WO2018171777A1 - Method and device for constructing encoding sequence - Google Patents

Method and device for constructing encoding sequence Download PDF

Info

Publication number
WO2018171777A1
WO2018171777A1 PCT/CN2018/080379 CN2018080379W WO2018171777A1 WO 2018171777 A1 WO2018171777 A1 WO 2018171777A1 CN 2018080379 W CN2018080379 W CN 2018080379W WO 2018171777 A1 WO2018171777 A1 WO 2018171777A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
elements
reliability
length
constructing
Prior art date
Application number
PCT/CN2018/080379
Other languages
French (fr)
Chinese (zh)
Inventor
黄凌晨
张公正
陈莹
乔云飞
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020197026302A priority Critical patent/KR20190116394A/en
Priority to EP18771540.4A priority patent/EP3573266B1/en
Publication of WO2018171777A1 publication Critical patent/WO2018171777A1/en
Priority to US16/579,532 priority patent/US11063700B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • H04L1/0069Puncturing patterns
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6356Error control coding in combination with rate matching by repetition or insertion of dummy data, i.e. rate reduction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing
    • H03M13/6368Error control coding in combination with rate matching by puncturing using rate compatible puncturing or complementary puncturing
    • H03M13/6375Rate compatible punctured convolutional [RCPC] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6502Reduction of hardware complexity or efficient processing
    • H03M13/6505Memory efficient implementations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching

Definitions

  • the present application relates to the field of communications, and in particular to a technical solution for constructing a coding sequence.
  • the rapid evolution of wireless communication indicates that the future 5G communication system will present some new features.
  • the most typical three communication scenarios include eMBB (English full name: Enhanced Mobile Broadband, Chinese full name: enhanced mobile broadband), mMTC (English full name: Massive Machine Type Communication, full name in Chinese: massive machine connection communication) and URLLC (English full name: Ultra Reliable Low Latency Communication, full name in Chinese: high reliability and low latency communication), the demand for these communication scenarios will propose new LTE technology challenge.
  • channel coding is one of the important research objects to meet the needs of 5G communication.
  • Shannon's theory was put forward, researchers from all over the world have been working on finding a codec method that can reach the Shannon limit and have relatively low complexity.
  • the LDPC code has been adopted as the data channel coding scheme of the eMBB scenario
  • the Polar code has been adopted as the control channel coding scheme of the eMBB scenario.
  • the URLLC and mMTC scenarios impose strict requirements on the delay and reliability of channel coding.
  • Polar Codes are An encoding method based on channel polarization.
  • the polarization code is the first and only known channel coding method that can be rigorously proven to "reach" the channel capacity.
  • the Polar code is a linear block code. Its generator matrix is F N and its encoding process is among them Is a binary line vector of length N (ie code length); F N is an N ⁇ N matrix, and Here defined as The Kronecker product of the matrix F 2 ; the addition and multiplication operations mentioned above are addition and multiplication operations on the binary Galois field.
  • F N is an N ⁇ N matrix, and Here defined as The Kronecker product of the matrix F 2 ; the addition and multiplication operations mentioned above are addition and multiplication operations on the binary Galois field.
  • a part of the bits are used to carry information, called information bits, and the set of indexes of these bits is recorded as The other part of the bit is set to a fixed value pre-agreed by the transceiver, which is called a fixed bit, and the index is used as a set. Complement Said.
  • the information bits are the part carrying the information.
  • the index set of the construction process of the Polar code Including K info + K check information bit number with the highest reliability except punch bits, where K info is the number of information bits, K check is the number of check bits, and check bits include but are not limited to cyclic redundancy check ( English full name Cyclic Redundancy Check, English abbreviation CRC) bit and dynamic check bits, K check ⁇ 0 without loss of generality, in the Polar construction example below, taking the number of information bits K as an example, the check bits are included in the information bits in.
  • the construction process of the Polar code includes online calculation of the reliability (error probability) of each subchannel and the offline storage reliability sequence, the reliability ranking sequence and the like.
  • the present application provides a method and a corresponding apparatus for constructing a code sequence.
  • the reliability sequence corresponding to the mother code sequence with the maximum length of N max is transformed, and the reliability sequence of the mother code sequence is characterized by the basic sequence correspondence reliability sequence and the reliability reference sequence.
  • the coded sequence is then constructed based on the stored base sequence correspondence reliability sequence and reliability reference sequence.
  • the coding sequence in the embodiment of the present application is a polarization code sequence.
  • the length of the reliability sequence corresponding to the basic sequence is less than or equal to the length of the reliability sequence corresponding to the mother code sequence, and the basic sequence is a subset of the mother code sequence, and the reliability sequence corresponding to the basic sequence is a mother code.
  • the sequence corresponds to a subset of the reliability sequence, the reliability reference sequence including at least one element other than the reliability sequence corresponding to the basic sequence in the reliability sequence corresponding to the mother code sequence;
  • the length of the reliability sequence corresponding to the basic sequence plus the length of the reliability reference sequence is much smaller than the mother code sequence.
  • the length of the corresponding reliability sequence can therefore save storage overhead and can also be done to characterize the reliability sequence corresponding to the mother code sequence.
  • the method provided by the present application further includes: storing a reliable quantized sequence and a reliable quantized reference sequence, where the reliable quantized sequence is a sequence obtained by quantizing a reliability sequence corresponding to the basic sequence, the reliability The quantized reference sequence is obtained by quantizing the reliability reference sequence.
  • the present application provides an apparatus for constructing a polarization code, comprising:
  • a memory configured to store a reliability sequence corresponding to the basic sequence, where the length of the reliability sequence corresponding to the basic sequence is less than or equal to the length of the reliability sequence corresponding to the mother code sequence;
  • the memory is further configured to store a reliability reference sequence, where the reliability reference sequence includes at least one element other than the reliability sequence corresponding to the basic sequence in the reliability sequence corresponding to the mother code sequence;
  • a processor configured to construct a coding sequence by using a reliability sequence corresponding to the basic sequence stored by the memory and the reliability reference sequence.
  • the apparatus for constructing the coding sequence is specifically a terminal or a network side device.
  • a terminal provided by the embodiment of the present application may be implemented by using a hardware, and the structure includes a transceiver and a processor.
  • the corresponding software implementation can also be performed by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the network side device provided by the embodiment of the present application may be a base station or a control node.
  • the embodiment of the present application provides a base station, which has a function of realizing the behavior of the base station in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the base station includes a processor and a transceiver configured to support the base station to perform the corresponding functions in the above methods.
  • the transceiver is configured to support communication between the base station and the terminal, and send information or signaling involved in the foregoing method to the terminal, and receive information or instructions sent by the base station.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • an embodiment of the present application provides a control node, which may include a controller/processor, a memory, and a communication unit.
  • the controller/processor can be used to coordinate resource management and configuration between multiple base stations, and can be used to perform the methods described in the above embodiments.
  • the memory can be used to store program code and data for the control node.
  • the communication unit is configured to support the control node to communicate with the base station.
  • an embodiment of the present application provides a communication system, where the system includes the base station and the terminal in the foregoing aspect.
  • the control node in the above embodiment may also be included.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the base station, which includes a program designed to perform the above aspects.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the terminal, which includes a program designed to execute the above aspects.
  • the present application provides a reliability sequence and a reliability reference sequence for constructing a coding sequence, the reliability sequence including the reliability of the basic sequence correspondence.
  • the reliability sequence refers to the description of the reliability sequence corresponding to the basic sequence in the embodiment, or the description of the reliable quantized sequence corresponding to the basic sequence in the embodiment.
  • the above reliability sequence and reliability reference sequence may be present in a terminal or a network device.
  • FIG. 1 is a schematic diagram of a method for implementing a method for constructing a coding sequence provided by the present application
  • Embodiment 1 is a schematic diagram of Embodiment 1 of a method for constructing a coding sequence provided by the present application;
  • Embodiment 3 is a schematic diagram of Embodiment 2 of a method for constructing a coding sequence provided by the present application;
  • Embodiment 4 is another schematic diagram of Embodiment 2 of a method for constructing a coding sequence provided by the present application;
  • FIG. 5 is a schematic diagram of Embodiment 3 of a method for constructing a coding sequence provided by the present application.
  • FIG. 6 is another schematic diagram of Embodiment 3 of a method for constructing a coding sequence provided by the present application.
  • Embodiment 7 is a schematic diagram of Embodiment 4 of a method for constructing a coding sequence provided by the present application.
  • FIG. 8 is still another schematic diagram of Embodiment 5 of a method for constructing a coding sequence provided by the present application.
  • FIG. 9 is a schematic diagram of an apparatus for constructing a coding sequence provided by the present application.
  • Channel coding which improves data transmission reliability and guarantees communication quality, is the most basic wireless access technology. As shown in FIG. 1, channel information is first encoded on the source information, and then the encoded information is modulated. The coded and modulated information is transmitted to the receiving end through the channel, and corresponding digital demodulation and de-rate matching are performed at the receiving end. Finally, information is obtained by a decoding technique corresponding to channel coding.
  • the present application provides a technical solution for constructing a reliability sequence and constructing a coding sequence according to the channel coding process as shown in FIG.
  • the coding sequence is polarized as an example for description.
  • the mother code sequence can calculate the reliability sequence of length N max by different methods such as density evolution, capacity transfer, and empirical formula.
  • the reliability sequence of length N max is from high to low or low to reliability value.
  • the order is sorted in a high order, and the reliability sort sequence Q is obtained.
  • the frozen location set is a union of the location sets obtained in steps 2 and 3, and the information bit sequence number set (size K) is a complement of the frozen location set;
  • a reliability sequence corresponding to the basic sequence and a storage reliability reference sequence are stored, and the length of the reliability sequence corresponding to the basic sequence is less than or equal to a length of the reliability sequence corresponding to the mother code sequence; and the reliability reference sequence includes at least one element other than the reliability sequence corresponding to the basic sequence in the reliability sequence corresponding to the mother code sequence;
  • the coding sequence is constructed using the reliability sequence corresponding to the basic sequence and the reliability reference sequence.
  • the reliability sequence corresponding to the mother code sequence is used.
  • To indicate that the reliability sequence corresponding to the basic sequence is used. (i) dec @(B n-1 B n-2 ... B 0 ) bin , where (i) dec is expressed as i is a decimal number,
  • the length N s of the reliability sequence corresponding to the basic sequence is smaller than the length N max of the reliability sequence corresponding to the mother code sequence, and the reliability reference sequence holds several elements capable of characterizing the reliability sequence corresponding to the mother code sequence, which may use Can also be used It is shown that the reliability reference sequence is only l max -l s in length. Therefore, when storing, it is only necessary to store only N s + (l max -l s ) values, which is much smaller than the value of N max , thus greatly reducing the storage overhead. In the process of reading, by expanding or multiple reading the reference sequence, a highly reliable subchannel set is obtained; the manner of expanding or multiple reading is related to the type of the reliability sequence.
  • the stored basic sequence corresponds to a reliability sequence length of Then according to the calculation formula of the PW sequence Where (i) dec @(B n-1 B n-2 ...B 0 ) bin , then store Sequence of equal reliability reference values That is, the reliability sequence corresponding to the mother code sequence of length N max can be completely represented.
  • K info +K check is selected to have the highest reliability information bit number set except the punch bits.
  • K info is the number of information bits
  • K check is the number of check bits
  • check bits include but are not limited to CRC bits and dynamic check bits, K check ⁇ 0.
  • the information bit number set is first obtained as an example for description. First, the frozen bit number set is obtained, and then the complement is obtained to obtain the information bit sequence. The principle of the combination is the same, and details are not described herein.
  • the first embodiment will describe the storage process of the reliability sequence and the reliability reference sequence corresponding to the basic sequence.
  • the reliability sequence corresponding to the basic sequence is:
  • the reliability reference sequence is The reliability reference sequence has a length of l max -l s .
  • the reliability sequence of the mother code sequence of different lengths N max for example, when l max ⁇ [8, 9, 10, 11, 12], the mother code length is l s ⁇ [0,1,2,3,4,5,6,7,8,9,10,11], the length of the reliability sequence corresponding to the basic sequence is
  • the reliability sequence corresponding to the length of the mother code sequence and the length range of the reliability sequence corresponding to the basic sequence are not limited thereto, and the method provided by the embodiment of the present application may be used.
  • the element values storing 512 reliability sequences are quantized according to 13 bits, as shown in Table 1:
  • This application provides an implementation method of transforming a reliability sequence of length 512 into a reliability sequence corresponding to a basic sequence plus a reliability reference sequence, which may be as follows:
  • the reliability sequence can be obtained by the above formula, and the reliability sequence is obtained by quantizing the value according to 13 bits. 8 shows:
  • the sequence value is 14-bit quantized, and 1024 values are stored, as shown in Table 14:
  • the application provides a method for converting a reliability sequence corresponding to a mother code sequence of length 1024 into a reliability sequence corresponding to a basic sequence and a reliability reference sequence, which may be as follows:
  • the reliability sequence may also be a finite precision quantized value of the original reliability sequence PW i as long as the quantized reliability sequence still satisfies the same relative size relationship as the original reliability sequence.
  • 14-bit quantization can be performed on Table 17 and Table 18.
  • PW i is the PW sequence before quantization
  • max ⁇ PW ⁇ is the maximum value of the pre-quantization PW sequence.
  • the quantization precision is 14 bits.
  • Tables 19 and 20 are obtained.
  • the quantization precision is positively correlated with the length N max of the mother code sequence.
  • N max a larger quantization precision is usually required to ensure that the reliability sequence corresponding to the quantized mother code sequence still satisfies the same original reliability sequence. Relative size relationship.
  • the quantization method of the reliability sequence of the mother code sequences of other lengths has the same principle and will not be described again.
  • the storage side will store 2048 values, as shown in Table 31:
  • the application provides the implementation of transforming the maximum mother code length reliability sequence of length 2048 into a reliability sequence plus reliability reference sequence, which may be as follows:
  • the reliability sequence corresponding to the basic sequence can be obtained by the above formula, and quantize the value according to 14 bits to obtain the quantization.
  • the reliability sequence corresponding to the following basic sequence is shown in Table 36:
  • different l s can also be selected, and the value range is 0 ⁇ l s ⁇ l max ; the reliability sequence corresponding to the basic sequence corresponding to l s and the length of the reliability reference sequence are respectively And l max -l s .
  • a sequence of reliability corresponding to different mother code sequences of length N max can be used for storage.
  • the reliability sequence corresponding to the mother code sequence is calculated by using the PW formula to calculate the length.
  • the reliability sequence corresponding to the basic sequence the embodiment provides a corresponding reading mode.
  • the second embodiment to the fourth embodiment will be separately described below.
  • the code length is M
  • the information length is K info
  • the reliability sequence N s corresponding to the basic sequence provided in the first embodiment is configured to construct a Polar code
  • N the reliability of obtaining the N elements from the base sequence corresponding to a sequence, the value larger than the value of N elements -N N s N s of the elements in the elements;
  • the N elements form a coding sequence corresponding to corresponding bit positions in the basic sequence;
  • the reliability sequence corresponding to the basic sequence is extended to form a reliability sequence of length N, and the length is N reliable.
  • the corresponding sequence of bit positions in the mother code sequence constitutes a coding sequence
  • the code length N of the reliability sequence is determined according to the code length M and the information length K info .
  • M is the code length, Round up.
  • FIG. 3 The schematic diagram of reading the reliability sequence in this embodiment is shown in FIG. 3, and the flow is shown in FIG. 4, and the steps are as follows:
  • Step 100 determine the size of N s and N; when N ⁇ N s, proceeds to step 101; in N> N s, proceeds to step 102;
  • Step 101 When N ⁇ N s , read the first N elements of the reliability sequence corresponding to the basic sequence of length N s to form a reliability sequence of length N, where the values of the N elements values greater than N s -N s elements in said N elements; N elements of the corresponding bit position in the base sequence constituting a coding sequence;
  • the first N elements of the reliability sequence corresponding to the basic sequence are all elements of the reliability sequence of length N.
  • Step 102 at N>N s , using a reliability reference sequence
  • the element in the reliability sequence corresponding to the basic sequence of length N s Expand.
  • Step 103 Record a reliability ranking sequence Q; the reliability ranking sequence Q is obtained by sequentially sorting the elements of the reliability sequence of length N according to the reliability level;
  • Step 104 sequentially read the elements in the reliability sorting sequence Q in order from back to front (or from front to back) according to the rate matching condition;
  • Step 105 If the sequence number corresponding to the read element satisfies the rate matching condition, the element is skipped.
  • step 106 the sequence number of the element is added to the information bit number set.
  • the most reliable sequence number set is a set of frozen bit numbers.
  • the method for constructing a polarization code by reading the reliability sorting sequence in the second embodiment has a small storage overhead and can flexibly adapt to different rate matching modes.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the code length M, the information length K, and the rate matching manner of each Polar code that may appear in the system are pre-composed.
  • storing the threshold PW th .
  • the threshold can be stored in the form of a threshold table.
  • K check is the value of the CRC bit and/or the dynamic check bit length.
  • steps 200 to 202 of the third embodiment are the same as steps 100 to 102 of the first embodiment, that is, when N ⁇ N s , the read length is N s .
  • the reliability sequence corresponding to the basic sequence of length N s Expand until the extended reliability sequence has a length of N.
  • the reliability sequence of length N is the basis for constructing the coding sequence, and the N elements of the basic sequence form a coding sequence corresponding to the bit positions.
  • step 203 searching for a threshold of a Polar code that needs to be constructed
  • each element PW i and serial number of the length N reliability sequence are simultaneously compared with the threshold PW th .
  • step 204 it is determined whether the value of PW i whose length is N reliability sequence is greater than or equal to (or greater than) the threshold PW th ;
  • step 205 it is determined whether the sequence number i corresponding to the PW i satisfies a rate matching condition
  • Step 206 adding all the elements satisfying step 204 and not satisfying step 205 to the information bit number set
  • the most reliable sequence number set is a set of frozen bit numbers.
  • the reliability sequence corresponding to the basic sequence is read in the third embodiment, and the extended N reliability values can be compared with the threshold at the same time.
  • the comparison process supports parallel processing, and the processing efficiency is high, thereby improving the efficiency of constructing the polarization code.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the code length M, the information length K, and the rate matching manner of each Polar code that may appear in the system are pre-composed.
  • storing the threshold PW th .
  • the threshold can be stored in the form of a threshold table.
  • the threshold value indicates that the subchannel sequence number size of the subchannel whose reliability is greater than or equal to (or greater than) the threshold and the sequence number of the subchannel does not satisfy the rate matching condition is K.
  • Step 300 determine the size of N s and N; when N ⁇ N s, proceeds to step 301; in N> N s, proceeds to step 302;
  • Step 301 when N ⁇ N s, the reliability of obtaining the N elements from the base sequence corresponding to a sequence, the value larger than the value of N elements -N N s N s of the elements in the elements;
  • Step 303 searching for a threshold value PW th of the Polar code to be constructed
  • Step 304 when the information bit number set is read x times (the binary representation of x is Calculation Read from the reliability reference sequence.
  • each element PW i and serial number of the reliability sequence corresponding to the basic sequence are simultaneously compared with the threshold PW th, x-1 .
  • step 305 it is determined whether the value of the PW i of the reliability sequence corresponding to the basic sequence is greater than or equal to (or greater than) the threshold PW th, x-1 ; it should be noted that when the x+1 is read, According to the rate matching condition and the reliability sequence of length N s , each element PW i and serial number of the reliability sequence corresponding to the basic sequence are simultaneously compared with the threshold PW th,x (as shown in FIG. 6 ).
  • step 306 it is determined whether the extension sequence number i+(x-1)gN s corresponding to the sequence number i of the PW i satisfies the rate matching condition;
  • Step 307 adding all the numbers i+(x-1)gN s of the elements satisfying step 305 and not satisfying step 306 to the information bit number set
  • the most reliable sequence number set is a set of frozen bit numbers.
  • the frozen bit number set can be read first. Then take the complement set to get the information bit number set
  • Embodiment The method for constructing a polarization code by reading the reliability sort sequence provided in the fourth embodiment does not need to extend the stored short reliability sequence, and supports segmented parallel reading of the short reliability sequence (each segment can be simultaneously Threshold comparison), therefore, the read latency is small, thereby increasing the efficiency of constructing the polarization code.
  • the maximum mother code length reliability sequence with the maximum mother code length of N max is transformed, and the maximum mother code length reliability sequence is referenced by the reliability sequence and reliability. Sequence to characterize.
  • the polarization code is then constructed based on the stored reliability sequence and the reliability reference sequence.
  • the reliability sequence is a subset of a maximum mother code length reliability sequence, and an element in the reliability reference sequence represents an offset between the reliability sequence and the maximum mother code length reliability sequence.
