WO2018173702A1 - Hygroscopic granulated wool and batting containing same granulated wool - Google Patents

Hygroscopic granulated wool and batting containing same granulated wool Download PDF

Info

Publication number
WO2018173702A1
WO2018173702A1 PCT/JP2018/008103 JP2018008103W WO2018173702A1 WO 2018173702 A1 WO2018173702 A1 WO 2018173702A1 JP 2018008103 W JP2018008103 W JP 2018008103W WO 2018173702 A1 WO2018173702 A1 WO 2018173702A1
Authority
WO
WIPO (PCT)
Prior art keywords
hygroscopic
fiber
granular cotton
fibers
granulated wool
Prior art date
Application number
PCT/JP2018/008103
Other languages
French (fr)
Japanese (ja)
Inventor
西崎直哉
藤本克也
Original Assignee
日本エクスラン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エクスラン工業株式会社 filed Critical 日本エクスラン工業株式会社
Priority to CN201880019667.2A priority Critical patent/CN110446808B/en
Priority to JP2018536212A priority patent/JP6399378B1/en
Priority to KR1020197023502A priority patent/KR102378343B1/en
Publication of WO2018173702A1 publication Critical patent/WO2018173702A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/02Cotton wool; Wadding
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/02Layered materials
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/12Hygroscopic; Water retaining
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G9/00Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/04Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres
    • D04H1/06Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres by treatment to produce shrinking, swelling, crimping or curling of fibres
    • D04H1/073Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic System
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/63Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with hydroxylamine or hydrazine

Abstract

Hygroscopic fibers have low loft or resilience, which makes development thereof into a batting problematic. Although several techniques are known for enhancing loft, only initial loft is secured, and there is a significant tendency for loft to decrease due to moisture, repeated use, passage of time, and other factors. The present invention was developed in view of the current state of the prior art, and the purpose thereof is to provide a hygroscopic granulated wool and a batting containing the granulated wool, whereby hygroscopic properties and continuous loft are obtained at the same time. The present invention is a granulated wool containing a surface layer part comprising a polymer having a cross-linked structure and a carboxyl group, and a center part comprising an acrylonitrile-based polymer, the hygroscopic granulated wool being characterized in that the volumetric expansion rate indicating the degree of expansion of the volume thereof after a fixed load is removed with respect to the volume thereof under the load is 15% or greater, and the moisture absorption coefficient thereof in an environment at 20°C and a relative humidity of 65% is 4% or greater.

