WO2018173598A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2018173598A1
WO2018173598A1 PCT/JP2018/006065 JP2018006065W WO2018173598A1 WO 2018173598 A1 WO2018173598 A1 WO 2018173598A1 JP 2018006065 W JP2018006065 W JP 2018006065W WO 2018173598 A1 WO2018173598 A1 WO 2018173598A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
aromatic
substituted
general formula
Prior art date
Application number
PCT/JP2018/006065
Other languages
French (fr)
Japanese (ja)
Inventor
匡志 多田
雄太 相良
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2019507459A priority Critical patent/JP7037543B2/en
Publication of WO2018173598A1 publication Critical patent/WO2018173598A1/en

Links

Images

Definitions

  • the present invention relates to an organic electroluminescent device (referred to as an organic EL device).
  • Patent Document 1 discloses an organic EL element using a TTF (Triplet-Triplet Fusion) mechanism, which is one of delayed fluorescence mechanisms.
  • TTF Triplet-Triplet Fusion
  • the TTF mechanism uses the phenomenon that singlet excitons are generated by the collision of two triplet excitons, and it is theoretically thought that the internal quantum efficiency can be increased to 40%.
  • the efficiency is lower than that of a phosphorescent organic EL element, further improvement in efficiency is required.
  • Patent Document 2 discloses an organic EL device using a thermally activated delayed fluorescence (TADF) mechanism.
  • the TADF mechanism utilizes the phenomenon that reverse intersystem crossing from triplet excitons to singlet excitons occurs in materials where the energy difference between singlet and triplet levels is small. It is thought to be increased to 100%.
  • TADF thermally activated delayed fluorescence
  • Such a delayed fluorescence type organic EL device is characterized by high luminous efficiency, but further improvement is required.
  • Patent Document 2 discloses the use of an indolocarbazole compound as a TADF material.
  • Patent Document 3 discloses a compound obtained by deuterating an indolocarbazole compound as shown below.
  • Patent Document 4 discloses the use of a deuterated indolocarbazole compound as a host material.
  • An object of the present invention is to provide a practically useful organic EL device having high efficiency and high driving stability in view of the above-described present situation.
  • the present invention relates to an organic EL device comprising one or more light emitting layers between an anode and a cathode facing each other, wherein at least one light emitting layer comprises a compound represented by the following general formula (1) by thermally activated delayed fluorescence. It is an organic EL element characterized by containing as a material.
  • Z is a condensed aromatic heterocycle represented by formula (2)
  • ring A is an aromatic hydrocarbon ring represented by formula (2a)
  • ring B is represented by (2b). It is a heterocyclic ring, and ring A and ring B are each fused with an adjacent ring at an arbitrary position.
  • Ar 1 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms, or the aromatic hydrocarbon group and the aromatic heterocyclic ring.
  • a linked aromatic group constituted by connecting 2 to 8 aromatic rings of an aromatic group selected from a group.
  • Ar 2 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms, or the aromatic hydrocarbon group and the aromatic heterocyclic group.
  • a linked aromatic group constituted by connecting 2 to 8 aromatic rings of an aromatic group selected from cyclic groups.
  • R 1 is independently an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 44 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or A substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms.
  • n represents an integer of 1 to 2
  • a represents an integer of 0 to 4
  • b represents an integer of 0 to 2.
  • the compound represented by the general formula (1) has at least one deuterium.
  • L in the general formulas (3) to (8) is preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • Ar 2 , a, b and R 1 have the same meaning as in the general formula (1).
  • L is a single bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 10 carbon atoms.
  • Ar 3 is represented by the general formula (9), X represents CR 2 or N, and at least one X represents N.
  • R 2 is hydrogen, an aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 10 carbon atoms.
  • a linked aromatic group constituted by connecting 2 to 5 aromatic rings of an aromatic group selected from the aromatic hydrocarbon group and the aromatic heterocyclic group.
  • R 2 is a linked aromatic group
  • the linked aromatic rings may be the same or different, and may be linear or branched.
  • a represents an integer of 0 to 4
  • b represents an integer of 0 to 2.
  • the compounds represented by the general formulas (3) to (8) have at least one deuterium.
  • the organic EL device of the present invention can contain a host material in the light emitting layer containing the thermally activated delayed fluorescent material represented by the general formula (1).
  • the host material include a compound represented by the following general formula (10).
  • Ar 4 represents a p-valent group generated from benzene, dibenzofuran, dibenzothiophene, carbazole, carborane, triazine, or a compound in which two to three of these are connected.
  • p represents an integer of 1 or 2
  • q represents an integer of 0 to 4.
  • Ar 4 is a p-valent group derived from benzene
  • q represents an integer of 1 to 4.
  • the light emitting layer can contain at least two types of host materials represented by the general formula (10).
  • the excited triplet energy (T1) of the host material is preferably larger than the excited singlet energy (S1) of the thermally activated delayed fluorescent material represented by the general formula (1).
  • the layer represented by the general formula (10) may be contained in a layer adjacent to the light emitting layer.
  • the difference between the excited singlet energy (S1) and the excited triplet energy (T1) of the thermally activated delayed fluorescent material represented by the general formula (1) in the light emitting layer is preferably 0.2 eV or less.
  • the organic EL device of the present invention contains a specific thermally activated delayed fluorescent material in the light emitting layer, it becomes a delayed fluorescent organic EL device with high luminous efficiency and long life.
  • the organic EL device of the present invention has one or more light-emitting layers between opposed anodes and cathodes, and at least one of the light-emitting layers is a thermally activated delayed fluorescence represented by the general formula (1).
  • This organic EL device has an organic layer composed of a plurality of layers between an anode and a cathode facing each other, but at least one of the plurality of layers is a light emitting layer, and the light emitting layer contains a host material as necessary
  • a preferred host material is a compound represented by the above general formula (10).
  • Z is a condensed aromatic heterocycle represented by formula (2)
  • ring A in formula (2) is an aromatic hydrocarbon ring represented by formula (2a)
  • ring B is represented by formula (2b)
  • ring A and ring B are each fused with an adjacent ring at an arbitrary position.
  • n represents an integer of 1 to 2, preferably an integer of 1.
  • the compound represented by the general formula (1) has at least one deuterium. That is, the general formula (1) is represented by, for example, CnHmXq (where X is a heteroatom and q is an integer of 2 or more), but at least one of m H is heavy. Hydrogen D. Preferably, 10% or more, more preferably 20% or more of the m pieces of H on average are D.
  • Ar 1 is an n-valent group
  • Ar 2 is a monovalent group
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms, or the aromatic hydrocarbon group And a linked aromatic group constituted by connecting 2 to 8 aromatic rings of an aromatic group selected from the aromatic heterocyclic group.
  • it is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 20 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 12 carbon atoms, or the aromatic hydrocarbon group and the aromatic heterocyclic ring.
  • Ar 1 and Ar 2 are linked aromatic groups, the linked aromatic rings may be the same or different, and may be linear or branched.
  • the linked aromatic group as used herein refers to a group having a structure in which two or more aromatic rings of an aromatic group selected from an aromatic hydrocarbon group and an aromatic heterocyclic group are bonded by a direct bond. It is understood that the aromatic rings may be different and may be branched.
  • Ar 1 and Ar 2 include benzene, naphthalene, acenaphthene, acenaphthylene, azulene, anthracene, chrysene, pyrene, perylene, phenanthrene, triphenylene, corannulene, coronene, tetracene, pentacene, fluorene, benzo [a] anthracene, benzo [b] fluoranthene, benzo [a] pyrene, indeno [1,2,3-cd] pyrene, dibenzo [a, h] anthracene, picene, tetraphenylene, anthanthrene, 1,12-benzoperylene, heptacene, hexacene, Pyridine, pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, pyrrol
  • Ar 1 is a group generated by taking n hydrogen atoms
  • Ar 2 is a group generated by taking one hydrogen gas.
  • each R 1 is independently an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 44 carbon atoms, It represents a substituted or unsubstituted aromatic hydrocarbon group having 3 to 18 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms.
  • it is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 22 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 3 to 12 carbon atoms, or a substituted or unsubstituted It represents an unsubstituted aromatic heterocyclic group having 3 to 15 carbon atoms. More preferably, it represents a substituted or unsubstituted aromatic hydrocarbon group having 3 to 10 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 10 carbon atoms.
  • a represents an integer of 0 to 4, preferably an integer of 0 to 2, more preferably an integer of 0 to 1.
  • b represents an integer of 0 to 2, preferably an integer of 0 to 1.
  • R 1 examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, diphenylamino, naphthylphenylamino, dinaphthylamino, dianthranylamino, diphenanthrenyl. Amino, phenyl, biphenylyl, terphenylyl, naphthyl, pyridyl, pyrimidyl, triazyl, dibenzofuranyl, dibenzothienyl, carbazolyl and the like can be mentioned.
  • L is a single bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 10 carbon atoms, preferably a single bond, substituted or unsubstituted An unsubstituted aromatic hydrocarbon group having 6 to 10 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 8 carbon atoms, more preferably a single bond, a substituted or unsubstituted phenyl group, Or a substituted or unsubstituted aromatic heterocyclic group having 3 to 6 carbon atoms.
  • L include a single bond, benzene, naphthalene, acenaphthene, acenaphthylene, azulene, pyridine, pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, pyrrole, pyrazole, imidazole, triazole, thiadiazole, pyrazine, furan , Isoxazole, oxazole, oxadiazole, quinoline, isoquinoline, quinoxaline, quinazoline, thiadiazole, benzotriazine, phthalazine, tetrazole, indole, benzofuran, benzothiophene, benzoxazole, benzothiazole, indazole, benzimidazole, benzotriazole, benzoisothiazole , Benzothiadiazole, purine, pyridine,
  • Ar 3 is a group represented by the formula (9).
  • X represents CR 2 or N, and at least one X represents N.
  • R 2 is hydrogen, an aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 10 carbon atoms. Or a connected aromatic group constituted by connecting 2 to 5 aromatic rings of an aromatic group selected from the aromatic hydrocarbon group and the aromatic heterocyclic group.
  • the explanation of the linked aromatic group is the same as the case where Ar 1 and Ar 2 are linked aromatic groups.
  • substituents include an aliphatic hydrocarbon group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms. And an alkylthio group having 1 to 10 carbon atoms and an alkylsilyl group having 3 to 30 carbon atoms.
  • a method for converting at least one hydrogen of the compound represented by the general formula (1) into deuterium is not particularly limited, but a deuterated compound is used as a reaction raw material or a precursor compound, or represented by the general formula (1). And then dehydrogenating the non-deuterium compound in the presence of a Lewis acid H / D exchange catalyst (aluminum trichloride or ethylaluminum chloride, or an acid such as CF 3 COOD or DCl). It can be prepared by treating with a solvating solvent. The degree of deuteration can be determined by NMR analysis and mass spectrometry.
  • An excellent delayed fluorescence organic EL device can be obtained by incorporating the compound represented by the general formula (1) into the light emitting layer as a TADF material.
  • the light emitting layer can contain a host material together with the TADF material, if necessary.
  • a host material By containing a host material, an excellent organic EL device is obtained.
  • the TADF material is also called a dopant.
  • the host material promotes light emission from the TADF material, which is a dopant.
  • the host material desirably has an excited triplet energy (T1) greater than the excited singlet energy (S1) of the TADF material.
  • the difference ( ⁇ E) between the excited singlet energy (S1) and the excited triplet energy (T1) is 0.2 eV or less. It becomes an excellent heat-activated delayed fluorescent material.
  • Ar 4 is a p-valent group, and is generated by removing p hydrogen from benzene, dibenzofuran, dibenzothiophene, carbazole, carborane, triazine, or a linking compound in which 2 to 3 of these are connected. It is a group.
  • the connecting compound is a compound having a structure in which rings of benzene, dibenzofuran, dibenzothiophene, carbazole, or carborane are connected by a direct bond, and a group generated by removing two hydrogens from these compounds is, for example, ⁇ It is represented by Ar-Ar-, -Ar-Ar-Ar-, or -Ar-Ar (Ar)-.
  • Ar is a ring of benzene, dibenzofuran, dibenzothiophene, carbazole, or carborane, and a plurality of Ars may be the same or different.
  • Preferred examples of the linking compound include biphenyl or terphenyl, which is a compound in which two or three benzene rings are linked.
  • Ar 4 is a p-valent group formed by taking p hydrogens from benzene, biphenyl, terphenyl, dibenzofuran, N-phenylcarbazole, carborane, or triazine.
  • p represents an integer of 1 or 2, preferably an integer of 1.
  • q represents an integer of 0 to 4, preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and q is 0 when Ar 4 is a p-valent group derived from benzene. There is no.
  • the compound represented by the general formula (10) has Ar 4 and a carbazole ring.
  • the Ar 4 and carbazole ring may have a substituent as long as the function as a host is not inhibited.
  • Examples of such a substituent include a hydrocarbon group having 1 to 8 carbon atoms and an alkoxy group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms. .
  • an organic EL device capable of delayed fluorescent emission can be obtained.
  • An organic EL device having a more excellent characteristic by including a light-emitting layer containing the thermally activated delayed fluorescent material as a dopant material and containing a host material selected from the compound represented by the general formula (10) Can be provided. Further, the characteristics can be improved by containing two or more kinds of host materials.
  • at least one kind may be a host material selected from compounds represented by the general formula (10).
  • the first host is preferably a compound represented by the general formula (10).
  • the second host may be a compound of the general formula (10) or another host material, but is preferably a compound represented by the general formula (10).
  • S1 and T1 are measured as follows.
  • a sample compound is deposited on a quartz substrate by a vacuum deposition method under a vacuum degree of 10 ⁇ 4 Pa or less to form a deposited film with a thickness of 100 nm.
  • S1 measures the emission spectrum of this deposited film, draws a tangent to the short wavelength side rise of this emission spectrum, the wavelength value ⁇ edge [nm] of the intersection of the tangent and the horizontal axis, Substitute into i) to calculate S1.
  • S1 [eV] 1239.85 / ⁇ edge (i)
  • T1 measures the phosphorescence spectrum of the above deposited film, draws a tangent line to the short wavelength rise of this phosphorescence spectrum, and calculates the wavelength value ⁇ edge [nm] of the intersection of the tangent line and the horizontal axis in the formula (ii) Substituting into to calculate T1.
  • T1 [eV] 1239.85 / ⁇ edge (ii)
  • FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, or may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted on either the cathode side or the cathode side of the light emitting layer, or both can be inserted simultaneously.
  • the organic EL device of the present invention has an anode, a light emitting layer, and a cathode as essential layers, but preferably has a hole injecting and transporting layer and an electron injecting and transporting layer in addition to the essential layers, and further has a light emitting layer and an electron injecting layer. It is preferable to have a hole blocking layer between the transport layers.
  • the hole injection / transport layer means either or both of the hole injection layer and the hole transport layer
  • the electron injection / transport layer means either or both of the electron injection layer and the electron transport layer.
  • the structure opposite to that shown in FIG. 1, that is, the cathode 7, the electron transport layer 6, the light emitting layer 5, the hole transport layer 4 and the anode 2 can be laminated in this order on the substrate 1. Addition and omission are possible.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited, and any substrate that has been conventionally used for an organic EL element can be used.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • anode material in the organic EL element a material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or the pattern accuracy is not required (about 100 ⁇ m or more). May form a pattern through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Or when using the substance which can be apply
  • the transmittance be greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • the cathode material a material made of a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, or a mixture thereof is used.
  • an electron injecting metal a material made of a metal having a small work function (4 eV or less)
  • an alloy a material made of a metal having a small work function (4 eV or less)
  • an alloy referred to as an electron injecting metal
  • an alloy an electrically conductive compound, or a mixture thereof
  • Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this such as a magnesium / silver mixture, magnesium, from the viewpoint of electron injectability and durability against oxidation, etc.
  • a magnesium / silver mixture, magnesium from the viewpoint of electron injectability and durability against oxidation, etc.
  • Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these cathode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance of the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or translucent cathode can be produced by forming the conductive transparent material mentioned in the description of the anode on the cathode.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from the anode and the cathode, respectively.
  • the TADF material of the present invention may be used alone, or the TADF material of the present invention may be used together with a host material.
  • the TADF material of the present invention is an organic light emitting dopant material.
  • Only one kind of organic light emitting dopant material may be contained in the light emitting layer, or two or more kinds may be contained.
  • the content of the TADF material or the organic light-emitting dopant material is preferably 0.1 to 50 wt%, more preferably 1 to 30 wt% with respect to the host material. Since the organic EL device of the present invention utilizes delayed fluorescence, a dopant such as an Ir complex used in a phosphorescent organic EL device is not used.
  • the host material in the light emitting layer known host materials used in phosphorescent light emitting devices and fluorescent light emitting devices can be used, but it is preferable to use a compound represented by the general formula (10).
  • a plurality of host materials may be used in combination.
  • at least one type of host material is preferably selected from the compounds represented by the general formula (10).
  • Known host materials that can be used are compounds having a hole transporting ability, an electron transporting ability, and a high glass transition temperature, and have a S1 larger than T1 of a TADF material or a luminescent dopant material. It is preferable.
  • Such other host materials are known from a large number of patent documents, and can be selected from them.
  • Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, indolocarbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, phenylenediamine derivatives, arylamine derivatives, Various metal complexes represented by metal complexes of styryl anthracene derivatives, fluorenone derivatives, stilbene derivatives, triphenylene derivatives, carborane compounds, porphyrin compounds, phthalocyanine derivatives, 8-quinolinol derivatives and metal complexes of metal phthalocyanines, benzoxazole and benzothiazole derivatives , Poly (N-vinylcarbazole) derivatives, aniline copolymers, thiophene oligomers, polythiophene derivatives, polyphenylene derivative
  • each host can be deposited from different deposition sources, or multiple types of hosts can be deposited simultaneously from one deposition source by premixing before deposition to form a premix. it can.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes in the light emitting layer can be improved by preventing the above.
  • a known hole blocking material can be used for the hole blocking layer, but it is preferable to use a compound represented by the general formula (10). A plurality of hole blocking materials may be used in combination.
  • the electron blocking layer has the function of a hole transport layer in a broad sense. By blocking electrons while transporting holes, the probability of recombination of electrons and holes in the light emitting layer can be improved. .
  • a known electron blocking layer material can be used, but it is preferable to use a compound represented by the general formula (10).
  • the thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted between two adjacent light emitting layers in an element in which two or more light emitting layers are adjacent.
  • a known exciton blocking layer material can be used, but it is preferable to use a compound represented by the general formula (10).
  • the layer adjacent to the light emitting layer there are a hole blocking layer, an electron blocking layer, an exciton blocking layer, etc., but when these layers are not provided, a hole transport layer, an electron transport layer, etc. Become. It is preferable to use the compound represented by the general formula (10) for at least one of the two adjacent layers.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • any known compound can be selected and used.
  • Examples of such hole transport materials include porphyrin derivatives, arylamine derivatives, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives.
  • Porphyrin derivatives, arylamine derivatives, and styryl It is preferable to use an amine derivative, and it is more preferable to use an arylamine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material (which may also serve as a hole blocking material), it is sufficient if it has a function of transmitting electrons injected from the cathode to the light emitting layer.
  • any known compound can be selected and used.
  • polycyclic aromatic derivatives such as naphthalene, anthracene, phenanthroline, tris (8-quinolinolato) aluminum (III) Derivatives, phosphine oxide derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, bipyridine derivatives, quinoline derivatives, oxadiazole derivatives, benzimidazoles Derivatives, benzothiazole derivatives, indolocarbazole derivatives and the like.
  • the method for forming each layer when producing the organic EL device of the present invention is not particularly limited, and may be produced by either a dry process or a wet process.
  • Synthesis Examples 2-8 Compounds 115, 119, 125, 131, 142, 150, or 158 are deuterated in the same manner as in Synthesis Example 1, so that each deuterated compound 115D, 119D, 125D, 131D, 142D, 150D , Or 158D, respectively.
  • the S1 and T1 of the deuterated product and the compound 104 before being deuterated were measured. Furthermore, S1 and T1 of the compounds 215, 217, 238, 243, and mCP were measured. The measurement method and calculation method are the same as those described above.
  • Experimental example 1 The fluorescence lifetime of compound 104D was measured.
  • a compound 104D and a compound 217 are deposited from different deposition sources on a quartz substrate by a vacuum deposition method under a vacuum degree of 10 ⁇ 4 Pa or less, and a co-deposited film having a concentration of 15% by weight of the compound 104D is formed to 100 nm Formed in thickness.
  • the emission spectrum of this thin film was measured, and light emission having a peak at 483 nm was confirmed.
  • the emission lifetime was measured with a small fluorescence lifetime measuring apparatus (Quantaurus-tau manufactured by Hamamatsu Photonics Co., Ltd.) under a nitrogen atmosphere.
  • a fluorescence with an excitation lifetime of 12 ns and a delayed fluorescence of 13 ⁇ s were observed, and it was confirmed that the compound 104D was a compound exhibiting delayed fluorescence.
  • the fluorescence lifetime was measured in the same manner as described above. As a result, delayed fluorescence was observed, and it was confirmed that the material showed delayed fluorescence emission. .
  • the fluorescence lifetime was measured in the same manner, and delayed fluorescence was observed. It was confirmed that there was.
  • Example 1 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 70 nm was formed.
  • HAT-CN was formed to a thickness of 10 nm as a hole injection layer on ITO, and then HT-1 was formed as a hole transport layer to a thickness of 25 nm.
  • a compound (217) was formed to a thickness of 5 nm as an electron blocking layer. Then, the compound (217) as a host and the compound (104D) as a dopant were co-deposited from different vapor deposition sources to form a light emitting layer with a thickness of 30 nm.
  • the compound (238) was formed to a thickness of 5 nm as a hole blocking layer.
  • ET-1 was formed to a thickness of 40 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 1 nm as an electron injection layer on the electron transport layer.
  • aluminum (Al) was formed as a cathode to a thickness of 70 nm on the electron injection layer, and an organic EL device was produced.
  • Examples 2 to 11 and Comparative Examples 1 to 8 An organic EL device was produced in the same manner as in Example 1 except that the dopant and host were changed to the compounds shown in Table 2.
  • Examples 12 and 13 An organic EL device was produced in the same manner as in Example 1 except that the electron blocking layer, the host, and the hole blocking layer were changed to the compounds shown in Table 2.
  • Example 14 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 70 nm was formed.
  • HAT-CN was formed to a thickness of 10 nm on ITO as a hole injection layer
  • HT-1 was formed to a thickness of 25 nm as a hole transport layer.
  • a compound (217) was formed to a thickness of 5 nm as an electron blocking layer.
  • the compound (217) as a host, the compound (238) as a second host, and the compound (104D) as a dopant were co-deposited from different vapor deposition sources to form a light emitting layer with a thickness of 30 nm.
  • the co-evaporation was performed under the vapor deposition conditions where the concentration of the compound (104D) was 15 wt% and the weight ratio of the host to the second host was 50:50.
  • the compound (238) was formed to a thickness of 5 nm as a hole blocking layer.
  • ET-1 was formed to a thickness of 40 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 1 nm as an electron injection layer on the electron transport layer.
  • aluminum (Al) was formed as a cathode to a thickness of 70 nm on the electron injection layer, and an organic EL device was produced.
  • Table 2 shows compounds used as a dopant, a host, a second host, a hole blocking layer, and an electron blocking layer.
  • Table 3 shows the maximum emission wavelength, external quantum efficiency, and lifetime of the emission spectrum of the produced organic EL device.
  • the maximum light emission wavelength and external quantum efficiency are values when the drive current density is 2.5 mA / cm 2 , and are initial characteristics.
  • the lifetime was measured as the time required for the luminance to decay to 95% of the initial luminance at an initial luminance of 500 cd / m 2 .
  • the organic EL device using the deuterated TADF material represented by the general formula (1) as the luminescent dopant is superior to the case where the non-deuterated TADF material is used as the luminescent dopant. It can be seen that it has a long life characteristic. This is thought to be due to the fact that the bond-dissociation energy increased due to the deuteration of carbon-hydrogen bonds to carbon-deuterium bonds, and the deterioration of the TADF material due to carbon-hydrogen bond cleavage was suppressed. It is done.
  • the organic EL element of the present invention is a delayed fluorescence type organic EL element having a high light emission efficiency and a long lifetime, and is practically useful as a display element or a light source element for a display such as a mobile phone.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a thermally activated delayed fluorescence-type organic EL element having high luminous efficiency and a long service life. An organic EL element having light-emitting layers arranged between an anode and a cathode which face each other, wherein at least one of the light-emitting layers contains a indolocarbazole compound that serves as a thermally activated delayed fluorescence material or both of the indolocarbazole compound and a host material, the indolocarbazole compound is represented by general formula (1), Z in the formula represents an indolocarbazole ring represented by formula (2), and at least one of hydrogen atoms in the indolocarbazole compound is substituted by a deuterium atom.

