WO2018172350A1 - Solar control glazing - Google Patents
Solar control glazing Download PDFInfo
- Publication number
- WO2018172350A1 WO2018172350A1 PCT/EP2018/057010 EP2018057010W WO2018172350A1 WO 2018172350 A1 WO2018172350 A1 WO 2018172350A1 EP 2018057010 W EP2018057010 W EP 2018057010W WO 2018172350 A1 WO2018172350 A1 WO 2018172350A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glazing
- absorbent
- reflection
- layer
- less
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3429—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
- C03C17/3435—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3613—Coatings of type glass/inorganic compound/metal/inorganic compound/metal/other
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3618—Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3649—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3657—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
- C03C17/366—Low-emissivity or solar control coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3681—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/67—Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
- E06B3/6715—Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light
Definitions
- the field of the invention is that of transparent glazing provided with a layer system capable of imparting solar control properties, containing no silver.
- Such glazings can be used for monolithic glazings, multiple or laminated, in the automobile, the building or in some domestic applications.
- the layer system generally comprises at least one functional layer intended to absorb and / or reflect part of the solar radiation, as well as coatings consisting of dielectrics located on either side of each functional layer.
- the materials constituting the functional layer are metals such as Ni, Cr, W, Ti, Nb, Zr, Ta, Hf, V, Co, Mo, Al , and the alloys they can compose, as well as their nitrides, carbides or borides.
- a material may fulfill the role of absorbent within the meaning of the invention since its average extinction coefficient k, for the visible range whose wavelength ranges from 380 nm to 780 nm is greater than 0.5.
- the dielectric coatings surrounding the functional layer can fulfill various roles, such as the optimization of the optical properties (light transmission, reflection, coloration, ...), the improvement of the durability and the resistance of the multilayer stack to the aggressions ( mechanical and / or chemical), protection (barrier to ion migration, oxygen barrier, etc.), support for the growth of metal layers (crystallization), improvement of resistance to heat treatments ...
- the dielectric coatings can be single or multiple.
- the constituent materials of the dielectrics generally used are chosen from oxides, nitrides and oxynitrides of metals such as In, Sn, Si, Al, Zr, Ti and mixtures thereof. Adjusting the nature and thickness of the functional and dielectric layers makes it possible to adapt the properties of the glazing according to its end use.
- the glazing that carries it In the case of layers for solar control, the glazing that carries it must be able to prevent heating of the interior of a vehicle cabin or a building room while maintaining a certain number of optical characteristics such as the light transmission, the internal and external reflection, the aesthetics of the glazing (shade) without neglecting the durability of the coating.
- Some or all of the features mentioned just before can be subject to strict national end-use regulations.
- the presence of the layer systems can cause color problems. Most often manufacturers ask that glazing offer both transmission and reflection as neutral color as possible and therefore gray or bronze appearance. Slightly green or bluish tones are also possible.
- the layer systems, and in particular the types, indices and thicknesses of the dielectric coatings surrounding the functional layer or layers are chosen, in particular to control these hues.
- the use of these windows in buildings or the automobile also supposes that in certain cases, they are subjected to heat treatments such as tempering for security reasons in the building or bending for shaping in the automobile.
- Applying the layers after the heat treatment is an approach that is technically more difficult and more expensive.
- the layer system is therefore preferably applied prior to the heat treatment and must then be subjected to temperature conditions that generally exceed 600 ° C for several minutes.
- end-users are demanding that the heat-treated glass shade not be distinguishable from the original hue and that in all cases the hue should be pleasant to the eye. It is therefore necessary that the layer system is able to withstand heat treatment without its mechanical or optical properties being altered. Since the metal layers are likely to be oxidized at During the heat treatment, the dielectrics surrounding the functional layer must be carefully selected to protect it in case of heat treatment.
- Glass or glass substrate means an inorganic glass having a thickness greater than or equal to 0.5 mm and less than or equal to 20 mm, preferably greater than or equal to 1.5 mm and less than or equal to 15 mm, comprising silicon as one of the essential components of the vitreous material.
- Sodium and extra-clear silico-soda-lime glasses with a low iron content are preferred. More particularly, a clear, untinted plain float glass of 6 mm thickness is used. For such a glass, in the absence of a layer, the light transmission in the visible range is approximately 90% and the reflection at 8%.
- Transparent multilayer stack means a succession of layers comprising at least one functional layer and dielectrics surrounding the said functional layer (s), the assembly being deposited on a transparent substrate , which substrate has, with its multilayer stack, a visible light transmission (T v ) of greater than 2.5%, preferably greater than 5% and even more preferably greater than 8%.
- absorbent functional layer also called here “absorbent” or
- 'Absorbent layer' means a layer which absorbs part of the sun's radiation and which consists essentially of a substance whose extinction coefficient spectral k (X) is greater than zero over the entire range of visible wavelengths (380-780 nm).
- the average extinction coefficient k of this material, for the visible range whose wavelength is from 380 nm to 780 nm, is at least 0.5, preferably greater than 1 and advantageously greater than 2.6.
- the absorbent functional layer may be a metal or a nitride, for example, TiN, CrN or any other absorbing nitride, it may also be a carbide or a boride, provided that it meets the condition on the value of the extinction coefficient k .
- Transparent dielectric coating means a dielectric coating having an extinction coefficient k of not more than 0.2.
- the dielectric materials used are chosen from oxides, nitrides and oxynitrides of metals such as Zn, Sn, Si, Al, Zr, Ti and mixtures thereof.
- the term "dielectric material” also refers to layers doped with at least one other element, containing up to about 40% by weight of this other element, the latter having dielectric properties that do not differ in practice from the layers consisting of the said non-dielectric material. dope.
- the layer when the layer is made of nitride or silicon oxide, it may contain up to 10% by weight of aluminum (for example, layers deposited by sputtering process from a silicon target containing up to 10% by weight of aluminum).
- the dielectric coatings according to the invention may also consist of several individual layers comprising these same materials.
- the dielectric layers can be deposited by sputtering, they can also be deposited by the well-known technique called PECVD (Plasma-Enhanced Chemical Vapor Deposition).
- essentially metallic nature means the characteristics generally accepted for defining a metal.
- This essentially metallic layer may, however, be slightly nitrided, oxidized or carbonated, without losing its basic metallic character provided that the atomic percentage of nitrogen or oxygen is less than 20%, preferably less than 15% and ideally less than 20%. 10%.
- the atmosphere during the deposition of this metal layer may consist of pure noble gas, for example 100% of argon, or the atmosphere may, in addition to the noble gas, contain a little nitrogen or oxygen unintentionally coming from neighboring deposition areas.
- the described layer systems are deposited on the face of the glass facing the interior of the building or the passenger compartment of the vehicle or, where appropriate, to the space between two glasses forming a multiple glazing so as to maximize protection against mechanical and chemical attack.
- the face of the glass carrying the layer system may be oriented towards the inside or towards the outside of the passenger compartment as the case may be.
- the patent application WO2002090281A2 describes a substrate carrying an absorbent functional layer surrounded by silicon nitride, characterized on the one hand by a weak light transmission and, on the other hand, by the fact that when the substrate is subjected to a heat treatment, the hue in reflection on the glass side varies little (AE * R g ⁇ 5).
- WO2002090281A2 explains, counterexamples to the support, that the coloring is more stable to the heat treatment if the absorbent layer is nitrided during the deposition.
- WO2006134335A1 shows the same tendency of color stabilization during a heat treatment, as soon as the metallic absorbent layer is nitrided in the case of layer systems allowing a significantly higher light transmission.
- a nitrided absorbent has improved mechanical and chemical resistance.
- the rather low light transmission ( ⁇ 15%) can only be obtained by increasing the thickness of the absorbing layer.
- the hue in reflection on the layer side corresponds to values of b * R C ranging between 19.93 and 22.32 without heat treatment (a * R C : -0.54-0.32), b * R C values between 11.42 and 17.86 after heat treatment (a * R C : -0.01-1.12) and very important differences (greater than 15).
- This means that the layer-side coloration has a yellowish appearance and is not stable to heat treatment.
- patent application US20120177899A1 proposes a system with two less thick absorbent functional layers to improve the aesthetics.
- US20120177899A1 discloses the use of metal nitrides and all the examples presented have a light transmission of greater than 20%. No information is given on the color side film and without giving real values, US20120177899A1 mentions that its stack has good color stability after heat treatment.
- the application WO2014170613A1 aims to obtain a solar control glazing with a low light transmission, a very low internal reflection, a pleasant aesthetic and good resistance to heat treatments. Increasing the thickness of the absorbent would also increase the light reflection.
- the proposed solution is a coating which comprises two metallic absorbent layers separated by an intermediate layer of silicon nitride (SiN) whose thickness must be less than 45 nm.
- SiN silicon nitride
- a first layer of nickel of 8 nm and a second of 7 nm makes it possible to obtain a light transmission of 32% and an interior reflection coloration characterized by a b * of -33 as long as the intermediate dielectric remains sufficiently thin. Therefore, no solution of the prior art gives the appropriate means to obtain a solar control layer system, stable to heat treatments and having both a low light transmission, a low level of internal reflection (Lm n t ⁇ 15%), a pleasant external reflection (LR OR t between 10 and 40%) and neutral shades in transmission and internal reflection. This is precisely the problem that the invention proposes to solve.
- the invention particularly aims to overcome the disadvantages of the prior art. More particularly, the invention aims to obtain a solar control glazing whose light transmission is between 5 and 20%, preferably between 8 and 14%, whose internal reflection is less than or equal to 15%, preferably less than 11% and whose external reflection is at least 10%, preferably between 15% and 25%, these values being based on the optical parameter "Y" as defined in the ELAB CI system.
- the invention proposes a system of layers whose thickness adjustment makes it possible to obtain a glazing having an external reflection having specific colorimetric parameters for each shade that it is desired to obtain.
- Table I provides the colorimetric parameters chosen to obtain a glazing which has an external reflection blue, green, bronze or gray. These colors are the classic colors frequently requested by architects.
- the color in transmission is characterized by a b * Ti_ less than or equal to 6 so as to maintain a neutral shade and in particular to avoid a yellowish appearance.
- the color in inner reflection is defined by a coefficient a * R C between -5 and 6 and a coefficient D * R c between -10 and 6.
- the invention relates to a solar control glazing comprising on at least one of the faces of a glass substrate a layer system comprising at least two absorbent layers and nitride-based dielectric layers flanking each absorbent layer.
- the number of absorbing layers can be determined by the defined specifications and by the final aesthetics that one wants to obtain.
- the inventor has discovered that in a solar control system, to achieve the specifications as described above (paragraph 3), two criteria must be met. On the one hand, at least two absorbent functional layers are necessary, each of said functional layers being surrounded by dielectric coatings based on an oxide or a nitride and in contact with said dielectric coatings and on the other hand, it is necessary to at least one of said layers has an essentially metallic character.
- the inventor has discovered that in a solar control system comprising at least two absorbent functional layers, each of said functional layers being surrounded by dielectric coatings based on an oxide or a nitride and in contact with said dielectric coatings, as soon as at least one of said layers has an essentially metallic character, the other absorbent may advantageously be a nitrided, carbonaceous or borated absorbent.
- the process used to obtain the targeted product is thereby simplified and more economical. Because when a layer must remain essentially metallic, the equipment is much more demanding in terms of separation of the deposit chambers and will be all the more consequent.
- the presence of an essentially metallic absorbent therefore makes it possible to obtain the colorimetric properties specified in transmission and reflection both on the glass side and the layer side, as well as percentages in transmission and reflection (parameter Y defined in FIG. the CI ELAB system), within the limits set.
- the metal is chosen from Ni, Cr, W, Ti, Nb, Zr, Ta, Hf, V and an alloy of these metals.
- the inventor has also been able to demonstrate that when at least one of the absorbent functional layers is based on a boride, carbide or nitride of a metal chosen from Ni, Cr, W, Ti, Nb , Zr, Ta, Hf, V and an alloy of these metals, the entire system retains satisfactory optical characteristics described above.
- the metal is selected from Ni, Cr, Ti, W and Zr and an alloy of these metals.
- the alloy comprises at least 30% by weight of tungsten, preferably at 35% and advantageously at least 40%.
- the proportion of Ni is at least 9% by weight, preferably at least 25% and for example 30, 35 or 40% by weight.
- the metal (or alloy) of the absorbent (s) nitrided (s), carbon (s) or boré (s) and the metal (or the alloy) of the absorbent (s) of essentially metallic nature may be identical or different.
- the thickness of an absorbent layer is between 0.2 nm and 50 nm, preferably this thickness is between 0.5 nm and 35 nm. More particularly, the thickness of the absorbent of essentially metallic nature is between 0.2 nm and 25 nm and the thickness of the absorbent in the form of a nitride, carbide or boride is between 0.5 nm and 50 nm.
