WO2018173831A1 - State monitoring device and state monitoring method - Google Patents

State monitoring device and state monitoring method Download PDF

Info

Publication number
WO2018173831A1
WO2018173831A1 PCT/JP2018/009510 JP2018009510W WO2018173831A1 WO 2018173831 A1 WO2018173831 A1 WO 2018173831A1 JP 2018009510 W JP2018009510 W JP 2018009510W WO 2018173831 A1 WO2018173831 A1 WO 2018173831A1
Authority
WO
WIPO (PCT)
Prior art keywords
state monitoring
bearing
friction member
threshold value
rotating shaft
Prior art date
Application number
PCT/JP2018/009510
Other languages
French (fr)
Japanese (ja)
Inventor
英之 筒井
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017056965A external-priority patent/JP2018159622A/en
Priority claimed from JP2017056964A external-priority patent/JP2018159621A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018173831A1 publication Critical patent/WO2018173831A1/en

Links

Images

Definitions

  • the present invention relates to a state monitoring device and a state monitoring method for detecting a bearing abnormality.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-2006). -105956. With such a state monitoring device, it is possible to diagnose an abnormality from a remote location without having to manually disassemble and check the device incorporating the rotating component.
  • Bearing status monitoring devices often monitor the status by installing sensors that measure acceleration, speed, displacement, sound, and AE (Acoustic Emission) on fixed parts such as housings and cases.
  • AE Acoustic Emission
  • the present invention has been made to solve the above-described problems, and the object thereof is a state in which the displacement of the rotating shaft can be monitored with high accuracy without being affected by the environment such as lubricating oil and water.
  • a monitoring device and a state monitoring method are provided.
  • the present disclosure relates to a state monitoring device that detects an abnormality of a bearing in which a fixed ring is fixed to a housing.
  • the state monitoring device includes a friction member disposed so as to face the peripheral surface of the rotation shaft so that the degree of contact changes when the rotation shaft supported by the bearing is displaced with respect to the housing, and the state monitoring contacting the friction member A sensor.
  • the state monitoring sensor is an AE sensor or an acceleration sensor.
  • the friction member is arranged on the side on which the bearing load acting on the bearing acts with respect to the rotating shaft.
  • the state monitoring device further includes a stay for fixing the friction member and the state monitoring sensor to the housing of the bearing.
  • the state monitoring device further includes a vibration isolating material that blocks vibrations disposed between the state monitoring sensor and the stay.
  • the wear amount of the friction member per rotation of the rotary shaft is larger than the wear amount of the bearing per rotation of the rotary shaft.
  • the state monitoring device further includes an arithmetic processing unit that receives the output of the state monitoring sensor and determines whether or not an abnormality has occurred in the bearing.
  • the arithmetic processing unit determines that an abnormality has occurred in the bearing when the feature amount obtained from the state monitoring sensor transitions from a state smaller than the first threshold value to a larger state.
  • the state monitoring device further includes an arithmetic processing unit that receives the output of the state monitoring sensor and determines whether or not an abnormality has occurred in the bearing.
  • the arithmetic processing unit determines (i) a first threshold value based on the feature value obtained from the state monitoring sensor in the first operation period, and (ii) transitions to a state where the feature value is smaller than the first threshold value.
  • the second threshold value is determined based on the feature amount obtained from the state monitoring sensor in the second operation period after the first operation period, and (iii) obtained from the state monitoring sensor after the second operation period. It is determined that an abnormality has occurred in the bearing when the obtained feature value transitions from a state smaller than the second threshold value to a larger state.
  • the friction member has a shape such that the contact area with the rotation shaft increases as the displacement amount of the rotation shaft increases.
  • the contact area of the friction member with the rotating shaft increases stepwise as the amount of displacement of the rotating shaft increases.
  • the friction member is disposed on a side on which the bearing load acting on the bearing acts with respect to the rotation shaft, and the cross-sectional area perpendicular to the direction of the bearing load on the friction member is increased as the distance from the rotation shaft increases. Increase.
  • the surface of the friction member facing the rotation shaft is stepped.
  • the state monitoring device further includes an arithmetic processing unit that receives the output of the state monitoring sensor and determines whether or not an abnormality has occurred in the bearing.
  • the arithmetic processing unit determines that an abnormality has occurred in the bearing when the feature amount obtained from the state monitoring sensor transitions from a state smaller than the first threshold value to a larger state, and the feature amount and the first threshold value are determined.
  • the amount of displacement of the rotating shaft is determined based on a comparison result with a larger second threshold value.
  • the arithmetic processing unit determines the first threshold value based on the feature amount obtained from the state monitoring sensor during the first operation period, and the first operation in which the feature amount transitions to a state smaller than the first threshold value.
  • the second threshold value is determined based on the feature amount obtained from the state monitoring sensor in the second operation period after the period.
  • the arithmetic processing unit determines that an abnormality has occurred in the bearing when the feature amount obtained from the state monitoring sensor after the second operation period transits from a state smaller than the second threshold value to a larger state.
  • the arithmetic processing unit is larger than the second threshold value based on the feature value obtained from the state monitoring sensor in the third operation period after the feature value transits from a state smaller than the second threshold value to a larger state.
  • a third threshold value is determined, and a predetermined amount of displacement corresponding to the third threshold value is stored.
  • the arithmetic processing unit displaces the rotation axis by a predetermined displacement amount when the feature amount obtained from the state monitoring sensor after the third operation period transitions from a state smaller than the third threshold value to a larger state. It is determined that
  • the method according to another aspect of the present disclosure is a state monitoring method in which an abnormality of a bearing in which a fixed ring is fixed to a housing is detected by a state monitoring device.
  • the state monitoring device includes a friction member disposed so as to face the peripheral surface of the rotation shaft so that the degree of contact changes when the rotation shaft supported by the bearing is displaced with respect to the housing, and the state monitoring contacting the friction member A sensor.
  • the state monitoring sensor is an AE sensor or an acceleration sensor.
  • the state monitoring method includes: (i) a step of determining a first threshold value based on a feature amount obtained from the state monitoring sensor during the first operation period; and (ii) a state in which the feature amount is smaller than the first threshold value.
  • the friction member has a shape such that the contact area with the rotation shaft increases as the displacement amount of the rotation shaft increases.
  • the state monitoring method further includes a step of determining a displacement amount of the rotating shaft based on a comparison result between the feature amount and a third threshold value larger than the second threshold value.
  • the state monitoring device of the present invention enables highly accurate abnormality detection of a low-speed operation bearing without being affected by the environment such as lubricating oil or water.
  • FIG. 1 is a diagram illustrating a configuration of a state monitoring device according to a first embodiment. It is a figure which shows the measurement data of the state monitoring apparatus of Embodiment 1.
  • FIG. 4 is a flowchart for explaining abnormality determination processing executed by the arithmetic processing device in the first embodiment. It is a figure which shows the structure of the state monitoring apparatus of the modification 1 of Embodiment 1. FIG. It is a figure which shows the measurement data of the state monitoring apparatus of the modification 1 of Embodiment 1.
  • FIG. 10 is a flowchart for explaining abnormality determination processing executed by the arithmetic processing device in Modification 2 of Embodiment 1; It is a figure which shows the measurement data of the state monitoring apparatus of the modification 3 of Embodiment 1.
  • FIG. It is a figure which shows the structure of the state monitoring apparatus of Embodiment 2.
  • FIG. It is a figure which shows one Example of a friction member. It is a figure which shows one Example of a friction member. It is a figure which shows one Example of a friction member. It is a figure which shows one Example of a friction member. It is a figure which shows another Example of a friction member. It is a figure which shows another Example of a friction member.
  • FIG. 10 is a flowchart for explaining abnormality determination processing executed by the arithmetic processing device in the second embodiment. It is a figure which shows the structure of the state monitoring apparatus of the modification 1 of Embodiment 2. FIG. It is a figure which shows the measurement data of the state monitoring apparatus of the modification 1 of Embodiment 2. FIG. It is a figure which shows another Example of a friction member. It is a figure which shows the measurement data of the state monitoring apparatus of the modification 2 of Embodiment 2.
  • FIG. 10 is a flowchart for explaining abnormality determination processing executed by the arithmetic processing device in the second embodiment. It is a figure which shows the structure of the state monitoring apparatus of the modification 1 of Embodiment 2. FIG. It is a figure which shows the measurement data of the state monitoring apparatus of the modification 1 of Embodiment 2. FIG. It is a figure which shows another Example of a friction member. It is a figure which shows the measurement data of the state monitoring apparatus of the modification 2 of Embodiment 2. FIG.
  • FIG. 10 is a flowchart for explaining the first half of an abnormality determination process executed by an arithmetic processing device in a second modification of the second embodiment.
  • 14 is a flowchart for explaining the second half of the abnormality determination process executed by the arithmetic processing device in the second modification of the second embodiment. It is a figure which shows the measurement data of the state monitoring apparatus of the modification 3 of Embodiment 2.
  • FIG. 10 is a flowchart for explaining the first half of an abnormality determination process executed by an arithmetic processing device in a second modification of the second embodiment.
  • 14 is a flowchart for explaining the second half of the abnormality determination process executed by the arithmetic processing device in the second modification of the second embodiment. It is a figure which shows the measurement data of the state monitoring apparatus of the modification 3 of Embodiment 2.
  • FIG. 1 and FIG. 2 a configuration of a wind turbine generator that is an example of a device to which the state monitoring device according to the present embodiment can be applied will be described.
  • the wind power generator is an example, and the state monitoring device according to the present embodiment can be applied to a bearing such as a railway vehicle or a spindle.
  • FIG. 1 is a diagram schematically showing a configuration of a wind turbine generator to which a state monitoring device according to an embodiment of the present invention is applied.
  • the wind power generator 10 includes a rotating shaft 20, a hub 25, a blade 30, a speed increaser 40, a generator 50, a control panel 52, and a power transmission line 54.
  • the wind power generator 10 further includes a main shaft bearing (hereinafter simply referred to as a “bearing”) 60 and a data processing device 80.
  • the step-up gear 40, the generator 50, the control panel 52, the bearing 60, and the data processing device 80 are stored in a nacelle 90, and the nacelle 90 is supported by a tower 92.
  • the rotary shaft 20 is a main shaft of the wind turbine generator, is rotatably supported by a bearing 60, and is connected to the input shaft of the speed increaser 40 in the nacelle 90.
  • the rotating shaft 20 transmits the rotational torque generated by the blade 30 receiving wind force to the input shaft of the speed increaser 40.
  • the blade 30 is attached to the hub 25 at the tip of the rotating shaft 20, and converts wind force into rotating torque and transmits the rotating torque to the rotating shaft 20.
  • the bearing 60 is fixed in the nacelle 90 and supports the rotary shaft 20 in a freely rotatable manner.
  • the bearing 60 is configured by a rolling bearing.
  • self-aligning roller bearings can be used as shown in FIG. 2 and FIG. 3, but they may be constituted by tapered roller bearings, cylindrical roller bearings, ball bearings or the like. These bearings may be single row or double row.
  • the speed increaser 40 is provided between the rotary shaft 20 and the generator 50, and increases the rotational speed of the rotary shaft 20 to output to the generator 50.
  • the generator 50 is connected to the output shaft of the speed increaser 40, and generates power by the rotational torque received from the speed increaser 40.
  • the control panel 52 includes an inverter (not shown) and the like.
  • the inverter converts the electric power generated by the generator 50 into a system voltage and frequency and outputs it to the power transmission line 54 connected to the system.
  • a signal from the state monitoring sensor is transmitted to the data processing device 80 from the bearing 60 that supports the rotating shaft 20.
  • the signal from the bearing 60 is representatively shown here, a signal from a state monitoring sensor also provided from another bearing is transmitted to the data processing device 80.
  • FIG. 2 is a schematic diagram for explaining the direction of the bearing load applied to the bearing supporting the main shaft.
  • bearing 60 includes a bearing 60 ⁇ / b> A installed on the hub 25 side and a bearing 60 ⁇ / b> B provided on the speed increaser 40 side in FIG. 1.
  • the gravity G acting on the blade 30 and the hub 25 acts on the tip of the rotating shaft 20.
  • the bearing load FA acts on the bearing 60 in the same direction as gravity.
  • the bearing 60A serves as a fulcrum, when the gravity G acts, the bearing load FB acts on the bearing 60B in the opposite direction to the gravity.
  • the bearing may have different directions in which the bearing load acts depending on the place of use. However, since the direction in which the bearing load acts is almost determined once the place where the bearing is used is determined, the direction in which the bearing load acts is known in advance when assembling the equipment using the bearing.
  • ⁇ A load region is generated in the outer ring of the bearing with respect to the direction in which the bearing load acts. Since the inner ring and rolling elements of the bearing are rotating, it is expected to wear evenly. However, since the outer ring of the bearing is fixed, the wear proceeds more in the load region. As a result, it can be considered that the rotating shaft is displaced in the direction of the bearing load.
  • a state monitoring device capable of detecting the displacement of the rotating shaft will be described in detail.
  • a friction member that is more likely to be worn than the rotating shaft is disposed on the bearing load acting side (load region side) with respect to the bearing, and the rotation of the bearing is based on AE or vibration generated in the friction member. Detect shaft displacement.
  • FIG. 3 is a diagram illustrating a configuration of the state monitoring apparatus according to the first embodiment.
  • state monitoring apparatus 100 monitors a state such as wear of bearing 160, and includes a friction member 146 and a state monitoring sensor 145 in contact with friction member 146. Prepare.
  • the bearing 160 is surrounded by the rotary shaft 20, the housing 120, and the bearing retainer 121. Although not shown, the housing 120 is fixed to a nacelle or the like.
  • Bearing 160 includes an inner ring 131, an outer ring 132, and a plurality of rolling elements 133 (for example, barrel-shaped rollers).
  • the inner ring 131 has a rolling surface in contact with the plurality of rolling elements 133 on its outer peripheral surface
  • the outer ring 132 has a rolling surface in contact with the plurality of rolling elements 133 on its inner peripheral surface. ing.
  • the inner ring 131 is fitted with the rotary shaft 20 on the inner side of the rolling surface
  • the outer ring 132 is fitted with the housing 120 on the outer side of the rolling surface.
  • the inner ring 131 and the rotating shaft 20 are rotatably provided as a unit.
  • an outer ring 132 that is a fixed ring is fixed to the housing 120.
  • the friction member 146 is disposed so as to face the peripheral surface of the rotary shaft 20 so that the degree of contact changes when the rotary shaft 20 supported by the bearing 160 is displaced in the bearing load direction with respect to the housing 120.
  • the state monitoring sensor 145 is an AE sensor or an acceleration sensor.
  • the bearing 160 corresponds to the bearing 60A in FIG.
  • the friction member 146 is disposed on the side on which the bearing load FA acting on the bearing 160 acts (the load region side of the outer ring) with respect to the rotary shaft 20.
  • the friction member 146 is preferably made of a material that easily wears and generates AE and vibration acceleration.
  • the friction member 146 is more preferably made of a material that does not easily damage the mating member (rotating shaft 20).
  • the friction member 146 is configured so that the amount of wear of the friction member 146 per rotation of the rotary shaft 20 is equal to that of the rotary shaft 20 when the friction member 146 and the rotary shaft 20 are frictioned.
  • a bearing that is larger than the wear amount of the bearing 160 (inner ring, outer ring, rolling element) per rotation is selected.
  • a carbon material for example, a carbon material, a resin, a resin in which various reinforcing materials are combined, a copper alloy, an aluminum alloy, a titanium alloy, a metal sintered body, a metal powder compression molding, and a resin powder compression molding are used. be able to.
  • the state monitoring device 100 further includes a stay 141, a vibration isolator 143, a vibration isolator cover 142, and an arithmetic processing unit 81.
  • the stay 141 fixes the friction member 146 and the state monitoring sensor 145 to the housing 120 and the bearing retainer 121 of the bearing 60.
  • the vibration isolator 143 is disposed between the state monitoring sensor 145 and the stay 141, and blocks or attenuates AE and vibration transmitted from the stay 141 to the sensor.
  • the arithmetic processing unit 81 receives the output of the state monitoring sensor 145 and determines whether or not an abnormality has occurred in the bearing.
  • the arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160 when the feature amount obtained from the state monitoring sensor 145 has transitioned from a state smaller than the threshold A to a larger state (FIGS. 4, 5, and 5). (See FIG. 7).
  • the arithmetic processing device 81 can be installed, for example, inside the data processing device 80 of FIG. A computer that receives data from the data processing device 80 at a remote location may be used as the arithmetic processing device 81.
  • the state monitoring device 100 is a device that detects the displacement of the rotating shaft 20. For this reason, the friction member 146 is placed in contact with or close to the rotating shaft 20.
  • a state monitoring sensor 145 that is an AE sensor or an acceleration sensor is bonded to the friction member 146.
  • the stay 141 fixes the state monitoring sensor 145 to the housing 120 or the bearing retainer 121.
  • the friction member 146 is installed at a position where wear proceeds with the displacement of the rotating shaft 20.
  • the rolling element 133, the inner ring 131, and the outer ring 132 are worn.
  • the rotary shaft 20 is displaced in the direction in which the bearing load acts due to the bearing load. That is, the displacement of the rotating shaft 20 occurs as the distance between the inner ring 131 and the outer ring 132 of the bearing 160 changes.
  • the friction member 146 When the rotary shaft 20 is displaced, the friction member 146 is worn to generate AE and vibration acceleration, and the state monitoring sensor 145 directly adhered to the friction member 146 can detect that the rotary shaft 20 is displaced with high sensitivity. By detecting this displacement, it is possible to detect with high sensitivity that the bearing 160 has been damaged due to wear or the like.
  • the state monitoring device 100 includes a vibration isolating material 143 for isolating vibration between the state monitoring sensor 145 and the stay 141, and a vibration isolating material cover 142.
  • the anti-vibration material 143 can block AE and vibration acceleration transmitted to the state monitoring sensor 145 via the stay 141. For this reason, it is difficult for the state monitoring sensor 145 to detect AE and vibration occurring in the bearing 160 and other parts. For this reason, AE and vibration acceleration generated from the friction member 146 can be measured with higher sensitivity.
  • FIG. 4 is a diagram illustrating measurement data of the state monitoring apparatus according to the first embodiment.
  • the data in FIG. 4 simulates the case where the direction of the bearing load is vertically downward like the bearing 60A in FIG. 2, and is obtained under the following measurement conditions.
  • Friction member material Carbon material state detection sensor: AE (envelope processed time waveform voltage output)
  • Bearing Spherical roller bearing (inner diameter 560mm, outer diameter 820mm, width 195mm)
  • Displacement of rotating shaft Up to 0.1 mm, observed with another displacement meter for comparison
  • Rotating speed 20 rev / min (Time of one rotation 3 seconds)
  • Sampling rate 100 kHz
  • Data length 15 seconds
  • Measurement interval 10 minutes
  • the friction member 146 was not brought into contact with the rotating shaft 20 at the start of operation, and the relative distance was set to 0.06 mm.
  • the load is gradually increased during the constant rotation speed operation.
  • the displacement X1 indicates a displacement in which the bearing load direction of the rotating shaft 20 is positive.
  • the effective value E1 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds.
  • the variation coefficient C1 is obtained by dividing the standard deviation of the sampling value by the arithmetic average and represents a relative variation.
  • the plot of the effective value E1 and the coefficient of variation C1 is a plot of values calculated at a data length of 15 seconds at 10-minute intervals, and the displacement X1 of the rotating shaft 20 is in the vicinity of the friction member 146. It is an instantaneous value measured using a displacement meter.
  • the threshold value A is determined based on the effective value E1 obtained in the initial period when the friction member 146 at the beginning of operation is not in contact with the rotating shaft 20.
  • the threshold value A can be determined in consideration of the average value and standard deviation of the initial period.
  • the distance between the friction member 146 and the rotating shaft 20 can be accurately grasped during installation so that it can be regarded as abnormal if the friction member 146 and the rotating shaft 20 come into contact with each other.
  • the distance is adjusted to the amount of change between the inner ring and the outer ring gap of the bearing which is detected as abnormal.
  • the friction member 146 immediately after the start of operation is not in contact with the rotating shaft and is not worn. This period without wear is suitable as a period for generating a threshold value for detecting an abnormality because there is no abnormality in the bearing and the level of AE and vibration acceleration and its fluctuation are small.
  • FIG. 5 is a flowchart for explaining the abnormality determination process executed by the arithmetic processing unit in the first embodiment. 3 to 5, first, in step S1, the arithmetic processing unit 81 samples the output signal of the state monitoring sensor 145 in the initial operation period to obtain initial value data. In step S2, the arithmetic processing unit 81 calculates an average value, standard deviation ⁇ , and the like of the initial value data obtained in the initial period, and determines the threshold A based on these. For example, the average value + 3 ⁇ can be set as the threshold value A.
  • This initial period is usually a period in which no displacement occurs in the rotating shaft due to wear of the bearing, and can be determined experimentally as appropriate.
  • step S3 the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is greater than the threshold value A. If E> A, the process of step S3 is executed again. If E> A, the process proceeds to step S4. In step S4, the arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160, performs recording or notification as necessary, and ends the process in step S5.
  • the displacement of the bearing rotating shaft 20 from the start of operation (the amount of change in the gap between the inner ring and the outer ring due to wear of the bearing) has increased to an initial gap of 0.06 mm or more accurately. Can be detected.
  • FIG. 6 is a diagram illustrating a configuration of the state monitoring apparatus according to the first modification of the first embodiment.
  • state monitoring apparatus 101 includes a friction member 146 and a state monitoring sensor 145 in contact with friction member 146.
  • the friction member 146 is disposed so as to face the circumferential surface of the rotary shaft 20 so that the degree of contact changes when the rotary shaft 20 supported by the bearing 160A, which is a plain bearing, is displaced.
  • the state monitoring sensor 145 is an AE sensor or an acceleration sensor.
  • the bearing 160 ⁇ / b> A is surrounded by the rotary shaft 20, the housing 220, and the bearing retainer 221.
  • the bearing 160A has a back metal integrated structure, a sliding member is disposed on the inner side of the back metal, and the rotary shaft 20 penetrates further on the inner side.
  • the bearing 160A is fitted with the housing 220 on the outside.
  • a resin material such as polytetrafluoroethylene (PTFE) can be used.
  • PTFE polytetrafluoroethylene
  • the friction member 146 is disposed on the rotating shaft 20 on the side on which the bearing load FA acting on the bearing 160A acts (the load region side of the back metal). Since friction member 146, vibration isolator 143, vibration isolator cover 142, and stay 141 are the same as those in the first embodiment, description thereof will not be repeated.
  • FIG. 7 is a diagram illustrating measurement data of the state monitoring device according to the first modification of the first embodiment.
  • the data in FIG. 7 is obtained under the following measurement conditions.
  • Load 50kN
  • Rotation speed 20 rotations / minute (one rotation time 3 seconds)
  • Sampling rate 100 kHz
  • Data length 15 seconds
  • Measurement interval 15 hours (hour)
  • FIG. 7 shows the displacement X2, the effective value E2, and the variation coefficient C2.
  • the displacement X2 indicates a displacement in which the direction of the bearing load of the rotating shaft 20 is positive.
  • the effective value E2 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds.
  • the variation coefficient C2 is obtained by dividing the standard deviation of the sampling value by the arithmetic average, and represents a relative variation.
  • the plot of the effective value E2 and the coefficient of variation C2 is obtained by plotting values calculated for a data length of 15 seconds at 15-hour intervals, and the displacement X2 of the rotating shaft 20 is in the vicinity of the friction member 146 for comparison. These are instantaneous values measured using other displacement meters. In order to reproduce the state in which the bearing in the normal state starts to increase the displacement between the inner and outer rings during the operation, the load is gradually increased during the constant rotation speed operation.
  • the threshold value A is determined based on the effective value E2 obtained in the initial period when the friction member 146 at the beginning of operation is not in contact with the rotating shaft 20.
  • the threshold value A can be determined in consideration of the average value and standard deviation of the initial period.
  • threshold A calculation process and the abnormality determination process are the same as those in the flowchart of FIG.
  • a state monitoring method is used in which the friction member 146 is brought into contact with the rotary shaft 20 immediately after the start of operation.
  • the configuration of the apparatus is the same as that described in FIG.
  • FIG. 8 is a diagram illustrating measurement data of the state monitoring device according to the second modification of the first embodiment.
  • the data in FIG. 8 is obtained under the same measurement conditions as in FIG.
  • the second modification of the first embodiment is different from the first embodiment in that the friction member 146 is brought into contact with the rotating shaft 20 from the beginning of the operation.
  • the operation period includes a preliminary operation period T1 at the beginning of operation, a subsequent threshold generation period T2, and a determination period T3.
  • the contact force is determined by the rigidity of the parts supporting the friction member 146 such as the stay 141. Therefore, in the preliminary operation period T1, the friction member 146 is greatly worn immediately after the start of operation, but the contact force decreases with the wear, so that the progress of wear of the friction member 146 is shifted to the threshold generation period T2.
  • the threshold A1 is determined based on the sampled feature amount data such as AE and vibration acceleration in the initial stage of the preliminary operation period T1. Then, based on the fact that the feature amount has decreased below the threshold value A1, it is determined that the preliminary operation period T1 has shifted to the threshold value generation period T2.
  • the period in which the wear is stagnant is a period for generating the threshold A2 for detecting an abnormality because there is no abnormality in the bearing and the level and fluctuation of AE and vibration acceleration are small. Is suitable.
  • the displacement of the rotating shaft gradually increases from the operation time of 2 hours (hour).
  • the state monitoring method used in the second modification of the first embodiment includes a step (S11 to S14) of determining a threshold generation period T2 based on a characteristic amount (E3) of measurement data at the beginning of operation, and a threshold.
  • the abnormality determination process executed by the state monitoring method will be described.
  • FIG. 9 is a flowchart for explaining an abnormality determination process executed by the arithmetic processing device in the second modification of the first embodiment. 3, 8, and 9, first, in step S ⁇ b> 11, the arithmetic processing unit 81 samples the output signal of the state monitoring sensor 145 in the initial operation period (initial stage of the preliminary operation period T ⁇ b> 1), Get value data. In step S12, the arithmetic processing unit 81 calculates an average value, standard deviation ⁇ , and the like from the initial value data obtained in the initial period, and determines the threshold value A1 based on these values. For example, the threshold value A can be set to an average value ⁇ 3 ⁇ or 1/10 of the average value.
  • This initial period is usually a period in which no displacement occurs in the rotating shaft due to bearing wear, and is a period in which the friction member 146 is in contact with the rotating shaft 20 and AE occurs in the friction member 146.
  • step S13 the arithmetic processing unit 81 determines whether or not the feature amount E obtained from the state monitoring sensor 145 is smaller than the threshold value A1. As long as E ⁇ A1 is not satisfied (NO in S13), the preliminary operation period T1 in FIG. 8 has not ended, and the threshold value generation period T2 for determining the threshold value A2 has not transitioned. The process of S13 is executed again.
  • the arithmetic processing unit 81 determines whether or not the change ⁇ E in the feature amount is smaller than the determination value B1 in step S14. In FIG. 8, it is preferable that the threshold value A2 is generated after the value of E3 has settled down.
  • step S15 While ⁇ E ⁇ B1 is not satisfied (NO in S14), the process is returned to step S13 again. On the other hand, if ⁇ E ⁇ B1 is satisfied (YES in S14), the process proceeds to step S15.
  • step S15 the arithmetic processing unit 81 samples the output signal of the state monitoring sensor 145 in the threshold generation period T2 to obtain data for generating the threshold A2.
  • step S16 the arithmetic processing unit 81 calculates an average value, standard deviation ⁇ , and the like of the data obtained during the threshold generation period T2, and determines the threshold A2 based on these. For example, the average value + 3 ⁇ can be set as the threshold value A2.
  • the threshold generation period T2 starts after E ⁇ A1 and ⁇ E ⁇ B1 are satisfied, and the end point can be determined experimentally as appropriate.
  • step S17 the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is larger than the threshold value A2. If E> A2, the process of step S17 is executed again. If E> A2, the process proceeds to step S18. In step S18, the arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160, performs recording and notification as necessary, and ends the process in step S19.
  • the state monitoring device 100 includes the arithmetic processing unit 81 that receives the output of the state monitoring sensor 145 and determines whether or not an abnormality has occurred in the bearing.
  • the arithmetic processing unit 81 determines (i) the first threshold value A1 based on the feature value obtained from the state monitoring sensor 145 at the initial stage of the preliminary operation period T1 (first operation period), and (ii) the feature value. Is based on the characteristic amount obtained from the state monitoring sensor 145 in the initial stage of the threshold generation period T2 (second operation period) after the preliminary operation period T1 in which the state transitions to a state smaller than the first threshold value A1.
  • a second threshold value A2 is determined, and (iii) after the threshold value generation period T2, the feature quantity obtained from the state monitoring sensor 145 changes from a state smaller than the second threshold value A2 to a larger state. It is determined that an abnormality has occurred in the bearing 160 (FIGS. 8 to 10).
  • the friction member 146 since the friction member 146 is worn to the limit unless it contacts the rotating shaft 20 during the preliminary operation period, the elapsed time from the start of operation.
  • the phenomenon of rapid increase in wear around 2 hours (hour) can be captured immediately with little time delay.
  • FIG. 10 is a diagram illustrating measurement data of the state monitoring device according to the third modification of the first embodiment.
  • the data in FIG. 10 is obtained under the same measurement conditions as the data in FIG.
  • FIG. 10 shows a displacement X4, an effective value E4, and a variation coefficient C4.
  • the displacement X4 indicates a displacement in which the bearing load direction of the rotating shaft 20 is positive.
  • the effective value E4 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds.
  • the variation coefficient C4 is obtained by dividing the standard deviation of the sampling value by the arithmetic average and represents a relative variation.
  • the plot of the effective value E4 and the variation coefficient C4 is obtained by plotting values calculated for a data length of 15 seconds at 15-hour intervals, and the displacement X4 of the rotating shaft 20 is near the friction member 146 for comparison. These are instantaneous values measured using other displacement meters.
  • the wear of the bearing 160A rapidly increases from about 270 hours (hours) of operation, and the displacement X4 of the rotary shaft 20 gradually increases.
  • the friction member 146 in the preliminary operation period T1, is worn to the limit as long as it does not come into contact with the rotating shaft 20, so that the wear is about 270 hours (hours) in operation time. Rapid increase in phenomena can be detected immediately with little time delay.
  • threshold value A2 calculation processing and abnormality determination processing are the same as the processing in the flowchart of FIG.
  • FIG. 1 and the like an example in which the present invention is applied to a bearing of a wind power generator is shown, but the state monitoring apparatus of the present embodiment can also be applied to a bearing such as a railway vehicle or a spindle.
  • the slide bearing is suitably used for a small machine.
  • monitoring may be performed by providing a plurality of friction members at different positions.
  • the example of the effective value of AE is shown as the feature quantity of the measurement data, other physical quantities may be used as the feature quantity.
  • typical effective values such as AE and vibration acceleration, maximum value, minimum value, kurtosis, skewness, coefficient of variation (standard deviation / average value), standard deviation, variance, peak-to-peak A value etc. can be used.
  • the feature amount of the measurement data can be calculated with a data length of at least one rotation of the rotating shaft in order to avoid adverse effects due to rotational runout and surface roughness distribution on the contact surface of the rotating shaft 20 with the friction member 146.
  • the feature amount may be calculated after the band pass filter processing or may be calculated after being converted into the frequency domain by FFT processing.
  • the threshold value for detecting a bearing abnormality is determined based on the feature value calculated over the entire threshold value generation period, or the threshold value generation period is first divided into a plurality of feature values. May be calculated again, and the feature value may be calculated again over the entire period, and determined based on the feature value.
  • a long friction member 146 is used, or AE or vibration is generated between the friction member 146 and the sensor.
  • the distance between the bearing or the friction member 146 and the sensor may be greatly separated by connecting with a long component made of a material that easily transmits acceleration.
  • FIG. 11 is a diagram illustrating a configuration of the state monitoring apparatus according to the second embodiment.
  • state monitoring apparatus 300 monitors a state such as wear of bearing 160, and includes friction member 346 and state monitoring sensor 145 in contact with friction member 346.
  • the friction member 346 is disposed so as to face the peripheral surface of the rotary shaft 20 so that the degree of contact changes when the rotary shaft 20 supported by the bearing 160 is displaced in the bearing load direction. The shape of the friction member 346 will be described later.
  • the state monitoring sensor 145 is an AE sensor or an acceleration sensor.
  • the bearing 160 corresponds to the bearing 60A in FIG.
  • the bearing 160 is surrounded by the rotary shaft 20, the housing 120, and the bearing retainer 121. Although not shown, the housing 120 is fixed to a nacelle or the like.
  • Bearing 160 includes an inner ring 131, an outer ring 132, and a plurality of rolling elements 133 (for example, barrel-shaped rollers).
  • the inner ring 131 has a rolling surface in contact with the plurality of rolling elements 133 on its outer peripheral surface
  • the outer ring 132 has a rolling surface in contact with the plurality of rolling elements 133 on its inner peripheral surface. ing.
  • the inner ring 131 is fitted with the rotary shaft 20 on the inner side of the rolling surface
  • the outer ring 132 is fitted with the housing 120 on the outer side of the rolling surface.
  • the inner ring 131 and the rotating shaft 20 are rotatably provided as a unit.
  • an outer ring 132 that is a fixed ring is fixed to the housing 120.
  • the friction member 346 is disposed so as to face the circumferential surface of the rotary shaft 20 so that the degree of contact changes when the rotary shaft 20 supported by the bearing 160 is displaced in the bearing load direction with respect to the housing 120.
  • the state monitoring sensor 145 is an AE sensor or an acceleration sensor.
  • the bearing 160 corresponds to the bearing 60A in FIG.
  • the friction member 346 is arranged on the side on which the bearing load FA acting on the bearing 160 acts (the load region side of the outer ring) with respect to the rotary shaft 20.
  • the friction member 346 is preferably made of a material that easily wears and that easily generates AE and vibration acceleration.
  • the friction member 346 is more preferably made of a material that does not easily damage the mating member (rotating shaft 20).
  • the friction member 346 is configured so that the amount of wear of the friction member 346 per rotation of the rotary shaft 20 is equal to that of the rotary shaft 20 when the friction member 346 and the rotary shaft 20 are in friction.
  • a bearing that is larger than the wear amount of the bearing 160 (inner ring, outer ring, rolling element) per rotation is selected.
  • a carbon material for example, a carbon material, a resin, a resin in which various reinforcing materials are combined, a copper alloy, an aluminum alloy, a titanium alloy, a metal sintered body, a metal powder compression molding, and a resin powder compression molding are used. be able to.
  • the state monitoring device 300 further includes a stay 141, a vibration isolator 143, a vibration isolator cover 142, and an arithmetic processing unit 81.
  • the stay 141 fixes the friction member 346 and the state monitoring sensor 145 to the housing 120 and the bearing retainer 121 of the bearing 60.
  • the vibration isolator 143 is disposed between the state monitoring sensor 145 and the stay 141, and blocks or attenuates AE and vibration transmitted from the stay 141 to the sensor.
  • the arithmetic processing unit 81 receives the output of the state monitoring sensor 145 and determines whether or not an abnormality has occurred in the bearing.