  • each scheme for constructing a polarization code provided by the embodiment of the present application is introduced from the perspective of storing a reliability sequence and reading a reliability sequence and obtaining a set of information bit numbers.
  • each network element such as a terminal, a base station, a control node, etc., includes a hardware structure and/or a software module corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein.
  • the apparatus for constructing a polarization code includes:
  • the memory 403 stores a reliability sequence corresponding to the basic sequence, where the length of the reliability sequence corresponding to the basic sequence is less than or equal to the length of the reliability sequence corresponding to the mother code sequence; the length of the reliability sequence corresponding to the mother code sequence is The length of the reliability sequence corresponding to the basic sequence is Wherein, 0 ⁇ 1 s ⁇ l max ; the memory 403 is further configured to store a reliability reference sequence, where the reliability reference sequence includes reliability corresponding to the basic sequence in the reliability sequence corresponding to the mother code sequence At least one element outside the sequence; the reliability reference sequence has a length of l max -l s .
  • a reliability sequence corresponding to the basic sequence and the reliability reference sequence are used to construct a coding sequence, such as a polarization code sequence;
  • the controller/processor 402 is configured to construct a coding sequence, such as a polarization code sequence, using the reliability sequence stored by the memory 403 and the reliability reference sequence.
  • the reliability sequence corresponding to the basic sequence is among them, (i) dec @(B n-1 B n-2 ... B 0 ) bin .
  • the reliability reference sequence is
  • controller/processor 402 is further configured to quantize the reliability sequence corresponding to the basic sequence to obtain the reliable quantized sequence, and used to quantize the reliability reference sequence to obtain a location. Resolving a reliable quantified reference sequence;
  • the memory 401 is then also used to store a reliable quantized sequence and a reliable quantized reference sequence.
  • controller/processor 402 may be implemented by circuitry or by general purpose hardware executing software code which, when employed, is also used to store program code that can be executed by the controller/processor 402. The foregoing functions are performed when the controller/processor 402 runs the program code stored in the memory 403.
  • the controller/processor 402 is configured to acquire N elements from the reliability sequence corresponding to the basic sequence when N ⁇ N s , where the value of the N elements is greater than the N s a value of N s -N elements in the element; the corresponding bit positions of the N elements in the basic sequence constitute a coding sequence;
  • the controller/processor 402 is further configured to expand a reliability sequence corresponding to the basic sequence according to an element in the reliability reference sequence to form a reliability sequence of length N, where the length is N.
  • the reliability sequence forms a coding sequence in a corresponding bit position in the mother code sequence; wherein the reliability sequence of length N is the processor reliability reference sequence
  • the reliability sequence corresponding to the element in length Ns Extend it.
  • the memory 403 is further configured to record a reliability ranking sequence Q; the reliability ranking sequence Q is that the controller/processor 402 performs an element of the reliability sequence of length N according to a reliability level. Obtained after sorting in order.
  • the controller/processor 402 is further configured to obtain a set of information bit numbers A; the number of elements in the set of information bit numbers A is equal to a threshold K; the elements in the set of information bit numbers A are sorted by the reliability In the sequence Q, the element whose sequence number does not satisfy the rate matching condition.
  • the controller/processor 402 is further configured to obtain a set of information bit numbers A; the number of elements in the set of information bit numbers A is equal to a threshold K; The element is the element of the reliability sequence of length N, the value is greater than or equal to the threshold PW th of the polarization code, and the sequence number does not satisfy the rate matching condition.
  • controller/processor 402 is further configured to acquire N elements from the reliability sequence corresponding to the basic sequence when N ⁇ N s , the values of the N elements is greater than the value s N s -N element in the elements N; N elements of the corresponding bit position in the base sequence constituting a coding sequence.
  • the controller/processor 402 is further configured to acquire N elements from the reliability sequence corresponding to the basic sequence by N seg times, where the N elements correspond to the mother code sequence.
  • K of the N elements are used to transmit information bits in corresponding bit positions in the mother code sequence
  • the K elements are elements of the reliability sequence of length N, the value is greater than or equal to the threshold PW th of the polarization code, and the sequence number does not satisfy the element of the rate matching condition; the processor takes the K of the transmission information bit The complement of the elements, get NK elements that transmit frozen bits;
  • the NK elements except the K elements in the N elements are used to transmit frozen bits in a corresponding bit position in the mother code sequence, and the NK elements used to transmit the frozen bits are the length In the reliability sequence of N, the value is smaller than the threshold PW th of the coding sequence, or the sequence number satisfies the rate matching element; the controller/processor 402 takes the complement of the elements of the NK transmission freeze bits to obtain the transmission information bits.
  • K elements; the K elements of the transmission information bits and the elements of the NK transmission freeze bits constitute N elements of the code length.
  • the controller/processor 402 reads N s elements of the reliability sequence corresponding to the basic sequence of length N s at the xth read of the N seg read, according to the threshold PW of the coding sequence th calculating the threshold value PW th, x-1, and according to the index i of the N s elements calculated number i + (x-1) gN s, take N s elements in reliability than or equal to the threshold value PW th, x-1 And i+(x-1)gN s does not satisfy the element of the rate matching condition, and the element number i+(x-1)gN s of the element is added to the information bit number set A of the transmission information bit; the information bit number set A is The number of elements is equal to the threshold K;
  • the controller/processor 402 takes the complement of the information bit number set A to obtain NK elements of the transmission freeze bit; the K element of the information bit set in the information bit number set A and the NK transmission freeze
  • the elements of the bits constitute the N elements of the encoded code length; or
  • the sub-N seg times obtain N elements from the reliability sequence corresponding to the basic sequence, including:
  • the controller/processor 402 reads N s elements of the reliability sequence of length N s at the xth read of the N seg read, and calculates according to the threshold PW th of the polarization code Threshold PW th, x-1 ;
  • the controller/processor 402 calculates the sequence number i+(x-1)gN s according to the sequence number i of the N s elements, and takes the reliability of the N s elements to be less than the threshold PW th, x-1 or the sequence number i+ ( X-1) gN s an element satisfying the rate matching condition, the element number i+(x-1)gN s of the element is added to the frozen bit number set A c of the transmission freeze bit;
  • the controller/processor 402 takes the complement of the frozen bit number set A c , and obtains K elements of the transmission information bits to form an information bit number set A; the number of elements in the information bit number set A is equal to the threshold. K;
  • the K elements of the information bits and the elements of the N-K transmission freeze bits in the information bit number set A constitute N elements of the code length.
  • the apparatus for constructing a polarization code may further include an encoder 4051, a modulator 4052, a demodulator 4054, and a decoder 4053.
  • the encoder 4051 is configured to acquire data/signaling that the network side device is to send to the terminal or the terminal is to be sent to the network side device, and encode the data/signaling.
  • the modulator 4052 modulates the data/signal coded by the encoder 4051 and transmits it to the transceiver 401, which is transmitted by the transceiver 401 to the terminal or other network side device.
  • the demodulator 4054 is configured to acquire data and signaling sent by the terminal or other network side device, and perform demodulation.
  • the decoder 4053 is configured to decode the demodulated data/signal of the demodulator 4054.
  • the encoder 4051, the modulator 4052, the demodulator 4054, and the decoder 4053 may be implemented by a synthesized modem processor 405. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the radio access network e.g., access technologies of LTE and other evolved systems.
  • the network side device may further include a communication interface 404 for supporting communication between the device configuring the polarization code and other network entities.
  • a communication interface 404 for supporting communication between the device configuring the polarization code and other network entities.
  • Figure 8 only shows a simplified design of the apparatus for constructing a polarization code.
  • the transceiver 401 described above may include a transmitter and a receiver, and the device may include any number of transceivers, processors, controllers/processors, memories, and/or communication interfaces, and the like.
  • the foregoing device may be a terminal or a network side device.
  • the network side device can in turn be a base station or a control node.
  • the controller/processor of the above base station, terminal, or control node of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field programmable gate array ( FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions (eg, program code).
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the terminal.
  • the processor and the storage medium can also exist as discrete components in the terminal.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

Embodiments of the present application provide a method and a device for constructing an encoding sequence. The method comprises: storing a reliability sequence corresponding to a basic sequence, the length of the reliability sequence corresponding to the basic sequence being less than or equal to the length of a reliability sequence corresponding to a mother code sequence; storing a reliability reference sequence, the reliability reference sequence comprising, excluding the reliability sequence corresponding to the basic sequence, at least one element in the reliability sequence corresponding to the mother code sequence; and constructing an encoding sequence using the reliability sequence corresponding to the basic sequence and an element in the reliability reference sequence. By implementing the present application, only a reliability sequence corresponding to a basic sequence and a reliability reference sequence are stored when storage is performed. Because the total length of the reliability sequence corresponding to the basic sequence and the reliability reference sequence is far less than the length of an original reliability sequence, storage overhead can be reduced.

Description

一种构造编码序列的方法,装置Method, device for constructing coding sequence
本申请要求于2017年3月24日提交中国专利局、申请号为201710184944.2、申请名称为“一种构造编码序列的方法,装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。The present application claims priority to Chinese Patent Application No. PCT Application No. No. No. No. No. No. No. No. No. No. No. No. In the application.
技术领域Technical field
本申请涉及通信领域,尤其涉及构造编码序列的技术方案。The present application relates to the field of communications, and in particular to a technical solution for constructing a coding sequence.
背景技术Background technique
无线通信的快速演进预示着未来5G通信系统将呈现出一些新的特点,最典型的三个通信场景包括eMBB(英文全称:Enhanced Mobile Broadband,中文全称:增强型移动宽带),mMTC(英文全称:Massive Machine Type Communication,中文全称:海量机器连接通信)和URLLC(英文全称:Ultra Reliable Low Latency Communication,中文全称:高可靠低时延通信),这些通信场景的需求将对现有LTE技术提出新的挑战。The rapid evolution of wireless communication indicates that the future 5G communication system will present some new features. The most typical three communication scenarios include eMBB (English full name: Enhanced Mobile Broadband, Chinese full name: enhanced mobile broadband), mMTC (English full name: Massive Machine Type Communication, full name in Chinese: massive machine connection communication) and URLLC (English full name: Ultra Reliable Low Latency Communication, full name in Chinese: high reliability and low latency communication), the demand for these communication scenarios will propose new LTE technology challenge.
信道编码作为最基本的无线接入技术,是满足5G通信需求的重要研究对象之一。在香农理论提出后,各国学者一直致力于寻找能够达到香农极限同时具有相对较低复杂度的编译码方法。在5G的标准制定进展中,LDPC码已经被采纳为eMBB场景的数据信道编码方案,而Polar码已经被采纳为eMBB场景的控制信道编码方案。而URLLC与mMTC场景则对信道编码的时延和可靠度提出了严格的要求。As the most basic wireless access technology, channel coding is one of the important research objects to meet the needs of 5G communication. After Shannon's theory was put forward, scholars from all over the world have been working on finding a codec method that can reach the Shannon limit and have relatively low complexity. In the development of 5G standards, the LDPC code has been adopted as the data channel coding scheme of the eMBB scenario, and the Polar code has been adopted as the control channel coding scheme of the eMBB scenario. The URLLC and mMTC scenarios impose strict requirements on the delay and reliability of channel coding.
极化码(Polar Codes)是
Figure PCTCN2018080379-appb-000001
基于信道极化提出的一种编码方式。极化码是第一种、也是已知的唯一一种能够被严格证明“达到”信道容量的信道编码方法。
Polar Codes are
Figure PCTCN2018080379-appb-000001
An encoding method based on channel polarization. The polarization code is the first and only known channel coding method that can be rigorously proven to "reach" the channel capacity.
Polar码的编译码的简单描述如下:A brief description of the code of the Polar code is as follows:
Polar码是一种线性块码。其生成矩阵为F N,其编码过程为
Figure PCTCN2018080379-appb-000002
其中
Figure PCTCN2018080379-appb-000003
是一个二进制的行矢量,长度为N(即码长);F N是一个N×N的矩阵,且
Figure PCTCN2018080379-appb-000004
这里
Figure PCTCN2018080379-appb-000005
定义为
Figure PCTCN2018080379-appb-000006
个矩阵F 2的克罗内克(Kronecker)乘积;以上涉及的加法、乘法操作均为二进制伽罗华域(Galois Field)上的加法、乘法操作。Polar码的编码过程中,
Figure PCTCN2018080379-appb-000007
中的一部分比特用来携带信息,称 为信息比特,这些比特的索引的集合记作
Figure PCTCN2018080379-appb-000008
另外的一部分比特置为收发端预先约定的固定值,称之为固定比特,其索引的集合用
Figure PCTCN2018080379-appb-000009
的补集
Figure PCTCN2018080379-appb-000010
表示。
The Polar code is a linear block code. Its generator matrix is F N and its encoding process is
Figure PCTCN2018080379-appb-000002
among them
Figure PCTCN2018080379-appb-000003
Is a binary line vector of length N (ie code length); F N is an N × N matrix, and
Figure PCTCN2018080379-appb-000004
Here
Figure PCTCN2018080379-appb-000005
defined as
Figure PCTCN2018080379-appb-000006
The Kronecker product of the matrix F 2 ; the addition and multiplication operations mentioned above are addition and multiplication operations on the binary Galois field. During the encoding of the Polar code,
Figure PCTCN2018080379-appb-000007
A part of the bits are used to carry information, called information bits, and the set of indexes of these bits is recorded as
Figure PCTCN2018080379-appb-000008
The other part of the bit is set to a fixed value pre-agreed by the transceiver, which is called a fixed bit, and the index is used as a set.
Figure PCTCN2018080379-appb-000009
Complement
Figure PCTCN2018080379-appb-000010
Said.
注意到,在经典的Polar码中,信息比特为携带信息的部分。而实际中,由于Polar码编码之前,信息比特还会经历循环冗余校验编码、奇偶校验编码等,Polar码的构造过程的索引集合
Figure PCTCN2018080379-appb-000011
包括K info+K check个除打孔比特外可靠度最高的信息比特序号,其中,K info为信息比特数量,K check为校验比特数量,校验比特包括但不限于循环冗余校验(英文全称Cyclic Redundancy Check,英文简称CRC)比特和动态校验比特,K check≥0不失一般性的,下文在Polar的构造举例中,以信息比特数量K为例,校验比特包含在信息比特中。
Note that in the classic Polar code, the information bits are the part carrying the information. In practice, because the information bits are subjected to cyclic redundancy check coding, parity coding, etc. before the Polar code is encoded, the index set of the construction process of the Polar code
Figure PCTCN2018080379-appb-000011
Including K info + K check information bit number with the highest reliability except punch bits, where K info is the number of information bits, K check is the number of check bits, and check bits include but are not limited to cyclic redundancy check ( English full name Cyclic Redundancy Check, English abbreviation CRC) bit and dynamic check bits, K check ≥ 0 without loss of generality, in the Polar construction example below, taking the number of information bits K as an example, the check bits are included in the information bits in.
根据信息比特长度、编码码字的长度,确定信息比特集合
Figure PCTCN2018080379-appb-000012
的过程称为Polar码的构造过程。目前,Polar码的构造包括在线计算每个子信道的可靠度(错误概率)和离线存储可靠度序列、可靠度排序序列等方法。
Determining the information bit set according to the information bit length and the length of the encoded codeword
Figure PCTCN2018080379-appb-000012
The process is called the construction process of the Polar code. At present, the construction of the Polar code includes online calculation of the reliability (error probability) of each subchannel and the offline storage reliability sequence, the reliability ranking sequence and the like.
但是,发明人在本申请的创造过程中发现,现有技术的可靠度序列的存储开销十分大,不利于产品实现。However, the inventor found in the creation process of the present application that the storage overhead of the reliability sequence of the prior art is very large, which is not conducive to product realization.
发明内容Summary of the invention
为解决现有技术中存在的构造极化码的存储开销大的问题,本申请提供了一种构造编码序列的方法和相应的装置。In order to solve the problem of large storage overhead of constructing a polarization code existing in the prior art, the present application provides a method and a corresponding apparatus for constructing a code sequence.
本申请对最大长度为N max的母码序列对应的可靠度序列做一些变换,将母码序列对应可靠度序列用基本序列对应可靠度序列和可靠度参考序列来表征。然后基于存储的基本序列对应可靠度序列和可靠度参考序列,构造编码序列。一种实现方式中,本申请实施例中的编码序列为极化码序列。 In this application, the reliability sequence corresponding to the mother code sequence with the maximum length of N max is transformed, and the reliability sequence of the mother code sequence is characterized by the basic sequence correspondence reliability sequence and the reliability reference sequence. The coded sequence is then constructed based on the stored base sequence correspondence reliability sequence and reliability reference sequence. In an implementation manner, the coding sequence in the embodiment of the present application is a polarization code sequence.
其中,所述基本序列对应的可靠度序列的长度小于等于母码序列对应的可靠度序列的长度,所述基本序列是母码序列的子集,所述基本序列对应的可靠度序列为母码序列对应可靠度序列的子集,所述可靠度参考序列包括所述母码序列对应的可靠度序列中除所述基本序列对应的可靠度序列之外至少一个元素;The length of the reliability sequence corresponding to the basic sequence is less than or equal to the length of the reliability sequence corresponding to the mother code sequence, and the basic sequence is a subset of the mother code sequence, and the reliability sequence corresponding to the basic sequence is a mother code. The sequence corresponds to a subset of the reliability sequence, the reliability reference sequence including at least one element other than the reliability sequence corresponding to the basic sequence in the reliability sequence corresponding to the mother code sequence;
在存储的时候只存储所述基本序列对应的可靠度序列和可靠度参考序列,由于基本序列对应的可靠度序列的长度加上所述可靠度参考序列的长度,远远小于所述母码序列对应的可靠性序列的长度,因此能够节省存储开销,并且还能完成的表征母码序列对应的可靠度序列的特性。When storing, only the reliability sequence and the reliability reference sequence corresponding to the basic sequence are stored, and the length of the reliability sequence corresponding to the basic sequence plus the length of the reliability reference sequence is much smaller than the mother code sequence. The length of the corresponding reliability sequence can therefore save storage overhead and can also be done to characterize the reliability sequence corresponding to the mother code sequence.
另外,本申请提供的方法还包括:存储可靠度量化序列和可靠度量化参考序列,所述可靠度量化序列是对所述基本序列对应的可靠度序列进行量化后得到的序列,所述可靠度量化参考序列是对所述可靠度参考序列进行量化后得到的。In addition, the method provided by the present application further includes: storing a reliable quantized sequence and a reliable quantized reference sequence, where the reliable quantized sequence is a sequence obtained by quantizing a reliability sequence corresponding to the basic sequence, the reliability The quantized reference sequence is obtained by quantizing the reliability reference sequence.
另一方面,本申请提供了构造极化码的装置,包括:In another aspect, the present application provides an apparatus for constructing a polarization code, comprising:
存储器,用于存储基本序列对应的可靠度序列,所述基本序列对应的可靠度序列的长度小于等于母码序列对应的可靠度序列的长度;a memory, configured to store a reliability sequence corresponding to the basic sequence, where the length of the reliability sequence corresponding to the basic sequence is less than or equal to the length of the reliability sequence corresponding to the mother code sequence;
所述存储器还用于存储可靠度参考序列,所述可靠度参考序列包括所述母码序列对应的可靠度序列中除所述基本序列对应的可靠度序列之外至少一个元素;The memory is further configured to store a reliability reference sequence, where the reliability reference sequence includes at least one element other than the reliability sequence corresponding to the basic sequence in the reliability sequence corresponding to the mother code sequence;
处理器,用于利用所述存储器存储的基本序列对应的可靠度序列以及所述可靠度参考序列构造编码序列。And a processor, configured to construct a coding sequence by using a reliability sequence corresponding to the basic sequence stored by the memory and the reliability reference sequence.
本申请实施例中,构造编码序列的装置具体为终端或者网络侧设备。In the embodiment of the present application, the apparatus for constructing the coding sequence is specifically a terminal or a network side device.
本申请实施例提供的一种终端,该所述功能可以通过硬件实现,其结构中包括收发器和处理器。也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。A terminal provided by the embodiment of the present application may be implemented by using a hardware, and the structure includes a transceiver and a processor. The corresponding software implementation can also be performed by hardware. The hardware or software includes one or more modules corresponding to the functions described above. The modules can be software and/or hardware.
再一方面,本申请实施例提供的网络侧设备,该网络侧设备可以是一种基站,也可以是一种控制节点。In another aspect, the network side device provided by the embodiment of the present application may be a base station or a control node.
另一方面,本申请实施例提供了一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。On the other hand, the embodiment of the present application provides a base station, which has a function of realizing the behavior of the base station in the actual method. The functions may be implemented by hardware or by corresponding software implemented by hardware. The hardware or software includes one or more modules corresponding to the functions described above.