- one or more of the dielectric coatings used in the invention is (are) based on metal nitrides whose metal is chosen from the group comprising silicon, aluminum, zirconium and titanium or a combination of these elements.
- the dielectric layers positioned on either side of the absorbent layers have the role of protecting them during a heat treatment by retaining their property of absorbent.
- each of these dielectric layers has a minimum of 8 nm in geometric thickness. More particularly, the thickness of the dielectric layers is between 8 nm and 200 nm.
- the person skilled in the art knows how to adjust the thicknesses according to the properties sought and already mentioned above. The relationship between the thicknesses of the dielectrics, as well as the ratio between the thicknesses of the absorbing layers, derive from the specifications that have been set (transmission, reflections, hues, etc.).
- the multilayer system of the invention also allows the shade to remain pleasant regardless of the angle at which the glazing is observed. Indeed, the hue of the reflection layer side remains pleasant because it is defined by a coefficient a * R C between -5 and 8 and a coefficient b * R C between -10 and 8 for an angle of vision between 8 , 5 ° and 75 °.
- stack as defined for each of the two embodiments can be heat treated without significant alteration of its optical properties.
- the glazing according to the invention comprises one of the following successions of layers:
- Dielectric Diel 1 / Absorbent (Abs 1) / Dielectric (Diel 2) / Absorbent (Abs 2) / Clear dielectric (Diel 3) dielectric coating Transparent dielectric coating (Diel 1) / absorbent (Abs 1) / Transparent dielectric coating (Diel 2) / absorbent (Abs 2) / Transparent dielectric coating (Diel 3) / absorbent (Abs 3) / Transparent dielectric coating (Diel 3) in which at least one absorbent is essentially metallic in nature according to a first embodiment of the invention and in which at least one absorbent is essentially metallic in nature and at least one absorbent comprises a metal boride, carbide or nitride, according to a second embodiment of the invention.
- such a solar control glazing unit even when it has a relatively low light transmission, can be adjusted so that it has optical characteristics having a reflection hue which is pleasant on the glass side and a neutral hue both in transmission in reflection from the layer side.
- the colorimetric parameters of the reflection color measured on the outer side (glass side) are adjusted according to the desired shade such as green, blue, gray or bronze, so as to satisfy the values given in Table I.
- the shade obtained remains pleasant depending on the angle of view, and is also stable to the heat treatment.
- the hue of the reflection on the layer side remains pleasant because it is defined by a coefficient a * R C between -5 and 8 and a coefficient b * R C ranging between -10 and 8 for an angle of vision of between 8.5 ° and 75 °.
- the materials constituting the layers are chosen so that the stack can undergo a heat treatment without the optical properties are significantly degraded, so that treated or not, the glazing has an appearance substantially unchanged.
- a heat treatment consists of heating at more than 600 ° C for several minutes.
- colorimetric variations are measured using the coordinates of the ELAB CI system.
- the colorimetric variation is expressed by the expression denoted ⁇ *, expression corresponding to the formula: or represents the difference between the colorimetric coordinates L * of the glazing before and after heat treatment, represents the difference between the colorimetric coordinates a * of the glazing before and after heat treatment, represents the difference between the colorimetric coordinates b * of the glazing before and after heat treatment,
- the glazing according to the invention has a colorimetric variation in reflection on the face side glass substrate
- the glazing according to the invention also preferably has a colorimetric variation in transmission, less than 8, preferably less than 5, more preferably less than 3, when said glazing is subjected to a temperature of at least 630 ° C for a period of between 2 and 10 minutes.
- the glazing according to the invention additionally has or not to the two preceding properties, a colorimetric variation in reflection side face stacking, such as: is lower 8, preferably less than 5, when said glazing is subjected to a temperature of at least 630 ° C for a period of between 2 and 10 minutes.
- the glazing according to the invention can in addition to the layers described above comprise any additional layer necessary for an additional specific property with the exception of a functional layer based on silver.
- the invention provides that an upper layer can be added for protection purposes of the layer system.
- a protective layer may be selected for example from oxides based on Ti and / or Zr.
- the invention is based on a completely new and inventive approach in the sense that it is possible to produce a solar control glazing with very low light transmission simultaneously having satisfactory levels of reflection, a pleasant reflection tint on the glass side and a neutral shade in transmission and reflection on the layer side, regardless of the viewing angle, as well as good resistance to heat treatments.
- the choice of substrate does not limit the scope of the invention.
- the examples of metals are not any more limiting of the principle of the invention which is based on the idea that it is possible to adjust the nature and the thicknesses of the layers constituting a solar control stack provided that that the stack comprises at least two absorbents and that at least one of these two absorbents is a metal.
- at least one of the absorbents is essentially metallic and at least one absorbent comprises a nitride, a carbide or a boride of a metal.
- the light absorbing functional layers are deposited by sputtering under reduced pressure, preferably assisted by a magnetic field (magnetron), under conditions customary for this type of technique and well known to those skilled in the art.
- the dielectric layers and more particularly the silicon nitride layers may also be produced by sputtering (magnetron) under conditions well known to those skilled in the art, from an aluminum doped silicon target, in an atmosphere consisting of a mixture of argon (30-70%) and nitrogen (30-70%) under a total pressure of less than 2 Pascal.
- the dielectric layers can be applied by the well-known technique called PECVD (Plasma Enhanced Chemical Vapor Deposition).
- the dielectric layers enclosing the absorbent layer are based on silicon nitride, and advantageously substantially silicon nitride.
- the layer may contain another material up to 40% (weight), such as aluminum, titanium or zirconium.
- the silicon nitride can be obtained from a silicon target, optionally doped with aluminum or boron, by cathodic sputtering, using a magnetron, in a reactive atmosphere of nitrogen. and argon.
- the silicon target is doped to give it the electrical conduction necessary for sputtering, for example doped with at most 10% by weight of aluminum or boron, for example between 2% and 4%.
- the silicon nitride layers in the finished stack may be slightly oxidized over part of their thickness.
- the name S13N4 does not mean that the material is perfectly stoichiometric, it can be slightly under-nitrided or slightly oxidized. It is the same with other dielectrics.
- the dielectric layers have a minimum geometrical thickness of 8 nm. Whether it is an absorbent layer or a dielectric layer, one or the other or both may possibly be formed of several layers of different materials, for example to improve the chemical or thermal resistance. Other layers, such as a protective layer may be part of the stack.
- thermoplastic materials examples of glazing according to the invention as well as comparative examples (denoted R) are given in Tables I I to IX below.
- the optical properties are defined in simple glass, for glazing whose substrate is clear ordinary float glass and has a thickness of 6 mm.
- the layers are indicated in order, from top to bottom, starting from the glass.
- the geometrical thicknesses are expressed in nm.
- the tables give the light transmission, the external and internal light reflection as well as the various useful colorimetric parameters.
- the light transmission T v and the light reflection LR are measured with Illuminant D65, 2 ° (EN 410).
- the colorimetric coordinates L *, a *, b *, CI E, are also measured with Illuminant D65, 10 °.
- the angle at which the measurements are made is 8 ° for reflection and 0 ° for transmission.
- the SiN notations denote the silicon nitrides without representing a chemical formula, it being understood that the products obtained are not necessarily rigorously stoichiometric, but are those obtained under the deposition conditions indicated and which are close to the stoichiometric products.
- the SiN layers can contain up to about 10% by weight of aluminum from the target, they can also be slightly oxidized.
- Table II illustrates the invention in the case where the stack comprises two absorbers. The thicknesses are given in nm for each layer. Comparative Examples R1 to R3 confirm that by using only one absorbent, it is not it is possible to satisfy all the specifications defined above, whether for a blue tint in reflection (RI and R2) or for a green tint (R3). The same conclusion applies when no metallic absorbent is present (R11 to R13) for bronze or gray tints. On the other hand, examples 4 to 10 clearly illustrate the invention, since as soon as we have two absorbers, at least one of which is metallic, the specifications referred to in paragraph 3 are well verified, in particular for green (ex 4-7), blue (ex 8) or gray (ex 9-10) in the examples cited.
- Table III illustrates the invention by a series of examples in the case where the multilayer system comprises three layers of absorbent integrated in the following succession: glass / Diel 1 / Abs 1 / Diel 2 / Abs 2 / Diel 3 / Abs 3 / Diel 4.
- the thicknesses are given in nm for each layer. It can be seen that three absorbers make it possible to obtain a glazing having a light transmission of less than 15% and meeting the specifications defined in paragraph 3, since at least one absorbent is essentially metallic in nature, whether to obtain a hue blue (ex 18) or green (ex 19 to 22).
- the absence of metallic absorbent leads to the formation of products for which the specifications are not satisfied, and this, whatever the nature of the metal used in the nitride (ex R14 to R17).
- Table II I 3 Absorbents (ABS)
- the thicknesses can be adjusted to obtain a green hue in reflection on the layer side, by modifying not only the nature of the metallic absorbent but also by combining it with chromium nitride or titanium nitride (ex 19 -23 and 25).
- Another advantage of the invention is that the glazing retains its aesthetic qualities in reflection layer side irrespective of the viewing angle before and after heat treatment.
- This feature of the invention is illustrated by the examples in Tables V (before quenching) and VI (after quenching) for the different shades that have been proposed. For each shade, the stack is given at the top of the column with the thicknesses expressed in nm in parentheses. We can indeed see for these examples that for different angles of measurement, is always between -5 and 8 and is between -10 and 8.
- Table VI I Reflection on the glass side according to the angle of vision before quenching.
- Table VIII Reflection on the glass side as a function of the viewing angle after quenching.
- Table IX shows that for all the tested examples which, in accordance with the invention, have at least two absorbents, at least one of which is essentially metallic in nature, the ⁇ *, whether in transmission or in reflection (side layer and side glass) are always very weak and in all cases less than 3.5.
- the glazing unit corresponding to the invention can be used as such as monolithic glazing, it can be incorporated in a multiple glazing, or in a laminated glazing unit. It can be used in building, automotive or home applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
The invention relates to transparent solar control glazing with low light transmission, characterised by pleasing aesthetics, good durability and good resistance to heat treatments. The term pleasing aesthetics covers all aspects, whether shade or transmission, both for internal and external reflection. The glazing of the invention is characterised by the presence of a multilayer stack comprising at least two absorbents, at least one of the two of which has an essentially metal nature. In a second embodiment, the stack comprises at least two absorbents, at least one of which is metal and at least comprises either the nitride or the carbide or the boron of a metal. In all the embodiments, each absorbent is surrounded by dielectric coatings.
Description
Vitrage de contrôle solaire Solar control glazing
1. Domaine de l'invention 1. Field of the invention
Le domaine de l'invention est celui des vitrages transparents munis d'un système de couches apte à conférer des propriétés de contrôle solaire, ne contenant pas d'argent. De tels vitrages peuvent être utilisés pour des vitrages monolithiques, multiples ou feuilletés, dans l'automobile, le bâtiment ou dans certaines applications domestiques. The field of the invention is that of transparent glazing provided with a layer system capable of imparting solar control properties, containing no silver. Such glazings can be used for monolithic glazings, multiple or laminated, in the automobile, the building or in some domestic applications.
Le système de couches comprend généralement au moins une couche fonctionnelle destinée à absorber et / ou réfléchir une partie des rayonnements solaires, ainsi que des revêtements constitués de diélectriques situés de part et d'autre de chaque couche fonctionnelle. The layer system generally comprises at least one functional layer intended to absorb and / or reflect part of the solar radiation, as well as coatings consisting of dielectrics located on either side of each functional layer.
Typiquement, les matériaux constitutifs de la couche fonctionnelle sont des métaux tels que le Ni, le Cr, le W, le Ti, le Nb, le Zr, le Ta, le Hf, le V, le Co, le Mo, l'Ai, et les alliages qu'ils peuvent composer, ainsi que leur nitrures, carbures ou borures. Un matériau pourra remplir le rôle d'absorbant au sens de l'invention dès lors que son coefficient d'extinction moyen k, pour la gamme visible dont la longueur d'onde va de 380 nm à 780 nm est supérieur à 0,5. Typically, the materials constituting the functional layer are metals such as Ni, Cr, W, Ti, Nb, Zr, Ta, Hf, V, Co, Mo, Al , and the alloys they can compose, as well as their nitrides, carbides or borides. A material may fulfill the role of absorbent within the meaning of the invention since its average extinction coefficient k, for the visible range whose wavelength ranges from 380 nm to 780 nm is greater than 0.5.