Description

有機電界発光素子Organic electroluminescence device
 本発明は有機電界発光素子(有機EL素子という)に関するものである。 The present invention relates to an organic electroluminescent device (referred to as an organic EL device).
 有機EL素子に電圧を印加することで、陽極から正孔が、陰極からは電子がそれぞれ発光層に注入される。そして発光層において、注入された正孔と電子が再結合し、励起子が生成される。この際、電子スピンの統計則により、一重項励起子及び三重項励起子が1:3の割合で生成する。一重項励起子による発光を用いる蛍光発光型の有機EL素子は、内部量子効率は25%が限界であるといわれている。一方で三重項励起子による発光を用いる燐光発光型の有機EL素子は、一重項励起子から項間交差が効率的に行われた場合には、内部量子効率が100%まで高められることが知られている。
 近年では、燐光型有機EL素子の長寿命化技術が進展し、携帯電話等のディスプレイへ応用されつつある。しかしながら青色の有機EL素子に関しては、実用的な燐光発光型の有機EL素子は開発されておらず、高効率であり、且つ長寿命な青色有機EL素子の開発が求められている。
By applying a voltage to the organic EL element, holes from the anode and electrons from the cathode are injected into the light emitting layer. In the light emitting layer, the injected holes and electrons are recombined to generate excitons. At this time, singlet excitons and triplet excitons are generated at a ratio of 1: 3 according to the statistical rule of electron spin. A fluorescence emission type organic EL device using light emission by singlet excitons is said to have a limit of 25% in internal quantum efficiency. On the other hand, phosphorescent organic EL devices that use triplet exciton emission are known to increase internal quantum efficiency to 100% when intersystem crossing is efficiently performed from singlet excitons. It has been.
In recent years, techniques for extending the lifetime of phosphorescent organic EL elements have been developed and are being applied to displays such as mobile phones. However, regarding the blue organic EL element, a practical phosphorescent organic EL element has not been developed, and development of a blue organic EL element having high efficiency and a long life is required.
 さらに最近では、遅延蛍光を利用した高効率の遅延蛍光型の有機EL素子の開発がなされている。例えば特許文献1には、遅延蛍光のメカニズムの1つであるTTF(Triplet-Triplet Fusion)機構を利用した有機EL素子が開示されている。TTF機構は2つの三重項励起子の衝突によって一重項励起子が生成する現象を利用するものであり、理論上内部量子効率を40%まで高められると考えられている。しかしながら、燐光発光型の有機EL素子と比較すると効率が低いため、更なる効率の改良が求められている。 More recently, high-efficiency delayed fluorescence organic EL elements using delayed fluorescence have been developed. For example, Patent Document 1 discloses an organic EL element using a TTF (Triplet-Triplet Fusion) mechanism, which is one of delayed fluorescence mechanisms. The TTF mechanism uses the phenomenon that singlet excitons are generated by the collision of two triplet excitons, and it is theoretically thought that the internal quantum efficiency can be increased to 40%. However, since the efficiency is lower than that of a phosphorescent organic EL element, further improvement in efficiency is required.
 一方で特許文献2では、熱活性化遅延蛍光(TADF;Thermally Activated Delayed Fluorescence)機構を利用した有機EL素子が開示されている。TADF機構は一重項準位と三重項準位のエネルギー差が小さい材料において三重項励起子から一重項励起子への逆項間交差が生じる現象を利用するものであり、理論上内部量子効率を100%まで高められると考えられている。しかしながら燐光発光型素子と同様に寿命特性の更なる改善が求められている。このような遅延蛍光型の有機EL素子は、発光効率が高いという特徴があるが、更なる改良が求められている。 On the other hand, Patent Document 2 discloses an organic EL device using a thermally activated delayed fluorescence (TADF) mechanism. The TADF mechanism utilizes the phenomenon that reverse intersystem crossing from triplet excitons to singlet excitons occurs in materials where the energy difference between singlet and triplet levels is small. It is thought to be increased to 100%. However, there is a demand for further improvement in the life characteristics as in the phosphorescent light emitting device. Such a delayed fluorescence type organic EL device is characterized by high luminous efficiency, but further improvement is required.
 特許文献2では、インドロカルバゾール化合物について、TADF材料としての使用を開示している。 Patent Document 2 discloses the use of an indolocarbazole compound as a TADF material.
 特許文献3では、下記に示すようなインドロカルバゾール化合物を重水素化した化合物を開示している。
Figure JPOXMLDOC01-appb-C000006
 
Patent Document 3 discloses a compound obtained by deuterating an indolocarbazole compound as shown below.
Figure JPOXMLDOC01-appb-C000006
 特許文献4では、重水素化されたインドロカルバゾール化合物について、ホスト材料としての使用を開示している。 Patent Document 4 discloses the use of a deuterated indolocarbazole compound as a host material.
WO2010/134350号公報WO2010 / 134350 Publication WO2011/070963号公報WO2011 / 070963 Publication WO2011/059463号公報WO2011 / 059463 Publication WO2012/087955号公報WO2012 / 087955 Publication
 有機EL素子をフラットパネルディスプレイ等の表示素子、又は光源に応用するためには素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状を鑑み、高効率、且つ高い駆動安定性を有した実用上有用な有機EL素子を提供することを目的とする。 In order to apply an organic EL element to a display element such as a flat panel display or a light source, it is necessary to improve the light emission efficiency of the element and at the same time to ensure sufficient stability during driving. An object of the present invention is to provide a practically useful organic EL device having high efficiency and high driving stability in view of the above-described present situation.
 本発明は、対向する陽極と陰極の間に1つ以上の発光層を含む有機EL素子において、少なくとも1つの発光層が、下記一般式(1)で表される化合物を熱活性化遅延蛍光発光材料として含有することを特徴とする有機EL素子である。 The present invention relates to an organic EL device comprising one or more light emitting layers between an anode and a cathode facing each other, wherein at least one light emitting layer comprises a compound represented by the following general formula (1) by thermally activated delayed fluorescence. It is an organic EL element characterized by containing as a material.
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
 ここで、Zは式(2)で表される縮合芳香族複素環であり、環Aは式(2a)で表される芳香族炭化水素環であり、環Bは(2b)で表される複素環であり、環A及び環Bはそれぞれ隣接する環と任意の位置で縮合する。Ar1は置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~18の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~8個連結して構成される連結芳香族基である。Ar2は、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~18の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~8個連結して構成される連結芳香族基である。Ar1、Ar2が連結芳香族基である場合、連結する芳香族環は同一であっても異なっていても良く、直鎖上でも分岐状でも良い。R1は独立に炭素数1~10の脂肪族炭化水素基、置換もしくは未置換の炭素数12~44のジアリールアミノ基、置換もしくは未置換の炭素数6~18の芳香族炭化水素基、又は置換もしくは未置換の炭素数3~18の芳香族複素環基である。nは1~2の整数を表し、aは0~4の整数を表し、bは0~2の整数を表す。一般式(1)で表される化合物は少なくとも1個の重水素を有する。 Here, Z is a condensed aromatic heterocycle represented by formula (2), ring A is an aromatic hydrocarbon ring represented by formula (2a), and ring B is represented by (2b). It is a heterocyclic ring, and ring A and ring B are each fused with an adjacent ring at an arbitrary position. Ar 1 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms, or the aromatic hydrocarbon group and the aromatic heterocyclic ring. A linked aromatic group constituted by connecting 2 to 8 aromatic rings of an aromatic group selected from a group. Ar 2 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms, or the aromatic hydrocarbon group and the aromatic heterocyclic group. A linked aromatic group constituted by connecting 2 to 8 aromatic rings of an aromatic group selected from cyclic groups. When Ar 1 and Ar 2 are linked aromatic groups, the aromatic rings to be linked may be the same or different, and may be linear or branched. R 1 is independently an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 44 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or A substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms. n represents an integer of 1 to 2, a represents an integer of 0 to 4, and b represents an integer of 0 to 2. The compound represented by the general formula (1) has at least one deuterium.
 一般式(1)の好ましい態様として、下記一般式(3)~(8)のいずれかがあり、一般式(3)~(6)のいずれかがより好ましい。更に一般式(3)~(8)中のLが置換若しくは未置換の炭素数6~12の芳香族炭化水素基であることが好ましい。 As a preferred embodiment of the general formula (1), there is any of the following general formulas (3) to (8), and any of the general formulas (3) to (6) is more preferable. Further, L in the general formulas (3) to (8) is preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms.
 
Figure JPOXMLDOC01-appb-C000009
 
 
Figure JPOXMLDOC01-appb-C000009
 
 ここで、Ar2、a、b及びR1は一般式(1)と同義である。Lは単結合、置換若しくは未置換の炭素数6~12の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~10の芳香族複素環基である。Ar3は一般式(9)で表され、XはCR2又はNを表し、少なくとも1つのXはNを表す。R2は水素、炭素数3~10の脂肪族炭化水素基、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~10の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~5個連結して構成される連結芳香族基である。R2が連結芳香族基である場合、連結する芳香族環は同一であっても異なっていても良く、直鎖状でも分岐状でも良い。aは0~4の整数を表し、bは0~2の整数を表す。一般式(3)~(8)で表される化合物は少なくとも1個の重水素を有する。 Here, Ar 2 , a, b and R 1 have the same meaning as in the general formula (1). L is a single bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 10 carbon atoms. Ar 3 is represented by the general formula (9), X represents CR 2 or N, and at least one X represents N. R 2 is hydrogen, an aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 10 carbon atoms. Or a linked aromatic group constituted by connecting 2 to 5 aromatic rings of an aromatic group selected from the aromatic hydrocarbon group and the aromatic heterocyclic group. When R 2 is a linked aromatic group, the linked aromatic rings may be the same or different, and may be linear or branched. a represents an integer of 0 to 4, and b represents an integer of 0 to 2. The compounds represented by the general formulas (3) to (8) have at least one deuterium.
 本発明の有機EL素子は、一般式(1)で表される熱活性化遅延蛍光材料を含有する発光層中にホスト材料を含有することができる。
 上記ホスト材料としては、下記一般式(10)で表される化合物がある。
Figure JPOXMLDOC01-appb-C000010
 
 ここで、Ar4はベンゼン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、カルボラン、トリアジン、又はこれらが2~3個連結した化合物から生じるp価の基を表す。pは1又は2の整数を表し、qは0~4の整数を表すが、Ar4がベンゼンから生じるp価の基である場合、qは1~4の整数を表す。
The organic EL device of the present invention can contain a host material in the light emitting layer containing the thermally activated delayed fluorescent material represented by the general formula (1).
Examples of the host material include a compound represented by the following general formula (10).
Figure JPOXMLDOC01-appb-C000010