在一个可能的设计中,基站的结构中包括处理器和收发器,所述处理器被配置为支持基站执行上述方法中相应的功能。所述收发器用于支持基站与终端之间的通信,向终端发送上述方法中所涉及的信息或者信令,接收基站所发送的信息或指令。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。In one possible design, the structure of the base station includes a processor and a transceiver configured to support the base station to perform the corresponding functions in the above methods. The transceiver is configured to support communication between the base station and the terminal, and send information or signaling involved in the foregoing method to the terminal, and receive information or instructions sent by the base station. The base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
又一方面,本申请实施例提供了一种控制节点,可以包括控制器/处理器,存储器以及通信单元。所述控制器/处理器可以用于协调多个基站之间的资源管理和配置,可以用于执行上述实施例描述的方法。存储器可以用于存储控制节点的程序代码和数据。所述通信单元,用于支持该控制节点与基站进行通信。In another aspect, an embodiment of the present application provides a control node, which may include a controller/processor, a memory, and a communication unit. The controller/processor can be used to coordinate resource management and configuration between multiple base stations, and can be used to perform the methods described in the above embodiments. The memory can be used to store program code and data for the control node. The communication unit is configured to support the control node to communicate with the base station.
又一方面,本申请实施例提供了一种通信系统,该系统包括上述方面所述的基站和终端。可选地,还可以包括上述实施例中的控制节点。In another aspect, an embodiment of the present application provides a communication system, where the system includes the base station and the terminal in the foregoing aspect. Optionally, the control node in the above embodiment may also be included.
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。In a further aspect, the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the base station, which includes a program designed to perform the above aspects.
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。In a further aspect, the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the terminal, which includes a program designed to execute the above aspects.
本申请提供了一种用于构造编码序列的可靠度序列和可靠度参考序列,所述可靠度序列中包括基本序列对应的可靠度。The present application provides a reliability sequence and a reliability reference sequence for constructing a coding sequence, the reliability sequence including the reliability of the basic sequence correspondence.
所述可靠度序列的具体形式可以参见实施例中对基本序列对应的可靠度序列的描述,或者实施例中对基本序列对应的可靠度量化序列的描述。For a specific form of the reliability sequence, refer to the description of the reliability sequence corresponding to the basic sequence in the embodiment, or the description of the reliable quantized sequence corresponding to the basic sequence in the embodiment.
上述可靠度序列和可靠度参考序列可以存在终端或者网络设备中。The above reliability sequence and reliability reference sequence may be present in a terminal or a network device.
附图说明DRAWINGS
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings used in the embodiments of the present application will be briefly described below. Obviously, the drawings described below are only some embodiments of the present application, Those skilled in the art can also obtain other drawings based on these drawings without paying any creative work.
图1是本申请提供的构造编码序列的方法实施场景示意图;1 is a schematic diagram of a method for implementing a method for constructing a coding sequence provided by the present application;
图2是本申请提供的构造编码序列的方法实施例一的示意图;2 is a schematic diagram of Embodiment 1 of a method for constructing a coding sequence provided by the present application;
图3是本申请提供的构造编码序列的方法实施例二的示意图;3 is a schematic diagram of Embodiment 2 of a method for constructing a coding sequence provided by the present application;
图4是本申请提供的构造编码序列的方法实施例二的又一示意图;4 is another schematic diagram of Embodiment 2 of a method for constructing a coding sequence provided by the present application;
图5是本申请提供的构造编码序列的方法实施例三的示意图;FIG. 5 is a schematic diagram of Embodiment 3 of a method for constructing a coding sequence provided by the present application; FIG.
图6是本申请提供的构造编码序列的方法实施例三的又一示意图;6 is another schematic diagram of Embodiment 3 of a method for constructing a coding sequence provided by the present application;
图7是本申请提供的构造编码序列的方法实施例四的示意图;7 is a schematic diagram of Embodiment 4 of a method for constructing a coding sequence provided by the present application;
图8是本申请提供的构造编码序列的方法实施例五的又一示意图;FIG. 8 is still another schematic diagram of Embodiment 5 of a method for constructing a coding sequence provided by the present application; FIG.
图9是本申请提供的构造编码序列的装置示意图。9 is a schematic diagram of an apparatus for constructing a coding sequence provided by the present application.
具体实施方式detailed description
下面将描述本申请所提供的实施例。The embodiments provided by the present application will be described below.
下一代通信网络中,最典型的三个通信场景包括eMBB,mMTC和URLLC,这些通信场景的需求将对现有LTE技术提出新的挑战。作为提高数据传输可靠性,保证通信质量的信道编码是最基本的无线接入技术。如图1所示,首先对信源信息进行信道编码,然后对编码后的信息进行调制,经过编码调制后的信息经过信道传输至接收端,在接收端进行对应的数字解调和解速率匹配,最后通过与信道编码对应的译码技术,获得信息。In the next generation communication network, the most typical three communication scenarios include eMBB, mMTC and URLLC. The requirements of these communication scenarios will present new challenges to existing LTE technologies. Channel coding, which improves data transmission reliability and guarantees communication quality, is the most basic wireless access technology. As shown in FIG. 1, channel information is first encoded on the source information, and then the encoded information is modulated. The coded and modulated information is transmitted to the receiving end through the channel, and corresponding digital demodulation and de-rate matching are performed at the receiving end. Finally, information is obtained by a decoding technique corresponding to channel coding.
本申请提供一种在如图1所示的信道编码过程中,构造可靠度序列并据此构造编码序列的技术方案。The present application provides a technical solution for constructing a reliability sequence and constructing a coding sequence according to the channel coding process as shown in FIG.
在本申请实施例中,以编码序列为极化(polar)为例进行说明。In the embodiment of the present application, the coding sequence is polarized as an example for description.
构造Polar码时,对给定的长度
Figure PCTCN2018080379-appb-000013
的母码序列,可以通过密度进化、容量转移、经验公式等不同方法计算长度为N max的可靠度序列,对该长度为N max的可靠度序列按照可靠度值由高到低或由低到高的顺序进行排序,得到可靠度排序序列Q。
When constructing a Polar code, for a given length
Figure PCTCN2018080379-appb-000013
The mother code sequence can calculate the reliability sequence of length N max by different methods such as density evolution, capacity transfer, and empirical formula. The reliability sequence of length N max is from high to low or low to reliability value. The order is sorted in a high order, and the reliability sort sequence Q is obtained.
对给定长度为N max的可靠度排序序列Q,序号i较小的元素Q i对应的子信道的可靠度较低(按从小到大的顺序),或者序号i较小的元素Q i对应的子信道的可靠度较高(按从大到小的顺序)。使用Q序列构造信息长度为K,编码长度为M的Polar码时,读取Q序列步骤为: Q reliability of the collating sequence of a given length of N max, the lower the reliability of the element number i smaller subchannels corresponding Q i (in ascending order), or a smaller number of element i corresponding to Q i The reliability of the subchannels is high (in descending order). When using the Q sequence to construct a message length of K and encoding a Polar code of length M, the steps of reading the Q sequence are:
1、根据编码码长M及信息长度K info确定用于构造编码序列的可靠度序列的码长N。一种可能的实现方式中,
Figure PCTCN2018080379-appb-000014
M为编码码长,
Figure PCTCN2018080379-appb-000015
为向上取整,从N max长的可靠度排序序列Q中读取长度为N的可靠度排序序列Q;
1. Determine the code length N of the reliability sequence used to construct the coding sequence according to the code length M and the information length K info . In a possible implementation,
Figure PCTCN2018080379-appb-000014
M is the code length,
Figure PCTCN2018080379-appb-000015
For rounding up, a reliability ranking sequence Q of length N is read from the reliability ranking sequence Q of N max length;
2、根据速率匹配条件,计算N-M个速率匹配位置;2. Calculate N-M rate matching locations according to rate matching conditions;
3、从i=0(或N-1)开始,依次从长度为N可靠度排序序列Q中读取可靠度值较低的元素,若该元素属于速率匹配位置则跳过,直到读取M-K个元素;3. Starting from i=0 (or N-1), sequentially read the element with lower reliability value from the sequence N with length N reliability, and skip if the element belongs to the rate matching position until MK is read. Elements
冻结位置集合为步骤2和3得到的位置集合的并集,信息比特序号集合(大小为K)为冻结位置集合的补集;The frozen location set is a union of the location sets obtained in steps 2 and 3, and the information bit sequence number set (size K) is a complement of the frozen location set;
可以理解的是,上述可靠度排序序列Q序列根据可靠度序列进行排序得到,该过程可以离线完成。It can be understood that the above-mentioned reliability sorting sequence Q sequence is obtained according to the reliability sequence, and the process can be completed offline.
本申请实施例提供的一种构造编码序列的方法中,如图2所示,首先存储基本序列对应的可靠度序列以及存储可靠度参考序列,所述基本序列对应的可靠度序列的长度小于等于母码序列对应的可靠度序列的长度;而所述可靠度参考序列包括所述母码序列对应的可靠度序列中除所述基本序列对应的可靠度序列之外至少一个元素;In the method for constructing a coding sequence provided by the embodiment of the present application, as shown in FIG. 2, first, a reliability sequence corresponding to the basic sequence and a storage reliability reference sequence are stored, and the length of the reliability sequence corresponding to the basic sequence is less than or equal to a length of the reliability sequence corresponding to the mother code sequence; and the reliability reference sequence includes at least one element other than the reliability sequence corresponding to the basic sequence in the reliability sequence corresponding to the mother code sequence;
然后,利用所述基本序列对应的可靠度序列以及所述可靠度参考序列构造编码序列。Then, the coding sequence is constructed using the reliability sequence corresponding to the basic sequence and the reliability reference sequence.
母码序列对应的可靠度序列用
Figure PCTCN2018080379-appb-000016
来表示,基本序列对应的可靠度序列用
Figure PCTCN2018080379-appb-000017
(i) dec@(B n-1B n-2...B 0) bin,其中(i) dec表示为i为十进制数,
Figure PCTCN2018080379-appb-000018
The reliability sequence corresponding to the mother code sequence is used.
Figure PCTCN2018080379-appb-000016
To indicate that the reliability sequence corresponding to the basic sequence is used.
Figure PCTCN2018080379-appb-000017
(i) dec @(B n-1 B n-2 ... B 0 ) bin , where (i) dec is expressed as i is a decimal number,
Figure PCTCN2018080379-appb-000018
基本序列对应的可靠度序列的长度N s小于母码序列对应的可靠度序列的长度N max,而且可靠度参考序列保存几个能表征所述母码序列对应的可靠度序列的元素,其可以用
Figure PCTCN2018080379-appb-000019
也可以用
Figure PCTCN2018080379-appb-000020
来表示,可靠度参考序列的长度仅为l max-l s。因此在存储的时候,只需要存储仅为N s+(l max-l s)个值,该值远远小于N max的值,因此大大减小了存储开销。在读取的过程中,通过对该参考序列进行扩展或者多次读取,获得可靠度高的子信道集合;扩展或多次读取的方式与可靠度序列的类型相关。
The length N s of the reliability sequence corresponding to the basic sequence is smaller than the length N max of the reliability sequence corresponding to the mother code sequence, and the reliability reference sequence holds several elements capable of characterizing the reliability sequence corresponding to the mother code sequence, which may use
Figure PCTCN2018080379-appb-000019
Can also be used
Figure PCTCN2018080379-appb-000020
It is shown that the reliability reference sequence is only l max -l s in length. Therefore, when storing, it is only necessary to store only N s + (l max -l s ) values, which is much smaller than the value of N max , thus greatly reducing the storage overhead. In the process of reading, by expanding or multiple reading the reference sequence, a highly reliable subchannel set is obtained; the manner of expanding or multiple reading is related to the type of the reliability sequence.
具体的,若存储的基本序列对应的可靠度序列长度为
Figure PCTCN2018080379-appb-000021
则根据PW序列的计算公式
Figure PCTCN2018080379-appb-000022
其中,(i) dec@(B n-1B n-2...B 0) bin,再存储
Figure PCTCN2018080379-appb-000023
等 可靠度参考值组成的序列
Figure PCTCN2018080379-appb-000024
即能够完整表示出长度为N max的母码序列对应的可靠度序列。
Specifically, if the stored basic sequence corresponds to a reliability sequence length of
Figure PCTCN2018080379-appb-000021
Then according to the calculation formula of the PW sequence
Figure PCTCN2018080379-appb-000022
Where (i) dec @(B n-1 B n-2 ...B 0 ) bin , then store
Figure PCTCN2018080379-appb-000023
Sequence of equal reliability reference values
Figure PCTCN2018080379-appb-000024
That is, the reliability sequence corresponding to the mother code sequence of length N max can be completely represented.
基于此,在构造编码序列,例如polar码序列的时候,根据需要构造的polar码的长度,读取所述存储的长度为
Figure PCTCN2018080379-appb-000025
的基本序列对应的可靠度序列,并根据可靠度参考序列中的元素的值,对长度为
Figure PCTCN2018080379-appb-000026
的基本序列对应的可靠度序列进行扩展或者进行多次读取,选择K info+K check个除打孔比特外可靠度最高的信息比特序号集合
Figure PCTCN2018080379-appb-000027
其中,K info为信息比特数量,K check为校验比特数量,校验比特包括但不限于CRC比特和动态校验比特,K check≥0。然后将对应的信息序列和动态校验比特序列(如果有)映射到这些序号;剩余的为静态冻结比特序号集合,其值设置为收发两端约定的固定值。
Based on this, when constructing a coded sequence, such as a polar code sequence, the length of the stored memory is read according to the length of the polar code that needs to be constructed.
Figure PCTCN2018080379-appb-000025
The basic sequence corresponds to the reliability sequence, and according to the reliability, the values of the elements in the reference sequence are
Figure PCTCN2018080379-appb-000026
The reliability sequence corresponding to the basic sequence is extended or read multiple times, and K info +K check is selected to have the highest reliability information bit number set except the punch bits.
Figure PCTCN2018080379-appb-000027
Where K info is the number of information bits, K check is the number of check bits, and check bits include but are not limited to CRC bits and dynamic check bits, K check ≥ 0. Then, the corresponding information sequence and the dynamic check bit sequence (if any) are mapped to the sequence numbers; the rest is a set of static freeze bit numbers, and the value is set to a fixed value agreed upon at both ends.
后续的实施例的举例中,以首先获得信息比特序号集合为例进行说明,先获得冻结比特序号集合,然后再取其补集获得信息比特序列结合原理相同,不再赘述。In the example of the following embodiment, the information bit number set is first obtained as an example for description. First, the frozen bit number set is obtained, and then the complement is obtained to obtain the information bit sequence. The principle of the combination is the same, and details are not described herein.
以下将分实施例一至实施例四,描述本申请提供的构造编码序列的方法。The method of constructing a coding sequence provided by the present application will be described below by using the first embodiment to the fourth embodiment.
实施例一 Embodiment 1
本实施例一将描述基本序列对应的可靠度序列和可靠度参考序列的存储过程。The first embodiment will describe the storage process of the reliability sequence and the reliability reference sequence corresponding to the basic sequence.
首先对于长度为
Figure PCTCN2018080379-appb-000028
的母码序列对应的可靠度序列利用PW公式进行变形为:
First for the length
Figure PCTCN2018080379-appb-000028
The reliability sequence corresponding to the mother code sequence is transformed by the PW formula to:
Figure PCTCN2018080379-appb-000029
Figure PCTCN2018080379-appb-000029
据此,基本序列对应的可靠度序列为:Accordingly, the reliability sequence corresponding to the basic sequence is:
Figure PCTCN2018080379-appb-000030
(i) dec@(B n-1B n-2...B 0) bin,(i) dec表示为i为十进制数,(B n-1B n-2...B 0) bin表示二进制数,β为指数的基数。所述基本序列对应的可靠度序列的长度为
Figure PCTCN2018080379-appb-000031
其中,0≤l s<l max
Figure PCTCN2018080379-appb-000030
(i) dec @(B n-1 B n-2 ... B 0 ) bin , (i) dec denotes that i is a decimal number, (B n-1 B n-2 ... B 0 ) bin represents Binary number, β is the cardinality of the index. The length of the reliability sequence corresponding to the basic sequence is
Figure PCTCN2018080379-appb-000031
Where 0 ≤ l s < l max .
所述可靠度参考序列为
Figure PCTCN2018080379-appb-000032
所述可靠度参考序列的长度为l max-l s
The reliability reference sequence is
Figure PCTCN2018080379-appb-000032
The reliability reference sequence has a length of l max -l s .
根据基本序列对应的可靠度序列
Figure PCTCN2018080379-appb-000033
以及可靠度参考序列
Figure PCTCN2018080379-appb-000034
即能够完整表示长度为N max的母码序列对应的可靠度序列。
Reliability sequence according to the basic sequence
Figure PCTCN2018080379-appb-000033
And reliability reference sequence
Figure PCTCN2018080379-appb-000034
That is, the reliability sequence corresponding to the mother code sequence of length N max can be completely represented.
根据上述公式,对不同的长度N max的母码序列的可靠度序列,例如当l max∈[8,9,10,11,12],所述母码长度为
Figure PCTCN2018080379-appb-000035
l s∈[0,1,2,3,4,5,6,7,8,9,10,11],所述基本序列对应的可靠度序列的长度为
Figure PCTCN2018080379-appb-000036
According to the above formula, the reliability sequence of the mother code sequence of different lengths N max , for example, when l max ∈ [8, 9, 10, 11, 12], the mother code length is
Figure PCTCN2018080379-appb-000035
l s ∈[0,1,2,3,4,5,6,7,8,9,10,11], the length of the reliability sequence corresponding to the basic sequence is
Figure PCTCN2018080379-appb-000036
这些情况仅为举例,本申请针对的长度的母码序列对应的可靠度序列,以及基本序列对应的可靠度序列的长度取值范围不仅限于此,其均可采用本申请实施例提供的方法进行存储,下面将分别以长度为N max=512,1024,2048的母码序列为例进行说明。 For example, the reliability sequence corresponding to the length of the mother code sequence and the length range of the reliability sequence corresponding to the basic sequence are not limited thereto, and the method provided by the embodiment of the present application may be used. For storage, the following description will be made by taking a mother code sequence of length N max = 512, 1024, 2048 as an example.