Les revêtements diélectriques entourant la couche fonctionnelle peuvent remplir divers rôles, comme l'optimisation des propriétés optiques (transmission lumineuse, réflexion, coloration,...), l'amélioration de la durabilité et de la résistance de l'empilage multicouche aux agressions (mécaniques et/ou chimiques), la protection (barrière à la migration d'ions, barrière à l'oxygène...), l'aide à la croissance des couches métalliques (cristallisation), l'amélioration de la résistance aux traitements thermiques... Les revêtements diélectriques peuvent être simples ou multiples. Les matériaux constitutifs des diélectriques généralement utilisés sont choisis parmi les oxydes, les nitrures et les oxynitrures des métaux tels que le In, le Sn, le Si, l'Ai, le Zr, le Ti ainsi que leurs mélanges.
Ajuster la nature et l'épaisseur des couches fonctionnelles et diélectriques permet d'adapter les propriétés du vitrage en fonction de son utilisation finale. Dans le cas des couches pour le contrôle solaire, il faut que le vitrage qui le porte soit apte à prévenir réchauffement de l'intérieur d'un habitacle de véhicule ou d'une pièce de bâtiment tout en maintenant un certain nombre de caractéristiques optiques telles la transmission lumineuse, la réflexion intérieure et extérieure, l'esthétique du vitrage (teinte) sans négliger la durabilité du revêtement. Certaines ou toutes les caractéristiques mentionnées juste avant peuvent faire l'objet d'une réglementation nationale très stricte liée à l'utilisation finale. En ce qui concerne l'aspect esthétique, la présence des systèmes de couches peut poser des problèmes de couleur. Le plus souvent les constructeurs demandent que les vitrages offrent aussi bien en transmission qu'en réflexion une coloration aussi neutre que possible et donc d'apparence grise ou bronze. Des tons légèrement verts ou bleutés sont aussi possibles. Les systèmes de couches, et en particulier les natures, indices et épaisseurs des revêtements diélectriques encadrant la ou les couches fonctionnelles sont choisis, notamment pour maîtriser ces teintes. The dielectric coatings surrounding the functional layer can fulfill various roles, such as the optimization of the optical properties (light transmission, reflection, coloration, ...), the improvement of the durability and the resistance of the multilayer stack to the aggressions ( mechanical and / or chemical), protection (barrier to ion migration, oxygen barrier, etc.), support for the growth of metal layers (crystallization), improvement of resistance to heat treatments ... The dielectric coatings can be single or multiple. The constituent materials of the dielectrics generally used are chosen from oxides, nitrides and oxynitrides of metals such as In, Sn, Si, Al, Zr, Ti and mixtures thereof. Adjusting the nature and thickness of the functional and dielectric layers makes it possible to adapt the properties of the glazing according to its end use. In the case of layers for solar control, the glazing that carries it must be able to prevent heating of the interior of a vehicle cabin or a building room while maintaining a certain number of optical characteristics such as the light transmission, the internal and external reflection, the aesthetics of the glazing (shade) without neglecting the durability of the coating. Some or all of the features mentioned just before can be subject to strict national end-use regulations. With regard to the aesthetic aspect, the presence of the layer systems can cause color problems. Most often manufacturers ask that glazing offer both transmission and reflection as neutral color as possible and therefore gray or bronze appearance. Slightly green or bluish tones are also possible. The layer systems, and in particular the types, indices and thicknesses of the dielectric coatings surrounding the functional layer or layers are chosen, in particular to control these hues.
Par ailleurs, l'utilisation de ces vitrages dans les bâtiments ou l'automobile suppose aussi que dans certains cas, ils soient soumis à des traitements thermiques comme la trempe pour des raisons de sécurité dans le bâtiment ou le bombage pour la mise en forme dans l'automobile. Appliquer les couches après le traitement thermique est une démarche qui est techniquement plus difficile et plus coûteuse. Le système de couches est donc de préférence appliqué avant le traitement thermique et doit ensuite être soumis à des conditions de température qui dépassent généralement 600°C, et ce pendant plusieurs minutes. De plus en plus, les utilisateurs finaux demandent que la teinte du verre qui a subi un traitement thermique ne pu isse être distinguée de la teinte originale et que dans tous les cas cette teinte soit agréable à l'œil. Il est donc nécessaire que le système de couche soit apte à supporter u n traitement thermique sans que ses propriétés mécaniques ou optiques ne soient altérées. Etant donné que les couches métalliques sont susceptibles d'être oxydées au
cours du traitement thermique, les diélectriques qui entourent la couche fonctionnelle doivent être judicieusement choisis pour la protéger en cas de traitement thermique. Moreover, the use of these windows in buildings or the automobile also supposes that in certain cases, they are subjected to heat treatments such as tempering for security reasons in the building or bending for shaping in the automobile. Applying the layers after the heat treatment is an approach that is technically more difficult and more expensive. The layer system is therefore preferably applied prior to the heat treatment and must then be subjected to temperature conditions that generally exceed 600 ° C for several minutes. Increasingly, end-users are demanding that the heat-treated glass shade not be distinguishable from the original hue and that in all cases the hue should be pleasant to the eye. It is therefore necessary that the layer system is able to withstand heat treatment without its mechanical or optical properties being altered. Since the metal layers are likely to be oxidized at During the heat treatment, the dielectrics surrounding the functional layer must be carefully selected to protect it in case of heat treatment.
Définitions : Dans la suite de la description et pour les revendications, Definitions: In the remainder of the description and for the claims,
- Par verre ou substrat verrier, on entend désigner un verre inorganique d'épaisseur supérieure ou égale à 0,5 mm et inférieure ou égale à 20 m m, préférentiellement supérieure ou égale à 1,5 mm et inférieure ou égale à 15 m m, comprenant du silicium comme l'un des constituants indispensables à la matière vitreuse. On préfère les verres silico-sodo-calciques clairs ou extra-clairs à bas taux de fer. Plus particulièrement, on utilise un verre « float » ordinaire clair non teinté de 6 mm d'épaisseur. Pour un tel verre, en l'absence de couche, la transmission lumineuse dans le domaine du visible se situe approximativement à 90 % et la réflexion à 8 %. Glass or glass substrate means an inorganic glass having a thickness greater than or equal to 0.5 mm and less than or equal to 20 mm, preferably greater than or equal to 1.5 mm and less than or equal to 15 mm, comprising silicon as one of the essential components of the vitreous material. Sodium and extra-clear silico-soda-lime glasses with a low iron content are preferred. More particularly, a clear, untinted plain float glass of 6 mm thickness is used. For such a glass, in the absence of a layer, the light transmission in the visible range is approximately 90% and the reflection at 8%.
- Les propriétés de transmission visible, Tv, et de réflexion vers l'extérieur L et l'intérieur L sont données pour un illuminant D65 sous 2° conformément à la norme EN410. - Sauf mention contraire, les épaisseurs renseignées pour les couches sont des épaisseurs géométriques et sont exprimées en nm. - The visible transmission, T v , and outward reflection properties L and the interior L are given for a D65 illuminant under 2 ° in accordance with the EN410 standard. - Unless otherwise stated, the thicknesses indicated for the layers are geometrical thicknesses and are expressed in nm.
- Sauf mention contraire, lorsqu'une gamme de valeurs est donnée, il faut comprendre que cette gamme inclut les valeurs limites renseignées. - Unless otherwise specified, when a range of values is given, it should be understood that this range includes the indicated limit values.
- Par « empilage multicouche transparent », on entend une succession de couches comprenant au moins une couche fonctionnelle et des diélectriques entourant la(les)dite(s) couche(s) fonctionnelle(s), l'ensemble étant déposé sur un substrat transparent, lequel substrat présente avec son empilage multicouches une transmission lumineuse dans le visible (Tv) supérieure à 2,5 %, de préférence supérieure à 5 % et encore plus préférentiellement supérieure à 8 %. - Par « couche fonctionnelle absorbante », aussi nommée ici « absorbant » ou- "Transparent multilayer stack" means a succession of layers comprising at least one functional layer and dielectrics surrounding the said functional layer (s), the assembly being deposited on a transparent substrate , which substrate has, with its multilayer stack, a visible light transmission (T v ) of greater than 2.5%, preferably greater than 5% and even more preferably greater than 8%. - By "absorbent functional layer", also called here "absorbent" or
« couche absorbante », on entend une couche qui absorbe une partie du rayonnement solaire et qui consiste essentiellement en une matière dont le coefficient d'extinction
spectrale k(X) est supérieur à zéro sur l'ensemble du domaine des longueurs d'ondes du visible (380-780 nm). Le coefficient d'extinction moyen k de cette matière, pour la gamme visible dont la longueur d'onde va de 380 nm à 780 nm, est d'au moins 0,5, de préférence supérieur à 1 et avantageusement supérieur à 2,6. La couche fonctionnelle absorbante peut être un métal ou un nitrure par exemple, TiN, CrN ou tout autre nitrure absorbant, elle peut aussi être un carbure ou un borure, pour autant qu'elle respecte la condition sur la valeur du coefficient d'extinction k. 'Absorbent layer' means a layer which absorbs part of the sun's radiation and which consists essentially of a substance whose extinction coefficient spectral k (X) is greater than zero over the entire range of visible wavelengths (380-780 nm). The average extinction coefficient k of this material, for the visible range whose wavelength is from 380 nm to 780 nm, is at least 0.5, preferably greater than 1 and advantageously greater than 2.6. . The absorbent functional layer may be a metal or a nitride, for example, TiN, CrN or any other absorbing nitride, it may also be a carbide or a boride, provided that it meets the condition on the value of the extinction coefficient k .
- Par « revêtement diélectrique transparent », on entend un revêtement diélectrique ayant un coefficient d'extinction k d'au plus 0,2. Les matériaux diélectriques utilisés sont choisis parmi les oxydes, les nitrures, les oxynitrures des métaux tels que le Zn, le Sn, le Si, l'Ai, le Zr, le Ti et leurs mélanges. Par matériau diélectrique, on entend également des couches dopées avec au moins un autre élément, contenant jusqu'à environ maximum 40 % poids de cet autre élément, ces dernières présentant des propriétés diélectriques ne différant en pratique pas des couches consistant en ledit matériau diélectrique non dopé. Ainsi par exemple, lorsque la couche est en nitrure ou oxyde de silicium celle-ci peut contenir jusqu'à 10 % en poids d'aluminium (par exemple, des couches déposées par procédé de pulvérisation cathodique à partir d'une cible de silicium contenant jusqu'à 10 % poids d'aluminium) . Les revêtements diélectriques selon l'invention peuvent en outre être constitués de plusieurs couches individuelles comprenant ces mêmes matériaux. Les couches diélectriques peuvent être déposées par pulvérisation cathodique, elles peuvent aussi être déposées par la technique bien connue appelée PECVD (« Plasma-Enhanced Chemical Vapor Déposition » ou dépôt chimique en phase vapeur assisté par plasma). - "Transparent dielectric coating" means a dielectric coating having an extinction coefficient k of not more than 0.2. The dielectric materials used are chosen from oxides, nitrides and oxynitrides of metals such as Zn, Sn, Si, Al, Zr, Ti and mixtures thereof. The term "dielectric material" also refers to layers doped with at least one other element, containing up to about 40% by weight of this other element, the latter having dielectric properties that do not differ in practice from the layers consisting of the said non-dielectric material. dope. For example, when the layer is made of nitride or silicon oxide, it may contain up to 10% by weight of aluminum (for example, layers deposited by sputtering process from a silicon target containing up to 10% by weight of aluminum). The dielectric coatings according to the invention may also consist of several individual layers comprising these same materials. The dielectric layers can be deposited by sputtering, they can also be deposited by the well-known technique called PECVD (Plasma-Enhanced Chemical Vapor Deposition).
- Par « nature essentiellement métallique », on entend les caractéristiques généralement admises pour définir un métal. Cette couche essentiellement métallique peut toutefois être légèrement nitrurée, oxydée ou carbonée, sans perdre son caractère métallique de base à condition que le pourcentage atomique d'azote ou d'oxygène soit inférieur à 20 %, de préférence inférieur à 15 % et idéalement inférieur à 10 %. En effet, l'atmosphère lors du dépôt de cette couche métallique peut être constituée de gaz noble pur, par exemple 100 % d'argon, ou l'atmosphère peut, en plus du gaz noble, contenir
un peu d'azote ou d'oxygène provenant de manière non-intentionnelle des zones de dépôt voisines. - "Essentially metallic nature" means the characteristics generally accepted for defining a metal. This essentially metallic layer may, however, be slightly nitrided, oxidized or carbonated, without losing its basic metallic character provided that the atomic percentage of nitrogen or oxygen is less than 20%, preferably less than 15% and ideally less than 20%. 10%. Indeed, the atmosphere during the deposition of this metal layer may consist of pure noble gas, for example 100% of argon, or the atmosphere may, in addition to the noble gas, contain a little nitrogen or oxygen unintentionally coming from neighboring deposition areas.