Here, Ar 4 represents a p-valent group generated from benzene, dibenzofuran, dibenzothiophene, carbazole, carborane, triazine, or a compound in which two to three of these are connected. p represents an integer of 1 or 2, and q represents an integer of 0 to 4. When Ar 4 is a p-valent group derived from benzene, q represents an integer of 1 to 4.
 上記発光層は、一般式(10)で表されるホスト材料を少なくとも2種類含有することができる。 The light emitting layer can contain at least two types of host materials represented by the general formula (10).
 上記ホスト材料の励起三重項エネルギー(T1)が一般式(1)で表される熱活性化遅延蛍光材料の励起一重項エネルギー(S1)よりも大きいことが好ましい。 The excited triplet energy (T1) of the host material is preferably larger than the excited singlet energy (S1) of the thermally activated delayed fluorescent material represented by the general formula (1).
 前記発光層に隣接する層に、一般式(10)で表される化合物を含有してもよい。 The layer represented by the general formula (10) may be contained in a layer adjacent to the light emitting layer.
 上記発光層中の一般式(1)で表される熱活性化遅延蛍光発光材料の励起一重項エネルギー(S1)と励起三重項エネルギー(T1)の差が0.2eV以下であることが好ましい。 The difference between the excited singlet energy (S1) and the excited triplet energy (T1) of the thermally activated delayed fluorescent material represented by the general formula (1) in the light emitting layer is preferably 0.2 eV or less.
 本発明の有機EL素子は、発光層に特定の熱活性化遅延蛍光材料を含有するため、高発光効率、且つ長寿命な遅延蛍光型の有機EL素子となる。 Since the organic EL device of the present invention contains a specific thermally activated delayed fluorescent material in the light emitting layer, it becomes a delayed fluorescent organic EL device with high luminous efficiency and long life.
有機EL素子の一例を示した模式断面図である。It is the schematic cross section which showed an example of the organic EL element.
 本発明の有機EL素子は、対向する陽極と陰極の間に、1つ以上の発光層を有し、発光層の少なくとも1層が、上記一般式(1)で表される熱活性化遅延蛍光材料(TADF材料という。)を含有する。この有機EL素子は、対向する陽極と陰極の間に複数の層からなる有機層を有するが、複数の層の少なくとも1層は発光層であり、発光層には必要によりホスト材料を含有することができ、好ましいホスト材料は、上記一般式(10)で表される化合物である。 The organic EL device of the present invention has one or more light-emitting layers between opposed anodes and cathodes, and at least one of the light-emitting layers is a thermally activated delayed fluorescence represented by the general formula (1). Contains materials (TADF materials). This organic EL device has an organic layer composed of a plurality of layers between an anode and a cathode facing each other, but at least one of the plurality of layers is a light emitting layer, and the light emitting layer contains a host material as necessary A preferred host material is a compound represented by the above general formula (10).
 上記一般式(1)について、説明する。
 Zは式(2)で表される縮合芳香族複素環であり、式(2)中の環Aは式(2a)で表される芳香族炭化水素環であり、環Bは式(2b)で表される複素環であり、環A及び環Bはそれぞれ隣接する環と任意の位置で縮合する。nは1~2の整数を表し、好ましくは、1の整数を表す。
The general formula (1) will be described.
Z is a condensed aromatic heterocycle represented by formula (2), ring A in formula (2) is an aromatic hydrocarbon ring represented by formula (2a), and ring B is represented by formula (2b) Wherein ring A and ring B are each fused with an adjacent ring at an arbitrary position. n represents an integer of 1 to 2, preferably an integer of 1.
 一般式(1)で表される化合物は少なくとも1個の重水素を有する。すなわち、一般式(1)は、例えばCnHmXq(ここで、Xはヘテロ原子であり、qは2以上の整数である。)で表されるが、m個のHの内、少なくとも1個は重水素Dである。好ましくは、平均としてm個のHの10%以上、より好ましくは20%以上がDである。 The compound represented by the general formula (1) has at least one deuterium. That is, the general formula (1) is represented by, for example, CnHmXq (where X is a heteroatom and q is an integer of 2 or more), but at least one of m H is heavy. Hydrogen D. Preferably, 10% or more, more preferably 20% or more of the m pieces of H on average are D.
 一般式(1)又は式(2b)において、Ar1はn価の基であり、Ar2は1価の基である。
 Ar1及びAr2はそれぞれ独立に置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~18の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~8個連結して構成される連結芳香族基を表す。好ましくは、置換若しくは未置換の炭素数6~20の芳香族炭化水素基、置換若しくは未置換の炭素数3~12の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~8個連結して構成される連結芳香族基である。より好ましくは、置換若しくは未置換の炭素数6~10の芳香族炭化水素基、置換若しくは未置換の炭素数3~9の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~8個連結して構成される連結芳香族基を表す。
 Ar1、Ar2が連結芳香族基である場合、連結する芳香族環は同一であっても異なっていても良く、直鎖状であっても、分岐状でも良い。
In General Formula (1) or Formula (2b), Ar 1 is an n-valent group, and Ar 2 is a monovalent group.
Ar 1 and Ar 2 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms, or the aromatic hydrocarbon group And a linked aromatic group constituted by connecting 2 to 8 aromatic rings of an aromatic group selected from the aromatic heterocyclic group. Preferably, it is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 20 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 12 carbon atoms, or the aromatic hydrocarbon group and the aromatic heterocyclic ring. A linked aromatic group constituted by connecting 2 to 8 aromatic rings of an aromatic group selected from a group. More preferably, it is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 10 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 9 carbon atoms, or the aromatic hydrocarbon group and the aromatic heterocyclic group. A linked aromatic group constituted by connecting 2 to 8 aromatic rings of an aromatic group selected from cyclic groups.
When Ar 1 and Ar 2 are linked aromatic groups, the linked aromatic rings may be the same or different, and may be linear or branched.
 本明細書でいう連結芳香族基は、芳香族炭化水素基及び芳香族複素環基から選ばれる芳香族基の芳香族環が2個以上直接結合で結合した構造を有する基を言い、置換基を有してもよく、芳香族環は異なっていてもよく、分岐していてもよいものであると解される。 The linked aromatic group as used herein refers to a group having a structure in which two or more aromatic rings of an aromatic group selected from an aromatic hydrocarbon group and an aromatic heterocyclic group are bonded by a direct bond. It is understood that the aromatic rings may be different and may be branched.
 Ar1、Ar2の具体例としては、ベンゼン、ナフタレン、アセナフテン、アセナフチレン、アズレン、アントラセン、クリセン、ピレン、ペリレン、フェナントレン、トリフェニレン、コランニュレン、コロネン、テトラセン、ペンタセン、フルオレン、ベンゾ[a]アントラセン、ベンゾ[b]フルオランテン、ベンゾ[a]ピレン、インデノ[1,2,3-cd]ピレン、ジベンゾ[a,h]アントラセン、ピセン、テトラフェニレン、アンタントレン、1,12-ベンゾペリレン、ヘプタセン、ヘキサセン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、チアジアゾール、ピラジン、フラン、イソキサゾール、オキサゾール、オキサジアゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、チアジアゾール、ベンゾトリアジン、フタラジン、テトラゾール、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾイソチアゾール、ベンゾチアジアゾール、プリン、ピラノン、クマリン、イソクマリン、クロモン、ジベンゾフラン、ジベンゾチオフェン、ジベンゾセレノフェン、カルバゾール又はこれらが2~8個連結して構成される連結芳香族化合物から水素を取って生じる基が挙げられる。ここで、Ar1の場合は、n個の水素を取って生じる基であり、Ar2の場合は、1個の水素を取って生じる基である。
 好ましくは、ベンゼン、ナフタレン、アセナフテン、アセナフチレン、アズレン、アントラセン、クリセン、ピレン、ペリレン、フェナントレン、トリフェニレン、コランニュレン、テトラセン、フルオレン、ベンゾ[a]アントラセン、ベンゾ[b]フルオランテン、ベンゾ[a]ピレン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、チアジアゾール、ピラジン、フラン、イソキサゾール、オキサゾール、オキサジアゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、チアジアゾール、ベンゾトリアジン、フタラジン、テトラゾール、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾイソチアゾール、ベンゾチアジアゾール、プリン、ピラノン、クマリン、イソクマリン、クロモン、ジベンゾフラン、ジベンゾチオフェン、ジベンゾセレノフェン、カルバゾール、又はこれらが2~8個連結して構成される連結芳香族化合物から水素を取って生じる基が挙げられる。より好ましくは、ベンゼン、ナフタレン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、チアジアゾール、ピラジン、フラン、イソキサゾール、オキサゾール、オキサジアゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、チアジアゾール、ベンゾトリアジン、フタラジン、テトラゾール、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾイソチアゾール、ベンゾチアジアゾール、プリン、ピラノン、クマリン、イソクマリン、クロモン、又はこれらが2~8個連結して構成される連結芳香族化合物から水素を取って生じる基が挙げられる。
Specific examples of Ar 1 and Ar 2 include benzene, naphthalene, acenaphthene, acenaphthylene, azulene, anthracene, chrysene, pyrene, perylene, phenanthrene, triphenylene, corannulene, coronene, tetracene, pentacene, fluorene, benzo [a] anthracene, benzo [b] fluoranthene, benzo [a] pyrene, indeno [1,2,3-cd] pyrene, dibenzo [a, h] anthracene, picene, tetraphenylene, anthanthrene, 1,12-benzoperylene, heptacene, hexacene, Pyridine, pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, pyrrole, pyrazole, imidazole, triazole, thiadiazole, pyrazine, furan, isoxazole, oxazole, oxadiazole, quinoline, isoquinoline, quino Sarin, quinazoline, thiadiazole, benzotriazine, phthalazine, tetrazole, indole, benzofuran, benzothiophene, benzoxazole, benzothiazole, indazole, benzimidazole, benzotriazole, benzoisothiazole, benzothiadiazole, purine, pyranone, coumarin, isocoumarin, chromone , Dibenzofuran, dibenzothiophene, dibenzoselenophene, carbazole, or a group formed by removing hydrogen from a linked aromatic compound formed by linking two to eight of these. Here, Ar 1 is a group generated by taking n hydrogen atoms, and Ar 2 is a group generated by taking one hydrogen gas.
Preferably, benzene, naphthalene, acenaphthene, acenaphthylene, azulene, anthracene, chrysene, pyrene, perylene, phenanthrene, triphenylene, corannulene, tetracene, fluorene, benzo [a] anthracene, benzo [b] fluoranthene, benzo [a] pyrene, pyridine , Pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, pyrrole, pyrazole, imidazole, triazole, thiadiazole, pyrazine, furan, isoxazole, oxazole, oxadiazole, quinoline, isoquinoline, quinoxaline, quinazoline, thiadiazole, benzotriazine, phthalazine , Tetrazole, indole, benzofuran, benzothiophene, benzoxazole, benzothiazole, indah Benzimidazole, benzotriazole, benzoisothiazole, benzothiadiazole, purine, pyranone, coumarin, isocoumarin, chromone, dibenzofuran, dibenzothiophene, dibenzoselenophene, carbazole, or a combination of 2 to 8 of these And a group formed by removing hydrogen from a linked aromatic compound. More preferably, benzene, naphthalene, pyridine, pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, pyrrole, pyrazole, imidazole, triazole, thiadiazole, pyrazine, furan, isoxazole, oxazole, oxadiazole, quinoline, isoquinoline, quinoxaline , Quinazoline, thiadiazole, benzotriazine, phthalazine, tetrazole, indole, benzofuran, benzothiophene, benzoxazole, benzothiazole, indazole, benzimidazole, benzotriazole, benzoisothiazole, benzothiadiazole, purine, pyranone, coumarin, isocoumarin, chromone, Alternatively, hydrogen is taken from a linked aromatic compound composed of 2 to 8 of these linked together. Include groups occur.
 一般式(1)又は式(2)又は式(2a)において、R1はそれぞれ独立に炭素数1~10の脂肪族炭化水素基、置換若しくは未置換の炭素数12~44のジアリールアミノ基、置換若しくは未置換の炭素数3~18の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~18の芳香族複素環基を表す。好ましくは、炭素数1~8の脂肪族炭化水素基、置換若しくは未置換の炭素数12~22のジアリールアミノ基、置換若しくは未置換の炭素数3~12の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~15の芳香族複素環基を表す。より好ましくは、置換若しくは未置換の炭素数3~10の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~10の芳香族複素環基を表す。
 aは0~4の整数を表し、好ましくは0~2の整数を表し、より好ましくは0~1の整数を表す。bは0~2の整数を表し、好ましくは0~1の整数を表す。
In the general formula (1), the formula (2) or the formula (2a), each R 1 is independently an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 44 carbon atoms, It represents a substituted or unsubstituted aromatic hydrocarbon group having 3 to 18 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms. Preferably, it is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 22 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 3 to 12 carbon atoms, or a substituted or unsubstituted It represents an unsubstituted aromatic heterocyclic group having 3 to 15 carbon atoms. More preferably, it represents a substituted or unsubstituted aromatic hydrocarbon group having 3 to 10 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 10 carbon atoms.
a represents an integer of 0 to 4, preferably an integer of 0 to 2, more preferably an integer of 0 to 1. b represents an integer of 0 to 2, preferably an integer of 0 to 1.
 上記R1の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、へキシル、ヘプチル、オクチル、ノニル、デシル、ジフェニルアミノ、ナフチルフェニルアミノ、ジナフチルアミノ、ジアントラニルアミノ、ジフェナンスレニルアミノ、フェニル、ビフェニリル、ターフェニリル、ナフチル、ピリジル、ピリミジル、トリアジル、ジベンゾフラニル、ジベンゾチエニル、又はカルバゾリル等が挙げられる。好ましくは、メチル、エチル、プロピル、ブチル、ペンチル、へキシル、ヘプチル、オクチル、ジフェニルアミノ、ナフチルフェニルアミノ、ジナフチルアミノ、フェニル、ナフチル、ピリジル、ピリミジル、トリアジル、ジベンゾフラニル、ジベンゾチエニル、又はカルバゾリル等が挙げられる。より好ましくは、フェニル、ナフチル、ピリジル、ピリミジル、又はトリアジルが挙げられる。 Specific examples of R 1 include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, diphenylamino, naphthylphenylamino, dinaphthylamino, dianthranylamino, diphenanthrenyl. Amino, phenyl, biphenylyl, terphenylyl, naphthyl, pyridyl, pyrimidyl, triazyl, dibenzofuranyl, dibenzothienyl, carbazolyl and the like can be mentioned. Preferably, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, diphenylamino, naphthylphenylamino, dinaphthylamino, phenyl, naphthyl, pyridyl, pyrimidyl, triazyl, dibenzofuranyl, dibenzothienyl, or carbazolyl Etc. More preferred is phenyl, naphthyl, pyridyl, pyrimidyl, or triazyl.
 一般式(1)の好ましい態様として、一般式(3)~(8)がある。一般式(3)~(8)において、Ar2、a、b及びR1は一般式(1)と同義である。
 Lは単結合、置換若しくは未置換の炭素数6~12の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~10の芳香族複素環基であり、好ましくは、単結合、置換若しくは未置換の炭素数6~10の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~8の芳香族複素環基であり、より好ましくは、単結合、置換若しくは未置換のフェニル基、又は置換若しくは未置換の炭素数3~6の芳香族複素環基である。
As preferred embodiments of the general formula (1), there are general formulas (3) to (8). In the general formulas (3) to (8), Ar 2 , a, b and R 1 have the same meaning as in the general formula (1).