Description

吸湿性粒状綿および該粒状綿を含有する中綿Hygroscopic granular cotton and batting containing the granular cotton
本発明は吸湿性と持続的な嵩高性を両立する吸湿性粒状綿および該粒状綿を含有する中綿に関する。 The present invention relates to a hygroscopic granular cotton having both hygroscopicity and sustained bulkiness, and a batting containing the granular cotton.
従来から吸放湿性繊維を衣料用や寝具用の中綿に利用することが提案されている(特許文献1)。吸放湿性繊維を用いた中綿は、吸放湿性による湿度調節や吸湿に伴う発熱を利用した保温などの機能が期待されるものである。しかし、吸放湿性繊維は嵩高性や反発性などが低く、中綿へ展開する上での大きな課題となっている。 Conventionally, it has been proposed to use moisture-absorbing / releasing fibers for clothing and bedding (Patent Document 1). The batting using moisture-absorbing / releasing fibers is expected to have functions such as humidity control by moisture-absorbing / releasing properties and heat retention using heat generated by moisture absorption. However, moisture-absorbing / releasing fibers have low bulkiness and resilience, and are a major issue in developing into batting.
この課題に対して、特許文献2では、吸放湿性繊維を改質することによって、嵩高性を向上させる技術が開示されている。また、特許文献3では、吸放湿性繊維の捲縮を高めることによって、嵩高性を向上させる技術が開示されている。さらに、特許文献4では、吸放湿性繊維を他の合成繊維とともに粒状にし、これらを多数集めることによって、嵩高性を向上させる技術が開示されている。 In response to this problem, Patent Document 2 discloses a technique for improving bulkiness by modifying a moisture absorbing / releasing fiber. Moreover, in patent document 3, the technique which improves bulkiness by raising the crimp of a moisture absorption / release fiber is disclosed. Furthermore, Patent Document 4 discloses a technique for improving the bulkiness by making hygroscopic fibers granular with other synthetic fibers and collecting a large number of these.
特開平10-313995号公報Japanese Patent Laid-Open No. 10-313995 国際公開第2013/002367号パンフレットInternational Publication No. 2013/002367 Pamphlet 国際公開第2015/041275号パンフレットInternational Publication No. 2015/041275 Pamphlet 特開2003-286638号公報JP 2003-286638 A
しかし、特許文献2~4の技術においては、初期の嵩高性は確保できるものの、吸湿、繰り返し使用、経時などによって、嵩高性が低下していく傾向が大きい。本発明は、かかる従来技術の現状に鑑みて創案されたものであり、その目的は、吸湿性と持続的な嵩高性を両立する吸湿性粒状綿および該粒状綿を含有する中綿を提供することにある。 However, in the techniques of Patent Documents 2 to 4, although the initial bulkiness can be secured, the bulkiness tends to decrease due to moisture absorption, repeated use, and aging. The present invention was created in view of the current state of the prior art, and its object is to provide a hygroscopic granular cotton having both hygroscopicity and sustained bulkiness, and a filling containing the granular cotton. It is in.
本発明者らは、上述の目的を達成するために鋭意検討を進めた結果、粒状綿の表面から突出する毛羽を少なくすることにより、吸湿、圧力、変形などで粒状綿同士が押しつけられた際に粒状綿同士の絡みが強まることを抑制でき、嵩を回復しやすくなることを見出して本発明に到達した。 As a result of diligent investigations to achieve the above-mentioned object, the present inventors have reduced the number of fluff protruding from the surface of the granular cotton, and when the granular cotton is pressed against each other by moisture absorption, pressure, deformation, etc. It has been found that the entanglement between the granular cottons can be suppressed and the bulk can be easily recovered.
即ち、本発明は以下の手段により達成される。
(1) 架橋構造及びカルボキシル基を有する重合体からなる表層部と、アクリロニトリル系重合体からなる中心部とからなる吸湿性繊維を含有する粒状綿であって、下記の測定方法による体積膨張率が15%以上であり、かつ、20℃、相対湿度65%の環境下における吸湿率が4%以上であることを特徴とする吸湿性粒状綿。
<測定方法>
20℃、相対湿度65%RHの恒温恒湿機に24時間以上入れて調湿した試料を1000mlのメスシリンダー(内径63mm)の1000mlの目盛り位置まで投入する。次いで、試料の上に前記内径よりもやや小さい円形台紙(0.8g)を置き、その上に50g分銅をゆっくりと置く。分銅の沈み込みが静止するまで待ち、円形台紙の位置をメスシリンダーの目盛から読み取る(H1)。次いで、分銅を除き、1分間経過後の円形台紙の位置をメスシリンダーの目盛から読み取る(H2)。以上から、次式により体積膨張率を算出する。
 体積膨張率[%]=(H2-H1)/H1×100
(2) 前記吸湿性繊維の含有量が10~70質量%であることを特徴とする(1)に記載の吸湿性粒状綿。
(3) 前記吸湿性繊維のヤング率が7~20cN/dtexであり、かつ、下記式で示される数値Aが0.050以上0.080未満であることを特徴とする(1)または(2)に記載の吸湿性粒状綿。
[式] A=カルボキシル基量[mmol/g]/繊維断面における表層部断面積の割合[%]
(5) (1)~(3)のいずれかに記載の吸湿性粒状綿を含有することを特徴とする中綿。
That is, the present invention is achieved by the following means.
(1) A granular cotton containing hygroscopic fibers composed of a surface layer portion made of a polymer having a crosslinked structure and a carboxyl group and a central portion made of an acrylonitrile-based polymer, and having a volume expansion coefficient by the following measuring method. A hygroscopic granular cotton having a moisture absorption rate of 4% or more in an environment of 15% or more and 20 ° C. and a relative humidity of 65%.
<Measurement method>
A sample that has been conditioned for at least 24 hours in a constant temperature and humidity machine at 20 ° C. and a relative humidity of 65% RH is put into a 1000 ml scale position of a 1000 ml graduated cylinder (inner diameter 63 mm). Next, a circular mount (0.8 g) slightly smaller than the inner diameter is placed on the sample, and a 50 g weight is slowly placed thereon. Wait until the weight sinks, and read the position of the circular mount from the scale of the graduated cylinder (H1). Next, the weight is removed, and the position of the circular mount after one minute has elapsed is read from the scale of the graduated cylinder (H2). From the above, the volume expansion coefficient is calculated by the following equation.
Volume expansion coefficient [%] = (H2−H1) / H1 × 100
(2) The hygroscopic granular cotton according to (1), wherein the content of the hygroscopic fiber is 10 to 70% by mass.
(3) The Young's modulus of the hygroscopic fiber is 7 to 20 cN / dtex, and the numerical value A represented by the following formula is 0.050 or more and less than 0.080, (1) or (2 The hygroscopic granular cotton described in 1.).
[Formula] A = Carboxyl group amount [mmol / g] / Ratio of surface layer cross section in fiber cross section [%]
(5) A batting comprising the hygroscopic granular cotton according to any one of (1) to (3).
本発明の吸湿性粒状綿は、吸湿性と持続的な嵩高性を両立するものである。より具体的に言えば、中綿として一般的なポリエステルよりも吸放湿性能に優れているため蒸れにくく、また、継続使用しても経たりにくく、嵩高性を持続できるものである。かかる性能を有する本発明の吸湿性粒状綿は、中綿として有用であり、特に人体に接触または近接する用途、例えば、布団用中綿、クッションや椅子などの中綿、あるいはスキーウェア、防寒着、コート、ジャンパー、手袋、半纏などの衣料用品の中綿などに好適に利用することができる。 The hygroscopic granular cotton of the present invention has both hygroscopicity and sustained bulkiness. More specifically, since it has better moisture absorption and release performance than general polyester as a batting, it is difficult to stuffy, and it is difficult to pass even if it is continuously used, and it can maintain bulkiness. The hygroscopic granular cotton of the present invention having such performance is useful as a batting, and particularly for applications that come into contact with or close to the human body, such as batting for duvets, batting such as cushions and chairs, or ski wear, winter clothes, coats, It can be suitably used for clothing items such as jumpers, gloves and semi-wraps.
以下に本発明を詳細に説明する。本発明の吸湿性粒状綿は、後述する方法による体積膨張率が15%以上、より好ましくは20%以上、さらに好ましくは25%以上のものである。かかる体積膨張率が15%に満たない粒状綿は、硬すぎてごつごつした風合いであるか、あるいは、繰り返し使用する間に、嵩高性が大きく低下して、中綿として使用した場合、初期に比べて保温性が大きく低下したり、形状が崩れてしまったりするなどの不具合を生じる。一方、体積膨張率の上限としては特に制限はないが、本発明においては100%を超えるような吸湿性粒状綿を作成することは難しいと思われる。 The present invention is described in detail below. The hygroscopic granular cotton of the present invention has a volume expansion coefficient of 15% or more, more preferably 20% or more, still more preferably 25% or more by the method described later. Such a granular cotton having a volume expansion rate of less than 15% is too hard and has a rough texture, or the bulkiness is greatly reduced during repeated use. Problems such as a significant decrease in heat retention or a collapse of the shape occur. On the other hand, although there is no restriction | limiting in particular as an upper limit of a volume expansion coefficient, It seems that it is difficult to produce hygroscopic granular cotton which exceeds 100% in this invention.
また、本発明の吸湿性粒状綿は、20℃×65%RH吸湿率が4%以上、より好ましくは5%以上、さらに好ましくは6%以上のものである。かかる吸湿率が4%に満たない場合には吸湿性能が不十分となり、人体に接触または近接する用途に用いた場合、人体から発散される水蒸気を十分に吸湿できず、蒸れ感が強くなり、ひどくなると水蒸気が凝結してべたつきや汗冷えを起こしたりすることがある。 The hygroscopic granular cotton of the present invention has a 20 ° C. × 65% RH hygroscopicity of 4% or more, more preferably 5% or more, and further preferably 6% or more. When the moisture absorption rate is less than 4%, the moisture absorption performance is insufficient, and when used in an application that comes into contact with or close to the human body, the water vapor emitted from the human body cannot be sufficiently absorbed, resulting in a strong stuffiness. If it becomes severe, water vapor may condense, causing stickiness and cold sweat.