- Généralement aussi, les systèmes de couches décrits sont déposés sur la face du verre tournée vers l'intérieur du bâtiment ou de l'habitacle du véhicule ou le cas échéant, vers l'espace entre deux verres constituant un vitrage multiple de manière à les protéger au maximum des agressions mécaniques et chimiques. Dans le cas d'un verre laminé pour l'automobile, la face du verre portant le système de couche peut être orienté vers l'intérieur ou vers l'extérieur de l'habitacle selon les cas. Cela signifie que lorsque l'on mentionne une propriété côté couche, il y a lieu de vérifier sur quelle face est déposé le système multicouche et par conséquent quel côté est impacté par ladite propriété, c'est-à-dire l'intérieur ou l'extérieur, sachant que lorsque l'on parle de l'intérieur, il s'agit de l'intérieur du bâtiment ou de l'habitacle et inversement, lorsque l'on parle de l'extérieur, il s'agit de l'extérieur du bâtiment ou de l'habitacle. - Generally also, the described layer systems are deposited on the face of the glass facing the interior of the building or the passenger compartment of the vehicle or, where appropriate, to the space between two glasses forming a multiple glazing so as to maximize protection against mechanical and chemical attack. In the case of a laminated glass for the automobile, the face of the glass carrying the layer system may be oriented towards the inside or towards the outside of the passenger compartment as the case may be. This means that when a layer-side property is mentioned, it is necessary to check on which face the multilayer system is deposited and therefore which side is impacted by the said property, that is to say the interior or the outside, knowing that when we talk about the interior, it is about the interior of the building or the cabin and conversely, when we talk about the outside, it is about the exterior of the building or cabin.
2. Solutions de l'art antérieur Aujourd'hui, une demande existe pour obtenir des vitrages avec un contrôle solaire dont la transmission lumineuse n'est pas supérieure à 14 % et la réflexion à l'intérieure du bâtiment ou de l'habitacle est inférieure à 15 %, tout en maintenant une esthétique acceptable. Pour satisfaire la première condition, c'est-à- dire avoir une transmission lumineuse assez basse, pour un même matériau, les possibilités sont soit d'augmenter l'épaisseur de la couche absorbante, soit de mettre plusieurs couches absorbantes. 2. Solutions of the Prior Art Today, there is a demand for glazing with solar control whose light transmission is not greater than 14% and the reflection inside the building or the passenger compartment is less than 15%, while maintaining an acceptable aesthetic. To satisfy the first condition, that is to say having a relatively low light transmission, for the same material, the possibilities are either to increase the thickness of the absorbent layer, or to put several absorbent layers.
La demande de brevet WO2002090281A2 décrit un substrat portant une couche fonctionnelle absorbante entourée de nitrure de silicium, caractérisée d'une part par une transmission lumineuse faible et d'autre part par le fait que lorsque le substrat est soumis à un traitement thermique, la teinte en réflexion côté verre varie peu (AE*Rg < 5). WO2002090281A2 explique, contre-exemples à l'appui, q ue la coloration est plus stable au traitement thermique si la couche absorbante est nitrurée pendant le dépôt. WO2006134335A1 montre la même tendance de stabilisation des couleurs lors d'un traitement thermique, dès que la couche absorbante métallique est
nitrurée dans le cas de systèmes de couches permettant une transmission lumineuse sensiblement plus élevée. Selon WO2002090281A2, un absorbant nitruré présente une meilleure résistance mécanique et chimique. La transmission lumineuse assez basse (< 15 %) ne peut ici être obtenue qu'en augmentant l'épaisseur de la couche absorbante. Si WO2002090281A2 décrit une bonne coloration en réflexion côté verre et une bonne stabilité de cette couleur avant et après traitement thermique, la teinte en réflexion côté couche correspond à des valeurs de b*RC comprises entre 19,93 et 22,32 sans traitement thermique (a*RC : -0,54-0,32), des valeurs de b*RC comprises entre 11,42 et 17,86 après traitement thermique (a *RC : -0,01-1,12) et des différences très importantes
(supérieures à 15). Ceci signifie que la coloration côté couche présente un aspect jaunâtre et n'est pas stable au traitement thermique. The patent application WO2002090281A2 describes a substrate carrying an absorbent functional layer surrounded by silicon nitride, characterized on the one hand by a weak light transmission and, on the other hand, by the fact that when the substrate is subjected to a heat treatment, the hue in reflection on the glass side varies little (AE * R g <5). WO2002090281A2 explains, counterexamples to the support, that the coloring is more stable to the heat treatment if the absorbent layer is nitrided during the deposition. WO2006134335A1 shows the same tendency of color stabilization during a heat treatment, as soon as the metallic absorbent layer is nitrided in the case of layer systems allowing a significantly higher light transmission. According to WO2002090281A2, a nitrided absorbent has improved mechanical and chemical resistance. The rather low light transmission (<15%) can only be obtained by increasing the thickness of the absorbing layer. If WO2002090281A2 describes good coloration in reflection on the glass side and good stability of this color before and after heat treatment, the hue in reflection on the layer side corresponds to values of b * R C ranging between 19.93 and 22.32 without heat treatment (a * R C : -0.54-0.32), b * R C values between 11.42 and 17.86 after heat treatment (a * R C : -0.01-1.12) and very important differences (greater than 15). This means that the layer-side coloration has a yellowish appearance and is not stable to heat treatment.
Toujours dans le domaine des vitrages ayant une transmission lumineuse faible, la demande de brevet US20120177899A1 propose un système avec deux couches fonctionnelles absorbantes moins épaisses pour améliorer l'esthétique. US20120177899A1 divulgue l'utilisation de nitrures métalliques et tous les exemples présentés ont une transmission lumineuse supérieure à 20 %. Aucune information n'est donnée sur la couleur côté film et sans donner de réelles valeurs, US20120177899A1 mentionne que son empilage présente une bonne stabilité des teintes après un traitement thermique. La demande WO2014170613A1 vise à obtenir un vitrage à contrôle solaire avec une transmission lumineuse basse, une réflexion interne très basse, une esthétique plaisante et une bonne résistance aux traitements thermiques. Augmenter l'épaisseur de l'absorbant aurait pour conséquence d'augmenter aussi la réflexion lumineuse. La solution proposée est un revêtement qui comporte deux couches absorbantes métalliques séparées par une couche intermédiaire de nitrure de silicium (SiN) dont l'épaisseur doit être inférieure à 45 nm. Une première couche de nickel de 8 nm et une seconde de 7 nm permettent d'obtenir une transmission lumineuse de 32 % et une coloration en réflexion intérieure caractérisée par un b* de -33 pour autant que le diélectrique intermédiaire reste suffisamment mince.
Dès lors, aucune solution de l'art antérieur ne donne le moyen adéquat pour obtenir un système de couches à contrôle solaire, stable aux traitements thermiques et présentant à la fois une transmission lumineuse basse, un niveau de réflexion intérieure bas (Lmnt < 15 %), une réflexion extérieure agréable (L.ROUt compris entre 10 et 40 %) et des teintes neutres en transmission et en réflexion intérieure. C'est précisément le problème que l'invention se propose de résoudre. Still in the field of glazing with a low light transmission, patent application US20120177899A1 proposes a system with two less thick absorbent functional layers to improve the aesthetics. US20120177899A1 discloses the use of metal nitrides and all the examples presented have a light transmission of greater than 20%. No information is given on the color side film and without giving real values, US20120177899A1 mentions that its stack has good color stability after heat treatment. The application WO2014170613A1 aims to obtain a solar control glazing with a low light transmission, a very low internal reflection, a pleasant aesthetic and good resistance to heat treatments. Increasing the thickness of the absorbent would also increase the light reflection. The proposed solution is a coating which comprises two metallic absorbent layers separated by an intermediate layer of silicon nitride (SiN) whose thickness must be less than 45 nm. A first layer of nickel of 8 nm and a second of 7 nm makes it possible to obtain a light transmission of 32% and an interior reflection coloration characterized by a b * of -33 as long as the intermediate dielectric remains sufficiently thin. Therefore, no solution of the prior art gives the appropriate means to obtain a solar control layer system, stable to heat treatments and having both a low light transmission, a low level of internal reflection (Lm n t < 15%), a pleasant external reflection (LR OR t between 10 and 40%) and neutral shades in transmission and internal reflection. This is precisely the problem that the invention proposes to solve.
3. Objectifs de l'invention 3. Objectives of the invention
L'invention a notamment pour objectif de pallier aux inconvénients de l'art antérieur. Plus particulièrement, l'invention vise à obtenir un vitrage de contrôle solaire dont la transmission lumineuse est comprise entre 5 et 20 %, de préférence entre 8 et 14 %, dont la réflexion intérieure est inférieure ou égale à 15 %, de préférence inférieure à 11 % et dont la réflexion extérieure est au moins égal à 10 %, de préférence comprise entre 15 % et 25 %, ces valeurs étant basées sur le paramètre optique « Y » tel que défini dans le système CI ELAB. Pour satisfaire aux critères d'esthétique, l'invention propose un système de couches dont l'ajustement des épaisseurs permet d'obtenir u n vitrage présentant une réflexion extérieure ayant des paramètres colorimétriques spécifiques pour chaque teinte que l'on veut obtenir. A titre d'exemples préférentiels, le tableau I, renseigne les paramètres colorimétriques choisis pour obtenir un vitrage qui ait une réflexion extérieure bleue, verte, bronze ou grise. Ces couleurs sont les couleurs classiques fréquemment demandées par les architectes. The invention particularly aims to overcome the disadvantages of the prior art. More particularly, the invention aims to obtain a solar control glazing whose light transmission is between 5 and 20%, preferably between 8 and 14%, whose internal reflection is less than or equal to 15%, preferably less than 11% and whose external reflection is at least 10%, preferably between 15% and 25%, these values being based on the optical parameter "Y" as defined in the ELAB CI system. In order to satisfy the aesthetic criteria, the invention proposes a system of layers whose thickness adjustment makes it possible to obtain a glazing having an external reflection having specific colorimetric parameters for each shade that it is desired to obtain. As preferred examples, Table I provides the colorimetric parameters chosen to obtain a glazing which has an external reflection blue, green, bronze or gray. These colors are the classic colors frequently requested by architects.
Tableau I Table I
Dans tous les cas, en plus des paramètres colorimétriques pour chaque couleur en réflexion extérieure, la couleur en transmission est caractérisée par un b*Ti_
inférieur ou égal à 6 de manière à conserver une teinte neutre et notamment d'éviter un aspect jaunâtre. La couleur en réflexion intérieure est définie par un coefficient a*RC compris entre -5 et 6 et par un coefficient D*Rc compris entre -10 et 6. In all cases, in addition to the colorimetric parameters for each color in external reflection, the color in transmission is characterized by a b * Ti_ less than or equal to 6 so as to maintain a neutral shade and in particular to avoid a yellowish appearance. The color in inner reflection is defined by a coefficient a * R C between -5 and 6 and a coefficient D * R c between -10 and 6.
Plus particulièrement, ces spécifications sont données pour des vitrages dont le système multicouche se trouve du côté intérieur du bâtiment. Dans le cas contraire, l'homme du métier adaptera les paramètres colorimétriques. More particularly, these specifications are given for glazings whose multilayer system is located on the interior side of the building. Otherwise, those skilled in the art will adapt the colorimetric parameters.
4. Exposé de l'invention 4. Presentation of the invention
L'invention se rapporte à un vitrage de contrôle solaire comportant sur au moins l'une des faces d'un substrat verrier un système de couches comprenant au moins deux couches absorbantes et des couches diélectriques à base de nitrure encadrant chaque couche absorbante. Le nombre de couches absorbantes peut être déterminé par les spécifications définies et par l'esthétique finale que l'on veut obtenir. The invention relates to a solar control glazing comprising on at least one of the faces of a glass substrate a layer system comprising at least two absorbent layers and nitride-based dielectric layers flanking each absorbent layer. The number of absorbing layers can be determined by the defined specifications and by the final aesthetics that one wants to obtain.
Selon un premier mode de l'invention, l'inventeur a découvert que dans un système à contrôle solaire, pour atteindre les spécifications telles qu'elles ont été décrites ci-dessus (paragraphe 3), deux critères doivent être remplis. D'une part, au minimum deux couches fonctionnelles absorbantes sont nécessaires, chacune des dites couches fonctionnelles étant entourées de revêtements diélectriques à base d'un oxyde ou d'un nitrure et en contact avec lesdits revêtements diélectriques et d'autre part, il faut qu'au moins l'une des dites couches présente un caractère essentiellement métallique. According to a first mode of the invention, the inventor has discovered that in a solar control system, to achieve the specifications as described above (paragraph 3), two criteria must be met. On the one hand, at least two absorbent functional layers are necessary, each of said functional layers being surrounded by dielectric coatings based on an oxide or a nitride and in contact with said dielectric coatings and on the other hand, it is necessary to at least one of said layers has an essentially metallic character.
