WO2018173233A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2018173233A1
WO2018173233A1 PCT/JP2017/011890 JP2017011890W WO2018173233A1 WO 2018173233 A1 WO2018173233 A1 WO 2018173233A1 JP 2017011890 W JP2017011890 W JP 2017011890W WO 2018173233 A1 WO2018173233 A1 WO 2018173233A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
stti
user terminal
transmission
dmrs
Prior art date
Application number
PCT/JP2017/011890
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
ギョウリン コウ
ホイリン ジャン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to MX2019010864A priority Critical patent/MX2019010864A/es
Priority to EP17901588.8A priority patent/EP3605978A4/en
Priority to US16/496,255 priority patent/US11463225B2/en
Priority to PCT/JP2017/011890 priority patent/WO2018173233A1/ja
Priority to CN201780090757.6A priority patent/CN110622476B/zh
Priority to JP2019506866A priority patent/JP7111696B2/ja
Publication of WO2018173233A1 publication Critical patent/WO2018173233A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( New RAT) and LTE Rel.14, 15 ⁇ ) are also being considered.
  • CA Carrier Aggregation
  • CC Component Carrier
  • UE User Equipment
  • DC Dual Connectivity
  • CG Cell Group
  • CC Carrier
  • Inter-eNB CA inter-base station CA
  • a downlink (DL: Downlink) and / or an uplink (UL: Uplink) communication is performed using a transmission time interval (TTI: Transmission Time Interval) of 1 ms. Is done.
  • TTI Transmission Time Interval
  • the 1 ms TTI is a transmission time unit of one channel-encoded data packet, and is a processing unit such as scheduling, link adaptation, and retransmission control (HARQ-ACK: Hybrid Automatic Repeat reQuest-Acknowledge).
  • a 1 ms TTI is also called a subframe, a subframe length, or the like.
  • Future wireless communication systems eg, 5G, NR, etc.
  • various wireless communication services eg, ultra-high speed, large capacity, ultra-low delay, etc.
  • eMBB enhanced Mobile Broad Band
  • mMTC massive Machine Type Communication
  • URLLC Ultra Reliable and Low Latency Communications
  • a TTI for example, a short TTI shorter than a 1 ms TTI
  • LTE for example, LTE Rel. 8-13
  • a demodulation reference signal (DMRS: used for demodulation of data symbols) at least before, during and after the sTTI. It is preferable to have a configuration in which DeModulation Reference Signal) is transmitted.
  • the present invention has been made in view of the above points, and provides a user terminal and a wireless communication method capable of appropriately controlling UL transmission even when uplink data and a demodulation reference signal are transmitted using a short TTI.
  • One of the purposes is to provide it.
  • One aspect of the user terminal of the present invention includes: a transmission unit that transmits a UL signal and a reference signal used for demodulation of the UL signal; and a control unit that controls allocation of the UL signal and the reference signal.
  • the control unit uses the same sTTI for the UL signal and the reference signal used for demodulation of the UL signal at least in the sTTI other than the leading sTTI. It is characterized by assigning to.
  • UL transmission can be appropriately controlled even when uplink data and demodulation reference signals are transmitted using a short TTI.
  • 1A and 1B are diagrams illustrating an example of the configuration of sTTI. It is a figure explaining DMRS which demodulates UL data of different sTTI. It is a figure which shows an example of the allocation method of UL data and DMRS which concern on a 1st aspect. It is a figure which shows an example of the allocation method of UL data and DMRS which concern on a 2nd aspect. It is a figure which shows an example of the allocation method of UL data and DMRS which concern on a 3rd aspect. It is a schematic block diagram which shows an example of schematic structure of the radio
  • a short TTI (sTTI: shortened TTI) having a shorter period than an existing transmission time interval (TTI: 1 ms) is introduced to transmit and receive signals. It has been considered to control.
  • sTTI short TTI
  • 5G / NR it is considered that UEs use different services simultaneously. In this case, it is considered to change the TTI length depending on the service.
  • TTI may represent a time unit for transmitting / receiving a transport block, a code block, and / or a code word of transmission / reception data.
  • a time interval (number of symbols) in which a data transport block, code block, and / or codeword is actually mapped may be shorter than the TTI.
  • the TTI when the TTI is composed of a predetermined number of symbols (for example, 14 symbols), a transport block, a code block, and / or a code word of transmission / reception data are included in one to a predetermined number of symbol sections. It can be sent and received.
  • a reference signal, a control signal, etc. are used for symbols not mapping data in the TTI. Can be mapped.
  • the UE may transmit and / or receive using both the long TTI and the short TTI.
  • the long TTI is a TTI having a longer time length than the short TTI (for example, a TTI having the same 1 ms time length as an existing subframe (TTI in LTE Rel. 8-13)), and is usually TTI (nTTI: normal TTI), 1 ms TTI, normal subframe, long subframe, subframe, slot, long slot, etc.
  • a long TTI may also be referred to as a lower (smaller) subcarrier spacing (eg, 15 kHz) TTI.
  • the long TTI has a time length of 1 ms, for example, and includes 14 symbols (in the case of a normal cyclic prefix (CP)) or 12 symbols (in the case of an extended CP).
  • Long TTI is considered suitable for services such as eMBB, mMTC, etc., in which delay reduction is not strictly required.
  • a downlink control channel (PDCCH: Physical Downlink Control Channel) and a downlink data channel (PDSCH: Physical) are transmitted and / or received in a TTI (subframe).
  • Downlink Shared Channel (PUCCH: Physical Uplink Control Channel)
  • PUSCH Physical Uplink Shared Channel
  • the short TTI is a TTI having a shorter time length than the long TTI, and may be called a shortened TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a partial subframe, a minislot, a subslot, or the like. Also, in NR, a short TTI may be referred to as a higher (larger) subcarrier spacing (eg, 60 kHz) TTI.
  • the short TTI is composed of, for example, a smaller number of symbols (eg, 2 symbols, 7 symbols, etc.) than the long TTI, and the time length (symbol length) of each symbol is the same as the long TTI (eg, 66.7 ⁇ s). May be.
  • the short TTI may be composed of the same number of symbols as the long TTI, and the symbol length of each symbol may be shorter than the long TTI.
  • Short TTI When the short TTI is used, a time margin for processing (for example, encoding, decoding, etc.) in the UE and / or base station is increased, and processing delay can be reduced. Further, when the short TTI is used, the number of UEs that can be accommodated per unit time (for example, 1 ms) can be increased. Short TTI is considered suitable for services such as URLLC that require severe delay reduction.
  • the UE in which the short TTI is set uses a channel in a time unit shorter than the existing data and control channels.
  • a shortened downlink control channel sPDCCH: shortened PDCCH
  • a shortened downlink data channel sPDSCH: shortened PDSCH
  • a shortened uplink control channel sPUCCH: shortened
  • PUCCH shortened downlink data channel
  • sPUSCH shortened PUSCH
  • the data symbol of sPUSCH is limited to mapping within one short TTI.
  • a DMRS used for demodulating data symbols is transmitted at least one before, during and after the short TTI. That is, the data symbol and DMRS may be arranged by time division multiplexing (TDM). Further, the data symbol and the DMRS may be mapped to radio resources that are continuous in time and / or frequency, or may be mapped to radio resources that are not continuous (not adjacent).
  • FIG. 1 shows an example of the configuration of a short TTI.
  • FIG. 1 illustrates a case where a plurality of short TTIs are set by dividing one subframe (14 OFDM symbols) into predetermined sections.
  • one subframe is divided into 3, 2, 2, 2, 2, 3 symbols to set a short TTI (sTTI # 0- # 5).
  • sTTI # 0 and # 5 are composed of 3 symbols
  • sTTI # 1 to # 4 are composed of 2 symbols.
  • Such a configuration is also referred to as 2-symbol sTTI (2-OS sTTI, 2OS (OFDM Symbol)).
  • it may be called sTTI configuration 1, sTTI format 1, sTTI configuration 1, and the like.
  • a short TTI (sTTI # 0- # 1) is set by dividing one subframe into 7 or 7 symbols.
  • sTTI # 0 and # 1 are composed of 7 symbols.
  • Such a configuration is also called 7-symbol sTTI (7-OS sTTI, 7OS).
  • sTTI configuration 2 sTTI format 2, sTTI configuration 2, and the like.
  • a UL2 symbol sTTI layout based on a 2-symbol short TTI is agreed as an uplink pattern of a short TTI.
  • the UL2 symbol sTTI layout as shown in FIG. 1A, one subframe is divided into 3, 2, 2, 2, 2, 3 symbols to set a short TTI (sTTI # 0- # 5).
  • a DMRS arrangement presence / absence and position
  • the DMRS placement can be placed in an sTTI prior to or the same as the sTTI associated with the DMRS.
  • UL data and DMRS are allocated discontinuously (for example, different sTTIs) in the time direction depending on the configuration of the short TTI.
  • the DMRS is not arranged in each sTTI (all sTTIs), but the DMRS used for demodulation of UL data scheduled in a certain sTTI is arranged in different sTTIs.
  • the DMRS used for demodulation of UL data scheduled for a certain sTTI may be a symbol that is temporally continuous or may be a symbol that is not continuous. It is also conceivable that a plurality of UL data scheduled for different sTTIs share (share) DMRS.
  • IFDMA interleaved frequency division multiplexing
  • DMRS multiplexing can be performed by applying frequency resources that are not equal among a plurality of UEs.
  • Frequency resources that are not equal among a plurality of UEs include, for example, partially overlapping frequency resources, frequency resources in which at least one of the lower end and the upper end of the allocated frequency resource is different.
  • DMRS multiplexing method when using a short TTI, it is considered to apply a cyclic shift (CS).
  • CS cyclic shift
  • orthogonality between UEs can be ensured by applying equal frequency resources and different cyclic shifts to a plurality of UEs.
  • DMRS multiplexing may be controlled by combining IFDMA and cyclic shift.
  • the DMRSs of the plurality of sTTIs are multiplexed into a single DMRS symbol.
  • the DMRSs of the plurality of sTTIs may be multiplexed by cyclic shift and / or comb-toothed subcarrier arrangement (Comb).
  • each sTTI DMRS is assigned to the DMRS of sTTI # 0
  • Comb # 1 is assigned to the DMRS of sTTI # 1.
  • Comb # 0 is selected depending on whether C-RNTI is even or odd
  • cell ID or virtual cell ID value for example, cell ID or virtual cell ID is even or odd
  • Comb # 0 may be selected)
  • a value specified by higher layer signaling or any combination of the above.
  • DMRS of each sTTI is generated using different cyclic shift indexes and mapped to the same DMRS symbol.
  • the DMRS associated with sTTI # 0 is generated using the cyclic shift index #x
  • the DMRS associated with sTTI # 1 is generated using the cyclic shift index #y.
  • the cyclic shift index of each sTTI may be indicated by a predetermined field (eg, CS / OCC instruction field, cyclic shift field) in the DCI.