さらに、本発明の吸湿性粒状綿は、架橋構造及びカルボキシル基を有する重合体からなる表層部と、アクリロニトリル系重合体からなる中心部とからなる吸湿性繊維を含有するものである。かかる吸湿性繊維においては、表層部で吸放湿性能が発現し、中心部で一定レベルの繊維の硬さ(へたりにくさ)が保たれる。中心部が表層部と同様に架橋構造及びカルボキシル基を有する重合体からなるものであった場合には、繊維が極めて経たりやすく、嵩高性を維持することが困難となる。 Furthermore, the hygroscopic granular cotton of the present invention contains hygroscopic fibers composed of a surface layer portion made of a polymer having a crosslinked structure and a carboxyl group and a central portion made of an acrylonitrile-based polymer. In such a hygroscopic fiber, moisture absorption / release performance is exhibited in the surface layer portion, and a certain level of fiber hardness (hardness) is maintained in the central portion. When the central part is made of a polymer having a crosslinked structure and a carboxyl group as in the case of the surface layer part, the fiber is very easy to pass and it is difficult to maintain bulkiness.
吸湿性粒状綿に含有される上記吸湿性繊維の割合としては、好ましくは10~70質量%、より好ましくは15~40質量%、さらに好ましくは20~35質量%である。10質量%に満たない場合には吸湿性粒状綿の吸放湿性能が不十分となる場合がある。70質量%を超える場合には吸湿性粒状綿の嵩高性やその持続性が不足する場合がある。また、上記吸湿性繊維以外に用いる繊維としては、ポリエステル繊維、ポリプロピレン繊維、ポリエチレン繊維、ポリアミド繊維、アクリル繊維、セルロース系繊維、綿、羊毛、絹などを挙げることができる。なかでもポリエステル繊維は嵩高性の向上や持続性に有効であり好ましく用いられる。 The proportion of the hygroscopic fibers contained in the hygroscopic granular cotton is preferably 10 to 70% by mass, more preferably 15 to 40% by mass, and further preferably 20 to 35% by mass. If it is less than 10% by mass, the moisture absorption / release performance of the hygroscopic granular cotton may be insufficient. If it exceeds 70% by mass, the bulkiness and sustainability of the hygroscopic granular cotton may be insufficient. Examples of fibers used in addition to the hygroscopic fibers include polyester fibers, polypropylene fibers, polyethylene fibers, polyamide fibers, acrylic fibers, cellulosic fibers, cotton, wool, and silk. Among these, polyester fibers are preferably used because they are effective in improving bulkiness and sustainability.
また、本発明に採用する吸湿性繊維の繊度としては、好ましくは1~6dtex、より好ましくは1.7~5dtex、さらに好ましくは2~4dtexである。1dtexに満たない場合には吸湿性粒状綿の嵩高性やその持続性が不足する場合がある。6dtexを超える場合には粒状綿の形成が困難となる場合がある。 The fineness of the hygroscopic fiber employed in the present invention is preferably 1 to 6 dtex, more preferably 1.7 to 5 dtex, and further preferably 2 to 4 dtex. If it is less than 1 dtex, the bulkiness and sustainability of the hygroscopic granular cotton may be insufficient. If it exceeds 6 dtex, it may be difficult to form granular cotton.
本発明に採用する吸湿性繊維の繊維長としては、粒状綿の形成のしやすさや粒状綿の表面から突出する毛羽を少なくする観点から、好ましくは20~80mm、より好ましくは20~40mmである。他の繊維を併用する場合、当該他の繊維の繊維長は、本発明に採用する吸湿性繊維と同程度にするのが好ましい。 The fiber length of the hygroscopic fiber employed in the present invention is preferably 20 to 80 mm, more preferably 20 to 40 mm, from the viewpoint of easy formation of granular cotton and the reduction of fluff protruding from the surface of the granular cotton. . When other fibers are used in combination, the fiber length of the other fibers is preferably the same as that of the hygroscopic fiber employed in the present invention.
次に、本発明に採用する吸湿性繊維のヤング率としては、好ましくは7~20cN/dtex、より好ましくは7.5~18cN/dtex、さらに好ましくは8~15cN/dtexである。ヤング率が7~20cN/dtexの範囲内である場合には、粒状綿を形成しやすく、また、その形状も米粒状やオタマジャクシ状などのいびつな形状ではなく、ほぼ球に近い形で得られやすくなる。さらに、粒状綿の表面から突出する毛羽を少なくすることができ、圧縮された場合などにも互いが絡みにくく、良好な嵩の回復を示しやすくなる。 Next, the Young's modulus of the hygroscopic fiber employed in the present invention is preferably 7 to 20 cN / dtex, more preferably 7.5 to 18 cN / dtex, and still more preferably 8 to 15 cN / dtex. When the Young's modulus is within the range of 7 to 20 cN / dtex, it is easy to form granular cotton, and the shape is not an irregular shape such as a rice grain shape or a tadpole shape, but can be obtained in a shape close to a sphere. It becomes easy. Furthermore, the fluff which protrudes from the surface of granular cotton can be decreased, and even when compressed, etc., each other is less likely to be entangled, and it is easy to show a good bulk recovery.
また、本発明に採用する吸湿性繊維の捲縮率としては、好ましくは3~12%、より好ましくは4~9%であり、捲縮数としては、好ましくは4~12山/25mm、より好ましくは5~10山/25mmである。かかる捲縮率と捲縮数の範囲であれば、粒状化に際して繊維同士の絡みが適度なレベルとなり、粒状綿中に吸湿性繊維が効率よく取り込まれ、粒状綿の表面から突出する毛羽を少なくしつつ、また、米粒状やオタマジャクシ状などのいびつな形状ではなく、ほぼ球に近い形で得られやすくなる。 The crimp rate of the hygroscopic fiber employed in the present invention is preferably 3 to 12%, more preferably 4 to 9%, and the number of crimps is preferably 4 to 12 peaks / 25 mm, more Preferably, it is 5 to 10 mountain / 25 mm. If the crimp ratio and the number of crimps are in the range, the entanglement between the fibers becomes an appropriate level during granulation, the hygroscopic fibers are efficiently taken into the granular cotton, and the fluff protruding from the surface of the granular cotton is reduced. However, it is also easy to obtain a shape that is almost a sphere, rather than an irregular shape such as rice grain or tadpole.
また、本発明に採用する吸湿性繊維は、下記式で示される数値Aが好ましくは0.050以上0.080未満であり、より好ましくは0.055以上0.070未満である。
[式] A=カルボキシル基量[mmol/g]/繊維断面における表層部断面積の割合[%]
In the hygroscopic fiber employed in the present invention, the numerical value A represented by the following formula is preferably 0.050 or more and less than 0.080, more preferably 0.055 or more and less than 0.070.
[Formula] A = Carboxyl group amount [mmol / g] / Ratio of surface layer cross section in fiber cross section [%]
ここで、数値Aは、繊維表層部中のカルボキシル基の濃度に相関する数値である。この数値が大きいほど極性を有する官能基であるカルボキシル基が繊維表面上に高い濃度で存在することになるため、粒状綿を形成する際の静電気が抑えられ、オタマジャクシ状のようないびつな形状ではなく、ほぼ球に近い形で得られやすくなる。かかる効果を得るためには、数値Aが0.050以上であることが好ましく、より好ましくは0.055以上である。しかし、数値Aが0.08以上の場合には吸湿により繊維表層部が粘着性を帯び、繊維同士が固着しやすくなりやすいため、粒状綿のへたりが大きくなったり、粒状化で米粒状となったり、その影響で粒状綿から併用する他繊維が飛び出す割合が増えたりする場合がある。 Here, the numerical value A is a numerical value correlated with the concentration of the carboxyl group in the fiber surface layer portion. The larger this value, the higher the concentration of carboxyl groups, which are polar functional groups, on the fiber surface, so static electricity during the formation of granular cotton can be suppressed, and in a rugged shape like a tadpole. It becomes easy to obtain almost in the shape of a sphere. In order to obtain such an effect, the numerical value A is preferably 0.050 or more, and more preferably 0.055 or more. However, when the numerical value A is 0.08 or more, the fiber surface layer portion becomes sticky due to moisture absorption, and the fibers tend to stick to each other. Or the ratio of the other fibers that are used together from the granular cotton may jump out due to the influence.
また、架橋構造及びカルボキシル基を有する重合体におけるカルボキシル基のカウンターイオンとしては、リチウム、ナトリウム、カリウムなどのアルカリ金属の陽イオン、マグネシウム、カルシウムなどのアルカリ土類金属の陽イオン、マンガン、銅、亜鉛、銀などのその他の金属の陽イオン、アンモニウムイオン、水素イオンなどから1種あるいは複数種を必要な特性に応じて選択することができる。例えば、ナトリウム、カリウムの場合には、嵩高性は高くなりにくいものの、吸湿速度と吸湿量が大きくなり、多価の金属イオンであるマグネシウム、カルシウム、亜鉛などを採用した場合には、吸湿速度は遅くなるものの、嵩高性が高くなる傾向となる。 In addition, as a counter ion of a carboxyl group in a polymer having a crosslinked structure and a carboxyl group, a cation of an alkali metal such as lithium, sodium or potassium, a cation of an alkaline earth metal such as magnesium or calcium, manganese, copper, One or more kinds can be selected according to the required properties from cations of other metals such as zinc and silver, ammonium ions and hydrogen ions. For example, in the case of sodium and potassium, although the bulkiness is difficult to increase, the moisture absorption rate and the amount of moisture absorption increase, and when a polyvalent metal ion such as magnesium, calcium, or zinc is adopted, the moisture absorption rate is Although it becomes slow, it tends to increase the bulkiness.
本発明の吸湿性粒状綿の大きさとしては、好ましくは平均直径が3~9mmであり、より好ましくは4~6mmである。平均直径を3mm未満とする粒状化は難しく、一方、平均直径が9mmを超えると吹き込みなどの製品加工の際に不具合を生じる場合がある。 The hygroscopic granular cotton of the present invention preferably has an average diameter of 3 to 9 mm, more preferably 4 to 6 mm. Granulation with an average diameter of less than 3 mm is difficult. On the other hand, if the average diameter exceeds 9 mm, problems may occur during product processing such as blowing.