Selon un second mode de l'invention et de manière très surprenante, l'inventeur a découvert que dans un système à contrôle solaire comportant au moins deux couches fonctionnelles absorbantes, chacune des dites couches fonctionnelles étant entourées de revêtements diélectriques à base d'un oxyde ou d'un nitrure et en contact avec lesdits revêtements diélectriques, dès que au moins l'une des dites couches présente un caractère essentiellement métallique, l'autre absorbant peut avantageusement être un absorbant nitruré, carboné ou boré. Dans ce cas, le procédé mis en oeuvre pour l'obtention du produit ciblé s'en trouve simplifié et plus économique
car lorsqu'une couche doit rester essentiellement métallique, l'équipement est beaucoup plus exigeant en termes de séparation des chambres de dépôt et sera d'autant plus conséquent. According to a second mode of the invention and very surprisingly, the inventor has discovered that in a solar control system comprising at least two absorbent functional layers, each of said functional layers being surrounded by dielectric coatings based on an oxide or a nitride and in contact with said dielectric coatings, as soon as at least one of said layers has an essentially metallic character, the other absorbent may advantageously be a nitrided, carbonaceous or borated absorbent. In this case, the process used to obtain the targeted product is thereby simplified and more economical. because when a layer must remain essentially metallic, the equipment is much more demanding in terms of separation of the deposit chambers and will be all the more consequent.
Dans les deux modes de réalisation, la présence d'un absorbant essentiellement métallique permet donc d'obtenir les propriétés colorimétriques spécifiées en transmission et en réflexion aussi bien côté verre que côté couche, ainsi que des pourcentages en transmission et réflexion (paramètre Y défini dans le système CI ELAB), dans les limites fixées. Avantageusement, le métal est choisi parmi le Ni, le Cr, le W, le Ti, le Nb, le Zr, le Ta, le Hf, le V et un alliage de ces métaux. L'inventeur a aussi pu mettre en évidence que lorsqu'au moins une des couches fonctionnelles absorbantes est à base d'un borure, carbure ou nitrure d'un métal choisi parmi le Ni, le Cr, le W, le Ti, le Nb, le Zr, le Ta, le Hf, le V et un alliage de ces métaux, l'ensemble du système conserve des caractéristiques optiques satisfaisantes décrites ci-dessus. De préférence, pour chaque couche fonctionnelle absorbante, le métal est choisi parmi le Ni, le Cr, le Ti, le W et le Zr et un alliage de ces métaux. En particulier, dans le cas du NiCrW, l'alliage comprend au moins 30 % en poids de tungstène, de préférence au 35 % et avantageusement au moins 40 %. La proportion de Ni est d'au moins 9 % en poids, de préférence d'au moins 25 % et par exemple 30, 35 ou 40 % en poids. In both embodiments, the presence of an essentially metallic absorbent therefore makes it possible to obtain the colorimetric properties specified in transmission and reflection both on the glass side and the layer side, as well as percentages in transmission and reflection (parameter Y defined in FIG. the CI ELAB system), within the limits set. Advantageously, the metal is chosen from Ni, Cr, W, Ti, Nb, Zr, Ta, Hf, V and an alloy of these metals. The inventor has also been able to demonstrate that when at least one of the absorbent functional layers is based on a boride, carbide or nitride of a metal chosen from Ni, Cr, W, Ti, Nb , Zr, Ta, Hf, V and an alloy of these metals, the entire system retains satisfactory optical characteristics described above. Preferably, for each absorbent functional layer, the metal is selected from Ni, Cr, Ti, W and Zr and an alloy of these metals. In particular, in the case of NiCrW, the alloy comprises at least 30% by weight of tungsten, preferably at 35% and advantageously at least 40%. The proportion of Ni is at least 9% by weight, preferably at least 25% and for example 30, 35 or 40% by weight.
Il est à noter que, selon les deux modes de réalisation, le métal (ou l'alliage) du ou des absorbant(s) nitruré(s), carboné(s) ou boré(s) ainsi que le métal (ou l'alliage) du ou des absorbant(s) de nature essentiellement métallique, peuvent être identiques ou différents. Pour satisfaire à l'invention, l'épaisseur d'une couche absorbante est comprise entre 0,2 nm et 50 nm, de préférence cette épaisseur est comprise entre 0,5 nm et 35 nm. Plus particulièrement, l'épaisseur de l'absorbant de nature essentiellement métallique est comprise entre 0,2 nm et 25 nm et l'épaisseur de
l'absorbant sous forme d'un nitrure, carbure ou borure est comprise entre 0,5 nm et 50 nm. It should be noted that, according to the two embodiments, the metal (or alloy) of the absorbent (s) nitrided (s), carbon (s) or boré (s) and the metal (or the alloy) of the absorbent (s) of essentially metallic nature, may be identical or different. To satisfy the invention, the thickness of an absorbent layer is between 0.2 nm and 50 nm, preferably this thickness is between 0.5 nm and 35 nm. More particularly, the thickness of the absorbent of essentially metallic nature is between 0.2 nm and 25 nm and the thickness of the absorbent in the form of a nitride, carbide or boride is between 0.5 nm and 50 nm.
Avantageusement un ou plusieurs des revêtements diélectriques utilisés dans l'invention est (sont) à base de nitrures métalliques dont le métal est choisi parmi le groupe comprenant le silicium, l'aluminium, le zirconium et le titane ou une combinaison de ces éléments. Les couches diélectriques positionnées de part et d'autre des couches absorbantes ont notamment pour rôle de protéger ces dernières lors d'un traitement thermique en leur conservant leur propriété d'absorbant. Pour remplir ce rôle, chacune de ces couches diélectriques a au minimum 8 nm d'épaisseur géométrique. Plus particulièrement l'épaisseur des couches de diélectrique est comprise entre 8 nm et 200 nm. L'homme du métier sait comment ajuster les épaisseurs en fonction des propriétés recherchées et déjà mentionnées plus haut. La relation entre les épaisseurs des diélectriques, de même que le rapport entre les épaisseurs des couches absorbantes découlent des spécifications que l'on s'est fixées (transmission, réflexions, teintes...). Advantageously one or more of the dielectric coatings used in the invention is (are) based on metal nitrides whose metal is chosen from the group comprising silicon, aluminum, zirconium and titanium or a combination of these elements. The dielectric layers positioned on either side of the absorbent layers have the role of protecting them during a heat treatment by retaining their property of absorbent. To fulfill this role, each of these dielectric layers has a minimum of 8 nm in geometric thickness. More particularly, the thickness of the dielectric layers is between 8 nm and 200 nm. The person skilled in the art knows how to adjust the thicknesses according to the properties sought and already mentioned above. The relationship between the thicknesses of the dielectrics, as well as the ratio between the thicknesses of the absorbing layers, derive from the specifications that have been set (transmission, reflections, hues, etc.).
De manière surprenante, l'inventeur a aussi découvert que le système multicouche de l'invention permet aussi que la teinte reste agréable quel que soit l'angle sous lequel le vitrage est observé. En effet, la teinte de la réflexion côté couche reste agréable car elle est définie par un coefficient a*RC compris entre -5 et 8 et un coefficient b*RC compris entre -10 et 8 pour un angle de vision compris entre 8,5° et 75°. Surprisingly, the inventor has also discovered that the multilayer system of the invention also allows the shade to remain pleasant regardless of the angle at which the glazing is observed. Indeed, the hue of the reflection layer side remains pleasant because it is defined by a coefficient a * R C between -5 and 8 and a coefficient b * R C between -10 and 8 for an angle of vision between 8 , 5 ° and 75 °.
Enfin, l'empilage tel qu'il est défini pour chacun des deux modes de réalisation peut être traité thermiquement sans altération significative de ses propriétés optiques. Finally, the stack as defined for each of the two embodiments can be heat treated without significant alteration of its optical properties.
Plus particulièrement, le vitrage selon l'invention comprend l'une des successions suivantes de couches : More particularly, the glazing according to the invention comprises one of the following successions of layers:
Revêtement diélectrique transparent ( Diel 1) / absorbant (Abs 1) / Revêtement diélectrique transparent ( Diel 2) / absorbant (Abs 2) / Revêtement diélectrique transparent (Diel 3)
Revêtement diélectrique transparent (Diel 1) / absorbant (Abs 1) / Revêtement diélectrique transparent ( Diel 2) / absorbant (Abs 2) / Revêtement diélectrique transparent ( Diel 3) / absorbant (Abs 3) / Revêtement diélectrique transparent (Diel 3) dans lesquelles, au moins un absorbant est de nature essentiellement métallique selon un premier mode de réalisation de l'invention et dans lesquels au moins un absorbant est de nature essentiellement métallique et au moins un absorbant comprend un borure, carbure ou nitrure métallique, selon un second mode de réalisation de l'invention. Dielectric (Diel 1) / Absorbent (Abs 1) / Dielectric (Diel 2) / Absorbent (Abs 2) / Clear dielectric (Diel 3) dielectric coating Transparent dielectric coating (Diel 1) / absorbent (Abs 1) / Transparent dielectric coating (Diel 2) / absorbent (Abs 2) / Transparent dielectric coating (Diel 3) / absorbent (Abs 3) / Transparent dielectric coating (Diel 3) in which at least one absorbent is essentially metallic in nature according to a first embodiment of the invention and in which at least one absorbent is essentially metallic in nature and at least one absorbent comprises a metal boride, carbide or nitride, according to a second embodiment of the invention.
Selon l'invention un tel vitrage de contrôle solaire, même lorsqu'il présente une transmission lumineuse assez basse, peut être ajusté de sorte qu'il possède des caractéristiques optiques ayant une teinte en réflexion qui soit agréable du côté verre et une teinte neutre tant en transmission qu'en réflexion du côté couche. Les paramètres colorimétriques de la couleur en réflexion mesurée du côté extérieur (côté verre) sont ajustés en fonction de la teinte souhaitée comme par exemple vert, bleu, gris ou bronze, de manière à satisfaire aux valeurs renseignées dans le tableau I . De plus, la teinte obtenue reste agréable en fonction de l'angle de vue, et est également stable au traitement thermique. According to the invention, such a solar control glazing unit, even when it has a relatively low light transmission, can be adjusted so that it has optical characteristics having a reflection hue which is pleasant on the glass side and a neutral hue both in transmission in reflection from the layer side. The colorimetric parameters of the reflection color measured on the outer side (glass side) are adjusted according to the desired shade such as green, blue, gray or bronze, so as to satisfy the values given in Table I. In addition, the shade obtained remains pleasant depending on the angle of view, and is also stable to the heat treatment.
La teinte de la réflexion côté couche reste agréable car elle est définie par un coefficient a* RC compris entre -5 et 8 et un coefficient b*RC compris entre -10 et 8 pour un angle de vision compris entre 8,5° et 75°. The hue of the reflection on the layer side remains pleasant because it is defined by a coefficient a * R C between -5 and 8 and a coefficient b * R C ranging between -10 and 8 for an angle of vision of between 8.5 ° and 75 °.
Les matériaux constituant les couches sont choisis de manières à ce que l'empilage puisse subir un traitement thermique sans que les propriétés optiques ne soient dégradées de manière significative, de telle sorte que traités ou non, les vitrages présentent une apparence pratiquement inchangées. Un traitement thermique consiste en un chauffage à plus de 600°C pendant plusieurs minutes. Traditionnellement la mesure des variations colorimétriques s'effectue à partir des coordonnées du système CI ELAB. La variation colorimétrique est exprimée par l'expression notée ΔΕ*, expression correspondant à la formule :
où
représente la différence entre les coordonnées colorimétriques L* du vitrage avant et après traitement thermique,
représente la différence entre les coordonnées colorimétriques a* du vitrage avant et après traitement thermique,
représente la différence entre les coordonnées colorimétriques b* du vitrage avant et après traitement thermique, The materials constituting the layers are chosen so that the stack can undergo a heat treatment without the optical properties are significantly degraded, so that treated or not, the glazing has an appearance substantially unchanged. A heat treatment consists of heating at more than 600 ° C for several minutes. Traditionally, colorimetric variations are measured using the coordinates of the ELAB CI system. The colorimetric variation is expressed by the expression denoted ΔΕ *, expression corresponding to the formula: or represents the difference between the colorimetric coordinates L * of the glazing before and after heat treatment, represents the difference between the colorimetric coordinates a * of the glazing before and after heat treatment, represents the difference between the colorimetric coordinates b * of the glazing before and after heat treatment,
Plus particulièrement, et de préférence, le vitrage selon l'invention présente une variation colorimétrique en réflexion côté face substrat verrier,
More particularly, and preferably, the glazing according to the invention has a colorimetric variation in reflection on the face side glass substrate,
inférieure à 8, préférentiellement inférieure à 5, avantageusement inférieure à 3, et même préférentiellement inférieure à 2, lorsque ledit vitrage est soumis à une température d'au moins 630°C pendant une durée comprise entre 2 et 10 minutes. less than 8, preferably less than 5, advantageously less than 3, and even preferably less than 2, when said glazing is subjected to a temperature of at least 630 ° C for a period of between 2 and 10 minutes.
