WO2018172582A1 - Confinador de fuente para contactor de lecho en surtidor y contactor de lecho en surtidor - Google Patents

Confinador de fuente para contactor de lecho en surtidor y contactor de lecho en surtidor Download PDF

Info

Publication number
WO2018172582A1
WO2018172582A1 PCT/ES2018/070206 ES2018070206W WO2018172582A1 WO 2018172582 A1 WO2018172582 A1 WO 2018172582A1 ES 2018070206 W ES2018070206 W ES 2018070206W WO 2018172582 A1 WO2018172582 A1 WO 2018172582A1
Authority
WO
WIPO (PCT)
Prior art keywords
contactor
bed
confiner
particles
gas
Prior art date
Application number
PCT/ES2018/070206
Other languages
English (en)
French (fr)
Inventor
Haritz ALTZIBAR MANTEROLA
Aitor PABLOS CASTRO
Martin Olazar Aurrecoechea
Roberto Aguado Zarraga
Javier Bilbao Elorriaga
Jorge VICENTE PEÑALOSA
Eduardo VARONA LOPEZ
Original Assignee
Universidad Del País Vasco / Euskal Herriko Unibertsitatea
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Del País Vasco / Euskal Herriko Unibertsitatea filed Critical Universidad Del País Vasco / Euskal Herriko Unibertsitatea
Priority to EP18772428.1A priority Critical patent/EP3603791A4/en
Publication of WO2018172582A1 publication Critical patent/WO2018172582A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/245Spouted-bed technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/00849Stationary elements outside the bed, e.g. baffles