本発明の吸湿性粒状綿の比容積としては、十分な嵩高性を得る点から、好ましくは100cm/g以上、より好ましくは150cm/g以上、さらに好ましくは200cm/g以上である。比容積の上限としては特に制限はないが、本発明において500cm/gを超えるような吸湿性粒状綿を作成することは難しいと思われる。 The specific volume of the hygroscopic granular cotton of the present invention is preferably 100 cm 3 / g or more, more preferably 150 cm 3 / g or more, and further preferably 200 cm 3 / g or more from the viewpoint of obtaining sufficient bulkiness. Although there is no restriction | limiting in particular as an upper limit of a specific volume, It seems that it is difficult to produce a hygroscopic granular cotton which exceeds 500 cm < 3 > / g in this invention.
次に、本発明に採用する吸湿性繊維の製造方法としては、アクリロニトリル系繊維の表層部に架橋導入処理と加水分解処理を施す方法を採用することができる。原料となるアクリロニトリル系繊維は、アクリロニトリル系重合体から公知の方法で製造することができる。アクリロニトリル系重合体は、アクリロニトリルが50質量%以上であることが好ましく、より好ましくは80質量%以上、さらに好ましくは85質量%以上である。後述するように、架橋構造はアクリロニトリル系重合体のニトリル基と架橋剤の反応によって形成されるため、アクリロニトリル系重合体中のアクリロニトリルの含有量が少ない場合は、架橋構造を導入できる量が少なくなり、加工や実用面において繊維強度が不足するおそれがある。 Next, as a method for producing the hygroscopic fiber employed in the present invention, a method of subjecting the surface layer portion of the acrylonitrile fiber to a crosslinking introduction treatment and a hydrolysis treatment can be employed. The acrylonitrile fiber used as a raw material can be produced from an acrylonitrile polymer by a known method. The acrylonitrile polymer preferably has an acrylonitrile content of 50% by mass or more, more preferably 80% by mass or more, and still more preferably 85% by mass or more. As will be described later, since the crosslinked structure is formed by the reaction of the nitrile group of the acrylonitrile polymer and the crosslinking agent, when the acrylonitrile content in the acrylonitrile polymer is small, the amount that the crosslinked structure can be introduced decreases. The fiber strength may be insufficient in processing and practical use.
上記のようなアクリロニトリル系繊維に対して表層部に架橋構造が導入される。架橋構造の導入には、従来公知の架橋剤を使用してもよいが、架橋構造の導入効率の点から窒素含有化合物を使用することが好ましい。窒素含有化合物としては、2個以上の1級アミノ基を有するアミノ化合物やヒドラジン系化合物を使用することが好ましい。2個以上の1級アミノ基を有するアミノ化合物としては、エチレンジアミン、ヘキサメチレンジアミンなどのジアミン系化合物、ジエチレントリアミン、3,3’-イミノビス(プロピルアミン)、N-メチル-3,3’-イミノビス(プロピルアミン)などのトリアミン系化合物、トリエチレンテトラミン、N,N’-ビス(3-アミノプロピル)-1,3-プロピレンジアミン、N,N’-ビス(3-アミノプロピル)-1,4-ブチレンジアミンなどのテトラミン系化合物、ポリビニルアミン、ポリアリルアミンなどであって2個以上の1級アミノ基を有するポリアミン系化合物などが例示される。また、ヒドラジン系化合物としては、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、臭化水素酸ヒドラジン、ヒドラジンカーボネートなどが例示される。なお、1分子中の窒素原子の数の上限は特に限定されないが、12個以下であることが好ましく、さらに好ましくは6個以下であり、特に好ましくは4個以下である。1分子中の窒素原子の数が上記上限を超えると、架橋剤分子が大きくなり、繊維内に架橋構造を導入しにくくなる場合がある。架橋構造を導入する条件としては、特に限定されるものではなく、採用する架橋剤とアクリロニトリル系繊維との反応性や架橋構造の量などを勘案し、適宜選定することができる。例えば、架橋剤としてヒドラジン系化合物を用いる場合は、ヒドラジン濃度として0.1~10質量%となるように上記のヒドラジン系化合物を添加した水溶液に、上述したアクリロニトリル系繊維を浸漬し、80~150℃、2~10時間で処理する方法などが挙げられる。 A crosslinked structure is introduced into the surface layer of the acrylonitrile fiber as described above. For the introduction of the crosslinked structure, a conventionally known crosslinking agent may be used, but it is preferable to use a nitrogen-containing compound from the viewpoint of the introduction efficiency of the crosslinked structure. As the nitrogen-containing compound, it is preferable to use an amino compound or a hydrazine compound having two or more primary amino groups. Examples of amino compounds having two or more primary amino groups include diamine compounds such as ethylenediamine and hexamethylenediamine, diethylenetriamine, 3,3′-iminobis (propylamine), N-methyl-3,3′-iminobis ( Triamine compounds such as propylamine), triethylenetetramine, N, N′-bis (3-aminopropyl) -1,3-propylenediamine, N, N′-bis (3-aminopropyl) -1,4- Examples include tetramine compounds such as butylenediamine, polyvinylamine, polyallylamine, and the like, and polyamine compounds having two or more primary amino groups. Examples of the hydrazine compound include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine hydrobromide, hydrazine carbonate, and the like. The upper limit of the number of nitrogen atoms in one molecule is not particularly limited, but is preferably 12 or less, more preferably 6 or less, and particularly preferably 4 or less. When the number of nitrogen atoms in one molecule exceeds the above upper limit, the cross-linking agent molecule becomes large and it may be difficult to introduce a cross-linked structure into the fiber. The conditions for introducing the cross-linked structure are not particularly limited, and can be appropriately selected in consideration of the reactivity between the cross-linking agent employed and the acrylonitrile fiber, the amount of the cross-linked structure, and the like. For example, when a hydrazine compound is used as the crosslinking agent, the acrylonitrile fiber described above is immersed in an aqueous solution to which the hydrazine compound is added so that the hydrazine concentration is 0.1 to 10% by mass. And a method of treating at 2 ° C. for 2 to 10 hours.
架橋構造が導入された後は、アルカリ性金属化合物による加水分解処理が施され、繊維の表層部に存在しているニトリル基が加水分解され、カルボキシル基が形成される。具体的な処理条件としては、上述したカルボキシル基濃度などを勘案し、処理薬剤の濃度、反応温度、反応時間等の諸条件を適宜設定すればよいが、好ましくは0.5~10質量%、さらに好ましくは1~5質量%の処理薬剤水溶液中、温度80~150℃で2~10時間処理する手段が工業的、繊維物性的にも好ましい。本発明においては、上述の架橋導入処理および加水分解処理は、上述のように順に行うより、それぞれの処理薬剤を混合した水溶液を用いて、一括して同時処理することが好ましい。さらに、本発明では、この同時処理において、従来より低濃度のアルカリ性金属化合物を用いる緩い条件で行い、その後の酸処理を従来より高温での厳しい条件で行うことが好ましい。このようにすることにより、本発明の吸湿性繊維は、狭い表層部に従来より多くのカルボキシル基が存在し、中心部に比較的硬いアクリロニトリル系重合体が温存された構造をとることができる。 After the cross-linked structure is introduced, hydrolysis treatment with an alkaline metal compound is performed, and nitrile groups present in the surface layer portion of the fiber are hydrolyzed to form carboxyl groups. Specific treatment conditions may be set as appropriate in consideration of the above-mentioned carboxyl group concentration and the like, and various conditions such as the concentration of the treating agent, reaction temperature, reaction time, etc. may be set as appropriate, preferably 0.5 to 10% by mass, More preferably, a means for treating in a 1 to 5% by mass aqueous treatment chemical solution at a temperature of 80 to 150 ° C. for 2 to 10 hours is preferred from the industrial and fiber properties viewpoints. In the present invention, it is preferable that the above-described cross-linking introduction treatment and hydrolysis treatment are collectively performed simultaneously using an aqueous solution in which the respective treatment chemicals are mixed, rather than sequentially performing as described above. Furthermore, in the present invention, it is preferable that this simultaneous treatment is performed under mild conditions using a lower concentration of alkaline metal compound than before, and the subsequent acid treatment is performed under severer conditions at a higher temperature than before. By doing in this way, the hygroscopic fiber of this invention can take the structure where many carboxyl groups existed in the narrow surface layer part conventionally, and the comparatively hard acrylonitrile-type polymer was preserve | saved in the center part.
形成されたカルボキシル基には、そのカウンターイオンが水素イオン以外の陽イオンである塩型カルボキシル基と、そのカウンターイオンが水素イオンであるH型カルボキシル基がある。高い吸湿率を得るためにカルボキシル基の50%以上を塩型カルボキシル基とすることが望ましい。塩型カルボキシル基とH型カルボキシル基との比率を上記の範囲に調整する方法としては、硝酸塩、硫酸塩、塩酸塩などの金属塩によるイオン交換処理、硝酸、硫酸、塩酸、蟻酸などによる酸処理、あるいは、アルカリ性金属化合物などによるpH調整処理などを施す方法が挙げられる。 The formed carboxyl group includes a salt-type carboxyl group whose counter ion is a cation other than a hydrogen ion, and an H-type carboxyl group whose counter ion is a hydrogen ion. In order to obtain a high moisture absorption rate, it is desirable that 50% or more of the carboxyl groups are salt-type carboxyl groups. Methods for adjusting the ratio of salt-type carboxyl groups to H-type carboxyl groups within the above range include ion exchange treatment with metal salts such as nitrates, sulfates and hydrochlorides, and acid treatments with nitric acid, sulfuric acid, hydrochloric acid, formic acid, etc. Alternatively, a method of performing pH adjustment treatment with an alkaline metal compound or the like can be mentioned.