De manière additionnelle, le vitrage selon l'invention présente aussi, de préférence, une variation colorimétrique en transmission,
inférieure à 8, préférentiellement inférieure à 5, plus préférentiellement inférieure à 3, lorsque ledit vitrage est soumis à une température d'au moins 630°C pendant une durée comprise entre 2 et 10 minutes. In addition, the glazing according to the invention also preferably has a colorimetric variation in transmission, less than 8, preferably less than 5, more preferably less than 3, when said glazing is subjected to a temperature of at least 630 ° C for a period of between 2 and 10 minutes.
Le vitrage selon l'invention présente de manière additionnelle ou non aux deux propriétés précédentes, une variation colorimétrique en réflexion côté face empilage,
telle que :
est inférieure 8, préférentiellement inférieure à 5, lorsque ledit vitrage est soumis à une température d'au moins 630°C pendant une durée comprise entre 2 et 10 minutes. The glazing according to the invention additionally has or not to the two preceding properties, a colorimetric variation in reflection side face stacking, such as: is lower 8, preferably less than 5, when said glazing is subjected to a temperature of at least 630 ° C for a period of between 2 and 10 minutes.
Le vitrage selon l'invention peut en plus des couches décrites ci-dessus comporter n'importe quelle couche additionnelle nécessaire à une propriété spécifique supplémentaire à l'exception d'une couche fonctionnelle à base d'argent. Par exemple, l'invention prévoit que l'on peut ajouter une couche supérieure à des fins de protection du système de couches. Une telle couche de protection peut être sélectionnée par exemple parmi les oxydes à base de Ti et/ou de Zr. The glazing according to the invention can in addition to the layers described above comprise any additional layer necessary for an additional specific property with the exception of a functional layer based on silver. For example, the invention provides that an upper layer can be added for protection purposes of the layer system. Such a protective layer may be selected for example from oxides based on Ti and / or Zr.
Ainsi, l'invention repose sur une approche tout à fait nouvelle et inventive en ce sens que l'on parvient à produire un vitrage de contrôle solaire à très basse transmission lumineuse ayant simultanément des niveaux de réflexion satisfaisants, une teinte en réflexion agréable côté verre et une teinte neutre en transmission et en réflexion côté couche, quel que soit l'angle de vision, ainsi qu'une bonne résistance aux traitements thermiques. Thus, the invention is based on a completely new and inventive approach in the sense that it is possible to produce a solar control glazing with very low light transmission simultaneously having satisfactory levels of reflection, a pleasant reflection tint on the glass side and a neutral shade in transmission and reflection on the layer side, regardless of the viewing angle, as well as good resistance to heat treatments.
L'invention est illustrée par des exemples dans les paragraphes suivants, étant bien entendu que ces exemples ne doivent en aucune façon être compris comme une limitation de l'invention. The invention is illustrated by examples in the following paragraphs, it being understood that these examples should in no way be understood as a limitation of the invention.
5. Description de modes de réalisation préférés de l'invention 5. Description of preferred embodiments of the invention
Le choix du substrat ne limite en rien la portée de l'invention. De la même façon les exemples de métaux ne sont pas non plus limitatifs du principe de l'invention qui est basé sur l'idée qu'il est possible d'ajuster la nature et les épaisseurs des couches constituants un empilage de contrôle solaire à condition que l'empilage comporte au moins deux absorbants et que au moins un de ces deux absorbants soit un métal. Avantageusement et dans un second mode, au moins un des absorbants est essentiellement métallique et au moins est un absorbant comprend un nitrure, un carbure ou un borure d'un métal.
Les couches fonctionnelles absorbant la lumière sont déposées par pulvérisation cathodique sous pression réduite, de préférence assistée par champ magnétique (magnétron), dans des conditions usuelles pour ce genre de technique et bien connues de l'homme du métier. Les couches de diélectriques et plus particulièrement, les couches de nitrure de silicium peuvent aussi être produites par pulvérisation cathodique (magnétron) dans des conditions bien connues de l'homme du métier, à partir d'une cible de silicium dopée à l'aluminium, dans une atmosphère constituée d'un mélange d'argon (30-70 %) et d'azote (30-70 %) sous une pression totale inférieure à 2 Pascal. En variante, les couches diélectriques peuvent être appliquées par la technique bien connue appelée PECVD (Plasma Enhanced Chemical Vapor Déposition). Dans une technique de dépôt PVD, une succession de compartiments ayant chacun sa ou ses cibles et son atmosphère propre, permet de construire un revêtement multicouches. Lorsque les atmosphères sont différentes entre deux compartiments successifs, il est alors nécessaire de munir l'installation des moyens adéquats pour assurer un maximum de séparation physique entre ces atmosphères, ce qui complexifie l'installation. On comprendra dès lors tout l'intérêt de pouvoir, par exemple, déposer u n absorbant nitruré derrière un diélectrique qui est lui-même un nitrure. The choice of substrate does not limit the scope of the invention. In the same way, the examples of metals are not any more limiting of the principle of the invention which is based on the idea that it is possible to adjust the nature and the thicknesses of the layers constituting a solar control stack provided that that the stack comprises at least two absorbents and that at least one of these two absorbents is a metal. Advantageously and in a second mode, at least one of the absorbents is essentially metallic and at least one absorbent comprises a nitride, a carbide or a boride of a metal. The light absorbing functional layers are deposited by sputtering under reduced pressure, preferably assisted by a magnetic field (magnetron), under conditions customary for this type of technique and well known to those skilled in the art. The dielectric layers and more particularly the silicon nitride layers may also be produced by sputtering (magnetron) under conditions well known to those skilled in the art, from an aluminum doped silicon target, in an atmosphere consisting of a mixture of argon (30-70%) and nitrogen (30-70%) under a total pressure of less than 2 Pascal. Alternatively, the dielectric layers can be applied by the well-known technique called PECVD (Plasma Enhanced Chemical Vapor Deposition). In a PVD deposition technique, a succession of compartments each having its target or targets and its own atmosphere makes it possible to construct a multilayer coating. When the atmospheres are different between two successive compartments, it is then necessary to provide the installation with adequate means to ensure maximum physical separation between these atmospheres, which complicates the installation. It will be understood from then on all the advantage of being able, for example, to deposit a nitrided absorbent behind a dielectric which is itself a nitride.
Selon un mode préféré de réalisation, les couches diélectriques enfermant la couche absorbante sont à base de nitrure de silicium, et avantageusement essentiellement en nitrure de silicium. La couche peut contenir u n autre matériau jusqu'à 40 % (poids), tel de l'aluminium, du titane ou du zirconium. De manière classique, le nitrure de silicium peut être obtenu à partir d'une cible de silicium, éventuellement dopée à l'aluminium ou au bore, par pulvérisation cathodique, à l'aide d'un magnétron, dans une atmosphère réactive d'azote et d'argon. La cible de silicium est dopée pour lui conférer la conduction électrique nécessaire à la pulvérisation cathodique, par exemple dopée à au plus 10 % en poids d'aluminium ou de bore, par exemple entre 2 % et 4 %. Les couches de nitrure de silicium dans l'empilage fini peuvent être légèrement oxydées sur une partie de leur épaisseur. L'appellation S13N4 ne signifie pas que le matériau est parfaitement stoechiométrique, il peut être légèrement sous- nitruré ou légèrement oxydé. Il en est de même avec les autres diélectriques. Les couches diélectriques ont une épaisseur géométrique minimum de 8 nm.
Que ce soit une couche absorbante ou une couche diélectrique, l'une ou l'autre ou les deux peuvent éventuellement être formées de plusieurs couches de matériaux différents, par exemple pour améliorer la résistance chimique ou thermique. D'autres couches, comme par exemple une couche de protection peuvent faire partie de l'empilage. According to a preferred embodiment, the dielectric layers enclosing the absorbent layer are based on silicon nitride, and advantageously substantially silicon nitride. The layer may contain another material up to 40% (weight), such as aluminum, titanium or zirconium. Conventionally, the silicon nitride can be obtained from a silicon target, optionally doped with aluminum or boron, by cathodic sputtering, using a magnetron, in a reactive atmosphere of nitrogen. and argon. The silicon target is doped to give it the electrical conduction necessary for sputtering, for example doped with at most 10% by weight of aluminum or boron, for example between 2% and 4%. The silicon nitride layers in the finished stack may be slightly oxidized over part of their thickness. The name S13N4 does not mean that the material is perfectly stoichiometric, it can be slightly under-nitrided or slightly oxidized. It is the same with other dielectrics. The dielectric layers have a minimum geometrical thickness of 8 nm. Whether it is an absorbent layer or a dielectric layer, one or the other or both may possibly be formed of several layers of different materials, for example to improve the chemical or thermal resistance. Other layers, such as a protective layer may be part of the stack.
Des exemples de vitrages selon l'invention ainsi que des exemples comparatifs (notés R) sont donnés dans les tableaux I I à IX ci-après. Les propriétés optiques sont définies en verre simple, pour des vitrages dont le substrat est en verre « float » ordinaire clair et a une épaisseur de 6 mm. Les couches sont renseignées dans l'ordre, de haut en bas, en partant du verre. Les épaisseurs géométriques sont exprimées en nm. Examples of glazing according to the invention as well as comparative examples (denoted R) are given in Tables I I to IX below. The optical properties are defined in simple glass, for glazing whose substrate is clear ordinary float glass and has a thickness of 6 mm. The layers are indicated in order, from top to bottom, starting from the glass. The geometrical thicknesses are expressed in nm.
Pour les différents exemples, les tableaux renseignent la transmission lumineuse, la réflexion lumineuse extérieure et intérieure ainsi que les différents paramètres colorimétriques utiles. Dans les exemples de l'invention, lorsque l'on mentionne une propriété côté intérieur, il faut comprendre que cette propriété est mesurée du côté couche. Sauf avis contraire, la transmission lumineuse Tv et la réflexion lumineuse LR sont mesurées avec l'Illuminant D65, 2° ( EN 410). Les coordonnées colorimétriques L*, a *, b*, CI E, sont également mesurées avec l'Illuminant D65, 10°. L'angle sous lequel les mesures sont faites est de 8° pour la réflexion et 0° pour la transmission. For the various examples, the tables give the light transmission, the external and internal light reflection as well as the various useful colorimetric parameters. In the examples of the invention, when mentioning a property on the inside, it should be understood that this property is measured on the layer side. Unless otherwise stated, the light transmission T v and the light reflection LR are measured with Illuminant D65, 2 ° (EN 410). The colorimetric coordinates L *, a *, b *, CI E, are also measured with Illuminant D65, 10 °. The angle at which the measurements are made is 8 ° for reflection and 0 ° for transmission.
Dans les exemples, les notations SiN désignent les nitrures de silicium sans représenter une formule chimique, étant entendu que les produits obtenus ne sont pas nécessairement rigoureusement stœchiométriques, mais sont ceux obtenus dans les conditions de dépôt indiquées et qui sont voisins des produits stœchiométriques. Les couches en SiN peuvent contenir jusqu'à environ maximum 10 % poids d'aluminium provenant de la cible, elles peuvent aussi être légèrement oxydées. In the examples, the SiN notations denote the silicon nitrides without representing a chemical formula, it being understood that the products obtained are not necessarily rigorously stoichiometric, but are those obtained under the deposition conditions indicated and which are close to the stoichiometric products. The SiN layers can contain up to about 10% by weight of aluminum from the target, they can also be slightly oxidized.
Le tableau I I illustre l'invention dans le cas où l'empilage comporte deux absorbants. Les épaisseurs sont données en nm pour chaque couche. Les exemples comparatifs RI à R3 confirment qu'en n'utilisant qu'un seul absorbant, il n'est pas
possible de satisfaire l'ensemble des spécifications définies plus haut, que ce soit pour une teinte bleue en réflexion (RI et R2) ou pour une teinte verte (R3). La même conclusion s'impose lorsqu'aucun absorbant métallique n'est présent (Rll à R13) pour les teintes bronze ou grise. Par contre les exemples 4 à 10 illustrent bien l'invention puisque dès que l'on a deux absorbants dont au moins un est métallique, les spécifications visées dans le paragraphe 3 sont bien vérifiées, notamment pour le vert (ex 4-7), le bleu (ex 8) ou le gris (ex 9-10) dans les exemples cités. Table II illustrates the invention in the case where the stack comprises two absorbers. The thicknesses are given in nm for each layer. Comparative Examples R1 to R3 confirm that by using only one absorbent, it is not it is possible to satisfy all the specifications defined above, whether for a blue tint in reflection (RI and R2) or for a green tint (R3). The same conclusion applies when no metallic absorbent is present (R11 to R13) for bronze or gray tints. On the other hand, examples 4 to 10 clearly illustrate the invention, since as soon as we have two absorbers, at least one of which is metallic, the specifications referred to in paragraph 3 are well verified, in particular for green (ex 4-7), blue (ex 8) or gray (ex 9-10) in the examples cited.