一、对于长度为
Figure PCTCN2018080379-appb-000037
的母码序列对应的长可靠度序列,设置β=2 0.25,按照现有技术的存储方式,将存储512个可靠度序列的元素值按照13bit进行量化,如表1所示:
First, for the length
Figure PCTCN2018080379-appb-000037
The long reliability sequence corresponding to the mother code sequence is set to β=2 0.25 . According to the storage method of the prior art, the element values storing 512 reliability sequences are quantized according to 13 bits, as shown in Table 1:
表1Table 1
00 413413 491491 903903 583583 996996 10741074 14871487
694694 11061106 11841184 15971597 12771277 16901690 17681768 21802180
825825 12381238 13161316 17281728 14081408 18211821 18991899 23122312
15191519 19311931 20092009 24222422 21022102 25152515 25932593 30053005
981981 13941394 14721472 18841884 15651565 19771977 20552055 24682468
16751675 20872087 21662166 25782578 22582258 26712671 27492749 31613161
18061806 22192219 22972297 27092709 23902390 28022802 28802880 32933293
25002500 29132913 29912991 34033403 30833083 34963496 35743574 39873987
11671167 15791579 16571657 20702070 17501750 21632163 22412241 26532653
18611861 22732273 23512351 27642764 24442444 28572857 29352935 33473347
19921992 24042404 24822482 28952895 25752575 29882988 30663066 34783478
26862686 30983098 31763176 35893589 32693269 36823682 37603760 41724172
21482148 25602560 26392639 30513051 27312731 31443144 32223222 36343634
28422842 32543254 33323332 37453745 34253425 38383838 39163916 43284328
29732973 33863386 34643464 38763876 35563556 39693969 40474047 44604460
36673667 40794079 41574157 45704570 42504250 46634663 47414741 51535153
13881388 18001800 18781878 22912291 19711971 23842384 24622462 28742874
20812081 24942494 25722572 29842984 26652665 30773077 31553155 35683568
22132213 26252625 27032703 31163116 27962796 32093209 32873287 36993699
29062906 33193319 33973397 38103810 34903490 39023902 39803980 43934393
23692369 27812781 28592859 32723272 29522952 33653365 34433443 38553855
30633063 34753475 35533553 39663966 36463646 40584058 41374137 45494549
31943194 36063606 36843684 40974097 37773777 41904190 42684268 46804680
38883888 43004300 43784378 47914791 44714471 48844884 49624962 53745374
25542554 29672967 30453045 34573457 31383138 35503550 36283628 40414041
32483248 36613661 37393739 41514151 38323832 42444244 43224322 47354735
33793379 37923792 38703870 42834283 39633963 43754375 44534453 48664866
40734073 44864486 45644564 49764976 46574657 50695069 51475147 55605560
35363536 39483948 40264026 44394439 41194119 45314531 46104610 50225022
42294229 46424642 47204720 51325132 48134813 52255225 53035303 57165716
43614361 47734773 48514851 52645264 49444944 53575357 54355435 58475847
50545054 54675467 55455545 59575957 56385638 60506050 61286128 65416541
16501650 20632063 21412141 25532553 22342234 26462646 27242724 31373137
23442344 27562756 28342834 32473247 29272927 33403340 34183418 38303830
24752475 28882888 29662966 33783378 30593059 34713471 35493549 39623962
31693169 35813581 36603660 40724072 37523752 41654165 42434243 46554655
26312631 30443044 31223122 35343534 32153215 36273627 37053705 41184118
33253325 37383738 38163816 42284228 39083908 43214321 43994399 48124812
34563456 38693869 39473947 43594359 40404040 44524452 45304530 49434943
41504150 45634563 46414641 50535053 47344734 51465146 52245224 56375637
28172817 32293229 33073307 37203720 34003400 38133813 38913891 43034303
35113511 39233923 40014001 44144414 40944094 45074507 45854585 49974997
36423642 40544054 41334133 45454545 42254225 46384638 47164716 51285128
43364336 47484748 48264826 52395239 49194919 53325332 54105410 58225822
37983798 42114211 42894289 47014701 43814381 47944794 48724872 52855285
44924492 49044904 49824982 53955395 50755075 54885488 55665566 59785978
46234623 50365036 51145114 55265526 52075207 56195619 56975697 61106110
53175317 57295729 58075807 62206220 59005900 63136313 63916391 68036803
30383038 34503450 35283528 39413941 36213621 40344034 41124112 45244524
37313731 41444144 42224222 46354635 43154315 47274727 48054805 52185218
38633863 42754275 43534353 47664766 44464446 48594859 49374937 53495349
45574557 49694969 50475047 54605460 51405140 55525552 56315631 60436043
40194019 44314431 45094509 49224922 46024602 50155015 50935093 55055505
47134713 51255125 52035203 56165616 52965296 57095709 57875787 61996199
48444844 52565256 53345334 57475747 54275427 58405840 59185918 63306330
55385538 59505950 60286028 64416441 61216121 65346534 66126612 70247024
42044204 46174617 46954695 51085108 47884788 52005200 52785278 56915691
48984898 53115311 53895389 58015801 54825482 58945894 59725972 63856385
50305030 54425442 55205520 59335933 56135613 60256025 61046104 65166516
57235723 61366136 62146214 66266626 63076307 67196719 67976797 72107210
51865186 55985598 56765676 60896089 57695769 61826182 62606260 66726672
58795879 62926292 63706370 67836783 64636463 68756875 69536953 73667366
60116011 64236423 65016501 69146914 65946594 70077007 70857085 74977497
67046704 71177117 71957195 76087608 72887288 77007700 77787778 81918191
应用本申请提供将长度为512的可靠度序列变换为基本序列对应的可靠度序列加可靠度参考序列的实现方式,可以有如下几种:Application This application provides an implementation method of transforming a reliability sequence of length 512 into a reliability sequence corresponding to a basic sequence plus a reliability reference sequence, which may be as follows:
(1)设置l s=3,N s=8,PW i,0≤i<8,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的元素的值按照13bit进行量化后,得到的基本序列对应的可靠度量化序列如表2所示: (1) Set l s = 3, N s = 8, PW i , 0 ≤ i < 8, the reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value of the element is quantized according to 13 bits. The reliable quantized sequence corresponding to the basic sequence is shown in Table 2:
表2Table 2
00 11 22 33 44 55 66 77
00 413413 491491 903903 583583 996996 10741074 14871487
由上述公式得到的量化后的可靠度参考序列如表3所示:The quantized reliability reference sequence obtained by the above formula is shown in Table 3:
表3table 3
88 1616 3232 6464 128128 256256
694694 825825 981981 11671167 13881388 16501650
由上述表2和表3可知,存储量化后的基本序列对应的可靠度序列或者可靠度量化序列时只需要存储
Figure PCTCN2018080379-appb-000038
个值,存储量化后的可靠度参考序列或可靠度参考量化序列需要存储l max-l s=9-3=6个值,总共只需要存储8+6=14个值,因此,相比原来需要存储512个值而言(表1),能够节约(512-14)/512=97.3%的存储空间,大大减小了存储开销,提高了存储效率。
It can be seen from Table 2 and Table 3 above that only the reliability sequence or the reliable quantized sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000038
Values, storing the quantized reliability reference sequence or the reliability reference quantization sequence needs to store l max -l s =9-3=6 values, and only need to store 8+6=14 values in total, therefore, compared with the original Need to store 512 values (Table 1), can save (512-14) / 512 = 97.3% of storage space, greatly reducing storage overhead and improving storage efficiency.
(2)设置l s=4,N s=16,PW i,0≤i<16,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的元素的值按照13bit进行量化后,得到的基本序列对应的可靠度量化序列如表4所示: (2) Set l s = 4, N s = 16, PW i , 0 ≤ i < 16, the reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value of the element is quantized according to 13 bits. The reliable quantized sequence corresponding to the basic sequence is shown in Table 4:
表4Table 4
00 11 22 33 44 55 66 77
00 413413 491491 903903 583583 996996 10741074 14871487
88 99 1010 1111 1212 1313 1414 1515
694694 11061106 11841184 15971597 12771277 16901690 17681768 21802180
由上述公式得到的量化后的可靠度参考序列如表5所示:The quantized reliability reference sequence obtained by the above formula is shown in Table 5:
表5table 5
1616 3232 6464 128128 256256
825825 981981 11671167 13881388 16501650
由上述表4和表5可知,存储量化后的基本序列对应的可靠度序列或者可靠度量化序列时只需要存储
Figure PCTCN2018080379-appb-000039
个值,存储量化后的可靠度参考序列或可靠度参考量化序列需要存储l max-l s=9-4=5个值,总共只需要存储16+5=21个值,因此,相比原来需要存储512个值而言(表1),能够节约(512-21)/512=95%的存储空间,大大减小了存储开销,提高了存储效率。
It can be seen from Table 4 and Table 5 above that only the reliability sequence or the reliable quantized sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000039
Values, storing the quantized reliability reference sequence or the reliability reference quantization sequence needs to store l max -l s =9-4=5 values, and only need to store 16+5=21 values in total, therefore, compared with the original Need to store 512 values (Table 1), can save (512-21) / 512 = 95% of storage space, greatly reducing storage overhead and improving storage efficiency.
(3)设置l s=5,N s=32,PW i,0≤i<32,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的元素的值按照13bit进行量化后,得到的基本序列对应的可靠度量化序列如表6所示: (3) Set l s =5, N s =32, PW i , 0 ≤ i <32. The reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value of the element is quantized according to 13 bits. The reliable quantized sequence corresponding to the basic sequence is shown in Table 6:
表6Table 6
00 11 22 33 44 55 66 77
00 413413 491491 903903 583583 996996 10741074 14871487
88 99 1010 1111 1212 1313 1414 1515
694694 11061106 11841184 15971597 12771277 16901690 17681768 21802180
1616 1717 1818 1919 2020 21twenty one 22twenty two 23twenty three
825825 12381238 13161316 17281728 14081408 18211821 18991899 23122312
24twenty four 2525 2626 2727 2828 2929 3030 3131
15191519 19311931 20092009 24222422 21022102 25152515 25932593 30053005
由上述公式得到的量化后的可靠度参考序列如表7所示:The quantized reliability reference sequence obtained by the above formula is shown in Table 7:
表7Table 7
3232 6464 128128 256256
981981 11671167 13881388 16501650
由上述表6和表7可知,存储基本序列对应的可靠度序列或者可靠度量化序列时只需要存储
Figure PCTCN2018080379-appb-000040
个值,存储量化后的可靠度参考序列或可靠度参考量化序列需要存储l max-l s=9-5=4个值,总共只需要存储32+4=36个值,因此,相比原可靠度需要存储512个值而言(表1),能够节约(512-36)/512=92.9%的存储空间,大大减小了存储开销,提高了存储效率。
It can be seen from Table 6 and Table 7 above that only the reliability sequence corresponding to the basic sequence or the reliable quantized sequence is stored.
Figure PCTCN2018080379-appb-000040
Values, storing the quantized reliability reference sequence or the reliability reference quantization sequence needs to store l max -l s =9-5=4 values, and only need to store 32+4=36 values in total, therefore, compared to the original Reliability needs to store 512 values (Table 1), which can save (512-36) / 512 = 92.9% storage space, greatly reducing storage overhead and improving storage efficiency.
(4)设置l s=6,N s=64,PW i,0≤i<64,由上述公式可以得到可靠度序列,并且对其中的值按照13bit进行量化后,得到的可靠度序列如表8所示: (4) Set l s =6, N s =64, PW i , 0 ≤ i < 64. The reliability sequence can be obtained by the above formula, and the reliability sequence is obtained by quantizing the value according to 13 bits. 8 shows:
表8Table 8
00 11 22 33 44 55 66 77
00 413413 491491 903903 583583 996996 10741074 14871487
88 99 1010 1111 1212 1313 1414 1515
694694 11061106 11841184 15971597 12771277 16901690 17681768 21802180
1616 1717 1818 1919 2020 21twenty one 22twenty two 23twenty three
825825 12381238 13161316 17281728 14081408 18211821 18991899 23122312
24twenty four 2525 2626 2727 2828 2929 3030 3131
15191519 19311931 20092009 24222422 21022102 25152515 25932593 30053005
3232 3333 3434 3535 3636 3737 3838 3939
981981 13941394 14721472 18841884 15651565 19771977 20552055 24682468
4040 4141 4242 4343 4444 4545 4646 4747
16751675 20872087 21662166 25782578 22582258 26712671 27492749 31613161
4848 4949 5050 5151 5252 5353 5454 5555
18061806 22192219 22972297 27092709 23902390 28022802 28802880 32933293
5656 5757 5858 5959 6060 6161 6262 6363
25002500 29132913 29912991 34033403 30833083 34963496 35743574 39873987
由上述公式得到的量化后的可靠度参考序列如表9所示:The quantized reliability reference sequence obtained by the above formula is shown in Table 9:
表9Table 9
6464 128128 256256
11671167 13881388 16501650
由上述表7和表8可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000041
个值,存储量化后的可靠度参考序列值需要存储l max-l s=9-6=3个值,总共只需要存储64+3=67个值,因此,相比原来需要存储512个值而言(表1),能够节约(512-67)/512=86.9%的存储空间,大大减小了存储开销,提高了存储效率。
It can be seen from Table 7 and Table 8 above that only the storage of the reliability sequence corresponding to the quantized basic sequence needs to be stored.
Figure PCTCN2018080379-appb-000041
Values, storing the quantized reliability reference sequence value needs to store l max -l s =9-6=3 values, and only need to store 64+3=67 values in total, therefore, it is necessary to store 512 values compared to the original value. In terms of (Table 1), it can save (512-67) / 512 = 86.9% of storage space, greatly reducing storage overhead and improving storage efficiency.
(5)设置l s=7,N s=128,PW i,0≤i<128,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照13bit进行量化后,得到的量化后的基本序列对应的可靠度序列如表10所示: (5) Set l s =7, N s =128, PW i , 0 ≤ i <128. The reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the obtained value is quantized according to 13 bits. The reliability sequence corresponding to the following basic sequence is shown in Table 10:
表10Table 10
00 11 22 33 44 55 66 77
00 413413 491491 903903 583583 996996 10741074 14871487
88 99 1010 1111 1212 1313 1414 1515
694694 11061106 11841184 15971597 12771277 16901690 17681768 21802180
1616 1717 1818 1919 2020 21twenty one 22twenty two 23twenty three
825825 12381238 13161316 17281728 14081408 18211821 18991899 23122312
24twenty four 2525 2626 2727 2828 2929 3030 3131
15191519 19311931 20092009 24222422 21022102 25152515 25932593 30053005
3232 3333 3434 3535 3636 3737 3838 3939
981981 13941394 14721472 18841884 15651565 19771977 20552055 24682468
4040 4141 4242 4343 4444 4545 4646 4747
16751675 20872087 21662166 25782578 22582258 26712671 27492749 31613161
4848 4949 5050 5151 5252 5353 5454 5555
18061806 22192219 22972297 27092709 23902390 28022802 28802880 32933293
5656 5757 5858 5959 6060 6161 6262 6363
25002500 29132913 29912991 34033403 30833083 34963496 35743574 39873987
6464 6565 6666 6767 6868 6969 7070 7171
11671167 15791579 16571657 20702070 17501750 21632163 22412241 26532653
7272 7373 7474 7575 7676 7777 7878 7979
18611861 22732273 23512351 27642764 24442444 28572857 29352935 33473347
8080 8181 8282 8383 8484 8585 8686 8787
19921992 24042404 24822482 28952895 25752575 29882988 30663066 34783478
8888 8989 9090 9191 9292 9393 9494 9595
26862686 30983098 31763176 35893589 32693269 36823682 37603760 41724172
9696 9797 9898 9999 100100 101101 102102 103103
21482148 25602560 26392639 30513051 27312731 31443144 32223222 36343634
104104 105105 106106 107107 108108 109109 110110 111111
28422842 32543254 33323332 37453745 34253425 38383838 39163916 43284328
112112 113113 114114 115115 116116 117117 118118 119119
29732973 33863386 34643464 38763876 35563556 39693969 40474047 44604460
120120 121121 122122 123123 124124 125125 126126 127127
36673667 40794079 41574157 45704570 42504250 46634663 47414741 51535153
由上述公式得到的量化后的可靠度参考序列如表11所示:The quantized reliability reference sequence obtained by the above formula is shown in Table 11:
表11Table 11
128128 256256
13881388 16501650
由上述表10和表11可知,存储可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000042
个值,存储可靠度参考序列值需要存储l max-l s=9-7=2个值,总共只需要存储128+2=130个值,因此,相比原可靠度需要存储512个值而言(表1),能够节约(512-130)/512=74.6%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Tables 10 and 11 above, only storage is required when storing the reliability sequence.
Figure PCTCN2018080379-appb-000042
Value, storage reliability reference sequence value needs to store l max -l s =9-7=2 values, only need to store 128+2=130 values in total, therefore, it needs to store 512 values compared to the original reliability. Words (Table 1) can save (512-130) / 512 = 74.6% of storage space, greatly reducing storage overhead and improving storage efficiency.
(5)设置l s=8,N s=256,PW i,0≤i<256,由上述公式可以得到可靠度序列,并且对其中的值按照13bit进行量化后,得到的可靠度序列如表12所示: (5) Set l s =8, N s =256, PW i , 0 ≤ i < 256. The reliability sequence can be obtained by the above formula, and the reliability sequence is obtained by quantizing the value according to 13 bits. 12 shows:
表12Table 12
00 11 22 33 44 55 66 77
00 413413 491491 903903 583583 996996 10741074 14871487
88 99 1010 1111 1212 1313 1414 1515
694694 11061106 11841184 15971597 12771277 16901690 17681768 21802180
1616 1717 1818 1919 2020 21twenty one 22twenty two 23twenty three
825825 12381238 13161316 17281728 14081408 18211821 18991899 23122312
24twenty four 2525 2626 2727 2828 2929 3030 3131
15191519 19311931 20092009 24222422 21022102 25152515 25932593 30053005
3232 3333 3434 3535 3636 3737 3838 3939
981981 13941394 14721472 18841884 15651565 19771977 20552055 24682468
4040 4141 4242 4343 4444 4545 4646 4747
16751675 20872087 21662166 25782578 22582258 26712671 27492749 31613161
4848 4949 5050 5151 5252 5353 5454 5555
18061806 22192219 22972297 27092709 23902390 28022802 28802880 32933293
5656 5757 5858 5959 6060 6161 6262 6363
25002500 29132913 29912991 34033403 30833083 34963496 35743574 39873987
6464 6565 6666 6767 6868 6969 7070 7171
11671167 15791579 16571657 20702070 17501750 21632163 22412241 26532653
7272 7373 7474 7575 7676 7777 7878 7979
18611861 22732273 23512351 27642764 24442444 28572857 29352935 33473347
8080 8181 8282 8383 8484 8585 8686 8787
19921992 24042404 24822482 28952895 25752575 29882988 30663066 34783478
8888 8989 9090 9191 9292 9393 9494 9595
26862686 30983098 31763176 35893589 32693269 36823682 37603760 41724172
9696 9797 9898 9999 100100 101101 102102 103103
21482148 25602560 26392639 30513051 27312731 31443144 32223222 36343634
104104 105105 106106 107107 108108 109109 110110 111111
28422842 32543254 33323332 37453745 34253425 38383838 39163916 43284328
112112 113113 114114 115115 116116 117117 118118 119119
29732973 33863386 34643464 38763876 35563556 39693969 40474047 44604460
120120 121121 122122 123123 124124 125125 126126 127127
36673667 40794079 41574157 45704570 42504250 46634663 47414741 51535153
128128 129129 130130 131131 132132 133133 134134 135135
13881388 18001800 18781878 22912291 19711971 23842384 24622462 28742874
136136 137137 138138 139139 140140 141141 142142 143143
20812081 24942494 25722572 29842984 26652665 30773077 31553155 35683568
144144 145145 146146 147147 148148 149149 150150 151151
22132213 26252625 27032703 31163116 27962796 32093209 32873287 36993699
152152 153153 154154 155155 156156 157157 158158 159159
29062906 33193319 33973397 38103810 34903490 39023902 39803980 43934393
160160 161161 162162 163163 164164 165165 166166 167167
23692369 27812781 28592859 32723272 29522952 33653365 34433443 38553855
168168 169169 170170 171171 172172 173173 174174 175175
30633063 34753475 35533553 39663966 36463646 40584058 41374137 45494549
176176 177177 178178 179179 180180 181181 182182 183183
31943194 36063606 36843684 40974097 37773777 41904190 42684268 46804680
184184 185185 186186 187187 188188 189189 190190 191191
38883888 43004300 43784378 47914791 44714471 48844884 49624962 53745374
192192 193193 194194 195195 196196 197197 198198 199199
25542554 29672967 30453045 34573457 31383138 35503550 36283628 40414041
200200 201201 202202 203203 204204 205205 206206 207207
32483248 36613661 37393739 41514151 38323832 42444244 43224322 47354735
208208 209209 210210 211211 212212 213213 214214 215215
33793379 37923792 38703870 42834283 39633963 43754375 44534453 48664866
216216 217217 218218 219219 220220 221221 222222 223223
40734073 44864486 45644564 49764976 46574657 50695069 51475147 55605560
224224 225225 226226 227227 228228 229229 230230 231231
35363536 39483948 40264026 44394439 41194119 45314531 46104610 50225022
232232 233233 234234 235235 236236 237237 238238 239239
42294229 46424642 47204720 51325132 48134813 52255225 53035303 57165716
240240 241241 242242 243243 244244 245245 246246 247247
43614361 47734773 48514851 52645264 49444944 53575357 54355435 58475847
248248 249249 250250 251251 252252 253253 254254 255255
50545054 54675467 55455545 59575957 56385638 60506050 61286128 65416541
由上述公式得到的可靠度参考序列如表13所示:The reliability reference sequence obtained by the above formula is shown in Table 13:
表13Table 13
256256
16501650
由上述表12和表13可知,存储可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000043
个值,存储可靠度参考序列值需要存储l max-l s=9-8=1个值,总共只需要存储256+1=257个值,因此,相比原可靠度需要存储512个值而言(表1),能够节约(512-257)/512=49.8%存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 12 and Table 13, the storage reliability sequence only needs to be stored.
Figure PCTCN2018080379-appb-000043
Value, storage reliability reference sequence value needs to store l max -l s =9-8=1 value, only need to store 256+1=257 values in total, therefore, it needs to store 512 values compared to the original reliability. Words (Table 1) can save (512-257) / 512 = 49.8% storage space, greatly reducing storage overhead and improving storage efficiency.