  • FIG. 2 shows an example of DMRS multiplexing using IFDMA.
  • a short TTI (sTTI # 0- # 5) is set by dividing one subframe into 3, 2, 2, 2, 2, 3 symbols. Attention is paid to the user terminal UE1 and the user terminal UE2 that are DMRS multiplexed with each other.
  • STTI # 0 is scheduled for sPUSCH transmission of one user terminal UE1
  • sTTI # 1 is scheduled for sPUSCH transmission of the other user terminal UE2.
  • DMRSs for sPUSCHs of sTTI # 0 and # 1 are multiplexed by IFDMA on DMRS symbols (first symbols) assigned to sTTI # 0.
  • the DMRS for the user terminal UE1 is arranged in the same region as the frequency band (PRB) allocated to the sPUSCH of the user terminal UE1, and the user terminal UE2 is similarly configured with the frequency band (PRB) allocated to the sPUSCH of the user terminal UE2.
  • DMRS is arranged in the same area.
  • the base station receives the UL signal of the user terminal UE1 and demodulates the sPUSCH of the sTTI # 0 with reference to the DMRS arranged in the DMRS symbol of 2sTTI # 0. Moreover, the UL signal from the user terminal UE2 is received, and the sPUSCH of the sTTI # 1 is demodulated with reference to the DMRS arranged in the DMRS symbol of the sTTI # 0.
  • a DMRS multiplexing method using IFDMA that supports 2-symbol-based sPUSCH as shown in FIG. 2 has been agreed.
  • the DMRS and data have the same transmission power or power set with a known offset.
  • the DMRS to which the Comb is applied has a power spectral density twice as high as that of data when looking at each resource element in the frequency domain.
  • the base station can correctly recognize the power ratio between the resource element of the DMRS and the data, and can accurately demodulate the data symbol. it can.
  • the UE When performing UL transmission (for example, HARQ-ACK transmission for DL data and / or UL data transmission for UL grant) using short TTI, the UE transmits the UL transmission at a predetermined timing.
  • the short TTI is 2 symbols TTI (2OS) (see FIG. 1A)
  • UL transmission is performed after the first timing from the DL signal reception timing (for example, sTTI # n).
  • sTTI # n For example, k ⁇ sTTI (2OS) can be used as the first timing.
  • the UE performs UL transmission after n + ksTTI.
  • the value of k for example, 4, 6, 8, 10, 12, etc. are conceivable. Different values of k may be set according to the processing capability of the user terminal. In this case, it is desirable for the user terminal to report to the radio communication base station, in advance, terminal capability information that can recognize a k value that can be set based on its own processing capability.
  • consecutive sTTI # 3 and # 4 are scheduled for sPUSCH transmission by one user terminal UE3.
  • the frequency band of sPUSCH scheduled for one sTTI # 3 is different from the frequency band of sPUSCH scheduled for the other sTTI # 3.
  • the user terminal UE3 multiplexes each DMRS corresponding to the sPUSCH transmitted by sTTI # 3 and sTTI # 4 using different Comb indexes.
  • PAPR Peak to Average Power Ratio
  • the present inventors apply a standard that when multiple sTTIs are scheduled for the same user terminal, it is not assumed that DMRSs for multiple sTTIs are multiplexed in the same DMRS symbol. It has been found that an increase in PAPR can be prevented, and has led to the present invention.
  • the user terminal when UL signals are respectively assigned to a plurality of consecutive sTTIs for the same user terminal, the user terminal changes the arrangement pattern of reference signals to sTTI to the scheduled sTTI pattern. Decide accordingly.
  • a UL signal and a reference signal used for demodulation of the UL signal are used. Assign to the same sTTI.
  • the user terminal when a UL signal is scheduled for a plurality of consecutive sTTIs for a certain user terminal, the user terminal performs control so that a plurality of DMRSs having different allocation positions in the frequency direction are not allocated to the same time resource.
  • reference signals are assigned so as to cover the frequency regions of all UL signals assigned to the plurality of sTTIs. That is, when UL signals are scheduled for a plurality of continuous sTTIs for a certain user terminal, the transmission bandwidth of DMRS shared among the plurality of UL signals is all UL signals (continuous sTTIs). Control to be a superset of
  • the short TTI may have any configuration as long as it is shorter than the long TTI (1 ms).
  • a short TTI is configured with a smaller number of symbols than a long TTI and each symbol has the same symbol length as the long TTI will be described, but the symbol length is different from the long TTI. It can be applied to the above as appropriate.
  • Each of the following aspects may be applied alone or in combination.
  • UL grant (DCI) instructing transmission of sPUSCH for example, UL data
  • sPUSCH UL data
  • the DL signal can be similarly applied to sPDSCH (for example, DL data)
  • the UL signal can be similarly applied to HARQ-ACK (for example, sPUCCH) for the DL data.
  • HARQ-ACK for example, sPUCCH
  • any signal that is demodulated using a reference signal can be similarly applied.
  • the DMRS used for demodulating the sPUSCH will be described as an example of the reference signal used for demodulating the UL signal.
  • the present embodiment is not limited to this.
  • the first mode assumes a case where sPUSCH (UL signal) is scheduled for each of a plurality of consecutive sTTIs from sTTI # n to sTTI # (n + k) for the same user terminal.
  • sTTI # (n + 1) to sTTI # (n + k) other than at least the first sTTI # n there is a content assignment method in which DMRS (reference signal) used for demodulation of sPUSCH and sPUSCH is assigned to the same sTTI (self-contained). Applied.
  • n and k are arbitrary natural numbers.
  • the DMRS used for demodulation of the UL signal assigned to the first sTTI # n is arranged in the previous sTTI # (n ⁇ 1) assigned to the other user terminal.
  • the DMRS for the first sTTI # n is multiplexed by the DMTS of another user terminal and IFDMA in the DMRS symbol of sTTI # (n ⁇ 1). That is, in the first mode, the user terminal changes the DMRS mapping according to whether or not the sTTI transmission is the head of a plurality of consecutive sTTI transmissions.
  • FIG. 3 is a diagram showing an example of the UL data and DMRS allocation method according to the first mode.
  • SPUSCH transmission by the user terminal UE1 and sPUSCH transmission by another user terminal UE2 are scheduled in adjacent sTTIs. Specifically, sPUSCH transmitted from the user terminal UE1 is scheduled to sTTI # 0.
  • the sPUSCH transmitted by another user terminal UE2 is scheduled to a plurality of consecutive sTTI # 1 to sTTI3.
  • the first symbol of sTTI # 0 in which the sPUSCH of the user terminal UE1 is scheduled is assigned to the DMRS symbol.
  • the DMRS for sTTI # 0 of user terminal UE1 and the DMRS for sTTI # 1 of user terminal UE2 are multiplexed with the DMRS symbol of sTTI # 0.
  • the user terminal UE2 uses the same DMRS for demodulating sPUSCH and sPUSCH at least in sTTI # 2 and sTTI # 3 other than the first sTTI # 1 It is assigned to sTTI (self-contained).
  • the DMRS used for demodulation of the sPUSCH allocated to the sTTI # 2 is arranged in the DMRS symbol in the sTTI # 2.
  • the transmission band of DMRS arranged in the DMRS symbol of sTTI # 2 is controlled to be the same band as the transmission band of sPUSCH allocated to sTTI # 2.
  • DMRS used for demodulation of sPUSCH and sPUSCH is assigned to the same sTTI # 3, as in sTTI # 2.
  • the DMRS for the first sTTI # 1 among a plurality of consecutive sTTIs may be multiplexed to the previous sTTI # 0 in terms of time.
  • the DMRS used for demodulation of the sPUSCH transmitted by the user terminal UE1 is arranged in the DMRS symbol (first symbol) of the sTTI # 0.
  • the sPUSCH scheduled for sTTI # 0 and the sPUSCH scheduled for sTTI # 1 have different transmission bands, and two DMRSs corresponding to these sPUSCHs are multiplexed by IFDMA.
  • the user terminal UE2 When a plurality of consecutive sTTIs (# 1 to # 3) are scheduled for sPUSCH transmission, the user terminal UE2 does not assume that DMRSs for a plurality of sTTIs are multiplexed on the same DMRS symbol. Can be assigned.
  • the user terminal UE2 assigns DMRS used for demodulation of sPUSCH and sPUSCH to the same sTTI (self-contained) at least in sTTI # 2 and sTTI # 3 other than the first sTTI # 1.
  • the scheduled sPUSCH is assigned to a predetermined PRB, but the DMRS used for demodulation of the sPUSCH is temporally multiplexed on the DMRS symbol in the previous sTTI # 0 by IFDMA.
  • sTTI # 0 since the user terminals UE1 and UE2 share the DMRS symbol, different Comb indexes are notified in advance from the base station to the user terminals UE1 and UE2.
  • a plurality of DMRSs used for demodulation of sPUSCHs transmitted by a plurality of sTTIs are concentrated on one DMRS symbol. This can eliminate the problem and increase the PAPR.
  • the user terminal controls the transmission band of DMRS shared between the plurality of sPUSCHs to be a superset.
  • the super set may be expressed as covering the frequency region of all sPUSCHs in which the DMRS transmission band is allocated to a plurality of sTTIs.
  • the user terminal when a plurality of consecutive sTTIs are scheduled, the user terminal arranges DMRS shared between a plurality of sPUSCHs assigned to the plurality of sTTIs (also referred to as a shared DMRS) in any sTTI, and DMRS Is assigned so as to cover the frequency domain of all sPUSCHs assigned to a plurality of sTTIs. Therefore, the user terminal transmits DMRS covering the frequency region of all sPUSCHs assigned to a plurality of sTTIs and sPUTI sPUSCHs including symbols for transmitting the DMRSs in different transmission bands (bandwidths).
  • bandwidths bandwidth
  • the base station can instruct that the PRB number and MCS for a plurality of continuous sTTI UL signals are changed for each sTTI, and instruct the transmission power to be constant for all sTTIs.
  • the PRB number and MCS for a plurality of continuous sTTI UL signals may change for each sTTI, and at that time, the transmission power is controlled to be constant for all sTTIs. Assume.
  • the base station transmits DMRS parameters including a transmission band (number of PRBs), a cyclic shift index, and a Comb index to the user terminal by including them in the UL grant. Meanwhile, it is assumed that the user terminal is notified of DMRS parameters for a plurality of consecutive sTTIs included in UL grant or higher layer signaling.
  • FIG. 4 is a diagram showing an example of the UL data and DMRS allocation method according to the second mode. The case where sPUSCH is scheduled to each of a plurality of consecutive sTTI # 0 to sTTI # 2 for the user terminal UE1 is shown.
  • the user terminal shares the DMRS among the sPUSCHs respectively scheduled to the plurality of sTTI # 0 to sTTI # 2.
  • the shared DMRS is arranged in the DMRS symbol of sTTI # 0.