  • the arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160 when the feature amount obtained from the state monitoring sensor 145 has transitioned from a state smaller than the threshold value A11 to a larger state (FIGS. 15 and 16). (See FIG. 18).
  • the arithmetic processing device 81 can be installed, for example, inside the data processing device 80 of FIG.
  • a computer that receives data from the data processing device 80 at a remote location may be used as the arithmetic processing device 81.
  • the state monitoring device 300 is a device that detects the displacement of the rotating shaft 20. For this reason, the friction member 346 is installed in contact with or close to the rotating shaft 20.
  • a state monitoring sensor 145 that is an AE sensor or an acceleration sensor is bonded to the friction member 346.
  • the stay 141 fixes the state monitoring sensor 145 to the housing 120 or the bearing retainer 121.
  • the friction member 346 is installed at a position where wear proceeds with the displacement of the rotary shaft 20.
  • the rolling element 133, the inner ring 131, and the outer ring 132 are worn.
  • the rotary shaft 20 is displaced in the direction in which the bearing load acts due to the bearing load. That is, the displacement of the rotating shaft 20 occurs as the distance between the inner ring 131 and the outer ring 132 of the bearing 160 changes.
  • the friction member 346 When the rotary shaft 20 is displaced, the friction member 346 is worn to generate AE and vibration acceleration, and the state monitoring sensor 145 directly adhered to the friction member 346 can detect that the rotary shaft 20 is displaced with high sensitivity. By detecting this displacement, it is possible to detect with high sensitivity that the bearing 160 has been damaged due to wear or the like.
  • the state monitoring device 300 includes a vibration isolating material 143 for isolating vibration between the state monitoring sensor 145 and the stay 141, and a vibration isolating material cover 142.
  • the anti-vibration material 143 can block AE and vibration acceleration transmitted to the state monitoring sensor 145 via the stay 141. For this reason, it is difficult for the state monitoring sensor 145 to detect AE and vibration occurring in the bearing 160 and other parts. For this reason, AE and vibration acceleration generated from the friction member 346 can be measured with higher sensitivity.
  • FIGS. 12A to 12C are diagrams showing an example (friction member 346a) of the friction member 346.
  • FIG. FIG. 12A shows a plan view of the friction member 346a.
  • FIG. 12B shows a side view of the friction member 346a when viewed from a direction perpendicular to the axis 21 of the rotating shaft 20 and the bearing load direction.
  • FIG. 12C shows a side view of the friction member 346a when viewed from the direction of the axis 21 of the rotating shaft 20.
  • the friction member 346a has a substantially conical shape, and its side surface is stepped. In other words, the friction member 346a gradually decreases in height from the bottom surface as it goes from the top to the end of the cone.
  • the friction member 346 a having a substantially conical shape is arranged such that its axial direction coincides with the direction of the bearing load and the top faces the rotating shaft 20.
  • FIG. 13A to 13C are diagrams showing another example of the friction member 346 (friction member 346b).
  • FIG. 13A shows a plan view of the friction member 346b.
  • FIG. 13B shows a side view of the friction member 346b when viewed from a direction perpendicular to the axis 21 of the rotating shaft 20 and the bearing load direction.
  • FIG. 13C shows a side view of the friction member 346b when viewed from the direction of the axis 21 of the rotating shaft 20.
  • the friction member 346b has a rectangular shape in plan view, and is formed in a descending step shape from the central portion toward the short side so that the central portion in the longitudinal direction is the top. .
  • the friction member 346b has a rectangular bottom surface, and the height from the bottom surface decreases stepwise from the central portion in the longitudinal direction toward the short side.
  • the friction member 346b is arranged so that the direction perpendicular to the bottom surface coincides with the direction of the bearing load and the top faces the rotating shaft 20.
  • the surface facing the rotating shaft 20 in each stage is orthogonal to the direction of the bearing load.
  • the friction member 346a shown in FIGS. 12A to 12C is stepped, whereas the friction member 346b shown in FIGS. 13A to 13C is rectangular. Therefore, the friction member 346b shown in FIGS. 13A to 13C can save space compared to the friction member 346a shown in FIGS. 12A to 12C.
  • the step including the tops of the friction members 346a and 346b is the first step
  • the lower step is the second step
  • the lower step is the third step
  • a peripheral surface of a portion of the rotating shaft 20 facing the friction members 346 a and 346 b is parallel to the axis 21 of the rotating shaft 20. Therefore, when the first stage of the friction member 346a is scraped due to wear on the rotating shaft 20, and the rotating shaft 20 starts to contact the second stage of the friction member 346a, the contact area between the friction member 346a and the rotating shaft 20 is not sufficient. Increase continuously.
  • the contact area between the friction member 346a and the rotating shaft 20 increases discontinuously.
  • the friction members 346a and 346b have such shapes that the contact area with the rotating shaft 20 increases stepwise as the displacement amount of the rotating shaft 20 increases.
  • the contact area between the friction members 346a and 346b and the rotating shaft 20 correlates with a feature amount (AE wave or vibration acceleration amplitude or the like) obtained from the state monitoring sensor 145. Therefore, when the contact area between the friction members 346a and 346b and the rotating shaft 20 increases stepwise, the feature amount (AE wave or vibration acceleration amplitude, etc.) obtained from the state monitoring sensor 145 also increases stepwise. That is, the timing at which the feature value obtained from the state monitoring sensor 145 increases stepwise matches the timing at which one of the friction members 346a and 346b is scraped off due to wear and the wear of the next step is started. To do.
  • the arithmetic processing unit 81 When the characteristic amount obtained from the state monitoring sensor 145 transits from a state smaller than the threshold value A11, B11 (or A13, B13, B14) to a larger state, the arithmetic processing unit 81 causes the friction members 346a, 346b to It is determined that it is the timing at which the wear of the step corresponding to the threshold is started (see FIGS. 15, 16, and 18).
  • the arithmetic processing unit 81 stores in advance the displacement amount M of the rotating shaft 20 corresponding to each threshold value, and compares the feature amount obtained from the state monitoring sensor 145 with the threshold value, thereby rotating the rotating shaft 20. The amount of displacement is determined.
  • the displacement amount M stored in the arithmetic processing unit 81 is determined in advance based on the initial value of the distance between the friction members 346a and 346b and the rotary shaft 20 and the height of each step in the friction members 346a and 346b.
  • the height of each step of the friction member 346 is the height of the upper surface of the step relative to the upper surface of the step below the step. means.
  • FIG. 14 is a view showing still another example of the friction member 346 (friction member 346c).
  • the friction member 346c is substantially conical like the friction member 346a shown in FIGS. 12A to 12C, and its side surface is stepped (two steps).
  • the height t1 of the first step is 0.04 mm
  • the total value t2 of the heights of the first and second steps is 0.08 mm.
  • FIG. 15 is a diagram illustrating measurement data of the state monitoring device according to the second embodiment.
  • the data in FIG. 15 simulates the case where the direction of the bearing load is vertically downward like the bearing 60A in FIG. 2, and is obtained under the following measurement conditions.
  • Friction member material Carbon material state detection sensor: AE (Envelope-processed time waveform is output as voltage)
  • Bearing Spherical roller bearing (inner diameter 560mm, outer diameter 820mm, width 195mm)
  • Displacement of rotating shaft Up to 0.1 mm, observed with another displacement meter for comparison
  • Rotating speed 20 rev / min (Time of one rotation 3 seconds)
  • Sampling rate 100 kHz
  • Data length 15 seconds
  • Measurement interval 10 minutes
  • the friction member 346c is not brought into contact with the rotary shaft 20 at the start of operation, and the relative distance (the initial value of the distance between the friction member 346c and the rotary shaft 20). ) was set to 0.06 mm.
  • FIG. 15 shows a displacement X11, an effective value E11, and a variation coefficient C11.
  • a displacement X11 indicates a displacement in which the bearing load direction of the rotating shaft 20 is positive.
  • the effective value E11 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds.
  • the variation coefficient C11 is obtained by dividing the standard deviation of the sampling value by the arithmetic average, and represents a relative variation.
  • the plot of the effective value E11 and the variation coefficient C11 is a plot of values calculated for a data length of 15 seconds at 10-minute intervals.
  • the displacement X11 of the rotating shaft 20 is in the vicinity of the friction member 346c, and other values are compared for comparison. It is an instantaneous value measured using a displacement meter.
  • the wear of the bearing 160 proceeds from about 2 hours of operation time, and the displacement X11 of the rotary shaft 20 gradually increases.
  • the distance between the friction member 346c and the rotating shaft 20 can be accurately grasped at the time of installation so that it can be regarded as abnormal if the friction member 346c contacts the rotating shaft 20.
  • the distance is adjusted to the amount of change between the inner ring and the outer ring gap of the bearing which is detected as abnormal.
  • the distance is set to 0.06 mm.
  • the effective value E11 at this time is a value corresponding to the size of the contact area between the friction member 346c and the rotating shaft 20.
  • the contact area is substantially equal to the cross-sectional area perpendicular to the bearing load direction in the first stage of the friction member 346c.
  • the threshold value A11 is based on the effective value E11 obtained in the initial period (first threshold value generation period T1) in which the friction member 346c at the start of operation is not in contact with the rotating shaft 20. Is determined.
  • the threshold value A11 is a value that is compared with the effective value E11 in order to detect an increase in the effective value E11 due to the start of contact between the first stage of the friction member 346c and the rotating shaft 20.
  • the threshold value A11 can be determined in consideration of the average value and standard deviation of the initial period (first threshold value generation period T1).
  • the friction member 346c immediately after the start of operation does not wear because it is not in contact with the rotating shaft. This period without wear is suitable as a period for generating the threshold value A11 for detecting an abnormality because there is no abnormality in the bearing and the level of AE and vibration acceleration and its fluctuation are small.
  • the rotating shaft 20 Until the displacement X11 of the rotating shaft 20 changes from 0.06 mm to 0.1 mm, the rotating shaft 20 continues to be displaced while contacting only the first stage of the friction member 346c. During this time, there is no change in the contact area between the friction member 346c and the rotary shaft 20. Therefore, the effective value E11 is stabilized at a value corresponding to the contact area.
  • the effective value E11 at this time is a value corresponding to the size of the contact area between the second stage of the friction member 346c and the rotary shaft 20.
  • the contact area is substantially equal to the cross-sectional area perpendicular to the direction of the second stage bearing load in the friction member 346c.
  • the effective value E11 obtained in the period during which the effective value E11 until the displacement X11 of the rotating shaft 20 changes from 0.06 mm to 0.1 mm is stable (second threshold value generation period T2) is obtained. Based on this, the threshold value B11 is determined.
  • the threshold value B11 is a value that is compared with the effective value E11 in order to detect an increase in the effective value E11 due to the start of contact between the second stage of the friction member 346c and the rotating shaft 20.
  • the threshold value B11 is an effective value E11 when the rotary shaft 20 is in contact with the first stage of the friction member 346c, and an effective value E11 when the rotary shaft 20 is in contact with the second stage of the friction member 346c. It is preferable that the value is determined between. Sa is the contact area between the rotary shaft 20 and the friction member 346c when the rotary shaft 20 is in contact with the first stage of the friction member 346c, and the rotary shaft 20 is in contact with the second stage of the friction member 346c. The contact area between the rotary shaft 20 and the friction member 346c is Sb.
  • the ratio between the effective value E11 when the rotary shaft 20 is in contact with the first stage of the friction member 346c and the effective value E11 when the rotary shaft 20 is in contact with the second stage of the friction member 346c. Is approximately equal to the ratio of Sa to Sb. Therefore, based on the effective value E11 when the rotating shaft 20 is in contact with the first stage of the friction member 346c, the effective value E11 is estimated when the rotating shaft 20 is in contact with the second stage of the friction member 346c.
  • the threshold value B11 can be determined in consideration of the estimated value. Therefore, the period in which the rotary shaft 20 contacts the first stage of the friction member 346c and the effective value E11 is stably output is suitable as the period for generating the threshold value B11.
  • the threshold value B11 is determined based on, for example, the average value of the effective values E11 in the period and the ratio between Sa and Sb.
  • the ratio of Sa and Sb is, for example, the ratio of the cross-sectional area perpendicular to the bearing load direction at the first stage of the friction member 346c and the cross-sectional area perpendicular to the bearing load direction at the second stage of the friction member 346c. It is almost the same.
  • FIG. 16 is a flowchart for explaining abnormality determination processing executed by the arithmetic processing unit in the second embodiment.
  • FIG. 16 shows a flowchart when the friction member 346c shown in FIG. 14 is used.
  • arithmetic processing unit 81 samples the output signal of state monitoring sensor 145 in the initial operation period (first threshold value generation period T1). To obtain initial value data.
  • the arithmetic processing unit 81 calculates an average value, standard deviation ⁇ , and the like of the initial value data obtained in the initial period, and determines the threshold value A11 based on these values. For example, the average value + 3 ⁇ can be set as the threshold value A11.
  • This initial period is usually a period in which no displacement occurs in the rotating shaft due to wear of the bearing, and can be determined experimentally as appropriate.
  • the arithmetic processing unit 81 stores an initial value (for example, 0.06 mm) of the distance between the friction member 346 and the rotating shaft 20 as the displacement amount M1 of the rotating shaft 20 corresponding to the threshold value A11.
  • step S33 the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is larger than the threshold value A11. If E> A11 is not satisfied (NO in S33), the process of step S33 is executed again. On the other hand, if E> A11 (YES in S33), the process proceeds to step S34.
  • step S34 the arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160, and the rotary shaft 20 has been displaced by the displacement amount M1 (the initial value of the distance between the friction member 346 and the rotary shaft 20), and if necessary. Record and notify.
  • the threshold value A11 it is possible to avoid erroneously detecting the occurrence of a bearing abnormality due to background noise. Further, in the second embodiment, it is accurately detected that the amount of displacement of the rotating shaft 20 from the start of operation (the amount of change in the gap between the inner ring and the outer ring due to bearing wear) has reached M1 (for example, 0.06 mm). it can.
  • step S35 the arithmetic processing unit 81 determines whether or not the feature amount change ⁇ E is smaller than the determination value K1.
  • step S35 While ⁇ E ⁇ K1 is not satisfied (NO in S35), the process is returned to step S35 again. On the other hand, if ⁇ E ⁇ K1 is satisfied (YES in S35), the process proceeds to step S36.
  • step S36 the arithmetic processing unit 81 samples the output signal from the state monitoring sensor 145 in the second threshold value generation period T2, and obtains data for generating the threshold value B11.
  • step S37 the arithmetic processing unit 81 calculates the average value of the data obtained in the second threshold value generation period T2, and determines the threshold value B11 based on the calculated average value. For example, when the sectional area perpendicular to the bearing load direction at the first stage of the friction member 346c is Sc and the sectional area perpendicular to the bearing load direction at the second stage of the friction member 346c is Sd, 0.5 ⁇ (1 + Sd / Sc) ⁇ average value can be set as the threshold value B11.
  • the second threshold value generation period T2 starts after ⁇ E ⁇ K1 is established, and the end point can be determined experimentally as appropriate.
  • step S38 the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is larger than the threshold value B11. If E> B11 is not satisfied (NO in S38), the process of step S38 is executed again. On the other hand, if E> B11 (YES in S38), the process proceeds to step S39. In step S39, the arithmetic processing unit 81 determines that the rotary shaft 20 has been displaced by a displacement amount M2 corresponding to the threshold value B11, performs recording and notification as necessary, and ends the process in step S40.
  • the state monitoring device 300 includes the friction member 346 disposed so as to face the circumferential surface of the rotary shaft 20 so that the degree of contact changes when the rotary shaft 20 supported by the bearing 160 is displaced.
  • the friction member 346 has a shape such that the contact area with the rotating shaft 20 increases as the displacement amount of the rotating shaft 20 increases.
  • the feature amount output from the state monitoring sensor 145 varies according to the contact area between the friction member 346 and the rotating shaft 20. Therefore, according to the above configuration, the displacement amount of the rotating shaft 20 can be determined by monitoring the feature amount output from the state monitoring sensor 145.
  • the arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160 when (i) the feature amount obtained from the state monitoring sensor 145 has transitioned from a state smaller than the threshold value A11 to a larger state, and (ii) The amount of displacement of the rotating shaft 20 is determined based on the comparison result between the feature amount and the threshold value B11 larger than the threshold value A11. Specifically, the arithmetic processing unit 81 stores a predetermined displacement amount M2 corresponding to the threshold value B11, and rotates when the feature amount changes from a state smaller than the threshold value B11 to a larger state. It is determined that the shaft 20 has been displaced by the displacement amount M2. Thereby, the amount of displacement of the rotating shaft 20 from the start of operation (the amount of change in the gap between the inner ring and the outer ring due to bearing wear) can be accurately detected.
  • FIG. 17 is a diagram illustrating a configuration of the state monitoring apparatus according to the first modification of the second embodiment.
  • the state monitoring device 301 includes a friction member 346 and a state monitoring sensor 145 that contacts the friction member 346.
  • the friction member 346 is disposed so as to face the circumferential surface of the rotary shaft 20 so that the degree of contact changes when the rotary shaft 20 supported by the bearing 160A that is a sliding bearing is displaced.
  • the state monitoring sensor 145 is an AE sensor or an acceleration sensor.
  • the bearing 160 ⁇ / b> A is surrounded by the rotary shaft 20, the housing 220, and the bearing retainer 221.
  • the bearing 160A has a back metal integrated structure, a sliding member is disposed on the inner side of the back metal, and the rotary shaft 20 penetrates further on the inner side.
  • the bearing 160A is fitted with the housing 220 on the outside.
  • a resin material such as polytetrafluoroethylene (PTFE) can be used.
  • PTFE polytetrafluoroethylene
  • the friction member 346 is arranged on the side on which the bearing load FA acting on the bearing 160A acts (the load region side of the back metal) with respect to the rotary shaft 20. Since friction member 346, vibration isolator 143, vibration isolator cover 142, and stay 141 are the same as those in the second embodiment, description thereof will not be repeated.
  • FIG. 18 is a diagram illustrating measurement data of the state monitoring device according to the first modification of the second embodiment.
  • the data in FIG. 18 is obtained under the following measurement conditions.
  • Load 50kN
  • Rotation speed 20 rotations / minute (one rotation time 3 seconds)
  • Sampling rate 100 kHz
  • Data length 15 seconds
  • a displacement X12, an effective value E12, and a variation coefficient C12 are shown.
  • the displacement X12 indicates a displacement in which the bearing load direction of the rotating shaft 20 is positive.
  • the effective value E12 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds.
  • the variation coefficient C12 is obtained by dividing the standard deviation of the sampling value by the arithmetic average and represents a relative variation.
  • the plot of the effective value E12 and the coefficient of variation C12 is obtained by plotting values calculated for a data length of 15 seconds at 15-hour intervals, and the displacement X12 of the rotating shaft 20 is near the friction member 346 for comparison. These are instantaneous values measured using other displacement meters. In order to reproduce the state in which the bearing in the normal state starts to increase the displacement between the inner and outer rings during the operation, the load is gradually increased during the constant rotation speed operation.
  • the wear of the bearing 160A rapidly increases from about 270 hours (hours), and the displacement X12 of the rotary shaft 20 gradually increases.
  • the threshold value A11 is determined.
  • the threshold value A11 can be determined in consideration of the average value and standard deviation of the initial period (first threshold value generation period T1).
  • the threshold value B11 is determined based on the effective value E12 obtained in a period during which the effective value E12 exceeds the threshold value A11 and is stable (second threshold value generation period T2). For example, based on the average value of this period (second threshold value generation period T2), the first-stage cross-sectional area Sc of the friction member 346c, and the second-stage cross-sectional area Sd of the friction member 346c, the threshold value B11 can be determined.
  • threshold value A11, B11 calculation processing and abnormality determination processing are the same as the processing of the flowchart of FIG.
  • a state monitoring method is used in which the friction member 346 is brought into contact with the rotary shaft 20 immediately after the start of operation.
  • the configuration of the apparatus is the same as that described in FIG.
  • FIG. 19 is a view showing still another embodiment of the friction member 346 (friction member 346d).
  • the friction member 346d has a substantially conical shape like the friction member 346a shown in FIGS. 12A to 12C, and its side surface has a step shape (three steps).
  • the first stage height t3 of the friction member 346d is 0.06 mm
  • the total height t4 of the first stage and the second stage of the friction member 346c is 0.10 mm.
  • FIG. 20 is a diagram illustrating measurement data of the state monitoring device according to the second modification of the second embodiment.
  • the data in FIG. 20 is obtained under the same measurement conditions as in FIG. 15 except that the friction member 346d having the shape shown in FIG. 20 is used.
  • the second modification of the second embodiment is different from the second embodiment in that the friction member 346d is brought into contact with the rotating shaft 20 from the beginning of operation.
  • FIG. 20 shows a displacement X13, an effective value E13, and a variation coefficient C13.
  • the displacement X13 indicates a displacement in which the bearing load direction of the rotary shaft 20 is positive.
  • the effective value E13 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds.
  • the variation coefficient C13 is obtained by dividing the standard deviation of the sampling value by the arithmetic average, and represents a relative variation.
  • the operation period includes a preliminary operation period T0 at the beginning of operation, a first threshold value generation period T1, and a second threshold value generation period T2.
  • the threshold value Z is determined based on the sampled feature amount data such as AE and vibration acceleration in the initial stage of the preliminary operation period T0. Then, based on the fact that the feature amount has dropped below the threshold value Z, it is determined that the preliminary operation period T0 has shifted to the first threshold value generation period T1.
  • the threshold value A13 for detecting abnormality is generated. Suitable as a period.
  • the displacement X13 of the rotating shaft 20 gradually increases from an operation time of 2 hours (hour).
  • the timing at which the clearance between the inner ring and the outer ring of the bearing begins to increase by generating a threshold value A13 for detecting anomaly at a stable operating time of 1.5 hours (hour) where the effective value and coefficient of variation are low. Can be detected accurately.
  • the rotating shaft 20 Until the displacement X13 of the rotating shaft 20 reaches 0.06 mm, the rotating shaft 20 continues to be displaced while contacting only the first stage of the friction member 346d. During this time, there is no change in the contact area between the friction member 346d and the rotary shaft 20. Therefore, the effective value E13 is stabilized at a value corresponding to the contact area.
  • the effective value E13 at this time is a value corresponding to the size of the contact area between the second stage of the friction member 346d and the rotary shaft 20.
  • the contact area is substantially equal to the cross-sectional area perpendicular to the bearing load direction in the second stage of the friction member 346d.
  • the effective value E13 at this time is a value corresponding to the size of the contact area between the third stage of the friction member 346d and the rotary shaft 20.
  • the contact area is substantially equal to the cross-sectional area perpendicular to the bearing load direction at the third stage of the friction member 346c.
  • the threshold value is based on the effective value E13 obtained in the period (second threshold value generation period T2) until the displacement X13 becomes 0.06 mm after the rotation shaft 20 starts to be displaced.
  • B13 and B14 are determined.
  • the threshold value B13 is a value that is compared with the effective value E13 in order to detect an increase in the effective value E13 due to the start of contact between the second stage of the friction member 346d and the rotary shaft 20.
  • the threshold value B14 is a value that is compared with the effective value E13 in order to detect an increase in the effective value E13 due to the start of contact between the third stage of the friction member 346d and the rotating shaft 20.
  • the threshold value B13 is, for example, the average value of the effective value E11 of the second threshold value generation period T2, the first level and the second level of the friction member 346d, similarly to the threshold value B11 of the second embodiment. It is determined based on the ratio of the cross-sectional areas.
  • the threshold value B14 is an effective value E13 when the rotary shaft 20 is in contact with the second stage of the friction member 346d, and an effective value E13 when the rotary shaft 20 is in contact with the third stage of the friction member 346d. It is preferable that the value is determined between.
  • Se be the contact area between the rotary shaft 20 and the friction member 346d when the rotary shaft 20 is in contact with the first stage of the friction member 346d.
  • Sf be the contact area between the rotating shaft 20 and the friction member 346d when the rotating shaft 20 is in contact with the second stage of the friction member 346d.
  • Sg be the contact area between the rotary shaft 20 and the friction member 346d when the rotary shaft 20 is in contact with the third stage of the friction member 346d.
  • the ratio between the effective value E13 when the rotary shaft 20 is in contact with the first stage of the friction member 346d and the effective value E13 when the rotary shaft 20 is in contact with the second stage of the friction member 346c. Is approximately equal to the ratio of Se and Sf. Further, the ratio between the effective value E13 when the rotary shaft 20 is in contact with the first stage of the friction member 346d and the effective value E13 when the rotary shaft 20 is in contact with the third stage of the friction member 346d is , Approximately equal to the ratio of Se and Sg.
  • the effective value E13 when the rotating shaft 20 is in contact with the first stage of the friction member 346d can be estimated when the shaft 20 is in contact with the third stage of the friction member 346d.
  • the threshold value B14 can be determined in consideration of the estimated value. Therefore, a period during which the effective value E11 is stably output when the rotating shaft 20 is in contact with the first stage of the friction member 346d is suitable as a period for generating the threshold value B14.
  • the threshold value B14 is determined based on, for example, the average value of the effective values E11 in the period and the ratio of Se, Sf, and Sg.
  • the ratio of Se, Sf, and Sg is substantially the same as the ratio of the cross-sectional area perpendicular to the bearing load direction in each of the first to third stages of the friction member 346d.
  • FIG. 21 is a flowchart for explaining the first half of the abnormality determination process executed by the arithmetic processing unit in the second modification of the second embodiment.
  • FIG. 22 is a flowchart for explaining the second half of the abnormality determination process executed by the arithmetic processing device in the second modification of the second embodiment. 21 and 22 show a flowchart when the friction member 346d shown in FIG. 19 is used.
  • arithmetic processing unit 81 samples the output signal of state monitoring sensor 145 in the initial operation period (initial stage of preliminary operation period T0). To obtain initial value data.
  • the arithmetic processing unit 81 calculates an average value, standard deviation ⁇ , and the like from the initial value data obtained in the initial period, and determines the threshold value Z based on these values. For example, the average value ⁇ 3 ⁇ or 1/10 of the average value can be set as the threshold value Z.
  • This initial period is usually a period in which no displacement occurs in the rotating shaft 20 due to wear of the bearing, and a period in which the friction member 346d is in contact with the rotating shaft 20 and AE occurs in the friction member 346d.
  • step S53 the arithmetic processing unit 81 determines whether or not the effective value E of the feature amount obtained from the state monitoring sensor 145 is smaller than the threshold value Z. While E ⁇ Z is not satisfied (NO in S53), the preliminary operation period T0 in FIG. 20 has not ended, and the transition is made to the first threshold value generation period T1 for determining the threshold value A13. Since there is not, the process of S53 is performed again.
  • step S53 if E ⁇ Z is satisfied (YES in S53), the arithmetic processing unit 81 determines whether or not the feature amount change ⁇ E is smaller than the determination value K0 in step S54. This is because, in FIG. 20, it is preferable to generate the threshold value A13 after the value of E13 has settled down.
  • step S54 While ⁇ E ⁇ K0 is not satisfied (NO in S54), the process is returned to step S53 again. On the other hand, if ⁇ E ⁇ K0 is satisfied (YES in S54), the process proceeds to step S55.
  • step S55 the arithmetic processing unit 81 samples the output signal of the state monitoring sensor 145 in the first threshold value generation period T1, and obtains data for generating the threshold value A13.
  • step S56 the arithmetic processing unit 81 calculates the average value, standard deviation ⁇ , and the like of the data obtained during the first threshold value generation period T1, and determines the threshold value A13 based on these values. For example, the average value + 3 ⁇ can be set as the threshold value A13.
  • the first threshold value generation period T1 starts after E ⁇ Z and ⁇ E ⁇ K0 is satisfied, and the end point can be determined experimentally as appropriate.
  • step S57 the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is larger than the threshold value A13. If E> A13, the process of step S57 is executed again. If E> A13, the process proceeds to step S58. In step S58, the arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160, and performs recording and notification as necessary.
  • step S59 the arithmetic processing unit 81 determines whether or not the feature amount change ⁇ E is smaller than the determination value K1.
  • step S59 While ⁇ E ⁇ K1 is not satisfied (NO in S59), the process returns to step S59 again. On the other hand, if ⁇ E ⁇ K1 is satisfied (YES in S59), the process proceeds to step S60.
  • step S60 the arithmetic processing unit 81 samples the output signal from the state monitoring sensor 145 in the second threshold value generation period T2, and obtains data for generating the threshold values B13 and B14.
  • step S61 the arithmetic processing unit 81 calculates the average value of the data obtained in the second threshold value generation period T2, and determines the threshold values B13 and B14 based on the calculated average value. For example, when the cross-sectional area perpendicular to the bearing load direction in the first stage of the friction member 346d is Sh and the cross-sectional area perpendicular to the bearing load direction in the second stage of the friction member 346d is Si, 0.5 ⁇ (1 + Si / Sh) ⁇ average value can be the threshold value B13.
  • the threshold value B14 can be 0.5 ⁇ ⁇ (Si + Sj) / Sh ⁇ ⁇ average value.
  • the second threshold value generation period T2 starts after ⁇ E ⁇ K1 is established, and the end point can be determined experimentally as appropriate.
  • step S62 the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is larger than the threshold value B13. If E> B13 is not satisfied, the process of step S62 is executed again. On the other hand, if E> B13, the process proceeds to step S63. In step S63, the arithmetic processing unit 81 determines that the rotary shaft 20 has been displaced by the displacement amount M3 corresponding to the threshold value B13, and performs recording and notification as necessary.
  • step S64 the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is larger than the threshold value B14. If E> B14 is not satisfied, the process of step S64 is executed again. On the other hand, if E> B14, the process proceeds to step S65. In step S65, the arithmetic processing unit 81 determines that the rotary shaft 20 has been displaced by the displacement amount M4 corresponding to the threshold value B14, performs recording and notification as necessary, and ends the process in step S66.
  • the state monitoring apparatus 300 includes the arithmetic processing unit 81 that receives the output of the state monitoring sensor 145 and determines whether or not an abnormality has occurred in the bearing.
  • the arithmetic processing unit 81 determines the threshold value Z (first threshold value) based on the feature quantity obtained from the state monitoring sensor 145 at the initial stage of the preliminary operation period T0 (first operation period).
  • (Ii) obtained from the state monitoring sensor 145 at the initial stage of the first threshold generation period T1 (second operation period) after the preliminary operation period T0 in which the feature amount is changed to a state smaller than the threshold value Z. Based on the feature value, a threshold value A13 (second threshold value) is determined.
  • the feature value obtained from the state monitoring sensor 145 after the first threshold value generation period T1 is greater than the threshold value A13.
  • the second threshold value generation period T2 the first threshold value after the feature value has transitioned to a state greater than the threshold value A13.
  • Threshold values B13 and B14 third threshold values are determined based on the feature values obtained from the state monitoring sensor 145, and (v) predetermined displacement amounts corresponding to the threshold values B13 and B14, respectively.
  • the amount of displacement of the rotary shaft 20 from the start of operation (the amount of change in the gap between the inner ring and the outer ring due to bearing wear) has reached M3 (for example, 0.60 mm). Or that M4 (for example, 0.10 mm) has been reached.
  • the friction member 346 is worn to the limit as long as it does not come into contact with the rotary shaft 20, so that the phenomenon of a sudden increase in wear about 2 hours (hours) after the start of operation occurs. It can be caught immediately with little time delay.
  • FIG. 23 is a diagram illustrating measurement data of the state monitoring device according to the third modification of the second embodiment.
  • the data in FIG. 23 is obtained under the same measurement conditions as the data in FIG.
  • FIG. 23 shows a displacement X14, an effective value E14, and a variation coefficient C14.
  • the displacement X14 indicates a displacement in which the bearing load direction of the rotating shaft 20 is positive.
  • the effective value E14 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds.
  • the variation coefficient C14 is obtained by dividing the standard deviation of the sampling value by the arithmetic average and represents a relative variation.
  • the plot of the effective value E14 and the coefficient of variation C14 is a plot of values calculated for a data length of 15 seconds at 15 hour intervals, and the displacement X14 of the rotating shaft 20 is near the friction member 346 for comparison. These are instantaneous values measured using other displacement meters.
  • the wear of the bearing 160A increases rapidly from around 270 hours (hours) of operation, and the displacement X14 of the rotary shaft 20 gradually increases.
  • the friction member 346 in the preliminary operation period T0, is worn to the limit as long as it does not come into contact with the rotary shaft 20, so that the wear is about 270 hours (hours). Rapid increase in phenomena can be detected immediately with little time delay.
  • FIG. 1 and the like an example in which the present invention is applied to a bearing of a wind power generator is shown, but the state monitoring apparatus of the present embodiment can also be applied to a bearing such as a railway vehicle or a spindle.
  • the slide bearing is suitably used for a small machine.
  • monitoring may be performed by providing a plurality of friction members at different positions.
  • the example of the effective value of AE is shown as the feature quantity of the measurement data, other physical quantities may be used as the feature quantity.
  • typical effective values such as AE and vibration acceleration, maximum value, minimum value, kurtosis, skewness, coefficient of variation (standard deviation / average value), standard deviation, variance, peak-to-peak A value etc. can be used.
  • the feature amount of the measurement data can be calculated with a data length of at least one rotation of the rotating shaft in order to avoid adverse effects due to rotational runout and surface roughness distribution on the contact surface of the rotating shaft 20 with the friction member 346.
  • the feature amount may be calculated after the band pass filter processing or may be calculated after being converted into the frequency domain by FFT processing.
  • the contact area of the friction member 346 with the rotating shaft 20 may continuously increase as the displacement amount of the rotating shaft 20 increases.
  • information indicating the correlation between the amount of displacement of the rotating shaft 20 and the feature amount output from the state monitoring sensor 145 is acquired in advance through experiments or the like, and the arithmetic processing device 81 uses the information to obtain a feature. What is necessary is just to determine the displacement amount of the rotating shaft 20 according to quantity.
  • the contact area of the friction member 346 with the rotating shaft 20 may increase continuously as the displacement amount of the rotating shaft 20 increases.
  • information indicating the correlation between the amount of displacement of the rotating shaft 20 and the feature amount output from the state monitoring sensor 145 is acquired in advance through experiments or the like, and the arithmetic processing device 81 uses the information to obtain a feature. What is necessary is just to determine the displacement amount of the rotating shaft 20 according to quantity.
  • the threshold values Z, A11, A13, B11, B13, and B14 for detecting a bearing abnormality are determined based on the feature amount calculated over the entire threshold generation period, or first the threshold generation period.
  • the feature amount may be calculated in a plurality of small periods, the value may be calculated again in the entire period, and the value may be determined based on the feature amount.
  • the threshold values Z, A11, A13, B11, B13, and B14 may be determined in advance through experiments or the like. In this case, steps S31, S32, S36, and S37 in FIG. 16 and steps S51, S52, S55, S56, S60, and S61 in FIGS. 21 and 22 can be omitted.
  • a long friction member 346 is used, or the friction member 346 and the state monitoring sensor 145 are used.
  • the distance between the bearing and the friction member 346 and the state monitoring sensor 145 may be greatly separated by connecting them with long parts made of a material that easily transmits AE or vibration acceleration.