上述してきた本発明の吸湿性粒状綿の製造方法としては、従来公知の方法、条件を採用することができるが、例えば、次のような方法が挙げられる。まず、上述のようにして得られた吸湿性繊維と必要に応じて併用する繊維を、ガーネットワイヤーが表面に設けられた複数のローラを有するカードなどを用いて開繊を十分に行う。続いて、空気の乱流の起きやすい円筒状の空間の中で複数のフィンを有する回転体が設けられた部屋の中に、開繊を十分に行った繊維を吹き込み所定時間乱流撹拌後に取り出せるようにした装置などで球状体化したり、開繊を十分に行った繊維をある程度大きな部屋に空気の渦流を起こさせながら滞留させて球状体化したりして、吸湿性粒状綿を形成することができる。 As the method for producing the hygroscopic granular cotton of the present invention described above, conventionally known methods and conditions can be employed. For example, the following methods can be mentioned. First, the hygroscopic fibers obtained as described above and fibers that are used in combination as needed are sufficiently opened using a card having a plurality of rollers with garnet wires provided on the surface. Subsequently, fibers that have been sufficiently opened are blown into a room provided with a rotating body having a plurality of fins in a cylindrical space where air turbulence is likely to occur, and can be taken out after turbulent stirring for a predetermined time. It is possible to form hygroscopic granular cotton by spheroidizing with a device such as the above, or by allowing fibers that have been sufficiently opened to stay in a large room while causing vortex of air to spheroidize and spheroidize it can.
また、この他にも、特開2007-169846号公報、特開平10-259559号公報、特開昭61-125377や、機械的シェアを用いる特公昭57-48号公報、特開昭62-33856号公報あるいは特公昭62-27833号公報などの方法も採用できる。 In addition to these, Japanese Patent Application Laid-Open No. 2007-169646, Japanese Patent Application Laid-Open No. 10-259559, Japanese Patent Application Laid-Open No. 61-125377, Japanese Patent Publication No. 57-48 using a mechanical share, Japanese Patent Application Laid-Open No. Sho 62-33856. And the method disclosed in Japanese Patent Publication No. 62-27833 can be employed.
本発明の中綿は、上述してきた本発明の吸湿性粒状綿を単独で用いるほか、他の繊維綿を併用したものであってもよい。ここで、他の繊維綿としては、羽毛、羊毛、獣毛や、絹、綿、ポリエステル繊維、ポリプロピレン繊維、ポリエチレン繊維、ポリアミド繊維、アクリル繊維、セルロース系繊維などの繊維綿や粒状綿などを挙げることができる。かかる本発明の中綿は、人体に接触または近接する用途、例えば、布団用中綿、クッションや椅子などの中綿、あるいはスキーウェア、防寒着、コート、ジャンパー、手袋、半纏などの衣料用品の中綿などに特に好適に利用することができる。 In addition to using the above-described hygroscopic granular cotton of the present invention alone, the batting of the present invention may be a combination of other fiber cotton. Here, examples of other fiber cotton include feathers, wool, animal hair, silk, cotton, polyester fiber, polypropylene fiber, polyethylene fiber, polyamide fiber, acrylic fiber, cellulosic fiber, etc. be able to. Such batting of the present invention is used in contact with or close to the human body, for example, batting for duvets, padding for cushions and chairs, or batting for clothing items such as ski wear, winter clothes, coats, jumpers, gloves and semi-wraps. It can be particularly suitably used.
以下に本発明の理解を容易にするために実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれらにより限定されるものではない。なお、実施例中、部及び百分率は特に断りのない限り質量基準で示す。また、実施例中の特性の評価方法は以下の通りである。 Examples are shown below for facilitating the understanding of the present invention. However, these are merely examples, and the gist of the present invention is not limited thereto. In the examples, parts and percentages are shown on a mass basis unless otherwise specified. Moreover, the evaluation method of the characteristic in an Example is as follows.
<繊度、繊維長、ヤング率(初期引張抵抗度)、捲縮率、捲縮数>
JIS L 1015:2010の「8.4 繊維長」、「8.5 繊度」、「8.11 初期引張抵抗度」、「8.12 けん縮」に従い測定する。
<Fineness, fiber length, Young's modulus (initial tensile resistance), crimp rate, number of crimps>
Measured according to “8.4 Fiber Length”, “8.5 Fineness”, “8.11 Initial Tensile Resistance”, and “8.12 Crimp” of JIS L 1015: 2010.
<数値Aの算出>
1.繊維断面における表層部断面積の割合
試料繊維を、繊維質量に対して2.5%のカチオン染料(Nichilon Black G 200)および2%の酢酸を含有する染色浴に、浴比1:80となるように浸漬し、30分間煮沸処理した後に、水洗、脱水、乾燥する。得られた染色済みの繊維を、繊維軸に垂直に薄くスライスし、繊維断面を光学顕微鏡で観察する。このとき、アクリロニトリル系重合体からなる中心部は黒く染色され、カルボキシル基が多く有する表層部は染料が十分に固定されず緑色になる。繊維断面における、繊維の直径(L1)、および、緑色から黒色へ変色し始める部分を境界として黒く染色されている中心部の直径(L2)を測定し、以下の式により表層部断面積の繊維断面積に占める割合を算出する。なお、10サンプルの平均値をとる。
繊維断面における表層部断面積の割合[%]=[{(L1/2)π-(L2/2)π}/(L1/2)π]×100
<Calculation of numerical value A>
1. Ratio of surface area cross-sectional area in fiber cross section Sample fiber is a bath ratio of 1:80 in a dyeing bath containing 2.5% cationic dye (Nicilon Black G 200) and 2% acetic acid based on the fiber mass. After being soaked and boiled for 30 minutes, it is washed with water, dehydrated and dried. The obtained dyed fiber is sliced thinly perpendicular to the fiber axis, and the fiber cross section is observed with an optical microscope. At this time, the central portion made of the acrylonitrile-based polymer is dyed black, and the surface layer portion having many carboxyl groups becomes green because the dye is not sufficiently fixed. In the fiber cross section, the fiber diameter (L1) and the diameter of the central part (L2) dyed black with the part starting to change color from green to black as a boundary are measured. Calculate the percentage of the cross-sectional area. The average value of 10 samples is taken.
Ratio of cross-sectional area of surface layer portion in fiber cross section [%] = [{(L1 / 2) 2 π− (L2 / 2) 2 π} / (L1 / 2) 2 π] × 100
2.カルボキシル基量
繊維試料約1gを、50mlの1mol/l塩酸水溶液に30分間浸漬する。次いで、繊維試料を、浴比1:500で水に浸漬する。15分後、浴pHが4以上であることを確認したら、乾燥させる(浴pHが4未満の場合は、再度水洗する)。次に、十分乾燥させた繊維試料約0.2gを精秤し(W1[g])、100mlの水を加え、さらに、15mlの0.1mol/l水酸化ナトリウム水溶液、0.4gの塩化ナトリウムおよびフェノールフタレインを添加して撹拌する。15分後、濾過によって試料繊維と濾液に分離し、引き続き試料繊維を、フェノールフタレインの呈色がなくなるまで水洗する。このときの水洗水と濾液をあわせたものを、フェノールフタレインの呈色がなくなるまで0.1mol/l塩酸水溶液で滴定し、塩酸水溶液消費量(V1[ml])を求める。得られた測定値から、次式によって全カルボキシル基量を算出する。
カルボキシル基量[mmol/g]=(0.1×15-0.1×V1)/W1
2. About 1 g of the carboxyl group-weight fiber sample is immersed in 50 ml of a 1 mol / l hydrochloric acid aqueous solution for 30 minutes. The fiber sample is then immersed in water at a bath ratio of 1: 500. When it is confirmed that the bath pH is 4 or more after 15 minutes, the bath is dried (if the bath pH is less than 4, it is washed again with water). Next, about 0.2 g of a sufficiently dried fiber sample is precisely weighed (W1 [g]), 100 ml of water is added, and 15 ml of a 0.1 mol / l sodium hydroxide aqueous solution and 0.4 g of sodium chloride are added. And add phenolphthalein and stir. After 15 minutes, the sample fibers and filtrate are separated by filtration, and the sample fibers are subsequently washed with water until there is no coloration of phenolphthalein. The combined washing water and filtrate at this time are titrated with 0.1 mol / l hydrochloric acid aqueous solution until the phenolphthalein is no longer colored, and the aqueous hydrochloric acid consumption (V1 [ml]) is determined. From the obtained measured value, the total carboxyl group amount is calculated by the following formula.
Amount of carboxyl group [mmol / g] = (0.1 × 15−0.1 × V1) / W1
3.数値A
上記で求めた数値を用いて下記式により算出する。
数値A=カルボキシル基量[mmol/g]/繊維断面における表層部断面積の割合[%]
3. Numerical value A
It calculates by the following formula using the numerical value calculated | required above.
Numerical value A = carboxyl group amount [mmol / g] / ratio of surface layer cross-sectional area in fiber cross section [%]
<塩型カルボキシル基とH型カルボキシル基の比>
上記のカルボキシル基量の測定方法において、最初の1mol/l塩酸水溶液への浸漬およびそれに続く水への浸漬(水洗)を実施しないこと以外は同様にして、H型カルボキシル基量を算出する。かかるH型カルボキシル基量を上記の全カルボキシル基量から差し引くことで、塩型カルボキシル基量を算出し、塩型カルボキシル基とH型カルボキシル基の比を求める。
<Ratio of salt-type carboxyl group to H-type carboxyl group>
In the above method for measuring the amount of carboxyl groups, the amount of H-type carboxyl groups is calculated in the same manner except that the first immersion in 1 mol / l hydrochloric acid aqueous solution and the subsequent immersion in water (water washing) are not performed. By subtracting the amount of H-type carboxyl groups from the total amount of carboxyl groups, the amount of salt-type carboxyl groups is calculated, and the ratio of salt-type carboxyl groups to H-type carboxyl groups is determined.
<比容積>