L is a single bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 10 carbon atoms, preferably a single bond, substituted or unsubstituted An unsubstituted aromatic hydrocarbon group having 6 to 10 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 8 carbon atoms, more preferably a single bond, a substituted or unsubstituted phenyl group, Or a substituted or unsubstituted aromatic heterocyclic group having 3 to 6 carbon atoms.
 上記Lの具体例としては、単結合、又はベンゼン、ナフタレン、アセナフテン、アセナフチレン、アズレン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、チアジアゾール、ピラジン、フラン、イソキサゾール、オキサゾール、オキサジアゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、チアジアゾール、ベンゾトリアジン、フタラジン、テトラゾール、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾイソチアゾール、ベンゾチアジアゾール、プリン、ピラノン、クマリン、イソクマリン、クロモン、ジベンゾフラン、ジベンゾチオフェン、ジベンゾセレノフェン、カルバゾール等から2個の水素を除いて生じる基が挙げられる。好ましくは、単結合、又はベンゼン、ナフタレン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、チアジアゾール、ピラジン、フラン、イソキサゾール、オキサゾール、オキサジアゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、チアジアゾール、ベンゾトリアジン、フタラジン、テトラゾール、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール等から生じる基が挙げられる。より好ましくは、単結合、又はベンゼン、ピリジン、ピリミジン、トリアジン、チオフェンから生じる基が挙げられる。 Specific examples of L include a single bond, benzene, naphthalene, acenaphthene, acenaphthylene, azulene, pyridine, pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, pyrrole, pyrazole, imidazole, triazole, thiadiazole, pyrazine, furan , Isoxazole, oxazole, oxadiazole, quinoline, isoquinoline, quinoxaline, quinazoline, thiadiazole, benzotriazine, phthalazine, tetrazole, indole, benzofuran, benzothiophene, benzoxazole, benzothiazole, indazole, benzimidazole, benzotriazole, benzoisothiazole , Benzothiadiazole, purine, pyranone, coumarin, isocoumarin, chromone, dibenzo Examples thereof include groups formed by removing two hydrogens from furan, dibenzothiophene, dibenzoselenophene, carbazole and the like. Preferably, a single bond or benzene, naphthalene, pyridine, pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, pyrrole, pyrazole, imidazole, triazole, thiadiazole, pyrazine, furan, isoxazole, oxazole, oxadiazole, quinoline, Examples include groups derived from isoquinoline, quinoxaline, quinazoline, thiadiazole, benzotriazine, phthalazine, tetrazole, indole, benzofuran, benzothiophene, benzoxazole, benzothiazole, indazole, benzimidazole and the like. More preferably, a group formed from a single bond or benzene, pyridine, pyrimidine, triazine, or thiophene is mentioned.
 一般式(3)~(8)において、Ar3は式(9)で表される基である。
 式(9)において、XはCR2又はNを表し、少なくとも1つのXはNを表す。R2は水素、炭素数3~10の脂肪族炭化水素基、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~10の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~5個連結して構成される連結芳香族基を表す。好ましくは、水素、置換若しくは未置換の炭素数6~12の芳香族炭化水素基、置換若しくは未置換の炭素数3~8の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~5個連結して構成される連結芳香族基を表す。より好ましくは、水素、置換若しくは未置換の炭素数6~10の芳香族炭化水素基、置換若しくは未置換の炭素数3~6の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~4個連結して構成される連結芳香族基を表す。連結芳香族基の説明は、前記Ar1、Ar2が連結芳香族基である場合と同様である。
In the general formulas (3) to (8), Ar 3 is a group represented by the formula (9).
In the formula (9), X represents CR 2 or N, and at least one X represents N. R 2 is hydrogen, an aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 10 carbon atoms. Or a connected aromatic group constituted by connecting 2 to 5 aromatic rings of an aromatic group selected from the aromatic hydrocarbon group and the aromatic heterocyclic group. Preferably, hydrogen, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 8 carbon atoms, or the aromatic hydrocarbon group and the aromatic It represents a linked aromatic group constituted by connecting 2 to 5 aromatic rings of an aromatic group selected from a heterocyclic group. More preferably, hydrogen, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 10 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 6 carbon atoms, or the aromatic hydrocarbon group and the aromatic Represents a linked aromatic group constituted by connecting 2 to 4 aromatic rings of an aromatic group selected from the group A heterocyclic groups. The explanation of the linked aromatic group is the same as the case where Ar 1 and Ar 2 are linked aromatic groups.
 本明細書において、芳香族炭化水素基、芳香族複素環基等が置換基を有する場合、好ましい置換基としては、炭素数1~10の脂肪族炭化水素基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数3~30のアルキルシリル基等が挙げられる。 In the present specification, when an aromatic hydrocarbon group, an aromatic heterocyclic group or the like has a substituent, preferred substituents include an aliphatic hydrocarbon group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms. And an alkylthio group having 1 to 10 carbon atoms and an alkylsilyl group having 3 to 30 carbon atoms.
 一般式(1)で表される化合物の具体例を以下に示すが、これらの例示化合物に限定されるものではない。以下の化合物は、少なくとも1つの水素が重水素に置換された化合物であるが、その置換位置は特定されない。 
Specific examples of the compound represented by the general formula (1) are shown below, but are not limited to these exemplified compounds. The following compounds are compounds in which at least one hydrogen is substituted with deuterium, but the substitution position is not specified.
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
 一般式(1)で表される化合物の少なくとも1つの水素を重水素とする方法は特に限定されないが、反応原料又は前駆体化合物として重水素化化合物を用いるか、一般式(1)で表される非重水素化化合物を得たのち、ルイス酸H/D交換触媒(三塩化アルミニウム又はエチルアルミニウムクロライド、又はCF3COOD、DCl等の酸等)の存在下で、非重水素化合物を重水素化溶媒で処理することにより調製できる。重水素化の程度は、NMR分析及び質量分析法によって求めることができる。 A method for converting at least one hydrogen of the compound represented by the general formula (1) into deuterium is not particularly limited, but a deuterated compound is used as a reaction raw material or a precursor compound, or represented by the general formula (1). And then dehydrogenating the non-deuterium compound in the presence of a Lewis acid H / D exchange catalyst (aluminum trichloride or ethylaluminum chloride, or an acid such as CF 3 COOD or DCl). It can be prepared by treating with a solvating solvent. The degree of deuteration can be determined by NMR analysis and mass spectrometry.
 前記一般式(1)で表される化合物をTADF材料として、発光層に含有させることで優れた遅延蛍光型の有機EL素子とすることができる。 An excellent delayed fluorescence organic EL device can be obtained by incorporating the compound represented by the general formula (1) into the light emitting layer as a TADF material.
 また、発光層には、必要により、上記TADF材料と共にホスト材料を含有させることができる。ホスト材料を含有させることにより、優れた有機EL素子となる。この場合、TADF材料はドーパントともいう。ホスト材料は、ドーパントであるTADF材料からの発光を促進する。ホスト材料は、励起三重項エネルギー(T1)がTADF材料の励起一重項エネルギー(S1)よりも大きいことが望ましい。 In addition, the light emitting layer can contain a host material together with the TADF material, if necessary. By containing a host material, an excellent organic EL device is obtained. In this case, the TADF material is also called a dopant. The host material promotes light emission from the TADF material, which is a dopant. The host material desirably has an excited triplet energy (T1) greater than the excited singlet energy (S1) of the TADF material.
 一般式(1)で表される化合物は、励起一重項エネルギー(S1)と励起三重項エネルギー(T1)の差(ΔE)が0.2eV以下であることが好ましく、このようなΔEを示すことにより、優れた熱活性化遅延蛍光発光材料となる。 In the compound represented by the general formula (1), it is preferable that the difference (ΔE) between the excited singlet energy (S1) and the excited triplet energy (T1) is 0.2 eV or less. It becomes an excellent heat-activated delayed fluorescent material.
 ホスト材料としては、上記一般式(10)で表される化合物が適する。
 一般式(10)において、Ar4はp価の基であり、ベンゼン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、カルボラン、トリアジン、又はこれらが2~3個連結した連結化合物からp個の水素を除いて生じる基である。ここで、連結化合物は、ベンゼン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、又はカルボランの環が、直接結合で連結した構造の化合物であり、これらの化合物から2個の水素を除いて生じる基は、例えば-Ar-Ar-、-Ar-Ar-Ar-、又は-Ar-Ar(Ar)-で表される。ここで、Arは、ベンゼン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、又はカルボランの環であり、複数のArは同一であっても、異なってもよい。好ましい連結化合物としては、ベンゼン環が2又は3連結した化合物であるビフェニル、又はターフェニルが挙げられる。
As the host material, a compound represented by the general formula (10) is suitable.
In the general formula (10), Ar 4 is a p-valent group, and is generated by removing p hydrogen from benzene, dibenzofuran, dibenzothiophene, carbazole, carborane, triazine, or a linking compound in which 2 to 3 of these are connected. It is a group. Here, the connecting compound is a compound having a structure in which rings of benzene, dibenzofuran, dibenzothiophene, carbazole, or carborane are connected by a direct bond, and a group generated by removing two hydrogens from these compounds is, for example, − It is represented by Ar-Ar-, -Ar-Ar-Ar-, or -Ar-Ar (Ar)-. Here, Ar is a ring of benzene, dibenzofuran, dibenzothiophene, carbazole, or carborane, and a plurality of Ars may be the same or different. Preferred examples of the linking compound include biphenyl or terphenyl, which is a compound in which two or three benzene rings are linked.
 好ましくは、Ar4は、ベンゼン、ビフェニル、ターフェニル、ジベンゾフラン、N-フェニルカルバゾール、カルボラン、又はトリアジンからp個の水素を取って生じるp価の基である。pは1又は2の整数を表し、好ましくは1の整数を表す。qは0~4の整数を表し、好ましくは0~3の整数、より好ましくは0~2の整数を表すが、Ar4がベンゼンから生じるp価の基である場合、qが0であることは無い。 Preferably, Ar 4 is a p-valent group formed by taking p hydrogens from benzene, biphenyl, terphenyl, dibenzofuran, N-phenylcarbazole, carborane, or triazine. p represents an integer of 1 or 2, preferably an integer of 1. q represents an integer of 0 to 4, preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and q is 0 when Ar 4 is a p-valent group derived from benzene. There is no.
 一般式(10)で表される化合物は、Ar4及びカルバゾール環を有するが、このAr4及びカルバゾール環は、ホストとしての機能を阻害しない限り置換基を有してもよい。かかる置換基としては、炭素数1~8の炭化水素基、炭素数1~8のアルコキシ基が挙げられ、好ましくは炭素数1~3のアルキル基、又は炭素数1~3のアルコキシ基である。 The compound represented by the general formula (10) has Ar 4 and a carbazole ring. The Ar 4 and carbazole ring may have a substituent as long as the function as a host is not inhibited. Examples of such a substituent include a hydrocarbon group having 1 to 8 carbon atoms and an alkoxy group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms. .
 以下に、一般式(10)で表される化合物の具体例を示す。 Specific examples of the compound represented by the general formula (10) are shown below.
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
 前記一般式(1)で表される化合物から選ばれる熱活性化遅延蛍光材料を含有する発光層を有することで、遅延蛍光発光が可能な有機EL素子とすることができる。また、この熱活性化遅延蛍光材料をドーパント材料として含有し、前記一般式(10)で表される化合物から選ばれるホスト材料を含有する発光層を有することでより優れた特性を有する有機EL素子を提供することができる。更に、2種以上のホスト材料を含有することで、特性を改良することもできる。2種のホストを含有する場合、少なくとも1種は、一般式(10)で表される化合物から選ばれるホスト材料であることがよい。第1ホストが一般式(10)で表される化合物であることが好ましい。第2ホストは、前記一般式(10)の化合物であってもよいし、他のホスト材料であってもよいが、一般式(10)で表される化合物であることが好ましい。 By having a light emitting layer containing a thermally activated delayed fluorescent material selected from the compound represented by the general formula (1), an organic EL device capable of delayed fluorescent emission can be obtained. An organic EL device having a more excellent characteristic by including a light-emitting layer containing the thermally activated delayed fluorescent material as a dopant material and containing a host material selected from the compound represented by the general formula (10) Can be provided. Further, the characteristics can be improved by containing two or more kinds of host materials. When two kinds of hosts are contained, at least one kind may be a host material selected from compounds represented by the general formula (10). The first host is preferably a compound represented by the general formula (10). The second host may be a compound of the general formula (10) or another host material, but is preferably a compound represented by the general formula (10).
 ここで、S1、T1は次のようにして測定される。
 石英基板上に真空蒸着法にて、真空度10-4Pa以下の条件にて試料化合物を蒸着し、蒸着膜を100nmの厚さで形成する。S1は、この蒸着膜の発光スペクトルを測定し、この発光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸の交点の波長値λedge[nm]を、次に示す式(i)に代入してS1を算出する。
 S1[eV] = 1239.85/λedge  (i)
Here, S1 and T1 are measured as follows.
A sample compound is deposited on a quartz substrate by a vacuum deposition method under a vacuum degree of 10 −4 Pa or less to form a deposited film with a thickness of 100 nm. S1 measures the emission spectrum of this deposited film, draws a tangent to the short wavelength side rise of this emission spectrum, the wavelength value λ edge [nm] of the intersection of the tangent and the horizontal axis, Substitute into i) to calculate S1.
S1 [eV] = 1239.85 / λedge (i)
 T1は、上記の蒸着膜の燐光スペクトルを測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸の交点の波長値λedge[nm]を、式(ii)に代入してT1を算出する。
 T1[eV] = 1239.85/λedge  (ii)
T1 measures the phosphorescence spectrum of the above deposited film, draws a tangent line to the short wavelength rise of this phosphorescence spectrum, and calculates the wavelength value λ edge [nm] of the intersection of the tangent line and the horizontal axis in the formula (ii) Substituting into to calculate T1.
T1 [eV] = 1239.85 / λedge (ii)
 次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造はこれに限定されない。 Next, the structure of the organic EL element of the present invention will be described with reference to the drawings, but the structure of the organic EL element of the present invention is not limited to this.