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

This state monitoring device for detecting a bearing abnormality is provided with: a friction member (146) disposed in such a way as to face a circumferential surface of a rotating shaft (20) in such a way that a degree of contact changes when the rotating shaft (20), which is supported by a bearing, is displaced; and a state monitoring sensor (145) in contact with the friction member (146). The state monitoring sensor (145) is an AE sensor or an acceleration sensor. The friction member (146) is preferably disposed on the side, relative to the rotating shaft (20), on which a bearing load acting on the bearing acts. By means of such a configuration, the present invention provides a state monitoring device with which it is possible to monitor displacement of the rotating shaft with high precision, without being affected by the environment such as lubricating oil or water.

Description

状態監視装置および状態監視方法Status monitoring device and status monitoring method
 この発明は、軸受の異常を検出する状態監視装置および状態監視方法に関する。 The present invention relates to a state monitoring device and a state monitoring method for detecting a bearing abnormality.
 鉄道車両や発電用風車等の回転部品の異常を早期に発見し、メンテナンスするために、実稼動状態で回転部品の異常診断を行なう状態監視装置が知られている(特許文献1:特開2006-105956号公報)。このような状態監視装置によって、回転部品が組み込まれた装置を人手によって分解して確認しなくても、遠隔地からでも異常診断が可能となる。 A state monitoring device that diagnoses abnormalities of rotating parts in an actual operating state in order to detect and maintain abnormalities of rotating parts such as railway vehicles and wind turbines for power generation at an early stage is known (Patent Document 1: Japanese Patent Laid-Open No. 2006-2006). -105956). With such a state monitoring device, it is possible to diagnose an abnormality from a remote location without having to manually disassemble and check the device incorporating the rotating component.
特開2006-105956号公報JP 2006-105956 A
 軸受の状態監視装置は、加速度、速度、変位、音、AE(Acoustic Emission)を計測するセンサをハウジングやケースなどの固定部品に設置し状態監視をすることが多い。 ∙ Bearing status monitoring devices often monitor the status by installing sensors that measure acceleration, speed, displacement, sound, and AE (Acoustic Emission) on fixed parts such as housings and cases.
 しかし、dn値(内径×回転速度)が20000以下となるような低速回転の場合には、従来の状態監視装置では異常検知が難しい。たとえば、加速度、速度および音を検出する場合は応答が小さいので異常検知が難しい。またAEを検出する場合は、損傷部以外からの信号、例えばクリープ、保持器と軌道輪の接触、転動体と保持器の接触などによる信号が外乱となって異常検知が難しい。よって、変位センサを用いることが考えられるが、変位センサでも、渦電流型は温度ドリフトが大きいため高精度な異常検知が難しく、高精度測定が可能なレーザー型や静電容量型は潤滑油や水などの環境の影響が大きいため、軸受の状態監視用には問題がある。 However, in the case of low speed rotation where the dn value (inner diameter × rotational speed) is 20000 or less, it is difficult to detect an abnormality with the conventional state monitoring device. For example, when detecting acceleration, speed, and sound, it is difficult to detect abnormality because the response is small. Further, when detecting AE, a signal from a part other than the damaged part, for example, a signal due to creep, contact between the cage and the raceway, contact between the rolling element and the cage, etc. is disturbed and it is difficult to detect the abnormality. Therefore, it is conceivable to use a displacement sensor, but even with a displacement sensor, the eddy current type has a large temperature drift, making it difficult to detect abnormalities with high accuracy. There is a problem in monitoring the condition of the bearing because of the great influence of the environment such as water.
 この発明は、上記のような課題を解決するためになされたものであり、その目的は、潤滑油や水などの環境に影響されず、回転軸の変位を高精度に監視することができる状態監視装置および状態監視方法を提供することである。 The present invention has been made to solve the above-described problems, and the object thereof is a state in which the displacement of the rotating shaft can be monitored with high accuracy without being affected by the environment such as lubricating oil and water. A monitoring device and a state monitoring method are provided.
 本開示は、固定輪がハウジングに固定された軸受の異常を検出する状態監視装置に関する。状態監視装置は、軸受によって支持される回転軸がハウジングに対して変位すると接触度合いが変化するように回転軸の周面に対向するように配置された摩擦部材と、摩擦部材に接触する状態監視センサとを備える。状態監視センサは、AEセンサまたは加速度センサである。 The present disclosure relates to a state monitoring device that detects an abnormality of a bearing in which a fixed ring is fixed to a housing. The state monitoring device includes a friction member disposed so as to face the peripheral surface of the rotation shaft so that the degree of contact changes when the rotation shaft supported by the bearing is displaced with respect to the housing, and the state monitoring contacting the friction member A sensor. The state monitoring sensor is an AE sensor or an acceleration sensor.
 好ましくは、摩擦部材は、回転軸に対して、軸受に働く軸受荷重の作用する側に配置される。 Preferably, the friction member is arranged on the side on which the bearing load acting on the bearing acts with respect to the rotating shaft.
 好ましくは、状態監視装置は、軸受のハウジングに摩擦部材および状態監視センサを固定するステーをさらに備える。 Preferably, the state monitoring device further includes a stay for fixing the friction member and the state monitoring sensor to the housing of the bearing.
 より好ましくは、状態監視装置は、状態監視センサとステーとの間に配置された振動を遮断する防振材をさらに備える。 More preferably, the state monitoring device further includes a vibration isolating material that blocks vibrations disposed between the state monitoring sensor and the stay.
 好ましくは、摩擦部材と回転軸との摩擦時に、回転軸1回転当たりの摩擦部材の摩耗量は、回転軸1回転当たりの軸受の摩耗量に比べ大きい。 Preferably, during friction between the friction member and the rotary shaft, the wear amount of the friction member per rotation of the rotary shaft is larger than the wear amount of the bearing per rotation of the rotary shaft.
 好ましくは、状態監視装置は、状態監視センサの出力を受け、軸受に異常が生じたか否かを判定する演算処理装置をさらに備える。演算処理装置は、状態監視センサから得られた特徴量が第1しきい値より小さい状態から大きい状態に遷移した場合に、軸受に異常が発生したと判定する。 Preferably, the state monitoring device further includes an arithmetic processing unit that receives the output of the state monitoring sensor and determines whether or not an abnormality has occurred in the bearing. The arithmetic processing unit determines that an abnormality has occurred in the bearing when the feature amount obtained from the state monitoring sensor transitions from a state smaller than the first threshold value to a larger state.
 好ましくは、状態監視装置は、状態監視センサの出力を受け、軸受に異常が生じたか否かを判定する演算処理装置をさらに備える。演算処理装置は、(i)第1運転期間において状態監視センサから得られた特徴量に基づいて第1しきい値を決定し、(ii)特徴量が第1しきい値より小さい状態に遷移した第1運転期間よりも後の第2運転期間において状態監視センサから得られた特徴量に基づいて、第2しきい値を決定し、(iii)第2運転期間の後に状態監視センサから得られた特徴量が第2しきい値より小さい状態から大きい状態に遷移した場合に、軸受に異常が発生したと判定する。 Preferably, the state monitoring device further includes an arithmetic processing unit that receives the output of the state monitoring sensor and determines whether or not an abnormality has occurred in the bearing. The arithmetic processing unit determines (i) a first threshold value based on the feature value obtained from the state monitoring sensor in the first operation period, and (ii) transitions to a state where the feature value is smaller than the first threshold value. The second threshold value is determined based on the feature amount obtained from the state monitoring sensor in the second operation period after the first operation period, and (iii) obtained from the state monitoring sensor after the second operation period. It is determined that an abnormality has occurred in the bearing when the obtained feature value transitions from a state smaller than the second threshold value to a larger state.
 好ましくは、摩擦部材は、回転軸の変位量の増大に応じて回転軸との接触面積が増大するような形状を有する。 Preferably, the friction member has a shape such that the contact area with the rotation shaft increases as the displacement amount of the rotation shaft increases.
 好ましくは、摩擦部材における回転軸との接触面積は、回転軸の変位量の増大に応じて段階的に増大する。 Preferably, the contact area of the friction member with the rotating shaft increases stepwise as the amount of displacement of the rotating shaft increases.
 好ましくは、摩擦部材は、回転軸に対して、軸受に働く軸受荷重の作用する側に配置され、摩擦部材における軸受荷重の方向に直交する断面積は、回転軸からの距離が長くなるにつれて段階的に増大する。 Preferably, the friction member is disposed on a side on which the bearing load acting on the bearing acts with respect to the rotation shaft, and the cross-sectional area perpendicular to the direction of the bearing load on the friction member is increased as the distance from the rotation shaft increases. Increase.
 好ましくは、回転軸の軸線を含み、かつ軸受荷重の方向に平行な平面で切ったときの摩擦部材の断面において、摩擦部材における回転軸に対向する表面は階段状である。 Preferably, in the cross section of the friction member when it is cut by a plane including the axis of the rotation shaft and parallel to the bearing load direction, the surface of the friction member facing the rotation shaft is stepped.
 より好ましくは、状態監視装置は、状態監視センサの出力を受け、軸受に異常が生じたか否かを判定する演算処理装置をさらに備える。演算処理装置は、状態監視センサから得られた特徴量が第1しきい値より小さい状態から大きい状態に遷移した場合に、軸受に異常が発生したと判定し、特徴量と第1しきい値よりも大きい第2しきい値との比較結果に基づいて回転軸の変位量を判定する。 More preferably, the state monitoring device further includes an arithmetic processing unit that receives the output of the state monitoring sensor and determines whether or not an abnormality has occurred in the bearing. The arithmetic processing unit determines that an abnormality has occurred in the bearing when the feature amount obtained from the state monitoring sensor transitions from a state smaller than the first threshold value to a larger state, and the feature amount and the first threshold value are determined. The amount of displacement of the rotating shaft is determined based on a comparison result with a larger second threshold value.
 もしくは、演算処理装置は、第1運転期間において状態監視センサから得られた特徴量に基づいて第1しきい値を決定し、特徴量が第1しきい値より小さい状態に遷移した第1運転期間よりも後の第2運転期間において状態監視センサから得られた特徴量に基づいて、第2しきい値を決定する。演算処理装置は、第2運転期間の後に状態監視センサから得られた特徴量が第2しきい値より小さい状態から大きい状態に遷移した場合に、軸受に異常が発生したと判定する。演算処理装置は、特徴量が第2しきい値より小さい状態から大きい状態に遷移した後の第3運転期間において状態監視センサから得られた特徴量に基づいて、第2しきい値よりも大きい第3しきい値を決定し、第3しきい値に対応する予め定められた変位量を記憶する。演算処理装置は、第3運転期間の後に状態監視センサから得られた特徴量が第3しきい値よりも小さい状態から大きい状態に遷移した場合に、回転軸が予め定められた変位量だけ変位したと判定する。 Alternatively, the arithmetic processing unit determines the first threshold value based on the feature amount obtained from the state monitoring sensor during the first operation period, and the first operation in which the feature amount transitions to a state smaller than the first threshold value. The second threshold value is determined based on the feature amount obtained from the state monitoring sensor in the second operation period after the period. The arithmetic processing unit determines that an abnormality has occurred in the bearing when the feature amount obtained from the state monitoring sensor after the second operation period transits from a state smaller than the second threshold value to a larger state. The arithmetic processing unit is larger than the second threshold value based on the feature value obtained from the state monitoring sensor in the third operation period after the feature value transits from a state smaller than the second threshold value to a larger state. A third threshold value is determined, and a predetermined amount of displacement corresponding to the third threshold value is stored. The arithmetic processing unit displaces the rotation axis by a predetermined displacement amount when the feature amount obtained from the state monitoring sensor after the third operation period transitions from a state smaller than the third threshold value to a larger state. It is determined that
 本開示の他の局面に係る方法は、状態監視装置によって固定輪がハウジングに固定された軸受の異常を検出する状態監視方法である。状態監視装置は、軸受によって支持される回転軸がハウジングに対して変位すると接触度合いが変化するように回転軸の周面に対向するように配置された摩擦部材と、摩擦部材に接触する状態監視センサとを備える。状態監視センサは、AEセンサまたは加速度センサである。状態監視方法は、(i)第1運転期間において状態監視センサから得られた特徴量に基づいて第1しきい値を決定するステップと、(ii)特徴量が第1しきい値より小さい状態に遷移した第1運転期間よりも後の第2運転期間において状態監視センサから得られた特徴量に基づいて、第2しきい値を決定するステップと、(iii)第2運転期間の後に状態監視センサから得られた特徴量が第2しきい値より小さい状態から大きい状態に遷移した場合に、軸受に異常が発生したと判定するステップとを備える。 The method according to another aspect of the present disclosure is a state monitoring method in which an abnormality of a bearing in which a fixed ring is fixed to a housing is detected by a state monitoring device. The state monitoring device includes a friction member disposed so as to face the peripheral surface of the rotation shaft so that the degree of contact changes when the rotation shaft supported by the bearing is displaced with respect to the housing, and the state monitoring contacting the friction member A sensor. The state monitoring sensor is an AE sensor or an acceleration sensor. The state monitoring method includes: (i) a step of determining a first threshold value based on a feature amount obtained from the state monitoring sensor during the first operation period; and (ii) a state in which the feature amount is smaller than the first threshold value. A step of determining a second threshold value based on a feature quantity obtained from the state monitoring sensor in a second operation period after the first operation period transitioned to (iii) a state after the second operation period And determining that an abnormality has occurred in the bearing when the feature amount obtained from the monitoring sensor transitions from a state smaller than the second threshold value to a larger state.
 好ましくは、摩擦部材は、回転軸の変位量の増大に応じて回転軸との接触面積が増大するような形状を有する。状態監視方法は特徴量と第2しきい値よりも大きい第3しきい値との比較結果に基づいて回転軸の変位量を判定するステップをさらに備える。 Preferably, the friction member has a shape such that the contact area with the rotation shaft increases as the displacement amount of the rotation shaft increases. The state monitoring method further includes a step of determining a displacement amount of the rotating shaft based on a comparison result between the feature amount and a third threshold value larger than the second threshold value.
 本発明の状態監視装置であれば、低速運転の軸受について、潤滑油や水などの環境に影響されずに高精度な異常検知が可能となる。 The state monitoring device of the present invention enables highly accurate abnormality detection of a low-speed operation bearing without being affected by the environment such as lubricating oil or water.
この発明の実施の形態に従う状態監視装置が適用される風力発電装置の構成を概略的に示した図である。It is the figure which showed schematically the structure of the wind power generator to which the state monitoring apparatus according to embodiment of this invention is applied. 主軸を支持する軸受にかかる軸受荷重の向きを説明するための模式図である。It is a schematic diagram for demonstrating the direction of the bearing load concerning the bearing which supports a main axis | shaft. 実施の形態1の状態監視装置の構成を示す図である。1 is a diagram illustrating a configuration of a state monitoring device according to a first embodiment. 実施の形態1の状態監視装置の測定データを示す図である。It is a figure which shows the measurement data of the state monitoring apparatus of Embodiment 1. FIG. 実施の形態1において、演算処理装置が実行する異常判定処理を説明するためのフローチャートである。4 is a flowchart for explaining abnormality determination processing executed by the arithmetic processing device in the first embodiment. 実施の形態1の変形例1の状態監視装置の構成を示す図である。It is a figure which shows the structure of the state monitoring apparatus of the modification 1 of Embodiment 1. FIG. 実施の形態1の変形例1の状態監視装置の測定データを示す図である。It is a figure which shows the measurement data of the state monitoring apparatus of the modification 1 of Embodiment 1. FIG. 実施の形態1の変形例2の状態監視装置の測定データを示す図である。It is a figure which shows the measurement data of the state monitoring apparatus of the modification 2 of Embodiment 1. FIG. 実施の形態1の変形例2において、演算処理装置が実行する異常判定処理を説明するためのフローチャートである。10 is a flowchart for explaining abnormality determination processing executed by the arithmetic processing device in Modification 2 of Embodiment 1; 実施の形態1の変形例3の状態監視装置の測定データを示す図である。It is a figure which shows the measurement data of the state monitoring apparatus of the modification 3 of Embodiment 1. FIG. 実施の形態2の状態監視装置の構成を示す図である。It is a figure which shows the structure of the state monitoring apparatus of Embodiment 2. FIG. 摩擦部材の一実施例を示す図である。It is a figure which shows one Example of a friction member. 摩擦部材の一実施例を示す図である。It is a figure which shows one Example of a friction member. 摩擦部材の一実施例を示す図である。It is a figure which shows one Example of a friction member. 摩擦部材の別の実施例を示す図である。It is a figure which shows another Example of a friction member. 摩擦部材の別の実施例を示す図である。It is a figure which shows another Example of a friction member. 摩擦部材の別の実施例を示す図である。It is a figure which shows another Example of a friction member. 摩擦部材のさらに別の実施例を示す図である。It is a figure which shows another Example of a friction member. 実施の形態2の状態監視装置の測定データを示す図である。It is a figure which shows the measurement data of the state monitoring apparatus of Embodiment 2. FIG. 実施の形態2において、演算処理装置が実行する異常判定処理を説明するためのフローチャートである。10 is a flowchart for explaining abnormality determination processing executed by the arithmetic processing device in the second embodiment. 実施の形態2の変形例1の状態監視装置の構成を示す図である。It is a figure which shows the structure of the state monitoring apparatus of the modification 1 of Embodiment 2. FIG. 実施の形態2の変形例1の状態監視装置の測定データを示す図である。It is a figure which shows the measurement data of the state monitoring apparatus of the modification 1 of Embodiment 2. FIG. 摩擦部材のさらに別の実施例を示す図である。It is a figure which shows another Example of a friction member. 実施の形態2の変形例2の状態監視装置の測定データを示す図である。It is a figure which shows the measurement data of the state monitoring apparatus of the modification 2 of Embodiment 2. FIG. 実施の形態2の変形例2において、演算処理装置が実行する異常判定処理の前半を説明するためのフローチャートである。10 is a flowchart for explaining the first half of an abnormality determination process executed by an arithmetic processing device in a second modification of the second embodiment. 実施の形態2の変形例2において、演算処理装置が実行する異常判定処理の後半を説明するためのフローチャートである。14 is a flowchart for explaining the second half of the abnormality determination process executed by the arithmetic processing device in the second modification of the second embodiment. 実施の形態2の変形例3の状態監視装置の測定データを示す図である。It is a figure which shows the measurement data of the state monitoring apparatus of the modification 3 of Embodiment 2. FIG.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 [風力発電装置全体の構成]
 図1~図2を参照して、本実施形態に係る状態監視装置を適用可能な装置の一例である風力発電装置の構成を説明する。なお、風力発電装置は、一例であり、鉄道車両やスピンドルなどの軸受にも本実施の形態に係る状態監視装置は適用可能である。
[Configuration of the entire wind power generator]
With reference to FIG. 1 and FIG. 2, a configuration of a wind turbine generator that is an example of a device to which the state monitoring device according to the present embodiment can be applied will be described. The wind power generator is an example, and the state monitoring device according to the present embodiment can be applied to a bearing such as a railway vehicle or a spindle.
 図1は、この発明の実施の形態に従う状態監視装置が適用される風力発電装置の構成を概略的に示した図である。図1を参照して、風力発電装置10は、回転軸20と、ハブ25と、ブレード30と、増速機40と、発電機50と、制御盤52と、送電線54とを備える。また、風力発電装置10は、主軸用軸受(以下、単に「軸受」と称する。)60と、データ処理装置80とをさらに備える。増速機40、発電機50、制御盤52、軸受60及びデータ処理装置80は、ナセル90に格納され、ナセル90は、タワー92によって支持される。 FIG. 1 is a diagram schematically showing a configuration of a wind turbine generator to which a state monitoring device according to an embodiment of the present invention is applied. Referring to FIG. 1, the wind power generator 10 includes a rotating shaft 20, a hub 25, a blade 30, a speed increaser 40, a generator 50, a control panel 52, and a power transmission line 54. The wind power generator 10 further includes a main shaft bearing (hereinafter simply referred to as a “bearing”) 60 and a data processing device 80. The step-up gear 40, the generator 50, the control panel 52, the bearing 60, and the data processing device 80 are stored in a nacelle 90, and the nacelle 90 is supported by a tower 92.
 回転軸20は、風力発電装置の主軸であり、軸受60によって回転自在に支持され、ナセル90内で増速機40の入力軸に接続される。そして、回転軸20は、風力を受けたブレード30により発生する回転トルクを増速機40の入力軸へ伝達する。ブレード30は、回転軸20の先端のハブ25に取り付けられており、風力を回転トルクに変換して回転軸20に伝達する。 The rotary shaft 20 is a main shaft of the wind turbine generator, is rotatably supported by a bearing 60, and is connected to the input shaft of the speed increaser 40 in the nacelle 90. The rotating shaft 20 transmits the rotational torque generated by the blade 30 receiving wind force to the input shaft of the speed increaser 40. The blade 30 is attached to the hub 25 at the tip of the rotating shaft 20, and converts wind force into rotating torque and transmits the rotating torque to the rotating shaft 20.
 軸受60は、ナセル90内において固定され、回転軸20を回転自在に支持する。軸受60は、転がり軸受によって構成される。たとえば、図2、図3に示すように自動調芯ころ軸受を用いることができるが、円すいころ軸受、円筒ころ軸受、玉軸受等によって構成しても良い。なお、これらの軸受は、単列のものでも複列のものでもよい。 The bearing 60 is fixed in the nacelle 90 and supports the rotary shaft 20 in a freely rotatable manner. The bearing 60 is configured by a rolling bearing. For example, self-aligning roller bearings can be used as shown in FIG. 2 and FIG. 3, but they may be constituted by tapered roller bearings, cylindrical roller bearings, ball bearings or the like. These bearings may be single row or double row.
 増速機40は、回転軸20と発電機50との間に設けられ、回転軸20の回転速度を増速して発電機50へ出力する。発電機50は、増速機40の出力軸に接続され、増速機40から受ける回転トルクによって発電する。 The speed increaser 40 is provided between the rotary shaft 20 and the generator 50, and increases the rotational speed of the rotary shaft 20 to output to the generator 50. The generator 50 is connected to the output shaft of the speed increaser 40, and generates power by the rotational torque received from the speed increaser 40.
 制御盤52は、インバータ(図示せず)等を含んで構成される。インバータは、発電機50による発電電力を系統の電圧及び周波数に変換し、系統に接続される送電線54へ出力する。 The control panel 52 includes an inverter (not shown) and the like. The inverter converts the electric power generated by the generator 50 into a system voltage and frequency and outputs it to the power transmission line 54 connected to the system.
 回転軸20を支持する軸受60からは、状態監視センサからの信号がデータ処理装置80に送信される。なお、ここでは軸受60からの信号を代表的に示したが、他の軸受からも併設される状態監視センサからの信号がデータ処理装置80に送信される。 A signal from the state monitoring sensor is transmitted to the data processing device 80 from the bearing 60 that supports the rotating shaft 20. Although the signal from the bearing 60 is representatively shown here, a signal from a state monitoring sensor also provided from another bearing is transmitted to the data processing device 80.
 図2は、主軸を支持する軸受にかかる軸受荷重の向きを説明するための模式図である。図2を参照して、軸受60は、ハブ25側に設置された軸受60Aと、図1の増速機40側に設けられた軸受60Bとを含む。 FIG. 2 is a schematic diagram for explaining the direction of the bearing load applied to the bearing supporting the main shaft. Referring to FIG. 2, bearing 60 includes a bearing 60 </ b> A installed on the hub 25 side and a bearing 60 </ b> B provided on the speed increaser 40 side in FIG. 1.
 回転軸20の先端には、ブレード30およびハブ25に働く重力Gが作用する。このため、軸受60には軸受荷重FAが重力と同じ向きに作用する。一方、軸受60Aが支点となるので、重力Gが作用すると軸受60Bには軸受荷重FBが重力と逆向きに作用する。 The gravity G acting on the blade 30 and the hub 25 acts on the tip of the rotating shaft 20. For this reason, the bearing load FA acts on the bearing 60 in the same direction as gravity. On the other hand, since the bearing 60A serves as a fulcrum, when the gravity G acts, the bearing load FB acts on the bearing 60B in the opposite direction to the gravity.
 このように、軸受には、使用される場所によって、軸受荷重が作用する向きが異なる場合がある。しかし、軸受が使用される場所が定まれば、軸受荷重が作用する向きはほとんど決まるので、軸受荷重が作用する向きは軸受を用いる設備の組立時には予めわかっている。 As described above, the bearing may have different directions in which the bearing load acts depending on the place of use. However, since the direction in which the bearing load acts is almost determined once the place where the bearing is used is determined, the direction in which the bearing load acts is known in advance when assembling the equipment using the bearing.
 軸受荷重が作用する方向に対して軸受の外輪に負荷域が発生する。軸受の内輪や転動体は回転しているので均一に摩耗することが期待されるが、軸受の外輪は固定されているので、負荷域となる部分でより多く摩耗が進行する。その結果、回転軸は軸受荷重の向きに変位することが考えらえる。 ¡A load region is generated in the outer ring of the bearing with respect to the direction in which the bearing load acts. Since the inner ring and rolling elements of the bearing are rotating, it is expected to wear evenly. However, since the outer ring of the bearing is fixed, the wear proceeds more in the load region. As a result, it can be considered that the rotating shaft is displaced in the direction of the bearing load.
 以下の実施の形態では、回転軸の変位を検出することができる状態監視装置について詳しく説明する。この状態監視装置は、軸受に対して軸受荷重が作用する側(負荷域側)に回転軸よりも摩耗しやすい摩擦部材を配置し、この摩擦部材に発生するAEまたは振動に基づいて軸受の回転軸の変位を検出する。 In the following embodiment, a state monitoring device capable of detecting the displacement of the rotating shaft will be described in detail. In this state monitoring device, a friction member that is more likely to be worn than the rotating shaft is disposed on the bearing load acting side (load region side) with respect to the bearing, and the rotation of the bearing is based on AE or vibration generated in the friction member. Detect shaft displacement.
 [実施の形態1]
 図3は、実施の形態1の状態監視装置の構成を示す図である。図3を参照して、実施の形態1の状態監視装置100は、軸受160の摩耗等の状態を監視するものであって、摩擦部材146と、摩擦部材146に接触する状態監視センサ145とを備える。
[Embodiment 1]
FIG. 3 is a diagram illustrating a configuration of the state monitoring apparatus according to the first embodiment. Referring to FIG. 3, state monitoring apparatus 100 according to the first embodiment monitors a state such as wear of bearing 160, and includes a friction member 146 and a state monitoring sensor 145 in contact with friction member 146. Prepare.
 軸受160は、回転軸20とハウジング120および軸受押さえ121に囲まれている。ハウジング120は、図示しないが、ナセルなどに固定されている。軸受160は、内輪131と、外輪132と、複数の転動体133(たとえばたる形のころ)とを含む。内輪131はその外周面に複数の転動体133と接触している転走面を有しており、外輪132はその内周面に複数の転動体133と接触している転走面を有している。 The bearing 160 is surrounded by the rotary shaft 20, the housing 120, and the bearing retainer 121. Although not shown, the housing 120 is fixed to a nacelle or the like. Bearing 160 includes an inner ring 131, an outer ring 132, and a plurality of rolling elements 133 (for example, barrel-shaped rollers). The inner ring 131 has a rolling surface in contact with the plurality of rolling elements 133 on its outer peripheral surface, and the outer ring 132 has a rolling surface in contact with the plurality of rolling elements 133 on its inner peripheral surface. ing.
 内輪131はその転走面よりも内側において回転軸20と嵌め合わされており、外輪132はその転走面よりも外側においてハウジング120と嵌め合わされている。内輪131と回転軸20とは、一体として回転可能に設けられている。軸受160は、固定輪である外輪132がハウジング120に固定されている。摩擦部材146は、軸受160によって支持される回転軸20がハウジング120に対して軸受荷重方向に変位すると接触度合いが変化するように回転軸20の周面に対向するように配置されている。状態監視センサ145は、AEセンサまたは加速度センサである。また、軸受160は、図2の軸受60Aに相当する。 The inner ring 131 is fitted with the rotary shaft 20 on the inner side of the rolling surface, and the outer ring 132 is fitted with the housing 120 on the outer side of the rolling surface. The inner ring 131 and the rotating shaft 20 are rotatably provided as a unit. In the bearing 160, an outer ring 132 that is a fixed ring is fixed to the housing 120. The friction member 146 is disposed so as to face the peripheral surface of the rotary shaft 20 so that the degree of contact changes when the rotary shaft 20 supported by the bearing 160 is displaced in the bearing load direction with respect to the housing 120. The state monitoring sensor 145 is an AE sensor or an acceleration sensor. The bearing 160 corresponds to the bearing 60A in FIG.
 摩擦部材146は、回転軸20に対して、軸受160に働く軸受荷重FAの作用する側(外輪の負荷域側)に配置される。 The friction member 146 is disposed on the side on which the bearing load FA acting on the bearing 160 acts (the load region side of the outer ring) with respect to the rotary shaft 20.
 摩擦部材146は、摩耗し易くAEや振動加速度が発生し易い材質が好ましい。また、摩擦部材146は、相手材(回転軸20)を損傷させにくい材質がより好ましい。また、軸受160の摩耗を検出するためには、摩擦部材146は、摩擦部材146と回転軸20との摩擦時に、回転軸20の1回転当たりの摩擦部材146の摩耗量が、回転軸20の1回転当たりの軸受160(内輪、外輪、転動体)の摩耗量に比べ大きいものを選択する。たとえば、摩擦部材146として、カーボン材、樹脂、各種強化材を複合した樹脂、銅合金、アルミニウム合金、チタン合金、金属焼結体、金属粉末の圧縮成形体、樹脂粉末の圧縮成形体を使用することができる。 The friction member 146 is preferably made of a material that easily wears and generates AE and vibration acceleration. The friction member 146 is more preferably made of a material that does not easily damage the mating member (rotating shaft 20). Further, in order to detect the wear of the bearing 160, the friction member 146 is configured so that the amount of wear of the friction member 146 per rotation of the rotary shaft 20 is equal to that of the rotary shaft 20 when the friction member 146 and the rotary shaft 20 are frictioned. A bearing that is larger than the wear amount of the bearing 160 (inner ring, outer ring, rolling element) per rotation is selected. For example, as the friction member 146, a carbon material, a resin, a resin in which various reinforcing materials are combined, a copper alloy, an aluminum alloy, a titanium alloy, a metal sintered body, a metal powder compression molding, and a resin powder compression molding are used. be able to.
 状態監視装置100は、ステー141と、防振材143と、防振材カバー142と、演算処理装置81とをさらに備える。ステー141は、軸受60のハウジング120および軸受押さえ121に、摩擦部材146および状態監視センサ145を固定する。防振材143は、状態監視センサ145とステー141との間に配置され、ステー141からセンサに伝わるAEおよび振動を遮断し、または減衰させる。演算処理装置81は、状態監視センサ145の出力を受け、軸受に異常が生じたか否かを判定する。演算処理装置81は、状態監視センサ145から得られた特徴量がしきい値Aより小さい状態から大きい状態に遷移した場合に、軸受160に異常が発生したと判定する(図4、図5、図7参照)。演算処理装置81は、たとえば、図1のデータ処理装置80の内部に設置することができる。なお、データ処理装置80から遠隔地でデータを受信するコンピュータを演算処理装置81として用いても良い。 The state monitoring device 100 further includes a stay 141, a vibration isolator 143, a vibration isolator cover 142, and an arithmetic processing unit 81. The stay 141 fixes the friction member 146 and the state monitoring sensor 145 to the housing 120 and the bearing retainer 121 of the bearing 60. The vibration isolator 143 is disposed between the state monitoring sensor 145 and the stay 141, and blocks or attenuates AE and vibration transmitted from the stay 141 to the sensor. The arithmetic processing unit 81 receives the output of the state monitoring sensor 145 and determines whether or not an abnormality has occurred in the bearing. The arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160 when the feature amount obtained from the state monitoring sensor 145 has transitioned from a state smaller than the threshold A to a larger state (FIGS. 4, 5, and 5). (See FIG. 7). The arithmetic processing device 81 can be installed, for example, inside the data processing device 80 of FIG. A computer that receives data from the data processing device 80 at a remote location may be used as the arithmetic processing device 81.
 上記に説明したように、状態監視装置100は、回転軸20の変位を検知する装置である。このため、摩擦部材146は、回転軸20に接触または近接させて設置される。摩擦部材146には、AEセンサまたは加速度センサである状態監視センサ145が接着される。ステー141は、状態監視センサ145をハウジング120または軸受押さえ121に固定する。摩擦部材146は、回転軸20の変位に伴い、摩耗が進行する位置に設置する。 As described above, the state monitoring device 100 is a device that detects the displacement of the rotating shaft 20. For this reason, the friction member 146 is placed in contact with or close to the rotating shaft 20. A state monitoring sensor 145 that is an AE sensor or an acceleration sensor is bonded to the friction member 146. The stay 141 fixes the state monitoring sensor 145 to the housing 120 or the bearing retainer 121. The friction member 146 is installed at a position where wear proceeds with the displacement of the rotating shaft 20.
 軸受160は、稼働時間が長くなると、転動体133や内輪131、外輪132が摩耗する。これらの摩耗が生じると、軸受荷重によって、回転軸20は、軸受荷重が作用する向きに変位する。すなわち、回転軸20の変位は、軸受160の内輪131と外輪132間の距離が変化することに伴い生じる。 When the operating time of the bearing 160 becomes longer, the rolling element 133, the inner ring 131, and the outer ring 132 are worn. When such wear occurs, the rotary shaft 20 is displaced in the direction in which the bearing load acts due to the bearing load. That is, the displacement of the rotating shaft 20 occurs as the distance between the inner ring 131 and the outer ring 132 of the bearing 160 changes.
 回転軸20が変位すると、摩擦部材146が摩耗してAEや振動加速度が発生し、摩擦部材146に直接接着した状態監視センサ145により高感度に回転軸20に変位が生じたことを検知できる。この変位の検知によって、軸受160に摩耗等による損傷が生じたことを高感度に検知可能である。 When the rotary shaft 20 is displaced, the friction member 146 is worn to generate AE and vibration acceleration, and the state monitoring sensor 145 directly adhered to the friction member 146 can detect that the rotary shaft 20 is displaced with high sensitivity. By detecting this displacement, it is possible to detect with high sensitivity that the bearing 160 has been damaged due to wear or the like.
 また、状態監視装置100は、状態監視センサ145とステー141との間に振動を遮断するための防振材143と、防振材カバー142とを備える。防振材143により、ステー141を介して状態監視センサ145に伝達されるAEおよび振動加速度を遮断できる。このため、軸受160や他の部分において発生しているAEおよび振動が状態監視センサ145において検出されにくくなる。このため、摩擦部材146から発生するAEや振動加速度をより高感度に測定できる。 Further, the state monitoring device 100 includes a vibration isolating material 143 for isolating vibration between the state monitoring sensor 145 and the stay 141, and a vibration isolating material cover 142. The anti-vibration material 143 can block AE and vibration acceleration transmitted to the state monitoring sensor 145 via the stay 141. For this reason, it is difficult for the state monitoring sensor 145 to detect AE and vibration occurring in the bearing 160 and other parts. For this reason, AE and vibration acceleration generated from the friction member 146 can be measured with higher sensitivity.
 図4は、実施の形態1の状態監視装置の測定データを示す図である。図4のデータは、図2の軸受60Aのように、軸受荷重の向きが鉛直下向きの場合を模擬したものであり、以下の測定条件において得られるものである。
<測定条件>
装置構成:図3に示す構成
摩擦部材材質:カーボン材
状態検知センサ:AE(エンベロープ処理した時間波形を電圧出力)
軸受:自動調心ころ軸受(内径560mm、外径820mm、幅195mm)
回転軸の変位:最大0.1mmまで、比較のために別の変位計で観測
回転速度:20回転/分(1回転の時間3秒)
サンプリング速度:100kHz
データ長さ:15秒
測定間隔:10分
 実施の形態1では、運転開始時に摩擦部材146を回転軸20と接触させずに、その相対距離を0.06mmにして設置した。正常状態の軸受160が運転の途中で回転軸20の変位が増加し始める状態を再現するために、一定回転速度運転の途中で荷重を徐々に増加させるようにした。図4中には、変位X1、実効値E1、変動係数C1が示されている。変位X1は、回転軸20の軸受荷重の向きを正とする変位を示す。実効値E1は、データ長さ15秒に含まれる状態監視センサ145の出力のサンプリング値の各々を二乗した値の平均値の平方根である。また、変動係数C1は、上記サンプリング値の標準偏差を算術平均で割ったものであり、相対的なばらつきを表す。
FIG. 4 is a diagram illustrating measurement data of the state monitoring apparatus according to the first embodiment. The data in FIG. 4 simulates the case where the direction of the bearing load is vertically downward like the bearing 60A in FIG. 2, and is obtained under the following measurement conditions.
<Measurement conditions>
Apparatus configuration: Configuration shown in FIG. 3 Friction member material: Carbon material state detection sensor: AE (envelope processed time waveform voltage output)
Bearing: Spherical roller bearing (inner diameter 560mm, outer diameter 820mm, width 195mm)
Displacement of rotating shaft: Up to 0.1 mm, observed with another displacement meter for comparison Rotating speed: 20 rev / min (Time of one rotation 3 seconds)
Sampling rate: 100 kHz
Data length: 15 seconds Measurement interval: 10 minutes In Embodiment 1, the friction member 146 was not brought into contact with the rotating shaft 20 at the start of operation, and the relative distance was set to 0.06 mm. In order to reproduce the state in which the bearing 160 in the normal state starts to increase the displacement of the rotating shaft 20 during the operation, the load is gradually increased during the constant rotation speed operation. In FIG. 4, the displacement X1, the effective value E1, and the variation coefficient C1 are shown. The displacement X1 indicates a displacement in which the bearing load direction of the rotating shaft 20 is positive. The effective value E1 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds. The variation coefficient C1 is obtained by dividing the standard deviation of the sampling value by the arithmetic average and represents a relative variation.
 実効値E1および変動係数C1のプロットは、データ長さ15秒間で算出した値を10分間隔でプロットしたものであり、回転軸20の変位X1は摩擦部材146近傍で、比較のために他の変位計を用いて測定した瞬時値である。 The plot of the effective value E1 and the coefficient of variation C1 is a plot of values calculated at a data length of 15 seconds at 10-minute intervals, and the displacement X1 of the rotating shaft 20 is in the vicinity of the friction member 146. It is an instantaneous value measured using a displacement meter.