  • the number of PRBs of sPUSCH assigned to sTTI # 2 among the plurality of consecutive sTTI # 0 to sTTI # 2 is the maximum.
  • the user terminal determines a transmission band corresponding to the number of PRBs of the sPUSCH of sTTI # 2 as the transmission band of the shared DMRS arranged in sTTI # 0.
  • each UL grant corresponding to each sTTI (# 0 to # 2) includes a parameter regarding sPUSCH transmitted by the corresponding sTTI and a parameter regarding DMRS used for demodulation of the sPUSCH.
  • the user terminal can assume that the parameters regarding DMRS are the same parameters for all UL grants. That is, the user terminal may recognize the DMRS generation parameter based on one UL grant that schedules each sPUSCH sharing the DMRS.
  • the user terminal may recognize the DMRS generation parameter based on a specific one of UL grants that schedule each sPUSCH sharing the DMRS.
  • the specific one By setting the specific one as the UL grant that schedules the sPUSCH that is earliest in time, it is possible to secure the time required for the terminal to generate the DMRS and reduce the burden on the terminal.
  • the scheduler of the base station By setting the specific one as the UL grant that schedules the sPUSCH that is the slowest in time, the scheduler of the base station can flexibly control the frequency allocation of a plurality of sPUSCHs that share the DMRS.
  • the number of PRBs allocated to sPUSCH and information of MCS (Modulation Coding Scheme) applied to sPUSCH are included.
  • a cyclic shift index and a Comb index are included as parameters regarding DMRS. If continuous sTTI is not scheduled, the user terminal uses the same frequency region as the transmission band of sPUSCH for the transmission band of DMRS.
  • the transmission band of sPUSCH is indicated in the RA field included in the UL grant in the form of the number of PRBs.
  • the transmission band of each sPUSCH is independently specified by a plurality of UL grants respectively corresponding to a plurality of sTTIs (# 0 to # 2).
  • the user terminal detects the number of PRBs from the RA field of a plurality of UL grants, and determines the maximum number of PRBs as a DMRS transmission band.
  • the number of PRBs having the maximum number of PRBs indicated in the RA field among all UL grants indicates a transmission band that covers the frequency regions of all sPUSCHs assigned to a plurality of sTTIs.
  • the sPUSCH PRB number and MCS are individually assigned to each sTTI (# 0 to # 2) by each UL grant, the sPUSCH in sTTI # 0 to sTTI # 2 as shown in FIG.
  • the number of PRBs (assigned position in the frequency direction) is set independently, and different PRBs can be set between sTTIs.
  • the transmission power may be controlled to be the same in all sTTI # 0 to sTTI # 2.
  • all of a plurality of consecutive sTTIs (# 0 to # 2) may be scheduled by one UL grant. (Case 2). Assume that a user terminal is scheduled for all of a plurality of consecutive sTTIs (# 0 to # 2) by one shared UL grant.
  • the shared UL grant corresponding to a plurality of consecutive sTTIs includes parameters related to sPUSCH transmitted in each sTTI and parameters related to shared DMRS used for demodulation of each sPUSCH. May be.
  • the parameter regarding DMRS is shared and used for demodulation of each sPUSCH transmitted by continuous sTTI (# 0 to # 2).
  • the parameters regarding DMRS include a cyclic shift index and a Comb index applied to DMRS.
  • a shared RA field or an independent RA field may be set in the shared UL grant transmitted by the base station.
  • the shared RA field can be shared between sPUSCHs transmitted by a plurality of sTTIs (# 0 to # 2), and a shared or individual PBR is indicated.
  • the independent RA field can indicate the number of PRBs independently for each sPUSCH transmitted by a plurality of sTTIs (# 0 to # 2).
  • the user terminal uses the maximum number of PRBs from among RA fields corresponding to all consecutive sTTIs (# 0 to # 2) as a DMRS transmission band.
  • the user terminal acquires the number of PRBs assigned to the sPUSCH from the RA field corresponding to each sTTI (# 0 to # 2). Therefore, in case 2, it is possible to vary the number of sPUSCH PRBs from sTTI # 0 to sTTI # 2 as shown in FIG. At this time, the transmission power may be controlled to be the same in all sTTI # 0 to sTTI # 2.
  • a DMRS-specific UL grant that can schedule only DMRS transmission may be used (case 3).
  • This UL grant includes, as minimum parameters for DMRS transmission, a DMRS transmission band (including the case indicated in the form of the number of PRBs), a cyclic shift index applied to the DMRS, and a Comb index.
  • the DMRS minimum parameter is indicated by the RA field of the UL grant.
  • the user terminal determines the DMRS transmission band and signal sequence according to the RA field of the specific UL grant, and transmits the DMRS.
  • the user terminal assumes that the DMRS transmission band indicated in the specific UL grant covers the frequency domain of all sPUSCHs assigned to a plurality of consecutive sTTIs.
  • the user terminal is notified of parameters regarding sPUSCH transmitted in each sTTI by one or more UL grants.
  • the number of PRBs of sPUSCH is indicated by the RA field of the UL grant.
  • the allocation positions in the frequency direction of sPUSCH allocated to a plurality of sTTIs are set independently.
  • the parameter UL grant related to sPUSCH may or may not include a parameter related to shared DMRS.
  • the third aspect when sPUSCH is scheduled for a plurality of consecutive sTTIs for the same user terminal, all the sPUSCHs allocated to the plurality of consecutive sTTIs have the same transmission band.
  • a user terminal makes the allocation position of the frequency direction of sPUSCH each allocated to several sTTI same.
  • the user terminal allocates the same MCS, the same number of PRBs, and the same transmission power between consecutive sPUSCHs.
  • the base station may limit the same MCS, the same number of PRBs, and the same transmission power between consecutive sPUSCHs.
  • FIG. 5 is a diagram showing an example of the UL data and DMRS allocation method according to the third mode.
  • a case is shown in which sPUSCH is scheduled from a plurality of consecutive sTTI # 0 to sTTI # 2 for the user terminal UE1.
  • the DMRS shared between the sPUSCHs scheduled from the plurality of sTTI # 0 to sTTI # 2 is arranged in the DMRS symbol of sTTI # 0.
  • the same MCS, PRB number, and transmission power are assigned to all sPUSCHs assigned to consecutive sTTI # 0 to sTTI # 2.
  • the user terminal UE1 arranges the shared DMRS in the first symbol (DMRS symbol) of sTTI # 0 having the earliest time when consecutive sTTIs (# 0 to # 2) are scheduled.
  • the DMRS transmission band is determined to be the number of PRBs common to the sPUSCHs.
  • the transmission band of the shared DMRS is allocated so as to cover the frequency region of all sPUSCHs allocated to the plurality of sTTIs.
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 6 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied.
  • the wireless communication system 1 may be referred to as SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New Rat), or the like.
  • the radio communication system 1 shown in FIG. 6 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • a configuration may be adopted in which different neurology (for example, different TTI length and / or processing time) is applied between cells. Numerology refers to a signal design in a certain RAT and a set of communication parameters that characterize the RAT design.
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, two or more CCs). Further, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells. In addition, it can be set as the structure by which the FDD carrier and / or TDD carrier which apply shortened TTI are included in either of several cells.
  • CC cells
  • TDD carrier and / or TDD carrier which apply shortened TTI are included in either of several cells.
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.
  • the same carrier as that between the base station 11 and the base station 11 may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the UL.
  • DL channels DL data channels (PDSCH: Physical Downlink Shared Channel, also referred to as DL shared channel) shared by each user terminal 20, broadcast channels (PBCH: Physical Broadcast Channel), L1 / L2 A control channel or the like is used.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • L1 / L2 control channels include DL control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. .
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH.
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • a UL data channel (PUSCH: Physical Uplink Shared Channel, also referred to as a UL shared channel) shared by each user terminal 20, a UL control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of delivery confirmation information (ACK / NACK) and radio quality information (CQI) is transmitted by PUSCH or PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • FIG. 7 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • DL data transmitted from the radio base station 10 to the user terminal 20 is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling for example, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing
  • other transmission processing are performed and the transmission / reception unit 103.
  • the DL control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input UL signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 includes a DL signal (for example, a DL control signal (DL control channel), a DL data signal (DL data channel, a DL shared channel), a DL reference signal (DM-RS, CSI-RS, etc.), and a discovery signal. , Synchronization signals, broadcast signals, etc.) and UL signals (eg, UL control signals (UL control channel), UL data signals (UL data channel, UL shared channel), UL reference signals, etc.) are received.
  • DL signal for example, a DL control signal (DL control channel), a DL data signal (DL data channel, a DL shared channel), a DL reference signal (DM-RS, CSI-RS, etc.
  • DM-RS DL reference signal
  • CSI-RS CSI-RS
  • the transmission / reception unit 103 receives the UL signal transmitted from the user terminal and the UL reference signal used for demodulation of the UL signal using the same transmission time interval or different transmission time intervals. In addition, the transmission / reception unit 103 notifies the user terminal of information regarding the allocation position (DMRS pattern) of the UL reference signal (DMRS) in a predetermined short TTI by using the UL grant. Moreover, the transmission / reception part 103 may notify the information regarding the modulation system which a user terminal applies to UL signal (for example, sPUSCH).
  • the transmission unit and the reception unit of the present invention are configured by the transmission / reception unit 103 and / or the transmission path interface 106.
  • FIG. 8 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 8 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As shown in FIG. 8, the baseband signal processing unit 104 includes at least a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
  • the control unit 301 controls scheduling (for example, resource allocation) of DL signals and / or UL signals. Specifically, the control unit 301 generates and transmits a DCI (DL assignment) including scheduling information of the DL data channel and a DCI (UL grant) including scheduling information of the UL data channel. 302, the mapping unit 303, and the transmission / reception unit 103 are controlled.
  • a DCI DL assignment
  • a DCI UL grant
  • the control unit 301 schedules a plurality of consecutive sTTI # n to sTTI # (n + k) for the same user terminal.
  • at least sTTI # (n + 1) to sTTI # (n + k) other than the first sTTI # n assign DMRSs (reference signals) used for demodulation of sPUSCH and sPUSCH to the same sTTI (first mode).
  • the control unit 301 may perform control so that the DMRS transmission band shared between the plurality of sPUSCHs becomes a superset ( Second aspect).
  • one UL grant may schedule one sTTI (Case 1).
  • all of a plurality of consecutive sTTIs may be scheduled with one shared UL grant (Case 2).
  • control unit 301 may set all the sPUSCHs allocated to the plurality of consecutive sTTIs to the same transmission band (third mode).
  • the transmission signal generation unit 302 generates a DL signal (DL reference signal such as DL control channel, DL data channel, DM-RS, etc.) based on an instruction from the control unit 301, and outputs the DL signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, a UL signal (UL control channel, UL data channel, UL reference signal, etc.) transmitted from the user terminal 20.