 図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表す。本発明の有機EL素子は発光層と隣接して励起子阻止層を有してもよく、また発光層と正孔注入層との間に電子阻止層を有しても良い。励起子阻止層は発光層の陰極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、陽極、発光層、そして陰極を必須の層として有するが、必須の層以外に正孔注入輸送層、電子注入輸送層を有することが良く、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか、または両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれかまたは両者を意味する FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode. The organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, or may have an electron blocking layer between the light emitting layer and the hole injection layer. The exciton blocking layer can be inserted on either the cathode side or the cathode side of the light emitting layer, or both can be inserted simultaneously. The organic EL device of the present invention has an anode, a light emitting layer, and a cathode as essential layers, but preferably has a hole injecting and transporting layer and an electron injecting and transporting layer in addition to the essential layers, and further has a light emitting layer and an electron injecting layer. It is preferable to have a hole blocking layer between the transport layers. The hole injection / transport layer means either or both of the hole injection layer and the hole transport layer, and the electron injection / transport layer means either or both of the electron injection layer and the electron transport layer.
 図1とは逆の構造、すなわち基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も必要により層を追加、省略することが可能である。 The structure opposite to that shown in FIG. 1, that is, the cathode 7, the electron transport layer 6, the light emitting layer 5, the hole transport layer 4 and the anode 2 can be laminated in this order on the substrate 1. Addition and omission are possible.
―基板―
 本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については特に制限はなく、従来から有機EL素子に用いられているものであれば良く、例えばガラス、透明プラスチック、石英等からなるものを用いることができる。
-substrate-
The organic EL element of the present invention is preferably supported on a substrate. The substrate is not particularly limited, and any substrate that has been conventionally used for an organic EL element can be used. For example, a substrate made of glass, transparent plastic, quartz, or the like can be used.
―陽極―
 有機EL素子における陽極材料としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物又はこれらの混合物からなる材料が好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等の非晶質で、透明導電膜を作成可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成しても良く、あるいはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは有機導電性化合物のような塗布可能な物質を用いる場合には印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
-anode-
As an anode material in the organic EL element, a material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or the pattern accuracy is not required (about 100 μm or more). May form a pattern through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
―陰極―
 一方、陰極材料としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物、又はこれらの混合物からなる材料が用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム―カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの陰極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度は向上し、好都合である。
-cathode-
On the other hand, as the cathode material, a material made of a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, or a mixture thereof is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, such as a magnesium / silver mixture, magnesium, from the viewpoint of electron injectability and durability against oxidation, etc. / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these cathode materials by a method such as vapor deposition or sputtering. The sheet resistance of the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
 また、陰極に上記金属を1~20nmの膜厚で形成した後に、陽極の説明で挙げた導電性透明材料をその上に形成することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 Further, after forming the metal with a thickness of 1 to 20 nm on the cathode, a transparent or translucent cathode can be produced by forming the conductive transparent material mentioned in the description of the anode on the cathode. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
―発光層―
 発光層は陽極及び陰極のそれぞれから注入された正孔及び電子が再結合することにより励起子が生成した後、発光する層である。発光層には、本発明のTADF材料を単独で使用しても良いし、本発明のTADF材料をホスト材料と共に使用してもよい。ホスト材料と共に使用する場合は、本発明のTADF材料は、有機発光性ドーパント材料となる。
―Light emitting layer―
The light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from the anode and the cathode, respectively. In the light emitting layer, the TADF material of the present invention may be used alone, or the TADF material of the present invention may be used together with a host material. When used with a host material, the TADF material of the present invention is an organic light emitting dopant material.
 有機発光性ドーパント材料は、発光層中に1種類のみが含有されても良いし、2種類以上を含有しても良い。TADF材料又は有機発光性ドーパント材料の含有量は、ホスト材料に対して0.1~50wt%であることが好ましく、1~30wt%であることがより好ましい。
 本発明の有機EL素子は、遅延蛍光発光を利用するものであるので、燐光発光型の有機EL素子に使用されるIr錯体のようなドーパントは使用されない。
Only one kind of organic light emitting dopant material may be contained in the light emitting layer, or two or more kinds may be contained. The content of the TADF material or the organic light-emitting dopant material is preferably 0.1 to 50 wt%, more preferably 1 to 30 wt% with respect to the host material.
Since the organic EL device of the present invention utilizes delayed fluorescence, a dopant such as an Ir complex used in a phosphorescent organic EL device is not used.
 発光層におけるホスト材料としては、燐光発光素子や蛍光発光素子で使用される公知のホスト材料をすることができるが、前記一般式(10)で表される化合物を用いることが好ましい。またホスト材料を複数種類併用して用いても良い。ホスト材料を複数種類併用して用いる場合、少なくとも1種類のホスト材料が前記一般式(10)で表される化合物から選ばれることが好ましい。 As the host material in the light emitting layer, known host materials used in phosphorescent light emitting devices and fluorescent light emitting devices can be used, but it is preferable to use a compound represented by the general formula (10). A plurality of host materials may be used in combination. When a plurality of types of host materials are used in combination, at least one type of host material is preferably selected from the compounds represented by the general formula (10).
 使用できる公知のホスト材料としては、正孔輸送能、電子輸送能を有し、かつ高いガラス転移温度を有する化合物であり、TADF材料又は発光性ドーパント材料のT1よりも大きいS1を有していることが好ましい。 Known host materials that can be used are compounds having a hole transporting ability, an electron transporting ability, and a high glass transition temperature, and have a S1 larger than T1 of a TADF material or a luminescent dopant material. It is preferable.
 このような他のホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、スチルベン誘導体、トリフェニレン誘導体、カルボラン化合物、ポルフィリン系化合物、フタロシアニン誘導体、8―キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。 Such other host materials are known from a large number of patent documents, and can be selected from them. Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, indolocarbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, phenylenediamine derivatives, arylamine derivatives, Various metal complexes represented by metal complexes of styryl anthracene derivatives, fluorenone derivatives, stilbene derivatives, triphenylene derivatives, carborane compounds, porphyrin compounds, phthalocyanine derivatives, 8-quinolinol derivatives and metal complexes of metal phthalocyanines, benzoxazole and benzothiazole derivatives , Poly (N-vinylcarbazole) derivatives, aniline copolymers, thiophene oligomers, polythiophene derivatives, polyphenylene derivatives, poly Enirenbiniren derivatives, polymer compounds such as polyfluorene derivatives, and the like.
 ホスト材料を複数種使用する場合は、それぞれのホストを異なる蒸着源から蒸着するか、蒸着前に予備混合して予備混合物とすることで1つの蒸着源から複数種のホストを同時に蒸着することもできる。 When using multiple types of host materials, each host can be deposited from different deposition sources, or multiple types of hosts can be deposited simultaneously from one deposition source by premixing before deposition to form a premix. it can.
-注入層-
  注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-Injection layer-
The injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission. There are a hole injection layer and an electron injection layer, and between the anode and the light emitting layer or the hole transport layer. And between the cathode and the light emitting layer or the electron transport layer. The injection layer can be provided as necessary.
-正孔阻止層-
  正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで発光層中での電子と正孔の再結合確率を向上させることができる。
 正孔阻止層には、公知の正孔阻止材料をすることができるが、前記一般式(10)で表される化合物を用いることが好ましい。また正孔阻止材料を複数種類併用して用いても良
い。
-Hole blocking layer-
The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes in the light emitting layer can be improved by preventing the above.
A known hole blocking material can be used for the hole blocking layer, but it is preferable to use a compound represented by the general formula (10). A plurality of hole blocking materials may be used in combination.
-電子阻止層-
 電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送しつつ電子を阻止することで発光層中での電子と正孔が再結合する確率を向上させることができる。
  電子阻止層の材料としては、公知の電子阻止層材料を用いることができるが、前記一般式(10)で表される化合物を用いることが好ましい。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-Electron blocking layer-
The electron blocking layer has the function of a hole transport layer in a broad sense. By blocking electrons while transporting holes, the probability of recombination of electrons and holes in the light emitting layer can be improved. .
As a material of the electron blocking layer, a known electron blocking layer material can be used, but it is preferable to use a compound represented by the general formula (10). The thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
-励起子阻止層-
  励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は2つ以上の発光層が隣接する素子において、隣接する2つの発光層の間に挿入することができる。
  励起子阻止層の材料としては、公知の励起子阻止層材料を用いることができるが、前記一般式(10)で表される化合物を用いることが好ましい。
-Exciton blocking layer-
The exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved. The exciton blocking layer can be inserted between two adjacent light emitting layers in an element in which two or more light emitting layers are adjacent.
As a material for the exciton blocking layer, a known exciton blocking layer material can be used, but it is preferable to use a compound represented by the general formula (10).
 発光層に隣接する層としては、正孔阻止層、電子阻止層、励起子阻止層などがあるが、これらの層が設けられない場合は、正孔輸送層、電子輸送層などが隣接層となる。2つの隣接層の少なくとも1つに一般式(10)で表される化合物を用いることが好ましい。 As the layer adjacent to the light emitting layer, there are a hole blocking layer, an electron blocking layer, an exciton blocking layer, etc., but when these layers are not provided, a hole transport layer, an electron transport layer, etc. Become. It is preferable to use the compound represented by the general formula (10) for at least one of the two adjacent layers.
-正孔輸送層-
  正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
-Hole transport layer-
The hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入、又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。正孔輸送層には従来公知の化合物の中から任意のものを選択して用いることができる。かかる正孔輸送材料としては例えば、ポルフィリン誘導体、アリールアミン誘導体、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン誘導体、アリールアミン誘導体及びスチリルアミン誘導体を用いることが好ましく、アリールアミン化合物を用いることがより好ましい。 The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For the hole transport layer, any known compound can be selected and used. Examples of such hole transport materials include porphyrin derivatives, arylamine derivatives, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives. , Oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. Porphyrin derivatives, arylamine derivatives, and styryl It is preferable to use an amine derivative, and it is more preferable to use an arylamine compound.
-電子輸送層-
  電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
-Electron transport layer-
The electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ナフタレン、アントラセン、フェナントロリン等の多環芳香族誘導体、トリス(8-キノリノラート)アルミニウム(III)誘導体、ホスフィンオキサイド誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ビピリジン誘導体、キノリン誘導体、オキサジアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、インドロカルバゾール誘導体等が挙げられる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 As an electron transport material (which may also serve as a hole blocking material), it is sufficient if it has a function of transmitting electrons injected from the cathode to the light emitting layer. For the electron transport layer, any known compound can be selected and used. For example, polycyclic aromatic derivatives such as naphthalene, anthracene, phenanthroline, tris (8-quinolinolato) aluminum (III) Derivatives, phosphine oxide derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, bipyridine derivatives, quinoline derivatives, oxadiazole derivatives, benzimidazoles Derivatives, benzothiazole derivatives, indolocarbazole derivatives and the like. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 本発明の有機EL素子を作製する際の、各層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製しても良い。 The method for forming each layer when producing the organic EL device of the present invention is not particularly limited, and may be produced by either a dry process or a wet process.
 以下、本発明を実施例によって更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 実施例及び比較例で用いた化合物を次に示す。
Figure JPOXMLDOC01-appb-C000023
 