 軸受160は運転時間2時間前後から摩耗が進行し、回転軸20の変位X1が徐々に増大する。実施の形態1では、運転開始初期の摩擦部材146が回転軸20に接触していない状態の初期期間で得られる実効値E1に基づいて、しきい値Aを決定する。たとえば、初期期間の平均値や標準偏差を考慮し、しきい値Aを決定することができる。 The wear of the bearing 160 proceeds from about 2 hours of operation time, and the displacement X1 of the rotary shaft 20 gradually increases. In the first embodiment, the threshold value A is determined based on the effective value E1 obtained in the initial period when the friction member 146 at the beginning of operation is not in contact with the rotating shaft 20. For example, the threshold value A can be determined in consideration of the average value and standard deviation of the initial period.
 摩擦部材146を回転軸20と接触させずに近接させる場合、摩擦部材146と回転軸20が接触したら異常とみなせるように、設置の際に摩擦部材146と回転軸20との距離を正確に把握し、その距離を異常として検出する軸受の内輪と外輪間隙間の変化量に合わせる。運転開始直後の摩擦部材146は回転軸と接触していないため摩耗しない。この摩耗のない期間は、軸受に異常はなくAEや振動加速度のレベルおよびその変動が小さいため、異常検知のためのしきい値を生成する期間として適している。 When the friction member 146 is brought close to the rotating shaft 20 without being brought into contact, the distance between the friction member 146 and the rotating shaft 20 can be accurately grasped during installation so that it can be regarded as abnormal if the friction member 146 and the rotating shaft 20 come into contact with each other. The distance is adjusted to the amount of change between the inner ring and the outer ring gap of the bearing which is detected as abnormal. The friction member 146 immediately after the start of operation is not in contact with the rotating shaft and is not worn. This period without wear is suitable as a period for generating a threshold value for detecting an abnormality because there is no abnormality in the bearing and the level of AE and vibration acceleration and its fluctuation are small.
 図5は、実施の形態1において、演算処理装置が実行する異常判定処理を説明するためのフローチャートである。図3~図5を参照して、まず、ステップS1において、演算処理装置81は、運転初期期間における状態監視センサ145の出力信号をサンプリングして、初期値データを得る。そして、ステップS2において、演算処理装置81は、初期期間に得られた初期値データの平均値、標準偏差σ等を算出し、これらに基づいてしきい値Aを決定する。たとえば、平均値+3σをしきい値Aとすることができる。なお、この初期期間は、通常は軸受の摩耗により回転軸に変位が発生しない期間とし、適宜実験的に予め定めておくことができる。 FIG. 5 is a flowchart for explaining the abnormality determination process executed by the arithmetic processing unit in the first embodiment. 3 to 5, first, in step S1, the arithmetic processing unit 81 samples the output signal of the state monitoring sensor 145 in the initial operation period to obtain initial value data. In step S2, the arithmetic processing unit 81 calculates an average value, standard deviation σ, and the like of the initial value data obtained in the initial period, and determines the threshold A based on these. For example, the average value + 3σ can be set as the threshold value A. This initial period is usually a period in which no displacement occurs in the rotating shaft due to wear of the bearing, and can be determined experimentally as appropriate.
 そして、ステップS3において、演算処理装置81は、以降の実効値Eを監視して、実効値Eがしきい値Aよりも大きいか否かを判断する。E>Aでなければ再びステップS3の処理が実行される一方、E>Aであれば、ステップS4に処理が進められる。ステップS4では、演算処理装置81は、軸受160に異常が発生したと判定し、必要に応じて記録や報知を行ない、ステップS5で処理を終了する。 In step S3, the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is greater than the threshold value A. If E> A, the process of step S3 is executed again. If E> A, the process proceeds to step S4. In step S4, the arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160, performs recording or notification as necessary, and ends the process in step S5.
 このようにしきい値Aを定めることにより、バックグラウンドノイズによって軸受の異常発生を誤検出してしまうことを避けることができる。また、実施の形態1では、運転開始時からの軸受の回転軸20の変位(軸受の磨耗による内輪と外輪の隙間の変化量)が初期の隙間0.06mm分以上に増加したことが正確に検知できる。 By setting the threshold value A in this way, it is possible to avoid erroneously detecting the occurrence of a bearing abnormality due to background noise. In the first embodiment, the displacement of the bearing rotating shaft 20 from the start of operation (the amount of change in the gap between the inner ring and the outer ring due to wear of the bearing) has increased to an initial gap of 0.06 mm or more accurately. Can be detected.
 [実施の形態1の変形例1]
 実施の形態1の変形例1では、転がり軸受に代えてすべり軸受に同様の検出処理を実行した例を説明する。
[Variation 1 of Embodiment 1]
In the first modification of the first embodiment, an example will be described in which the same detection process is performed on a sliding bearing instead of a rolling bearing.
 図6は、実施の形態1の変形例1の状態監視装置の構成を示す図である。図6を参照して、状態監視装置101は、摩擦部材146と、摩擦部材146に接触する状態監視センサ145とを備える。摩擦部材146は、すべり軸受である軸受160Aによって支持される回転軸20が変位すると接触度合いが変化するように回転軸20の周面に対向するように配置されている。状態監視センサ145は、AEセンサまたは加速度センサである。 FIG. 6 is a diagram illustrating a configuration of the state monitoring apparatus according to the first modification of the first embodiment. Referring to FIG. 6, state monitoring apparatus 101 includes a friction member 146 and a state monitoring sensor 145 in contact with friction member 146. The friction member 146 is disposed so as to face the circumferential surface of the rotary shaft 20 so that the degree of contact changes when the rotary shaft 20 supported by the bearing 160A, which is a plain bearing, is displaced. The state monitoring sensor 145 is an AE sensor or an acceleration sensor.
 軸受160Aは、回転軸20とハウジング220および軸受押さえ221に囲まれている。軸受160Aは、バックメタル一体型の構造であり、バックメタルの内側に摺動部材が配置され、そのさらに内側に回転軸20が貫通している。また軸受160Aは、外側においてハウジング220と嵌め合わされている。バックメタルの内側に配置された摺動部材は、たとえば、ポリテトラフルオロエチレン(polytetrafluoroethylene, PTFE)等の樹脂材料を使用することができる。また、摺動部材として、金属粉を主成分とする多孔質焼結体を用いても良い。である。摺動部材の気孔に油を含浸しているため、動作中は油が軸受内部で循環して潤滑の役目を果たす。 The bearing 160 </ b> A is surrounded by the rotary shaft 20, the housing 220, and the bearing retainer 221. The bearing 160A has a back metal integrated structure, a sliding member is disposed on the inner side of the back metal, and the rotary shaft 20 penetrates further on the inner side. The bearing 160A is fitted with the housing 220 on the outside. For the sliding member disposed inside the back metal, for example, a resin material such as polytetrafluoroethylene (PTFE) can be used. Moreover, you may use the porous sintered compact which has a metal powder as a main component as a sliding member. It is. Since the pores of the sliding member are impregnated with oil, the oil circulates inside the bearing and plays a role of lubrication during operation.
 摩擦部材146は、回転軸20に対して、軸受160Aに働く軸受荷重FAの作用する側(バックメタルの負荷域側)に配置される。摩擦部材146、防振材143、防振材カバー142、ステー141については、実施の形態1と同様であるので説明は繰り返さない。 The friction member 146 is disposed on the rotating shaft 20 on the side on which the bearing load FA acting on the bearing 160A acts (the load region side of the back metal). Since friction member 146, vibration isolator 143, vibration isolator cover 142, and stay 141 are the same as those in the first embodiment, description thereof will not be repeated.
 図7は、実施の形態1の変形例1の状態監視装置の測定データを示す図である。図7のデータは、以下の測定条件において得られるものである。
<測定条件>
装置構成:図6に示す構成
摩擦部材材質:カーボン材
状態検知センサ:AE(エンベロープ処理した時間波形を電圧出力)
軸受材質:PTFE複合材(内径100mm、幅50mm)
荷重:50kN
回転速度:20回転/分(1回転の時間3秒)
サンプリング速度:100kHz
データ長さ:15秒
測定間隔:15時間(hour)
 図7中には、変位X2、実効値E2、変動係数C2が示されている。変位X2は、回転軸20の軸受荷重の向きを正とする変位を示す。実効値E2は、データ長さ15秒に含まれる状態監視センサ145の出力のサンプリング値の各々を二乗した値の平均値の平方根である。また、変動係数C2は、上記サンプリング値の標準偏差を算術平均で割ったものであり、相対的なばらつきを表す。
FIG. 7 is a diagram illustrating measurement data of the state monitoring device according to the first modification of the first embodiment. The data in FIG. 7 is obtained under the following measurement conditions.
<Measurement conditions>
Device configuration: Configuration shown in FIG. 6 Friction member material: Carbon material state detection sensor: AE (Envelope-processed time waveform is voltage output)
Bearing material: PTFE composite material (inner diameter 100mm, width 50mm)
Load: 50kN
Rotation speed: 20 rotations / minute (one rotation time 3 seconds)
Sampling rate: 100 kHz
Data length: 15 seconds Measurement interval: 15 hours (hour)
FIG. 7 shows the displacement X2, the effective value E2, and the variation coefficient C2. The displacement X2 indicates a displacement in which the direction of the bearing load of the rotating shaft 20 is positive. The effective value E2 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds. The variation coefficient C2 is obtained by dividing the standard deviation of the sampling value by the arithmetic average, and represents a relative variation.
 実効値E2および変動係数C2のプロットは、データ長さ15秒間で算出した値を15時間(hour)間隔でプロットしたものであり、回転軸20の変位X2は摩擦部材146近傍で、比較のために他の変位計を用いて測定した瞬時値である。正常状態の軸受が運転の途中で内外輪間の変位が増加し始める状態を再現するために、一定回転速度運転の途中で荷重を徐々に増加させるようにした。 The plot of the effective value E2 and the coefficient of variation C2 is obtained by plotting values calculated for a data length of 15 seconds at 15-hour intervals, and the displacement X2 of the rotating shaft 20 is in the vicinity of the friction member 146 for comparison. These are instantaneous values measured using other displacement meters. In order to reproduce the state in which the bearing in the normal state starts to increase the displacement between the inner and outer rings during the operation, the load is gradually increased during the constant rotation speed operation.
 軸受160Aは運転時間270時間(hour)前後から摩耗が急増し、回転軸20の変位X2が徐々に増大する。実施の形態1の変形例1では、運転開始初期の摩擦部材146が回転軸20に接触していない状態の初期期間で得られる実効値E2に基づいて、しきい値Aを決定する。たとえば、初期期間の平均値や標準偏差を考慮し、しきい値Aを決定することができる。 The wear of the bearing 160A rapidly increases from about 270 hours (hour) in operation time, and the displacement X2 of the rotary shaft 20 gradually increases. In the first modification of the first embodiment, the threshold value A is determined based on the effective value E2 obtained in the initial period when the friction member 146 at the beginning of operation is not in contact with the rotating shaft 20. For example, the threshold value A can be determined in consideration of the average value and standard deviation of the initial period.
 なお、しきい値Aの算出処理および異常判定処理については、図5のフローチャートの処理と同様であるので説明は繰り返さない。 Note that the threshold A calculation process and the abnormality determination process are the same as those in the flowchart of FIG.
 このように、すべり軸受に対しても、同様な状態監視装置を実現できる。
 [実施の形態1の変形例2]
 実施の形態1では、運転開始直後の摩擦部材146は回転軸20と接触していないため摩耗しない。しかし、回転軸20と摩擦部材146との間が空きすぎると、回転軸20が変位を開始してからしばらくしなければ摩擦部材146は回転軸20と接触しないので、軸受の異常検出が遅れてしまう可能性がある。したがって、回転軸20と摩擦部材146との隙間をどのように設定するかが難しかった。
In this way, a similar state monitoring device can be realized for the sliding bearing.
[Modification 2 of Embodiment 1]
In the first embodiment, the friction member 146 immediately after the start of operation is not worn because it is not in contact with the rotating shaft 20. However, if there is too much space between the rotary shaft 20 and the friction member 146, the friction member 146 will not contact the rotary shaft 20 until a while after the rotary shaft 20 starts to be displaced. There is a possibility. Therefore, it is difficult to set the gap between the rotating shaft 20 and the friction member 146.
 実施の形態1の変形例2では、運転開始直後は、摩擦部材146を回転軸20に接触させた状態とする状態監視方法を用いる。装置の構成は、図3で説明したものと同じである。 In the second modification of the first embodiment, a state monitoring method is used in which the friction member 146 is brought into contact with the rotary shaft 20 immediately after the start of operation. The configuration of the apparatus is the same as that described in FIG.
 図8は、実施の形態1の変形例2の状態監視装置の測定データを示す図である。図8のデータは、図4と同様の測定条件で得られるものである。ただし、運転開始当初から、摩擦部材146を回転軸20と接触させる点が実施の形態1の変形例2は実施の形態1と異なる。 FIG. 8 is a diagram illustrating measurement data of the state monitoring device according to the second modification of the first embodiment. The data in FIG. 8 is obtained under the same measurement conditions as in FIG. However, the second modification of the first embodiment is different from the first embodiment in that the friction member 146 is brought into contact with the rotating shaft 20 from the beginning of the operation.
 図8に示すように、運転期間は、運転開始初期の予備運転期間T1と、その後のしきい値生成期間T2と、判定期間T3とを含む。 As shown in FIG. 8, the operation period includes a preliminary operation period T1 at the beginning of operation, a subsequent threshold generation period T2, and a determination period T3.
 運転開始当初に摩擦部材146を回転軸20と接触させる場合、この接触力はステー141などの摩擦部材146を支えている部品の剛性によって決まる。したがって、予備運転期間T1では、運転開始直後には摩擦部材146は大きく摩耗するが、摩耗に伴って接触力が低下することで摩擦部材146の摩耗進行は停滞するしきい値生成期間T2に移行する。しきい値生成期間T2への移行を判定するために、予備運転期間T1の初期において、サンプリングしたAE,振動加速度などの特徴量のデータに基づいて、しきい値A1を決定する。そして、特徴量がしきい値A1より低下したことに基づいて、予備運転期間T1からしきい値生成期間T2に移行したと判定される。 When the friction member 146 is brought into contact with the rotary shaft 20 at the beginning of operation, the contact force is determined by the rigidity of the parts supporting the friction member 146 such as the stay 141. Therefore, in the preliminary operation period T1, the friction member 146 is greatly worn immediately after the start of operation, but the contact force decreases with the wear, so that the progress of wear of the friction member 146 is shifted to the threshold generation period T2. To do. In order to determine the transition to the threshold generation period T2, the threshold A1 is determined based on the sampled feature amount data such as AE and vibration acceleration in the initial stage of the preliminary operation period T1. Then, based on the fact that the feature amount has decreased below the threshold value A1, it is determined that the preliminary operation period T1 has shifted to the threshold value generation period T2.
 この停滞するまでの期間(予備運転期間T1)は、運転開始から数百回転から数万回転程度であり軸受に異常はないが、摩擦部材146が磨耗することに伴い、AEや振動加速度のレベルおよびその変動は大きい。 The period until this stagnation (preliminary operation period T1) is several hundred to several tens of thousands of rotations from the start of operation, and there is no abnormality in the bearing. However, as the friction member 146 wears, the level of AE and vibration acceleration is increased. And the variation is great.
 一方、摩耗が停滞している期間(しきい値生成期間T2)は、軸受に異常はなくAEや振動加速度のレベルおよび変動が小さいため、異常検知のためのしきい値A2を生成する期間として適している。 On the other hand, the period in which the wear is stagnant (threshold generation period T2) is a period for generating the threshold A2 for detecting an abnormality because there is no abnormality in the bearing and the level and fluctuation of AE and vibration acceleration are small. Is suitable.
 図8では、運転時間2時間(hour)から回転軸の変位が徐々に増大する。実効値や変動係数が低く安定した運転時間1.5時間(hour)付近で、異常を検知するためのしきい値A2を生成することにより、軸受の内輪と外輪間の隙間が増加しはじめる時期を正確に検知できる。 In FIG. 8, the displacement of the rotating shaft gradually increases from the operation time of 2 hours (hour). The time when the clearance between the inner ring and the outer ring of the bearing begins to increase by generating a threshold value A2 for detecting anomalies at around 1.5 hours (hours) when the effective value and coefficient of variation are low and stable. Can be detected accurately.
 実施の形態1の変形例2で用いられる状態監視方法は、運転開始初期における測定データの特徴量(E3)に基づいてしきい値生成期間T2を決定する工程(S11~S14)と、しきい値生成期間T2で軸受の異常を検知するためのしきい値A2を算出する工程(S15,S16)と、そのしきい値A2に基づいて軸受の異常を検知する工程(S17,S18)とを有することが特徴である。以下に、状態監視方法で実行される異常判定処理について説明する。 The state monitoring method used in the second modification of the first embodiment includes a step (S11 to S14) of determining a threshold generation period T2 based on a characteristic amount (E3) of measurement data at the beginning of operation, and a threshold. A step (S15, S16) of calculating a threshold value A2 for detecting a bearing abnormality in the value generation period T2 and a step (S17, S18) of detecting a bearing abnormality based on the threshold value A2. It is a feature. Hereinafter, the abnormality determination process executed by the state monitoring method will be described.
 図9は、実施の形態1の変形例2において、演算処理装置が実行する異常判定処理を説明するためのフローチャートである。図3、図8、図9を参照して、まず、ステップS11において、演算処理装置81は、運転初期期間(予備運転期間T1の初期)における状態監視センサ145の出力信号をサンプリングして、初期値データを得る。そして、ステップS12において、演算処理装置81は、初期期間に得られた初期値データを平均値、標準偏差σ等を算出し、これらに基づいてしきい値A1を決定する。たとえば、平均値-3σとか、平均値の1/10をしきい値Aとすることができる。なお、この初期期間は、通常は軸受の摩耗により回転軸に変位が発生しない期間であり、かつ摩擦部材146が回転軸20に当接しており摩擦部材146にAEが発生する期間である。 FIG. 9 is a flowchart for explaining an abnormality determination process executed by the arithmetic processing device in the second modification of the first embodiment. 3, 8, and 9, first, in step S <b> 11, the arithmetic processing unit 81 samples the output signal of the state monitoring sensor 145 in the initial operation period (initial stage of the preliminary operation period T <b> 1), Get value data. In step S12, the arithmetic processing unit 81 calculates an average value, standard deviation σ, and the like from the initial value data obtained in the initial period, and determines the threshold value A1 based on these values. For example, the threshold value A can be set to an average value −3σ or 1/10 of the average value. This initial period is usually a period in which no displacement occurs in the rotating shaft due to bearing wear, and is a period in which the friction member 146 is in contact with the rotating shaft 20 and AE occurs in the friction member 146.
 ステップS13では、演算処理装置81は、状態監視センサ145から得られる特徴量Eがしきい値A1より小さくなるか否かを判断する。E<A1が成立しない間は(S13でNO)、図8において予備運転期間T1が終了しておらず、しきい値A2を決定するためのしきい値生成期間T2には遷移していないので、再びS13の処理が実行される。 In step S13, the arithmetic processing unit 81 determines whether or not the feature amount E obtained from the state monitoring sensor 145 is smaller than the threshold value A1. As long as E <A1 is not satisfied (NO in S13), the preliminary operation period T1 in FIG. 8 has not ended, and the threshold value generation period T2 for determining the threshold value A2 has not transitioned. The process of S13 is executed again.
 ステップS13において、E<A1が成立した場合(S13でYES)、演算処理装置81は、ステップS14において、特徴量の変化ΔEが判定値B1よりも小さくなったか否かを判断する。図8において、E3の値が低下した後落ち着いてから、しきい値A2を生成することが好ましいからである。 If E <A1 is satisfied in step S13 (YES in S13), the arithmetic processing unit 81 determines whether or not the change ΔE in the feature amount is smaller than the determination value B1 in step S14. In FIG. 8, it is preferable that the threshold value A2 is generated after the value of E3 has settled down.
 ΔE<B1が成立しない間は(S14でNO)、再びステップS13に処理が戻される。一方、ΔE<B1が成立した場合(S14でYES)、ステップS15に処理が進められる。 While ΔE <B1 is not satisfied (NO in S14), the process is returned to step S13 again. On the other hand, if ΔE <B1 is satisfied (YES in S14), the process proceeds to step S15.
 ステップS15では、演算処理装置81は、しきい値生成期間T2における状態監視センサ145の出力信号をサンプリングして、しきい値A2生成用のデータを得る。そして、ステップS16において、演算処理装置81は、しきい値生成期間T2に得られたデータの平均値、標準偏差σ等を算出し、これらに基づいてしきい値A2を決定する。たとえば、平均値+3σをしきい値A2とすることができる。なお、このしきい値生成期間T2は、E<A1かつΔE<B1が成立してから開始し、終了時点は適宜実験的に予め定めておくことができる。 In step S15, the arithmetic processing unit 81 samples the output signal of the state monitoring sensor 145 in the threshold generation period T2 to obtain data for generating the threshold A2. In step S16, the arithmetic processing unit 81 calculates an average value, standard deviation σ, and the like of the data obtained during the threshold generation period T2, and determines the threshold A2 based on these. For example, the average value + 3σ can be set as the threshold value A2. The threshold generation period T2 starts after E <A1 and ΔE <B1 are satisfied, and the end point can be determined experimentally as appropriate.
 そして、ステップS17において、演算処理装置81は、以降の実効値Eを監視して、実効値Eがしきい値A2よりも大きいか否かを判断する。E>A2でなければ再びステップS17の処理が実行される一方、E>A2であれば、ステップS18に処理が進められる。ステップS18では、演算処理装置81は、軸受160に異常が発生したと判定し、必要に応じて記録や報知を行ない、ステップS19で処理を終了する。 In step S17, the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is larger than the threshold value A2. If E> A2, the process of step S17 is executed again. If E> A2, the process proceeds to step S18. In step S18, the arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160, performs recording and notification as necessary, and ends the process in step S19.
 以上説明したように、状態監視装置100は、状態監視センサ145の出力を受け、軸受に異常が生じたか否かを判定する演算処理装置81を備える。演算処理装置81は、(i)予備運転期間T1(第1運転期間)の初期において状態監視センサ145から得られた特徴量に基づいて第1しきい値A1を決定し、(ii)特徴量が第1しきい値A1より小さい状態に遷移した予備運転期間T1よりも後のしきい値生成期間T2(第2運転期間)の初期において状態監視センサ145から得られた特徴量に基づいて、第2しきい値A2を決定し、(iii)しきい値生成期間T2の後に状態監視センサ145から得られた特徴量が第2しきい値A2より小さい状態から大きい状態に遷移した場合に、軸受160に異常が発生したと判定する(図8~図10)。 As described above, the state monitoring device 100 includes the arithmetic processing unit 81 that receives the output of the state monitoring sensor 145 and determines whether or not an abnormality has occurred in the bearing. The arithmetic processing unit 81 determines (i) the first threshold value A1 based on the feature value obtained from the state monitoring sensor 145 at the initial stage of the preliminary operation period T1 (first operation period), and (ii) the feature value. Is based on the characteristic amount obtained from the state monitoring sensor 145 in the initial stage of the threshold generation period T2 (second operation period) after the preliminary operation period T1 in which the state transitions to a state smaller than the first threshold value A1. A second threshold value A2 is determined, and (iii) after the threshold value generation period T2, the feature quantity obtained from the state monitoring sensor 145 changes from a state smaller than the second threshold value A2 to a larger state. It is determined that an abnormality has occurred in the bearing 160 (FIGS. 8 to 10).
 実施の形態1の変形例2の状態監視装置によれば、予備運転期間において、摩擦部材146が回転軸20に接触するかしないかぎりぎりのところまで磨耗しているので、運転開始からの経過時間2時間(hour)前後の摩耗が急増する現象を時間遅れ少なく直ちに捉えることができる。 According to the state monitoring device of the second modification of the first embodiment, since the friction member 146 is worn to the limit unless it contacts the rotating shaft 20 during the preliminary operation period, the elapsed time from the start of operation. The phenomenon of rapid increase in wear around 2 hours (hour) can be captured immediately with little time delay.
 [実施の形態1の変形例3]
 実施の形態1の変形例3では、転がり軸受に代えてすべり軸受に対して実施の形態1の変形例2の検出処理と同様の処理を実行した例を説明する。すべり軸受と状態監視装置の構成については、図6で示しているので、ここでは説明を繰り返さない。
[Modification 3 of Embodiment 1]
In the third modification of the first embodiment, an example will be described in which the same process as the detection process of the second modification of the first embodiment is performed on the slide bearing instead of the rolling bearing. Since the configuration of the slide bearing and the state monitoring device is shown in FIG. 6, description thereof will not be repeated here.
 図10は、実施の形態1の変形例3の状態監視装置の測定データを示す図である。図10のデータは、図7のデータと同様の測定条件において得られるものである。 FIG. 10 is a diagram illustrating measurement data of the state monitoring device according to the third modification of the first embodiment. The data in FIG. 10 is obtained under the same measurement conditions as the data in FIG.
 図10中には、変位X4、実効値E4、変動係数C4が示されている。変位X4は、回転軸20の軸受荷重の向きを正とする変位を示す。実効値E4は、データ長さ15秒に含まれる状態監視センサ145の出力のサンプリング値の各々を二乗した値の平均値の平方根である。また、変動係数C4は、上記サンプリング値の標準偏差を算術平均で割ったものであり、相対的なばらつきを表す。 FIG. 10 shows a displacement X4, an effective value E4, and a variation coefficient C4. The displacement X4 indicates a displacement in which the bearing load direction of the rotating shaft 20 is positive. The effective value E4 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds. The variation coefficient C4 is obtained by dividing the standard deviation of the sampling value by the arithmetic average and represents a relative variation.
 実効値E4および変動係数C4のプロットは、データ長さ15秒間で算出した値を15時間(hour)間隔でプロットしたものであり、回転軸20の変位X4は摩擦部材146近傍で、比較のために他の変位計を用いて測定した瞬時値である。 The plot of the effective value E4 and the variation coefficient C4 is obtained by plotting values calculated for a data length of 15 seconds at 15-hour intervals, and the displacement X4 of the rotating shaft 20 is near the friction member 146 for comparison. These are instantaneous values measured using other displacement meters.
 軸受160Aは運転時間270時間(hour)前後から摩耗が急増し、回転軸20の変位X4が徐々に増大する。実施の形態1の変形例3では、予備運転期間T1において、摩擦部材146が回転軸20に接触するかしないかぎりぎりのところまで磨耗しているので、運転時間270時間(hour)前後の摩耗が急増する現象を時間遅れ少なく直ちに捉えることができる。 The wear of the bearing 160A rapidly increases from about 270 hours (hours) of operation, and the displacement X4 of the rotary shaft 20 gradually increases. In the third modification of the first embodiment, in the preliminary operation period T1, the friction member 146 is worn to the limit as long as it does not come into contact with the rotating shaft 20, so that the wear is about 270 hours (hours) in operation time. Rapid increase in phenomena can be detected immediately with little time delay.
 なお、しきい値A2の算出処理および異常判定処理については、図9のフローチャートの処理と同様であるので説明は繰り返さない。 It should be noted that threshold value A2 calculation processing and abnormality determination processing are the same as the processing in the flowchart of FIG.
 このように、すべり軸受に対しても、同様な状態監視装置を実現できる。
 以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。
In this way, a similar state monitoring device can be realized for the sliding bearing.
Although the embodiment of the present invention has been described above, the above-described embodiment can be variously modified.
 たとえば、図1等では、風力発電装置の軸受に適用した例を示したが、鉄道車両やスピンドルなどの軸受にも本実施の形態の状態監視装置を適用可能である。特に、すべり軸受は小型の機械に好適に使用される。 For example, in FIG. 1 and the like, an example in which the present invention is applied to a bearing of a wind power generator is shown, but the state monitoring apparatus of the present embodiment can also be applied to a bearing such as a railway vehicle or a spindle. In particular, the slide bearing is suitably used for a small machine.
 また、軸受荷重が作用する方向が変化する可能性がある場合や、不定の場合には、複数の摩擦部材を異なる位置に設けるようにして、監視を行なってもよい。 Further, when there is a possibility that the direction in which the bearing load acts changes or when it is indefinite, monitoring may be performed by providing a plurality of friction members at different positions.
 また、測定データの特徴量として、AEの実効値の例を示したが、特徴量として他の物理量を使用しても良い。たとえば、特徴量として、AEや振動加速度等の一般的な実効値、最大値、最小値、尖度、歪度、変動係数(標準偏差/平均値)、標準偏差、分散、ピーク・トゥ・ピーク値などを使用することができる。 In addition, although the example of the effective value of AE is shown as the feature quantity of the measurement data, other physical quantities may be used as the feature quantity. For example, typical effective values such as AE and vibration acceleration, maximum value, minimum value, kurtosis, skewness, coefficient of variation (standard deviation / average value), standard deviation, variance, peak-to-peak A value etc. can be used.
 なお、測定データの特徴量は、回転軸20の摩擦部材146との接触面における回転振れや表面粗さ分布による悪影響を避けるため、回転軸が少なくとも1回転以上のデータ長さで算出することが好ましい。また、特徴量を、バンドパスフィルタ処理後に算出したり、FFT処理で周波数領域に変換してから算出したりしてもよい。 Note that the feature amount of the measurement data can be calculated with a data length of at least one rotation of the rotating shaft in order to avoid adverse effects due to rotational runout and surface roughness distribution on the contact surface of the rotating shaft 20 with the friction member 146. preferable. Further, the feature amount may be calculated after the band pass filter processing or may be calculated after being converted into the frequency domain by FFT processing.
 さらに、軸受の異常を検知するためのしきい値は、しきい値生成期間全体で算出した特徴量に基づいて決定したり、まずしきい値生成期間を分割して複数の小期間で特徴量を算出し、再度その値を全体期間で特徴量を算出し、その特徴量に基づいて決定したりしてもよい。 Furthermore, the threshold value for detecting a bearing abnormality is determined based on the feature value calculated over the entire threshold value generation period, or the threshold value generation period is first divided into a plurality of feature values. May be calculated again, and the feature value may be calculated again over the entire period, and determined based on the feature value.
 また、超高温、超低温、液体、真空雰囲気などの苛酷環境で使用する軸受の場合、センサを保護するために、長尺な摩擦部材146を用いたり、摩擦部材146とセンサの間をAEや振動加速度を伝達しやすい材質の長尺部品で接続したりして、軸受や摩擦部材146とセンサとの距離を大きく離してもよい。 In the case of a bearing used in a harsh environment such as ultra-high temperature, ultra-low temperature, liquid, or vacuum atmosphere, in order to protect the sensor, a long friction member 146 is used, or AE or vibration is generated between the friction member 146 and the sensor. The distance between the bearing or the friction member 146 and the sensor may be greatly separated by connecting with a long component made of a material that easily transmits acceleration.
 [実施の形態2]
 図11は、実施の形態2の状態監視装置の構成を示す図である。図11を参照して、実施の形態2の状態監視装置300は、軸受160の摩耗等の状態を監視するものであって、摩擦部材346と、摩擦部材346に接触する状態監視センサ145とを備える。摩擦部材346は、軸受160によって支持される回転軸20が軸受荷重方向に変位すると接触度合いが変化するように回転軸20の周面に対向するように配置されている。摩擦部材346の形状については後述する。状態監視センサ145は、AEセンサまたは加速度センサである。また、軸受160は、図2の軸受60Aに相当する。
[Embodiment 2]
FIG. 11 is a diagram illustrating a configuration of the state monitoring apparatus according to the second embodiment. Referring to FIG. 11, state monitoring apparatus 300 according to the second embodiment monitors a state such as wear of bearing 160, and includes friction member 346 and state monitoring sensor 145 in contact with friction member 346. Prepare. The friction member 346 is disposed so as to face the peripheral surface of the rotary shaft 20 so that the degree of contact changes when the rotary shaft 20 supported by the bearing 160 is displaced in the bearing load direction. The shape of the friction member 346 will be described later. The state monitoring sensor 145 is an AE sensor or an acceleration sensor. The bearing 160 corresponds to the bearing 60A in FIG.
 軸受160は、回転軸20とハウジング120および軸受押さえ121に囲まれている。ハウジング120は、図示しないが、ナセルなどに固定されている。軸受160は、内輪131と、外輪132と、複数の転動体133(たとえばたる形のころ)とを含む。内輪131はその外周面に複数の転動体133と接触している転走面を有しており、外輪132はその内周面に複数の転動体133と接触している転走面を有している。 The bearing 160 is surrounded by the rotary shaft 20, the housing 120, and the bearing retainer 121. Although not shown, the housing 120 is fixed to a nacelle or the like. Bearing 160 includes an inner ring 131, an outer ring 132, and a plurality of rolling elements 133 (for example, barrel-shaped rollers). The inner ring 131 has a rolling surface in contact with the plurality of rolling elements 133 on its outer peripheral surface, and the outer ring 132 has a rolling surface in contact with the plurality of rolling elements 133 on its inner peripheral surface. ing.
 内輪131はその転走面よりも内側において回転軸20と嵌め合わされており、外輪132はその転走面よりも外側においてハウジング120と嵌め合わされている。内輪131と回転軸20とは、一体として回転可能に設けられている。軸受160は、固定輪である外輪132がハウジング120に固定されている。摩擦部材346は、軸受160によって支持される回転軸20がハウジング120に対して軸受荷重方向に変位すると接触度合いが変化するように回転軸20の周面に対向するように配置されている。状態監視センサ145は、AEセンサまたは加速度センサである。また、軸受160は、図2の軸受60Aに相当する。 The inner ring 131 is fitted with the rotary shaft 20 on the inner side of the rolling surface, and the outer ring 132 is fitted with the housing 120 on the outer side of the rolling surface. The inner ring 131 and the rotating shaft 20 are rotatably provided as a unit. In the bearing 160, an outer ring 132 that is a fixed ring is fixed to the housing 120. The friction member 346 is disposed so as to face the circumferential surface of the rotary shaft 20 so that the degree of contact changes when the rotary shaft 20 supported by the bearing 160 is displaced in the bearing load direction with respect to the housing 120. The state monitoring sensor 145 is an AE sensor or an acceleration sensor. The bearing 160 corresponds to the bearing 60A in FIG.
 摩擦部材346は、回転軸20に対して、軸受160に働く軸受荷重FAの作用する側(外輪の負荷域側)に配置される。 The friction member 346 is arranged on the side on which the bearing load FA acting on the bearing 160 acts (the load region side of the outer ring) with respect to the rotary shaft 20.
 摩擦部材346は、摩耗し易くAEや振動加速度が発生し易い材質が好ましい。また、摩擦部材346は、相手材(回転軸20)を損傷させにくい材質がより好ましい。また、軸受160の摩耗を検出するためには、摩擦部材346は、摩擦部材346と回転軸20との摩擦時に、回転軸20の1回転当たりの摩擦部材346の摩耗量が、回転軸20の1回転当たりの軸受160(内輪、外輪、転動体)の摩耗量に比べ大きいものを選択する。たとえば、摩擦部材346として、カーボン材、樹脂、各種強化材を複合した樹脂、銅合金、アルミニウム合金、チタン合金、金属焼結体、金属粉末の圧縮成形体、樹脂粉末の圧縮成形体を使用することができる。 The friction member 346 is preferably made of a material that easily wears and that easily generates AE and vibration acceleration. The friction member 346 is more preferably made of a material that does not easily damage the mating member (rotating shaft 20). Further, in order to detect the wear of the bearing 160, the friction member 346 is configured so that the amount of wear of the friction member 346 per rotation of the rotary shaft 20 is equal to that of the rotary shaft 20 when the friction member 346 and the rotary shaft 20 are in friction. A bearing that is larger than the wear amount of the bearing 160 (inner ring, outer ring, rolling element) per rotation is selected. For example, as the friction member 346, a carbon material, a resin, a resin in which various reinforcing materials are combined, a copper alloy, an aluminum alloy, a titanium alloy, a metal sintered body, a metal powder compression molding, and a resin powder compression molding are used. be able to.
 状態監視装置300は、ステー141と、防振材143と、防振材カバー142と、演算処理装置81とをさらに備える。ステー141は、軸受60のハウジング120および軸受押さえ121に、摩擦部材346および状態監視センサ145を固定する。防振材143は、状態監視センサ145とステー141との間に配置され、ステー141からセンサに伝わるAEおよび振動を遮断し、または減衰させる。 The state monitoring device 300 further includes a stay 141, a vibration isolator 143, a vibration isolator cover 142, and an arithmetic processing unit 81. The stay 141 fixes the friction member 346 and the state monitoring sensor 145 to the housing 120 and the bearing retainer 121 of the bearing 60. The vibration isolator 143 is disposed between the state monitoring sensor 145 and the stay 141, and blocks or attenuates AE and vibration transmitted from the stay 141 to the sensor.
 演算処理装置81は、状態監視センサ145の出力を受け、軸受に異常が生じたか否かを判定する。演算処理装置81は、状態監視センサ145から得られた特徴量がしきい値A11より小さい状態から大きい状態に遷移した場合に、軸受160に異常が発生したと判定する(図15、図16、図18参照)。演算処理装置81は、たとえば、図1のデータ処理装置80の内部に設置することができる。なお、データ処理装置80から遠隔地でデータを受信するコンピュータを演算処理装置81として用いても良い。 The arithmetic processing unit 81 receives the output of the state monitoring sensor 145 and determines whether or not an abnormality has occurred in the bearing. The arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160 when the feature amount obtained from the state monitoring sensor 145 has transitioned from a state smaller than the threshold value A11 to a larger state (FIGS. 15 and 16). (See FIG. 18). The arithmetic processing device 81 can be installed, for example, inside the data processing device 80 of FIG. A computer that receives data from the data processing device 80 at a remote location may be used as the arithmetic processing device 81.
 上記に説明したように、状態監視装置300は、回転軸20の変位を検知する装置である。このため、摩擦部材346は、回転軸20に接触または近接させて設置される。摩擦部材346には、AEセンサまたは加速度センサである状態監視センサ145が接着される。ステー141は、状態監視センサ145をハウジング120または軸受押さえ121に固定する。摩擦部材346は、回転軸20の変位に伴い、摩耗が進行する位置に設置する。 As described above, the state monitoring device 300 is a device that detects the displacement of the rotating shaft 20. For this reason, the friction member 346 is installed in contact with or close to the rotating shaft 20. A state monitoring sensor 145 that is an AE sensor or an acceleration sensor is bonded to the friction member 346. The stay 141 fixes the state monitoring sensor 145 to the housing 120 or the bearing retainer 121. The friction member 346 is installed at a position where wear proceeds with the displacement of the rotary shaft 20.
 軸受160は、稼働時間が長くなると、転動体133や内輪131、外輪132が摩耗する。これらの摩耗が生じると、軸受荷重によって、回転軸20は、軸受荷重が作用する方向に変位する。すなわち、回転軸20の変位は、軸受160の内輪131と外輪132間の距離が変化することに伴い生じる。 When the operating time of the bearing 160 becomes longer, the rolling element 133, the inner ring 131, and the outer ring 132 are worn. When these wears occur, the rotary shaft 20 is displaced in the direction in which the bearing load acts due to the bearing load. That is, the displacement of the rotating shaft 20 occurs as the distance between the inner ring 131 and the outer ring 132 of the bearing 160 changes.