Definitions

  • the invention relates to a device for improving the performance of a spout bed contactor, the device being located within a contact chamber of the contactor.
  • This device is a source confiner.
  • the invention also relates to the supplier bed contact provided with the source confiner. Since the technology of spout bed contactors has multiple applications within the scope of Chemical Engineering (drying, pyrolysis, gasification, combustion, mixing, polymerization and coating of particles, among others), the invention can cover sectors as diverse as the chemical, food, energy, mining, environmental and ceramic, among others. Background of the invention
  • the fluidized bed basically consists of a container (usually cylindrical) at the base of which a plate equipped with holes through which the gas enters upstream is placed, causing fluidization (slight levitation and agitation) of the particles contained in the chamber contact.
  • fluidized bed technology requires solids with a narrow particle size distribution, that is, with very similar particle sizes, and with a density and morphology that allows fluidization.
  • a simplification can be made considering that the bed particles are spherical, even though they really are not.
  • a sphericity can be established, defined as the relationship between the surface area of a sphere of equal volume as the particle and the surface area of the particle.
  • This sphericity is an indicator that quantifies how spherical a particle is; For example, for particles such as sand, coal and iron, it is common to assume that sphericity is usually in a range between 0.5 and 0.9.
  • a reference measure is being considered as a reference parameter that would correspond to the diameter of a spherical particle.
  • the spouted bed is a fluidization regime of solids in which a gas is introduced into the bed through a hole with a diameter smaller than the diameter of the base of the contactor and opens a cylindrical cavity or channel ⁇ spout) that penetrates towards the bed surface oriented towards the interior of the contact chamber of the contactor.
  • the particle-shaped granular solid describes paths comprising a descending region in the annular area of the bed surrounding the channel and an ascending region in the channel area, where the granular solid in the form of particles is driven by gas. There is also a portion of the gas that rises through the annular area surrounding the spout, through which the granular solid or particles descend. The particles are driven by the gas that rises in the spout along the wall of the spout. These particles leave the upper region of the bed, creating a source and generating a spout movement that distributes the particles on the surface of the bed, finally becoming part of the descending annular bed.
  • the spouted bed was used in the drying of cereal grains with a high degree of humidity, for which the traditional fluidized bed method was totally inoperative.
  • the first commercial units were installed in Canada in 1962 for drying peas, lentils and linen. Since then its most common application has been the drying of granular solids, especially those that are sensitive to temperature, such as agricultural products, wood chips, polymeric materials and grains of ammonium nitrate or manganese chloride. Subsequently, equipment for drying a wide range of products, including evaporation drying processes, suspensions and pastes, has been built all over the world. inert particles.
  • US3385199 describes an apparatus for contact between fluids and solids in the form of particles, where the solids are continuously circulated by fluid currents, moving the particles up in the central portion of a container, migrating the particles down in the peripheral portion of the container .
  • US20150141589 describes a polymerization reactor comprising a tubular vessel that extends in the vertical direction.
  • the reactor has a bottom with decreasing internal diameter downward and a vertical hole in the center of the bottom. It also has a lower tubular deflector above the hole, the outer diameter of the lower tubular deflector growing downward, and the lower tubular deflector of a hole being provided at an upper end.
  • it has an upper baffle above the lower baffle hole, where the outer diameter of the upper baffle grows downward, the upper end of the upper baffle being closed, the lower end of the upper baffle being at a distance from the inner wall of the vessel.
  • tubular the outer diameter at the bottom of the upper baffle being equal to or greater than an inner diameter of the lower baffle hole.
  • the stability of the process (understood as the stability of the operating parameters, mainly the loss of load in the gas flow that occurs when the bed passes through the gas and the required gas flow), is seriously affected when the material processed is less than 1 mm, when working with large size distributions and when the bed height or gas or air flow is increased. In these cases, phenomena such as bubbling or slugging appear, causing sudden changes in process values and producing poor quality contact.
  • the use of internal devices of the central tube type manages to achieve a stable operation in some cases, although these devices favor the entrainment of fine particles due to the speed with which they leave the bed.
  • Segregation which is a phenomenon according to which there is a separation or distribution of particles by their size.
  • annular segregation according to which the finest particles are thrown to the periphery of the surface and the thickest ones describe a smaller parabola in the spout to position itself in the most central area, so a gradient appears radial particle size in the bed. This creates a problem when working continuously with materials with different particle sizes, since only the finest particles leave the bed (usually through overflow type outlets) while the thickest ones are concentrated in the bed.
  • Deflectors in the form of a reverse V or pyramid are known; these devices reduce the drag of fine particles, but not that of ultrafine particles, so no device has been proposed so far prove to be really effective in reducing the drag of fine and ultrafine particles for the bed contactors in the dispenser.
  • the device of the invention is intended to be able to be used in production conditions. industrial level;
  • the stability of the regime in which the treatment is carried out makes it possible to ensure intimate contact between phases, that is, between the particles, which are in the solid state, and the gas, which translates into greater efficiency.
  • the segregation of particles can reduce the efficiency of the process, and the drag of particles is a serious problem (mainly of cost by loss of reagent, catalyst or product, that has to be spare) when working with ultrafine particles, irregular and with mixtures of fine and coarse particles, such as in catalytic processes, in biomass drying or treatment of fine and ultrafine solids.
  • drag-related problems are created of particles or instability of the particle treatment regime (inability to obtain a stable operating regime).
  • drag and instability are all the more serious. and accentuated when the treatment scale is greater (that is, the higher the production parameters at the industrial level such as the dimensions of the contactor or the volumes or quantities of particles to be treated in a certain time) because to reach these production capacities large gas flows are required and, under these conditions, the entrainment of fines, or fine particles (smaller particles), is accentuated.
  • the instability of the system in large plants can cause damage to the equipment due to sudden changes in the loss of charge in the gas flow when the gas passes through the bed, in addition to the contact does not occur adequate between the particles and the gas, reducing the efficiency of the treatment and increasing the cost of operation of the plant.
  • Bed instability has been partially resolved by the inclusion in the bed of a variety of internal devices consisting of central tubes that can have different configurations (continuous wall, with openings) and placed at the bottom, immersed in the bed of particles.
  • This type of device provides substantial improvements, they do not prevent the dragging of particles and do not achieve stabilization of the bed in extreme conditions, such as when operating with irregular materials, with very large particle size distributions or when processing particles.
  • ultra thin the use of the central tubes allows a reduction of the loss of load in the flow of gas that takes place in the bed and, consequently, a reduction in the flow of gas necessary to reach the stable contact regime, it is coupled a reduction in the vigor of the contact, which may be a limitation in some applications.
  • This vigor can be quantified by measuring the flow of descent of the particles in the annular zone, this being a parameter directly related to the vigor. The faster the flow, the more vigorous the bed movement will be.
  • the average flow values for each type of tube are reflected in Table 1.
  • the gas carries with it the finest fraction of the particles.
  • the invention proposes a source confining device configured to improve the transfer of energy and matter in the supplier bed contactors, especially when working with materials that are difficult to fluidize, which need an inert solid to help with adequate fluidization, with fine and ultrafine materials, where a large part of the fines is carried outside, or with irregularly textured materials such as biomass, where problems are created in the internal circulation of the solid in the bed.
  • a source confining device configured to improve the transfer of energy and matter in the supplier bed contactors, especially when working with materials that are difficult to fluidize, which need an inert solid to help with adequate fluidization, with fine and ultrafine materials, where a large part of the fines is carried outside, or with irregularly textured materials such as biomass, where problems are created in the internal circulation of the solid in the bed.
  • the proposed source confining device it is possible to achieve a stable gas-solid contact regime with all types of materials, also avoiding particle drag problems.
  • it favors a better contact between phases, that is, of the particles with the gas
  • the confiner changes the operation of a spout bed contactor provided with a confiner against the operation of a spout bed contact without a confiner, since both the natural gas path and the particles in the contactor are modified. .
  • This change in the pattern of the gas flow and in the movement of the particles has the following effects:
  • the drag losses depend on the size, gas flow, particle density and density of the gas itself at a given temperature.
  • the size and density of the particles is determined by the type of product to be processed, the only variable that could be regulated would be the fluid flow rate, but the production flow rate depends on the fluid flow rate, so if the flow rate is limited To have little drag, production is limited. Therefore, all parameters that affect dragging are predefined.
  • the confiner substantially reduces load losses and even ensures that unfeasible processes without a confiner can be carried out in a contactor that incorporates a confiner.
  • the density of the particles influences, but in general the beds are always formed by the same type of particles (the same material) and only differ in size between some particles and others.
  • the processes in which there are two materials generally one is an inert, with much larger particle size, and it is wanted that it is always kept inside the bed, and the other is a reagent, or a material to be treated that is dragged out .
  • the drag is something sought for the finest particles and the beneficial effect of the confiner is on the inert particles, preventing the loss of inert material by drag. • A substantial improvement in the stability of the particle treatment regime, especially with particles difficult to fluidize, which allows stabilizing beds that are unstable without the confiner.
  • the confiner of the invention allows operation in a stable regime with a wide range of particles, including particles of group A, B and D of the Geldart classification, and very irregular textured particles.
  • problems of internal circulation of solids in the bed are avoided.
  • Its stabilizing capacity allows, in some cases, even to operate without a central tube or any other internal device than those proposed and used so far to facilitate fluidization, such as draft-plates and draft-tubes among others and, therefore, simplifying and lowering manufacturing, assembly and maintenance costs.
  • the source confiner provides the following advantages:
  • the vigor of the gas-solid contact is improved, which in turn causes an improvement in the performance of physical and chemical processes.
  • the confiner causes the gas, once separated from the solid at the top, cusp or apex of the source, to circulate downwards, thus producing an additional contact between the gas and the solid during the downward path (while without the confiner there is only contact in the ascending path), significantly improving the efficiency in the physical and chemical processes.
  • the confiner improves the contact, or generates an additional contact, between the solid particles and the fluid in the up and down currents.
  • the particles once they have crossed the surface of the bed, fall by gravity.
  • the particles descend much faster by the downstream current, and there are even particles that are dragged back by the upstream into the confiner itself.
  • the descending air comes into contact with the bed again and forces the particles to descend into the bed, increasing the rate of descent of the annular zone. All this makes the movement faster and more vigorous.
  • the residence time of the gas increases, since the gas-solid contact path is doubled by incorporating the descending gas section, and in addition, the residence time can be regulated.
  • the residence time can be increased by extending the length of the confiner, either by changing it or by adding additional confiner sections.
  • a One possible way to add additional sections of confiner to increase its length is to join these additional sections by means of flanges.
  • This characteristic improves the efficiency in the physical and chemical processes and is interesting in processes with reaction, helping to achieve a complete reaction, for example in chemical processes such as pyrolysis or combustion, where it is sought to optimize the residence time of the gas to achieve a certain distribution of products, to reduce the outflow of harmful and / or unburned gases and to limit the extent of side reactions.
  • the degradation of the reagent is a function of the residence time of the gas, so it is advantageous to extend the residence time of the gas.
  • lengthening the residence time of the gas also helps the combustion to be complete. By increasing the likelihood of combustion being complete, the output of harmful gases such as carbon monoxide (CO) is reduced and the extent of side reactions is limited.
  • CO carbon monoxide
  • the reduction of the loss of charge in the gas flow due to the decrease in the sealing of the particles at the entrance to the contactor due to the action of the confiner is of an order of magnitude greater than the increase in the loss of load in the gas flow due to the change in the trajectory it describes when traveling the confiner.
  • a contactor with the confiner of the invention manages to fluidize particles below the boundary between the particles B and D of Geldart, while in a contactor without a confiner only spouted bed is obtained for particles of larger sizes.
  • a first aspect of the invention relates to a source confiner for a spout bed contactor where the contactor has a series of components: a particle bed; a gas inlet for particle treatment; a gas outlet after the treatment of the particles and a contact chamber configured to allow a contact between the gas and the particles.
  • the confiner comprises a perimeter wall configured to form an internal cavity to the contact chamber.
  • the cavity has an opening facing the entrance and the bed, configured to drive an entrance and exit of gas and particles through the opening. The entry of gas and particles into the cavity occurs upstream, while the exit of gas and particles from the cavity occurs downstream.
  • the confiner has a function of covering or covering the source, preventing the source from exceeding the limits established by the cavity: that is, that the confiner forms an internal enclosure to the contact chamber as a skirt, lantern, screen, hood or hood, where the source can be formed and grow to the limits imposed by the dimensions of the confiner, which constitutes a boundary of growth of the source.
  • the contactor where the confiner is installed has a gas inlet for the treatment of the particles and an outlet of the gas after the treatment of the particles.
  • the cavity forms a space within which the source can grow until reaching the limits defined by the confiner; if there were no confiner, the source could grow to the limits imposed by the contact chamber.
  • the geometry of the confiner creates a volume within the contact chamber where a first effect is favored to improve the contact between the gas and the particles, by increasing the contact time between the gas and the particles.