  • the received signal processing unit 304 controls demodulation processing of the corresponding UL signal (for example, sPUSCH) based on the uplink reference signal transmitted from the user terminal.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301.
  • the reception processing unit 304 outputs at least one of a preamble, control information, and UL data to the control unit 301.
  • the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may measure, for example, received power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 301.
  • FIG. 9 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the DL data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Of the DL data, system information and higher layer control information are also transferred to the application unit 205.
  • UL data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 includes a DL signal (for example, a DL control signal (DL control channel), a DL data signal (DL data channel, a DL shared channel), a DL reference signal (DM-RS, CSI-RS, etc.), and a discovery signal.
  • a DL signal for example, a DL control signal (DL control channel), a DL data signal (DL data channel, a DL shared channel), a DL reference signal (DM-RS, CSI-RS, etc.), and a discovery signal.
  • a UL signal for example, UL control signal (UL control channel), UL data signal (UL data channel, UL shared channel), UL reference signal, etc.
  • the transmission / reception unit 203 transmits the UL signal and the UL reference signal used for demodulation of the UL signal using the same transmission time interval or different transmission time intervals.
  • the transmission / reception unit 203 receives information on allocation of UL reference signals (DMRS) in a predetermined short TTI.
  • the transmission / reception unit 203 may receive information on a modulation scheme applied to the UL signal (for example, sPUSCH).
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 10 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As shown in FIG. 10, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. At least.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the control unit 401 When the sPUSCH (UL signal) is scheduled for each of a plurality of consecutive sTTIs from sTTI # n to sTTI # (n + k) for the same user terminal, the control unit 401 sTTI other than at least the first sTTI # n.
  • # (n + 1) to sTTI # (n + k) DMRS (reference signal) used for demodulation of sPUSCH and sPUSCH is assigned to the same sTTI (first mode).
  • the DMRS used for demodulation of the UL signal assigned to the first sTTI # n is multiplexed by the DMTS and IFDMA of other user terminals in the DMRS symbol of the previous sTTI # (n ⁇ 1).
  • the control unit 401 arranges DMRSs (shared DMRSs) shared among a plurality of sPUSCHs assigned to the plurality of sTTIs in any sTTI, and the DMRS transmission band is You may perform control which allocates so that the frequency area
  • one sTTI may be scheduled by one UL grant (Case 1).
  • only DMRS transmissions may be scheduled with a unique UL grant (Case 3).
  • control unit 401 may assume that all the sPUSCHs allocated to the plurality of consecutive sTTIs have the same transmission band (third mode).
  • the transmission signal generation unit 402 generates a UL signal (UL control channel, UL data channel, UL reference signal, etc.) based on an instruction from the control unit 401, and outputs the UL signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps the UL signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs it to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a DL signal (DL control channel, DL data channel, DL reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the received signal processing unit 404 performs blind decoding on the DL control channel that schedules transmission and / or reception of the DL data channel based on an instruction from the control unit 401, and performs DL data channel reception processing based on the DCI.
  • Received signal processing section 404 estimates the channel gain based on DM-RS or CRS, and demodulates the DL data channel based on the estimated channel gain.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 may output the data decoding result to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal. For example, the measurement unit 405 measures the channel state based on a channel state measurement reference signal (CSI-RS) transmitted from the radio base station. Further, the measurement unit 405 may measure the received power (for example, RSRP) and DL reception quality (for example, RSRQ) of the received signal. The measurement result may be output to the control unit 401.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • each function in the radio base station 10 and the user terminal 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004.
  • predetermined software program
  • it is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal.
  • Different names may be used for the radio frame, the subframe, the slot, and the symbol.
  • one subframe may be referred to as a transmission time interval (TTI)
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot may be referred to as a TTI.
  • the subframe or TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. Also good.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), or may be a processing unit such as scheduling or link adaptation.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a shortened subframe, a short subframe, or the like.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of one slot, one subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • the RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, symbol, and the like is merely an example.
  • the configuration such as the cyclic prefix (CP) length can be changed in various ways.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • mathematical formulas and the like using these parameters may differ from those explicitly disclosed herein.
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to these The name is not limiting in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory), or may be managed by a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicitly performed, but implicitly (for example, by not performing notification of the predetermined information or another (By notification of information).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • cell e.g., a fixed station
  • eNodeB eNodeB
  • cell group e.g., a cell
  • carrier femtocell
  • component carrier e.g., a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the specific operation assumed to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by one or more network nodes other than the base station and the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark), The present invention may be applied to a system using other appropriate wireless communication methods and / or a next generation system extended based on these.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • the terms “connected”, “coupled”, or any variation thereof refers to any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.