 回転軸20が変位すると、摩擦部材346が摩耗してAEや振動加速度が発生し、摩擦部材346に直接接着した状態監視センサ145により高感度に回転軸20に変位が生じたことを検知できる。この変位の検知によって、軸受160に摩耗等による損傷が生じたことを高感度に検知可能である。 When the rotary shaft 20 is displaced, the friction member 346 is worn to generate AE and vibration acceleration, and the state monitoring sensor 145 directly adhered to the friction member 346 can detect that the rotary shaft 20 is displaced with high sensitivity. By detecting this displacement, it is possible to detect with high sensitivity that the bearing 160 has been damaged due to wear or the like.
 また、状態監視装置300は、状態監視センサ145とステー141との間に振動を遮断するための防振材143と、防振材カバー142とを備える。防振材143により、ステー141を介して状態監視センサ145に伝達されるAEおよび振動加速度を遮断できる。このため、軸受160や他の部分において発生しているAEおよび振動が状態監視センサ145において検出されにくくなる。このため、摩擦部材346から発生するAEや振動加速度をより高感度に測定できる。 Further, the state monitoring device 300 includes a vibration isolating material 143 for isolating vibration between the state monitoring sensor 145 and the stay 141, and a vibration isolating material cover 142. The anti-vibration material 143 can block AE and vibration acceleration transmitted to the state monitoring sensor 145 via the stay 141. For this reason, it is difficult for the state monitoring sensor 145 to detect AE and vibration occurring in the bearing 160 and other parts. For this reason, AE and vibration acceleration generated from the friction member 346 can be measured with higher sensitivity.
 図12A~図12Cは、摩擦部材346の一実施例(摩擦部材346a)を示す図である。図12Aには、摩擦部材346aの平面図が示される。図12Bには、回転軸20の軸線21および軸受荷重の方向に垂直な方向から見たときの摩擦部材346aの側面図が示される。図12Cには、回転軸20の軸線21の方向から見たときの摩擦部材346aの側面図が示される。 FIGS. 12A to 12C are diagrams showing an example (friction member 346a) of the friction member 346. FIG. FIG. 12A shows a plan view of the friction member 346a. FIG. 12B shows a side view of the friction member 346a when viewed from a direction perpendicular to the axis 21 of the rotating shaft 20 and the bearing load direction. FIG. 12C shows a side view of the friction member 346a when viewed from the direction of the axis 21 of the rotating shaft 20.
 図12A~図12Cを参照して、摩擦部材346aは、略円錐状であり、その側面が階段状になっている。言い換えると、摩擦部材346aは、円錐の頂上から端部に向かうにつれて、底面からの高さが段階的に低くなる。略円錐状である摩擦部材346aは、その軸方向が軸受荷重の方向に一致し、かつ頂上が回転軸20に対向するように配置される。 Referring to FIGS. 12A to 12C, the friction member 346a has a substantially conical shape, and its side surface is stepped. In other words, the friction member 346a gradually decreases in height from the bottom surface as it goes from the top to the end of the cone. The friction member 346 a having a substantially conical shape is arranged such that its axial direction coincides with the direction of the bearing load and the top faces the rotating shaft 20.
 図13A~図13Cは、摩擦部材346の別の実施例(摩擦部材346b)を示す図である。図13Aには、摩擦部材346bの平面図が示される。図13Bには、回転軸20の軸線21および軸受荷重の方向に垂直な方向から見たときの摩擦部材346bの側面図が示される。図13Cには、回転軸20の軸線21の方向から見たときの摩擦部材346bの側面図が示される。 13A to 13C are diagrams showing another example of the friction member 346 (friction member 346b). FIG. 13A shows a plan view of the friction member 346b. FIG. 13B shows a side view of the friction member 346b when viewed from a direction perpendicular to the axis 21 of the rotating shaft 20 and the bearing load direction. FIG. 13C shows a side view of the friction member 346b when viewed from the direction of the axis 21 of the rotating shaft 20.
 図13A~図13Cを参照して、摩擦部材346bは、平面視矩形状であり、その長手方向の中央部が頂上となるように、中央部から短辺に向いて下り階段状に形成される。言い換えると、摩擦部材346bは、矩形状の底面を有し、その長手方向の中央部から短辺に向かうにつれて、底面からの高さが段階的に低くなる。摩擦部材346bは、底面に垂直な方向が軸受荷重の方向に一致し、頂上が回転軸20に対向するように配置される。 Referring to FIGS. 13A to 13C, the friction member 346b has a rectangular shape in plan view, and is formed in a descending step shape from the central portion toward the short side so that the central portion in the longitudinal direction is the top. . In other words, the friction member 346b has a rectangular bottom surface, and the height from the bottom surface decreases stepwise from the central portion in the longitudinal direction toward the short side. The friction member 346b is arranged so that the direction perpendicular to the bottom surface coincides with the direction of the bearing load and the top faces the rotating shaft 20.
 回転軸20の軸線21を含み、かつ軸受荷重の方向に平行な面で切ったときの摩擦部材346a,346bの断面(図11参照)において、摩擦部材346a,346bにおける回転軸20に対向する表面は階段状である。各段における回転軸20に対向する面は、軸受荷重の方向に直交する。 A surface of the friction members 346a and 346b facing the rotation shaft 20 in a cross-section (see FIG. 11) of the friction members 346a and 346b when cut along a plane that includes the axis 21 of the rotation shaft 20 and is parallel to the bearing load direction. Is stepped. The surface facing the rotating shaft 20 in each stage is orthogonal to the direction of the bearing load.
 なお、回転軸20の軸線21の方向から見たとき、図12A~図12Cに示す摩擦部材346aは階段状であるのに対し、図13A~図13Cに示す摩擦部材346bは矩形状である。そのため、図13A~図13Cに示す摩擦部材346bの方が、図12A~図12Cに示す摩擦部材346aに比べて省スペース化できる。 When viewed from the direction of the axis 21 of the rotary shaft 20, the friction member 346a shown in FIGS. 12A to 12C is stepped, whereas the friction member 346b shown in FIGS. 13A to 13C is rectangular. Therefore, the friction member 346b shown in FIGS. 13A to 13C can save space compared to the friction member 346a shown in FIGS. 12A to 12C.
 ここで、摩擦部材346a,346bの頂上を含む段を1段目、その下の段を2段目、その下の段を3段目、・・・とする。回転軸20における摩擦部材346a,346bに対向する部分の周面は、回転軸20の軸線21に平行である。そのため、回転軸20との摩耗によって摩擦部材346aの1段目が削られ、回転軸20が摩擦部材346aの2段目に接触し始めると、摩擦部材346aと回転軸20との接触面積が不連続に増大する。摩擦部材346aの2段目が削られ、回転軸20が摩擦部材346aの3段目に接触し始めると、摩擦部材346aと回転軸20との接触面積が不連続に増大する。摩擦部材346bについても同様である。このように、摩擦部材346a,346bは、回転軸20の変位量の増大に応じて回転軸20との接触面積が段階的に増大するような形状を有する。 Here, the step including the tops of the friction members 346a and 346b is the first step, the lower step is the second step, the lower step is the third step, and so on. A peripheral surface of a portion of the rotating shaft 20 facing the friction members 346 a and 346 b is parallel to the axis 21 of the rotating shaft 20. Therefore, when the first stage of the friction member 346a is scraped due to wear on the rotating shaft 20, and the rotating shaft 20 starts to contact the second stage of the friction member 346a, the contact area between the friction member 346a and the rotating shaft 20 is not sufficient. Increase continuously. When the second stage of the friction member 346a is scraped and the rotating shaft 20 starts to contact the third stage of the friction member 346a, the contact area between the friction member 346a and the rotating shaft 20 increases discontinuously. The same applies to the friction member 346b. As described above, the friction members 346a and 346b have such shapes that the contact area with the rotating shaft 20 increases stepwise as the displacement amount of the rotating shaft 20 increases.
 摩擦部材346a,346bと回転軸20との接触面積は、状態監視センサ145から得られた特徴量(AE波または振動加速度の振幅等)に相関する。そのため、摩擦部材346a,346bと回転軸20との接触面積が段階的に増大すると、状態監視センサ145から得られた特徴量(AE波または振動加速度の振幅等)も段階的に増大する。つまり、状態監視センサ145から得られた特徴量が段階的に増大するタイミングは、摩擦部材346a,346bにおいていずれかの段が摩耗により削り取られ、その次の段の摩耗が開始されたタイミングと一致する。 The contact area between the friction members 346a and 346b and the rotating shaft 20 correlates with a feature amount (AE wave or vibration acceleration amplitude or the like) obtained from the state monitoring sensor 145. Therefore, when the contact area between the friction members 346a and 346b and the rotating shaft 20 increases stepwise, the feature amount (AE wave or vibration acceleration amplitude, etc.) obtained from the state monitoring sensor 145 also increases stepwise. That is, the timing at which the feature value obtained from the state monitoring sensor 145 increases stepwise matches the timing at which one of the friction members 346a and 346b is scraped off due to wear and the wear of the next step is started. To do.
 演算処理装置81は、状態監視センサ145から得られた特徴量がしきい値A11,B11(またはA13,B13,B14)より小さい状態から大きい状態に遷移した場合に、摩擦部材346a,346bにおいて当該しきい値に対応する段の摩耗が開始されたタイミングであると判定する(図15、図16、図18参照)。演算処理装置81は、各しきい値に対応する回転軸20の変位量Mを予め記憶しており、状態監視センサ145から得られた特徴量としきい値とを比較することにより、回転軸20の変位量を判定する。演算処理装置81が記憶する変位量Mは、摩擦部材346a,346bと回転軸20との間の距離の初期値と、摩擦部材346a,346bにおける各段の高さとに基づいて、予め定められる。ここで、各段における回転軸20に対応する面を当該段の上面とするとき、摩擦部材346の各段の高さとは、当該段の下の段の上面に対する当該段の上面の高さを意味する。 When the characteristic amount obtained from the state monitoring sensor 145 transits from a state smaller than the threshold value A11, B11 (or A13, B13, B14) to a larger state, the arithmetic processing unit 81 causes the friction members 346a, 346b to It is determined that it is the timing at which the wear of the step corresponding to the threshold is started (see FIGS. 15, 16, and 18). The arithmetic processing unit 81 stores in advance the displacement amount M of the rotating shaft 20 corresponding to each threshold value, and compares the feature amount obtained from the state monitoring sensor 145 with the threshold value, thereby rotating the rotating shaft 20. The amount of displacement is determined. The displacement amount M stored in the arithmetic processing unit 81 is determined in advance based on the initial value of the distance between the friction members 346a and 346b and the rotary shaft 20 and the height of each step in the friction members 346a and 346b. Here, when the surface corresponding to the rotating shaft 20 in each step is the upper surface of the step, the height of each step of the friction member 346 is the height of the upper surface of the step relative to the upper surface of the step below the step. means.
 図14は、摩擦部材346のさらに別の実施例(摩擦部材346c)を示す図である。図14を参照して、摩擦部材346cは、図12A~図12Cに示す摩擦部材346aと同様に、略円錐状であり、その側面が階段状(2段)になっている。摩擦部材346cにおいて、1段目の高さt1は0.04mmであり、1段目と2段目の高さの合計値t2は0.08mmである。 FIG. 14 is a view showing still another example of the friction member 346 (friction member 346c). Referring to FIG. 14, the friction member 346c is substantially conical like the friction member 346a shown in FIGS. 12A to 12C, and its side surface is stepped (two steps). In the friction member 346c, the height t1 of the first step is 0.04 mm, and the total value t2 of the heights of the first and second steps is 0.08 mm.
 図15は、実施の形態2の状態監視装置の測定データを示す図である。図15のデータは、図2の軸受60Aのように、軸受荷重の方向が鉛直下向きの場合を模擬したものであり、以下の測定条件において得られるものである。
<測定条件>
装置構成:図11に示す構成
摩擦部材形状:図14に示す形状
摩擦部材材質:カーボン材
状態検知センサ:AE(エンベロープ処理した時間波形を電圧出力)
軸受:自動調心ころ軸受(内径560mm、外径820mm、幅195mm)
回転軸の変位:最大0.1mmまで、比較のために別の変位計で観測
回転速度:20回転/分(1回転の時間3秒)
サンプリング速度:100kHz
データ長さ:15秒
測定間隔:10分
 実施の形態2では、運転開始時に摩擦部材346cを回転軸20と接触させずに、その相対距離(摩擦部材346cと回転軸20との距離の初期値)を0.06mmにして設置した。正常状態の軸受160が運転の途中で回転軸20の変位が増加し始める状態を再現するために、一定回転速度運転の途中で荷重を徐々に増加させるようにした。図15中には、変位X11、実効値E11、変動係数C11が示されている。変位X11は、回転軸20の軸受荷重の方向を正とする変位を示す。実効値E11は、データ長さ15秒に含まれる状態監視センサ145の出力のサンプリング値の各々を二乗した値の平均値の平方根である。また、変動係数C11は、上記サンプリング値の標準偏差を算術平均で割ったものであり、相対的なばらつきを表す。
FIG. 15 is a diagram illustrating measurement data of the state monitoring device according to the second embodiment. The data in FIG. 15 simulates the case where the direction of the bearing load is vertically downward like the bearing 60A in FIG. 2, and is obtained under the following measurement conditions.
<Measurement conditions>
Apparatus configuration: Configuration shown in FIG. 11 Friction member shape: Shape shown in FIG. 14 Friction member material: Carbon material state detection sensor: AE (Envelope-processed time waveform is output as voltage)
Bearing: Spherical roller bearing (inner diameter 560mm, outer diameter 820mm, width 195mm)
Displacement of rotating shaft: Up to 0.1 mm, observed with another displacement meter for comparison Rotating speed: 20 rev / min (Time of one rotation 3 seconds)
Sampling rate: 100 kHz
Data length: 15 seconds Measurement interval: 10 minutes In the second embodiment, the friction member 346c is not brought into contact with the rotary shaft 20 at the start of operation, and the relative distance (the initial value of the distance between the friction member 346c and the rotary shaft 20). ) Was set to 0.06 mm. In order to reproduce the state in which the bearing 160 in the normal state starts to increase the displacement of the rotating shaft 20 during the operation, the load is gradually increased during the constant rotation speed operation. FIG. 15 shows a displacement X11, an effective value E11, and a variation coefficient C11. A displacement X11 indicates a displacement in which the bearing load direction of the rotating shaft 20 is positive. The effective value E11 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds. The variation coefficient C11 is obtained by dividing the standard deviation of the sampling value by the arithmetic average, and represents a relative variation.
 実効値E11および変動係数C11のプロットは、データ長さ15秒間で算出した値を10分間隔でプロットしたものであり、回転軸20の変位X11は摩擦部材346c近傍で、比較のために他の変位計を用いて測定した瞬時値である。 The plot of the effective value E11 and the variation coefficient C11 is a plot of values calculated for a data length of 15 seconds at 10-minute intervals. The displacement X11 of the rotating shaft 20 is in the vicinity of the friction member 346c, and other values are compared for comparison. It is an instantaneous value measured using a displacement meter.
 軸受160は運転時間2時間前後から摩耗が進行し、回転軸20の変位X11が徐々に増大する。摩擦部材346cを回転軸20と接触させずに近接させる場合、摩擦部材346cと回転軸20が接触したら異常とみなせるように、設置の際に摩擦部材346cと回転軸20との距離を正確に把握し、その距離を異常として検出する軸受の内輪と外輪間隙間の変化量に合わせる。ここでは、当該距離は0.06mmに設定されている。 The wear of the bearing 160 proceeds from about 2 hours of operation time, and the displacement X11 of the rotary shaft 20 gradually increases. When the friction member 346c is brought close to the rotating shaft 20 without being brought into contact, the distance between the friction member 346c and the rotating shaft 20 can be accurately grasped at the time of installation so that it can be regarded as abnormal if the friction member 346c contacts the rotating shaft 20. The distance is adjusted to the amount of change between the inner ring and the outer ring gap of the bearing which is detected as abnormal. Here, the distance is set to 0.06 mm.
 回転軸20の変位X11が0.06mmに達すると、摩擦部材346cの1段目と回転軸20とが接触し、実効値E11が増大する。このときの実効値E11は、摩擦部材346cと回転軸20との接触面積の大きさに応じた値となる。当該接触面積は、摩擦部材346cの1段目における軸受荷重の方向に直交する断面積に略等しい。 When the displacement X11 of the rotating shaft 20 reaches 0.06 mm, the first stage of the friction member 346c and the rotating shaft 20 come into contact with each other, and the effective value E11 increases. The effective value E11 at this time is a value corresponding to the size of the contact area between the friction member 346c and the rotating shaft 20. The contact area is substantially equal to the cross-sectional area perpendicular to the bearing load direction in the first stage of the friction member 346c.
 実施の形態2では、運転開始初期の摩擦部材346cが回転軸20に接触していない状態の初期期間(第1しきい値生成期間T1)で得られる実効値E11に基づいて、しきい値A11が決定される。しきい値A11は、摩擦部材346cの1段目と回転軸20との接触開始による実効値E11の増大を検出するために、実効値E11と比較される値である。たとえば、初期期間(第1しきい値生成期間T1)の平均値や標準偏差を考慮し、しきい値A11を決定することができる。運転開始直後の摩擦部材346cは回転軸と接触していないため摩耗しない。この摩耗のない期間は、軸受に異常はなくAEや振動加速度のレベルおよびその変動が小さいため、異常検知のためのしきい値A11を生成する期間として適している。 In the second embodiment, the threshold value A11 is based on the effective value E11 obtained in the initial period (first threshold value generation period T1) in which the friction member 346c at the start of operation is not in contact with the rotating shaft 20. Is determined. The threshold value A11 is a value that is compared with the effective value E11 in order to detect an increase in the effective value E11 due to the start of contact between the first stage of the friction member 346c and the rotating shaft 20. For example, the threshold value A11 can be determined in consideration of the average value and standard deviation of the initial period (first threshold value generation period T1). The friction member 346c immediately after the start of operation does not wear because it is not in contact with the rotating shaft. This period without wear is suitable as a period for generating the threshold value A11 for detecting an abnormality because there is no abnormality in the bearing and the level of AE and vibration acceleration and its fluctuation are small.
 回転軸20の変位X11が0.06mmから0.1mmになるまでの間、回転軸20は、摩擦部材346cの1段目のみに接触しながら変位し続ける。この間、摩擦部材346cと回転軸20との接触面積に変動がない。そのため、実効値E11は、当該接触面積に応じた値で安定する。 Until the displacement X11 of the rotating shaft 20 changes from 0.06 mm to 0.1 mm, the rotating shaft 20 continues to be displaced while contacting only the first stage of the friction member 346c. During this time, there is no change in the contact area between the friction member 346c and the rotary shaft 20. Therefore, the effective value E11 is stabilized at a value corresponding to the contact area.
 回転軸20の変位X11が1.00mmに達すると、回転軸20は、摩擦部材346cの2段目と接触し始め、実効値E11が増大する。このときの実効値E11は、摩擦部材346cの2段目と回転軸20との接触面積の大きさに応じた値となる。当該接触面積は、摩擦部材346cにおける2段目の軸受荷重の方向に直交する断面積に略等しい。 When the displacement X11 of the rotary shaft 20 reaches 1.00 mm, the rotary shaft 20 starts to contact the second stage of the friction member 346c, and the effective value E11 increases. The effective value E11 at this time is a value corresponding to the size of the contact area between the second stage of the friction member 346c and the rotary shaft 20. The contact area is substantially equal to the cross-sectional area perpendicular to the direction of the second stage bearing load in the friction member 346c.
 本実施の形態では、回転軸20の変位X11が0.06mmから0.1mmになるまでの実効値E11が安定している期間(第2しきい値生成期間T2)で得られる実効値E11に基づいて、しきい値B11が決定される。しきい値B11は、摩擦部材346cの2段目と回転軸20との接触開始による実効値E11の増大を検出するために、実効値E11と比較される値である。 In the present embodiment, the effective value E11 obtained in the period during which the effective value E11 until the displacement X11 of the rotating shaft 20 changes from 0.06 mm to 0.1 mm is stable (second threshold value generation period T2) is obtained. Based on this, the threshold value B11 is determined. The threshold value B11 is a value that is compared with the effective value E11 in order to detect an increase in the effective value E11 due to the start of contact between the second stage of the friction member 346c and the rotating shaft 20.
 しきい値B11は、回転軸20が摩擦部材346cの1段目に接触しているときの実効値E11と、回転軸20が摩擦部材346cの2段目に接触しているときに実効値E11との間の値に決定されることが好ましい。回転軸20が摩擦部材346cの1段目に接触しているときの回転軸20と摩擦部材346cとの接触面積をSaとし、回転軸20が摩擦部材346cの2段目に接触しているときの回転軸20と摩擦部材346cとの接触面積をSbとする。このとき、回転軸20が摩擦部材346cの1段目に接触しているときの実効値E11と、回転軸20が摩擦部材346cの2段目に接触しているときに実効値E11との比は、SaとSbとの比と略等しい。そのため、回転軸20が摩擦部材346cの1段目に接触しているときの実効値E11に基づき、回転軸20が摩擦部材346cの2段目に接触しているときに実効値E11を推定し、当該推定値を考慮してしきい値B11を決定することができる。したがって、回転軸20が摩擦部材346cの1段目に接触して実効値E11が安定して出力される期間は、しきい値B11を生成する期間として適している。しきい値B11は、たとえば、当該期間の実効値E11の平均値と、SaとSbとの比とに基づいて決定される。SaとSbとの比は、たとえば、摩擦部材346cの1段目における軸受荷重の方向に直交する断面積と、摩擦部材346cの2段目における軸受荷重の方向に直交する断面積との比と略同じである。 The threshold value B11 is an effective value E11 when the rotary shaft 20 is in contact with the first stage of the friction member 346c, and an effective value E11 when the rotary shaft 20 is in contact with the second stage of the friction member 346c. It is preferable that the value is determined between. Sa is the contact area between the rotary shaft 20 and the friction member 346c when the rotary shaft 20 is in contact with the first stage of the friction member 346c, and the rotary shaft 20 is in contact with the second stage of the friction member 346c. The contact area between the rotary shaft 20 and the friction member 346c is Sb. At this time, the ratio between the effective value E11 when the rotary shaft 20 is in contact with the first stage of the friction member 346c and the effective value E11 when the rotary shaft 20 is in contact with the second stage of the friction member 346c. Is approximately equal to the ratio of Sa to Sb. Therefore, based on the effective value E11 when the rotating shaft 20 is in contact with the first stage of the friction member 346c, the effective value E11 is estimated when the rotating shaft 20 is in contact with the second stage of the friction member 346c. The threshold value B11 can be determined in consideration of the estimated value. Therefore, the period in which the rotary shaft 20 contacts the first stage of the friction member 346c and the effective value E11 is stably output is suitable as the period for generating the threshold value B11. The threshold value B11 is determined based on, for example, the average value of the effective values E11 in the period and the ratio between Sa and Sb. The ratio of Sa and Sb is, for example, the ratio of the cross-sectional area perpendicular to the bearing load direction at the first stage of the friction member 346c and the cross-sectional area perpendicular to the bearing load direction at the second stage of the friction member 346c. It is almost the same.
 図16は、実施の形態2において、演算処理装置が実行する異常判定処理を説明するためのフローチャートである。なお、図16には、図14に示す摩擦部材346cを用いたときのフローチャートが示される。 FIG. 16 is a flowchart for explaining abnormality determination processing executed by the arithmetic processing unit in the second embodiment. FIG. 16 shows a flowchart when the friction member 346c shown in FIG. 14 is used.
 図11,図14~図16を参照して、まず、ステップS31において、演算処理装置81は、運転初期期間(第1しきい値生成期間T1)における状態監視センサ145の出力信号をサンプリングして、初期値データを得る。そして、ステップS32において、演算処理装置81は、初期期間に得られた初期値データの平均値、標準偏差σ等を算出し、これらに基づいてしきい値A11を決定する。たとえば、平均値+3σをしきい値A11とすることができる。なお、この初期期間は、通常は軸受の摩耗により回転軸に変位が発生しない期間とし、適宜実験的に予め定めておくことができる。演算処理装置81は、しきい値A11に対応する回転軸20の変位量M1として、摩擦部材346と回転軸20との距離の初期値(たとえば、0.06mm)を記憶する。 Referring to FIGS. 11 and 14 to 16, first, in step S31, arithmetic processing unit 81 samples the output signal of state monitoring sensor 145 in the initial operation period (first threshold value generation period T1). To obtain initial value data. In step S32, the arithmetic processing unit 81 calculates an average value, standard deviation σ, and the like of the initial value data obtained in the initial period, and determines the threshold value A11 based on these values. For example, the average value + 3σ can be set as the threshold value A11. This initial period is usually a period in which no displacement occurs in the rotating shaft due to wear of the bearing, and can be determined experimentally as appropriate. The arithmetic processing unit 81 stores an initial value (for example, 0.06 mm) of the distance between the friction member 346 and the rotating shaft 20 as the displacement amount M1 of the rotating shaft 20 corresponding to the threshold value A11.
 そして、ステップS33において、演算処理装置81は、以降の実効値Eを監視して、実効値Eがしきい値A11よりも大きいか否かを判断する。E>A11でなければ(S33でNO)、再びステップS33の処理が実行される。一方、E>A11であれば(S33でYES)、ステップS34に処理が進められる。ステップS34では、演算処理装置81は、軸受160に異常が発生し、回転軸20が変位量M1(摩擦部材346と回転軸20との距離の初期値)だけ変位したと判定し、必要に応じて記録や報知を行なう。 In step S33, the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is larger than the threshold value A11. If E> A11 is not satisfied (NO in S33), the process of step S33 is executed again. On the other hand, if E> A11 (YES in S33), the process proceeds to step S34. In step S34, the arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160, and the rotary shaft 20 has been displaced by the displacement amount M1 (the initial value of the distance between the friction member 346 and the rotary shaft 20), and if necessary. Record and notify.
 このようにしきい値A11を定めることにより、バックグラウンドノイズによって軸受の異常発生を誤検出してしまうことを避けることができる。また、実施の形態2では、運転開始時からの回転軸20の変位量(軸受の磨耗による内輪と外輪の隙間の変化量)がM1(たとえば、0.06mm)に達したことを正確に検知できる。 By thus setting the threshold value A11, it is possible to avoid erroneously detecting the occurrence of a bearing abnormality due to background noise. Further, in the second embodiment, it is accurately detected that the amount of displacement of the rotating shaft 20 from the start of operation (the amount of change in the gap between the inner ring and the outer ring due to bearing wear) has reached M1 (for example, 0.06 mm). it can.
 次に、ステップS35において、演算処理装置81は、特徴量の変化ΔEが判定値K1よりも小さくなったか否かを判断する。図15において、E11の値がしきい値A11を超えた後落ち着いてから、しきい値B11を生成することが好ましいからである。 Next, in step S35, the arithmetic processing unit 81 determines whether or not the feature amount change ΔE is smaller than the determination value K1. In FIG. 15, it is preferable to generate the threshold value B11 after the value of E11 has settled after exceeding the threshold value A11.
 ΔE<K1が成立しない間は(S35でNO)、再びステップS35に処理が戻される。一方、ΔE<K1が成立した場合(S35でYES)、ステップS36に処理が進められる。 While ΔE <K1 is not satisfied (NO in S35), the process is returned to step S35 again. On the other hand, if ΔE <K1 is satisfied (YES in S35), the process proceeds to step S36.
 ステップS36では、演算処理装置81は、第2しきい値生成期間T2における状態監視センサ145からの出力信号をサンプリングして、しきい値B11生成用のデータを得る。そして、ステップS37において、演算処理装置81は、第2しきい値生成期間T2に得られたデータの平均値を算出し、算出した平均値に基づいてしきい値B11を決定する。たとえば、摩擦部材346cの一段目における軸受荷重の方向に直交する断面積をSc、摩擦部材346cの二段目における軸受荷重の方向に直交する断面積をSdとするとき、0.5×(1+Sd/Sc)×平均値をしきい値B11とすることができる。なお、この第2しきい値生成期間T2は、ΔE<K1が成立してから開始し、終了時点は適宜実験的に予め定めておくことができる。演算処理装置81は、しきい値B11に対応する回転軸20の変位量M2として、しきい値A11に対応する回転軸20の変位量M1と摩擦部材346cの1段目の高さt1(図14参照)=0.04mmとの合計値(たとえば0.10mm)を記憶する。 In step S36, the arithmetic processing unit 81 samples the output signal from the state monitoring sensor 145 in the second threshold value generation period T2, and obtains data for generating the threshold value B11. In step S37, the arithmetic processing unit 81 calculates the average value of the data obtained in the second threshold value generation period T2, and determines the threshold value B11 based on the calculated average value. For example, when the sectional area perpendicular to the bearing load direction at the first stage of the friction member 346c is Sc and the sectional area perpendicular to the bearing load direction at the second stage of the friction member 346c is Sd, 0.5 × (1 + Sd / Sc) × average value can be set as the threshold value B11. The second threshold value generation period T2 starts after ΔE <K1 is established, and the end point can be determined experimentally as appropriate. The arithmetic processing unit 81 uses the displacement amount M1 of the rotating shaft 20 corresponding to the threshold value A11 and the first stage height t1 of the friction member 346c as the displacement amount M2 of the rotating shaft 20 corresponding to the threshold value B11 (FIG. 14) = 0.04 mm (for example, 0.10 mm) is stored.
 そして、ステップS38において、演算処理装置81は、以降の実効値Eを監視して、実効値Eがしきい値B11よりも大きいか否かを判断する。E>B11でなければ(S38でNO)、再びステップS38の処理が実行される。一方、E>B11であれば(S38でYES)、ステップS39に処理が進められる。ステップS39では、演算処理装置81は、しきい値B11に対応する変位量M2だけ回転軸20が変位したと判定し、必要に応じて記録や報知を行ない、ステップS40で処理を終了する。 In step S38, the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is larger than the threshold value B11. If E> B11 is not satisfied (NO in S38), the process of step S38 is executed again. On the other hand, if E> B11 (YES in S38), the process proceeds to step S39. In step S39, the arithmetic processing unit 81 determines that the rotary shaft 20 has been displaced by a displacement amount M2 corresponding to the threshold value B11, performs recording and notification as necessary, and ends the process in step S40.
 以上説明したように、状態監視装置300は、軸受160によって支持される回転軸20が変位すると接触度合いが変化するように回転軸20の周面に対向するように配置された摩擦部材346と、摩擦部材346に接触する状態監視センサ145とを備える。摩擦部材346は、回転軸20の変位量の増大に応じて回転軸20との接触面積が増大するような形状を有する。状態監視センサ145から出力される特徴量は、摩擦部材346と回転軸20との接触面積に応じて変動する。そのため、上記の構成によれば、状態監視センサ145から出力される特徴量を監視することにより、回転軸20の変位量を判定することができる。 As described above, the state monitoring device 300 includes the friction member 346 disposed so as to face the circumferential surface of the rotary shaft 20 so that the degree of contact changes when the rotary shaft 20 supported by the bearing 160 is displaced. A state monitoring sensor 145 in contact with the friction member 346. The friction member 346 has a shape such that the contact area with the rotating shaft 20 increases as the displacement amount of the rotating shaft 20 increases. The feature amount output from the state monitoring sensor 145 varies according to the contact area between the friction member 346 and the rotating shaft 20. Therefore, according to the above configuration, the displacement amount of the rotating shaft 20 can be determined by monitoring the feature amount output from the state monitoring sensor 145.
 演算処理装置81は、(i)状態監視センサ145から得られた特徴量がしきい値A11より小さい状態から大きい状態に遷移した場合に、軸受160に異常が発生したと判定し、(ii)特徴量としきい値A11よりも大きいしきい値B11との比較結果に基づいて回転軸20の変位量を判定する。具体的には、演算処理装置81は、しきい値B11に対応する予め定められた変位量M2を記憶し、特徴量がしきい値B11よりも小さい状態から大きい状態に遷移した場合に、回転軸20が変位量M2だけ変位したと判定する。これにより、運転開始時からの回転軸20の変位量(軸受の磨耗による内輪と外輪の隙間の変化量)を正確に検知できる。 The arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160 when (i) the feature amount obtained from the state monitoring sensor 145 has transitioned from a state smaller than the threshold value A11 to a larger state, and (ii) The amount of displacement of the rotating shaft 20 is determined based on the comparison result between the feature amount and the threshold value B11 larger than the threshold value A11. Specifically, the arithmetic processing unit 81 stores a predetermined displacement amount M2 corresponding to the threshold value B11, and rotates when the feature amount changes from a state smaller than the threshold value B11 to a larger state. It is determined that the shaft 20 has been displaced by the displacement amount M2. Thereby, the amount of displacement of the rotating shaft 20 from the start of operation (the amount of change in the gap between the inner ring and the outer ring due to bearing wear) can be accurately detected.
 [実施の形態2の変形例1]
 実施の形態2の変形例1では、転がり軸受に代えてすべり軸受に同様の検出処理を実行した例を説明する。
[Modification 1 of Embodiment 2]
In the first modification of the second embodiment, an example will be described in which a similar detection process is performed on a sliding bearing instead of a rolling bearing.
 図17は、実施の形態2の変形例1の状態監視装置の構成を示す図である。図17を参照して、状態監視装置301は、摩擦部材346と、摩擦部材346に接触する状態監視センサ145とを備える。摩擦部材346は、すべり軸受である軸受160Aによって支持される回転軸20が変位すると接触度合いが変化するように回転軸20の周面に対向するように配置されている。状態監視センサ145は、AEセンサまたは加速度センサである。 FIG. 17 is a diagram illustrating a configuration of the state monitoring apparatus according to the first modification of the second embodiment. Referring to FIG. 17, the state monitoring device 301 includes a friction member 346 and a state monitoring sensor 145 that contacts the friction member 346. The friction member 346 is disposed so as to face the circumferential surface of the rotary shaft 20 so that the degree of contact changes when the rotary shaft 20 supported by the bearing 160A that is a sliding bearing is displaced. The state monitoring sensor 145 is an AE sensor or an acceleration sensor.
 軸受160Aは、回転軸20とハウジング220および軸受押さえ221に囲まれている。軸受160Aは、バックメタル一体型の構造であり、バックメタルの内側に摺動部材が配置され、そのさらに内側に回転軸20が貫通している。また軸受160Aは、外側においてハウジング220と嵌め合わされている。バックメタルの内側に配置された摺動部材は、たとえば、ポリテトラフルオロエチレン(polytetrafluoroethylene, PTFE)等の樹脂材料を使用することができる。また、摺動部材として、金属粉を主成分とする多孔質焼結体を用いても良い。である。摺動部材の気孔に油を含浸しているため、動作中は油が軸受内部で循環して潤滑の役目を果たす。 The bearing 160 </ b> A is surrounded by the rotary shaft 20, the housing 220, and the bearing retainer 221. The bearing 160A has a back metal integrated structure, a sliding member is disposed on the inner side of the back metal, and the rotary shaft 20 penetrates further on the inner side. The bearing 160A is fitted with the housing 220 on the outside. For the sliding member disposed inside the back metal, for example, a resin material such as polytetrafluoroethylene (PTFE) can be used. Moreover, you may use the porous sintered compact which has a metal powder as a main component as a sliding member. It is. Since the pores of the sliding member are impregnated with oil, the oil circulates inside the bearing and plays a role of lubrication during operation.
 摩擦部材346は、回転軸20に対して、軸受160Aに働く軸受荷重FAの作用する側(バックメタルの負荷域側)に配置される。摩擦部材346、防振材143、防振材カバー142、ステー141については、実施の形態2と同様であるので説明は繰り返さない。 The friction member 346 is arranged on the side on which the bearing load FA acting on the bearing 160A acts (the load region side of the back metal) with respect to the rotary shaft 20. Since friction member 346, vibration isolator 143, vibration isolator cover 142, and stay 141 are the same as those in the second embodiment, description thereof will not be repeated.
 図18は、実施の形態2の変形例1の状態監視装置の測定データを示す図である。図18のデータは、以下の測定条件において得られるものである。
<測定条件>
装置構成:図17に示す構成
摩擦部材形状:図14に示す形状
摩擦部材材質:カーボン材
状態検知センサ:AE(エンベロープ処理した時間波形を電圧出力)
軸受材質:PTFE複合材(内径100mm、幅50mm)
荷重:50kN
回転速度:20回転/分(1回転の時間3秒)
サンプリング速度:100kHz
データ長さ:15秒
測定間隔:15時間(hour)
 図18中には、変位X12、実効値E12、変動係数C12が示されている。変位X12は、回転軸20の軸受荷重の方向を正とする変位を示す。実効値E12は、データ長さ15秒に含まれる状態監視センサ145の出力のサンプリング値の各々を二乗した値の平均値の平方根である。また、変動係数C12は、上記サンプリング値の標準偏差を算術平均で割ったものであり、相対的なばらつきを表す。
FIG. 18 is a diagram illustrating measurement data of the state monitoring device according to the first modification of the second embodiment. The data in FIG. 18 is obtained under the following measurement conditions.
<Measurement conditions>
Device configuration: Configuration shown in FIG. 17 Friction member shape: Shape shown in FIG. 14 Friction member material: Carbon material state detection sensor: AE (Envelope-processed time waveform is output as voltage)
Bearing material: PTFE composite material (inner diameter 100mm, width 50mm)
Load: 50kN
Rotation speed: 20 rotations / minute (one rotation time 3 seconds)
Sampling rate: 100 kHz
Data length: 15 seconds Measurement interval: 15 hours (hour)
In FIG. 18, a displacement X12, an effective value E12, and a variation coefficient C12 are shown. The displacement X12 indicates a displacement in which the bearing load direction of the rotating shaft 20 is positive. The effective value E12 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds. The variation coefficient C12 is obtained by dividing the standard deviation of the sampling value by the arithmetic average and represents a relative variation.
 実効値E12および変動係数C12のプロットは、データ長さ15秒間で算出した値を15時間(hour)間隔でプロットしたものであり、回転軸20の変位X12は摩擦部材346近傍で、比較のために他の変位計を用いて測定した瞬時値である。正常状態の軸受が運転の途中で内外輪間の変位が増加し始める状態を再現するために、一定回転速度運転の途中で荷重を徐々に増加させるようにした。 The plot of the effective value E12 and the coefficient of variation C12 is obtained by plotting values calculated for a data length of 15 seconds at 15-hour intervals, and the displacement X12 of the rotating shaft 20 is near the friction member 346 for comparison. These are instantaneous values measured using other displacement meters. In order to reproduce the state in which the bearing in the normal state starts to increase the displacement between the inner and outer rings during the operation, the load is gradually increased during the constant rotation speed operation.
 軸受160Aは運転時間270時間(hour)前後から摩耗が急増し、回転軸20の変位X12が徐々に増大する。実施の形態2の変形例1では、運転開始初期の摩擦部材346が回転軸20に接触していない状態の初期期間(第1しきい値生成期間T1)で得られる実効値E12に基づいて、しきい値A11を決定する。たとえば、初期期間(第1しきい値生成期間T1)の平均値や標準偏差を考慮し、しきい値A11を決定することができる。 The wear of the bearing 160A rapidly increases from about 270 hours (hours), and the displacement X12 of the rotary shaft 20 gradually increases. In the first modification of the second embodiment, based on the effective value E12 obtained in the initial period (first threshold value generation period T1) in a state where the friction member 346 at the beginning of operation is not in contact with the rotating shaft 20, The threshold value A11 is determined. For example, the threshold value A11 can be determined in consideration of the average value and standard deviation of the initial period (first threshold value generation period T1).
 さらに、実効値E12がしきい値A11を超えて安定した期間(第2しきい値生成期間T2)で得られる実効値E12に基づいて、しきい値B11を決定する。たとえば、この期間(第2しきい値生成期間T2)の平均値と、摩擦部材346cの一段目の断面積Scと、摩擦部材346cの二段目の断面積Sdとに基づいて、しきい値B11を決定することができる。 Further, the threshold value B11 is determined based on the effective value E12 obtained in a period during which the effective value E12 exceeds the threshold value A11 and is stable (second threshold value generation period T2). For example, based on the average value of this period (second threshold value generation period T2), the first-stage cross-sectional area Sc of the friction member 346c, and the second-stage cross-sectional area Sd of the friction member 346c, the threshold value B11 can be determined.