  • the increase in contact time between the gas and the particles occurs because the gas and particles cannot extend beyond the boundaries established by the confiner, so that both the gas and the particles remain longer in the same enclosure. (If there were no confiner, there would come a time when the gas would follow its ascending path and the particles would separate from the path initially marked by the gas).
  • the volume of the cavity is smaller than that of the contact chamber, so in addition to increasing the duration of the contact between the gas and the particles, a second effect is produced to improve the contact between the gas and the particles, since the contact between the gas and the particles is more intense. That is, the confiner cavity has a synergistic effect on the gas-solid contact, said contact improving not only by increasing the duration of contact between the gas and the particles, but also enhancing a greater degree of contact by decreasing the volume at which the gas-solid interaction occurs, thus generating a qualitative improvement of the gas-solid contact.
  • the confiner also provides a fourth effect, since it decreases the drag of the particles beyond desired limits, making it difficult for the gas to drag particles to the exit, which would force the inclusion of devices to recover these particles dragged out of the chamber of contact, as is necessary in contactors without the confiner of the invention.
  • the confiner favors that the particles fall back to the bed, forming a barrier in the gas path between the entrance and the exit. The particles leave the confiner through the opening in the downward direction and fall to the bed, since the gas cannot carry the particles with it because the gravitational forces are superior to the drag forces.
  • the opening is located at a distance H G from the bed.
  • This distance H G is a parameter that influences the operation of the confiner and, consequently, the operation of the spout bed or spouted bed contactor. For example, it has been proven that when operating with irregular low density materials such as biomass, a minimum distance or height H G should be left that avoids the creation of craters on the bed surface, ensuring the stabilization of the operating regime of the contactor with the confiner and homogenize the circulation of the solid in the bed.
  • the bed expands, whereby the distance between the confiner and the surface of the bed depends on the solid material to be treated, in any case preventing the confiner from entering the bed. .
  • H G a there is also a maximum height value H G a from which the effect of the confiner diminishes where the benefits mentioned are no longer obtained.
  • the distance H G between the confiner and the bed is between 3cm and 4 times the inlet diameter to the contactor D 0 .
  • the distance H G is between 1.5-2.5 times the inlet diameter. Even more preferably, the distance H G is approximately 2 times the inlet diameter to the contactor D 0 .
  • the cavity is tubular in shape.
  • tubular shape refers to a tube shape, which is a hollow piece, usually cylindrical and open at one end.
  • the tubular shape is the easiest to manufacture.
  • the tubular shape is the one that least alters the formation of the source.
  • the cavity has a cylindrical shape and has a diameter D G.
  • a variation in the diameter D G slightly changes the operation of the confiner.
  • the confiner must have at least the width necessary to confine the entire source, that is, the confiner is an envelope element of the source, and it must be taken into account that the size of the source depends on the specific parameters of each installation and of the central tube used, if used.
  • the diameter D G is between 3 times the inlet diameter to the contactor D 0 and 0.7 times the diameter of the cylindrical zone of the contactor D c .
  • the diameter D G is between 4 and 6 times the inlet diameter to the contactor D 0 . Even more preferably, the diameter D G is approximately 5 times the inlet diameter to the contactor D 0 .
  • the confiner comprises a blind bottom in an upper part.
  • the confiner When the confiner is placed from an upper wall of the contactor, that is, when the perimeter wall of the confiner starts from the upper wall of the contactor, it is not necessary to have a blind bottom at the top, since the upper wall of the contactor already prevents gas and particles from leaving the top of the contactor.
  • the confiner In the event that the placement of the confiner with respect to the contactor was another, for example in the case of a confiner that is not attached to the upper wall of the contactor, the confiner has a blind bottom at the top to prevent the source from overflowing the confiner by the upper edge.
  • the blind bottom at the top of the confiner forces gas and particles out of the opening to redirect them to the bed.
  • the confiner can be movable between a lower position and an upper position to bring and close the confiner opening to the bed surface, the opening being at a displaced distance I have equal or greater than the distance H G , when the confiner is in the lower position.
  • This configuration in which the confiner is vertically movable between a lower position and an upper position to place the opening at different heights of the bed has the advantage of being able to regulate the distance H G.
  • This regulation of the distance between the bed and the confiner makes it possible to find the optimum operating point for each process, since it allows to achieve a fine adjustment of the distance H G based on an initial estimate, since the optimal value of actual operation of the installation can differ from the initially estimated value.
  • a second aspect of the invention relates to a spout bed contactor comprising a confiner as described above.
  • the cavity is located with respect to the gas inlet so that: the entrance of gas and particles into the cavity in an upward direction takes place in a central area of the opening; The outlet of gas and particles from the cavity downwards takes place in a peripheral area of the opening.
  • the gas inlet comprises a tube configured to channel a gas from the bed into an interior of the contactor.
  • the proper functioning of the spout bed has been proven in many applications, including pyrolysis and gasification of tires, plastics and biomass, drying of aggregates, vegetable grains, pastes and emulsions, the coating of iron powders , the catalytic reforming for hydrogen production, the combustion of bituminous coals and forest and residual biomass, and catalytic polymerization, granulation or coating reactions.
  • spouted bed technology has proven to be very competitive compared to the already established technologies, mainly due to its high energy efficiency, the better control of the operation and the lower loss of gas flow load.
  • the spouted bed has certain limitations in these applications due to the particle size of the particles to be treated, and that is where the use of a source confiner has shown great contributions.
  • the flow of gas necessary to reach a stable fluidization produces a remarkable drag of the particles.
  • very high nominal production capacities are required, and only achievable with large gas flow rates, conditions in which the entrainment of fines is accentuated.
  • the inclusion in the contact chamber of a source confiner extends the range of technology operating conditions.
  • the source confiner significantly improves the performance of the operation, and therefore makes it even more competitive in all applications in which it has already been tested, since it increases the residence time of the gas and the solid and therefore improves the contact.
  • the drying of clays or solids with an important content of clays For example, the drying of clays or solids with an important content of clays, the drying of granular food products of great fineness such as flour, drying of graphene powder, chemical reactions such as catalytic reforming or polymerization, combustion of particular biomass or the mixture of recycled aggregates, among others.
  • the source confiner is a device designed for installation in contactors with spout bed technology, which minimizes the drag of particles, improves the stability of the operating regime of the spout, reduces the segregation of particles in the bed, and allows to operate effectively with fine particles, improving the vigor of the contact between phases, that is, between the particles and the gas.
  • Figure 1 shows the geometric shape of a first embodiment of the source confiner device.
  • Figures 2A to 2D show different views where a way of placing the first embodiment of the confining device in a spout bed or spouted bed contactor can be seen.
  • Figure 2A is an exterior elevation view of the contactor;
  • Figure 2B is a longitudinal section of the contactor;
  • Figure 2C is a perspective view of the contactor with a quarter cut;
  • Figure 2D is an external perspective view of the contactor.
  • Figure 3 shows the trajectories of the solid in double line and of the gas in single line in a spout bed contactor with conical bottom with a second embodiment of the confiner according to the invention.
  • Figure 4 shows dimensions of the shape and placement of the second embodiment of the confiner of the invention in a spouted bed contactor.
  • Figure 4 shows the diameter
  • Figure 5 shows a graph showing the classification of particles for fluidization in air (Geldart classification of the particles).
  • the particle diameter d p is represented in ⁇
  • Figure 1 shows a first embodiment of a source confining device 1 according to the invention.
  • the confining device 1 illustrated in Figure 1 has a substantially cylindrical side wall, a conical top blind bottom and a circular bottom opening 13.
  • the opening 13 is the only access route both to the entrance and exit to the cavity.
  • the confining device 1 of Figure 1 comprises means for being axially displaced inside a contactor 2 where it can be installed.
  • these means for being displaced can be seen formed by three vertical columns 100 that start from an outer face of the conical upper blind bottom.
  • the three columns 100 are parallel to each other and parallel to the axis of longitudinal symmetry of the confining device 1.
  • the angular distribution of the columns 100 can be seen, being uniformly distributed in radii that form 120 e to each other.
  • Figures 2A to 2D show the confining device 1 of source 4 of Figure 1 installed in a contactor 2.
  • the contactor 2 has a substantially cylindrical side wall, an upper flat bottom comprising the outlet 22 and a conical bottom converging downwards .
  • the contactor 2 of Figures 2A to 2D comprises a central tube 5 aligned axially with the confining device 1.
  • the confiner 1 is placed concentrically with respect to the contactor 2 and is projected from the upper inner part of the contact chamber 23 towards the bottom of the contactor 2.
  • the height of the confiner 1 on the bed 3 is adjustable, that is to say that the confiner 1 can be displaced vertically between an upper position and a lower position within the contactor 2 by means of a lifting equipment.
  • the contactor comprises two main parts, one part upper and lower part.
  • the upper part is cylindrical and is connected to the lower part, which has a cylindrical zone attached to the upper part by means of a flange.
  • the lower part has a truncated conical zone that converges towards the bottom of the contactor.
  • the central tube 5 can penetrate the confiner 1.
  • Figure 3 shows a second embodiment of a source confining device 1 installed in a contactor 2.
  • the source confining device 1 illustrated in Figure 3 comprises a cavity 1 1 with the top part blinded by a flat cover.
  • This cover could have a different shape, for example, cone shape (as illustrated in figures 1 and 2), hemisphere or pyramid.
  • the confiner 1 it would not be necessary for the confiner 1 to have a cover, since the side walls start directly from the upper cover of the contactor 2, so that neither the gas nor the particles can leave the confiner 1 on the part upper of the confiner 1, but must descend through the interior of the confiner 1 to, in the case of gas, circumvent the lower edge of the confiner 1 when leaving through the opening 13 and passing to the contact chamber 23, where it rises to leave the chamber through the outlet 22 and, in the case of the particles, fall back to the bed 3 when exiting the opening 13.
  • the opening 13 is the only access route for both entry and exit to the cavity.
  • Figure 3 illustrates the paths of the gas and the particles, where it is shown that the confiner 1 changes the trajectory of the gas in the contactor 2, since once the gas reaches the top of the confiner 1, the gas it is forced to go down and pass through the space between the bottom of the confiner 1, that is, between the opening 13 and the surface of the bed 3.
  • the cavity 1 1 borders, on the one hand , the source 4 characteristic in a stable gas-solid contact regime generated by the particles when the gas stream enters the bottom of the contactor 2 and propel the particles and, on the other hand, acts as a conductor of the gas stream in the interior of confiner 1;
  • the gas stream after entering the cavity 1 1 through the opening 13, describes an ascending section through the cavity 1 1, reaches the upper part of the confiner 1 and is diverted to initiate a descending section of the outlet of the cavity 1 1 , again through opening 13.
  • confiner 1 changes the steady-state operation of a spout bed: a) on the one hand, the path of the gas in the contactor 2 is prolonged: while in a contactor without a confiner the gas only describes an ascending path from the entrance to the contactor from the bottom, to the exit of the contactor from the top , in the contactor provided with a confiner, the gas describes a path with a first ascending section, from the entrance to the confiner, a second descending section, from the exit of the confiner and, finally, a third ascending section, from the exit of the conctor;
  • the particles also follow different paths in a contactor provided with a confiner and in a contactor without a confiner: while a contactor without a confiner is carried by the gas towards the exit of the contactor, in the contactor provided with a confiner, particles are carried by the gas stream in the first ascending section of the entrance to the confiner and then fall to bed 3 through the opening 13, but are no longer dragged back by the gas in the third ascending section when it leaves the contactor.
  • Figure 4 shows the diameter D G of the confiner 1, the diameter of the entrance to the contactor D 0 , the cylinder diameter D c of the contactor and the distance or height H G between the opening 13 and the surface of the bed 3 for the same embodiment of confiner 1 illustrated in figure 3.
  • the contactor 2 has a body with a substantially cylindrical zone and a conical lower zone.
  • the upper bottom of the contactor 2 is flat and the outlet 22 is in the cylindrical wall of the contactor.
  • the lower zone has a truncated conical part that converges towards the bottom of the contactor.
  • the central tube 5 does not reach the opening 13 of the confiner 1.
  • the opening 13 of the confiner is at a level higher than that of the junction between the truncated cone and the cylindrical area of the body of the contactor 2.
  • a confiner 1 of 0.9m in length and 0.2m in diameter has been installed in a pilot sand drying plant, placing it through a guidance system that holds the confiner 1 and allows varying its distance or height H G to the bed surface 3 as illustrated in Figures 2A-2D.
  • the contactor 2 provided with the confiner 1 of the invention fine and ultrafine materials have been processed which, without the confiner 1, do not reach the spout bed regime.
  • Stable regime has been achieved without the need to incorporate additional internal elements in bed 3 such as tubes 5 or draft-plates and draft-tubes to reach the stable regime and with a loss of charge in the gas flow similar to that obtained in a contactor which does incorporate those additional elements in the bed as illustrated in tables 2A and 2B.
  • the invention is not limited to the specific embodiments that have been described, but also covers, for example, the variants that can be made by the average person skilled in the art (for example, in terms of the choice of materials , dimensions, components, configuration, etc.), within what follows from the claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Confinador (1) de fuente (4) para contactor (2) de lecho (3) en surtidor y contactor de lecho en surtidor que tiene: un lecho (3) de partículas; una entrada (21) de gas para tratamiento de las partículas; una salida (22) de gas después del tratamiento de las partículas; una cámara de contacto (23) para permitir un contacto entre el gas y las partículas. El confinador (1) tiene: una pared perimetral (12) para conformar una cavidad (11): interna a la cámara de contacto (23); que tiene una abertura (13) enfrentada a la entrada (21) y al lecho (3), para conducir una entrada y salida de gas y partículas a través de la abertura (13) siendo: la entrada de gas y partículas a la cavidad (11) en sentido ascendente; la salida de gas y partículas de la cavidad (11) en sentido descendente.