試料を20℃、相対湿度65%RHの恒温恒湿機に24時間以上入れ、吸湿量が平衡になるまで静置する。次いで、調湿した試料を1000mlのメスシリンダー(内径63mm)に少量ずつ入れて、突きこまないように注意しながら、棒で均一になるように均し、1000mlの目盛り位置まで試料を投入する。次に、投入した試料を取り出し、105℃で5時間乾燥した後の質量(W2[g])を測定する。以上から、次式により比容積を算出する。
比容積[cm/g]=1000/W2
<Specific volume>
The sample is placed in a constant temperature and humidity machine at 20 ° C. and a relative humidity of 65% RH for 24 hours or more, and is allowed to stand until the amount of moisture absorption becomes balanced. Next, put the conditioned sample into a 1000 ml graduated cylinder (inner diameter 63 mm) little by little, level it with a stick, taking care not to squeeze it, and put the sample to the 1000 ml scale position. Next, the input sample is taken out, and the mass (W2 [g]) after drying at 105 ° C. for 5 hours is measured. From the above, the specific volume is calculated by the following equation.
Specific volume [cm 3 / g] = 1000 / W 2
<体積膨張率>
上記の比容積の測定方法と同様にして、試料を1000mlのメスシリンダー(内径63mm)の1000mlの目盛り位置まで投入する。次いで、試料の上に前記内径よりもやや小さい円形台紙(0.8g)を置き、その上に50g分銅をゆっくりと置く。分銅の沈み込みが静止するまで待ち、円形台紙の位置をメスシリンダーの目盛から読み取る(H1)。次いで、分銅を除き、1分間経過後の円形台紙の位置をメスシリンダーの目盛から読み取る(H2)。以上から、次式により体積膨張率を算出する。
体積膨張率[%]=(H2-H1)/H1×100
<Volume expansion coefficient>
In the same manner as in the above specific volume measurement method, the sample is put into the 1000 ml scale position of a 1000 ml graduated cylinder (inner diameter 63 mm). Next, a circular mount (0.8 g) slightly smaller than the inner diameter is placed on the sample, and a 50 g weight is slowly placed thereon. Wait until the weight sinks, and read the position of the circular mount from the scale of the graduated cylinder (H1). Next, the weight is removed, and the position of the circular mount after one minute has elapsed is read from the scale of the graduated cylinder (H2). From the above, the volume expansion coefficient is calculated by the following equation.
Volume expansion coefficient [%] = (H2−H1) / H1 × 100
<20℃×65%RH吸湿率>
試料約2.5gを、熱風乾燥器で105℃、16時間乾燥して質量を測定する(W3[g])。次に、該試料を、温度20℃、相対湿度65%に調節した恒温恒湿器に24時間入れておく。このようにして吸湿した試料の質量を測定する(W4[g])。これらの測定結果から、次式によって20℃×65%RH吸湿率を算出する。
20℃×65%RH吸湿率[%]=(W4-W3)/W3×100
<20 ° C x 65% RH moisture absorption rate>
About 2.5 g of a sample is dried with a hot air dryer at 105 ° C. for 16 hours, and the mass is measured (W3 [g]). Next, the sample is placed in a thermo-hygrostat adjusted to a temperature of 20 ° C. and a relative humidity of 65% for 24 hours. The mass of the sample thus absorbed is measured (W4 [g]). From these measurement results, a 20 ° C. × 65% RH moisture absorption rate is calculated by the following equation.
20 ° C. × 65% RH moisture absorption [%] = (W4−W3) / W3 × 100
<粒状綿の平均直径>
無作為に試料100個を選び、直径をノギスで測定し、平均値を求める。ここで、粒状綿が球状で無い場合は長径と短径の平均値を各試料の直径とする。
<Average diameter of granular cotton>
Select 100 samples at random, measure the diameter with calipers, and determine the average value. Here, when the granular cotton is not spherical, the average value of the major axis and the minor axis is taken as the diameter of each sample.
<粒状綿の形状>
目視による観察によって形状および毛羽の状態を確認した。
<The shape of granular cotton>
The shape and fluff state were confirmed by visual observation.
[製造例1]
アクリロニトリル90質量%、アクリル酸メチルエステル10質量%のアクリロニトリル系重合体(30℃ジメチルホルムアミド中での極限粘度[η]=1.5)を48質量%のロダンソーダ水溶液で溶解して、紡糸原液を調製した。該紡糸原液を常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、単繊維繊度1.7dtexのアクリル繊維を得た。
[Production Example 1]
An acrylonitrile polymer (90% by mass of acrylonitrile and 10% by mass of acrylic acid methyl ester (intrinsic viscosity [η] = 1.5) in dimethylformamide at 30 ° C.) was dissolved in a 48% by mass aqueous rhodium soda solution, Prepared. The spinning solution was spun, washed, drawn, crimped, and heat-treated according to a conventional method to obtain an acrylic fiber having a single fiber fineness of 1.7 dtex.
得られたアクリル繊維に、水加ヒドラジン0.5質量%および水酸化ナトリウム2.0質量%を含有する水溶液中で、100℃×2時間、架橋導入処理および加水分解処理を同時に行い、8質量%硝酸水溶液で、100℃×3時間処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整し、水洗、乾燥することにより、吸湿性繊維Aを得た。得られた吸湿性繊維の詳細と評価結果を表1に示す。なお、かかる繊維の赤外線吸収測定においては、ニトリル基に由来する2250cm-1付近に吸収があり、繊維表層部においてはニトリル基の加水分解が進行しているが、繊維中心部においてはニトリル基が残存していることが確認された。 The obtained acrylic fiber was subjected to crosslinking introduction treatment and hydrolysis treatment simultaneously in an aqueous solution containing 0.5% by mass of hydrazine hydrate and 2.0% by mass of sodium hydroxide for 8 hours. The mixture was treated with a 100% aqueous nitric acid solution at 100 ° C. for 3 hours and washed with water. The obtained fiber was immersed in water, adjusted to pH 9 by adding sodium hydroxide, washed with water and dried to obtain hygroscopic fiber A. The details and evaluation results of the obtained hygroscopic fibers are shown in Table 1. In the infrared absorption measurement of such a fiber, absorption is in the vicinity of 2250 cm −1 derived from the nitrile group, and the hydrolysis of the nitrile group proceeds in the fiber surface layer portion, but the nitrile group is present in the fiber center portion. It was confirmed that it remained.
[製造例2]
製造例1において、水酸化ナトリウムの濃度を1.5質量%とすること以外は同様にして、吸湿性繊維Bを得た。得られた吸湿性繊維の詳細と評価結果を表1に示す。
[Production Example 2]
A hygroscopic fiber B was obtained in the same manner as in Production Example 1 except that the concentration of sodium hydroxide was 1.5% by mass. The details and evaluation results of the obtained hygroscopic fibers are shown in Table 1.
[製造例3]
製造例1において、水酸化ナトリウムの濃度を2.5質量%とすること以外は同様にして、吸湿性繊維Cを得た。得られた吸湿性繊維の詳細と評価結果を表1に示す。
[Production Example 3]
A hygroscopic fiber C was obtained in the same manner as in Production Example 1 except that the concentration of sodium hydroxide was 2.5% by mass. The details and evaluation results of the obtained hygroscopic fibers are shown in Table 1.
[製造例4]
製造例1において、アクリル繊維の単繊維繊度を0.9dtexとし、水加ヒドラジンおよび水酸化ナトリウムを含有する水溶液中での処理を95℃×2時間とすること以外は同様にして、吸湿性繊維Dを得た。得られた吸湿性繊維の詳細と評価結果を表1に示す。
[Production Example 4]
In the same manner as in Production Example 1, except that the single fiber fineness of the acrylic fiber is 0.9 dtex and the treatment in the aqueous solution containing hydrazine hydrate and sodium hydroxide is 95 ° C. × 2 hours, the hygroscopic fiber D was obtained. The details and evaluation results of the obtained hygroscopic fibers are shown in Table 1.
[製造例5]
製造例1において、水酸化ナトリウムの濃度を3.5質量%とすること以外は同様にして、吸湿性繊維Eを得た。得られた吸湿性繊維の詳細と評価結果を表1に示す。
[Production Example 5]
A hygroscopic fiber E was obtained in the same manner as in Production Example 1 except that the concentration of sodium hydroxide was 3.5% by mass. The details and evaluation results of the obtained hygroscopic fibers are shown in Table 1.
[製造例6]
製造例1において、水酸化ナトリウムを添加してpH9に調整する工程を行わないこと以外は同様にして、吸湿性繊維Fを得た。得られた吸湿性繊維の詳細と評価結果を表1に示す。
[Production Example 6]
A hygroscopic fiber F was obtained in the same manner as in Production Example 1 except that sodium hydroxide was added to adjust the pH to 9. The details and evaluation results of the obtained hygroscopic fibers are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例1~5、比較例1~3]
表2に示す割合で各吸湿性繊維とポリエステル繊維(繊度3.3dtex、繊維長38mm、捲縮数5.0山/25mm、捲縮度10.0%)を混合し、ガーネットワイヤーが表面に設けられた複数のローラを有するカードで、開繊を十分に行い、空気の乱流の起きやすい円筒状の空間の中で複数のフィンが着いて回転する回転体が設けられた部屋の中に、繊維を吹き込み所定時間乱流撹拌後に取り出せるようにした装置で、吸湿性粒状綿を得た。得られた粒状綿の特性を表2に示す。
[Examples 1 to 5, Comparative Examples 1 to 3]
Each hygroscopic fiber and polyester fiber (fineness 3.3 dtex, fiber length 38 mm, crimp number 5.0 mountain / 25 mm, crimp degree 10.0%) are mixed at the ratio shown in Table 2, and the garnet wire is on the surface. A card with a plurality of rollers provided in a room with a rotating body that is fully opened and that rotates with a plurality of fins in a cylindrical space where air turbulence is likely to occur. Then, hygroscopic granular cotton was obtained with an apparatus in which fibers were blown in and allowed to be taken out after turbulent stirring for a predetermined time. Table 2 shows the characteristics of the obtained granular cotton.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例1~5ではいずれも良好な吸湿性と嵩高性の復元性を有するものであった。一方、比較例1では、吸湿性繊維の量が少なく十分な吸湿率が得られなかった。比較例2では用いた吸湿性繊維の数値Aが大きいことから、繊維の飛び出しの多い米粒形状となり、体積膨張率に劣るものとなった。比較例3では用いた吸湿性繊維のヤング率が低く、体積膨張率に劣るものとなった。
 