 なお、しきい値A11,B11の算出処理および異常判定処理については、図16のフローチャートの処理と同様であるので説明は繰り返さない。 It should be noted that threshold value A11, B11 calculation processing and abnormality determination processing are the same as the processing of the flowchart of FIG.
 このように、すべり軸受に対しても、同様な状態監視装置を実現できる。
 [実施の形態2の変形例2]
 実施の形態2では、運転開始直後の摩擦部材346は回転軸20と接触していないため摩耗しない。しかし、回転軸20と摩擦部材346との間が空きすぎると、回転軸20が変位を開始してからしばらくしなければ摩擦部材346は回転軸20と接触しないので、軸受の異常検出が遅れてしまう可能性がある。したがって、回転軸20と摩擦部材346との隙間をどのように設定するかが難しかった。
In this way, a similar state monitoring device can be realized for the sliding bearing.
[Modification 2 of Embodiment 2]
In the second embodiment, the friction member 346 immediately after the start of operation is not worn because it is not in contact with the rotating shaft 20. However, if there is too much space between the rotary shaft 20 and the friction member 346, the friction member 346 will not come into contact with the rotary shaft 20 until a while after the rotary shaft 20 starts to be displaced. There is a possibility. Therefore, it is difficult to set the gap between the rotating shaft 20 and the friction member 346.
 実施の形態2の変形例2では、運転開始直後から摩擦部材346を回転軸20に接触させた状態とする状態監視方法を用いる。装置の構成は、図11で説明したものと同じである。 In the second modification of the second embodiment, a state monitoring method is used in which the friction member 346 is brought into contact with the rotary shaft 20 immediately after the start of operation. The configuration of the apparatus is the same as that described in FIG.
 図19は、摩擦部材346のさらに別の実施例(摩擦部材346d)を示す図である。図19を参照して、摩擦部材346dは、図12A~図12Cに示す摩擦部材346aと同様に、略円錐状であり、その側面が階段状(3段)になっている。摩擦部材346dの1段目の高さt3は0.06mmであり、摩擦部材346cの1段目と2段目との高さの合計値t4は0.10mmである。 FIG. 19 is a view showing still another embodiment of the friction member 346 (friction member 346d). Referring to FIG. 19, the friction member 346d has a substantially conical shape like the friction member 346a shown in FIGS. 12A to 12C, and its side surface has a step shape (three steps). The first stage height t3 of the friction member 346d is 0.06 mm, and the total height t4 of the first stage and the second stage of the friction member 346c is 0.10 mm.
 図20は、実施の形態2の変形例2の状態監視装置の測定データを示す図である。図20のデータは、図20に示す形状の摩擦部材346dを用いた点を除いて、図15と同様の測定条件で得られるものである。さらに、運転開始当初から摩擦部材346dを回転軸20と接触させる点において、実施の形態2の変形例2は実施の形態2と異なる。図20中には、変位X13、実効値E13、変動係数C13が示されている。変位X13は、回転軸20の軸受荷重の向きを正とする変位を示す。実効値E13は、データ長さ15秒に含まれる状態監視センサ145の出力のサンプリング値の各々を二乗した値の平均値の平方根である。また、変動係数C13は、上記サンプリング値の標準偏差を算術平均で割ったものであり、相対的なばらつきを表す。 FIG. 20 is a diagram illustrating measurement data of the state monitoring device according to the second modification of the second embodiment. The data in FIG. 20 is obtained under the same measurement conditions as in FIG. 15 except that the friction member 346d having the shape shown in FIG. 20 is used. Furthermore, the second modification of the second embodiment is different from the second embodiment in that the friction member 346d is brought into contact with the rotating shaft 20 from the beginning of operation. FIG. 20 shows a displacement X13, an effective value E13, and a variation coefficient C13. The displacement X13 indicates a displacement in which the bearing load direction of the rotary shaft 20 is positive. The effective value E13 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds. The variation coefficient C13 is obtained by dividing the standard deviation of the sampling value by the arithmetic average, and represents a relative variation.
 図20に示すように、運転期間は、運転開始初期の予備運転期間T0と、その後の第1しきい値生成期間T1と、第2しきい値生成期間T2とを含む。 As shown in FIG. 20, the operation period includes a preliminary operation period T0 at the beginning of operation, a first threshold value generation period T1, and a second threshold value generation period T2.
 運転開始当初に摩擦部材346dを回転軸20と接触させる場合、この接触力はステー141などの摩擦部材346dを支えている部品の剛性によって決まる。したがって、予備運転期間T0では、運転開始直後には摩擦部材346dは大きく摩耗するが、摩耗に伴って接触力が低下することで摩擦部材346dの摩耗進行は停滞する第1しきい値生成期間T1に移行する。第1しきい値生成期間T1への移行を判定するために、予備運転期間T0の初期において、サンプリングしたAE,振動加速度などの特徴量のデータに基づいて、しきい値Zを決定する。そして、特徴量がしきい値Zより低下したことに基づいて、予備運転期間T0から第1しきい値生成期間T1に移行したと判定される。 When the friction member 346d is brought into contact with the rotary shaft 20 at the beginning of the operation, this contact force is determined by the rigidity of the parts supporting the friction member 346d such as the stay 141. Therefore, in the preliminary operation period T0, the friction member 346d is greatly worn immediately after the start of the operation, but the progress of wear of the friction member 346d is stagnated due to a decrease in contact force accompanying the wear. Migrate to In order to determine the transition to the first threshold value generation period T1, the threshold value Z is determined based on the sampled feature amount data such as AE and vibration acceleration in the initial stage of the preliminary operation period T0. Then, based on the fact that the feature amount has dropped below the threshold value Z, it is determined that the preliminary operation period T0 has shifted to the first threshold value generation period T1.
 この停滞するまでの期間(予備運転期間T0)は、運転開始から数百回転から数万回転程度であり軸受に異常はないが、摩擦部材346が磨耗することに伴い、AEや振動加速度のレベルおよびその変動は大きい。 The period until this stagnation (preliminary operation period T0) is several hundred to several tens of thousands of rotations from the start of operation, and there is no abnormality in the bearings. However, as the friction member 346 wears, the level of AE and vibration acceleration And the variation is great.
 一方、摩耗が停滞している期間(第1しきい値生成期間T1)は、軸受に異常はなくAEや振動加速度のレベルおよび変動が小さいため、異常検知のためのしきい値A13を生成する期間として適している。 On the other hand, during the period in which the wear is stagnant (first threshold value generation period T1), since there is no abnormality in the bearing and the level and fluctuation of AE and vibration acceleration are small, the threshold value A13 for detecting abnormality is generated. Suitable as a period.
 図20では、運転時間2時間(hour)から回転軸20の変位X13が徐々に増大する。実効値や変動係数が低く安定した運転時間1.5時間(hour)付近で、異常を検知するためのしきい値A13を生成することにより、軸受の内輪と外輪間の隙間が増加しはじめるタイミングを正確に検知できる。 In FIG. 20, the displacement X13 of the rotating shaft 20 gradually increases from an operation time of 2 hours (hour). The timing at which the clearance between the inner ring and the outer ring of the bearing begins to increase by generating a threshold value A13 for detecting anomaly at a stable operating time of 1.5 hours (hour) where the effective value and coefficient of variation are low. Can be detected accurately.
 回転軸20の変位X13が0.06mmになるまでの間、回転軸20は、摩擦部材346dの1段目のみに接触しながら変位し続ける。この間、摩擦部材346dと回転軸20との接触面積に変動がない。そのため、実効値E13は、当該接触面積に応じた値で安定する。 Until the displacement X13 of the rotating shaft 20 reaches 0.06 mm, the rotating shaft 20 continues to be displaced while contacting only the first stage of the friction member 346d. During this time, there is no change in the contact area between the friction member 346d and the rotary shaft 20. Therefore, the effective value E13 is stabilized at a value corresponding to the contact area.
 回転軸20の変位X13が0.06mmに達すると、回転軸20は、摩擦部材346dの2段目と接触し始め、実効値E13がさらに増大する。このときの実効値E13は、摩擦部材346dの2段目と回転軸20との接触面積の大きさに応じた値となる。当該接触面積は、摩擦部材346dの2段目における、軸受荷重の方向に直交する断面積に略等しい。 When the displacement X13 of the rotating shaft 20 reaches 0.06 mm, the rotating shaft 20 starts to contact the second stage of the friction member 346d, and the effective value E13 further increases. The effective value E13 at this time is a value corresponding to the size of the contact area between the second stage of the friction member 346d and the rotary shaft 20. The contact area is substantially equal to the cross-sectional area perpendicular to the bearing load direction in the second stage of the friction member 346d.
 さらに回転軸20が変位し、回転軸20の変位X13が0.10mmに達すると、回転軸20は、摩擦部材346dの3段目と接触し始め、実効値E13がさらに増大する。このときの実効値E13は、摩擦部材346dの3段目と回転軸20との接触面積の大きさに応じた値となる。当該接触面積は、摩擦部材346cの3段目における、軸受荷重の方向に直交する断面積に略等しい。 When the rotary shaft 20 is further displaced and the displacement X13 of the rotary shaft 20 reaches 0.10 mm, the rotary shaft 20 starts to contact the third stage of the friction member 346d, and the effective value E13 further increases. The effective value E13 at this time is a value corresponding to the size of the contact area between the third stage of the friction member 346d and the rotary shaft 20. The contact area is substantially equal to the cross-sectional area perpendicular to the bearing load direction at the third stage of the friction member 346c.
 本実施の形態では、回転軸20が変位し始めた後、変位X13が0.06mmになるまでの期間(第2しきい値生成期間T2)で得られる実効値E13に基づいて、しきい値B13,B14が決定される。しきい値B13は、摩擦部材346dの2段目と回転軸20との接触開始による実効値E13の増大を検出するために、実効値E13と比較される値である。しきい値B14は、摩擦部材346dの3段目と回転軸20との接触開始による実効値E13の増大を検出するために、実効値E13と比較される値である。 In the present embodiment, the threshold value is based on the effective value E13 obtained in the period (second threshold value generation period T2) until the displacement X13 becomes 0.06 mm after the rotation shaft 20 starts to be displaced. B13 and B14 are determined. The threshold value B13 is a value that is compared with the effective value E13 in order to detect an increase in the effective value E13 due to the start of contact between the second stage of the friction member 346d and the rotary shaft 20. The threshold value B14 is a value that is compared with the effective value E13 in order to detect an increase in the effective value E13 due to the start of contact between the third stage of the friction member 346d and the rotating shaft 20.
 しきい値B13は、実施の形態2のしきい値B11と同様に、たとえば、第2しきい値生成期間T2の実効値E11の平均値と、摩擦部材346dの1段目と2段目との断面積の比とに基づいて決定される。 The threshold value B13 is, for example, the average value of the effective value E11 of the second threshold value generation period T2, the first level and the second level of the friction member 346d, similarly to the threshold value B11 of the second embodiment. It is determined based on the ratio of the cross-sectional areas.
 しきい値B14は、回転軸20が摩擦部材346dの2段目に接触しているときの実効値E13と、回転軸20が摩擦部材346dの3段目に接触しているときに実効値E13との間の値に決定されることが好ましい。回転軸20が摩擦部材346dの1段目に接触しているときの回転軸20と摩擦部材346dとの接触面積をSeとする。回転軸20が摩擦部材346dの2段目に接触しているときの回転軸20と摩擦部材346dとの接触面積をSfとする。回転軸20が摩擦部材346dの3段目に接触しているときの回転軸20と摩擦部材346dとの接触面積をSgとする。このとき、回転軸20が摩擦部材346dの1段目に接触しているときの実効値E13と、回転軸20が摩擦部材346cの2段目に接触しているときに実効値E13との比は、SeとSfとの比と略等しい。さらに、回転軸20が摩擦部材346dの1段目に接触しているときの実効値E13と、回転軸20が摩擦部材346dの3段目に接触しているときに実効値E13との比は、SeとSgとの比と略等しい。そのため、回転軸20が摩擦部材346dの1段目に接触しているときの実効値E13に基づき、回転軸20が摩擦部材346dの2段目に接触しているときに実効値E13と、回転軸20が摩擦部材346dの3段目に接触しているときに実効値E13とを推定できる。そして、当該推定値を考慮してしきい値B14を決定することができる。したがって、回転軸20が摩擦部材346dの1段目に接触しているとき実効値E11が安定して出力される期間は、しきい値B14を生成する期間として適している。しきい値B14は、たとえば当該期間の実効値E11の平均値と、SeとSfとSgとの比に基づいて決定される。SeとSfとSgとの比は、摩擦部材346dの1~3段目の各々における軸受荷重の方向に直交する断面積の比と略同じである。 The threshold value B14 is an effective value E13 when the rotary shaft 20 is in contact with the second stage of the friction member 346d, and an effective value E13 when the rotary shaft 20 is in contact with the third stage of the friction member 346d. It is preferable that the value is determined between. Let Se be the contact area between the rotary shaft 20 and the friction member 346d when the rotary shaft 20 is in contact with the first stage of the friction member 346d. Let Sf be the contact area between the rotating shaft 20 and the friction member 346d when the rotating shaft 20 is in contact with the second stage of the friction member 346d. Let Sg be the contact area between the rotary shaft 20 and the friction member 346d when the rotary shaft 20 is in contact with the third stage of the friction member 346d. At this time, the ratio between the effective value E13 when the rotary shaft 20 is in contact with the first stage of the friction member 346d and the effective value E13 when the rotary shaft 20 is in contact with the second stage of the friction member 346c. Is approximately equal to the ratio of Se and Sf. Further, the ratio between the effective value E13 when the rotary shaft 20 is in contact with the first stage of the friction member 346d and the effective value E13 when the rotary shaft 20 is in contact with the third stage of the friction member 346d is , Approximately equal to the ratio of Se and Sg. Therefore, based on the effective value E13 when the rotating shaft 20 is in contact with the first stage of the friction member 346d, the effective value E13 when the rotating shaft 20 is in contact with the second stage of the friction member 346d and the rotation The effective value E13 can be estimated when the shaft 20 is in contact with the third stage of the friction member 346d. Then, the threshold value B14 can be determined in consideration of the estimated value. Therefore, a period during which the effective value E11 is stably output when the rotating shaft 20 is in contact with the first stage of the friction member 346d is suitable as a period for generating the threshold value B14. The threshold value B14 is determined based on, for example, the average value of the effective values E11 in the period and the ratio of Se, Sf, and Sg. The ratio of Se, Sf, and Sg is substantially the same as the ratio of the cross-sectional area perpendicular to the bearing load direction in each of the first to third stages of the friction member 346d.
 図21は、実施の形態2の変形例2において、演算処理装置が実行する異常判定処理の前半を説明するためのフローチャートである。図22は、実施の形態2の変形例2において、演算処理装置が実行する異常判定処理の後半を説明するためのフローチャートである。なお、図21および図22には、図19に示す摩擦部材346dを用いたときのフローチャートが示される。 FIG. 21 is a flowchart for explaining the first half of the abnormality determination process executed by the arithmetic processing unit in the second modification of the second embodiment. FIG. 22 is a flowchart for explaining the second half of the abnormality determination process executed by the arithmetic processing device in the second modification of the second embodiment. 21 and 22 show a flowchart when the friction member 346d shown in FIG. 19 is used.
 図11、図19~図21、図22を参照して、まず、ステップS51において、演算処理装置81は、運転初期期間(予備運転期間T0の初期)における状態監視センサ145の出力信号をサンプリングして、初期値データを得る。そして、ステップS52において、演算処理装置81は、初期期間に得られた初期値データを平均値、標準偏差σ等を算出し、これらに基づいてしきい値Zを決定する。たとえば、平均値-3σとか、平均値の1/10をしきい値Zとすることができる。なお、この初期期間は、通常は軸受の摩耗により回転軸20に変位が発生しない期間であり、かつ摩擦部材346dが回転軸20に当接しており摩擦部材346dにAEが発生する期間である。 Referring to FIG. 11, FIG. 19 to FIG. 21, and FIG. 22, first, in step S51, arithmetic processing unit 81 samples the output signal of state monitoring sensor 145 in the initial operation period (initial stage of preliminary operation period T0). To obtain initial value data. In step S52, the arithmetic processing unit 81 calculates an average value, standard deviation σ, and the like from the initial value data obtained in the initial period, and determines the threshold value Z based on these values. For example, the average value −3σ or 1/10 of the average value can be set as the threshold value Z. This initial period is usually a period in which no displacement occurs in the rotating shaft 20 due to wear of the bearing, and a period in which the friction member 346d is in contact with the rotating shaft 20 and AE occurs in the friction member 346d.
 ステップS53では、演算処理装置81は、状態監視センサ145から得られる特徴量の実効値Eがしきい値Zより小さくなるか否かを判断する。E<Zが成立しない間は(S53でNO)、図20において予備運転期間T0が終了しておらず、しきい値A13を決定するための第1しきい値生成期間T1には遷移していないので、再びS53の処理が実行される。 In step S53, the arithmetic processing unit 81 determines whether or not the effective value E of the feature amount obtained from the state monitoring sensor 145 is smaller than the threshold value Z. While E <Z is not satisfied (NO in S53), the preliminary operation period T0 in FIG. 20 has not ended, and the transition is made to the first threshold value generation period T1 for determining the threshold value A13. Since there is not, the process of S53 is performed again.
 ステップS53において、E<Zが成立した場合(S53でYES)、演算処理装置81は、ステップS54において、特徴量の変化ΔEが判定値K0よりも小さくなったか否かを判断する。図20において、E13の値が低下した後落ち着いてから、しきい値A13を生成することが好ましいからである。 In step S53, if E <Z is satisfied (YES in S53), the arithmetic processing unit 81 determines whether or not the feature amount change ΔE is smaller than the determination value K0 in step S54. This is because, in FIG. 20, it is preferable to generate the threshold value A13 after the value of E13 has settled down.
 ΔE<K0が成立しない間は(S54でNO)、再びステップS53に処理が戻される。一方、ΔE<K0が成立した場合(S54でYES)、ステップS55に処理が進められる。 While ΔE <K0 is not satisfied (NO in S54), the process is returned to step S53 again. On the other hand, if ΔE <K0 is satisfied (YES in S54), the process proceeds to step S55.
 ステップS55では、演算処理装置81は、第1しきい値生成期間T1における状態監視センサ145の出力信号をサンプリングして、しきい値A13生成用のデータを得る。そして、ステップS56において、演算処理装置81は、第1しきい値生成期間T1に得られたデータの平均値、標準偏差σ等を算出し、これらに基づいてしきい値A13を決定する。たとえば、平均値+3σをしきい値A13とすることができる。なお、この第1しきい値生成期間T1は、E<ZかつΔE<K0が成立してから開始し、終了時点は適宜実験的に予め定めておくことができる。 In step S55, the arithmetic processing unit 81 samples the output signal of the state monitoring sensor 145 in the first threshold value generation period T1, and obtains data for generating the threshold value A13. In step S56, the arithmetic processing unit 81 calculates the average value, standard deviation σ, and the like of the data obtained during the first threshold value generation period T1, and determines the threshold value A13 based on these values. For example, the average value + 3σ can be set as the threshold value A13. The first threshold value generation period T1 starts after E <Z and ΔE <K0 is satisfied, and the end point can be determined experimentally as appropriate.
 そして、ステップS57において、演算処理装置81は、以降の実効値Eを監視して、実効値Eがしきい値A13よりも大きいか否かを判断する。E>A13でなければ再びステップS57の処理が実行される一方、E>A13であれば、ステップS58に処理が進められる。ステップS58では、演算処理装置81は、軸受160に異常が発生したと判定し、必要に応じて記録や報知を行なう。 In step S57, the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is larger than the threshold value A13. If E> A13, the process of step S57 is executed again. If E> A13, the process proceeds to step S58. In step S58, the arithmetic processing unit 81 determines that an abnormality has occurred in the bearing 160, and performs recording and notification as necessary.
 次に、ステップS59において、演算処理装置81は、特徴量の変化ΔEが判定値K1よりも小さくなったか否かを判断する。図20において、E13の値がしきい値A13を超えた後落ち着いてから、しきい値B13、B14を生成することが好ましいからである。 Next, in step S59, the arithmetic processing unit 81 determines whether or not the feature amount change ΔE is smaller than the determination value K1. In FIG. 20, it is preferable to generate the threshold values B13 and B14 after the value of E13 has settled after exceeding the threshold value A13.
 ΔE<K1が成立しない間は(S59でNO)、再びステップS59に処理が戻される。一方、ΔE<K1が成立した場合(S59でYES)、ステップS60に処理が進められる。 While ΔE <K1 is not satisfied (NO in S59), the process returns to step S59 again. On the other hand, if ΔE <K1 is satisfied (YES in S59), the process proceeds to step S60.
 ステップS60では、演算処理装置81は、第2しきい値生成期間T2における状態監視センサ145からの出力信号をサンプリングして、しきい値B13、B14生成用のデータを得る。そして、ステップS61において、演算処理装置81は、第2しきい値生成期間T2に得られたデータの平均値を算出し、算出した平均値に基づいてしきい値B13、B14を決定する。たとえば、摩擦部材346dの一段目における軸受荷重の方向に直交する断面積をSh、摩擦部材346dの二段目における軸受荷重の方向に直交する断面積をSiとするとき、0.5×(1+Si/Sh)×平均値をしきい値B13とすることができる。さらに、摩擦部材346dの三段目における軸受荷重の方向に直交する断面積をSjとするとき、0.5×{(Si+Sj)/Sh}×平均値をしきい値B14とすることができる。なお、この第2しきい値生成期間T2は、ΔE<K1が成立してから開始し、終了時点は適宜実験的に予め定めておくことができる。 In step S60, the arithmetic processing unit 81 samples the output signal from the state monitoring sensor 145 in the second threshold value generation period T2, and obtains data for generating the threshold values B13 and B14. In step S61, the arithmetic processing unit 81 calculates the average value of the data obtained in the second threshold value generation period T2, and determines the threshold values B13 and B14 based on the calculated average value. For example, when the cross-sectional area perpendicular to the bearing load direction in the first stage of the friction member 346d is Sh and the cross-sectional area perpendicular to the bearing load direction in the second stage of the friction member 346d is Si, 0.5 × (1 + Si / Sh) × average value can be the threshold value B13. Furthermore, when the cross-sectional area perpendicular to the bearing load direction at the third stage of the friction member 346d is Sj, the threshold value B14 can be 0.5 × {(Si + Sj) / Sh} × average value. The second threshold value generation period T2 starts after ΔE <K1 is established, and the end point can be determined experimentally as appropriate.
 演算処理装置81は、しきい値B13に対応する回転軸20の変位量M3として、摩擦部材346dの1段目の高さt3(図19参照)=0.06mmを記憶する。さらに、演算処理装置81は、しきい値B14に対応する回転軸20の変位量M4として、摩擦部材346dの1段目と2段目の高さの合計値t4(図19参照)=0.10mmを予め記憶している。 The arithmetic processing unit 81 stores the first height t3 (see FIG. 19) = 0.06 mm of the friction member 346d as the displacement amount M3 of the rotating shaft 20 corresponding to the threshold value B13. Further, the arithmetic processing unit 81 uses the total amount t4 (see FIG. 19) of the first and second heights of the friction member 346d as the displacement amount M4 of the rotating shaft 20 corresponding to the threshold value B14 = 0. 10 mm is stored in advance.
 そして、ステップS62において、演算処理装置81は、以降の実効値Eを監視して、実効値Eがしきい値B13よりも大きいか否かを判断する。E>B13でなければ再びステップS62の処理が実行される。一方、E>B13であれば、ステップS63に処理が進められる。ステップS63では、演算処理装置81は、回転軸20がしきい値B13に対応する変位量M3だけ変位したと判定し、必要に応じて記録や報知を行なう。 In step S62, the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is larger than the threshold value B13. If E> B13 is not satisfied, the process of step S62 is executed again. On the other hand, if E> B13, the process proceeds to step S63. In step S63, the arithmetic processing unit 81 determines that the rotary shaft 20 has been displaced by the displacement amount M3 corresponding to the threshold value B13, and performs recording and notification as necessary.
 次に、ステップS64において、演算処理装置81は、以降の実効値Eを監視して、実効値Eがしきい値B14よりも大きいか否かを判断する。E>B14でなければ再びステップS64の処理が実行される。一方、E>B14であれば、ステップS65に処理が進められる。ステップS65では、演算処理装置81は、回転軸20がしきい値B14に対応する変位量M4だけ変位したと判定し、必要に応じて記録や報知を行ない、ステップS66で処理を終了する。 Next, in step S64, the arithmetic processing unit 81 monitors the subsequent effective value E and determines whether or not the effective value E is larger than the threshold value B14. If E> B14 is not satisfied, the process of step S64 is executed again. On the other hand, if E> B14, the process proceeds to step S65. In step S65, the arithmetic processing unit 81 determines that the rotary shaft 20 has been displaced by the displacement amount M4 corresponding to the threshold value B14, performs recording and notification as necessary, and ends the process in step S66.
 以上説明したように、状態監視装置300は、状態監視センサ145の出力を受け、軸受に異常が生じたか否かを判定する演算処理装置81を備える。演算処理装置81は、(i)予備運転期間T0(第1運転期間)の初期において状態監視センサ145から得られた特徴量に基づいて、しきい値Z(第1しきい値)を決定し、(ii)特徴量がしきい値Zより小さい状態に遷移した予備運転期間T0よりも後の第1しきい値生成期間T1(第2運転期間)の初期において状態監視センサ145から得られた特徴量に基づいて、しきい値A13(第2しきい値)を決定し、(iii)第1しきい値生成期間T1の後に状態監視センサ145から得られた特徴量がしきい値A13より小さい状態から大きい状態に遷移した場合に、軸受160に異常が発生したと判定し、(iv)特徴量がしきい値A13より大きい状態に遷移した後の第2しきい値生成期間T2(第3運転期間)の初期において状態監視センサ145から得られた特徴量に基づいて、しきい値B13,B14(第3しきい値)を決定し、(v)しきい値B13,B14にそれぞれ対応する予め定められた変位量M3,M4を記憶し、(vi)第2しきい値生成期間T2の後に状態監視センサ145から得られた特徴量がしきい値B13,B14より小さい状態から大きい状態に遷移した場合に、回転軸20がM3,M4だけそれぞれ変位したと判定する(図20~図22)。 As described above, the state monitoring apparatus 300 includes the arithmetic processing unit 81 that receives the output of the state monitoring sensor 145 and determines whether or not an abnormality has occurred in the bearing. The arithmetic processing unit 81 (i) determines the threshold value Z (first threshold value) based on the feature quantity obtained from the state monitoring sensor 145 at the initial stage of the preliminary operation period T0 (first operation period). , (Ii) obtained from the state monitoring sensor 145 at the initial stage of the first threshold generation period T1 (second operation period) after the preliminary operation period T0 in which the feature amount is changed to a state smaller than the threshold value Z. Based on the feature value, a threshold value A13 (second threshold value) is determined. (Iii) The feature value obtained from the state monitoring sensor 145 after the first threshold value generation period T1 is greater than the threshold value A13. When the transition from the small state to the large state is made, it is determined that an abnormality has occurred in the bearing 160, and (iv) the second threshold value generation period T2 (the first threshold value) after the feature value has transitioned to a state greater than the threshold value A13. In the early stage Threshold values B13 and B14 (third threshold values) are determined based on the feature values obtained from the state monitoring sensor 145, and (v) predetermined displacement amounts corresponding to the threshold values B13 and B14, respectively. M3 and M4 are stored, and (vi) rotation is performed when the feature quantity obtained from the state monitoring sensor 145 changes from a state smaller than the threshold values B13 and B14 to a larger state after the second threshold value generation period T2. It is determined that the shaft 20 is displaced by M3 and M4, respectively (FIGS. 20 to 22).
 このようにしきい値B13,B14を定めることにより、運転開始時からの回転軸20の変位量(軸受の磨耗による内輪と外輪の隙間の変化量)がM3(たとえば、0.60mm)に達したこと、または、M4(たとえば、0.10mm)に達したことを正確に検知できる。 By determining the threshold values B13 and B14 in this way, the amount of displacement of the rotary shaft 20 from the start of operation (the amount of change in the gap between the inner ring and the outer ring due to bearing wear) has reached M3 (for example, 0.60 mm). Or that M4 (for example, 0.10 mm) has been reached.
 また、予備運転期間T0において、摩擦部材346が回転軸20に接触するかしないかぎりぎりのところまで磨耗しているので、運転開始からの経過時間2時間(hour)前後の摩耗が急増する現象を時間遅れ少なく直ちに捉えることができる。 In the preliminary operation period T0, the friction member 346 is worn to the limit as long as it does not come into contact with the rotary shaft 20, so that the phenomenon of a sudden increase in wear about 2 hours (hours) after the start of operation occurs. It can be caught immediately with little time delay.
 [実施の形態2の変形例3]
 実施の形態2の変形例3では、転がり軸受に代えてすべり軸受に対して実施の形態2の変形例2の検出処理と同様の処理を実行した例を説明する。すべり軸受と状態監視装置の構成については、図17で示しているので、ここでは説明を繰り返さない。
[Modification 3 of Embodiment 2]
In the third modification of the second embodiment, an example will be described in which the same process as the detection process of the second modification of the second embodiment is performed on the slide bearing instead of the rolling bearing. Since the configuration of the slide bearing and the state monitoring device is shown in FIG. 17, the description thereof will not be repeated here.
 図23は、実施の形態2の変形例3の状態監視装置の測定データを示す図である。図23のデータは、図20のデータと同様の測定条件において得られるものである。 FIG. 23 is a diagram illustrating measurement data of the state monitoring device according to the third modification of the second embodiment. The data in FIG. 23 is obtained under the same measurement conditions as the data in FIG.
 図23中には、変位X14、実効値E14、変動係数C14が示されている。変位X14は、回転軸20の軸受荷重の向きを正とする変位を示す。実効値E14は、データ長さ15秒に含まれる状態監視センサ145の出力のサンプリング値の各々を二乗した値の平均値の平方根である。また、変動係数C14は、上記サンプリング値の標準偏差を算術平均で割ったものであり、相対的なばらつきを表す。 FIG. 23 shows a displacement X14, an effective value E14, and a variation coefficient C14. The displacement X14 indicates a displacement in which the bearing load direction of the rotating shaft 20 is positive. The effective value E14 is a square root of an average value of values obtained by squaring each sampling value of the output of the state monitoring sensor 145 included in the data length of 15 seconds. Further, the variation coefficient C14 is obtained by dividing the standard deviation of the sampling value by the arithmetic average and represents a relative variation.
 実効値E14および変動係数C14のプロットは、データ長さ15秒間で算出した値を15時間(hour)間隔でプロットしたものであり、回転軸20の変位X14は摩擦部材346近傍で、比較のために他の変位計を用いて測定した瞬時値である。 The plot of the effective value E14 and the coefficient of variation C14 is a plot of values calculated for a data length of 15 seconds at 15 hour intervals, and the displacement X14 of the rotating shaft 20 is near the friction member 346 for comparison. These are instantaneous values measured using other displacement meters.
 軸受160Aは運転時間270時間(hour)前後から摩耗が急増し、回転軸20の変位X14が徐々に増大する。実施の形態2の変形例3では、予備運転期間T0において、摩擦部材346が回転軸20に接触するかしないかぎりぎりのところまで磨耗しているので、運転時間270時間(hour)前後の摩耗が急増する現象を時間遅れ少なく直ちに捉えることができる。 The wear of the bearing 160A increases rapidly from around 270 hours (hours) of operation, and the displacement X14 of the rotary shaft 20 gradually increases. In the third modification of the second embodiment, in the preliminary operation period T0, the friction member 346 is worn to the limit as long as it does not come into contact with the rotary shaft 20, so that the wear is about 270 hours (hours). Rapid increase in phenomena can be detected immediately with little time delay.
 なお、しきい値Z,A13,B13,B14の算出処理および異常判定処理については、図21および図22のフローチャートの処理と同様であるので説明は繰り返さない。 Note that calculation processing and abnormality determination processing of threshold values Z, A13, B13, and B14 are the same as the processing of the flowcharts of FIGS. 21 and 22, and therefore description thereof will not be repeated.
 このように、すべり軸受に対しても、同様な状態監視装置を実現できる。
 以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。
In this way, a similar state monitoring device can be realized for the sliding bearing.
Although the embodiment of the present invention has been described above, the above-described embodiment can be variously modified.
 たとえば、図1等では、風力発電装置の軸受に適用した例を示したが、鉄道車両やスピンドルなどの軸受にも本実施の形態の状態監視装置を適用可能である。特に、すべり軸受は小型の機械に好適に使用される。 For example, in FIG. 1 and the like, an example in which the present invention is applied to a bearing of a wind power generator is shown, but the state monitoring apparatus of the present embodiment can also be applied to a bearing such as a railway vehicle or a spindle. In particular, the slide bearing is suitably used for a small machine.
 また、軸受荷重が作用する方向が変化する可能性がある場合や、不定の場合には、複数の摩擦部材を異なる位置に設けるようにして、監視を行なってもよい。 Further, when there is a possibility that the direction in which the bearing load acts changes or when it is indefinite, monitoring may be performed by providing a plurality of friction members at different positions.
 また、測定データの特徴量として、AEの実効値の例を示したが、特徴量として他の物理量を使用しても良い。たとえば、特徴量として、AEや振動加速度等の一般的な実効値、最大値、最小値、尖度、歪度、変動係数(標準偏差/平均値)、標準偏差、分散、ピーク・トゥ・ピーク値などを使用することができる。 In addition, although the example of the effective value of AE is shown as the feature quantity of the measurement data, other physical quantities may be used as the feature quantity. For example, typical effective values such as AE and vibration acceleration, maximum value, minimum value, kurtosis, skewness, coefficient of variation (standard deviation / average value), standard deviation, variance, peak-to-peak A value etc. can be used.
 なお、測定データの特徴量は、回転軸20の摩擦部材346との接触面における回転振れや表面粗さ分布による悪影響を避けるため、回転軸が少なくとも1回転以上のデータ長さで算出することが好ましい。また、特徴量を、バンドパスフィルタ処理後に算出したり、FFT処理で周波数領域に変換してから算出したりしてもよい。 It should be noted that the feature amount of the measurement data can be calculated with a data length of at least one rotation of the rotating shaft in order to avoid adverse effects due to rotational runout and surface roughness distribution on the contact surface of the rotating shaft 20 with the friction member 346. preferable. Further, the feature amount may be calculated after the band pass filter processing or may be calculated after being converted into the frequency domain by FFT processing.
 摩擦部材346における回転軸20との接触面積は、回転軸20の変位量の増大に応じて連続的に増大してもよい。この場合、回転軸20の変位量と状態監視センサ145から出力される特徴量との相関関係を示す情報を予め実験等で取得しておき、演算処理装置81は、当該情報を用いて、特徴量に応じて回転軸20の変位量を判定すればよい。 The contact area of the friction member 346 with the rotating shaft 20 may continuously increase as the displacement amount of the rotating shaft 20 increases. In this case, information indicating the correlation between the amount of displacement of the rotating shaft 20 and the feature amount output from the state monitoring sensor 145 is acquired in advance through experiments or the like, and the arithmetic processing device 81 uses the information to obtain a feature. What is necessary is just to determine the displacement amount of the rotating shaft 20 according to quantity.
 さらに、摩擦部材346における回転軸20との接触面積は、回転軸20の変位量の増大に応じて連続的に増大してもよい。この場合、回転軸20の変位量と状態監視センサ145から出力される特徴量との相関関係を示す情報を予め実験等で取得しておき、演算処理装置81は、当該情報を用いて、特徴量に応じて回転軸20の変位量を判定すればよい。 Furthermore, the contact area of the friction member 346 with the rotating shaft 20 may increase continuously as the displacement amount of the rotating shaft 20 increases. In this case, information indicating the correlation between the amount of displacement of the rotating shaft 20 and the feature amount output from the state monitoring sensor 145 is acquired in advance through experiments or the like, and the arithmetic processing device 81 uses the information to obtain a feature. What is necessary is just to determine the displacement amount of the rotating shaft 20 according to quantity.
 さらに、軸受の異常を検知するためのしきい値Z,A11,A13,B11,B13,B14は、しきい値生成期間全体で算出した特徴量に基づいて決定したり、まずしきい値生成期間を分割して複数の小期間で特徴量を算出し、再度その値を全体期間で特徴量を算出し、その特徴量に基づいて決定したりしてもよい。しきい値Z,A11,A13,B11,B13,B14は、実験等により予め定められていてもよい。この場合、図16のステップS31、S32,S36,S37と、図21および図22のステップS51,S52,S55,S56,S60,S61とを省略できる。 Further, the threshold values Z, A11, A13, B11, B13, and B14 for detecting a bearing abnormality are determined based on the feature amount calculated over the entire threshold generation period, or first the threshold generation period. The feature amount may be calculated in a plurality of small periods, the value may be calculated again in the entire period, and the value may be determined based on the feature amount. The threshold values Z, A11, A13, B11, B13, and B14 may be determined in advance through experiments or the like. In this case, steps S31, S32, S36, and S37 in FIG. 16 and steps S51, S52, S55, S56, S60, and S61 in FIGS. 21 and 22 can be omitted.
 また、超高温、超低温、液体、真空雰囲気などの苛酷環境で使用する軸受の場合、状態監視センサ145を保護するために、長尺な摩擦部材346を用いたり、摩擦部材346と状態監視センサ145の間をAEや振動加速度を伝達しやすい材質の長尺部品で接続したりして、軸受や摩擦部材346と状態監視センサ145との距離を大きく離してもよい。 Further, in the case of a bearing used in a harsh environment such as ultra-high temperature, ultra-low temperature, liquid, and vacuum atmosphere, in order to protect the state monitoring sensor 145, a long friction member 346 is used, or the friction member 346 and the state monitoring sensor 145 are used. The distance between the bearing and the friction member 346 and the state monitoring sensor 145 may be greatly separated by connecting them with long parts made of a material that easily transmits AE or vibration acceleration.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 10 風力発電装置、20 回転軸、25 ハブ、30 ブレード、40 増速機、50 発電機、52 制御盤、54 送電線、60,60A,60B,160,160A 軸受、80 データ処理装置、81 演算処理装置、90 ナセル、92 タワー、100,101 状態監視装置、120,220 ハウジング、121,221 軸受押さえ、131 内輪、132 外輪、133 転動体、141 ステー、142 防振材カバー、143 防振材、145 状態監視センサ、146 摩擦部材。 10 wind power generators, 20 rotary shafts, 25 hubs, 30 blades, 40 speed increasers, 50 generators, 52 control panels, 54 power transmission lines, 60, 60A, 60B, 160, 160A bearings, 80 data processing devices, 81 operations Processing device, 90 nacelle, 92 tower, 100, 101 condition monitoring device, 120, 220 housing, 121, 221 bearing holder, 131 inner ring, 132 outer ring, 133 rolling element, 141 stay, 142 vibration isolator cover, 143 vibration isolator 145 state monitoring sensor, 146 friction member.