二、对于最大母码长度
Figure PCTCN2018080379-appb-000044
的最大母码长可靠度序列,设置β=2 0.25,按照现有技术的存储方式,对序列值进行14bit量化,将存储1024个值,如表14所示:
Second, for the maximum mother code length
Figure PCTCN2018080379-appb-000044
The maximum mother code length reliability sequence is set to β=2 0.25 . According to the storage method of the prior art, the sequence value is 14-bit quantized, and 1024 values are stored, as shown in Table 14:
表14Table 14
00 666666 792792 14571457 941941 16071607 17331733 23992399
11191119 17851785 19111911 25772577 20612061 27262726 28522852 35183518
13311331 19971997 21232123 27882788 22732273 29382938 30643064 37303730
24512451 31163116 32423242 39083908 33923392 40584058 41844184 48494849
15831583 22492249 23752375 30403040 25252525 31903190 33163316 39823982
27032703 33683368 34943494 41604160 36443644 43104310 44364436 51015101
29142914 35803580 37063706 43724372 38563856 45214521 46474647 53135313
40344034 47004700 48254825 54915491 49754975 56415641 57675767 64326432
18831883 25482548 26742674 33403340 28242824 34903490 36163616 42814281
30023002 36683668 37943794 44594459 39443944 46094609 47354735 54015401
32143214 38803880 40064006 46714671 41554155 48214821 49474947 56135613
43334333 49994999 51255125 57915791 52755275 59405940 60666066 67326732
34663466 41324132 42574257 49234923 44074407 50735073 51995199 58645864
45854585 52515251 53775377 60436043 55275527 61926192 63186318 69846984
47974797 54635463 55895589 62546254 57395739 64046404 65306530 71967196
59175917 65826582 67086708 73747374 68586858 75247524 76507650 83158315
22392239 29052905 30313031 36963696 31803180 38463846 39723972 46384638
33583358 40244024 41504150 48164816 43004300 49654965 50915091 57575757
35703570 42364236 43624362 50275027 45124512 51775177 53035303 59695969
46904690 53555355 54815481 61476147 56315631 62976297 64236423 70887088
38223822 44884488 46144614 52795279 47634763 54295429 55555555 62216221
49424942 56075607 57335733 63996399 58835883 65496549 66746674 73407340
51535153 58195819 59455945 66116611 60956095 67606760 68866886 75527552
62736273 69386938 70647064 77307730 72147214 78807880 80068006 86718671
41224122 47874787 49134913 55795579 50635063 57295729 58555855 65206520
52415241 59075907 60336033 66986698 61826182 68486848 69746974 76407640
54535453 61196119 62446244 69106910 63946394 70607060 71867186 78517851
65726572 72387238 73647364 80308030 75147514 81798179 83058305 89718971
57055705 63706370 64966496 71627162 66466646 73127312 74387438 81038103
68246824 74907490 76167616 82818281 77667766 84318431 85578557 92239223
70367036 77027702 78287828 84938493 79777977 86438643 87698769 94359435
81568156 88218821 89478947 96139613 90979097 97639763 98889888 1055410554
26632663 33283328 34543454 41204120 36043604 42704270 43954395 50615061
37823782 44484448 45744574 52395239 47234723 53895389 55155515 61816181
39943994 46594659 47854785 54515451 49354935 56015601 57275727 63926392
51135113 57795779 59055905 65716571 60556055 67206720 68466846 75127512
42464246 49114911 50375037 57035703 51875187 58535853 59795979 66446644
53655365 60316031 61576157 68226822 63076307 69726972 70987098 77647764
55775577 62436243 63696369 70347034 65186518 71847184 73107310 79767976
66966696 73627362 74887488 81548154 76387638 83038303 84298429 90959095
45454545 52115211 53375337 60026002 54875487 61526152 62786278 69446944
56655665 63306330 64566456 71227122 66066606 72727272 73987398 80638063
58775877 65426542 66686668 73347334 68186818 74847484 76097609 82758275
69966996 76627662 77887788 84538453 79377937 86038603 87298729 93959395
61286128 67946794 69206920 75867586 70707070 77357735 78617861 85278527
72487248 79147914 80398039 87058705 81898189 88558855 89818981 96469646
74607460 81258125 82518251 89178917 84018401 90679067 91939193 98589858
85798579 92459245 93719371 1003610036 95219521 1018610186 1031210312 1097810978
49014901 55675567 56935693 63596359 58435843 65086508 66346634 73007300
60216021 66876687 68136813 74787478 69626962 76287628 77547754 84208420
62336233 68986898 70247024 76907690 71747174 78407840 79667966 86318631
73527352 80188018 81448144 88098809 82948294 89598959 90859085 97519751
64856485 71507150 72767276 79427942 74267426 80928092 82188218 88838883
76047604 82708270 83968396 90619061 85458545 92119211 93379337 1000310003
78167816 84828482 86088608 92739273 87578757 94239423 95499549 1021410214
89358935 96019601 97279727 1039310393 98779877 1054210542 1066810668 1133411334
67846784 74507450 75767576 82418241 77267726 83918391 85178517 91839183
79047904 85698569 86958695 93619361 88458845 95119511 96379637 1030210302
81158115 87818781 89078907 95739573 90579057 97229722 98489848 1051410514
92359235 99019901 1002710027 1069210692 1017610176 1084210842 1096810968 1163411634
83678367 90339033 91599159 98259825 93099309 99749974 1010010100 1076610766
94879487 1015210152 1027810278 1094410944 1042810428 1109411094 1122011220 1188511885
96999699 1036410364 1049010490 1115611156 1064010640 1130611306 1143211432 1209712097
1081810818 1148411484 1161011610 1227512275 1175911759 1242512425 1255112551 1321713217
31663166 38323832 39583958 46244624 41084108 47734773 48994899 55655565
42864286 49514951 50775077 57435743 52275227 58935893 60196019 66846684
44984498 51635163 52895289 59555955 54395439 61056105 62316231 68966896
56175617 62836283 64096409 70747074 65586558 72247224 73507350 80168016
47494749 54155415 55415541 62076207 56915691 63566356 64826482 71487148
58695869 65356535 66616661 73267326 68106810 74767476 76027602 82688268
60816081 67466746 68726872 75387538 70227022 76887688 78147814 84798479
72007200 78667866 79927992 86578657 81428142 88078807 89338933 95999599
50495049 57155715 58415841 65066506 59905990 66566656 67826782 74487448
61696169 68346834 69606960 76267626 71107110 77757775 79017901 85678567
63806380 70467046 71727172 78387838 73227322 79877987 81138113 87798779
75007500 81658165 82918291 89578957 84418441 91079107 92339233 98989898
66326632 72987298 74247424 80898089 75747574 82398239 83658365 90319031
77527752 84178417 85438543 92099209 86938693 93599359 94859485 1015010150
79637963 86298629 87558755 94219421 89058905 95709570 96969696 1036210362
90839083 97499749 98759875 1054010540 1002410024 1069010690 1081610816 1148211482
54055405 60716071 61976197 68626862 63476347 70127012 71387138 78047804
65256525 71907190 73167316 79827982 74667466 81328132 82588258 89238923
67376737 74027402 75287528 81948194 76787678 83448344 84698469 91359135
78567856 85228522 86488648 93139313 87978797 94639463 95899589 1025510255
69886988 76547654 77807780 84468446 79307930 85958595 87218721 93879387
81088108 87748774 88998899 95659565 90499049 97159715 98419841 1050610506
83208320 89858985 91119111 97779777 92619261 99279927 1005310053 1071810718
94399439 1010510105 1023110231 1089610896 1038110381 1104611046 1117211172 1183811838
72887288 79547954 80808080 87458745 82298229 88958895 90219021 96879687
84078407 90739073 91999199 98659865 93499349 1001410014 1014010140 1080610806
86198619 92859285 94119411 1007610076 95619561 1022610226 1035210352 1101811018
97399739 1040410404 1053010530 1119611196 1068010680 1134611346 1147211472 1213712137
88718871 95379537 96639663 1032810328 98129812 1047810478 1060410604 1127011270
99919991 1065610656 1078210782 1144811448 1093210932 1159811598 1172411724 1238912389
1020210202 1086810868 1099410994 1166011660 1114411144 1180911809 1193511935 1260112601
1132211322 1198811988 1211312113 1277912779 1226312263 1292912929 1305513055 1372013720
58295829 64956495 66206620 72867286 67706770 74367436 75627562 82278227
69486948 76147614 77407740 84068406 78907890 85558555 86818681 93479347
71607160 78267826 79527952 86178617 81028102 87678767 88938893 95599559
82808280 89458945 90719071 97379737 92219221 98879887 1001310013 1067810678
74127412 80788078 82048204 88698869 83538353 90199019 91459145 98119811
85328532 91979197 93239323 99899989 94739473 1013910139 1026410264 1093010930
87438743 94099409 95359535 1020110201 96859685 1035010350 1047610476 1114211142
98639863 1052810528 1065410654 1132011320 1080410804 1147011470 1159611596 1226112261
77127712 83778377 85038503 91699169 86538653 93199319 94459445 1011010110
88318831 94979497 96239623 1028810288 97729772 1043810438 1056410564 1123011230
90439043 97099709 98349834 1050010500 99849984 1065010650 1077610776 1144111441
1016210162 1082810828 1095410954 1162011620 1110411104 1176911769 1189511895 1256112561
92959295 99609960 1008610086 1075210752 1023610236 1090210902 1102811028 1169311693
1041410414 1108011080 1120611206 1187111871 1135611356 1202112021 1214712147 1281312813
1062610626 1129211292 1141811418 1208312083 1156711567 1223312233 1235912359 1302513025
1174511745 1241112411 1253712537 1320313203 1268712687 1335213352 1347813478 1414414144
80688068 87338733 88598859 95259525 90099009 96759675 98019801 1046610466
91879187 98539853 99799979 1064410644 1012910129 1079410794 1092010920 1158611586
93999399 1006510065 1019110191 1085610856 1034010340 1100611006 1113211132 1179811798
1051910519 1118411184 1131011310 1197611976 1146011460 1212612126 1225112251 1291712917
96519651 1031710317 1044310443 1110811108 1059210592 1125811258 1138411384 1205012050
1077010770 1143611436 1156211562 1222812228 1171211712 1237712377 1250312503 1316913169
1098210982 1164811648 1177411774 1243912439 1192411924 1258912589 1271512715 1338113381
1210212102 1276712767 1289312893 1355913559 1304313043 1370913709 1383513835 1450014500
99519951 1061610616 1074210742 1140811408 1089210892 1155811558 1168311683 1234912349
1107011070 1173611736 1186211862 1252712527 1201112011 1267712677 1280312803 1346913469
1128211282 1194711947 1207312073 1273912739 1222312223 1288912889 1301513015 1368013680
1240112401 1306713067 1319313193 1385813858 1334313343 1400814008 1413414134 1480014800
1153411534 1219912199 1232512325 1299112991 1247512475 1314113141 1326713267 1393213932
1265312653 1331913319 1344513445 1411014110 1359513595 1426014260 1438614386 1505215052
1286512865 1353113531 1365713657 1432214322 1380613806 1447214472 1459814598 1526415264
1398413984 1465014650 1477614776 1544215442 1492614926 1559115591 1571715717 1638316383
应用本申请提供将长度为1024的母码序列对应的可靠度序列变换为基本序列对应的可靠度序列加可靠度参考序列的实现方式,可以有如下几种:The application provides a method for converting a reliability sequence corresponding to a mother code sequence of length 1024 into a reliability sequence corresponding to a basic sequence and a reliability reference sequence, which may be as follows:
(1)设置l s=3,N s=8,PW i,0≤i<8,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到的量化后的基本序列对应的可靠度序列如表15所示: (1) Set l s = 3, N s = 8, PW i , 0 ≤ i < 8, the reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the obtained value is quantized according to 14 bits. The reliability sequence corresponding to the following basic sequence is shown in Table 15:
表15Table 15
00 11 22 33 44 55 66 77
00 666666 792792 14571457 941941 16071607 17331733 23992399
由上述公式得到的量化后的可靠度参考序列如表16所示:The quantized reliability reference sequence obtained by the above formula is shown in Table 16:
表16Table 16
88 1616 3232 6464 128128 256256 512512
11191119 13311331 15831583 18831883 22392239 26632663 31663166
由上述表15和表16可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000045
个值,存储量化后的可靠度参考序列值需要存储l max-l s=10-3=7个值,总共只需要存储8+7=15个值,因此,相比原来需要存储1024个值而言(表14),能够节约(1024-15)/1024=98.5%的存储空间,大大减小了存储开销,提高了存储效率。
It can be seen from Table 15 and Table 16 above that only the storage of the reliability sequence corresponding to the quantized basic sequence needs to be stored.
Figure PCTCN2018080379-appb-000045
Values, storing the quantized reliability reference sequence value needs to store l max -l s =10-3=7 values, and only need to store 8+7=15 values in total, therefore, it is necessary to store 1024 values compared to the original value. In terms of (Table 14), it can save (1024-15)/1024=98.5% storage space, greatly reducing storage overhead and improving storage efficiency.
(2)设置l s=4,N s=16,PW i,0≤i<16,由上述公式可以得到基本序列对应的可靠度序列,如表17所示: (2) Set l s = 4, N s = 16, PW i , 0 ≤ i < 16, and the reliability sequence corresponding to the basic sequence can be obtained by the above formula, as shown in Table 17:
表17Table 17
00 11 22 33 44 55 66 77
00 11 1.1892071.189207 2.1892072.189207 1.4142141.414214 2.4142142.414214 2.6034212.603421 3.6034213.603421
88 99 1010 1111 1212 1313 1414 1515
1.6817931.681793 2.6817932.681793 2.8712.871 3.8713.871 3.0960063.096006 4.0960064.096006 4.2852144.285214 5.2852145.285214
由上述公式得到的可靠度参考序列如表18所示:The reliability reference sequence obtained by the above formula is shown in Table 18:
表18Table 18
1616 3232 6464 128128 256256 512512
22 2.3784142.378414 2.8284272.828427 3.3635863.363586 44 4.7568284.756828
可靠度序列也可以是原可靠度序列PW i的有限精度量化值,只要量化后的可靠度序列仍满足与原可靠度序列相同的相对大小关系。 The reliability sequence may also be a finite precision quantized value of the original reliability sequence PW i as long as the quantized reliability sequence still satisfies the same relative size relationship as the original reliability sequence.
如可对表17和表18进行14比特量化
Figure PCTCN2018080379-appb-000046
其中PW i为量化前的PW序列,
Figure PCTCN2018080379-appb-000047
为量化后的PW序列,max{PW}为量化前PW序列的最大值,
Figure PCTCN2018080379-appb-000048
为向上取整函数,量化精度为14比特。量化后得到表19和表20。量化精度与母码序列的长度N max成正相关,对越大的N max,通常需要更大的量化精度,来确保量化后的母码序列对应的可靠度序列仍满足与原可靠度序列相同的相对大小关系。这里仅为举例,其他长度的母码序列的可靠度序列的量化方式原理相同,不再赘述。
For example, 14-bit quantization can be performed on Table 17 and Table 18.
Figure PCTCN2018080379-appb-000046
Where PW i is the PW sequence before quantization,
Figure PCTCN2018080379-appb-000047
For the quantized PW sequence, max{PW} is the maximum value of the pre-quantization PW sequence.
Figure PCTCN2018080379-appb-000048
For the rounding up function, the quantization precision is 14 bits. After quantification, Tables 19 and 20 are obtained. The quantization precision is positively correlated with the length N max of the mother code sequence. For a larger N max , a larger quantization precision is usually required to ensure that the reliability sequence corresponding to the quantized mother code sequence still satisfies the same original reliability sequence. Relative size relationship. Here, for example only, the quantization method of the reliability sequence of the mother code sequences of other lengths has the same principle and will not be described again.
表19Table 19
00 11 22 33 44 55 66 77
00 666666 792792 14571457 941941 16071607 17331733 23992399
88 99 1010 1111 1212 1313 1414 1515
11191119 17851785 19111911 25772577 20612061 27262726 28522852 35183518
表20Table 20
1616 3232 6464 128128 256256 512512
13311331 15831583 18831883 22392239 26632663 31663166
由上述表19和表20可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000049
个值,存储量化后的可靠度参考序列值需要存储l max-l s=10-4=6个值,总共只需要存储16+6=22个值,因此,相比原来需要存储1024个值而言(表14),能够节约(1024-22)/1024=97.8%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Tables 19 and 20 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000049
Values, storing the quantized reliability reference sequence value needs to store l max -l s =10-4=6 values, and only need to store 16+6=22 values in total, therefore, it is necessary to store 1024 values compared to the original value. In terms of (Table 14), it can save (1024-22) / 1024 = 97.8% of storage space, greatly reducing storage overhead and improving storage efficiency.
(3)设置l s=5,N s=32,PW i,0≤i<32,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的元素的值按照14bit进行量化后,得到的量化后的基本序列对应的可靠度序列如表21所示: (3) Set l s =5, N s =32, PW i , 0 ≤ i <32. The reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value of the element is quantized according to 14 bits. The reliability sequence corresponding to the quantized basic sequence is shown in Table 21:
表21Table 21
00 11 22 33 44 55 66 77
00 666666 792792 14571457 941941 16071607 17331733 23992399
88 99 1010 1111 1212 1313 1414 1515
11191119 17851785 19111911 25772577 20612061 27262726 28522852 35183518
1616 1717 1818 1919 2020 21twenty one 22twenty two 23twenty three
13311331 19971997 21232123 27882788 22732273 29382938 30643064 37303730
24twenty four 2525 2626 2727 2828 2929 3030 3131
24512451 31163116 32423242 39083908 33923392 40584058 41844184 48494849
由上述公式得到的量化后的可靠度参考序列如表22所示:The quantized reliability reference sequence obtained by the above formula is shown in Table 22:
表22Table 22
3232 6464 128128 256256 512512
15831583 18831883 22392239 26632663 31663166
由上述表21和表22可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000050
个值,存储量化后的可靠度参考序列值需要存储l max-l s=10-5=5个值,总共只需要存储32+5=37个值,因此,相比原来需要存储1024个值而言(表14),能够节约(1024-37)/1024=96.4%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 21 and Table 22 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000050
Values, storing the quantized reliability reference sequence value needs to store l max -l s =10-5=5 values, and only need to store 32+5=37 values in total, therefore, it is necessary to store 1024 values compared to the original value. In terms of (Table 14), it can save (1024-37) / 1024 = 96.4% of storage space, greatly reducing storage overhead and improving storage efficiency.
(4)设置l s=6,N s=64,PW i,0≤i<64,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到的量化后的基本序列对应的可靠度 序列如表23所示: (4) Set l s =6, N s =64, PW i , 0 ≤ i <64. The reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the obtained value is quantized according to 14 bits. The reliability sequence corresponding to the following basic sequence is shown in Table 23:
表23Table 23
00 11 22 33 44 55 66 77
00 666666 792792 14571457 941941 16071607 17331733 23992399
88 99 1010 1111 1212 1313 1414 1515
11191119 17851785 19111911 25772577 20612061 27262726 28522852 35183518
1616 1717 1818 1919 2020 21twenty one 22twenty two 23twenty three
13311331 19971997 21232123 27882788 22732273 29382938 30643064 37303730
24twenty four 2525 2626 2727 2828 2929 3030 3131
24512451 31163116 32423242 39083908 33923392 40584058 41844184 48494849
3232 3333 3434 3535 3636 3737 3838 3939
15831583 22492249 23752375 30403040 25252525 31903190 33163316 39823982
4040 4141 4242 4343 4444 4545 4646 4747
27032703 33683368 34943494 41604160 36443644 43104310 44364436 51015101
4848 4949 5050 5151 5252 5353 5454 5555
29142914 35803580 37063706 43724372 38563856 45214521 46474647 53135313
5656 5757 5858 5959 6060 6161 6262 6363
40344034 47004700 48254825 54915491 49754975 56415641 57675767 64326432
由上述公式得到的量化后的可靠度参考序列如表24所示:The quantized reliability reference sequence obtained by the above formula is shown in Table 24:
表24Table 24
6464 128128 256256 512512
18831883 22392239 26632663 31663166
由上述表23和表24可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000051
个值,存储量化后的可靠度参考序列值需要存储l max-l s=10-6=4个值,总共只需要存储64+4=68个值,因此,相比原来需要存储1024个值而言(表14),能够节约(1024-68)/1024=93.3%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 23 and Table 24 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000051
Values, storing the quantized reliability reference sequence value needs to store l max -l s =10-6=4 values, and only need to store 64+4=68 values in total, therefore, it is necessary to store 1024 values compared to the original value. In terms of (Table 14), it can save (1024-68) / 1024 = 93.3% of storage space, greatly reducing storage overhead and improving storage efficiency.