Abstract

ショートTTIを利用して上りデータ及び復調用参照信号を送信する場合であっても、UL送信を適切に制御するために、本発明のユーザ端末の一態様は、UL信号、及び前記UL信号の復調に利用する参照信号を送信する送信部と、前記UL信号及び前記参照信号の割当てを制御する制御部と、を有し、前記制御部は、連続する複数の所定時間間隔(sTTI)にUL信号がそれぞれ割当てられる場合、少なくとも先頭のsTTI以外のsTTIにおいて、UL信号と当該UL信号の復調に利用する参照信号を同じsTTIに割当てる。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、LTE Rel.14、15~、などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.10以降)では、広帯域化を図るために、複数のキャリア(コンポーネントキャリア(CC:Component Carrier)、セル)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各キャリアは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の無線基地局(eNB:eNodeB)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 また、既存のLTEシステム(例えば、LTE Rel.12以降)では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がユーザ端末に設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのキャリア(CC、セル)で構成される。異なる無線基地局の複数のキャリアが統合されるため、DCは、基地局間CA(Inter-eNB CA)などとも呼ばれる。
 既存のLTEシステム(例えば、LTE Rel.13以前)では、1msの伝送時間間隔(TTI:Transmission Time Interval)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該1msのTTIは、チャネル符号化された1データパケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ-ACK:Hybrid Automatic Repeat reQuest-Acknowledge)などの処理単位となる。1msのTTIは、サブフレーム、サブフレーム長等とも呼ばれる。
 将来の無線通信システム(例えば、5G、NR等)は、様々な無線通信サービスを、それぞれ異なる要求条件(例えば、超高速、大容量、超低遅延など)を満たすように実現することが期待されている。例えば、eMBB(enhanced Mobile Broad Band)、mMTC(massive Machine Type Communication)、URLLC(Ultra Reliable and Low Latency Communications)などと呼ばれる無線通信サービスの提供が検討されている。
 ところで、将来の無線通信システムでは、既存のLTE(例えば、LTE Rel.8-13)における1msのTTI(サブフレーム)とは時間長が異なるTTI(例えば、1msのTTIよりも短いショートTTI)を導入することが検討されている。
 ショートTTI(sTTI)でUEがUL共有チャネル(例えば、ULデータ)を送信する場合、当該sTTIの前、中及び後の少なくとも1つで、データシンボルの復調に用いられる復調用参照信号(DMRS:DeModulation Reference Signal)を送信する構成とすることが好ましい。
 また、sTTIを利用してULデータを送信する場合、sTTIの構成によってはULデータとDMRSが時間方向に非連続(例えば、異なるsTTI)で送信されることが想定される。しかしながら、既存のLTEではsTTIに関する規定がないため、ULデータと当該ULデータに対応するDMRSの送信をどのように制御するかが問題となる。
 本発明はかかる点に鑑みてなされたものであり、ショートTTIを利用して上りデータ及び復調用参照信号を送信する場合であっても、UL送信を適切に制御できるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本発明のユーザ端末の一態様は、UL信号、及び前記UL信号の復調に利用する参照信号を送信する送信部と、前記UL信号及び前記参照信号の割当てを制御する制御部と、を有し、前記制御部は、連続する複数の所定時間間隔(sTTI)にUL信号がそれぞれ割当てられる場合、少なくとも先頭のsTTI以外のsTTIにおいて、UL信号と当該UL信号の復調に利用する参照信号を同じsTTIに割当てることを特徴とする。
 本発明によれば、ショートTTIを利用して上りデータ及び復調用参照信号を送信する場合であっても、UL送信を適切に制御することができる。
図1A及び図1Bは、sTTIの構成の一例を示す図である。 異なるsTTIのULデータを復調するDMRSを説明する図である。 第1の態様に係るULデータとDMRSの割当て方法の一例を示す図である。 第2の態様に係るULデータとDMRSの割当て方法の一例を示す図である。 第3の態様に係るULデータとDMRSの割当て方法の一例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す概略構成図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 LTEでは、通信遅延の低減方法として、既存の送信時間間隔(TTI:Transmission Time Interval)(例えば、サブフレーム(1ms))より期間の短いショートTTI(sTTI:shortened TTI)を導入して信号の送受信を制御することが検討されている。また、5G/NRでは、UEが異なるサービスを同時に利用することが検討されている。この場合、サービスによってTTI長を変えることが検討されている。
 なお、TTIとは、送受信データのトランスポートブロック、コードブロック、及び/又はコードワードなどを送受信する時間単位のことを表してもよい。TTIが与えられたとき、実際にデータのトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(シンボル数)は、当該TTIよりも短くてもよい。
 例えば、TTIが所定数のシンボル(例えば、14シンボル)で構成される場合、送受信データのトランスポートブロック、コードブロック、及び/又はコードワード、などは、その中の1から所定数のシンボル区間で送受信されるものとすることができる。送受信データのトランスポートブロック、コードブロック、及び/又はコードワードを送受信するシンボル数がTTIを構成するシンボル数よりも小さい場合、TTI内でデータをマッピングしないシンボルには、参照信号、制御信号などをマッピングすることができる。
 このように、LTE及びNRのいずれにおいても、UEは、ロングTTI及びショートTTIの両方を用いて送信及び/又は受信することが考えられる。
 ロングTTIは、ショートTTIよりも長い時間長を有するTTI(例えば、既存のサブフレームと同じ1msの時間長を有するTTI(LTE Rel.8-13におけるTTI))であり、通常TTI(nTTI:normal TTI)、1msTTI、通常サブフレーム、ロングサブフレーム、サブフレーム、スロット、ロングスロットなどと呼ばれてもよい。また、NRでは、ロングTTIは、より低い(小さい)サブキャリア間隔(例えば、15kHz)のTTIと呼ばれてもよい。
 ロングTTIは、例えば、1msの時間長を有し、14シンボル(通常サイクリックプレフィックス(CP:Cyclic Prefix)の場合)又は12シンボル(拡張CPの場合)を含んで構成される。ロングTTIは、eMBB、mMTCなどの、遅延削減が厳しく要求されないサービスで好適であると考えられる。
 既存のLTE(例えば、LTE Rel.8-13)では、TTI(サブフレーム)で送信及び/又は受信されるチャネルとして、下り制御チャネル(PDCCH:Physical Downlink Control Channel)、下りデータチャネル(PDSCH:Physical Downlink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、下りデータチャネル(PUSCH:Physical Uplink Shared Channel)などが用いられる。
 ショートTTIは、ロングTTIよりも短い時間長を有するTTIであり、短縮TTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、部分サブフレーム、ミニスロット、サブスロットなどと呼ばれてもよい。また、NRでは、ショートTTIは、より高い(大きい)サブキャリア間隔(例えば、60kHz)のTTIと呼ばれてもよい。
 ショートTTIは、例えば、ロングTTIより少ない数のシンボル(例えば、2シンボル、7シンボルなど)で構成され、各シンボルの時間長(シンボル長)はロングTTIと同一(例えば、66.7μs)であってもよい。あるいは、ショートTTIは、ロングTTIと同一数のシンボルで構成され、各シンボルのシンボル長はロングTTIより短くてもよい。
 ショートTTIを用いる場合、UE及び/又は基地局における処理(例えば、符号化、復号など)に対する時間的マージンが増加し、処理遅延を低減できる。また、ショートTTIを用いる場合、単位時間(例えば、1ms)当たりに収容可能なUE数を増加させることができる。ショートTTIは、URLLCなど、遅延削減が厳しく要求されるサービスで好適であると考えられる。
 ショートTTIが設定されるUEは、既存のデータ及び制御チャネルより短い時間単位のチャネルを用いることになる。LTE、NRなどでは、ショートTTIで送信及び/又は受信される短縮チャネルとして、短縮下り制御チャネル(sPDCCH:shortened PDCCH)、短縮下りデータチャネル(sPDSCH:shortened PDSCH)、短縮上り制御チャネル(sPUCCH:shortened PUCCH)、短縮下りデータチャネル(sPUSCH:shortened PUSCH)などが検討されている。
 ところで、sPUSCHのデータシンボルは、1つのショートTTI内に限定してマッピングされることが検討されている。当該ショートTTIの前、中及び後の少なくとも1つで、データシンボルの復調に用いられるDMRSが送信されることが好ましい。つまり、データシンボルとDMRSは時分割多重(TDM:Time Division Multiplexing)して配置されてもよい。また、データシンボルとDMRSは、時間及び/又は周波数で連続する無線リソースにマッピングされてもよいし、連続しない(隣接しない)無線リソースにマッピングされてもよい。
 図1は、ショートTTIの構成の一例を示している。図1では、1サブフレーム(14OFDMシンボル)を所定区間に区分けして複数のショートTTIを設定する場合を示している。図1Aでは、1サブフレームを3、2、2、2、2、3シンボルで区分けしてショートTTI(sTTI#0-#5)を設定している。sTTI#0、#5は3シンボルで構成され、sTTI#1-#4は2シンボルで構成される。かかる構成は、2シンボルsTTI(2-OS sTTI、2OS(OFDM Symbol)、)とも呼ぶ。あるいは、sTTI構成1、sTTIフォーマット1、sTTIコンフィギュレーション1、などと呼ばれてもよい。
 図1Bでは、1サブフレームを7、7シンボルで区分けしてショートTTI(sTTI#0-#1)を設定している。sTTI#0、#1は7シンボルで構成される。かかる構成は、7シンボルsTTI(7-OS sTTI、7OS)とも呼ぶ。あるいは、sTTI構成2、sTTIフォーマット2、sTTIコンフィギュレーション2、などと呼ばれてもよい。
 3GPPでは、ショートTTIの上りリンクパターンとして、2シンボルのショートTTIをベースにしたUL2シンボルsTTIレイアウトが合意されている。UL2シンボルsTTIレイアウトは、図1Aに示したように、1サブフレームを3、2、2、2、2、3シンボルで区分けしてショートTTI(sTTI#0-#5)を設定する。また、ULグラントによってDMRS配置(有無及び位置)をユーザ端末に与える(又はユーザ端末が決定する)ことが合意されている。DMRS配置は、当該DMRSと関連付けられたsTTIよりも前の又は同じsTTIに配置できる。
 ショートTTIを利用してUL送信を行う場合、ショートTTIの構成等に応じては、ULデータとDMRSが時間方向に非連続(例えば、異なるsTTI)に割当てられることが想定される。例えば、図1に示す構成において、各sTTI(全てのsTTI)にDMRSを配置するのではなく、あるsTTIにスケジューリングされるULデータの復調に利用するDMRSを異なるsTTIに配置する。あるsTTIにスケジューリングされるULデータの復調に利用するDMRSは、時間的に連続するシンボルになるようにしてもよいし、連続しないシンボルになるようにしてもよい。また、異なるsTTIにスケジューリングされる複数のULデータがDMRSを共有(シェア)することも考えられる。
 ショートTTIを利用する場合のDMRSの多重方法として、インターリーブド周波数分割多重(IFDMA:Interleaved Frequency Division Multiple Access)を用いることが考えられる。IFDMAは、マルチキャリアとシングルキャリアの特徴を併せ持つ無線アクセス方式である。
 IFDMAでは、複数のUE間で等しくない周波数リソース適用してDMRSの多重を行うことができる。複数のUE間で等しくない周波数リソースは、例えば、部分的に重複する周波数リソース、割り当て周波数リソースの下端及び上端の少なくとも一方が異なる周波数リソースなどがある。
 また、ショートTTIを利用する場合のDMRSの多重方法として、巡回シフト(CS:Cyclic Shift)を適用することが検討されている。この場合、複数のUEに対して等しい周波数リソースと異なる巡回シフトを適用することによりUE間の直交性を確保することができる。なお、IFDMAと巡回シフトを組み合わせてDMRSの多重を制御してもよい。
 単一のDMRSシンボルを複数のsTTIで共用する場合、当該複数のsTTIのDMRSは、単一のDMRSシンボルに多重される。単一のDMRSシンボルを複数のsTTIで共用する場合、当該複数のsTTIのDMRSは、巡回シフト及び/又は櫛の歯状のサブキャリア配置(Comb)により多重されてもよい。