Claims (15)

  1.  固定輪がハウジングに固定された軸受の異常を検出する状態監視装置であって、
     前記軸受によって支持される回転軸が前記ハウジングに対して変位すると接触度合いが変化するように前記回転軸の周面に対向するように配置された摩擦部材と、
     前記摩擦部材に接触する状態監視センサとを備え、
     前記状態監視センサは、AEセンサまたは加速度センサである、状態監視装置。
    A state monitoring device for detecting an abnormality of a bearing in which a fixed ring is fixed to a housing,
    A friction member arranged to face the peripheral surface of the rotating shaft so that the degree of contact changes when the rotating shaft supported by the bearing is displaced with respect to the housing;
    A state monitoring sensor in contact with the friction member,
    The state monitoring sensor is a state monitoring device which is an AE sensor or an acceleration sensor.
  2.  前記摩擦部材は、前記回転軸に対して、前記軸受に働く軸受荷重の作用する側に配置される、請求項1に記載の状態監視装置。 The state monitoring device according to claim 1, wherein the friction member is arranged on a side on which a bearing load acting on the bearing acts, with respect to the rotating shaft.
  3.  前記ハウジングに前記摩擦部材および前記状態監視センサを固定するステーをさらに備える、請求項1または2に記載の状態監視装置。 The condition monitoring device according to claim 1 or 2, further comprising a stay for fixing the friction member and the condition monitoring sensor to the housing.
  4.  前記状態監視センサと前記ステーとの間に配置された振動を遮断する防振材をさらに備える、請求項3に記載の状態監視装置。 The state monitoring apparatus according to claim 3, further comprising a vibration isolating material that blocks vibrations disposed between the state monitoring sensor and the stay.
  5.  前記摩擦部材と前記回転軸との摩擦時に、前記回転軸1回転当たりの前記摩擦部材の摩耗量は、前記回転軸1回転当たりの前記軸受の摩耗量に比べ大きい、請求項1または2に記載の状態監視装置。 The amount of wear of the friction member per rotation of the rotating shaft during friction between the friction member and the rotating shaft is larger than the amount of wear of the bearing per rotation of the rotating shaft. State monitoring device.
  6.  前記状態監視センサの出力を受け、前記軸受に異常が生じたか否かを判定する演算処理装置をさらに備え、前記演算処理装置は、前記状態監視センサから得られた特徴量が第1しきい値より小さい状態から大きい状態に遷移した場合に、前記軸受に異常が発生したと判定する、請求項1~5のいずれか1項に記載の状態監視装置。 An arithmetic processing unit that receives an output of the state monitoring sensor and determines whether or not an abnormality has occurred in the bearing is further provided, wherein the arithmetic processing unit has a feature value obtained from the state monitoring sensor as a first threshold value. The state monitoring device according to any one of claims 1 to 5, wherein it is determined that an abnormality has occurred in the bearing when a transition is made from a smaller state to a larger state.
  7.  前記状態監視センサの出力を受け、前記軸受に異常が生じたか否かを判定する演算処理装置をさらに備え、
     前記演算処理装置は、
     第1運転期間において前記状態監視センサから得られた特徴量に基づいて第1しきい値を決定し、前記特徴量が前記第1しきい値より小さい状態に遷移した前記第1運転期間よりも後の第2運転期間において前記状態監視センサから得られた特徴量に基づいて、第2しきい値を決定し、
     前記第2運転期間の後に前記状態監視センサから得られた特徴量が前記第2しきい値より小さい状態から大きい状態に遷移した場合に、前記軸受に異常が発生したと判定する、請求項1~5のいずれか1項に記載の状態監視装置。
    An arithmetic processing unit that receives the output of the state monitoring sensor and determines whether or not an abnormality has occurred in the bearing;
    The arithmetic processing unit includes:
    The first threshold value is determined based on the feature amount obtained from the state monitoring sensor in the first operation period, and the feature amount is changed to a state smaller than the first threshold value than the first operation period. Based on the feature amount obtained from the state monitoring sensor in the subsequent second operation period, the second threshold value is determined,
    2. It is determined that an abnormality has occurred in the bearing when the characteristic amount obtained from the state monitoring sensor transitions from a state smaller than the second threshold value to a larger state after the second operation period. The state monitoring apparatus according to any one of 1 to 5.
  8.  前記摩擦部材は、前記回転軸の変位量の増大に応じて前記回転軸との接触面積が増大するような形状を有する、請求項1に記載の状態監視装置。 2. The state monitoring device according to claim 1, wherein the friction member has a shape such that a contact area with the rotation shaft increases in accordance with an increase in a displacement amount of the rotation shaft.
  9.  前記摩擦部材における前記回転軸との接触面積は、前記回転軸の変位量の増大に応じて段階的に増大する、請求項8に記載の状態監視装置。 The state monitoring device according to claim 8, wherein a contact area of the friction member with the rotating shaft increases stepwise as the displacement amount of the rotating shaft increases.
  10.  前記摩擦部材は、前記回転軸に対して、前記軸受に働く軸受荷重の作用する側に配置され、
     前記摩擦部材における前記軸受荷重の方向に直交する断面積は、前記回転軸からの距離が長くなるにつれて段階的に増大する、請求項8に記載の状態監視装置。
    The friction member is arranged on a side where a bearing load acting on the bearing acts on the rotating shaft,
    The state monitoring device according to claim 8, wherein a cross-sectional area of the friction member perpendicular to the direction of the bearing load increases stepwise as the distance from the rotation shaft increases.
  11.  前記回転軸の軸線を含み、かつ前記軸受荷重の方向に平行な平面で切ったときの前記摩擦部材の断面において、前記摩擦部材における前記回転軸に対向する表面は階段状である、請求項10に記載の状態監視装置。 The surface of the friction member facing the rotation shaft in a cross-section of the friction member when cut along a plane including the axis of the rotation shaft and parallel to the direction of the bearing load is stepped. The state monitoring device described in 1.
  12.  前記状態監視センサの出力を受け、前記軸受に異常が生じたか否かを判定する演算処理装置をさらに備え、
     前記演算処理装置は、
     前記状態監視センサから得られた特徴量が第1しきい値より小さい状態から大きい状態に遷移した場合に、前記軸受に異常が発生したと判定し、
     前記特徴量と前記第1しきい値よりも大きい第2しきい値との比較結果に基づいて前記回転軸の変位量を判定する、請求項9に記載の状態監視装置。
    An arithmetic processing unit that receives the output of the state monitoring sensor and determines whether or not an abnormality has occurred in the bearing;
    The arithmetic processing unit includes:
    When the characteristic amount obtained from the state monitoring sensor transitions from a state smaller than a first threshold value to a larger state, it is determined that an abnormality has occurred in the bearing,
    The state monitoring device according to claim 9, wherein a displacement amount of the rotating shaft is determined based on a comparison result between the feature amount and a second threshold value that is larger than the first threshold value.
  13.  前記状態監視センサの出力を受け、前記軸受に異常が生じたか否かを判定する演算処理装置をさらに備え、
     前記演算処理装置は、
     第1運転期間において前記状態監視センサから得られた特徴量に基づいて第1しきい値を決定し、前記特徴量が前記第1しきい値より小さい状態に遷移した前記第1運転期間よりも後の第2運転期間において前記状態監視センサから得られた特徴量に基づいて、第2しきい値を決定し、
     前記第2運転期間の後に前記状態監視センサから得られた特徴量が前記第2しきい値より小さい状態から大きい状態に遷移した場合に、前記軸受に異常が発生したと判定し、
     前記特徴量が前記第2しきい値より小さい状態から大きい状態に遷移した後の第3運転期間において前記状態監視センサから得られた特徴量に基づいて、前記第2しきい値よりも大きい第3しきい値を決定し、
     前記第3しきい値に対応する予め定められた変位量を記憶し、
     前記第3運転期間の後に前記状態監視センサから得られた特徴量が前記第3しきい値よりも小さい状態から大きい状態に遷移した場合に、前記回転軸が前記予め定められた変位量だけ変位したと判定する、請求項9に記載の状態監視装置。
    An arithmetic processing unit that receives the output of the state monitoring sensor and determines whether or not an abnormality has occurred in the bearing;
    The arithmetic processing unit includes:
    The first threshold value is determined based on the feature amount obtained from the state monitoring sensor in the first operation period, and the feature amount is changed to a state smaller than the first threshold value than the first operation period. Based on the feature amount obtained from the state monitoring sensor in the subsequent second operation period, the second threshold value is determined,
    When the characteristic amount obtained from the state monitoring sensor after the second operation period has changed from a state smaller than the second threshold value to a larger state, it is determined that an abnormality has occurred in the bearing,
    Based on the feature amount obtained from the state monitoring sensor in the third operation period after the feature amount has transitioned from a state smaller than the second threshold value to a larger state, the feature amount is larger than the second threshold value. 3 Determine the threshold,
    Storing a predetermined amount of displacement corresponding to the third threshold value;
    When the characteristic amount obtained from the state monitoring sensor after the third operation period transits from a state smaller than the third threshold value to a larger state, the rotation shaft is displaced by the predetermined displacement amount. The state monitoring apparatus according to claim 9, wherein it is determined that a failure has occurred.
  14.  状態監視装置によって固定輪がハウジングに固定された軸受の異常を検出する状態監視方法であって、
     前記状態監視装置は、
     前記軸受によって支持される回転軸が前記ハウジングに対して変位すると接触度合いが変化するように前記回転軸の周面に対向するように配置された摩擦部材と、
     前記摩擦部材に接触する状態監視センサとを備え、
     前記状態監視センサは、AEセンサまたは加速度センサであり、
     前記状態監視方法は、
     第1運転期間において前記状態監視センサから得られた特徴量に基づいて第1しきい値を決定するステップと、
     前記特徴量が前記第1しきい値より小さい状態に遷移した前記第1運転期間よりも後の第2運転期間において前記状態監視センサから得られた特徴量に基づいて、第2しきい値を決定するステップと、
     前記第2運転期間の後に前記状態監視センサから得られた特徴量が前記第2しきい値より小さい状態から大きい状態に遷移した場合に、前記軸受に異常が発生したと判定するステップとを備える、状態監視方法。
    A state monitoring method for detecting an abnormality of a bearing in which a fixed ring is fixed to a housing by a state monitoring device,
    The state monitoring device
    A friction member arranged to face the peripheral surface of the rotating shaft so that the degree of contact changes when the rotating shaft supported by the bearing is displaced with respect to the housing;
    A state monitoring sensor in contact with the friction member,
    The state monitoring sensor is an AE sensor or an acceleration sensor,
    The state monitoring method includes:
    Determining a first threshold value based on a feature amount obtained from the state monitoring sensor in a first operation period;
    Based on the feature value obtained from the state monitoring sensor in the second operation period after the first operation period in which the feature value has transitioned to a state smaller than the first threshold value, the second threshold value is set. A step to determine;
    Determining that an abnormality has occurred in the bearing when the characteristic amount obtained from the state monitoring sensor transitions from a state smaller than the second threshold value to a larger state after the second operation period. , Status monitoring method.
  15.  前記摩擦部材は、前記回転軸の変位量の増大に応じて前記回転軸との接触面積が増大するような形状を有し、
     前記状態監視方法は、
     前記特徴量と前記第2しきい値よりも大きい第3しきい値との比較結果に基づいて前記回転軸の変位量を判定するステップをさらに備える、請求項14に記載の状態監視方法。
    The friction member has a shape such that a contact area with the rotation shaft increases in accordance with an increase in a displacement amount of the rotation shaft,
    The state monitoring method includes:
    The state monitoring method according to claim 14, further comprising a step of determining a displacement amount of the rotating shaft based on a comparison result between the feature amount and a third threshold value larger than the second threshold value.
PCT/JP2018/009510 2017-03-23 2018-03-12 State monitoring device and state monitoring method WO2018173831A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017056965A JP2018159622A (en) 2017-03-23 2017-03-23 Condition monitoring device and condition monitoring method
JP2017-056965 2017-03-23
JP2017056964A JP2018159621A (en) 2017-03-23 2017-03-23 Condition monitoring device and condition monitoring method
JP2017-056964 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018173831A1 true WO2018173831A1 (en) 2018-09-27