(5)设置l s=7,N s=128,PW i,0≤i<128,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到量化后的基本序列对应的可靠度序列如表25所示: (5) Set l s =7, N s =128, PW i , 0 ≤ i <128. The reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value is quantized according to 14 bits, and then quantized. The reliability sequence corresponding to the basic sequence is shown in Table 25:
表25Table 25
00 11 22 33 44 55 66 77
00 666666 792792 14571457 941941 16071607 17331733 23992399
88 99 1010 1111 1212 1313 1414 1515
11191119 17851785 19111911 25772577 20612061 27262726 28522852 35183518
1616 1717 1818 1919 2020 21twenty one 22twenty two 23twenty three
13311331 19971997 21232123 27882788 22732273 29382938 30643064 37303730
24twenty four 2525 2626 2727 2828 2929 3030 3131
24512451 31163116 32423242 39083908 33923392 40584058 41844184 48494849
3232 3333 3434 3535 3636 3737 3838 3939
15831583 22492249 23752375 30403040 25252525 31903190 33163316 39823982
4040 4141 4242 4343 4444 4545 4646 4747
27032703 33683368 34943494 41604160 36443644 43104310 44364436 51015101
4848 4949 5050 5151 5252 5353 5454 5555
29142914 35803580 37063706 43724372 38563856 45214521 46474647 53135313
5656 5757 5858 5959 6060 6161 6262 6363
40344034 47004700 48254825 54915491 49754975 56415641 57675767 64326432
6464 6565 6666 6767 6868 6969 7070 7171
18831883 25482548 26742674 33403340 28242824 34903490 36163616 42814281
7272 7373 7474 7575 7676 7777 7878 7979
30023002 36683668 37943794 44594459 39443944 46094609 47354735 54015401
8080 8181 8282 8383 8484 8585 8686 8787
32143214 38803880 40064006 46714671 41554155 48214821 49474947 56135613
8888 8989 9090 9191 9292 9393 9494 9595
43334333 49994999 51255125 57915791 52755275 59405940 60666066 67326732
9696 9797 9898 9999 100100 101101 102102 103103
34663466 41324132 42574257 49234923 44074407 50735073 51995199 58645864
104104 105105 106106 107107 108108 109109 110110 111111
45854585 52515251 53775377 60436043 55275527 61926192 63186318 69846984
112112 113113 114114 115115 116116 117117 118118 119119
47974797 54635463 55895589 62546254 57395739 64046404 65306530 71967196
120120 121121 122122 123123 124124 125125 126126 127127
59175917 65826582 67086708 73747374 68586858 75247524 76507650 83158315
由上述公式得到量化后的可靠度参考序列如表26所示:The reliability reference sequence obtained by the above formula is shown in Table 26:
表26Table 26
128128 256256 512512
22392239 26632663 31663166
由上述表25和表26可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000052
个值,存储量化后的可靠度参考序列值需要存储l max-l s=10-7=3个值,总 共只需要存储128+3=131个值,因此,相比原来需要存储1024个值而言(表14),能够节约(1024-131)/1024=87.2%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 25 and Table 26 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000052
Values, storing the quantized reliability reference sequence value needs to store l max -l s =10-7=3 values, and only need to store 128+3=131 values in total, therefore, it is necessary to store 1024 values compared to the original value. In terms of (Table 14), it can save (1024-131)/1024=87.2% of storage space, greatly reducing storage overhead and improving storage efficiency.
(6)设置l s=8,N s=256,PW i,0≤i<256,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到量化后的基本序列对应的可靠度序列如表27所示: (6) Set l s =8, N s =256, PW i , 0 ≤ i < 256. The reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value is quantized according to 14 bits, and then quantized. The reliability sequence corresponding to the basic sequence is shown in Table 27:
表27Table 27
00 11 22 33 44 55 66 77
00 666666 792792 14571457 941941 16071607 17331733 23992399
88 99 1010 1111 1212 1313 1414 1515
11191119 17851785 19111911 25772577 20612061 27262726 28522852 35183518
1616 1717 1818 1919 2020 21twenty one 22twenty two 23twenty three
13311331 19971997 21232123 27882788 22732273 29382938 30643064 37303730
24twenty four 2525 2626 2727 2828 2929 3030 3131
24512451 31163116 32423242 39083908 33923392 40584058 41844184 48494849
3232 3333 3434 3535 3636 3737 3838 3939
15831583 22492249 23752375 30403040 25252525 31903190 33163316 39823982
4040 4141 4242 4343 4444 4545 4646 4747
27032703 33683368 34943494 41604160 36443644 43104310 44364436 51015101
4848 4949 5050 5151 5252 5353 5454 5555
29142914 35803580 37063706 43724372 38563856 45214521 46474647 53135313
5656 5757 5858 5959 6060 6161 6262 6363
40344034 47004700 48254825 54915491 49754975 56415641 57675767 64326432
6464 6565 6666 6767 6868 6969 7070 7171
18831883 25482548 26742674 33403340 28242824 34903490 36163616 42814281
7272 7373 7474 7575 7676 7777 7878 7979
30023002 36683668 37943794 44594459 39443944 46094609 47354735 54015401
8080 8181 8282 8383 8484 8585 8686 8787
32143214 38803880 40064006 46714671 41554155 48214821 49474947 56135613
8888 8989 9090 9191 9292 9393 9494 9595
43334333 49994999 51255125 57915791 52755275 59405940 60666066 67326732
9696 9797 9898 9999 100100 101101 102102 103103
34663466 41324132 42574257 49234923 44074407 50735073 51995199 58645864
104104 105105 106106 107107 108108 109109 110110 111111
45854585 52515251 53775377 60436043 55275527 61926192 63186318 69846984
112112 113113 114114 115115 116116 117117 118118 119119
47974797 54635463 55895589 62546254 57395739 64046404 65306530 71967196
120120 121121 122122 123123 124124 125125 126126 127127
59175917 65826582 67086708 73747374 68586858 75247524 76507650 83158315
128128 129129 130130 131131 132132 133133 134134 135135
22392239 29052905 30313031 36963696 31803180 38463846 39723972 46384638
136136 137137 138138 139139 140140 141141 142142 143143
33583358 40244024 41504150 48164816 43004300 49654965 50915091 57575757
144144 145145 146146 147147 148148 149149 150150 151151
35703570 42364236 43624362 50275027 45124512 51775177 53035303 59695969
152152 153153 154154 155155 156156 157157 158158 159159
46904690 53555355 54815481 61476147 56315631 62976297 64236423 70887088
160160 161161 162162 163163 164164 165165 166166 167167
38223822 44884488 46144614 52795279 47634763 54295429 55555555 62216221
168168 169169 170170 171171 172172 173173 174174 175175
49424942 56075607 57335733 63996399 58835883 65496549 66746674 73407340
176176 177177 178178 179179 180180 181181 182182 183183
51535153 58195819 59455945 66116611 60956095 67606760 68866886 75527552
184184 185185 186186 187187 188188 189189 190190 191191
62736273 69386938 70647064 77307730 72147214 78807880 80068006 86718671
192192 193193 194194 195195 196196 197197 198198 199199
41224122 47874787 49134913 55795579 50635063 57295729 58555855 65206520
200200 201201 202202 203203 204204 205205 206206 207207
52415241 59075907 60336033 66986698 61826182 68486848 69746974 76407640
208208 209209 210210 211211 212212 20132013 214214 215215
54535453 61196119 62446244 69106910 63946394 70607060 71867186 78517851
216216 217217 218218 219219 220220 221221 222222 223223
65726572 72387238 73647364 80308030 75147514 81798179 83058305 89718971
224224 225225 226226 227227 228228 229229 230230 231231
57055705 63706370 64966496 71627162 66466646 73127312 74387438 81038103
232232 233233 234234 235235 236236 237237 238238 239239
68246824 74907490 76167616 82818281 77667766 84318431 85578557 92239223
240240 241241 242242 243243 244244 245245 246246 247247
70367036 77027702 78287828 84938493 79777977 86438643 87698769 94359435
248248 249249 250250 251251 252252 253253 254254 255255
81568156 88218821 89478947 96139613 90979097 97639763 98889888 1055410554
由上述公式得到量化后的可靠度参考序列如表28所示:The reliability reference sequence obtained by the above formula is shown in Table 28:
表28Table 28
256256 512512
26632663 31663166
由上述表27和表28可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000053
个值,存储量化后的可靠度参考序列值需要存储l max-l s=10-8=2个值,总共只需要存储256+2=258个值,因此,相比原可靠度需要存储1024个值而言(表14),能够节约(1024-258)/1024=74.8%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 27 and Table 28 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000053
Values, store the quantized reliability reference sequence value needs to store l max -l s =10-8=2 values, only need to store 256+2=258 values in total, therefore, need to store 1024 compared to the original reliability. In terms of values (Table 14), it can save (1024-258)/1024=74.8% storage space, greatly reducing storage overhead and improving storage efficiency.
(7)设置l s=9,N s=512,PW i,0≤i<512,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到量化后的基本序列对应的可靠度序列如表29所示: (7) Set l s =9, N s = 512, PW i , 0 ≤ i < 512. The reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value is quantized according to 14 bits, and then quantized. The reliability sequence corresponding to the basic sequence is shown in Table 29:
表29Table 29
Figure PCTCN2018080379-appb-000054
Figure PCTCN2018080379-appb-000054
Figure PCTCN2018080379-appb-000055
Figure PCTCN2018080379-appb-000055
Figure PCTCN2018080379-appb-000056
Figure PCTCN2018080379-appb-000056
Figure PCTCN2018080379-appb-000057
Figure PCTCN2018080379-appb-000057
由上述公式得到量化后的可靠度参考序列如表30所示:The reliability reference sequence obtained by the above formula is shown in Table 30:
表30Table 30
512512
31663166
由上述表29和表30可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000058
个值,存储量化后的可靠度参考序列值需要存储l max-l s=10-9=1个值,总共只需要存储512+1=513个值,因此,相比原来需要存储1024个值而言(表14),能够节约(1024-513)/1024=49.9%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 29 and Table 30 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000058
Values, storing the quantized reliability reference sequence value needs to store l max -l s =10-9=1 values, and only need to store 512+1=513 values in total, therefore, it is necessary to store 1024 values compared to the original value. In terms of (Table 14), it can save (1024-513)/1024=49.9% storage space, greatly reducing storage overhead and improving storage efficiency.
三、对于长度
Figure PCTCN2018080379-appb-000059
的母码序列对应的可靠度序列,设置β=2 0.25,并进行14bit量化,按照现有技术的存储方将存储2048个值,如表31所示:
Third, for the length
Figure PCTCN2018080379-appb-000059
The reliability sequence corresponding to the mother code sequence is set to β=2 0.25 and 14-bit quantization is performed. According to the prior art, the storage side will store 2048 values, as shown in Table 31:
表31Table 31
00 541541 644644 11851185 765765 13071307 14091409 19501950
910910 14511451 15541554 20952095 16761676 22172217 23192319 28612861
10821082 16241624 17261726 22672267 18481848 23892389 24922492 30333033
19931993 25342534 26362636 31783178 27582758 32993299 34023402 39433943
12871287 18291829 19311931 24722472 20532053 25942594 26962696 32383238
21982198 27392739 28412841 33823382 29632963 35043504 36073607 41484148
23702370 29112911 30133013 35553555 31353135 36763676 37793779 43204320
32803280 38213821 39243924 44654465 40454045 45874587 46894689 52305230
15311531 20722072 21752175 27162716 22962296 28382838 29402940 34813481
24412441 29822982 30853085 36263626 32073207 37483748 38503850 43914391
26132613 31553155 32573257 37983798 33793379 39203920 40224022 45644564
35243524 40654065 41674167 47084708 42894289 48304830 49334933 54745474
28182818 33593359 34623462 40034003 35843584 41254125 42274227 47684768
37283728 42704270 43724372 49134913 44944494 50355035 51375137 56795679
39013901 44424442 45444544 50865086 46664666 52075207 53105310 58515851
48114811 53525352 54555455 59965996 55765576 61186118 62206220 67616761
18211821 23622362 24642464 30053005 25862586 31273127 32303230 37713771
27312731 32723272 33743374 39163916 34963496 40374037 41404140 46814681
29032903 34443444 35473547 40884088 36683668 42104210 43124312 48534853
38133813 43544354 44574457 49984998 45794579 51205120 52225222 57645764
31083108 36493649 37513751 42934293 38733873 44144414 45174517 50585058
40184018 45594559 46624662 52035203 47834783 53255325 54275427 59685968
41904190 47324732 48344834 53755375 49564956 54975497 55995599 61416141
51015101 56425642 57445744 62856285 58665866 64076407 65106510 70517051
33513351 38933893 39953995 45364536 41174117 46584658 47604760 53025302
42624262 48034803 49054905 54475447 50275027 55685568 56715671 62126212
44344434 49754975 50785078 56195619 51995199 57415741 58435843 63846384
53445344 58855885 59885988 65296529 61106110 66516651 67536753 72947294
46394639 51805180 52825282 58245824 54045404 59455945 60486048 65896589
55495549 60906090 61936193 67346734 63146314 68566856 69586958 74997499
57215721 62626262 63656365 69066906 64876487 70287028 71307130 76717671
66316631 71737173 72757275 78167816 73977397 79387938 80408040 85828582
21652165 27062706 28092809 33503350 29302930 34723472 35743574 41154115
30753075 36163616 37193719 42604260 38413841 43824382 44844484 50265026
32473247 37893789 38913891 44324432 40134013 45544554 46574657 51985198
41584158 46994699 48014801 53435343 49234923 54645464 55675567 61086108
34523452 39943994 40964096 46374637 42184218 47594759 48614861 54035403
43634363 49044904 50065006 55475547 51285128 56695669 57725772 63136313
45354535 50765076 51785178 57205720 53005300 58415841 59445944 64856485
54455445 59865986 60896089 66306630 62106210 67526752 68546854 73957395
36963696 42374237 43394339 48814881 44614461 50025002 51055105 56465646
46064606 51475147 52505250 57915791 53725372 59135913 60156015 65566556
47784778 53205320 54225422 59635963 55445544 60856085 61876187 67296729
56895689 62306230 63326332 68736873 64546454 69956995 70987098 76397639
49834983 55245524 56275627 61686168 57495749 62906290 63926392 69336933
58935893 64356435 65376537 70787078 66596659 72007200 73027302 78447844
60666066 66076607 67096709 72507250 68316831 73727372 74757475 80168016
69766976 75177517 76207620 81618161 77417741 82838283 83858385 89268926
39853985 45274527 46294629 51705170 47514751 52925292 53955395 59365936
48964896 54375437 55395539 60816081 56615661 62026202 63056305 68466846
50685068 56095609 57125712 62536253 58335833 63756375 64776477 70187018
59785978 65196519 66226622 71637163 67446744 72857285 73877387 79297929
52735273 58145814 59165916 64586458 60386038 65796579 66826682 72237223
61836183 67246724 68276827 73687368 69486948 74907490 75927592 81338133
63556355 68966896 69996999 75407540 71217121 76627662 77647764 83068306
72667266 78077807 79097909 84508450 80318031 85728572 86758675 92169216
55165516 60586058 61606160 67016701 62826282 68236823 69256925 74677467
64276427 69686968 70707070 76117611 71927192 77337733 78367836 83778377
65996599 71407140 72427242 77847784 73647364 79057905 80088008 85498549
75097509 80508050 81538153 86948694 82758275 88168816 89188918 94599459
68046804 73457345 74477447 79897989 75697569 81108110 82138213 87548754
77147714 82558255 83588358 88998899 84798479 90219021 91239123 96649664
78867886 84278427 85308530 90719071 86528652 91939193 92959295 98369836
87968796 93389338 94409440 99819981 95629562 1010310103 1020510205 1074710747
25752575 31163116 32183218 37593759 33403340 38813881 39843984 45254525
34853485 40264026 41284128 46704670 42504250 47924792 48944894 54355435
36573657 41984198 43014301 48424842 44234423 49644964 50665066 56075607
45674567 51095109 52115211 57525752 53335333 58745874 59765976 65186518
38623862 44034403 45064506 50475047 46274627 51695169 52715271 58125812
47724772 53135313 54165416 59575957 55385538 60796079 61816181 67226722
49444944 54865486 55885588 61296129 57105710 62516251 63536353 68956895
58555855 63966396 64986498 70407040 66206620 71617161 72647264 78057805
41054105 46474647 47494749 52905290 48714871 54125412 55155515 60566056
50165016 55575557 56595659 62016201 57815781 63226322 64256425 69666966
51885188 57295729 58325832 63736373 59535953 64956495 65976597 71387138
60986098 66396639 67426742 72837283 68646864 74057405 75077507 80498049
53935393 59345934 60366036 65786578 61586158 66996699 68026802 73437343
63036303 68446844 69476947 74887488 70687068 76107610 77127712 82538253
64756475 70167016 71197119 76607660 72417241 77827782 78847884 84268426
73857385 79277927 80298029 85708570 81518151 86928692 87958795 93369336
43954395 49364936 50395039 55805580 51615161 57025702 58045804 63456345
53055305 58475847 59495949 64906490 60716071 66126612 67146714 72567256
54785478 60196019 61216121 66626662 62436243 67846784 68876887 74287428
63886388 69296929 70317031 75737573 71537153 76957695 77977797 83388338
56825682 62246224 63266326 68676867 64486448 69896989 70917091 76337633
65936593 71347134 72367236 77787778 73587358 78997899 80028002 85438543
67656765 73067306 74097409 79507950 75307530 80728072 81748174 87158715
76757675 82168216 83198319 88608860 84418441 89828982 90849084 96259625
59265926 64676467 65706570 71117111 66916691 72337233 73357335 78767876
68366836 73777377 74807480 80218021 76027602 81438143 82458245 87878787
70087008 75507550 76527652 81938193 77747774 83158315 84188418 89598959
79197919 84608460 85628562 91049104 86848684 92259225 93289328 98699869
72137213 77547754 78577857 83988398 79797979 85208520 86228622 91649164
81248124 86658665 87678767 93089308 88898889 94309430 95339533 1007410074
82968296 88378837 89398939 94819481 90619061 96029602 97059705 1024610246
92069206 97479747 98509850 1039110391 99719971 1051310513 1061510615 1115611156
47404740 52815281 53835383 59245924 55055505 60466046 61496149 66906690
56505650 61916191 62936293 68356835 64156415 69566956 70597059 76007600
58225822 63636363 64666466 70077007 65876587 71297129 72317231 77727772
67326732 72747274 73767376 79177917 74987498 80398039 81418141 86838683
60276027 65686568 66706670 72127212 67926792 73347334 74367436 79777977
69376937 74787478 75817581 81228122 77037703 82448244 83468346 88878887
71097109 76517651 77537753 82948294 78757875 84168416 85188518 90609060
80208020 85618561 86638663 92049204 87858785 93269326 94299429 99709970
62706270 68126812 69146914 74557455 70367036 75777577 76797679 82218221
71817181 77227722 78247824 83668366 79467946 84878487 85908590 91319131
73537353 78947894 79977997 85388538 81188118 86608660 87628762 93039303
82638263 88048804 89078907 94489448 90299029 95709570 96729672 1021310213
75587558 80998099 82018201 87438743 83238323 88648864 89678967 95089508
84688468 90099009 91129112 96539653 92339233 97759775 98779877 1041810418
86408640 91819181 92849284 98259825 94069406 99479947 1004910049 1059110591
95509550 1009210092 1019410194 1073510735 1031610316 1085710857 1096010960 1150111501
65606560 71017101 72047204 77457745 73257325 78677867 79697969 85108510
74707470 80128012 81148114 86558655 82368236 87778777 88798879 94219421
76437643 81848184 82868286 88278827 84088408 89498949 90529052 95939593
85538553 90949094 91969196 97389738 93189318 98599859 99629962 1050310503
78477847 83898389 84918491 90329032 86138613 91549154 92569256 97989798
87588758 92999299 94019401 99439943 95239523 1006410064 1016710167 1070810708
89308930 94719471 95739573 1011510115 96959695 1023710237 1033910339 1088010880
98409840 1038110381 1048410484 1102511025 1060610606 1114711147 1124911249 1179011790
80918091 86328632 87358735 92769276 88568856 93989398 95009500 1004110041
90019001 95429542 96459645 1018610186 97679767 1030810308 1041010410 1095210952
91739173 97159715 98179817 1035810358 99399939 1048010480 1058210582 1112411124
1008410084 1062510625 1072710727 1126911269 1084910849 1139011390 1149311493 1203412034
93789378 99199919 1002210022 1056310563 1014410144 1068510685 1078710787 1132911329
1028810288 1083010830 1093210932 1147311473 1105411054 1159511595 1169811698 1223912239
1046110461 1100211002 1110411104 1164611646 1122611226 1176711767 1187011870 1241112411
1137111371 1191211912 1201512015 1255612556 1213612136 1267812678 1278012780 1332113321
30623062 36033603 37053705 42474247 38273827 43684368 44714471 50125012
39723972 45134513 46164616 51575157 47374737 52795279 53815381 59225922
41444144 46854685 47884788 53295329 49104910 54515451 55535553 60956095
50545054 55965596 56985698 62396239 58205820 63616361 64646464 70057005
43494349 48904890 49934993 55345534 51145114 56565656 57585758 62996299
52595259 58015801 59035903 64446444 60256025 65666566 66686668 72107210
54315431 59735973 60756075 66166616 61976197 67386738 68416841 73827382