Examples 1 to 5 all had good hygroscopicity and bulky restoring properties. On the other hand, in Comparative Example 1, the amount of hygroscopic fibers was small and a sufficient moisture absorption rate was not obtained. In the comparative example 2, since the numerical value A of the hygroscopic fiber used was large, it became a rice grain shape with many protruding fibers, and the volume expansion rate was inferior. In Comparative Example 3, the Young's modulus of the hygroscopic fiber used was low and the volume expansion coefficient was inferior.

Claims (4)

  1. 架橋構造及びカルボキシル基を有する重合体からなる表層部と、アクリロニトリル系重合体からなる中心部とからなる吸湿性繊維を含有する粒状綿であって、下記の測定方法による体積膨張率が15%以上であり、かつ、20℃、相対湿度65%の環境下における吸湿率が4%以上であることを特徴とする吸湿性粒状綿。
    <測定方法>
    20℃、相対湿度65%RHの恒温恒湿機に24時間以上入れて調湿した試料を1000mlのメスシリンダー(内径63mm)の1000mlの目盛り位置まで投入する。次いで、試料の上に前記内径よりもやや小さい円形台紙(0.8g)を置き、その上に50g分銅をゆっくりと置く。分銅の沈み込みが静止するまで待ち、円形台紙の位置をメスシリンダーの目盛から読み取る(H1)。次いで、分銅を除き、1分間経過後の円形台紙の位置をメスシリンダーの目盛から読み取る(H2)。以上から、次式により体積膨張率を算出する。
     体積膨張率[%]=(H2-H1)/H1×100
    A granular cotton containing hygroscopic fibers composed of a surface layer portion made of a polymer having a crosslinked structure and a carboxyl group and a central portion made of an acrylonitrile-based polymer, and having a volume expansion coefficient of 15% or more by the following measurement method And a hygroscopic granular cotton having a moisture absorption rate of 4% or more in an environment of 20 ° C. and a relative humidity of 65%.
    <Measurement method>
    A sample that has been conditioned for at least 24 hours in a constant temperature and humidity machine at 20 ° C. and a relative humidity of 65% RH is put into a 1000 ml scale position of a 1000 ml graduated cylinder (inner diameter 63 mm). Next, a circular mount (0.8 g) slightly smaller than the inner diameter is placed on the sample, and a 50 g weight is slowly placed thereon. Wait until the weight sinks, and read the position of the circular mount from the scale of the graduated cylinder (H1). Next, the weight is removed, and the position of the circular mount after one minute has elapsed is read from the scale of the graduated cylinder (H2). From the above, the volume expansion coefficient is calculated by the following equation.
    Volume expansion coefficient [%] = (H2−H1) / H1 × 100
  2. 前記吸湿性繊維の含有量が10~70質量%であることを特徴とする請求項1に記載の吸湿性粒状綿。 2. The hygroscopic granular cotton according to claim 1, wherein the content of the hygroscopic fiber is 10 to 70% by mass.
  3. 前記吸湿性繊維のヤング率が7~20cN/dtexであり、かつ、下記式で示される数値Aが0.050以上0.080未満であることを特徴とする請求項1または2に記載の吸湿性粒状綿。
    [式] A=カルボキシル基量[mmol/g]/繊維断面における表層部面積の割合[%]
    The moisture absorption according to claim 1 or 2, wherein the hygroscopic fiber has a Young's modulus of 7 to 20 cN / dtex, and a numerical value A represented by the following formula is 0.050 or more and less than 0.080. Natural cotton.
    [Formula] A = Carboxyl group amount [mmol / g] / Ratio of surface layer area in fiber cross section [%]
  4. 請求項1~3のいずれかに記載の吸湿性粒状綿を含有することを特徴とする中綿。
     