Description

CONFINADOR DE FUENTE PARA CONTACTOR DE LECHO EN SURTIDOR Y CONTACTOR DE LECHO EN SURTIDOR
Campo de la invención
La invención se refiere a un dispositivo para mejorar las prestaciones de un contactor de lecho en surtidor, ubicándose el dispositivo dentro de una cámara de contacto del contactor. Este dispositivo es un confinador de fuente. La invención también se refiere al contacto de lecho en surtidor provisto del confinador de fuente. Dado que la tecnología de contactores de lecho en surtidor tiene múltiples aplicaciones dentro del ámbito de la Ingeniería Química (secado, pirólisis, gasificación, combustión, mezclado, polimerización y recubrimiento de partículas, entre otros), la invención puede abarcar sectores tan diversos como el químico, alimentario, energético, minero, medioambiental y cerámico, entre otros. Antecedentes de la invención
Actualmente los procesos en los que se manipulan sólidos finos y ultrafinos en forma de partículas y que requieren intercambio de calor y materia se llevan a cabo con tecnologías ampliamente establecidas como trómeles, hornos de bandeja e incluso mediante lechos fijos y fluidizados. Aunque se conocen sistemas de secado y/o combustión basados en lechos fijos, está generalmente aceptado que el lecho fluidizado es más eficiente. El lecho fluidizado básicamente consiste en un recipiente (generalmente cilindrico) en cuya base se coloca una placa dotada de orificios a través de los cuales entra el gas en flujo ascendente, provocando la fluidización (ligera levitación y agitación) de las partículas contenidas en la cámara de contacto. En general, la tecnología de lecho fluidizado requiere de sólidos con una estrecha distribución de tamaño de partícula, es decir, con tamaños de partícula muy parecidos, y con una densidad y morfología que permita su fluidización. Para hablar de tamaño de partícula en la invención, puede hacerse una simplificación considerando que las partículas del lecho son esféricas, a pesar de que realmente no lo sean. Así, para tener en cuenta la geometría de las partículas, puede establecerse una esfericidad, definida como la relación entre el área superficial de una esfera de igual volumen que la partícula y el área superficial de la partícula. Esta esfericidad es un indicador que cuantifica lo esférica que es una partícula; por ejemplo, para partículas como la arena, el carbón y el hierro, es común asumir que la esfericidad suele estar comprendida en un rango entre 0,5 y 0,9. Así, cuando se habla de tamaño de partícula en la invención, se está considerando como medida de referencia un parámetro que se correspondería con el diámetro de una partícula esférica.
En el caso de materiales que no fluidizan, es habitual el uso de lechos inertes, generalmente arena, que actúan como coadyuvante de la fluidización. Por otro lado, una vía para aumentar la eficacia de las operaciones físicas y químicas consiste en la utilización de métodos de contacto que aseguren una alta turbulencia con la mínima cantidad de fluido. Pues bien, una de las tecnologías que ha demostrado mejores prestaciones es el sistema de contacto de lecho en surtidor, más conocido por su denominación anglosajona como spouted bed. En el denominado lecho en surtidor, o spouted bed, a diferencia de la placa con orificios habitual del lecho fluidizado, se emplea un diafragma, de manera que el fluido entra a la cámara de contacto del contactor a través de un único orificio central y abre una cavidad cilindrica o canal (comúnmente denominada por su término en inglés spout) por el que asciende el fluido, que suele ser gas y, en muchos casos, aire. Entrando en mayor detalle, el spouted bed es un régimen de fluidización de sólidos en el que un gas se introduce en el lecho por un orificio de diámetro inferior al diámetro de la base del contactor y abre una cavidad cilindrica o canal {spout) que penetra hacia la superficie del lecho orientada hacia el interior de la cámara de contacto del contactor. En esta configuración de lecho en surtidor, el sólido granular en forma de partículas, describe trayectorias que comprenden una región descendente en la zona anular del lecho que rodea al canal y a una región ascendente en la zona del canal, donde el sólido granular en forma de partículas es impulsado por el gas. También hay una porción del gas que asciende por la zona anular que rodea al spout, por la que desciende el sólido granular o partículas. Las partículas son impulsadas por el gas que asciende en el spout a lo largo de la pared del spout. Estas partículas abandonan la región superior del lecho, creando una fuente y generando un movimiento en surtidor que reparte las partículas en la superficie del lecho, pasando finalmente a formar parte del lecho anular descendente.
Inicialmente el spouted bed se utilizó en el secado de granos de cereales con un elevado grado de humedad, para los que el método tradicional de lecho fluidizado era totalmente inoperativo. Las primeras unidades comerciales fueron instaladas en Canadá en 1962 para el secado de guisantes, lentejas y lino. Desde entonces su aplicación más habitual ha sido el secado de sólidos granulares, especialmente aquellos que son sensibles a la temperatura, tales como productos agrícolas, virutas de madera, materiales poliméricos y granos de nitrato de amonio o cloruro de manganeso. Posteriormente se han construido por todo el mundo equipos para el secado de una amplia gama de productos, incluyendo procesos de secado por evaporación de soluciones, suspensiones y pastas sobre partículas inertes.
Si bien el intervalo de humedades y condiciones de secado utilizados, tanto a nivel de laboratorio como a nivel comercial, es muy amplio, se ha observado que en todos los casos tiene lugar un salto térmico entre la temperatura del aire de entrada y la temperatura del lecho. Esta característica de los lechos en surtidor es su gran ventaja sobre los secaderos convencionales, en los que la ausencia de este salto térmico obliga a utilizar temperaturas de entrada inferiores para evitar el deterioro térmico de materiales sensibles a la temperatura. Esta peculiaridad de los lechos en surtidor se atribuye al contacto en contracorriente entre el gas que asciende por el spout y las partículas descendiendo por la zona anular.
US3385199 describe un aparato para contacto entre fluidos y sólidos en forma de partículas, donde los sólidos son continuamente circulados por corrientes del fluido, moviendo las partículas hacia arriba en la porción central de un recipiente, migrando las partículas hacia abajo en la porción periférica del recipiente.
US20150141589 describe un reactor de polimerización que comprende un recipiente tubular que se extiende en dirección vertical. El reactor tiene un fondo con diámetro interno decreciente en sentido descendente y un orificio vertical en el centro del fondo. También tiene un deflector tubular inferior sobre el orificio, creciendo el diámetro externo del deflector tubular inferior en sentido descendente, y estando provisto el deflector tubular inferior de un orificio en un extremo superior. Además, tiene un deflector superior encima del orificio del deflector inferior, donde el diámetro externo del deflector superior crece en sentido descendente, estando cerrado el extremo superior del deflector superior, estando el extremo inferior del deflector superior a una distancia de la pared interior del recipiente tubular, siendo el diámetro externo en el fondo del deflector superior igual o mayor que un diámetro interno del orificio del deflector inferior.
Las instalaciones basadas en la tecnología de spouted bed que mayor desarrollo comercial han alcanzado son las que implican operaciones físicas, tales como el secado de cereales, granulación de fertilizantes (debido a la recirculación de sólido en el contactor se consigue una gran uniformidad de tamaños y una elevada esfericidad del producto) y recubrimiento de sólidos. Aun así, también se ha ensayado con éxito esta tecnología para una amplia variedad de procesos químicos, incluyendo pirólisis de plásticos, neumáticos y biomasa, gasificación de biomasa, craqueo de biomasa, producción de cemento y craqueo térmico de corrientes pesadas de refinería.
La aplicación de la tecnología de spouted bed está limitada por las características del sólido, ya que pueden aparecer algunos fenómenos que impiden la operación. A continuación se resumen algunas de estas limitaciones:
• La estabilidad del proceso (entendida como la estabilidad de los parámetros de operación, fundamentalmente la pérdida de carga en el flujo de gas que se produce al atravesar el gas el lecho y el caudal de gas requerido), se ve seriamente afectada cuando el material procesado es inferior a 1 mm, cuando se trabaja con amplias distribuciones de tamaño y cuando se incrementa la altura del lecho o el caudal de gas o aire. En estos casos aparecen fenómenos como el burbujeo o el slugging, que provocan cambios bruscos en los valores de proceso y producen un contacto de escasa calidad. Actualmente, el uso de dispositivos internos de tipo tubo central consigue alcanzar una operación estable en algunos casos, aunque estos dispositivos favorecen el arrastre de partículas finas debido a la velocidad con la que éstas abandonan el lecho.
• La segregación, que es un fenómeno según el cual se produce una separación o distribución de las partículas por su tamaño. En el spouted bed existe una segregación anular característica, según la cual las partículas más finas son lanzadas hasta la periferia de la superficie y las más gruesas describen una parábola menor en el surtidor para posicionarse en la zona más central, por lo que aparece un gradiente radial de tamaño de partícula en el lecho. Esto genera un problema al trabajar en continuo con materiales con diferentes tamaños de partícula, ya que únicamente las partículas más finas salen del lecho (generalmente por salidas de tipo rebosadero) mientras que las más gruesas se concentran en el lecho.
• El arrastre de partículas, ya que para alcanzar el movimiento del lecho se requiere un caudal mínimo que depende de factores como la altura de lecho o el diámetro de entrada del gas. Por debajo de este valor de caudal mínimo, la fuente colapsa y el lecho se detiene. Cuando se trabaja con partículas finas o con materiales de amplia distribución de tamaño de partícula, el caudal mínimo requerido para garantizar el régimen de lecho en surtidor puede generar corrientes internas con la velocidad suficiente para que las partículas más finas sean arrastradas, limitando notablemente la aplicación de esta tecnología. Para ampliar el ámbito de aplicación de esta tecnología y superar esta limitación, es habitual la utilización de placas o deflectores colocados sobre la fuente en la salida del gas, con el fin de que las partículas finas que son arrastradas por el gas choquen contra estas placas o deflectores y caigan a la superficie del lecho. Son conocidos los deflectores en forma de V inversa o de pirámide; estos dispositivos reducen el arrastre de las partículas finas, pero no así el de las ultrafinas, por lo que hasta la fecha no se ha propuesto ningún dispositivo que demuestre ser realmente eficaz en la reducción del arrastre de partículas finas y ultrafinas para los contactores de lecho en surtidor.
Es decir, que la tecnología de lecho en surtidor tiene que superar ciertas limitaciones para competir con las tecnologías implantadas comercialmente. Algunos aspectos en los que conviene incidir son los siguientes:
- aumento de escala, que implica dimensionar equipos más grandes que puedan tratar mayores cantidades de partículas. Los rangos de operación son muy variables dependiendo de la alimentación a tratar. Una aplicación donde puede utilizarse el dispositivo de la invención es el secado de partículas húmedas donde debe competir con equipos que alcanzan 40 toneladas/hora de capacidad: En otras palabras, el dispositivo de la invención pretende conseguir que pueda ser empleada en condiciones de producción a nivel industrial;
- asegurar la estabilidad del régimen en que se realiza el tratamiento de las partículas en el contactor;
- evitar la segregación de las partículas; y
- minimizar el arrastre de partículas.
La estabilidad del régimen en que se realiza el tratamiento permite asegurar un contacto íntimo entre fases, es decir, entre las partículas, que están en estado sólido, y el gas, lo que se traduce en una mayor eficiencia. La segregación de partículas puede reducir la eficacia del proceso, y el arrastre de partículas es un serio problema (principalmente de coste por pérdida de reactivo, catalizador o producto, que ha de ser repuesto) cuando se trabaja con partículas ultrafinas, irregulares y con mezclas de partículas finas y gruesas, como por ejemplo en procesos catalíticos, en secado de biomasa o tratamiento de sólidos finos y ultrafinos.
Existen dispositivos que mejoran ligeramente el comportamiento de la tecnología de lecho en surtidor en cuanto a estabilidad del régimen en que se realiza el proceso y arrastre de partículas, como son los tubos centrales instalados en el lecho para canalizar el flujo de gas, o los deflectores, instalados a cierta altura sobre el canal de entrada para desviar las partículas arrastradas por el gas, respectivamente.
Siguiendo con la estabilidad y arrastre en los contactores de lecho en surtidor, cuando se trabaja con materiales con textura irregular como residuos agroforestales, con mezclas de materiales de diferente granulometría, materiales adherentes, y partículas finas o ultrafinas, se crean problemas relacionados con el arrastre de partículas o la inestabilidad del régimen de tratamiento de las partículas (imposibilidad de obtener un régimen de operación estable). Estos dos fenómenos (arrastre e inestabilidad) son tanto más graves y acentuados cuando mayor es la escala del tratamiento (es decir, cuanto mayores son los parámetros de producción a nivel industrial como las dimensiones del contactor o los volúmenes o cantidades de partículas a ser tratadas en un determinado tiempo) porque para alcanzar estas capacidades de producción se requieren grandes caudales de gas y, en estas condiciones, el arrastre de finos, o partículas finas (partículas de menor tamaño), se acentúa. Así, por ejemplo, la inestabilidad del sistema en plantas grandes puede provocar daños en el equipo debido a que se producen cambios bruscos en la pérdida de carga en el flujo de gas cuando el gas atraviesa el lecho, además de que no se da el contacto adecuado entre las partículas y el gas, disminuyendo la eficiencia del tratamiento y aumentando el coste de operación la planta.