Family

ID=63585285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009510 WO2018173831A1 (en) 2017-03-23 2018-03-12 State monitoring device and state monitoring method

Country Status (1)

Country Link
WO (1) WO2018173831A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014154257A1 (en) * 2013-03-27 2014-10-02 Aktiebolaget Skf Bearing device including a clamping ring with embedded sensor
JP2015025713A (en) * 2013-07-25 2015-02-05 株式会社アドヴィックス Frictional wear phenomenon analysis device of friction member
JP2016061634A (en) * 2014-09-17 2016-04-25 Ntn株式会社 Abnormality diagnosis device of rolling bearing, wind power generator, and abnormality diagnosis method of rolling bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014154257A1 (en) * 2013-03-27 2014-10-02 Aktiebolaget Skf Bearing device including a clamping ring with embedded sensor
JP2015025713A (en) * 2013-07-25 2015-02-05 株式会社アドヴィックス Frictional wear phenomenon analysis device of friction member
JP2016061634A (en) * 2014-09-17 2016-04-25 Ntn株式会社 Abnormality diagnosis device of rolling bearing, wind power generator, and abnormality diagnosis method of rolling bearing

Similar Documents

Publication Publication Date Title
US10684193B2 (en) Strain based systems and methods for performance measurement and/or malfunction detection of rotating machinery
US9541128B2 (en) Acoustic emission measurements of a bearing assembly
US10724995B2 (en) Viscosity estimation from demodulated acoustic emission
EP2746610A1 (en) State detection device for bearing roller, roller bearing device with sensor, and wind turbine generator
JP2019074060A (en) State monitoring device of wind turbine generation windmill, state monitoring method and state monitoring system
KR101858037B1 (en) Torque calculation method for four-pont contact ball bearing, calculation device, and calculation program
JPWO2017203868A1 (en) Rolling bearing fatigue state prediction device and rolling bearing fatigue state prediction method
US11112348B2 (en) Wear sensors for monitoring seal wear in bearing arrangements
WO2017145687A1 (en) Abnormality diagnosing device and abnormality diagnosing method
JP2020056801A (en) Measurement diagnostic apparatus and measurement diagnostic method
WO2018173832A1 (en) Condition monitoring device
JP2017166960A (en) Measurement diagnostic apparatus and measurement diagnostic method
WO2018173831A1 (en) State monitoring device and state monitoring method
JP2017181267A (en) Ball bearing diagnostic device
JP2018159622A (en) Condition monitoring device and condition monitoring method
JP2018159621A (en) Condition monitoring device and condition monitoring method
JP2019128179A (en) Method for detecting falling of vibration sensor and apparatus for diagnosing abnormalities
JP6243940B2 (en) Wind power generation system abnormality sign diagnosis system
WO2022189800A1 (en) Pitch bearing condition monitoring
JP2022157865A (en) Lubrication defect determination device for roller bearing, lubrication defect determination method, and program
JP7211852B2 (en) ROLLING BEARING CONDITION MONITORING DEVICE AND ROLLING BEARING CONDITION MONITORING METHOD
EP4368959A1 (en) State monitoring apparatus for mechanical apparatus, wind power generation apparatus, state monitoring method, and program
JP2004218814A (en) Bearing device
Gębura Four models of tribological wear of turbine jet engine bearings based on methods of electrical generator signal analysis
JP2023009579A (en) Monitoring device of contact strength inside rolling bearing, wind turbine generator, monitoring method of contact strength, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772328

Country of ref document: EP

Kind code of ref document: A1