The compounds used in Examples and Comparative Examples are shown below.
Figure JPOXMLDOC01-appb-C000023
合成例1
 化合物104の重水素化体(104D)の合成
Synthesis example 1
Synthesis of deuterated compound 104D of compound 104
 化合物104(2.0g、3.1mmol)を100mLの三口フラスコに入れ、25gの重ベンゼンを加え、窒素雰囲気下室温で撹拌した。重水素化トリフル酸(12.0g、104mmol)を加え、50℃で5時間撹拌した。炭酸ナトリウムの重水溶液を加え、有機層を水で洗浄した。有機層に硫酸マグネシウムを加え、乾燥、濾過した後、濃縮乾燥させた。更に再結晶することにより得られた固体を昇華により精製することで、化合物104の重水素化体(104D)を1.6g得た。
質量分析の結果より算定される化合物104Dの重水素化率は、約31%であった。
APCI-TOFMS m/z:650[M+1]+
Compound 104 (2.0 g, 3.1 mmol) was placed in a 100 mL three-necked flask, 25 g of heavy benzene was added, and the mixture was stirred at room temperature under a nitrogen atmosphere. Deuterated triflic acid (12.0 g, 104 mmol) was added and stirred at 50 ° C. for 5 hours. Sodium bicarbonate aqueous solution was added and the organic layer was washed with water. Magnesium sulfate was added to the organic layer, dried, filtered, and concentrated to dryness. Further, the solid obtained by recrystallization was purified by sublimation, whereby 1.6 g of a deuterated compound 104 (104D) was obtained.
The deuteration rate of Compound 104D calculated from the results of mass spectrometry was about 31%.
APCI-TOFMS m / z: 650 [M + 1] +
合成例2~8
 化合物115、119、125、131、142、150、又は158を合成例1と同様の方法で重水素化することで、それぞれの重水素化体の化合物115D、119D、125D、131D、142D、150D、又は158Dをそれぞれ得た。
Synthesis Examples 2-8
Compounds 115, 119, 125, 131, 142, 150, or 158 are deuterated in the same manner as in Synthesis Example 1, so that each deuterated compound 115D, 119D, 125D, 131D, 142D, 150D , Or 158D, respectively.
 上記重水素化体、及び重水素化される前の化合物104のS1とT1を測定した。更に前記化合物215、217、238、243、及びmCPのS1とT1を測定した。測定方法および算出方法は、前述した方法と同様である。 The S1 and T1 of the deuterated product and the compound 104 before being deuterated were measured. Furthermore, S1 and T1 of the compounds 215, 217, 238, 243, and mCP were measured. The measurement method and calculation method are the same as those described above.
Figure JPOXMLDOC01-appb-T000024
 