 Combを用いて多重する場合、Comb#0及び#1のサブキャリアは交互に配置される。各sTTIのDMRSには、異なるComb(サブキャリア)が割り当てられる。例えば、sTTI#0のDMRSには、Comb#0が割り当てられる一方、sTTI#1のDMRSには、Comb#1が割り当てられる。各sTTIのCombは、DCI内の所定フィールド(例えば、CS/OCCフィールドなど)により指定されてもよいし(例えば、所定フィールド値=0ならComb#0など)、どのsTTIであるかによって予め定められていてもよい(例えば、sTTI1ならComb#0など)。あるいは、どのユーザ端末であるか(例えばC-RNTIが偶数か奇数かに応じてComb#0を選択するなど)、セルIDまたは仮想セルIDの値(例えばセルIDまたは仮想セルIDが偶数か奇数かに応じてComb#0を選択など)、上位レイヤシグナリングで指定される値、または上記いずれかの組み合わせで選択されてもよい。
 また、巡回シフトにより多重する場合、各sTTIのDMRSは、異なる巡回シフトインデックスを用いて生成され、同一のDMRSシンボルにマッピングされる。例えば、sTTI#0に関連付けられたDMRSは、巡回シフトインデックス#xを用いて生成される一方、sTTI#1に関連付けられたDMRSは、巡回シフトインデックス#yを用いて生成される。なお、各sTTIの巡回シフトインデックスは、DCI内の所定フィールド(例えば、CS/OCC指示フィールド、巡回シフトフィールド(Cyclic Shift Field)など)で示されてもよい。
 図2にはIFDMAを用いたDMRS多重の例が示されている。1サブフレームを3、2、2、2、2、3シンボルで区分けしてショートTTI(sTTI#0-#5)を設定している。互いにDMRS多重されているユーザ端末UE1及びユーザ端末UE2に着目する。一方のユーザ端末UE1のsPUSCH送信にはsTTI#0がスケジューリングされ、他方のユーザ端末UE2のsPUSCH送信にはsTTI#1がスケジューリングされている。sTTI#0に割り当てられたDMRSシンボル(第1シンボル)にsTTI#0、#1のsPUSCHに対するDMRSがIFDMAによって多重されている。ユーザ端末UE1に対するDMRSは、ユーザ端末UE1のsPUSCHに割り当てられた周波数帯域(PRB)と同一領域に配置され、ユーザ端末UE2も同様に、ユーザ端末UE2のsPUSCHに割り当てられた周波数帯域(PRB)と同一領域にDMRSが配置される。
 基地局は、ユーザ端末UE1のUL信号を受信し、2sTTI#0のDMRSシンボルに配置されたDMRSを参照して当該sTTI#0のsPUSCHを復調する。また、ユーザ端末UE2からのUL信号を受信し、sTTI#0のDMRSシンボルに配置されたDMRSを参照して当該sTTI#1のsPUSCHを復調する。
 3GPPでは、図2に示すような2シンボルベースのsPUSCHをサポートするIFDMAを用いたDMRS多重方法が合意されている。当該DMRSを用いてデータを正しく復調できるようにするため、DMRSとデータは互いに同じ送信電力もしくは既知のオフセットが設定された電力であることが望ましい。例えばDMRSとデータを同じ送信電力とした場合、Combが適用されたDMRSは、周波数領域のリソースエレメント毎を見ると、データに比べて2倍の電力スペクトル密度を有することとなる。この場合、DMRSとデータが同じ送信電力で送信されることが既知であれば、基地局はDMRSのリソースエレメントとデータの電力比を正しく認識することができ、データシンボルを精度よく復調することができる。リピティションファクタは、RPF=2が合意されている。
 ショートTTIを利用してUL送信(例えば、DLデータに対するHARQ-ACK送信、及び/又はULグラントに対するULデータ送信)を行う場合、UEは、当該UL送信を所定タイミングで送信する。例えば、ショートTTIが2シンボルTTI(2OS)である場合(図1A参照)、DL信号の受信タイミング(例えば、sTTI#n)から、第1のタイミング後にUL送信を行う。第1のタイミングとして、例えば、k×sTTI(2OS)とすることができる。この場合、UEは、n+ksTTI後にUL送信を行う。kの値としては、例えば4、6、8、10、12等が考えられる。ユーザ端末の処理能力に応じて、異なるkの値を設定可能としてもよい。この場合、ユーザ端末は、事前に自身の処理能力に基づき設定可能なkの値が認識できる端末能力情報を無線通信基地局に報告しておくことが望ましい。
 ところで、図2に示す他の例では、1つのユーザ端末UE3によるsPUSCH送信に対して、連続するsTTI#3、#4がスケジューリングされている。一方のsTTI#3にスケジューリングされたsPUSCHの周波数帯域と他方のsTTI#3にスケジューリングされたsPUSCHの周波数帯域とが異なっている。この場合、ユーザ端末UE3は、sTTI#3、sTTI#4でそれぞれ送信するsPUSCHに対応する各DMRSを、異なるCombインデックを用いて多重する。
 しかしながら、同一ユーザ端末UE3に対して連続する複数のsTTIがスケジューリングされる場合、複数のsTTIに対応した複数のDMRSをIFDMAによって1DMRSシンボルに多重すると、PAPR(Peak to Average Power Ratio)が増大する問題があることが本発明者等による検討によって判明した。また、ユーザ端末における電力制限の可能性が大きくなる問題が有る。さらに他セル又は他ユーザ端末に対する上りリンク干渉が大きくなる問題がある。
 そこで、本発明者等は、同一のユーザ端末に対して連続する複数のsTTIがスケジューリングされる場合、同じDMRSシンボルに複数のsTTIに対するDMRSが多重されることを仮定しないとの規範を適用すればPAPRの増加を防止できることを見出し、本発明をするに至った。
 本実施の形態の一態様は、同一ユーザ端末に対して連続する複数のsTTIにUL信号がそれぞれ割当てられる場合、ユーザ端末は、sTTIへの参照信号の配置パターンを、スケジューリングされたsTTIのパターンに応じて決定する。具体例の1つは、同一ユーザ端末に対して連続する複数のsTTIにUL信号がそれぞれ割当てられる場合、少なくとも先頭のsTTI以外のsTTIにおいて、UL信号と当該UL信号の復調に利用する参照信号を同じsTTIに割当てる。つまり、ユーザ端末は、あるユーザ端末に対して連続する複数のsTTIにUL信号がスケジューリングされる場合に、周波数方向の割当て位置が異なる複数のDMRSを同一時間リソースに割当てないように制御する。
 また、本実施の形態の他の態様は、連続する複数のsTTIにUL信号がそれぞれ割当てられる場合、複数のsTTIに割当てられる全てのUL信号の周波数領域をカバーするように参照信号を割当てる。つまり、ユーザ端末は、あるユーザ端末に対して連続する複数のsTTIにUL信号がスケジューリングされる場合に、それら複数のUL信号間で共有するDMRSの送信帯域が全てのUL信号(連続するsTTI)のスーパーセットになるように制御する。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。本実施の形態において、ショートTTI(sTTI)は、ロングTTI(1ms)より短い時間長であればどのような構成であってもよい。以下では、一例として、ショートTTIが、ロングTTIよりも少ないシンボル数で構成され、各シンボルは、ロングTTIと同一のシンボル長を有する例を説明するが、ロングTTIとは異なるシンボル長を有する場合にも適宜適用可能である。また、以下の各態様はそれぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 また、以下の説明では、DL信号としてsPUSCH(例えば、ULデータ)の送信を指示するULグラント(DCI)とし、当該DL信号に対するUL信号としてsPUSCH(ULデータ)とする場合を例に挙げて説明するが、本実施の形態はこれに限られない。例えば、DL信号をsPDSCH(例えば、DLデータ)とし、UL信号を当該DLデータに対するHARQ-ACK(例えば、sPUCCH)としても同様に適用することができる。あるいは、参照信号を利用して復調を行う信号であれば同様に適用することができる。UL信号の復調に利用する参照信号として、sPUSCHの復調に利用されるDMRSを例に挙げて説明するが、本実施の形態はこれに限られない。
(第1の態様)
 第1の態様は、同一のユーザ端末に対してsTTI#nからsTTI#(n+k)までの連続する複数のsTTIにそれぞれsPUSCH(UL信号)がスケジューリングされる場合を想定しており、ユーザ端末は、少なくとも先頭のsTTI#n以外のsTTI#(n+1)~sTTI#(n+k)ではsPUSCHとsPUSCHの復調に利用するDMRS(参照信号)を同じsTTIに割当てる(self-contained)といった内容の割り当て方法が適用される。ここで、n及びkは任意の自然数である。先頭のsTTI#nに割り当てられるUL信号の復調に利用するDMRSは、他ユーザ端末に割り当てられた前のsTTI#(n-1)に配置される。先頭のsTTI#nに対するDMRSは、sTTI#(n-1)のDMRSシンボルにおいて他ユーザ端末のDMTSとIFDMAによって多重される。すなわち第1の態様では、ユーザ端末は、sTTI送信が連続する複数のsTTI送信の先頭であるか否かに応じて、DMRSのマッピングを変える。
 図3は第1の態様によるULデータとDMRSの割当て方法の一例を示す図である。ユーザ端末UE1によるsPUSCH送信と、別のユーザ端末UE2によるsPUSCH送信とが、隣接するsTTIにスケジューリングされている。具体的には、ユーザ端末UE1が送信するsPUSCHがsTTI#0にスケジューリングされている。別のユーザ端末UE2が送信するsPUSCHは連続する複数のsTTI#1~sTTI3にスケジューリングされている。ユーザ端末UE1のsPUSCHがスケジューリングされているsTTI#0の先頭シンボルがDMRSシンボルに割り当てられている。ユーザ端末UE1のsTTI#0に対するDMRSとユーザ端末UE2のsTTI#1に対するDMRSとが、sTTI#0のDMRSシンボルで多重されている。
 ユーザ端末UE2は、連続する複数のsTTI#1~sTTI#3がスケジューリングされているため、少なくとも先頭のsTTI#1以外のsTTI#2、sTTI#3ではsPUSCHとsPUSCHの復調に利用するDMRSを同じsTTIに割当てられる(self-contained)。具体的には、sTTI#2では、当該sTTI#2に割り当てられたsPUSCHの復調に利用されるDMRSが、当該sTTI#2内のDMRSシンボルに配置される。sTTI#2のDMRSシンボルに配置されるDMRSの送信帯域は、当該sTTI#2に割り当てられたsPUSCHの送信帯域と同一帯域となるように制御される。sTTI#3においてもsTTI#2と同様にsPUSCHとsPUSCHの復調に利用するDMRSが同じsTTI#3に割当てられている。
 一方、図3に示すように、連続する複数sTTIのうち最初のsTTI#1に対するDMRSは、時間的に前のsTTI#0に多重されてもよい。前のsTTI#0では、ユーザ端末UE1が送信するsPUSCHの復調に利用されるDMRSが当該sTTI#0のDMRSシンボル(先頭シンボル)に配置されている。sTTI#0にスケジューリングされたsPUSCHとsTTI#1にスケジューリングされたsPUSCHは送信帯域が異なっており、それらsPUSCHに対応する2つのDMRSはIFDMAによって多重される。
 ユーザ端末UE2は、sPUSCH送信のために連続する複数のsTTI(#1から#3)がスケジューリングされる場合、同じDMRSシンボルに複数のsTTIに対するDMRSが多重されると仮定しないといった規範に基づいてDMRSを割当てるということができる。
 図3に示すように、ユーザ端末UE2は、少なくとも先頭のsTTI#1以外のsTTI#2及びsTTI#3では、sPUSCHとsPUSCHの復調に利用するDMRSを同じsTTIに割当てる(self-contained)。また、先頭のsTTI#1では、スケジューリングされたsPUSCHを所定のPRBに割り当てるが、当該sPUSCHの復調に利用されるDMRSは、時間的に前のsTTI#0におけるDMRSシンボルにIFDMAによって多重する。sTTI#0において、ユーザ端末UE1及びUE2はDMRSシンボルを共有するので、ユーザ端末UE1及びUE2に対して基地局から事前に異なるCombインデックスが通知される。
 第1の態様によれば、ユーザ端末に連続する複数のsTTIがスケジューリングされた場合に、複数のsTTIで送信されるsPUSCHの復調に利用される複数のDMRSが1つのDMRSシンボルに集中することを排除でき、PAPRが大きくなる問題を解決できる。
(第2の態様)
 第2の態様は、同一のユーザ端末に対して連続する複数のsTTIがスケジューリングされる場合、ユーザ端末は、それら複数のsPUSCH間で共有するDMRSの送信帯域がスーパーセットになるように制御する。スーパーセットとは、DMRSの送信帯域が複数のsTTIに割当てられる全てのsPUSCHの周波数領域をカバーすると表現してもよい。
 例えば、ユーザ端末は、連続する複数のsTTIがスケジューリングされる場合、それら複数のsTTIに割り当てられる複数のsPUSCH間で共有するDMRS(共有DMRSということもできる)をいずれかのsTTIに配置し、DMRSの送信帯域は複数のsTTIに割当てられる全てのsPUSCHの周波数領域をカバーするように割当てる。したがって、ユーザ端末は、複数のsTTIに割当てられる全てのsPUSCHの周波数領域をカバーするDMRSと、そのDMRSを送信するシンボルを含むsTTIのsPUSCHを、違う送信帯域(帯域幅)で送信する。
 ここで、基地局は、連続する複数のsTTIのUL信号に対するPRB数及びMCSはsTTI毎に変えることを指示することができ、送信電力は全てのsTTIで一定になるように指示する。一方、ユーザ端末では、連続する複数のsTTIのUL信号に対するPRB数及びMCSはsTTI毎に変えることがあると想定し、その際も送信電力は全てのsTTIで一定になるように制御されると仮定する。
 また、基地局は、送信帯域(PRB数)、巡回シフトインデックス、Combインデックスを有するDMRSパラメータを、ULグラントに含めてユーザ端末へ送信する。一方、ユーザ端末は、連続する複数のsTTIに対するDMRSパラメータがULグラントまたは上位レイヤシグナリングに含めて通知されると仮定する。
 図4は第2の態様によるULデータとDMRSの割当て方法の一例を示す図である。ユーザ端末UE1に対して連続する複数のsTTI#0~sTTI#2にそれぞれsPUSCHがスケジューリングされた場合が示されている。第2の態様では、ユーザ端末は複数のsTTI#0~sTTI#2にそれぞれスケジューリングされたsPUSCH間でDMRSを共有する。共有するDMRSは、sTTI#0のDMRSシンボルに配置されている。連続する複数のsTTI#0~sTTI#2のうちsTTI#2に割り当てられたsPUSCHのPRB数が最大である。ユーザ端末は、sTTI#0に配置される共有DMRSの送信帯域として、sTTI#2のsPUSCHのPRB数に対応した送信帯域に決定する。
 第2の態様では、同一のユーザ端末UE1に対して連続するsTTI#0~sTTI#2をスケジューリングする場合、1つのULグラントでは1つのsTTIをスケジューリングする(ケース1)。各sTTI(#0から#2)に対応した各ULグラントには、該当するsTTIで送信されるsPUSCHに関するパラメータ及びそのsPUSCHの復調に利用するDMRSに関するパラメータが含まれる。第2の態様では、sPUSCH間でDMRSを共有するので、ユーザ端末は、DMRSに関するパラメータは全てのULグラントに同じパラメータであると仮定することができる。すなわち、ユーザ端末は、DMRSを共有するsPUSCHそれぞれをスケジューリングするULグラントの1つに基づいて、DMRS生成パラメータを認識してもよい。