    A batting comprising the hygroscopic granular cotton according to any one of claims 1 to 3.
PCT/JP2018/008103 2017-03-23 2018-03-02 Hygroscopic granulated wool and batting containing same granulated wool WO2018173702A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880019667.2A CN110446808B (en) 2017-03-23 2018-03-02 Hygroscopic granular cotton and filled cotton containing the same
JP2018536212A JP6399378B1 (en) 2017-03-23 2018-03-02 Hygroscopic granular cotton and batting containing the granular cotton
KR1020197023502A KR102378343B1 (en) 2017-03-23 2018-03-02 Hygroscopic granular cotton and batting containing the granular cotton

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057096 2017-03-23
JP2017-057096 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018173702A1 true WO2018173702A1 (en) 2018-09-27

Family

ID=63584228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008103 WO2018173702A1 (en) 2017-03-23 2018-03-02 Hygroscopic granulated wool and batting containing same granulated wool

Country Status (5)

Country Link
JP (1) JP6399378B1 (en)
KR (1) KR102378343B1 (en)
CN (1) CN110446808B (en)
TW (1) TWI771378B (en)
WO (1) WO2018173702A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753910B2 (en) * 1977-09-06 1982-11-15
WO2011010590A1 (en) * 2009-07-22 2011-01-27 日本エクスラン工業株式会社 Moisture-absorbing fiber dyeable with acid dyes and method for producing same
WO2015041275A1 (en) * 2013-09-20 2015-03-26 日本エクスラン工業株式会社 Cross-linked acrylate fiber and fiber structure containing same
JP6078191B1 (en) * 2016-04-22 2017-02-08 東洋紡株式会社 Cotton for bedding
JP6247800B1 (en) * 2016-09-26 2017-12-13 東洋紡株式会社 Hygroscopic exothermic fiber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956163B2 (en) 1997-05-20 2007-08-08 東洋紡績株式会社 futon
JP2003286638A (en) 2002-03-27 2003-10-10 Mizuno Corp Heating material having improved heat retaining property and heat generating property
CN100359055C (en) * 2006-05-26 2008-01-02 天津工业大学 Polyacrylonitrile temperature-regulating fiber, and its manufacturing method
JP4487083B2 (en) * 2008-09-10 2010-06-23 日本エクスラン工業株式会社 Cross-linked acrylate fiber and method for producing the same
CN102002772B (en) * 2010-12-06 2012-09-05 中原工学院 Method for preparing polyacrylonitrile bamboo charcoal composite fiber by in-situ polymerization
EP2727500A4 (en) 2011-06-30 2014-12-17 Toyo Boseki Batting
CN103866413A (en) * 2012-12-11 2014-06-18 罗莱家纺股份有限公司 Moisturizing material and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753910B2 (en) * 1977-09-06 1982-11-15
WO2011010590A1 (en) * 2009-07-22 2011-01-27 日本エクスラン工業株式会社 Moisture-absorbing fiber dyeable with acid dyes and method for producing same
WO2015041275A1 (en) * 2013-09-20 2015-03-26 日本エクスラン工業株式会社 Cross-linked acrylate fiber and fiber structure containing same
JP6078191B1 (en) * 2016-04-22 2017-02-08 東洋紡株式会社 Cotton for bedding
JP6247800B1 (en) * 2016-09-26 2017-12-13 東洋紡株式会社 Hygroscopic exothermic fiber

Also Published As

Publication number Publication date
CN110446808A (en) 2019-11-12
TW201835408A (en) 2018-10-01
JP6399378B1 (en) 2018-10-03
KR102378343B1 (en) 2022-03-24
KR20190126063A (en) 2019-11-08
JPWO2018173702A1 (en) 2019-03-28
CN110446808B (en) 2022-01-14
TWI771378B (en) 2022-07-21

Similar Documents

Publication Publication Date Title
JP6455680B2 (en) Cross-linked acrylate fiber and fiber structure containing the fiber
JP6228511B2 (en) Cross-linked acrylate fiber with good dispersibility
JP6339861B2 (en) Filling, and futon and garment containing the filling
JP6399378B1 (en) Hygroscopic granular cotton and batting containing the granular cotton
JP6247800B1 (en) Hygroscopic exothermic fiber
JP2020070514A (en) Long and short composite spun yarn excellent in moisture absorbing and releasing property and abrasion resistance, and woven or knitted fabric
CN110475924B (en) Filling cotton
JP5169241B2 (en) Hygroscopic composite fiber
JP7210949B2 (en) Moisture-releasing and cooling fiber and fiber structure containing said fiber
JP7177982B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
CN109642349B (en) Moisture-absorbing heat-generating fiber
JP6247801B1 (en) Batting
JP2020084397A (en) Spun yarn and woven and knitted fabric excellent in spinning property and moisture absorption and desorption
JP7177987B2 (en) Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP2022132133A (en) Hydrophobized cross-linked hygroscopic fiber and fiber structure thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018536212

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197023502

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771732

Country of ref document: EP

Kind code of ref document: A1