La inestabilidad del lecho ha sido parcialmente resuelta mediante la inclusión en el lecho de una variedad de dispositivos internos consistentes en tubos centrales que pueden tener diferentes configuraciones (de pared continua, con aberturas) y que se colocan en la parte inferior, inmersos en el lecho de partículas. A pesar de que este tipo de dispositivos aporta mejoras sustanciales, no evitan el arrastre de partículas y no consiguen la estabilización del lecho en condiciones extremas, como cuando se opera con materiales irregulares, con distribuciones de tamaños de partícula muy amplias o cuando se procesan partículas ultrafinas. Además, aunque la utilización de los tubos centrales permite una reducción de la pérdida de carga en el flujo de gas que tiene lugar en el lecho y, consecuentemente, una reducción en el caudal de gas necesario para alcanzar el régimen estable de contacto, lleva aparejada una reducción de la vigorosidad del contacto, lo que puede ser una limitación en algunas aplicaciones. Se ha podido ver cualitativamente (visualmente) que la vigorosidad se reduce. Se han podido ver sus consecuencias en procesos como el secado donde un tubo único central sólido o "con pared continua" no genera el suficiente movimiento y las partículas húmedas se acumulan llegando a parar todo el lecho. En cambio, el uso de un tubo único central "con aberturas" tiene una vigorosidad intermedia entre el sistema sin tubo y el del tubo central de pared continua, acercándose al sistema sin tubo dependiendo del porcentaje de aberturas que se use, como se puede observar en la Tabla 1 . Se puede medir un parámetro directamente relacionado con la vigorosidad, que es el tiempo de ciclo. Cuanto menos tiempo tarde una partícula en cumplir el ciclo entero, más vigoroso es el movimiento. Esta vigorosidad puede cuantificarse midiendo el flujo de descenso de las partículas en la zona anular, siendo éste un parámetro relacionado directamente con la vigorosidad. Cuanto más rápido sea el flujo, más vigoroso será el movimiento del lecho. Los valores medios de flujo para cada tipo de tubo vienen reflejados en la Tabla 1 . Tabla 1. Flujo de las partículas (diámetro de partícula dp, densidad de partícula p) para diferentes tubos internos en comparación al contactor sin dispositivos internos. Valores medios para bolas de vidrio (dp = 2mm, p = 2400kg/m3) y guisantes negros (dp = 3.4mm, p = 1230kg/m3) de diferentes sistemas experimentales donde se han utilizado diferentes ángulos del contactor (γ), diferentes entradas del aire al contactor (D0) y diferentes alturas de lecho (H0). Además, en la configuración del tubo central con aberturas se ha variado el porcentaje de apertura de la pared del tubo (WH) y en el caso del tubo central de pared continua se ha variado la altura de las patas (LH).
Figure imgf000009_0001
En cuanto al arrastre de partículas por el flujo ascendente del gas, cuando se trabaja en diferentes aplicaciones con partículas finas y ultrafinas, o mezclas de partículas finas con otras de diámetro de partícula notablemente superior, el gas arrastra consigo al exterior la fracción más fina de las partículas. Esto supone una pérdida importante del material del lecho (hasta el 85% de pérdida de partículas finas), lo que supone un coste de reposición adicional notable en caso de materiales costosos como catalizadores o minerales de alto valor añadido, además de la necesidad de incluir sistemas de depuración de gases tras la salida de gas del contactor para evitar la emisión de contaminación por partículas. Descripción de la invención
Para superar las limitaciones comentadas y ampliar el intervalo de aplicación de la tecnología contactores de lecho en surtidor, se ha investigado la utilización de un innovador dispositivo interno denominado confinador de fuente o, abreviadamente, confinador.
Para ello, la invención propone un dispositivo confinador de fuente configurado para mejorar la transferencia de energía y materia en los contactores de lecho en surtidor, especialmente cuando se trabaja con materiales difíciles de fluidizar, que necesitan un sólido inerte coadyuvante para la adecuada fluidización, con materiales finos y ultrafinos, donde gran parte de los finos es arrastrada al exterior, o con materiales con textura irregular como la biomasa, donde se crean problemas en la circulación interna del sólido en el lecho. Adicionalmente, mediante el dispositivo confinador de fuente propuesto, es posible alcanzar con todo tipo de materiales un régimen estable de contacto gas-sólido, evitando además los problemas de arrastre de partículas. Además, favorece un mejor contacto entre fases, es decir, de las partículas con el gas, lo que redunda en procesos más eficientes energéticamente, y permite optimizar el tiempo de residencia de la fase gas.
Es decir, que el confinador cambia el funcionamiento de un contactor de lecho en surtidor provisto de confinador frente al funcionamiento de un contacto de lecho en surtidor sin confinador, dado que tanto la trayectoria natural del gas como de las partículas en el contactor se ven modificadas. Este cambio en el patrón del flujo de gas y en el movimiento de las partículas tiene los siguientes efectos:
• Una notable reducción de las partículas arrastradas (hasta un 90% en condiciones de arrastre severo dependiendo del tipo de tubo central que se use, si se usa) y, por tanto, una mejora de la flexibilidad de la tecnología de lecho en surtidor en cuanto al requerimiento de tamaño de partícula sólida.
Efectivamente, las pérdidas por arrastre dependen del tamaño, caudal de gas, densidad de las partículas y densidad del propio gas a una temperatura dada.
El tamaño y densidad de las partículas viene determinado por el tipo de producto a procesar, la única variable que se podría regular sería el caudal de fluido, pero del caudal de fluido depende la producción que puede alcanzarse, por lo que si se limita el caudal para tener poco arrastre, se limita la producción. Por lo tanto, todos los parámetros que afectan al arrastre vienen predefinidos.
En un ejemplo con un equipo con 5 kg de arena de 0 a 0.8 mm de diámetro de partícula y 80 m3/h de aire a temperatura ambiente sin confinador, en 5 min., el lecho se ha reducido a 0,5 kg, es decir, que ha habido unas pérdidas de 4,5 kg, mientras que con confinador, tras 8 h, el lecho sigue con 4,7 kg, es decir, que ha habido unas pérdidas de 0,3 kg.
En otro ejemplo con arenas aún más finas (<0.1 mm) el lecho se vacía completamente sin confinador y tras 8 horas con confinador se mantienen 4 kg.
En definitiva, puede verse que el confinador disminuye de manera sustancial las pérdidas de carga e incluso consigue que procesos inviables sin confinador, puedan ser llevados a cabo en un contactor que incorpora confinador. En otras palabras, hay procesos que se hacen posibles gracias al confinador, que de otra manera serían imposibles de realizar, otros procesos que sin confinador serían posibles, pero con caudales de aire/producciones muy muy pequeñas.
Además, en procesos como la combustión o pirólisis, reduce el arrastre de cenizas y partículas inquemadas, puesto que durante la combustión o pirólisis se produce una reducción del tamaño de la partícula (además de un cambio en sus propiedades) mientras se quema, por lo que la ceniza es mucho más volátil y es más fácil que sea arrastrada con el aire. Hasta ahora, se suelen utilizar placas o deflectores colocados sobre la fuente en la entrada del gas al contactor con el fin de que las partículas que arrastra el gas choquen contra estos dispositivos y caigan a la superficie del lecho. Estos dispositivos minimizan en parte el arrastre de las partículas finas pero no así el de las ultrafinas, por lo que no hay ningún dispositivo en el mercado realmente eficaz en la reducción el arrastre de partículas finas y ultrafinas para los contactores spouted bed. Es por ello que el confinador de fuente de la invención supone un gran avance en este campo, ya que reduce el arrastre de estas partículas en hasta un 90%, permitiendo ampliar el espectro de aplicación de la tecnología spouted bed a esos materiales hasta ahora inaccesibles.
Una reducción drástica en la segregación del lecho, consiguiéndose una mezcla de partículas más uniforme al homogeneizar la circulación de las partículas en el lecho, lo que hace que la eficiencia del proceso sea mayor. Este efecto resulta muy beneficioso en procesos donde la homogenización de materiales es crítica, como mezclado o reacción química.
Esta característica es inherente al propio diseño del confinador, ya que su pared interior limita la anchura de la fuente, cortando las trayectorias más largas, por lo que todas las partículas caen al lecho como máximo al radio que tiene el confinador desde el centro.
Se ha observado en ensayos que la diferencia entre la zona más periférica y la más central es menos notable que en un proceso llevado a cabo en un contactor sin confinador. Se ha visto con técnicas como la coloración de la arena, que la arena está mucho mejor mezclada a lo largo del lecho en un contactor con confinador que en un contactor sin confinador.
Normalmente, la densidad de las partículas influye, pero por lo general los lechos están formados siempre por el mismo tipo de partículas (el mismo material) y únicamente difieren en el tamaño entre unas partículas y otras. En los procesos en los que hay dos materiales, generalmente uno es un inerte, con tamaño de partícula mucho más grande, y se quiere que se mantenga siempre dentro del lecho, y el otro es un reactivo, o un material a tratar que sale arrastrado. En esos casos, el arrastre es algo buscado para las partículas más finas y el efecto beneficioso del confinador se da sobre las partículas inertes, impidiendo la pérdida de material inerte por arrastre. • Una mejora sustancial de la estabilidad del régimen del tratamiento de las partículas, especialmente con partículas difíciles de fluidizar, lo que permite estabilizar lechos que sin el confinador resultan inestables. Es decir, que el confinador de la invención, permite la operación en régimen estable con un amplio rango de partículas, incluyendo partículas del grupo A, B y D de la clasificación de Geldart, y partículas con textura muy irregular. Además, se evitan los problemas de circulación interna de los sólidos en el lecho. Su capacidad estabilizadora permite, en algunos casos, incluso operar sin tubo central ni ningún otro tipo de dispositivo interno de los propuestos y utilizados hasta ahora para facilitar la fluidización, como draft-plates y draft-tubes entre otros y, por consiguiente, simplificando y abaratando los costes de fabricación, montaje y mantenimiento.
Adicionalmente, se ha observado que el confinador de fuente aporta las siguientes ventajas:
• La vigorosidad del contacto gas-sólido se ve mejorada, lo que a su vez provoca una mejora en el rendimiento de procesos físicos y químicos. El confinador hace que el gas, una vez separado del sólido en la cima, cúspide o ápice de la fuente, circule hacia abajo, por lo que produce un contacto adicional entre el gas y el sólido durante el recorrido descendente (mientras que sin el confinador solo hay contacto en el recorrido ascendente), mejorando significativamente la eficiencia en los procesos físicos y químicos.
Es decir, que el confinador mejora el contacto, o genera un contacto adicional, entre las partículas sólidas y el fluido en las corrientes de subida y de bajada. En un contactor sin confinador, las partículas, una vez traspasada la superficie del lecho caen por gravedad. En un contactor equipado con confinador, las partículas descienden mucho más rápido por la corriente de bajada, e incluso hay partículas que son arrastradas de nuevo por la corriente de subida en el propio confinador. En el contactor con confinador, el aire que desciende entra en contacto con el lecho de nuevo y fuerza a las partículas a descender en el lecho, aumentando la velocidad de bajada de la zona anular. Todo ello hace que el movimiento sea más rápido y más vigoroso.
• El tiempo de residencia del gas aumenta, puesto que se duplica el recorrido de contacto gas-sólido al incorporar el tramo descendente de gas, y además, el tiempo de residencia puede ser regulado.
Efectivamente, se puede aumentar el tiempo de residencia ampliando la longitud del confinador, ya sea cambiándolo o añadiendo tramos de confinador adicionales. Una posible forma de añadir tramos de confinador adicionales para aumentar su longitud es unir esos tramos adicionales mediante bridas.
Esta característica mejora la eficiencia en los procesos físicos y químicos y es interesante en procesos con reacción, ayudando a conseguir una reacción completa, por ejemplo en procesos químicos como la pirólisis o combustión, en donde se busca optimizar el tiempo de residencia del gas para conseguir una determinada distribución de productos, para reducir la salida de gases nocivos y/o inquemados y para limitar la extensión de las reacciones secundarias.
En procesos como la pirólisis la degradación del reactivo es función del tiempo de residencia del gas, por lo que es ventajoso alargar el tiempo de residencia del gas. En procesos como la pirólisis y combustión, alargar el tiempo de residencia del gas también favorece que la combustión sea completa. Al aumentar la probabilidad de que la combustión sea completa, se reduce la salida de gases nocivos como el monóxido de carbono (CO) y se limita la extensión de reacciones secundarias.