 あるいは、第2の態様では、ユーザ端末は、DMRSを共有するsPUSCHそれぞれをスケジューリングするULグラントのうち、特定の1つに基づいてDMRS生成パラメータを認識してもよい。上記特定の1つを最も時間的に早いsPUSCHをスケジューリングするULグラントとすることで、端末がDMRS生成にかかる時間を確保し、端末負担を軽減することができる。上記特定の1つをもっとも時間的に遅いsPUSCHをスケジューリングするULグラントとすることで、基地局のスケジューラがDMRSを共有する複数のsPUSCHの周波数割り当てを柔軟に制御することができる。
 sPUSCHに関するパラメータとして、sPUSCHに割り当てられるPRB数及びsPUSCHに適用するMCS(Modulation and Coding Scheme)の情報が含まれる。DMRSに関するパラメータとして巡回シフトインデックス、Combインデックスが含まれる。ユーザ端末は、連続したsTTIがスケジューリングされていなければ、sPUSCHの送信帯域と同じ周波数領域をDMRSの送信帯域に使用する。sPUSCHの送信帯域はULグラントに含まれるRAフィールドにPRB数の形式で示される。
 ケース1の場合、1つのULグラントによって1つのsTTIがスケジューリングされるので、複数のsTTI(#0から#2)にそれぞれ対応した複数のULグラントによって、各sPUSCHの送信帯域が独立に指定される。ユーザ端末は、複数のULグラントのRAフィールドからPRB数を検出し、その中から最大のPRB数をDMRSの送信帯域として決定する。全てのULグラントの中でRAフィールドに示されるPRB数が最大となるPRB数が、複数のsTTIに割当てられる全てのsPUSCHの周波数領域をカバーする送信帯域を示す。
 ケース1の場合、各sTTI(#0から#2)に対して個々のULグラントによって個別にsPUSCHのPRB数及びMCSを割り当てるので、図4に示すようにsTTI#0~sTTI#2におけるsPUSCHのPRB数(周波数方向の割当て位置)が独立に設定され、sTTI間で異なるPRBを設定することも可能である。このとき、全てのsTTI#0からsTTI#2において送信電力は同一になるように制御してもよい。
 また、同一のユーザ端末UE1に対して連続するsTTI(#0から#2)をスケジューリングする場合、1つのULグラントによって連続する複数のsTTI(#0から#2)のすべてをスケジューリングしてもよい(ケース2)。ユーザ端末は、1つの共有ULグラントによって連続する複数のsTTI(#0から#2)のすべてをスケジューリングされると仮定する。
 ケース2の場合、連続する複数のsTTI(#0から#2)に対応した共有ULグラントには、各sTTIで送信されるsPUSCHに関するパラメータ及び各sPUSCHの復調に利用する共有のDMRSに関するパラメータが含まれてもよい。DMRSに関するパラメータは、連続するsTTI(#0から#2)で送信される各sPUSCHの復調に共有で利用される。DMRSに関するパラメータには、DMRSに適用される巡回シフトインデックス及びCombインデックスが含まれる。
 基地局が送信する共有ULグラントには、共有のRAフィールド又は独立のRAフィールドが設定されてもよい。共有のRAフィールドは、複数のsTTI(#0から#2)で送信されるsPUSCH間で共有することができ、共有又は個別のPBRが示される。独立のRAフィールドは、複数のsTTI(#0から#2)で送信される各sPUSCHについて独立してPRB数が指示可能である。sPUSCH毎に独立したRAフィールドが設定される場合、ユーザ端末は連続する全てのsTTI(#0から#2)に対応するRAフィールドの中から最大のPRB数をDMRSの送信帯域として使用する。
 また、ユーザ端末は、各sTTI(#0から#2)に対応するRAフィールドの中からsPUSCHに割り当てるPRB数を取得する。したがって、ケース2の場合であって、図4に示すようにsTTI#0からsTTI#2におけるsPUSCHのPRB数を異ならせることができる。このとき、全てのsTTI#0からsTTI#2において送信電力は同一になるように制御してもよい。
 また、同一のユーザ端末UE1に対して連続するsTTI(#0から#2)をスケジューリングする場合、DMRS送信だけをスケジューリングできるDMRS固有のULグラントを使用してもよい(ケース3)。このULグラントは、DMRS送信のためのミニマムパラメータとして、DMRS送信帯域(PRB数の形式で示される場合を含む)、DMRSに適用される巡回シフトインデックス及びCombインデックスが含まれる。ULグラントのRAフィールドによってDMRSのミニマムパラメータが指示される。
 ユーザ端末は、DMRS固有のULグラントによってDMRSの送信が指示された場合、固有ULグラントのRAフィールドにしたがってDMRS送信帯域及び信号系列を決定し、DMRSを送信する。ケース3の場合、ユーザ端末は、固有ULグラントに示されるDMRS送信帯域が、連続する複数のsTTIに割当てられる全てのsPUSCHの周波数領域をカバーしていると仮定する。
 ユーザ端末は、1つ又は複数のULグラントによって、各sTTIで送信されるsPUSCHに関するパラメータが通知される。ULグラントのRAフィールドによってsPUSCHのPRB数が指示される。複数のsTTIにそれぞれ割当てられるsPUSCHの周波数方向の割当て位置が独立に設定される。sPUSCHに関するパラメータULグラントに、共有のDMRSに関するパラメータが含まれてもよいし、含まれなくてもよい。
(第3の態様)
 第3の態様は、同一のユーザ端末に対して連続する複数のsTTIにsPUSCHがスケジューリングされる場合、連続する複数のsTTIに割り当てる各sPUSCHはすべて同じ送信帯域にする。ユーザ端末は、複数のsTTIにそれぞれ割当てられるsPUSCHの周波数方向の割当て位置を同じにする。
 第3の態様では、ユーザ端末は、連続するsPUSCH間で同一のMCS、同一のPRB数及び同一の送信電力が割り当てる。基地局は、同一のユーザ端末に対して連続する複数のsTTIにsPUSCHをスケジューリングする場合、連続するsPUSCH間で同一のMCS、同一のPRB数及び同一の送信電力に制限してもよい。
 図5は第3の態様によるULデータとDMRSの割当て方法の一例を示す図である。ユーザ端末UE1に対して連続する複数のsTTI#0からsTTI#2にそれぞれsPUSCHがスケジューリングされた場合が示されている。複数のsTTI#0からsTTI#2にそれぞれスケジューリングされたsPUSCH間で共有するDMRSは、sTTI#0のDMRSシンボルに配置されている。連続するsTTI#0からsTTI#2に割り当てられた全てのsPUSCHについて、同一のMCS、PRB数及び送信電力が割り当てられている。
 ユーザ端末UE1は、連続するsTTI(#0から#2)がスケジューリングされている場合、最も時間が早いsTTI#0の第1シンボル(DMRSシンボル)に共有DMRSを配置する。このとき、DMRS送信帯域はsPUSCH間で共通のPRB数に決定する。これにより、共有DMRSの送信帯域が複数のsTTIに割当てられる全てのsPUSCHの周波数領域をカバーするように割当てられる。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図6は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New Rat)などと呼ばれても良い。
 図6に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジー(例えば、異なるTTI長及び/又は処理時間)が適用される構成としてもよい。なお、ニューメロロジーとは、あるRATにおける信号のデザインや、RATのデザインを特徴付ける通信パラメータのセットのことをいう。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。なお、複数のセルのいずれかに短縮TTIを適用するFDDキャリア及び/又はTDDキャリアが含まれる構成とすることができる。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。
 無線通信システム1では、DLチャネルとして、各ユーザ端末20で共有されるDLデータチャネル(PDSCH:Physical Downlink Shared Channel、DL共有チャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 L1/L2制御チャネルは、DL制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、ULチャネルとして、各ユーザ端末20で共有されるULデータチャネル(PUSCH:Physical Uplink Shared Channel、UL共有チャネル等ともいう)、UL制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。送達確認情報(ACK/NACK)や無線品質情報(CQI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
<無線基地局>
 図7は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 無線基地局10からユーザ端末20に送信されるDLデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、DLデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、DL制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、UL信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力されたUL信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、DL信号(例えば、DL制御信号(DL制御チャネル)、DLデータ信号(DLデータチャネル、DL共有チャネル)、DL参照信号(DM-RS、CSI-RSなど)、ディスカバリ信号、同期信号、ブロードキャスト信号など)を送信し、UL信号(例えば、UL制御信号(UL制御チャネル)、ULデータ信号(ULデータチャネル、UL共有チャネル)、UL参照信号など)を受信する。
 具体的には、送受信部103は、ユーザ端末から送信されるUL信号及び当該UL信号の復調に利用するUL参照信号を、同じ送信時間間隔又は異なる送信時間間隔を利用して受信する。また、送受信部103は、所定のショートTTIにおいてUL参照信号(DMRS)の割当て位置(DMRSパターン)に関する情報をULグラントによってユーザ端末に通知する。また、送受信部103は、ユーザ端末がUL信号(例えば、sPUSCH)に適用する変調方式に関する情報を通知してもよい。本発明の送信部及び受信部は、送受信部103及び/又は伝送路インターフェース106により構成される。
 図8は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図8では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図8に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成や、マッピング部303による信号の割当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。
 制御部301は、DL信号及び/又はUL信号のスケジューリング(例えば、リソース割当て)を制御する。具体的には、制御部301は、DLデータチャネルのスケジューリング情報を含むDCI(DLアサインメント)、ULデータチャネルのスケジューリング情報を含むDCI(ULグラント)を生成及び送信するように、送信信号生成部302、マッピング部303、送受信部103を制御する。
 制御部301は、同一のユーザ端末に対して連続する複数のsTTI#nからsTTI#(n+k)をスケジューリングする。この場合に、少なくとも先頭のsTTI#n以外のsTTI#(n+1)~sTTI#(n+k)ではsPUSCHとsPUSCHの復調に利用するDMRS(参照信号)を同じsTTIに割当てる(第1の態様)。
 また、制御部301は、同一のユーザ端末に対して連続する複数のsTTIがスケジューリングされる場合、それら複数のsPUSCH間で共有するDMRSの送信帯域がスーパーセットになるように制御してもよい(第2の態様)。このとき、1つのULグラントでは1つのsTTIをスケジューリングしてもよい(ケース1)。または、1つの共有ULグラントで連続する複数sTTIのすべてをスケジューリングしてもよい(ケース2)。または、DMRS送信だけをスケジューリングできる固有ULグラントを送信してもよい(ケース3)。
 制御部301は、同一のユーザ端末に対して連続する複数のsTTIにsPUSCHがスケジューリングされる場合、連続する複数のsTTIに割り当てる各sPUSCHはすべて同じ送信帯域にしてもよい(第3の態様)。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(DL制御チャネル、DLデータチャネル、DM-RSなどのDL参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信されるUL信号(UL制御チャネル、ULデータチャネル、UL参照信号など)である。受信信号処理部304は、ユーザ端末から送信される上り参照信号に基づいて、対応するUL信号(例えば、sPUSCH)の復調処理等を制御する。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、受信処理部304は、プリアンブル、制御情報、ULデータの少なくとも一つを制御部301に出力する。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図9は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。DLデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、DLデータのうち、システム情報や上位レイヤ制御情報もアプリケーション部205に転送される。
 一方、ULデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、DL信号(例えば、DL制御信号(DL制御チャネル)、DLデータ信号(DLデータチャネル、DL共有チャネル)、DL参照信号(DM-RS、CSI-RSなど)、ディスカバリ信号、同期信号、報知信号など)を受信し、UL信号(例えば、UL制御信号(UL制御チャネル)、ULデータ信号(ULデータチャネル、UL共有チャネル)、UL参照信号など)を送信する。
 具体的には、送受信部203は、UL信号及び当該UL信号の復調に利用するUL参照信号を、同じ送信時間間隔又は異なる送信時間間隔を利用して送信する。また、送受信部203は、所定のショートTTIにおいてUL参照信号(DMRS)の割当てに関する情報を受信する。また、送受信部203は、UL信号(例えば、sPUSCH)に適用する変調方式に関する情報を受信してもよい。