Figure JPOXMLDOC01-appb-T000024
 
実験例1
 化合物104Dの蛍光寿命を測定した。石英基板上に真空蒸着法にて、真空度10-4Pa以下の条件にて化合物104Dと化合物217を異なる蒸着源から蒸着し、化合物104Dの濃度が15重量%である共蒸着膜を100nmの厚さで形成した。この薄膜の発光スペクトルを測定し、483nmをピークとする発光が確認された。また、窒素雰囲気下で小型蛍光寿命測定装置(浜松ホトニクス(株)製Quantaurus-tau)により発光寿命を測定した。励起寿命が12nsの蛍光と13μsの遅延蛍光が観測され、化合物104Dが遅延蛍光発光を示す化合物であることが確認された。
Experimental example 1
The fluorescence lifetime of compound 104D was measured. A compound 104D and a compound 217 are deposited from different deposition sources on a quartz substrate by a vacuum deposition method under a vacuum degree of 10 −4 Pa or less, and a co-deposited film having a concentration of 15% by weight of the compound 104D is formed to 100 nm Formed in thickness. The emission spectrum of this thin film was measured, and light emission having a peak at 483 nm was confirmed. In addition, the emission lifetime was measured with a small fluorescence lifetime measuring apparatus (Quantaurus-tau manufactured by Hamamatsu Photonics Co., Ltd.) under a nitrogen atmosphere. A fluorescence with an excitation lifetime of 12 ns and a delayed fluorescence of 13 μs were observed, and it was confirmed that the compound 104D was a compound exhibiting delayed fluorescence.
 重水素化体115D、119D、125D、131D、142D、150D、158Dについても、上記と同様に蛍光寿命を測定したところ、遅延蛍光が観測され、遅延蛍光発光を示す材料であることが確認された。また重水素化される前の化合物104、115、119、125、131、142、150、158についても、同様に蛍光寿命及を測定したところ、遅延蛍光が観測され、遅延蛍光発光を示す材料であることが確認された。 For deuterated substances 115D, 119D, 125D, 131D, 142D, 150D, and 158D, the fluorescence lifetime was measured in the same manner as described above. As a result, delayed fluorescence was observed, and it was confirmed that the material showed delayed fluorescence emission. . In addition, for compounds 104, 115, 119, 125, 131, 142, 150, and 158 before deuteration, the fluorescence lifetime was measured in the same manner, and delayed fluorescence was observed. It was confirmed that there was.
実施例1
 膜厚70nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層した。まず、ITO上に正孔注入層としてHAT-CNを10nmの厚さに形成し、次に正孔輸送層としてHT-1を25nmの厚さに形成した。次に、電子阻止層として化合物(217)を5nmの厚さに形成した。そして、ホストとして化合物(217)を、ドーパントとして化合物(104D)をそれぞれ異なる蒸着源から共蒸着し、30nmの厚さに発光層を形成した。この時、化合物(104D)の濃度が15wt%となる蒸着条件で共蒸着した。次に、正孔阻止層として化合物(238)を5nmの厚さに形成した。次に電子輸送層としてET-1を40nmの厚さに形成した。更に、電子輸送層上に電子注入層としてフッ化リチウム(LiF)を1nmの厚さに形成した。最後に、電子注入層上に、陰極としてアルミニウム(Al)を70nmの厚さに形成し、有機EL素子を作製した。
Example 1
Each thin film was laminated at a vacuum degree of 4.0 × 10 −5 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 70 nm was formed. First, HAT-CN was formed to a thickness of 10 nm as a hole injection layer on ITO, and then HT-1 was formed as a hole transport layer to a thickness of 25 nm. Next, a compound (217) was formed to a thickness of 5 nm as an electron blocking layer. Then, the compound (217) as a host and the compound (104D) as a dopant were co-deposited from different vapor deposition sources to form a light emitting layer with a thickness of 30 nm. At this time, co-evaporation was performed under the vapor deposition conditions where the concentration of the compound (104D) was 15 wt%. Next, the compound (238) was formed to a thickness of 5 nm as a hole blocking layer. Next, ET-1 was formed to a thickness of 40 nm as an electron transport layer. Further, lithium fluoride (LiF) was formed to a thickness of 1 nm as an electron injection layer on the electron transport layer. Finally, aluminum (Al) was formed as a cathode to a thickness of 70 nm on the electron injection layer, and an organic EL device was produced.
実施例2~11、比較例1~8
 ドーパント、及びホストを表2に示す化合物とした他は、実施例1と同様にして有機EL素子を作製した。
Examples 2 to 11 and Comparative Examples 1 to 8
An organic EL device was produced in the same manner as in Example 1 except that the dopant and host were changed to the compounds shown in Table 2.
実施例12、13
 電子阻止層、ホスト、及び正孔阻止層を表2に示す化合物とした他は、実施例1と同様にして有機EL素子を作製した。
Examples 12 and 13
An organic EL device was produced in the same manner as in Example 1 except that the electron blocking layer, the host, and the hole blocking layer were changed to the compounds shown in Table 2.
実施例14
 膜厚70nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層した。まず、ITO上に正孔注入層としてHAT-CNを10nmの厚さに形成し、次に正孔輸送層としHT-1を25nmの厚さに形成した。次に、電子阻止層として化合物(217)を5nmの厚さに形成した。次に、ホストとして化合物(217)を、第2ホストとして化合物(238)を、そしてドーパントとして化合物(104D)をそれぞれ異なる蒸着源から共蒸着し、30nmの厚さに発光層を形成した。この時、化合物(104D)の濃度が15wt%、ホストと第2ホストの重量比が50:50となる蒸着条件で共蒸着した。次に、正孔阻止層として化合物(238)を5nmの厚さに形成した。次に電子輸送層としてET-1を40nmの厚さに形成した。更に、電子輸送層上に電子注入層としてフッ化リチウム(LiF)を1nmの厚さに形成した。最後に、電子注入層上に、陰極としてアルミニウム(Al)を70nmの厚さに形成し、有機EL素子を作製した。
Example 14
Each thin film was laminated at a vacuum degree of 4.0 × 10 −5 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 70 nm was formed. First, HAT-CN was formed to a thickness of 10 nm on ITO as a hole injection layer, and then HT-1 was formed to a thickness of 25 nm as a hole transport layer. Next, a compound (217) was formed to a thickness of 5 nm as an electron blocking layer. Next, the compound (217) as a host, the compound (238) as a second host, and the compound (104D) as a dopant were co-deposited from different vapor deposition sources to form a light emitting layer with a thickness of 30 nm. At this time, the co-evaporation was performed under the vapor deposition conditions where the concentration of the compound (104D) was 15 wt% and the weight ratio of the host to the second host was 50:50. Next, the compound (238) was formed to a thickness of 5 nm as a hole blocking layer. Next, ET-1 was formed to a thickness of 40 nm as an electron transport layer. Further, lithium fluoride (LiF) was formed to a thickness of 1 nm as an electron injection layer on the electron transport layer. Finally, aluminum (Al) was formed as a cathode to a thickness of 70 nm on the electron injection layer, and an organic EL device was produced.
 ドーパント、ホスト、第2ホスト、正孔阻止層、電子阻止層として使用した化合物を表2に示す。 
Table 2 shows compounds used as a dopant, a host, a second host, a hole blocking layer, and an electron blocking layer.
Figure JPOXMLDOC01-appb-T000025
 
Figure JPOXMLDOC01-appb-T000025
 
 作製した有機EL素子の発光スペクトルの極大発光波長、外部量子効率、寿命を表3に示す。極大発光波長、外部量子効率は駆動電流密度が2.5mA/cm2時の値であり、初期特性である。寿命は、初期輝度500cd/m2時に輝度が初期輝度の95%まで減衰するまでの時間を測定した。 Table 3 shows the maximum emission wavelength, external quantum efficiency, and lifetime of the emission spectrum of the produced organic EL device. The maximum light emission wavelength and external quantum efficiency are values when the drive current density is 2.5 mA / cm 2 , and are initial characteristics. The lifetime was measured as the time required for the luminance to decay to 95% of the initial luminance at an initial luminance of 500 cd / m 2 .
Figure JPOXMLDOC01-appb-T000026
 
Figure JPOXMLDOC01-appb-T000026
 
 表3から一般式(1)で表される重水素化されたTADF材料を発光ドーパントとして使用した有機EL素子は、重水素化されていないTADF材料を発光ドーパントとして使用した場合に対して、優れた寿命特性を有することが分かる。これは、重水素化により炭素―水素結合が炭素―重水素結合になったことで、結合解離エネルギーが大きくなり、炭素―水素結合の開裂によるTADF材料の劣化が抑制されたことによるものと考えられる。 From Table 3, the organic EL device using the deuterated TADF material represented by the general formula (1) as the luminescent dopant is superior to the case where the non-deuterated TADF material is used as the luminescent dopant. It can be seen that it has a long life characteristic. This is thought to be due to the fact that the bond-dissociation energy increased due to the deuteration of carbon-hydrogen bonds to carbon-deuterium bonds, and the deterioration of the TADF material due to carbon-hydrogen bond cleavage was suppressed. It is done.
 本発明の有機EL素子は、高発光効率、且つ長寿命な遅延蛍光型の有機EL素子であり、携帯電話等のディスプレイ等の表示素子や光源素子として実用上有用である。 The organic EL element of the present invention is a delayed fluorescence type organic EL element having a high light emission efficiency and a long lifetime, and is practically useful as a display element or a light source element for a display such as a mobile phone.
1  基板、2  陽極、3  正孔注入層、4  正孔輸送層、5  発光層、6  電子輸送層、7  陰極  1 substrate, 2 anode, 3 hole injection layer, 4 hole transport layer, 5 light emitting layer, 6 electron transport layer, 7 cathode

Claims (10)

  1.  対向する陽極と陰極の間に1つ以上の発光層を含む有機電界発光素子において、少なくとも1つの発光層が、下記一般式(1)で表される化合物を熱活性化遅延蛍光発光材料として含有することを特徴とする有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000001
     
     ここで、Zは式(2)で表される縮合芳香族複素環であり、環Aは式(2a)で表される芳香族炭化水素環であり、環Bは式(2b)で表される複素環であり、環A及び環Bはそれぞれ隣接する環と任意の位置で縮合する。
    Ar1は置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~18の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~8個連結して構成される連結芳香族基であり、Ar2は、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~18の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~8個連結して構成される連結芳香族基である。Ar1、Ar2が連結芳香族基である場合、連結する芳香族環は同一であっても異なっていても良く、直鎖上でも分岐状でも良い。
    R1はそれぞれ独立に炭素数1~10の脂肪族炭化水素基、置換もしくは未置換の炭素数12~44のジアリールアミノ基、置換もしくは未置換の炭素数3~18の芳香族炭化水素基、又は置換もしくは未置換の炭素数3~18の芳香族複素環基である。
    nは1~2の整数を表し、aは0~4の整数を表し、bは0~2の整数を表す。一般式(1)で表される化合物は少なくとも1個の重水素を有する。
    In an organic electroluminescence device including one or more light emitting layers between an anode and a cathode facing each other, at least one light emitting layer contains a compound represented by the following general formula (1) as a thermally activated delayed fluorescent light emitting material An organic electroluminescent element characterized by comprising:
    Figure JPOXMLDOC01-appb-C000001