• Reduce la pérdida de carga de operación, reduciéndose el consumo energético de impulsión del gas o permitiendo instalar equipos de alimentación de gas más pequeños. En efecto, aunque aparece una nueva pérdida de carga por tener que recorrer el gas una trayectoria más sinuosa dentro del contactor, primero ascendiendo y descendiendo dentro del confinador, y después ascendiendo por la cámara de contacto hasta la salida del contactor, la reducción en la pérdida de carga que se da en la entrada del gas al contactor, cuando el gas atraviesa el lecho, por la obstrucción de las partículas en la entrada del gas al contactor, es de una magnitud mayor que el incremento de la pérdida de carga por el cambio en la trayectoria del gas dentro del contactor. Es decir, que la reducción de la pérdida de carga en el flujo de gas por la disminución de la obturación de las partículas en la entrada al contactor debido a la acción del confinador, es de un orden de magnitud mayor que el incremento de la pérdida de carga en el flujo de gas por el cambio en la trayectoria que describe al recorrer el confinador.
• Permite la reducción de la altura de la fuente. El confinador impone una altura máxima para la fuente, lo que, especialmente con partículas ultrafinas, permite construir equipos más compactos. En efecto, un contactor con el confinador de la invención consigue fluidizar partículas por debajo de la frontera entre las partículas B y D de Geldart, mientras que en un contactor sin confinador solo se consigue spouted bed para partículas de tamaños superiores.
• Permite reducir el tiempo de ciclo o lo que es lo mismo, aumentar el caudal de circulación de las partículas. Esta reducción en el tiempo para realizar el ciclo se consigue gracias a la mayor velocidad de las partículas descendentes en el confinador y de la zona anular, esto último también provocado por la corriente descendente que empuja el lecho hacia abajo. Con una longitud de confinador adecuada, el dispositivo fuerza a las partículas a realizar ciclos en tiempos más cortos, lo que supone un beneficio para procesos en los que se tratan materiales termosensibles, puesto que el ciclo se realiza en un tiempo menor.
Conforme se ha descrito, un primer aspecto de la invención se refiere a un confinador de fuente para un contactor de lecho en surtidor donde el contactor tiene una serie de componentes: un lecho de partículas; una entrada de gas para tratamiento de las partículas; una salida de gas después del tratamiento de las partículas y una cámara de contacto configurada para permitir un contacto entre el gas y las partículas. El confinador comprende una pared perimetral configurada para conformar una cavidad interna a la cámara de contacto. La cavidad tiene una abertura enfrentada a la entrada y al lecho, configurada para conducir una entrada y salida de gas y partículas a través de la abertura. La entrada de gas y partículas a la cavidad se produce en sentido ascendente, mientras que la salida de gas y partículas de la cavidad se produce en sentido descendente.
Como puede verse, el confinador tiene una función de cubierta o recubrimiento de la fuente, impidiendo que la fuente pueda sobrepasar los límites establecidos por la cavidad: es decir, que el confinador conforma un recinto interno a la cámara de contacto a modo de falda, fanal, pantalla, capucha o campana, donde la fuente puede formarse y crecer hasta los límites impuestos por las dimensiones del confinador, que constituye una frontera límite de crecimiento de la fuente. El contactor donde es instalado el confinador tiene una entrada de gas para el tratamiento de las partículas y una salida del gas después del tratamiento de las partículas. La cavidad conforma un espacio dentro del que puede crecer la fuente hasta alcanzar los límites definidos por el confinador; si no hubiera confinador, la fuente podría crecer hasta los límites impuestos por la cámara de contacto. Así, la geometría del confinador crea un volumen dentro de la cámara de contacto donde se favorece un primer efecto para mejorar el contacto entre el gas y las partículas, al aumentar el tiempo de contacto entre el gas y las partículas. El aumento del tiempo de contacto entre el gas y las partículas se produce porque que el gas y las partículas no pueden extenderse más allá de las fronteras establecidas por confinador, por lo que tanto el gas como las partículas permanecen durante más tiempo en el mismo recinto (si no hubiera confinador, llegaría un momento en que el gas seguiría su camino ascendente y las partículas irían separándose de la trayectoria inicialmente marcada por el gas). Por otro lado, el volumen de la cavidad es menor que el de la cámara de contacto, por lo que además de aumentar la duración del contacto entre el gas y las partículas, se produce un segundo efecto para mejorar el contacto entre el gas y las partículas, ya que el contacto entre el gas y las partículas es más intenso. Es decir, que la cavidad del confinador tiene un efecto sinérgico sobre el contacto gas-sólido, mejorando dicho contacto no sólo por el incremento en la duración del contacto entre el gas y las partículas, sino que además potencia un grado de contacto mayor al disminuir el volumen en que se produce la interacción gas-sólido, generando así una mejora cualitativa del contacto gas-sólido. Y aún se produce un tercer efecto relacionado con el contacto gas-sólido, puesto que el confinador también promueve un contacto adicional entre el gas y entre las partículas que están en la superficie del lecho, cuando el gas sale del confinador por la abertura, en sentido descendente y choca contra el lecho para, finalmente, ascender hacia la salida del contactor.
Adicionalmente, el confinador también proporciona un cuarto efecto, ya que disminuye el arrastre de las partículas más allá de límites deseados, dificultando que el gas pueda arrastrar partículas hasta la salida, lo que obligaría a incluir dispositivos para recuperar estas partículas arrastradas fuera de la cámara de contacto, como se hace necesario en contactores sin el confinador de la invención. En efecto, el confinador favorece que las partículas vuelvan a caer al lecho, al conformar una barrera en el camino del gas entre la entrada y la salida. Las partículas salen del confinador por la abertura en sentido descendente y caen al lecho, ya que el gas no puede arrastrar consigo las partículas por ser las fuerzas gravitacionales superiores a las fuerzas de arrastre.
Conforme a una característica de la invención compatible con todas las realizaciones del confinador, la abertura está situada a una distancia HG del lecho. Esta distancia HG es un parámetro que influye en el funcionamiento del confinador y, en consecuencia, en el funcionamiento del contactor de lecho en surtidor o spouted bed. Por ejemplo, se ha comprobado que cuando se opera con materiales irregulares de baja densidad como la biomasa, se debe dejar una distancia o altura HG mínima que evite la creación de cráteres en la superficie del lecho, garantice la estabilización del régimen de funcionamiento del contactor con el confinador y homogeneice la circulación del sólido en el lecho. Durante el funcionamiento del contactor, al comienzo del tratamiento de las partículas, el lecho se expande, por lo que la distancia entre el confinador y la superficie del lecho depende del material sólido a tratar, evitando en cualquier caso que el confinador entre en el lecho. Por otro lado, existe también un valor máximo de altura HG a partir del cual disminuye el efecto del confinador donde ya no se obtienen los beneficios comentados. Así, la distancia HG entre el confinador y el lecho está comprendida entre 3cm y 4 veces el diámetro de entrada al contactor D0. Preferiblemente, la distancia HG está comprendida entre 1 .5-2.5 veces el diámetro de entrada. Aún más preferiblemente, la distancia HG es aproximadamente 2 veces el diámetro de entrada al contactor D0.
Conforme a otra característica de la invención compatible con el resto características del confinador, la cavidad tiene forma tubular. En la invención, forma tubular se refiere a forma de tubo, que es una pieza hueca, de forma por lo común cilindrica y abierta por un extremo. Por un lado, la forma tubular es la más fácil de fabricar. Por otro lado, la forma tubular es la que menos altera la formación de la fuente.
Conforme a otra característica del confinador, la cavidad tiene forma cilindrica y tiene un diámetro DG. Una variación en el diámetro DG cambia levemente el funcionamiento del confinador. El confinador debe tener al menos la anchura necesaria para confinar toda la fuente, es decir, que el confinador es un elemento envolvente de la fuente, y se debe tener en cuenta que el tamaño de la fuente depende de los parámetros concretos de cada instalación y del tubo central que se utilice, si se utiliza. Así, el diámetro DG está comprendido entre 3 veces el diámetro de entrada al contactor D0 y 0.7 veces el diámetro de la zona cilindrica del contactor Dc. Preferiblemente, el diámetro DG está comprendido entre 4 y 6 veces el diámetro de entrada al contactor D0. Aún más preferiblemente, el diámetro DG es aproximadamente 5 veces el diámetro de entrada al contactor D0.
Conforme a otra característica de la invención compatible con el resto características del confinador, el confinador comprende un fondo ciego en una parte superior. Cuando el confinador está colocado desde una pared superior del contactor, es decir, cuando la pared perimetral del confinador parte de la pared superior del contactor, no es necesario que tenga un fondo ciego en la parte superior, pues la propia pared superior del contactor ya evita que el gas y las partículas salgan por la parte superior del contactor. En caso de que la colocación del confinador respecto del contactor fuera otra, por ejemplo en el caso de un confinador que no está adosado a la pared superior del contactor, el confinador tiene un fondo ciego en la parte superior para evitar que la fuente desborde el confinador por el borde superior. Así, el fondo ciego en la parte superior del confinador obliga a que el gas y las partículas salgan por la abertura al redirigirlas hacia al lecho.
En el caso en que el confinador tiene un fondo ciego en la parte superior, el confinador puede ser desplazable entre una posición inferior y una posición superior para acercar y alejar la abertura del confinador a la superficie del lecho, estando la abertura a una distancia desplazada He igual o mayor que la distancia HG, cuando el confinador está en la posición inferior. Esta configuración en la que el confinador es desplazable verticalmente entre una posición inferior y una posición superior para situar la abertura a diferentes alturas del lecho tiene la ventaja de poder regular la distancia HG. Esta regulación de la distancia entre el lecho y el confinador permite encontrar el punto óptimo de funcionamiento para cada proceso, pues permite conseguir un ajuste fino de la distancia HG partiendo de una estimación inicial, pues el valor óptimo de funcionamiento real de la instalación puede diferir del valor inicialmente estimado.
Un segundo aspecto de la invención se refiere a un contactor de lecho en surtidor que comprende un confinador según se ha descrito anteriormente. Conforme a una característica del contactor, la cavidad está ubicada respecto a la entrada de gas de manera que: la entrada de gas y partículas a la cavidad en sentido ascendente tiene lugar en una zona central de la abertura; la salida de gas y partículas de la cavidad en sentido descendente tiene lugar en una zona periférica de la abertura. Conforme a otra característica del contactor, la entrada de gas comprende un tubo configurado para canalizar un gas desde el lecho hacia un interior del contactor.
Como se ha indicado anteriormente, se ha comprobado el buen funcionamiento del lecho en surtidor en muchas aplicaciones, incluyendo la pirólisis y gasificación de neumáticos, plásticos y biomasa, el secado de áridos, granos vegetales, pastas y emulsiones, el revestimiento de polvos de hierro, el reformado catalítico para producción de hidrógeno, la combustión de carbones bituminosos y biomasas forestales y residuales, y reacciones de polimerización catalítica, granulación o recubrimiento. En todos estos procesos, la tecnología de spouted bed ha demostrado ser muy competitiva en comparación con las tecnologías ya establecidas, debido principalmente a su alto rendimiento energético, al mejor control de la operación y a la menor pérdida de carga de flujo de gas.
Sin embargo, el spouted bed tiene ciertas limitaciones en estas aplicaciones debidas a la granulometría de las partículas a tratar, y es ahí donde la utilización de un confinador de fuente ha demostrado grandes aportaciones. En procesos con partículas finas o en aquellos en los que se necesita trabajar con mezclas de partículas finas y gruesas, el caudal de gas necesario para alcanzar una fluidización estable produce un arrastre notable de las partículas. Además, en la mayoría de procesos industriales se requieren capacidades nominales de producción muy elevadas, y únicamente alcanzables con grandes caudales de gas, condiciones en las que el arrastre de finos se acentúa. En todos estos casos, la inclusión en la cámara de contacto de un confinador de fuente amplía el intervalo de condiciones de operación de la tecnología.
Por otro lado, el confinador de fuente mejora sensiblemente el rendimiento de la operación, y por tanto la hace aún más competitiva en todas las aplicaciones en las que ya ha sido probado, ya que aumenta el tiempo de residencia del gas y del sólido y por tanto mejora el contacto.
Así, las ventajas del confinador de fuente de la invención se enfocan desde dos puntos de vista.
1 ) En primer lugar, permite a la empresa explotadora mejorar su competitividad principalmente por dos razones:
• Penetración en nuevos sectores o ampliación del campo de aplicación actual.
Permite el tratamiento con la tecnología de lecho en surtidor de materiales finos y ultrafinos, que actualmente se procesan con otras tecnologías menos eficientes.
Por ejemplo, el secado de arcillas o de sólidos con un contenido de arcillas importante, el secado de productos alimenticios granulares de gran finura como la harina, el secado de grafeno en polvo, reacciones químicas como el reformado catalítico o la polimerización, la combustión de biomasa particular o la mezcla de áridos reciclados, entre otros.
• La inversión requerida y/o coste de operación para la implantación de esta tecnología es inferior a la requerida con las convencionales (por ejemplo, tecnología de lecho fluido, tambor rotatorio o de banda, entre otras) por lo que le permitiría ganar cuota de mercado.