Tableau II : 2 absorbants (ABS) Table II: 2 Absorbers (ABS)
Le tableau III illustre l'invention par une série d'exemples dans le cas où le système multicouches comporte trois couches d'absorbant intégrées dans la succession suivante : verre / Diel 1 / Abs 1 / Diel 2 / Abs 2 / Diel 3 / Abs 3 / Diel 4. Les épaisseurs sont données en nm pour chaque couche. On peut voir que trois absorbants permettent d'obtenir un vitrage présentant une transmission lumineuse inférieure à 15 % et répondant aux spécifications définies au paragraphe 3, dès lors qu'un absorbant au moins est de nature essentiellement métallique, que ce soit pour obtenir une teinte bleue (ex 18) ou verte (ex 19 à 22). Par contre, l'absence d'absorbant métallique conduit à la formation de produits pour lesquels les spécifications ne sont pas satisfaites, et ce, quel que soit la nature du métal utilisé dans le nitrure (ex R14 à R17).
Tableau II I : 3 absorbants (ABS) Table III illustrates the invention by a series of examples in the case where the multilayer system comprises three layers of absorbent integrated in the following succession: glass / Diel 1 / Abs 1 / Diel 2 / Abs 2 / Diel 3 / Abs 3 / Diel 4. The thicknesses are given in nm for each layer. It can be seen that three absorbers make it possible to obtain a glazing having a light transmission of less than 15% and meeting the specifications defined in paragraph 3, since at least one absorbent is essentially metallic in nature, whether to obtain a hue blue (ex 18) or green (ex 19 to 22). On the other hand, the absence of metallic absorbent leads to the formation of products for which the specifications are not satisfied, and this, whatever the nature of the metal used in the nitride (ex R14 to R17). Table II I: 3 Absorbents (ABS)
Les exemples repris dans le tableau IV montrent quant à eux que, conformément à l'invention, un empilage comprenant au moins deux absorbants dont l'un est de nature essentiellement métallique, il est possible d'ajuster les épaisseurs (données en nm) de manière à obtenir u n vitrage dont les caractéristiques correspondent aux spécifications que l'on s'est fixé (paragraphe 3) et ce, quelle que soit la nature du métal. Ainsi, il est possible d'obtenir un vitrage avec une teinte bleue en réflexion côté couche, en conservant les paramètres colorimétriques que l'on s'est fixé pour le reste, que les absorbants soient du NiCrW ou du CrZr (ex 18 et 24). De la même manière, on peut ajuster les épaisseurs pour obtenir une teinte verte en réflexion côté couche, en modifiant, non seulement la nature de l'absorbant métallique mais également en le combinant avec du nitrure de chrome ou du nitrure de titane (ex 19-23 et 25). The examples given in Table IV show that, according to the invention, a stack comprising at least two absorbers, one of which is essentially metallic in nature, it is possible to adjust the thicknesses (in nm) of to obtain a glazing whose characteristics correspond to the specifications that we have set (paragraph 3) and this, whatever the nature of the metal. Thus, it is possible to obtain a glazing with a blue tint in reflection on the layer side, while preserving the colorimetric parameters that one has set for the rest, that the absorbents are NiCrW or CrZr (ex 18 and 24 ). In the same way, the thicknesses can be adjusted to obtain a green hue in reflection on the layer side, by modifying not only the nature of the metallic absorbent but also by combining it with chromium nitride or titanium nitride (ex 19 -23 and 25).
Un autre avantage de l'invention est que le vitrage garde ses qualités esthétiques en réflexion côté couche quel que soit l'angle de vision avant et après traitement thermique. Cette caractéristique de l'invention est illustrée par les exemples repris dans les tableaux V (avant trempe) et VI (après trempe) pour les différentes teintes qui ont été proposées. Pour chaque teinte, l'empilage est donné en tête de la colonne avec les épaisseurs exprimées en nm entre parenthèses. On peut en effet constater pour ces exemples que pour différents angles de mesure,
est toujours compris entre -5 et 8 et
est compris entre -10 et 8. Another advantage of the invention is that the glazing retains its aesthetic qualities in reflection layer side irrespective of the viewing angle before and after heat treatment. This feature of the invention is illustrated by the examples in Tables V (before quenching) and VI (after quenching) for the different shades that have been proposed. For each shade, the stack is given at the top of the column with the thicknesses expressed in nm in parentheses. We can indeed see for these examples that for different angles of measurement, is always between -5 and 8 and is between -10 and 8.
Tableau V : Réflexion côté couche en fonction de l'angle de vision avant trempe Table V: Reflection on the layer side according to the angle of vision before quenching
Tableau VI : Réflexion côté couche en fonction de l'angle de vision après trempe Table VI: Reflection on the layer side according to the angle of vision after quenching
De même que la teinte en réflexion côté couche varie peu en fonction de l'angle de vision, comme les exemples des tableaux V et VI le montrent, la teinte en réflexion côté verre est aussi assez stable (tableaux VI I et VI I I ) pour les différentes teintes (bleu, vert, gris et bronze), avant et après traitement thermique. Ici aussi, pour chaque teinte, l'empilage est donné en tête de la colonne avec les épaisseurs exprimées en nm entre parenthèses. Just as the hue in reflection on the layer side varies little according to the angle of vision, as the examples in Tables V and VI show, the hue in reflection on the glass side is also quite stable (Tables VI I and VI II) for the different shades (blue, green, gray and bronze), before and after heat treatment. Here too, for each shade, the stack is given at the top of the column with the thicknesses expressed in nm in parentheses.
Tableau VI I : Réflexion côté verre en fonction de l'angle de vision avant trempe.
Table VI I: Reflection on the glass side according to the angle of vision before quenching.
Tableau VIII : Réflexion côté verre en fonction de l'angle de vision après trempe. Table VIII: Reflection on the glass side as a function of the viewing angle after quenching.
Enfin, la stabilité des paramètres colorimétriques lorsque le verre portant l'empilage de l'invention est traité thermiquement à des températures supérieures à 600°C pendant plusieurs minutes, a été vérifiée. Le tableau IX montre que pour tous les exemples testés qui, conformément à l'invention, ont au moins deux absorbants dont un au moins est de nature essentiellement métallique, les ΔΕ*, que ce soit en transmission ou en réflexion (côté couche et côté verre) sont toujours très faibles et dans tous les cas inférieurs à 3,5.
Tableau IX Finally, the stability of the colorimetric parameters when the glass carrying the stack of the invention is heat treated at temperatures above 600 ° C for several minutes, has been verified. Table IX shows that for all the tested examples which, in accordance with the invention, have at least two absorbents, at least one of which is essentially metallic in nature, the ΔΕ *, whether in transmission or in reflection (side layer and side glass) are always very weak and in all cases less than 3.5. Table IX
Le vitrage correspondant à l'invention peut être utilisé tel quel comme vitrage monolithique, il peut être incorporé dans un vitrage multiple, ou encore dans un vitrage laminé. Il peut être utilisé dans des applications liées au bâtiment, à l'automobile ou encore dans des applications domestiques.
The glazing unit corresponding to the invention can be used as such as monolithic glazing, it can be incorporated in a multiple glazing, or in a laminated glazing unit. It can be used in building, automotive or home applications.
Claims
1. Vitrage de contrôle solaire comportant au moins un substrat en verre portant sur au moins l'une de ses faces un empilage multicouche transparent, ledit empilage multicouche transparent comportant au moins deux couches fonctionnelles absorbantes, chaque couche fonctionnelle absorbante étant entourée de revêtements diélectriques transparents, caractérisé en ce qu'au moins une des couches fonctionnelles absorbantes est de nature essentiellement métallique et en ce que la transmission lumineuse est comprise entre 5 et 20 %, de préférence entre 8 et 14 %, la réflexion intérieure est inférieure à 15 %, de préférence inférieure à 11 % et la réflexion extérieure est supérieure à 10 %, de préférence comprise entre 15 % et 25 % et en ce que la couleur en réflexion intérieure est définie par un paramètre a* RC compris entre - 5 et 6 et par un paramètre b*RC compris entre -10 et 6 et la couleur en transmission est caractérisée par un paramètre b*n inférieur ou égal à 6. 1. Solar control glazing comprising at least one glass substrate bearing on at least one of its faces a transparent multilayer stack, said transparent multilayer stack comprising at least two absorbent functional layers, each absorbent functional layer being surrounded by transparent dielectric coatings. characterized in that at least one of the absorbent functional layers is essentially metallic in nature and in that the light transmission is between 5 and 20%, preferably between 8 and 14%, the internal reflection is less than 15%, preferably less than 11% and the external reflection is greater than 10%, preferably between 15% and 25%, and the color in inner reflection is defined by a parameter a * R C between -5 and 6 and by a parameter b * R C between -10 and 6 and the color in transmission is characterized by a parameter b * n lower or equal to 6.
2. Vitrage selon la revendication 1, caractérisé en ce qu'au moins une des au moins deux couches fonctionnelle absorbantes est de nature essentiellement métallique et au moins une des au moins deux couches fonctionnelles absorbantes comprend le nitrure, le carbure ou le borure d'un métal. 2. Glazing according to claim 1, characterized in that at least one of the at least two absorbent functional layers is essentially metallic in nature and at least one of the at least two absorbent functional layers comprises nitride, carbide or boride. a metal.
3. Vitrage selon la revendication 2, caractérisé en ce qu'au moins une des au moins deux couches fonctionnelles absorbantes est de nature essentiellement métallique et au moins une des au moins deux couches fonctionnelles absorbantes comprend le nitrure d'un métal. 3. Glazing according to claim 2, characterized in that at least one of the at least two absorbent functional layers is essentially metallic in nature and at least one of the at least two absorbent functional layers comprises the nitride of a metal.
4. Vitrage selon une des revendications précédentes, caractérisé en ce que l'empilage multicouche transparent comporte trois couches fonctionnelles absorbantes. 4. Glazing according to one of the preceding claims, characterized in that the transparent multilayer stack comprises three absorbent functional layers.
5. Vitrage selon la revendication 4, caractérisé en ce que les trois couches fonctionnelles absorbantes sont de nature essentiellement métallique.
5. Glazing according to claim 4, characterized in that the three absorbent functional layers are essentially metallic in nature.
6. Vitrage selon une des revendications précédentes caractérisé en ce que l'empilage multicouche transparent comprend la succession suivante de couches depuis le substrat : revêtement diélectrique transparent / couche fonctionnelle absorbante / revêtement diélectrique transparent / couche fonctionnelle absorbante / revêtement diélectrique transparent. 6. Glazing according to one of the preceding claims characterized in that the transparent multilayer stack comprises the following succession of layers from the substrate: transparent dielectric coating / absorbent functional layer / transparent dielectric coating / absorbent functional layer / transparent dielectric coating.
7. Vitrage selon une des revendications précédentes caractérisé en ce que l'empilage multicouche transparent comprend la succession suivante de couches depuis le substrat : revêtement diélectrique transparent / couche fonctionnelle absorbante / revêtement diélectrique transparent / couche fonctionnelle absorbante / revêtement diélectrique transparent / couche fonctionnelle absorbante / revêtement diélectrique transparent. 7. Glazing according to one of the preceding claims characterized in that the transparent multilayer stack comprises the following succession of layers from the substrate: transparent dielectric coating / absorbent functional layer / transparent dielectric coating / absorbent functional layer / transparent dielectric coating / absorbent functional layer / transparent dielectric coating.
8. Vitrage selon une des revendications précédentes, caractérisé en ce que un ou plusieurs des revêtements diélectriques transparents comprend le nitrure d'au moins un métal choisi parmi le silicium, l'aluminium, le zirconium, le titane ou de leur mélange. 8. Glazing according to one of the preceding claims, characterized in that one or more of the transparent dielectric coatings comprises the nitride of at least one metal selected from silicon, aluminum, zirconium, titanium or their mixture.
9. Vitrage selon n'importe laquelle des revendications précédentes, caractérisé en ce que la ou les couche(s) fonctionnelle(s) absorbante(s) comprennent au moins un des métaux choisi parmi le i, le Cr, le W, le Ti, le Nb, le Zr, le Ta, le Hf. 9. Glazing according to any one of the preceding claims, characterized in that the absorbent functional layer (s) (s) comprise at least one of the metals selected from i, Cr, W, Ti , Nb, Zr, Ta, Hf.
