式会社 Molded rubber article and protective glove

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241407A1 (en) 2020-05-27 2021-12-02 日本ゼオン株式会社 Latex composition for dip molding and dip-molded article

Also Published As

Publication number Publication date
JPWO2018174068A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
EP3438145B1 (en) Copolymer latex
JP2007177091A (en) Latex for dip molding and dip molded article
CN107848273B (en) Rubber molded article and protective glove
JP6561999B2 (en) Dip molded product
JP6922923B2 (en) Method of manufacturing a laminate
WO2018174068A1 (en) Laminated article
JP7167917B2 (en) Laminate manufacturing method
WO2019139087A1 (en) Latex composition
JPWO2019139082A1 (en) Latex composition
JP7459796B2 (en) Polymer Latexes and Laminates
JP7023111B2 (en) Manufacturing method of dip molded products
JP7095601B2 (en) Laminate
JPWO2019022092A1 (en) Method for manufacturing laminated body
JP2022055448A (en) Method for producing dip molded product
WO2021241407A1 (en) Latex composition for dip molding and dip-molded article
JP2021130220A (en) Laminate and method for manufacturing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771904

Country of ref document: EP

Kind code of ref document: A1