2) En segundo lugar, la incorporación de esta tecnología a la industria reduciría el impacto medioambiental de los procesos que la implantasen, porque se mejoraría la eficiencia energética del proceso. Esto a su vez produce una reducción del consumo energético para la empresa.
Por otro lado, la aplicación industrial de esta tecnología favorecería el desarrollo sostenible ya que permitiría llevar a cabo la revalorización de residuos de forma más eficaz que con otras tecnologías (por ejemplo, la pirólisis de neumáticos).
Así, como se ha descrito, el confinador de fuente es un dispositivo diseñado para su instalación en contactores con tecnología de lecho en surtidor, que minimiza el arrastre de partículas, mejora la estabilidad del régimen de funcionamiento del surtidor, reduce la segregación de las partículas en el lecho, y permite operar eficazmente con partículas finas, mejorando la vigorosidad del contacto entre fases, es decir, entre las partículas y el gas. Estas características posibilitan un equipo más compacto y versátil, aumentando la competitividad de la tecnología de lecho en surtidor frente a las actuales. Breve descripción de las figuras Para complementar la descripción y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo de realización práctica de la misma, se acompaña como parte integrante de la descripción, un juego de figuras en el que, con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La Figura 1 muestra la forma geométrica de una primera realización del dispositivo confinador de fuente.
Las Figuras 2A a 2D muestran diferentes vistas donde puede verse una forma de colocación de la primera realización del dispositivo confinador en un contactor de lecho en surtidor o spouted bed. La figura 2A es una vista exterior en alzado del contactor; la figura 2B es un corte longitudinal del contactor; la figura 2C es una vista en perspectiva del contactor con un corte a un cuarto; la figura 2D es una vista exterior en perspectiva del contactor.
La Figura 3 muestra las trayectorias del sólido en doble línea y del gas en línea simple en un contactor de lecho en surtidor con fondo cónico con una segunda realización del confinador según la invención.
La Figura 4 muestra dimensiones de la forma y colocación de la segunda realización del confinador de la invención en un contactor spouted bed. La figura 4 muestra el diámetro
DG del confinador, y la altura HG sobre la superficie del lecho donde se coloca la abertura que está en la parte inferior del confinador.
La Figura 5 muestra una gráfica donde se representa la clasificación de partículas para fluidizacion en aire (clasificación Geldart de las partículas). En el eje de abscisas se representa el diámetro de partícula dp en μηι, y en el eje de ordenadas la diferencia entre la densidad de la partícula (pp) y la densidad del fluido (p en 10~3kg/m3.
Se incluye a continuación un listado de los elementos principales de la invención:
Confinador 1
Cavidad 1 1
Pared perimetral12
Abertura 13
Columnas 100
Contactor 2
Entrada 21
Salida 22
Cámara de contacto 23
Lecho 3
Fuente 4 Tubo central 5
Diámetro DG del confinador 1
Diámetro de entrada al contactor D0
Diámetro de cilindro Dc
Distancia HG entre el lecho 3 y el confinador 1
Distancia desplazada HG' entre el lecho 3 y el confinador 1 desplazable
Altura de lecho (H0)
Descripción de un modo de realización de la invención
La figura 1 muestra una primera realización de un dispositivo confinador 1 de fuente 4 según la invención. El dispositivo confinador 1 ilustrado en la figura 1 tiene una pared lateral sustancialmente cilindrica, un fondo ciego superior cónico y una abertura 13 inferior circular. En esta realización con fondo ciego superior cónico y una abertura 13 inferior circular, la abertura 13 es la única vía de acceso tanto de entrada como de salida a la cavidad. El dispositivo confinador 1 de la figura 1 comprende medios para ser desplazado axialmente en el interior de un contactor 2 donde puede ser instalado. En la figura 1 pueden verse estos medios para ser desplazado formados por tres columnas 100 verticales que parten desde una cara exterior del fondo ciego superior cónico. En la realización ilustrada en la figura 1 , las tres columnas 100 son paralelas entre sí y paralelas al eje de simetría longitudinal del dispositivo confinador 1 . En la figura 2D puede verse la distribución angular de las columnas 100, estando uniformemente distribuidas en radios que forman 120e entre sí.
Las figuras 2A a 2D muestran el dispositivo confinador 1 de fuente 4 de la figura 1 instalado en un contactor 2. El contactor 2 tiene una pared lateral sustancialmente cilindrica, un fondo plano superior que comprende la salida 22 y una parte inferior cónica convergente hacia abajo. El contactor 2 de las figuras 2A a 2D comprende un tubo central 5 alineado axialmente con el dispositivo confinador 1 . En la realización del confinador ilustrada en las figuras 2A a 2D, el confinador 1 se coloca concéntricamente respecto al contactor 2 y se proyecta desde la parte interna superior de la cámara de contacto 23 hacia la parte inferior del contactor 2. En esta realización del confinador mostrada en las figuras 2A a 2D, la altura del confinador 1 sobre el lecho 3 es regulable, es decir, que el confinador 1 puede ser desplazado verticalmente entre una posición superior y una posición inferior dentro del contactor 2 por medio de un equipo elevador. En la realización del contactor con el confinador ilustrada en las figuras 2A a 2D pueden verse las siguientes características. El contactor comprende dos partes principales, una parte superior y una parte inferior. La parte superior es cilindrica y está unida a la parte inferior, que tiene una zona cilindrica unida a la parte superior mediante una brida. La parte inferior tiene una zona troncocónica que converge hacia el fondo del contactor. Como puede verse en las figuras 2B y 2C, el tubo central 5 puede penetrar en el confinador 1 . En la figura 2B puede verse que la abertura 13 del confinador está a un nivel inferior al que se encuentra la unión entre la zona troncocónica y la cilindrica del tramo inferior del contactor 2. Estas configuraciones son especialmente recomendables cuando se requiere disminuir la altura de la fuente.
La figura 3 muestra una segunda realización de un dispositivo confinador 1 de fuente 4 instalado en un contactor 2. El dispositivo confinador 1 de fuente 4 ilustrado en la figura 3 comprende una cavidad 1 1 con la parte superior cegada por una tapa plana. Esta tapa podría tener otra forma diferente, por ejemplo, forma de cono (como se ilustra en las figuras 1 y 2), semiesfera o pirámide. En la realización ilustrada en la figura 3, no sería necesario que el confinador 1 tuviera tapa, pues las paredes laterales parten directamente de la tapa superior del contactor 2, por lo que ni el gas ni las partículas pueden abandonar el confinador 1 por la parte superior del confinador 1 , sino que han de descender por el interior del confinador 1 para, en el caso del gas, sortear el borde inferior del confinador 1 al salir por la abertura 13 y pasar a la cámara de contacto 23, por donde asciende hasta abandonar la cámara a través de la salida 22 y, en el caso de las partículas, caer de nuevo al lecho 3 al salir por la abertura 13. En esta realización donde las paredes laterales parten directamente de la tapa superior del contactor 2, la abertura 13 es la única vía de acceso tanto de entrada como de salida a la cavidad.
En la figura 3 se ilustran las trayectorias del gas y de las partículas, donde se muestra que el confinador 1 cambia la trayectoria del gas en el contactor 2, dado que una vez que el gas llega a la parte superior del confinador 1 , el gas se ve obligado a bajar y pasar por el espacio que queda entre la parte inferior del confinador 1 , es decir, entre la abertura 13 y la superficie del lecho 3. Con esta disposición del confinador 1 , la cavidad 1 1 confina, por un lado, la fuente 4 característica en un régimen estable de contacto gas-sólido que generan las partículas al entrar la corriente de gas por la parte inferior del contactor 2 e impulsar las partículas y, por otro lado, actúa como conductor de la corriente de gas en el interior del confinador 1 ; la corriente de gas, tras entrar en la cavidad 1 1 por la abertura 13, describe un tramo ascendente por la cavidad 1 1 , llega a la parte superior del confinador 1 y es desviada para iniciar un tramo descendente de salida de la cavidad 1 1 , de nuevo a través de la abertura 13. Así, el confinador 1 cambia la operación en régimen estable de un lecho en surtidor o spouted bed: a) por un lado, la trayectoria del gas en el contactor 2 se prolonga: mientras que en un contactor sin confinador el gas solo describe una trayectoria ascendente desde la entrada al contactor por la parte inferior, hasta la salida del contactor por la parte superior, en el contactor provisto de confinador, el gas describe una trayectoria con un primer tramo ascendente, de entrada al confinador, un segundo tramo descendente, de salida del confinador y, finalmente, un tercer tramo ascendente, de salida del con tactor;
b) por otro lado, las partículas también siguen diferentes trayectorias en un contactor provisto de confinador y en un contactor sin confinador: mientras que un contactor sin confinador son arrastradas por el gas hacia la salida del contactor, en el contactor provisto de confinador, las partículas son arrastradas por la corriente de gas en el primer tramo ascendente de entrada al confinador y después caen al lecho 3 a través de la abertura 13, pero ya no son arrastradas de nuevo por el gas en el tercer tramo ascendente cuando sale del contactor.
En la figura 4 se muestra el diámetro DG del confinador 1 , el diámetro de entrada al contactor D0, el diámetro de cilindro Dc del contactor y la distancia o altura HG entre la abertura 13 y la superficie del lecho 3 para la misma realización del confinador 1 ilustrada en la figura 3.
En la realización del contactor con el confinador ilustrada en las figuras 3 y 4 pueden verse las siguientes características. El contactor 2 tiene un cuerpo con una zona sustancialmente cilindrica y una zona inferior cónica. El fondo superior del contactor 2 es plano y la salida 22 está en la pared cilindrica del contactor. La zona inferior tiene una parte troncocónica que converge hacia el fondo del contactor. Como puede verse en las figuras 3 y 4, el tubo central 5 no alcanza la abertura 13 del confinador 1 . En las figuras 3 y 4 puede verse que la abertura 13 del confinador está a un nivel superior al que se encuentra la unión entre la zona troncocónica y la cilindrica del cuerpo del contactor 2. Estas configuraciones están especialmente indicadas cuando el arrastre de las partículas extremadamente finas no supone un problema.
La reducción de pérdida de carga en el flujo de gas, y la altura de la fuente 4 favorecidas por el confinador 1 se traducen en un proceso más estable y reducen las diferencias en las prestaciones de tres tipos de sistemas posibles: lechos en surtidor sin tubo central, con tubo central no poroso y con tubo central con aberturas. En una realización de la invención, se ha instalado un confinador 1 de 0,9m de longitud y 0,2m de diámetro en una planta piloto de secado de arenas, colocándolo mediante un sistema de guiado que sujetan el confinador 1 y permiten variar su distancia o altura HG a la superficie del lecho 3 como se ilustra en las figuras 2A-2D. Con el contactor 2 provisto del confinador 1 de la invención se han procesado materiales finos y ultrafinos que sin el confinador 1 no alcanzan el régimen de lecho en surtidor. Se ha alcanzado régimen estable sin necesidad de incorporar elementos internos adicionales en el lecho 3 como tubos 5 o draft-plates y draft-tubes para alcanzar el régimen estable y con una pérdida de carga en el flujo de gas similar a la obtenida en un contactor que sí incorpora esos elementos adicionales en el lecho como se ilustra en las tablas 2A y 2B.
Tabla 2A. Comparativa de la pérdida de carga en el flujo del gas para diferentes configuraciones de elementos internos. Valores medios para bolas de vidrio (dp = 2mm, p = 2400kg/m3) y guisantes negros (dp = 3.4mm, p = 1230kg/m3) de diferentes sistemas experimentales donde se han utilizado diferentes ángulos del contactor (γ), diferentes entradas del aire al contactor (D0) y diferentes alturas de lecho (H0). Además, en la configuración del tubo central con aberturas se ha variado el porcentaje de apertura de la pared del tubo (WH) y en el caso del tubo central de pared continua se ha variado la altura de las patas (LH).
Figure imgf000023_0001
Tabla 2B. Comparativa de la pérdida de carga en el flujo del gas para diferentes configuraciones de elementos internos. Valores para bolas de vidrio (dp = 2mm, p =
2400kg/m3) y guisantes negros (dp = 3.4mm, p = 1230kg/m3).
Figure imgf000023_0002
Como puede verse en la tabla 2A, comparando los valores de pérdida de carga que se producen en las instalaciones con confinador frente a los que se producen en las instalaciones sin confinador, en todos los casos, hay menos pérdida de carga en las instalaciones con confinador. En la tabla 2B, puede verse que la reducción de la pérdida de carga según el tipo de instalación (sin tubo central, con tubo central con aberturas, con tubo central no poroso) también se ve potenciada por la instalación del confinador.
Además, se han conseguido rendimientos en retención de partículas finas hasta un 90%, lo que permite al secadero mejorar su competitividad frente a los secaderos convencionales y, especialmente, frente a su inmediato competidor, el lecho fluidizado. En este texto, la palabra "comprende" y sus variantes (como "comprendiendo", etc.) no deben interpretarse de forma excluyente, es decir, no excluyen la posibilidad de que lo descrito incluya otros elementos, pasos etc.
Por otra parte, la invención no está limitada a las realizaciones concretas que se han descrito, sino que abarca también, por ejemplo, las variantes que pueden ser realizadas por el experto medio en la materia (por ejemplo, en cuanto a la elección de materiales, dimensiones, componentes, configuración, etc.), dentro de lo que se desprende de las reivindicaciones.