10. Vitrage selon n'importe laquelle des revendications précédentes, caractérisé en ce que la ou les couche(s) fonctionnelle(s) absorbante(s) de nature essentiellement métallique ont une épaisseur géométrique comprise entre 0,2 e 25 nm, de préférence entre 1 et 12 nm. 10. Glazing according to any one of the preceding claims, characterized in that the functional layer (s) (s) absorbent (s) of essentially metallic nature have a geometric thickness of between 0.2 e 25 nm, preferably between 1 and 12 nm.
11. Vitrage selon la revendication 3, caractérisé en ce que chacune couches fonctionnelles absorbantes comprenant le nitrure d'un métal choisi parmi le Ni, le Cr, le W, le Ti, le Nb, le Zr, le Ta, le Hf, a une épaisseur géométrique comprise entre 0,5 et 50 nm, de préférence 5 à 30 nm.
11. Glazing according to claim 3, characterized in that each absorbent functional layer comprising the nitride of a metal selected from Ni, Cr, W, Ti, Nb, Zr, Ta, Hf, a. a geometric thickness of between 0.5 and 50 nm, preferably 5 to 30 nm.
12. Substrat selon n'importe laquelle des revendications précédentes, caractérisé en ce que la couleur en réflexion côté couche en fonction de l'angle de vue est définie par un paramètre a*RC compris entre -5 et 10, de préférence entre -3 et 7 et par un paramètre D*Rc compris entre -5 et 10, de préférence entre -3 et 8, pour des angles de vue allant de 8,5° à 75° Substrate according to any one of the preceding claims, characterized in that the layer-side reflection color as a function of the viewing angle is defined by a parameter a * R C of between -5 and 10, preferably between 3 and 7 and a parameter D * R c between -5 and 10, preferably between -3 and 8, for angles of view ranging from 8.5 ° to 75 °
13. Substrat selon n'importe laquelle des revendications précédentes, dont la variation colorimétrique en transmission,
est inférieure à 8, préférentiellement est inférieure à 5, plus préférentiellement est inférieure à 3 et même préférentiellement inférieure à 2 lorsque ledit vitrage est soumis à une température d'au moins 630°C pendant 2 à 10 minutes. Substrate according to any one of the preceding claims, including the colorimetric variation in transmission, is less than 8, preferably less than 5, more preferably less than 3 and even more preferably less than 2 when said glazing is subjected to a temperature of at least 630 ° C for 2 to 10 minutes.
14. Substrat selon n'importe laquelle des revendications précédentes dont la variation colorimétrique en réflexion côté verre,
est inférieure à 8, préférentiellement est inférieure à 5, plus préférentiellement est inférieure à 3 lorsque ledit vitrage est soumis à une température d'au moins 630°C pendant 2 à 10 minutes. Substrate according to any one of the preceding claims, whose colorimetric variation in reflection on the glass side, is less than 8, preferably less than 5, more preferably less than 3 when said glazing is subjected to a temperature of at least 630 ° C for 2 to 10 minutes.
15. Substrat selon n'importe laquelle des revendications précédentes dont la variation colorimétrique en réflexion côté couche,
est inférieure à 8, préférentiellement est inférieure à 5, plus préférentiellement est inférieure à 4 lorsque ledit vitrage est soumis à une température d'au moins 630°C pendant 2 à 10 minutes. 15. Substrate according to any one of the preceding claims, in which the colorimetric variation in reflection on the layer side, is less than 8, preferably less than 5, more preferably less than 4 when said glazing is subjected to a temperature of at least 630 ° C for 2 to 10 minutes.
16. Substrat selon n'importe laquelle des revendications précédentes dont les paramètres colorimétriques en réflexion côté verre sont tels que : a*RG est compris entre - 6 et 0 et b*RG est inférieur ou égal à -15, de préférence a*RG est compris entre -5 et -1 et b*RG est inférieur ou égal à -16 de manière à obtenir une teinte bleue en réflexion extérieure ou, a*RG est inférieur ou égal à -7 et b*RG est compris entre -5 et 5, de préférence a *RG est inférieur ou égal à -8 et b*RG est compris entre -3 et 3 de manière à obtenir une teinte verte en réflexion extérieure ou,
a*Rg est compris entre 1 et 6 et b*Rg est compris entre 6 et 12, de préférence a *Rg est compris entre 2 et 4,5 et b*Rg est compris entre 7 et 11 de manière à obtenir une teinte bronze en réflexion extérieure ou, a*Rg est compris entre -3 et 3 et b*Rg est compris entre -5 et 5, de préférence a *Rg est compris entre -2 et 0 et b*Rg est compris entre -4 et 2, de manière à obtenir une teinte grise en réflexion extérieure Substrate according to any one of the preceding claims, wherein the colorimetric parameters in reflection on the glass side are such that: a * R G is between -6 and 0 and b * R G is less than or equal to -15, preferably a * R G is between -5 and -1 and b * R G is less than or equal to -16 so as to obtain a blue tint in external reflection or, a * R G is less than or equal to -7 and b * R G is between -5 and 5, preferably a * R G is less than or equal to -8 and b * R G is between -3 and 3 so as to obtain a green tint in external reflection or, a * R g is between 1 and 6 and b * R g is between 6 and 12, preferably a * R g is between 2 and 4.5 and b * R g is between 7 and 11 so as to obtain a tint bronze in external reflection or, a * R g is between -3 and 3 and b * R g is between -5 and 5, preferably a * R g is between -2 and 0 and b * R g is between -4 and 2, so as to obtain a gray tint in external reflection
17. Substrat selon n'importe laquelle des revendications précédentes, caractérisé en ce que l'empilage multicouche transparent comporte au moins une couche supplémentaire qui ne soit pas de l'argent, de préférence la dite couche supplémentaire est une couche protectrice déposée au-dessus de l'empilage multicouche transparent et est choisie parmi les oxydes de Ti et/ou de Zr, ainsi que leur mélange. 17. Substrate according to any one of the preceding claims, characterized in that the transparent multilayer stack comprises at least one additional layer which is not silver, preferably said additional layer is a protective layer deposited above transparent multilayer stack and is selected from the Ti and / or Zr oxides, as well as their mixture.
18. Vitrage monolithique ou multiple incorporant le substrat selon n'importe laquelle des revendications précédentes. 18. Monolithic or multiple glazing incorporating the substrate according to any one of the preceding claims.
19. Vitrage laminé incorporant le substrat selon n'importe laquelle des revendications précédentes.
19. Laminated glazing incorporating the substrate according to any one of the preceding claims.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MA47010A MA47010B1 (en) | 2017-03-21 | 2018-03-20 | Solar control glazing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17161976 | 2017-03-21 | ||
EP17161976.0 | 2017-03-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018172350A1 true WO2018172350A1 (en) | 2018-09-27 |
Family
ID=58428075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/057010 WO2018172350A1 (en) | 2017-03-21 | 2018-03-20 | Solar control glazing |
Country Status (2)
Country | Link |
---|---|
MA (1) | MA47010B1 (en) |
WO (1) | WO2018172350A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111574065A (en) * | 2019-02-18 | 2020-08-25 | 劳力士有限公司 | Coloured watch glass |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0747329A1 (en) * | 1995-06-07 | 1996-12-11 | Guardian Industries Corp. | Heat treatable, durable IR-reflecting sputter-coated glasses and method of making same |
WO2002090281A2 (en) | 2001-05-03 | 2002-11-14 | Guardian Industries Corp. | Heat treatable coated articles with metal nitride layer and methods of making same |
WO2006134335A1 (en) | 2005-06-16 | 2006-12-21 | Pilkington Group Limited | Coated glass pane |
WO2009150343A2 (en) * | 2008-05-19 | 2009-12-17 | Saint-Gobain Glass France | Glazing provided with a stack of thin layers |
WO2012013787A2 (en) * | 2010-07-29 | 2012-02-02 | Agc Glass Europe | Glass substrate with interference colouration for a facing panel |
US20120177899A1 (en) | 2011-01-11 | 2012-07-12 | Guardian Industries Corp. | Heat treatable coated article with breaker layer |
US20130059137A1 (en) * | 2010-05-25 | 2013-03-07 | Agc Glass Europe | Solar control glazing |
WO2014170613A1 (en) | 2013-04-19 | 2014-10-23 | Saint-Gobain Glass France | Solar control glazing comprising two metal layers made from nickel |
WO2016012325A1 (en) * | 2014-07-25 | 2016-01-28 | Agc Glass Europe | Decorative glass panel |
EP3055265A1 (en) * | 2013-10-10 | 2016-08-17 | Saint-Gobain Glass France | Thermal control glazing |
-
2018
- 2018-03-20 WO PCT/EP2018/057010 patent/WO2018172350A1/en active Application Filing
- 2018-03-20 MA MA47010A patent/MA47010B1/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0747329A1 (en) * | 1995-06-07 | 1996-12-11 | Guardian Industries Corp. | Heat treatable, durable IR-reflecting sputter-coated glasses and method of making same |
WO2002090281A2 (en) | 2001-05-03 | 2002-11-14 | Guardian Industries Corp. | Heat treatable coated articles with metal nitride layer and methods of making same |
WO2006134335A1 (en) | 2005-06-16 | 2006-12-21 | Pilkington Group Limited | Coated glass pane |
WO2009150343A2 (en) * | 2008-05-19 | 2009-12-17 | Saint-Gobain Glass France | Glazing provided with a stack of thin layers |
US20130059137A1 (en) * | 2010-05-25 | 2013-03-07 | Agc Glass Europe | Solar control glazing |
WO2012013787A2 (en) * | 2010-07-29 | 2012-02-02 | Agc Glass Europe | Glass substrate with interference colouration for a facing panel |
US20120177899A1 (en) | 2011-01-11 | 2012-07-12 | Guardian Industries Corp. | Heat treatable coated article with breaker layer |
EP2663536A1 (en) * | 2011-01-11 | 2013-11-20 | Centre Luxembourgeois de Recherches pour le Verre | Heat treatable coated article with breaker layer with extended coloring possibilities |
WO2014170613A1 (en) | 2013-04-19 | 2014-10-23 | Saint-Gobain Glass France | Solar control glazing comprising two metal layers made from nickel |
EP3055265A1 (en) * | 2013-10-10 | 2016-08-17 | Saint-Gobain Glass France | Thermal control glazing |
WO2016012325A1 (en) * | 2014-07-25 | 2016-01-28 | Agc Glass Europe | Decorative glass panel |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111574065A (en) * | 2019-02-18 | 2020-08-25 | 劳力士有限公司 | Coloured watch glass |
Also Published As
Publication number | Publication date |
---|---|
MA47010A1 (en) | 2019-10-31 |
MA47010B1 (en) | 2020-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2956422B2 (en) | Heat-absorbing glazing | |
EP3013763B1 (en) | Solar protection glazing | |
CA2286440C (en) | Transparent substrate stacked with thin layers | |
EP2956421B1 (en) | Solar control glazing | |
CA2630625C (en) | Substrate which is equipped with a stack having thermal properties | |
EP1679389B1 (en) | Substrate with photocatalytic coating | |
EP2603469B1 (en) | Glass panel having sun-shielding properties | |
EP2969990B1 (en) | Window comprising a solar control coating | |
EP3172175B1 (en) | Decorative glass panel | |
CA2630626A1 (en) | Substrate which is equipped with a stack having thermal properties | |
FR2728559A1 (en) | GLASS SUBSTRATES COATED WITH A STACK OF THIN LAYERS WITH INFRARED REFLECTION PROPERTIES AND / OR IN THE FIELD OF SOLAR RADIATION | |
FR3072957B1 (en) | SUBSTRATE PROVIDED WITH A STACK WITH THERMAL PROPERTIES | |
EP3319917A1 (en) | Substrate provided with a stack having thermal properties | |
EP3645478B1 (en) | Glazing with solar protection properties comprising a titanium oxynitride layer | |
EP3129329A1 (en) | Substrate having a stack with thermal properties | |
FR3047923A1 (en) | ARTICLE COMPRISING A SUPERIOR PROTECTION LAYER BASED ON MIXED OXIDE OF ZIRCONIUM AND ALUMINUM | |
WO2018172350A1 (en) | Solar control glazing | |
EP2986577A1 (en) | Solar control glazing comprising two metal layers made from nickel | |
WO2021053125A1 (en) | Insulating glass panel comprising a thin chromium-based layer | |
WO2022144519A1 (en) | Solar control glazing comprising a thin film of nickel-chromium alloy and a thin film of sub-stoichiometric silicon nitride in nitrogen | |
WO2023203192A1 (en) | Solar control glazing panel comprising a single functional titanium nitride layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18712205 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18712205 Country of ref document: EP Kind code of ref document: A1 |