 図10は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図10においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図10に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。
 制御部401は、同一のユーザ端末に対してsTTI#nからsTTI#(n+k)までの連続する複数のsTTIにそれぞれsPUSCH(UL信号)がスケジューリングされる場合、少なくとも先頭のsTTI#n以外のsTTI#(n+1)~sTTI#(n+k)ではsPUSCHとsPUSCHの復調に利用するDMRS(参照信号)を同じsTTIに割当てる(第1の態様)。先頭のsTTI#nに割り当てられるUL信号の復調に利用するDMRSは、前のsTTI#(n-1)のDMRSシンボルにおいて他ユーザ端末のDMTSとIFDMAによって多重される。
 また制御部401は、連続する複数のsTTIがスケジューリングされる場合、それら複数のsTTIに割り当てられる複数のsPUSCH間で共有するDMRS(共有DMRS)をいずれかのsTTIに配置し、DMRSの送信帯域が複数のsTTIに割当てられる全てのsPUSCHの周波数領域をカバーするように割当てる制御を行ってもよい(第2の態様)。このとき、1つのULグラントによって1つのsTTIがスケジューリングされてもよい(ケース1)。または、1つの共有ULグラントによって連続する複数sTTIのすべてがスケジューリングされていると仮定してもよい(ケース2)。または、固有ULグラントによってDMRS送信だけがスケジューリングされてもよい(ケース3)。
 また制御部401は、連続する複数のsTTIにsPUSCHがスケジューリングされる場合、連続する複数のsTTIに割り当てる各sPUSCHはすべて同じ送信帯域であると仮定してもよい(第3の態様)。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号(UL制御チャネル、ULデータチャネル、UL参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信されるDL信号(DL制御チャネル、DLデータチャネル、DL参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、制御部401の指示に基づいて、DLデータチャネルの送信及び/又は受信をスケジューリングするDL制御チャネルをブラインド復号し、当該DCIに基づいてDLデータチャネルの受信処理を行う。また、受信信号処理部404は、DM-RS又はCRSに基づいてチャネル利得を推定し、推定されたチャネル利得に基づいて、DLデータチャネルを復調する。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。受信信号処理部404は、データの復号結果を制御部401に出力してもよい。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、無線基地局から送信されるチャネル状態測定用の参照信号(CSI-RS)に基づいて、チャネル状態を測定する。また、測定部405は、受信した信号の受信電力(例えば、RSRP)、DL受信品質(例えば、RSRQ)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。
 無線フレーム、サブフレーム、スロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットがTTIと呼ばれてもよい。つまり、サブフレームやTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅や送信電力など)を、TTI単位で割当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。TTIは、チャネル符号化されたデータパケット(トランスポートブロック)の送信時間単位であってもよいし、スケジューリングやリンクアダプテーションなどの処理単位となってもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、短縮サブフレーム、又はショートサブフレームなどと呼ばれてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、RBは、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」や「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。

Claims (6)

  1.  UL信号、及び前記UL信号の復調に利用する参照信号を送信する送信部と、
     前記UL信号及び前記参照信号の割当てを制御する制御部と、を有し、
     前記制御部は、連続する複数の所定時間間隔(sTTI)にUL信号がそれぞれ割当てられる場合、少なくとも先頭のsTTI以外のsTTIにおいて、UL信号と当該UL信号の復調に利用する参照信号を同じsTTIに割当てることを特徴とするユーザ端末。
  2.  UL信号、及び前記UL信号の復調に利用する参照信号を送信する送信部と、
     前記UL信号及び前記参照信号の割当てを制御する制御部と、を有し、
     前記制御部は、連続する複数の所定時間間隔(sTTI)にUL信号がそれぞれ割当てられる場合、複数のsTTIに割当てられる全てのUL信号の周波数領域をカバーするように参照信号を割当てることを特徴とするユーザ端末。
  3.  複数のsTTIにそれぞれ割当てられるUL信号の周波数方向の割当て位置が独立に設定されることを特徴とする請求項2に記載のユーザ端末。
  4.  複数のsTTIにそれぞれ割当てられるUL信号の周波数方向の割当て位置が同じに設定されることを特徴とする請求項2に記載のユーザ端末。
  5.  ユーザ端末の無線通信方法であって、
     UL信号、及び前記UL信号の復調に利用する参照信号を送信する工程と、
     前記UL信号及び前記参照信号の割当てを制御する工程と、を有し、
     連続する複数の所定時間間隔(sTTI)にUL信号がそれぞれ割当てられる場合、少なくとも先頭のsTTI以外のsTTIにおいて、UL信号と当該UL信号の復調に利用する参照信号を同じsTTIに割当てることを特徴とする無線通信方法。
  6.  ユーザ端末の無線通信方法であって、
     UL信号、及び前記UL信号の復調に利用する参照信号を送信する工程と、
     前記UL信号及び前記参照信号の割当てを制御する工程と、を有し、
     連続する複数の所定時間間隔(sTTI)にUL信号がそれぞれ割当てられる場合、複数のsTTIに割当てられる全てのUL信号の周波数領域をカバーするように参照信号を割当てることを特徴とする無線通信方法。
     
     
PCT/JP2017/011890 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法 WO2018173233A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2019010864A MX2019010864A (es) 2017-03-23 2017-03-23 Terminal de usuario y metodo de comunicacion por radio.
EP17901588.8A EP3605978A4 (en) 2017-03-23 2017-03-23 USER TERMINAL DEVICE AND WIRELESS COMMUNICATION PROCEDURE
US16/496,255 US11463225B2 (en) 2017-03-23 2017-03-23 User terminal and radio communication method
PCT/JP2017/011890 WO2018173233A1 (ja) 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法
CN201780090757.6A CN110622476B (zh) 2017-03-23 2017-03-23 用户终端以及无线通信方法
JP2019506866A JP7111696B2 (ja) 2017-03-23 2017-03-23 端末、無線通信方法、基地局及びシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011890 WO2018173233A1 (ja) 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2018173233A1 true WO2018173233A1 (ja) 2018-09-27

Family

ID=63586300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011890 WO2018173233A1 (ja) 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法

Country Status (6)

Country Link
US (1) US11463225B2 (ja)
EP (1) EP3605978A4 (ja)
JP (1) JP7111696B2 (ja)
CN (1) CN110622476B (ja)
MX (1) MX2019010864A (ja)
WO (1) WO2018173233A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999165B (zh) * 2017-08-10 2022-06-28 松下电器(美国)知识产权公司 用户设备、基站和无线通信方法
JP7240375B2 (ja) * 2018-02-14 2023-03-15 エルジー エレクトロニクス インコーポレイティド 下りリンクデータチャネルを送受信する方法及びそのための装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6076044B2 (ja) * 2012-11-02 2017-02-08 株式会社Nttドコモ 無線通信方法、無線通信システム、無線基地局及びユーザ端末
US11057914B2 (en) * 2015-07-24 2021-07-06 Lg Electronics Inc. Downlink control information receiving method and user equipment, and downlink control information transmission method and base station
WO2017078786A1 (en) * 2015-11-03 2017-05-11 Intel IP Corporation Short transmission time interval (tti)
EP3393070B1 (en) * 2015-12-17 2020-09-09 LG Electronics Inc. -1- Uplink reference signal transmitting or receiving method in wireless communication system, and apparatus therefor
JP6732964B2 (ja) * 2016-08-09 2020-07-29 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 端末及び通信方法
US20200052841A1 (en) * 2017-03-10 2020-02-13 Ntt Docomo, Inc. User terminal and radio communication method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8", 3GPP TS36.300, April 2010 (2010-04-01)
HUAWEI ET AL.: "Discussion on UL RS for short TTI", 3GPP TSG-RAN WG1#86 R1-166156, 12 August 2016 (2016-08-12), XP051132507 *
See also references of EP3605978A4

Also Published As

Publication number Publication date
JP7111696B2 (ja) 2022-08-02
CN110622476A (zh) 2019-12-27
JPWO2018173233A1 (ja) 2020-01-23
MX2019010864A (es) 2019-10-17
US20210119756A1 (en) 2021-04-22
EP3605978A4 (en) 2020-11-18
EP3605978A1 (en) 2020-02-05
CN110622476B (zh) 2022-08-16
US11463225B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2018084137A1 (ja) ユーザ端末及び無線通信方法
CN109891974B (zh) 用户终端和无线通信方法
CN110915175B (zh) 发送装置、接收装置以及无线通信方法
WO2018030416A1 (ja) ユーザ端末及び無線通信方法
WO2018025949A1 (ja) ユーザ端末及び無線通信方法
WO2017164147A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2018110618A1 (ja) ユーザ端末及び無線通信方法
CN110431903B (zh) 终端、无线通信方法以及系统
WO2018143393A1 (ja) ユーザ端末及び無線通信方法
WO2018084210A1 (ja) 送信装置及び無線通信方法
WO2018203407A1 (ja) ユーザ端末及び無線通信方法
CN111201819B (zh) 终端、无线通信方法、基站以及系统
CN111165039A (zh) 用户终端以及无线通信方法
CN111788806B (zh) 用户终端以及无线通信方法
EP3691387B1 (en) User terminal and radio communication method
CN111602343A (zh) 用户终端以及无线通信方法
CN110603735B (zh) 用户终端以及无线通信方法
WO2018128183A1 (ja) ユーザ端末及び無線通信方法
WO2019038832A1 (ja) ユーザ端末及び無線通信方法
CN111630821A (zh) 用户终端以及无线通信方法
CN111434166B (zh) 终端、无线通信方法、基站以及系统
WO2018173236A1 (ja) ユーザ端末及び無線通信方法
CN111034140B (zh) 终端、基站、无线通信方法以及系统
CN110603791B (zh) 终端、无线通信方法、基站以及系统
CN110583062B (zh) 用户终端以及无线通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017901588

Country of ref document: EP

Effective date: 20191023