    Here, Z is a condensed aromatic heterocycle represented by formula (2), ring A is an aromatic hydrocarbon ring represented by formula (2a), and ring B is represented by formula (2b). The ring A and the ring B are each fused with an adjacent ring at an arbitrary position.
    Ar 1 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms, or the aromatic hydrocarbon group and the aromatic heterocyclic ring. A linked aromatic group constituted by connecting 2 to 8 aromatic rings of an aromatic group selected from the group, Ar 2 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, A structure in which 2 to 8 aromatic rings of a substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms, or an aromatic group selected from the aromatic hydrocarbon group and the aromatic heterocyclic group are connected Connected aromatic group. When Ar 1 and Ar 2 are linked aromatic groups, the aromatic rings to be linked may be the same or different, and may be linear or branched.
    R 1 each independently represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 44 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 3 to 18 carbon atoms, Or a substituted or unsubstituted aromatic heterocyclic group having 3 to 18 carbon atoms.
    n represents an integer of 1 to 2, a represents an integer of 0 to 4, and b represents an integer of 0 to 2. The compound represented by the general formula (1) has at least one deuterium.
  2.  一般式(1)で表される化合物が、下記一般式(3)~(8)のいずれかで表される化合物であることを特徴とする請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000002
     
    Figure JPOXMLDOC01-appb-C000003
     
    Figure JPOXMLDOC01-appb-C000004
     
     ここで、Ar2、R1、a及びbは一般式(1)と同義である。
    Lは単結合、置換若しくは未置換の炭素数6~12の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~10の芳香族複素環基である。
    Ar3は式(9)で表される基であり、XはCR2又はNを表し、少なくとも1つのXはNを表す。
    R2は水素、炭素数3~10の脂肪族炭化水素基、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~10の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~5個連結して構成される連結芳香族基である。R2が連結芳香族基である場合、連結する芳香族環は同一であっても異なっていても良く、直鎖状でも分岐状でも良い。
    一般式(3)~(8)で表される化合物は少なくとも1個の重水素を有する。
    2. The organic electroluminescent device according to claim 1, wherein the compound represented by the general formula (1) is a compound represented by any one of the following general formulas (3) to (8).
    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    Here, Ar 2 , R 1 , a and b have the same meanings as in the general formula (1).
    L is a single bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 10 carbon atoms.
    Ar 3 is a group represented by the formula (9), X represents CR 2 or N, and at least one X represents N.
    R 2 is hydrogen, an aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 10 carbon atoms. Or a linked aromatic group constituted by connecting 2 to 5 aromatic rings of an aromatic group selected from the aromatic hydrocarbon group and the aromatic heterocyclic group. When R 2 is a linked aromatic group, the linked aromatic rings may be the same or different, and may be linear or branched.
    The compounds represented by the general formulas (3) to (8) have at least one deuterium.
  3.  一般式(3)~(6)のいずれかで表される化合物であることを特徴とする請求項2に記載の有機電界発光素子。 3. The organic electroluminescence device according to claim 2, which is a compound represented by any one of the general formulas (3) to (6).
  4.  Lが置換若しくは未置換の炭素数6~12の芳香族炭化水素基であることを特徴とする請求項2又は3に記載の有機電界発光素子。 4. The organic electroluminescent device according to claim 2, wherein L is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms.
  5.  前記熱活性化遅延蛍光材料を含有する発光層が、ホスト材料を含有することを特徴とする請求項1に記載の有機電界発光素子。 The organic electroluminescent element according to claim 1, wherein the light emitting layer containing the thermally activated delayed fluorescent material contains a host material.
  6.  前記ホスト材料が、下記一般式(10)で表される化合物であることを特徴とする請求項5に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000005
     
     ここで、Ar4はベンゼン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、カルボラン、トリアジン、又はこれらが2~3個連結した化合物から生じるp価の基を表す。
    pは1又は2の整数を表し、qは0~4の整数を表すが、Ar4がベンゼンから生じるp価の基である場合、qは1~4の整数である。
    The organic electroluminescence device according to claim 5, wherein the host material is a compound represented by the following general formula (10).
    Figure JPOXMLDOC01-appb-C000005

    Here, Ar 4 represents a p-valent group generated from benzene, dibenzofuran, dibenzothiophene, carbazole, carborane, triazine, or a compound in which two to three of these are connected.
    p represents an integer of 1 or 2, and q represents an integer of 0 to 4. When Ar 4 is a p-valent group derived from benzene, q is an integer of 1 to 4.
  7.  一般式(10)で表されるホスト材料を少なくとも2種類含有することを特徴とする請求項5又は6に記載の有機電界発光素子。 The organic electroluminescent element according to claim 5 or 6, comprising at least two kinds of host materials represented by the general formula (10).
  8.  ホスト材料の励起三重項エネルギー(T1)、が一般式(1)で表される熱活性化遅延蛍光材料の励起一重項エネルギー(S1)よりも大きいことを特徴とする請求項5~7のいずれかに記載の有機電界発光素子。 8. The excited triplet energy (T1) of the host material is larger than the excited singlet energy (S1) of the thermally activated delayed fluorescent material represented by the general formula (1). An organic electroluminescent device according to claim 1.
  9.  前記発光層に隣接する層に、一般式(10)で表される化合物を含有することを特徴とする請求項1に記載の有機電界発光素子。 The organic electroluminescent element according to claim 1, wherein the layer adjacent to the light emitting layer contains a compound represented by the general formula (10).
  10.  一般式(1)で表される化合物の励起一重項エネルギー(S1)と励起三重項エネルギー(T1)の差が、0.2eV以下であることを特徴とする請求項1に記載の有機電界発光素子。  The organic electroluminescent device according to claim 1, wherein the difference between the excited singlet energy (S1) and the excited triplet energy (T1) of the compound represented by the general formula (1) is 0.2 eV or less. .
PCT/JP2018/006065 2017-03-22 2018-02-20 Organic electroluminescent element WO2018173598A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019507459A JP7037543B2 (en) 2017-03-22 2018-02-20 Organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-055596 2017-03-22
JP2017055596 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173598A1 true WO2018173598A1 (en) 2018-09-27

Family

ID=63585178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006065 WO2018173598A1 (en) 2017-03-22 2018-02-20 Organic electroluminescent element

Country Status (3)

Country Link
JP (1) JP7037543B2 (en)
TW (1) TW201843155A (en)
WO (1) WO2018173598A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025328A1 (en) 2019-08-02 2021-02-11 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
WO2021066370A1 (en) * 2019-10-02 2021-04-08 LG Display Co.,Ltd. Organic light emitting diode and organic light emitting device having the same
CN112687812A (en) * 2019-10-18 2021-04-20 乐金显示有限公司 Organic light emitting diode and organic light emitting device including the same
KR20210045244A (en) * 2019-10-16 2021-04-26 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
WO2021131766A1 (en) * 2019-12-25 2021-07-01 日鉄ケミカル&マテリアル株式会社 Organic electroluminescent element
WO2021182775A1 (en) 2020-03-11 2021-09-16 주식회사 엘지화학 Organic light-emitting device
WO2024016249A1 (en) * 2022-07-21 2024-01-25 北京大学深圳研究生院 Organic host material and light-emitting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171891A1 (en) * 2018-03-07 2019-09-12 日鉄ケミカル&マテリアル株式会社 Organic electroluminescent element
CN110759918B (en) 2019-10-31 2021-07-06 上海天马有机发光显示技术有限公司 Compound, display panel and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509247A (en) * 2007-12-28 2011-03-24 ユニバーサル ディスプレイ コーポレイション Substances containing carbazole in phosphorescent light emitting diodes
WO2011070963A1 (en) * 2009-12-07 2011-06-16 新日鐵化学株式会社 Organic light-emitting material and organic light-emitting element
WO2012077520A1 (en) * 2010-12-09 2012-06-14 新日鐵化学株式会社 Organic electroluminescent element
JP2013509406A (en) * 2009-10-29 2013-03-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Deuterium compounds for electronic applications
WO2016069321A2 (en) * 2014-10-31 2016-05-06 E. I. Du Pont De Nemours And Company Electroactive materials
WO2016194604A1 (en) * 2015-05-29 2016-12-08 新日鉄住金化学株式会社 Organic electroluminescent element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509247A (en) * 2007-12-28 2011-03-24 ユニバーサル ディスプレイ コーポレイション Substances containing carbazole in phosphorescent light emitting diodes
JP2013509406A (en) * 2009-10-29 2013-03-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Deuterium compounds for electronic applications
WO2011070963A1 (en) * 2009-12-07 2011-06-16 新日鐵化学株式会社 Organic light-emitting material and organic light-emitting element
WO2012077520A1 (en) * 2010-12-09 2012-06-14 新日鐵化学株式会社 Organic electroluminescent element
WO2016069321A2 (en) * 2014-10-31 2016-05-06 E. I. Du Pont De Nemours And Company Electroactive materials
WO2016194604A1 (en) * 2015-05-29 2016-12-08 新日鉄住金化学株式会社 Organic electroluminescent element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022505594A (en) * 2019-08-02 2022-01-14 エルジー・ケム・リミテッド New compounds and organic light emitting devices containing them
WO2021025328A1 (en) 2019-08-02 2021-02-11 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
WO2021066370A1 (en) * 2019-10-02 2021-04-08 LG Display Co.,Ltd. Organic light emitting diode and organic light emitting device having the same
CN112913041B (en) * 2019-10-02 2024-05-07 乐金显示有限公司 Organic light emitting diode and organic light emitting device having the same
EP4038667A4 (en) * 2019-10-02 2023-12-13 LG Display Co., Ltd. Organic light emitting diode and organic light emitting device having the same
CN112913041A (en) * 2019-10-02 2021-06-04 乐金显示有限公司 Organic light emitting diode and organic light emitting device having the same
KR20210045244A (en) * 2019-10-16 2021-04-26 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
KR102578741B1 (en) * 2019-10-16 2023-09-13 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
US20210119141A1 (en) * 2019-10-18 2021-04-22 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting device including the same
CN112687812B (en) * 2019-10-18 2024-05-07 乐金显示有限公司 Organic light emitting diode and organic light emitting device including the same
CN112687812A (en) * 2019-10-18 2021-04-20 乐金显示有限公司 Organic light emitting diode and organic light emitting device including the same
WO2021131766A1 (en) * 2019-12-25 2021-07-01 日鉄ケミカル&マテリアル株式会社 Organic electroluminescent element
EP4083033A4 (en) * 2019-12-25 2024-01-17 NIPPON STEEL Chemical & Material Co., Ltd. Organic electroluminescent element
WO2021182775A1 (en) 2020-03-11 2021-09-16 주식회사 엘지화학 Organic light-emitting device
US11588116B2 (en) 2020-03-11 2023-02-21 Lg Chem, Ltd. Organic light emitting device
WO2024016249A1 (en) * 2022-07-21 2024-01-25 北京大学深圳研究生院 Organic host material and light-emitting device

Also Published As

Publication number Publication date
JPWO2018173598A1 (en) 2020-01-23
TW201843155A (en) 2018-12-16
JP7037543B2 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
JP7037543B2 (en) Organic electroluminescent device
JPWO2018198844A1 (en) Organic electroluminescent device
JP4947142B2 (en) Light emitting device material and light emitting device
JP4628435B2 (en) Organic electroluminescence device
US11111244B2 (en) Organic compound and organic electroluminescence device using the same
KR102659607B1 (en) organic electroluminescent device
JPWO2010113761A1 (en) Organic electroluminescence device
JP7332577B2 (en) organic electroluminescent device
EP4083033A1 (en) Organic electroluminescent element
WO2018173593A1 (en) Organic electroluminescent element
JP7198804B2 (en) organic electroluminescent device
KR20190132261A (en) Multicyclic compound and organic light emitting device comprising the same
JP7094215B2 (en) Thermally activated delayed fluorescent light emitting material and organic electroluminescent device
WO2024058146A1 (en) Luminescent material, and organic electroluminescent element
WO2022264638A1 (en) Material for organic electroluminescent elements, and organic electroluminescent element
WO2023162701A1 (en) Material for organic electroluminescent element, and organic electroluminescent element
WO2024135278A1 (en) Compound, material for organic electroluminescent element, and organic electroluminescent element
WO2024135277A1 (en) Organic electroluminescent element
WO2022255241A1 (en) Deuteride and organic electroluminescent element
WO2023157629A1 (en) Luminescent material, and organic electroluminescent element
WO2024019072A1 (en) Organic electroluminescent element
WO2022255242A1 (en) Deuteride and organic electroluminescent element
WO2024048536A1 (en) Organic electroluminescent element
WO2022255243A1 (en) Deuteride and organic electroluminescent element
TW202200754A (en) Organic electroluminescence element material and organic electroluminescence element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507459

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770888

Country of ref document: EP

Kind code of ref document: A1