63426342 68836883 69856985 75277527 71077107 76487648 77517751 82928292
45934593 51345134 52365236 57775777 53585358 58995899 60026002 65436543
55035503 60446044 61466146 66886688 62686268 68106810 69126912 74537453
56755675 62166216 63196319 68606860 64406440 69826982 70847084 76257625
65856585 71277127 72297229 77707770 73517351 78927892 79947994 85368536
58805880 64216421 65246524 70657065 66456645 71877187 72897289 78307830
67906790 73317331 74347434 79757975 75567556 80978097 81998199 87408740
69626962 75047504 76067606 81478147 77287728 82698269 83718371 89138913
78737873 84148414 85168516 90589058 86388638 91799179 92829282 98239823
48824882 54235423 55265526 60676067 56485648 61896189 62916291 68336833
57925792 63346334 64366436 69776977 65586558 70997099 72027202 77437743
59655965 65066506 66086608 71507150 67306730 72717271 73747374 79157915
68756875 74167416 75197519 80608060 76407640 81828182 82848284 88258825
61706170 67116711 68136813 73547354 69356935 74767476 75797579 81208120
70807080 76217621 77237723 82658265 78457845 83868386 84898489 90309030
72527252 77937793 78967896 84378437 80178017 85598559 86618661 92029202
81628162 87048704 88068806 93479347 89288928 94699469 95719571 1011310113
64136413 69546954 70577057 75987598 71797179 77207720 78227822 83638363
73237323 78657865 79677967 85088508 80898089 86308630 87328732 92749274
74967496 80378037 81398139 86808680 82618261 88028802 89058905 94469446
84068406 89478947 90499049 95919591 91719171 97139713 98159815 1035610356
77007700 82428242 83448344 88858885 84668466 90079007 91099109 96519651
86118611 91529152 92549254 97969796 93769376 99179917 1002010020 1056110561
87838783 93249324 94279427 99689968 95489548 1009010090 1019210192 1073310733
96939693 1023410234 1033710337 1087810878 1045910459 1100011000 1110211102 1164311643
52275227 57685768 58705870 64126412 59925992 65336533 66366636 71777177
61376137 66786678 67816781 73227322 69026902 74447444 75467546 80878087
63096309 68506850 69536953 74947494 70757075 76167616 77187718 82598259
72197219 77617761 78637863 84048404 79857985 85268526 86298629 91709170
65146514 70557055 71587158 76997699 72797279 78217821 79237923 84648464
74247424 79657965 80688068 86098609 81908190 87318731 88338833 93759375
75967596 81388138 82408240 87818781 83628362 89038903 90069006 95479547
85078507 90489048 91509150 96929692 92729272 98139813 99169916 1045710457
67586758 72997299 74017401 79427942 75237523 80648064 81678167 87088708
76687668 82098209 83118311 88538853 84338433 89748974 90779077 96189618
78407840 83818381 84848484 90259025 86058605 91479147 92499249 97909790
87508750 92929292 93949394 99359935 95169516 1005710057 1015910159 1070110701
80458045 85868586 86888688 92309230 88108810 93529352 94549454 99959995
89558955 94969496 95999599 1014010140 97219721 1026210262 1036410364 1090510905
91279127 96699669 97719771 1031210312 98939893 1043410434 1053610536 1107811078
1003810038 1057910579 1068110681 1122211222 1080310803 1134411344 1144711447 1198811988
70477047 75887588 76917691 82328232 78137813 83548354 84568456 89988998
79577957 84998499 86018601 91429142 87238723 92649264 93679367 99089908
81308130 86718671 87738773 93159315 88958895 94369436 95399539 1008010080
90409040 95819581 96849684 1022510225 98059805 1034710347 1044910449 1099010990
83348334 88768876 89788978 95199519 91009100 96419641 97449744 1028510285
92459245 97869786 98889888 1043010430 1001010010 1055110551 1065410654 1119511195
94179417 99589958 1006110061 1060210602 1018210182 1072410724 1082610826 1136711367
1032710327 1086810868 1097110971 1151211512 1109311093 1163411634 1173611736 1227812278
85788578 91199119 92229222 97639763 93439343 98859885 99879987 1052810528
94889488 1003010030 1013210132 1067310673 1025410254 1079510795 1089710897 1143911439
96619661 1020210202 1030410304 1084510845 1042610426 1096710967 1107011070 1161111611
1057110571 1111211112 1121411214 1175611756 1133611336 1187711877 1198011980 1252112521
98659865 1040710407 1050910509 1105011050 1063110631 1117211172 1127411274 1181611816
1077610776 1131711317 1141911419 1196011960 1154111541 1208212082 1218512185 1272612726
1094810948 1148911489 1159111591 1213312133 1171311713 1225512255 1235712357 1289812898
1185811858 1239912399 1250212502 1304313043 1262412624 1316513165 1326713267 1380813808
56365636 61786178 62806280 68216821 64026402 69436943 70457045 75877587
65476547 70887088 71907190 77317731 73127312 78537853 79567956 84978497
67196719 72607260 73627362 79047904 74847484 80258025 81288128 86698669
76297629 81708170 82738273 88148814 83948394 89368936 90389038 95799579
69246924 74657465 75677567 81088108 76897689 82308230 83338333 88748874
78347834 83758375 84788478 90199019 85998599 91419141 92439243 97849784
80068006 85478547 86508650 91919191 87728772 93139313 94159415 99569956
89168916 94589458 95609560 1010110101 96829682 1022310223 1032510325 1086710867
71677167 77087708 78117811 83528352 79337933 84748474 85768576 91179117
80778077 86198619 87218721 92629262 88438843 93849384 94879487 1002810028
82508250 87918791 88938893 94359435 90159015 95569556 96599659 1020010200
91609160 97019701 98049804 1034510345 99259925 1046710467 1056910569 1111011110
84548454 89968996 90989098 96399639 92209220 97619761 98649864 1040510405
93659365 99069906 1000810008 1055010550 1013010130 1067110671 1077410774 1131511315
95379537 1007810078 1018110181 1072210722 1030210302 1084410844 1094610946 1148711487
1044710447 1098810988 1109111091 1163211632 1121311213 1175411754 1185611856 1239812398
74577457 79987998 81008100 86428642 82228222 87638763 88668866 94079407
83678367 89088908 90119011 95529552 91339133 96749674 97769776 1031710317
85398539 90819081 91839183 97249724 93059305 98469846 99489948 1049010490
94509450 99919991 1009310093 1063410634 1021510215 1075610756 1085910859 1140011400
87448744 92859285 93889388 99299929 95109510 1005110051 1015310153 1069410694
96549654 1019610196 1029810298 1083910839 1042010420 1096110961 1106311063 1160511605
98279827 1036810368 1047010470 1101111011 1059210592 1113311133 1123611236 1177711777
1073710737 1127811278 1138111381 1192211922 1150211502 1204412044 1214612146 1268712687
89888988 95299529 96319631 1017310173 97539753 1029410294 1039710397 1093810938
98989898 1043910439 1054210542 1108311083 1066310663 1120511205 1130711307 1184811848
1007010070 1061110611 1071410714 1125511255 1083610836 1137711377 1147911479 1202012020
1098010980 1152211522 1162411624 1216512165 1174611746 1228712287 1238912389 1293112931
1027510275 1081610816 1091910919 1146011460 1104011040 1158211582 1168411684 1222512225
1118511185 1172611726 1182911829 1237012370 1195111951 1249212492 1259412594 1313613136
1135711357 1189911899 1200112001 1254212542 1212312123 1266412664 1276712767 1330813308
1226812268 1280912809 1291112911 1345313453 1303313033 1357413574 1367713677 1421814218
78017801 83438343 84458445 89868986 85678567 91089108 92109210 97529752
87128712 92539253 93559355 98969896 94779477 1001810018 1012110121 1066210662
88848884 94259425 95279527 1006910069 96499649 1019010190 1029310293 1083410834
97949794 1033510335 1043810438 1097910979 1055910559 1110111101 1120311203 1174411744
90899089 96309630 97329732 1027310273 98549854 1039510395 1049810498 1103911039
99999999 1054010540 1064210642 1118411184 1076410764 1130511305 1140811408 1194911949
1017110171 1071210712 1081510815 1135611356 1093610936 1147811478 1158011580 1212112121
1108111081 1162311623 1172511725 1226612266 1184711847 1238812388 1249012490 1303213032
93329332 98739873 99769976 1051710517 1009810098 1063910639 1074110741 1128211282
1024210242 1078410784 1088610886 1142711427 1100811008 1154911549 1165111651 1219312193
1041510415 1095610956 1105811058 1160011600 1118011180 1172111721 1182411824 1236512365
1132511325 1186611866 1196911969 1251012510 1209012090 1263212632 1273412734 1327513275
1061910619 1116111161 1126311263 1180411804 1138511385 1192611926 1202912029 1257012570
1153011530 1207112071 1217312173 1271512715 1229512295 1283612836 1293912939 1348013480
1170211702 1224312243 1234612346 1288712887 1246712467 1300913009 1311113111 1365213652
1261212612 1315313153 1325613256 1379713797 1337813378 1391913919 1402114021 1456214562
96229622 1016310163 1026510265 1080710807 1038710387 1092810928 1103111031 1157211572
1053210532 1107311073 1117611176 1171711717 1129711297 1183911839 1194111941 1248212482
1070410704 1124611246 1134811348 1188911889 1147011470 1201112011 1211312113 1265512655
1161511615 1215612156 1225812258 1279912799 1238012380 1292112921 1302413024 1356513565
1090910909 1145011450 1155311553 1209412094 1167511675 1221612216 1231812318 1285912859
1181911819 1236112361 1246312463 1300413004 1258512585 1312613126 1322813228 1377013770
1199211992 1253312533 1263512635 1317613176 1275712757 1329813298 1340113401 1394213942
1290212902 1344313443 1354513545 1408714087 1366713667 1420814208 1431114311 1485214852
1115311153 1169411694 1179611796 1233812338 1191811918 1245912459 1256212562 1310313103
1206312063 1260412604 1270712707 1324813248 1282812828 1337013370 1347213472 1401314013
1223512235 1277612776 1287912879 1342013420 1300113001 1354213542 1364413644 1418514185
1314513145 1368713687 1378913789 1433014330 1391113911 1445214452 1455414554 1509615096
1244012440 1298112981 1308413084 1362513625 1320513205 1374713747 1384913849 1439014390
1335013350 1389113891 1399413994 1453514535 1411614116 1465714657 1475914759 1530115301
1352213522 1406414064 1416614166 1470714707 1428814288 1482914829 1493214932 1547315473
1443314433 1497414974 1507615076 1561815618 1519815198 1573915739 1584215842 1638316383
应用本申请提供将长度为2048的最大母码长可靠度序列变换为可靠度序列加可靠度参考序列的实现方式,可以有如下几种:The application provides the implementation of transforming the maximum mother code length reliability sequence of length 2048 into a reliability sequence plus reliability reference sequence, which may be as follows:
(1)设置l s=3,N s=8,PW i,0≤i<8,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到量化后的基本序列对应的可靠度序列如表32所示: (1) Set l s = 3, N s = 8, PW i , 0 ≤ i < 8, the reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value is quantized according to 14 bits, and then quantized. The reliability sequence corresponding to the basic sequence is shown in Table 32:
表32Table 32
00 11 22 33 44 55 66 77
00 541541 644644 11851185 765765 13071307 14091409 19501950
由上述公式得到量化后的可靠度参考序列如表33所示:The reliability reference sequence obtained by the above formula is shown in Table 33:
表33Table 33
88 1616 3232 6464 128128 256256 512512 10241024
910910 10821082 12871287 15311531 18211821 21652165 25752575 30623062
由上述表32和表33可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000060
个值,存储量化后的可靠度参考序列值需要存储l max-l s=11-3=8个值,总共 只需要存储8+8=16个值,因此,相比原来需要存储2048个值而言(表31),能够节约(2048-16)/2048=99.2%的存储空间,大大减小了存储开销,提高了存储效率。
It can be seen from Table 32 and Table 33 above that only the storage of the reliability sequence corresponding to the quantized basic sequence needs to be stored.
Figure PCTCN2018080379-appb-000060
Values, storing the quantized reliability reference sequence value needs to store l max -l s =11-3=8 values, and only need to store 8+8=16 values in total, therefore, it is necessary to store 2048 values compared to the original value. In terms of (Table 31), it can save (2048-16)/2048=99.2% of storage space, greatly reducing storage overhead and improving storage efficiency.
(2)设置l s=4,N s=16,PW i,0≤i<16,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到量化后的基本序列对应的可靠度序列如表34所示: (2) Set l s = 4, N s = 16, PW i , 0 ≤ i < 16, the reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value is quantized according to 14 bits, and then quantized. The reliability sequence corresponding to the basic sequence is shown in Table 34:
表34Table 34
00 11 22 33 44 55 66 77
00 541541 644644 11851185 765765 13071307 14091409 19501950
88 99 1010 1111 1212 1313 1414 1515
910910 14511451 15541554 20952095 16761676 22172217 23192319 28612861
由上述公式得到量化后的可靠度参考序列如表35所示:The reliability reference sequence obtained by the above formula is shown in Table 35:
表35Table 35
1616 3232 6464 128128 256256 512512 10241024
10821082 12871287 15311531 18211821 21652165 25752575 30623062
由上述表34和表35可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000061
个值,存储量化后的可靠度参考序列值需要存储l max-l s=11-4=7个值,总共只需要存储16+7=23个值,因此,相比原来需要存储2048个值而言(表31),能够节约(2048-23)/2048=98.9%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 34 and Table 35 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000061
Values, storing the quantized reliability reference sequence value needs to store l max -l s =11-4=7 values, and only need to store 16+7=23 values in total, therefore, it is necessary to store 2048 values compared to the original value. In terms of (Table 31), it can save (2048-23) / 2048 = 98.9% of storage space, greatly reducing storage overhead and improving storage efficiency.
(3)设置l s=5,N s=32,PW i,0≤i<32,由上述公式可以得到的基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到量化后的基本序列对应的可靠度序列如表36所示: (3) Set l s = 5, N s = 32, PW i , 0 ≤ i < 32, the reliability sequence corresponding to the basic sequence can be obtained by the above formula, and quantize the value according to 14 bits to obtain the quantization. The reliability sequence corresponding to the following basic sequence is shown in Table 36:
表36Table 36
00 11 22 33 44 55 66 77
00 541541 644644 11851185 765765 13071307 14091409 19501950
88 99 1010 1111 1212 1313 1414 1515
910910 14511451 15541554 20952095 16761676 22172217 23192319 28612861
1616 1717 1818 1919 2020 21twenty one 22twenty two 23twenty three
10821082 16241624 17261726 22672267 18481848 23892389 24922492 30333033
24twenty four 2525 2626 2727 2828 2929 3030 3131
19931993 25342534 26362636 31783178 27582758 32993299 34023402 39433943
由上述公式得到量化后的可靠度参考序列如表37所示:The reliability reference sequence obtained by the above formula is shown in Table 37:
表37Table 37
3232 6464 128128 256256 512512 10241024
12871287 15311531 18211821 21652165 25752575 30623062
由上述表36和表37可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000062
个值,存储量化后的可靠度参考序列值需要存储l max-l s=11-5=6个值,总共只需要存储32+6=38个值,因此,相比原来需要存储2048个值而言(表31),能够节约(2048-38)/2048=98.1%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 36 and Table 37 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000062
Values, storing the quantized reliability reference sequence value needs to store l max -l s =11-5=6 values, only need to store 32+6=38 values in total, therefore, it is necessary to store 2048 values compared to the original value. In terms of (Table 31), it can save (2048-38) / 2048 = 98.1% of storage space, greatly reducing storage overhead and improving storage efficiency.
(4)设置l s=6,N s=64,PW i,0≤i<64,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到量化后的基本序列对应的可靠度序列如表38所示: (4) Set l s =6, N s =64, PW i , 0 ≤ i < 64. The reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value is quantized according to 14 bits, and then quantized. The reliability sequence corresponding to the basic sequence is shown in Table 38:
表38Table 38
00 11 22 33 44 55 66 77
00 541541 644644 11851185 765765 13071307 14091409 19501950
88 99 1010 1111 1212 1313 1414 1515
910910 14511451 15541554 20952095 16761676 22172217 23192319 28612861
1616 1717 1818 1919 2020 21twenty one 22twenty two 23twenty three
10821082 16241624 17261726 22672267 18481848 23892389 24922492 30333033
24twenty four 2525 2626 2727 2828 2929 3030 3131
19931993 25342534 26362636 31783178 27582758 32993299 34023402 39433943
3232 3333 3434 3535 3636 3737 3838 3939
12871287 18291829 19311931 24722472 20532053 25942594 26962696 32383238
4040 4141 4242 4343 4444 4545 4646 4747
21982198 27392739 28412841 33823382 29632963 35043504 36073607 41484148
4848 4949 5050 5151 5252 5353 5454 5555
23702370 29112911 30133013 35553555 31353135 36763676 37793779 43204320
5656 5757 5858 5959 6060 6161 6262 6363
32803280 38213821 39243924 44654465 40454045 45874587 46894689 52305230
由上述公式得到量化后的可靠度参考序列如表39所示:The reliability reference sequence obtained by the above formula is shown in Table 39:
表39Table 39
6464 128128 256256 512512 10241024
15311531 18211821 21652165 25752575 30623062
由上述表38和表39可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000063
个值,存储量化后的可靠度参考序列值需要存储l max-l s=11-6=5个值,总共只需要存储64+5=69个值,因此,相比原来需要存储2048个值而言(表31),能够节约 (2048-69)/=96.6%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 38 and Table 39 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000063
Values, storing the quantized reliability reference sequence value needs to store l max -l s =11-6=5 values, and only need to store 64+5=69 values in total, therefore, it is necessary to store 2048 values compared to the original value. In terms of (Table 31), it can save (2048-69) / = 96.6% of storage space, greatly reducing storage overhead and improving storage efficiency.
(5)设置l s=7,N s=128,PW i,0≤i<128,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到量化后的基本序列对应的可靠度序列如表40所示: (5) Set l s =7, N s =128, PW i , 0 ≤ i <128. The reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value is quantized according to 14 bits, and then quantized. The reliability sequence corresponding to the basic sequence is shown in Table 40:
表40Table 40
00 11 22 33 44 55 66 77
00 541541 644644 11851185 765765 13071307 14091409 19501950
88 99 1010 1111 1212 1313 1414 1515
910910 14511451 15541554 20952095 16761676 22172217 23192319 28612861
1616 1717 1818 1919 2020 21twenty one 22twenty two 23twenty three
10821082 16241624 17261726 22672267 18481848 23892389 24922492 30333033
24twenty four 2525 2626 2727 2828 2929 3030 3131
19931993 25342534 26362636 31783178 27582758 32993299 34023402 39433943
3232 3333 3434 3535 3636 3737 3838 3939
12871287 18291829 19311931 24722472 20532053 25942594 26962696 32383238
4040 4141 4242 4343 4444 4545 4646 4747
21982198 27392739 28412841 33823382 29632963 35043504 36073607 41484148
4848 4949 5050 5151 5252 5353 5454 5555
23702370 29112911 30133013 35553555 31353135 36763676 37793779 43204320
5656 5757 5858 5959 6060 6161 6262 6363
32803280 38213821 39243924 44654465 40454045 45874587 46894689 52305230
6464 6565 6666 6767 6868 6969 7070 7171
15311531 20722072 21752175 27162716 22962296 28382838 29402940 34813481
7272 7373 7474 7575 7676 7777 7878 7979
24412441 29822982 30853085 36263626 32073207 37483748 38503850 43914391
8080 8181 8282 8383 8484 8585 8686 8787
26132613 31553155 32573257 37983798 33793379 39203920 40224022 45644564
8888 8989 9090 9191 9292 9393 9494 9595
35243524 40654065 41674167 47084708 42894289 48304830 49334933 54745474
9696 9797 9898 9999 100100 101101 102102 103103
28182818 33593359 34623462 40034003 35843584 41254125 42274227 47684768
104104 105105 106106 107107 108108 109109 110110 111111
37283728 42704270 43724372 49134913 44944494 50355035 51375137 56795679
112112 113113 114114 115115 116116 117117 118118 119119
39013901 44424442 45444544 50865086 46664666 52075207 53105310 58515851
120120 121121 122122 123123 124124 125125 126126 127127
48114811 53525352 54555455 59965996 55765576 61186118 62206220 67616761
由上述公式得到量化后的可靠度参考序列如表41所示:The reliability reference sequence obtained by the above formula is shown in Table 41:
表41Table 41
128128 256256 512512 10241024
18211821 21652165 25752575 30623062
由上述表40和表41可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000064
个值,存储量化后的可靠度参考序列值需要存储l max-l s=11-7=4个值,总共只需要存储128+4=132个值,因此,相比原来需要存储2048个值而言(表31),能够节约(2048-132)/2048=93.5%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 40 and Table 41 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000064
Values, storing the quantized reliability reference sequence value needs to store l max -l s =11-7=4 values, and only need to store 128+4=132 values in total, therefore, it is necessary to store 2048 values compared to the original value. In terms of (Table 31), it can save (2048-132) / 2048 = 93.5% of storage space, greatly reducing storage overhead and improving storage efficiency.