Claims

REIVINDICACIONES
1 . Confinador (1 ) de fuente (4) para contactor (2) de lecho (3) en surtidor donde el contactor (2) tiene:
1 a) un lecho (3) de partículas;
1 b) una entrada (21 ) de gas para tratamiento de las partículas;
1 c) una salida (22) de gas después del tratamiento de las partículas;
1 d) una cámara de contacto (23) configurada para permitir un contacto entre el gas y las partículas;
caracterizado por que el confinador (1 ) comprende:
1 e) una pared perimetral (12) configurada para conformar una cavidad (1 1 ):
1 e1 ) interna a la cámara de contacto (23);
1 e2) que tiene una abertura (13) enfrentada a la entrada (21 ) y al lecho (3), configurada para conducir una entrada y salida de gas y partículas a través de la abertura (13) siendo:
1 e2a) la entrada de gas y partículas a la cavidad (1 1 ) en sentido ascendente;
1 e2b) la salida de gas y partículas de la cavidad (1 1 ) en sentido descendente.
2. Confinador (1 ) de fuente (4) para contactor (2) de lecho (3) en surtidor según la reivindicación 1 caracterizado por que la abertura (13) está situada a una distancia HG del lecho (3).
3. Confinador (1 ) de fuente (4) para contactor (2) de lecho (3) en surtidor según la reivindicación 2 caracterizado por que:
3a) la entrada (21 ) tiene un diámetro de entrada al contactor D0;
3b) la distancia HG entre la abertura (13) y el lecho (3) está comprendida entre 3cm y cuatro veces el diámetro de entrada al contactor D0 .
4. Confinador (1 ) de fuente (4) para contactor (2) de lecho (3) en surtidor según la reivindicación 3 caracterizado por que la distancia HG entre la abertura (13) y el lecho (3) está comprendida entre 1 ,5 y 2,5 veces el diámetro de entrada al contactor D0.
5. Confinador (1 ) de fuente (4) para contactor (2) de lecho (3) en surtidor según la reivindicación 4 caracterizado por que la distancia HG entre la abertura (13) y el lecho (3) es sustancialmente 2 veces el diámetro de entrada al contactor D0.
6. Confinador (1 ) de fuente (4) para contactor (2) de lecho (3) en surtidor según cualquiera de las reivindicaciones 1 -5 caracterizado por que la cavidad (1 1 ) tiene forma tubular.
7. Confinador (1 ) de fuente (4) para contactor (2) de lecho (3) en surtidor según cualquiera de las reivindicaciones 1 -6 caracterizado por que la cavidad (1 1 ) tiene forma cilindrica de diámetro DG.
8. Confinador (1 ) de fuente (4) para contactor (2) de lecho (3) en surtidor según la reivindicación 7 caracterizado por que:
8a) el contactor tiene una zona cilindrica de diámetro de cilindro Dc;
8b) el diámetro DG está comprendido entre 3 veces el diámetro de entrada al contactor D0 y 0.7 veces el diámetro de cilindro Dc.
9. Confinador (1 ) de fuente (4) para contactor (2) de lecho (3) en surtidor según la reivindicación 8 caracterizado por que el diámetro DG está comprendido entre 4 y 6 veces el diámetro de entrada al contactor D0.
10. Confinador (1 ) de fuente (4) para contactor (2) de lecho (3) en surtidor según la reivindicación 9 caracterizado por que el diámetro DG es sustancialmente 5 veces el diámetro de entrada al contactor D0.
1 1 . Confinador (1 ) de fuente (4) para contactor (2) de lecho (3) en surtidor según cualquiera de las reivindicaciones 1 -10 caracterizado por que el confinador (1 ) comprende un fondo ciego en una parte superior.
12. Confinador (1 ) de fuente (4) para contactor (2) de lecho (3) en surtidor según la reivindicación 1 1 caracterizado por que el confinador (1 ) es desplazable entre una posición inferior y una posición superior, estando la abertura (13) a una distancia desplazada HG' igual o mayor que la distancia HG, cuando el confinador (1 ) está en la posición inferior.
13. Contactor (2) de lecho (3) en surtidor caracterizado por que comprende un confinador (1 ) según cualquiera de las reivindicaciones anteriores.
14. Contactor (2) de lecho (3) en surtidor según la reivindicación 13 caracterizado por que la cavidad (1 1 ) está ubicada respecto a la entrada (21 ) de manera que:
14a) la entrada de gas y partículas a la cavidad (1 1 ) en sentido ascendente tiene lugar en una zona central de la abertura (13);
14b) la salida de gas y partículas de la cavidad (1 1 ) en sentido descendente tiene lugar en una zona periférica de la abertura (13).
15. Contactor (2) de lecho (3) en surtidor según la reivindicación 14 caracterizado por que la entrada (21 ) comprende:
15a) un tubo (5) configurado para canalizar un gas desde el lecho (3) hacia un interior del contactor (2).
PCT/ES2018/070206 2017-03-21 2018-03-19 Confinador de fuente para contactor de lecho en surtidor y contactor de lecho en surtidor WO2018172582A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18772428.1A EP3603791A4 (en) 2017-03-21 2018-03-19 SOURCE CONFINER FOR FLUIDIZED BED SWITCH WITH JET AND BED SWITCH WITH JET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201730388A ES2682960B1 (es) 2017-03-21 2017-03-21 Confinador de fuente para contactor de lecho en surtidor y contactor de lecho en surtidor
ESP201730388 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018172582A1 true WO2018172582A1 (es) 2018-09-27

Family

ID=63557729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070206 WO2018172582A1 (es) 2017-03-21 2018-03-19 Confinador de fuente para contactor de lecho en surtidor y contactor de lecho en surtidor

Country Status (3)

Country Link
EP (1) EP3603791A4 (es)
ES (1) ES2682960B1 (es)
WO (1) WO2018172582A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385199A (en) 1966-01-24 1968-05-28 Hupp Corp Fluid-solids contact apparatus
WO2004007805A2 (en) * 2002-07-11 2004-01-22 De Nora Elettrodi S.P.A. Spouted bed electrode cell for metal electrowinning
US20050217989A1 (en) * 1997-12-22 2005-10-06 George Hradil Spouted bed apparatus with annular region for electroplating small objects
US20110230628A1 (en) * 2007-12-11 2011-09-22 Hiroyuki Ogawa Spouted bed device, polyolefin production system with spouted bed device, and polyolefin production process
US20150141589A1 (en) 2012-05-14 2015-05-21 Sumitomo Chemical Company, Limited Olefin polymerizer, polyolefin production system, and process for producing polyolefin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064018A (en) * 1976-06-25 1977-12-20 Occidental Petroleum Corporation Internally circulating fast fluidized bed flash pyrolysis reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385199A (en) 1966-01-24 1968-05-28 Hupp Corp Fluid-solids contact apparatus
US20050217989A1 (en) * 1997-12-22 2005-10-06 George Hradil Spouted bed apparatus with annular region for electroplating small objects
WO2004007805A2 (en) * 2002-07-11 2004-01-22 De Nora Elettrodi S.P.A. Spouted bed electrode cell for metal electrowinning
US20110230628A1 (en) * 2007-12-11 2011-09-22 Hiroyuki Ogawa Spouted bed device, polyolefin production system with spouted bed device, and polyolefin production process
US20150141589A1 (en) 2012-05-14 2015-05-21 Sumitomo Chemical Company, Limited Olefin polymerizer, polyolefin production system, and process for producing polyolefin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3603791A4 *

Also Published As

Publication number Publication date
EP3603791A4 (en) 2020-11-11
EP3603791A1 (en) 2020-02-05
ES2682960A1 (es) 2018-09-24
ES2682960B1 (es) 2019-07-05

Similar Documents

Publication Publication Date Title
CN1153633C (zh) 多室型流化床分级装置
KR100376560B1 (ko) 유동층 건조·분급장치
US4556175A (en) Granulating and coating machine
EP0125516B1 (en) Granulating apparatus
RU2138731C1 (ru) Камера сгорания с псевдоожиженным слоем для сжигания горючего материала, включающего негорючий материал, в печи с псевдоожиженным слоем
EP1578522B1 (en) Method for the conveyance of fine-grained solids
MXPA06011620A (es) Proceso y aparato de granulacion de lecho fludizado.
ES2231289T3 (es) Un metodo y un dispositivo para procesar una disolucion, fundido, suspension, emulsion, lechada o solidos en granulos.
CN101883630A (zh) 文丘里管插件、可替换的文丘里管和流化的方法
ES2908340T3 (es) Tolva de secado, así como la planta de molienda y secado que la comprende
ES2682960B1 (es) Confinador de fuente para contactor de lecho en surtidor y contactor de lecho en surtidor
CN111655364A (zh) 具有环形喷动流化床的设备及其操作方法
CN109631593B (zh) 具有高效烟气脱硫的回转石灰窑预热器
ES2957332T3 (es) Sistema y método de procesamiento de materiales
Luo et al. Flow characteristics in slot‐rectangular spouted beds with draft plates
US3817696A (en) Method of and apparatus for fluidized bed treatment of solids or liquids
DK2352579T3 (en) Method and apparatus for treating fine-grained material in a jet layer
EP1230007A1 (en) A fluidized bed apparatus
WO1981003437A1 (en) Method and apparatus for continuously burning particles in air stream in a vertical furnace
JPH0378131B2 (es)
RU2398163C2 (ru) Способ тепломассообмена в вихревом псевдоожиженном слое и аппарат для его осуществления
JPS62183849A (ja) 周壁噴流式流動層装置
RU2716354C1 (ru) Сушильное устройство с псевдоожиженным слоем
CN211204921U (zh) 一种用于气粒两相悬浮冶金过程的喷嘴
CN106994321A (zh) 一种用于流化床的气流分布板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018772428

Country of ref document: EP

Effective date: 20191021