(6)设置l s=8,N s=256,PW i,0≤i<256,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到量化后的基本序列对应的可靠度序列如表42所示: (6) Set l s =8, N s =256, PW i , 0 ≤ i < 256. The reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value is quantized according to 14 bits, and then quantized. The reliability sequence corresponding to the basic sequence is shown in Table 42:
表42Table 42
Figure PCTCN2018080379-appb-000065
Figure PCTCN2018080379-appb-000065
Figure PCTCN2018080379-appb-000066
Figure PCTCN2018080379-appb-000066
由上述公式得到量化后的可靠度参考序列如表43所示:The reliability reference sequence obtained by the above formula is shown in Table 43:
表43Table 43
256256 512512 10241024
21652165 25752575 30623062
由上述表42和表43可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000067
个值,存储量化后的可靠度参考序列值需要存储l max-l s=11-8=3个值,总共只需要存储256+3=259个值,因此,相比原来需要存储2048个值而言(表31),能够节约(2048-258)/2048=87.4%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 42 and Table 43 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is required to be stored.
Figure PCTCN2018080379-appb-000067
Values, storing the quantized reliability reference sequence value needs to store l max -l s =11-8=3 values, and only need to store 256+3=259 values in total, therefore, it is necessary to store 2048 values compared to the original value. In terms of (Table 31), it can save (2048-258)/2048=87.4% of storage space, greatly reducing storage overhead and improving storage efficiency.
(7)设置l s=9,N s=512,PW i,0≤i<512,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到量化后的基本序列对应的可靠度序列如表44所示: (7) Set l s =9, N s = 512, PW i , 0 ≤ i < 512. The reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value is quantized according to 14 bits, and then quantized. The reliability sequence corresponding to the basic sequence is shown in Table 44:
表44Table 44
Figure PCTCN2018080379-appb-000068
Figure PCTCN2018080379-appb-000068
Figure PCTCN2018080379-appb-000069
Figure PCTCN2018080379-appb-000069
Figure PCTCN2018080379-appb-000070
Figure PCTCN2018080379-appb-000070
Figure PCTCN2018080379-appb-000071
Figure PCTCN2018080379-appb-000071
由上述公式得到量化后的可靠度参考序列如表45所示:The reliability reference sequence obtained by the above formula is shown in Table 45:
表45Table 45
512512 10241024
25752575 30623062
由上述表44和表45可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000072
个值,存储量化后的可靠度参考序列值需要存储l max-l s=11-9=2个值,总共只需要存储512+2=514个值,因此,相比原来需要存储2048个值而言(表31),能够节约(2048-514)/2048=74.9%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 44 and Table 45 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is required to be stored.
Figure PCTCN2018080379-appb-000072
Values, storing the quantized reliability reference sequence value needs to store l max -l s =11-9=2 values, and only need to store 512+2=514 values in total, therefore, it is necessary to store 2048 values compared to the original value. In terms of (Table 31), it can save (2048-514) / 2048 = 74.9% of storage space, greatly reducing storage overhead and improving storage efficiency.
(8)设置l s=10,N s=1024,PW i,0≤i<1024,由上述公式可以得到基本序列对应的可靠度序列,并且对其中的值按照14bit进行量化后,得到量化后的基本序列对应的可靠度序列如表46所示: (8) Set l s =10, N s =1024, PW i , 0 ≤ i < 1024. The reliability sequence corresponding to the basic sequence can be obtained by the above formula, and the value is quantized according to 14 bits, and then quantized. The reliability sequence corresponding to the basic sequence is shown in Table 46:
表46Table 46
Figure PCTCN2018080379-appb-000073
Figure PCTCN2018080379-appb-000073
Figure PCTCN2018080379-appb-000074
Figure PCTCN2018080379-appb-000074
Figure PCTCN2018080379-appb-000075
Figure PCTCN2018080379-appb-000075
Figure PCTCN2018080379-appb-000076
Figure PCTCN2018080379-appb-000076
Figure PCTCN2018080379-appb-000077
Figure PCTCN2018080379-appb-000077
Figure PCTCN2018080379-appb-000078
Figure PCTCN2018080379-appb-000078
Figure PCTCN2018080379-appb-000079
Figure PCTCN2018080379-appb-000079
由上述公式得到量化后的可靠度参考序列如表47所示:The reliability reference sequence obtained by the above formula is shown in Table 47:
表47Table 47
10241024
30623062
由上述表46和表47可知,存储量化后的基本序列对应的可靠度序列时只需要存储
Figure PCTCN2018080379-appb-000080
个值,存储量化后的可靠度参考序列值需要存储l max-l s=11-10=1个值,总共只需要存储1024+1=1025个值,因此,相比原来需要存储2048个值而言(表31),能够节约(2048-1025)/2048=49.9%的存储空间,大大减小了存储开销,提高了存储效率。
As can be seen from Table 46 and Table 47 above, only the storage of the reliability sequence corresponding to the quantized basic sequence is stored.
Figure PCTCN2018080379-appb-000080
Values, storing the quantized reliability reference sequence value needs to store l max -l s =11-10=1 values, and only need to store 1024+1=1025 values in total, therefore, it is necessary to store 2048 values compared to the original value. In terms of (Table 31), it can save (2048-1025) / 2048 = 49.9% of storage space, greatly reducing storage overhead and improving storage efficiency.
需要说明的是,通过设置β的取值,可以获得不同的基本序列对应的可靠度序列,上述实施例中是以β=2 0.25为例,在别的实现方式中,还可以取值β=2 0.5,β=2 0.75等等。 It should be noted that, by setting the value of β, a reliability sequence corresponding to different basic sequences can be obtained. In the above embodiment, β=2 0.25 is taken as an example, and in other implementations, the value β= 2 0.5 , β = 2 0.75 and so on.
另外,根据不同的需求,还可以选择不同的l s,其取值范围为0≤l s<l max;与l s对应基本序列对应的可靠度序列和可靠度参考序列的长度分别是
Figure PCTCN2018080379-appb-000081
和l max-l s
In addition, according to different requirements, different l s can also be selected, and the value range is 0 ≤ l s < l max ; the reliability sequence corresponding to the basic sequence corresponding to l s and the length of the reliability reference sequence are respectively
Figure PCTCN2018080379-appb-000081
And l max -l s .
对不同的长度为N max的母码序列对应的可靠度序列,如
Figure PCTCN2018080379-appb-000082
均可采用本申请实施例提供的方法进行存储。
A sequence of reliability corresponding to different mother code sequences of length N max , such as
Figure PCTCN2018080379-appb-000082
The method provided in the embodiment of the present application can be used for storage.
基于前述的实施例一,对于长度为
Figure PCTCN2018080379-appb-000083
的母码序列对应的可靠度序列,利用PW公式对其进行变形计算得到的长度为
Figure PCTCN2018080379-appb-000084
的基本序列对应的可靠度序列,本实施例提供 相应的读取方式。下面将分实施例二~实施例四分别描述。
Based on the foregoing first embodiment, for the length
Figure PCTCN2018080379-appb-000083
The reliability sequence corresponding to the mother code sequence is calculated by using the PW formula to calculate the length.
Figure PCTCN2018080379-appb-000084
The reliability sequence corresponding to the basic sequence, the embodiment provides a corresponding reading mode. The second embodiment to the fourth embodiment will be separately described below.
实施例二Embodiment 2
在构造编码序列,例如Polar码时,编码码长为M、信息长度K info,读取前述实施例一提供的基本序列对应的可靠度序列N s构造Polar码时,主要有两种情形: When constructing a coded sequence, such as a Polar code, the code length is M, the information length is K info , and when the reliability sequence N s corresponding to the basic sequence provided in the first embodiment is configured to construct a Polar code, there are mainly two cases:
(1)在N≤N s时,从所述基本序列对应的可靠度序列中获取N个元素,所述N个元素的值大于所述N s个元素中N s-N个元素的值;所述N个元素在基本序列中对应的比特位置构成了编码序列; (1) When N≤N s, the reliability of obtaining the N elements from the base sequence corresponding to a sequence, the value larger than the value of N elements -N N s N s of the elements in the elements; The N elements form a coding sequence corresponding to corresponding bit positions in the basic sequence;
(2)在N>N s时,根据所述可靠度参考序列中的元素,对所述基本序列对应的可靠度序列进行扩展,组成长度为N的可靠度序列,所述长度为N的可靠度序列在母码序列中对应的比特位置构成了编码序列; (2) when N>N s , according to the elements in the reliability reference sequence, the reliability sequence corresponding to the basic sequence is extended to form a reliability sequence of length N, and the length is N reliable. The corresponding sequence of bit positions in the mother code sequence constitutes a coding sequence;
其中,根据编码码长M及信息长度K info确定可靠度序列的码长N。一种可能的实现方式中,
Figure PCTCN2018080379-appb-000085
M为编码码长,
Figure PCTCN2018080379-appb-000086
为向上取整。
The code length N of the reliability sequence is determined according to the code length M and the information length K info . In a possible implementation,
Figure PCTCN2018080379-appb-000085
M is the code length,
Figure PCTCN2018080379-appb-000086
Round up.
本实施例对可靠度序列进行读取的示意图如图3所示,其流程如图4所示,步骤如下:The schematic diagram of reading the reliability sequence in this embodiment is shown in FIG. 3, and the flow is shown in FIG. 4, and the steps are as follows:
步骤100,判断N与N s的大小;在N≤N s时,转入步骤101;在N>N s,转入步骤102; Step 100, determine the size of N s and N; when N≤N s, proceeds to step 101; in N> N s, proceeds to step 102;
步骤101,在N≤N s时,读取长度为N s的所述基本序列对应的可靠度序列的前N个元素,组成长度为N的可靠度序列,其中,所述N个元素的值大于所述N s个元素中N s-N个元素的值;所述N个元素在基本序列中对应的比特位置构成了编码序列; Step 101: When N≤N s , read the first N elements of the reliability sequence corresponding to the basic sequence of length N s to form a reliability sequence of length N, where the values of the N elements values greater than N s -N s elements in said N elements; N elements of the corresponding bit position in the base sequence constituting a coding sequence;
在N=N s时,基本序列对应的可靠度序列的前N个元素即长度为N的可靠度序列的全部元素。 When N=N s , the first N elements of the reliability sequence corresponding to the basic sequence are all elements of the reliability sequence of length N.
步骤102,在N>N s,用可靠度参考序列
Figure PCTCN2018080379-appb-000087
中的元素,对所述长度为N s的基本序列对应的可靠度序列
Figure PCTCN2018080379-appb-000088
进行扩展。
Step 102, at N>N s , using a reliability reference sequence
Figure PCTCN2018080379-appb-000087
The element in , the reliability sequence corresponding to the basic sequence of length N s
Figure PCTCN2018080379-appb-000088
Expand.
具体的,每一次扩展时,将
Figure PCTCN2018080379-appb-000089
扩展为
Figure PCTCN2018080379-appb-000090
其中,
Figure PCTCN2018080379-appb-000091
重复上述步骤,直到扩展后的可靠度序列长度为N;
Specifically, each time it is expanded, it will
Figure PCTCN2018080379-appb-000089
Expand to
Figure PCTCN2018080379-appb-000090
among them,
Figure PCTCN2018080379-appb-000091
Repeat the above steps until the extended reliability sequence length is N;
步骤103,记录可靠度排序序列Q;所述可靠度排序序列Q是按照可靠度大小,对所述长度为N的可靠度序列的元素进行顺序排序后得到的;Step 103: Record a reliability ranking sequence Q; the reliability ranking sequence Q is obtained by sequentially sorting the elements of the reliability sequence of length N according to the reliability level;
步骤104,根据速率匹配条件,按从后到前(或从前到后)的次序,依次读取可靠度排序序列Q中的元素;Step 104: sequentially read the elements in the reliability sorting sequence Q in order from back to front (or from front to back) according to the rate matching condition;
步骤105,若读取的元素对应的序号满足速率匹配条件,则跳过该元素。Step 105: If the sequence number corresponding to the read element satisfies the rate matching condition, the element is skipped.
否则,在步骤106,将该元素的序号加入信息比特序号集合
Figure PCTCN2018080379-appb-000092
Otherwise, in step 106, the sequence number of the element is added to the information bit number set.
Figure PCTCN2018080379-appb-000092
循环步骤105和步骤106,直到读取的序号集合大小为K;Looping step 105 and step 106 until the read sequence number size is K;
此时的信息比特序号集合
Figure PCTCN2018080379-appb-000093
即最可靠序号集合,其补集
Figure PCTCN2018080379-appb-000094
(相对于集合{0,1,…,N-1})为冻结比特序号集合。
Information bit number set at this time
Figure PCTCN2018080379-appb-000093
That is, the most reliable sequence number set, its complement
Figure PCTCN2018080379-appb-000094
(relative to the set {0, 1, ..., N-1}) is a set of frozen bit numbers.
实施本实施例二读取可靠度排序序列构造极化码的方法,存储开销小,且能灵活适配不同的速率匹配方式。The method for constructing a polarization code by reading the reliability sorting sequence in the second embodiment has a small storage overhead and can flexibly adapt to different rate matching modes.
实施例三:Embodiment 3:
本实施例三在根据前述实施例一提供的基本序列对应的可靠度序列N s构造Polar码时,预先对系统中可能出现的每个Polar码的编码码长M、信息长度K和速率匹配方式,存储阈值PW th。该阈值可以以阈值表的形式进行存储。该阈值表示,子信道的可靠度大于等于(或大于)该阈值、且子信道的序号不满足速率匹配条件的子信道序号集合大小为K,K=K info+K check,K info为信息长度的值,K check则CRC比特和/或动态校验比特长度的值。 In the third embodiment, when the Polar code is constructed according to the reliability sequence N s corresponding to the basic sequence provided in the foregoing first embodiment, the code length M, the information length K, and the rate matching manner of each Polar code that may appear in the system are pre-composed. , storing the threshold PW th . The threshold can be stored in the form of a threshold table. The threshold value indicates that the subchannel number of the subchannel is greater than or equal to (or greater than) the threshold, and the subchannel number of the subchannel does not satisfy the rate matching condition is K, K=K info +K check , and K info is the information length. The value of K check is the value of the CRC bit and/or the dynamic check bit length.
具体的,见示意图4和流程图5,本实施例三的步骤200~步骤202与上述实施例一的中的步骤100~步骤102相同,即当N≤N s时,读取长度为N s的所述基本序列对应的可靠度序列的N个元素,组成长度为N的可靠度序列;所述N个元素的值大于所述N s个元素中N s-N个元素的值;所述N个元素在基本序列中对应的比特位置构成了编码序列; Specifically, referring to FIG. 4 and flowchart 5, steps 200 to 202 of the third embodiment are the same as steps 100 to 102 of the first embodiment, that is, when N≤N s , the read length is N s . N elements of the sequence of the reliability of the base sequence corresponding to the sequence composition of the reliability of length N; and the value of the element is greater than the value of N -N N s N s elements the elements; and the The corresponding bit positions of the N elements in the basic sequence constitute a coding sequence;
当N>N s时,用可靠度参考序列
Figure PCTCN2018080379-appb-000095
中的元素,对所述长度为N s的基本序列对应的可靠度序列
Figure PCTCN2018080379-appb-000096
进行扩展,直到扩展后的可靠度序列的长度为N。该长度为N的可靠度序列是用于构造编码序列的依据,其N个元素在基本序列中对应的比特位置构成了编码序列。
Reliability reference sequence when N>N s
Figure PCTCN2018080379-appb-000095
The element in , the reliability sequence corresponding to the basic sequence of length N s
Figure PCTCN2018080379-appb-000096
Expand until the extended reliability sequence has a length of N. The reliability sequence of length N is the basis for constructing the coding sequence, and the N elements of the basic sequence form a coding sequence corresponding to the bit positions.
在步骤203,查找需要构建的Polar码的阈值;In step 203, searching for a threshold of a Polar code that needs to be constructed;
然后,根据速率匹配和长度为N的可靠度序列,对长度为N可靠度序列的每个元素PW i和序号同时与阈值PW th进行比较。 Then, according to the rate matching and the reliability sequence of length N, each element PW i and serial number of the length N reliability sequence are simultaneously compared with the threshold PW th .
具体的,在步骤204,判断长度为N可靠度序列的PW i的值是否大于等于(或大于)该阈值PW thSpecifically, in step 204, it is determined whether the value of PW i whose length is N reliability sequence is greater than or equal to (or greater than) the threshold PW th ;
在步骤205,判断该PW i对应的序号i是否满足速率匹配条件; In step 205, it is determined whether the sequence number i corresponding to the PW i satisfies a rate matching condition;
步骤206,将所有满足步骤204且不满足步骤205的元素加入信息比特序号集合
Figure PCTCN2018080379-appb-000097
Step 206, adding all the elements satisfying step 204 and not satisfying step 205 to the information bit number set
Figure PCTCN2018080379-appb-000097
循环步骤205~步骤206,直到读取的序号集合大小为K;Looping steps 205 to 206 until the size of the read sequence number is K;
此时的信息比特序号集合
Figure PCTCN2018080379-appb-000098
即最可靠序号集合,其补集
Figure PCTCN2018080379-appb-000099
(相对于集合{0,1,…,N-1})为冻结比特序号集合。
Information bit number set at this time
Figure PCTCN2018080379-appb-000098
That is, the most reliable sequence number set, its complement
Figure PCTCN2018080379-appb-000099
(relative to the set {0, 1, ..., N-1}) is a set of frozen bit numbers.
实施本实施例三读取基本序列对应的可靠度序列,扩展后的N个可靠度值可同时与阈值比较,比较过程支持并行处理,处理效率高,从而提高了构造极化码的效率。The reliability sequence corresponding to the basic sequence is read in the third embodiment, and the extended N reliability values can be compared with the threshold at the same time. The comparison process supports parallel processing, and the processing efficiency is high, thereby improving the efficiency of constructing the polarization code.
实施例四:Embodiment 4:
本实施例四在根据前述实施例一提供的基本序列对应的可靠度序列N s构造Polar码时,预先对系统中可能出现的每个Polar码的编码码长M、信息长度K和速率匹配方式,存储阈值PW th。该阈值可以以阈值表的形式进行存储。该阈值表示,子信道的 可靠度大于等于(或大于)该阈值、且子信道的序号不满足速率匹配条件的子信道序号集合大小为K。 In the fourth embodiment, when the Polar code is constructed according to the reliability sequence N s corresponding to the basic sequence provided in the foregoing first embodiment, the code length M, the information length K, and the rate matching manner of each Polar code that may appear in the system are pre-composed. , storing the threshold PW th . The threshold can be stored in the form of a threshold table. The threshold value indicates that the subchannel sequence number size of the subchannel whose reliability is greater than or equal to (or greater than) the threshold and the sequence number of the subchannel does not satisfy the rate matching condition is K.
具体的,见可靠性序列进行读取的示意图6和流程图7,本实施例四的方法步骤如下:For details, see the schematic diagram 6 and the flowchart 7 for reading the reliability sequence. The method steps of the fourth embodiment are as follows:
步骤300,判断N与N s的大小;在N≤N s时,转入步骤301;在N>N s,转入步骤302; Step 300, determine the size of N s and N; when N≤N s, proceeds to step 301; in N> N s, proceeds to step 302;
步骤301,在N≤N s时,从所述基本序列对应的可靠度序列中获取N个元素,所述N个元素的值大于所述N s个元素中N s-N个元素的值;所述N个元素在基本序列中对应的比特位置构成了编码序列;其中,在N=N s时,可靠度序列的前N个元素即可靠度序列的全部元素。 Step 301, when N≤N s, the reliability of obtaining the N elements from the base sequence corresponding to a sequence, the value larger than the value of N elements -N N s N s of the elements in the elements; The N elements form a coding sequence corresponding to the bit positions in the basic sequence; wherein, at N=N s , the first N elements of the reliability sequence are all elements of the reliability sequence.
步骤302,分N seg次从所述基本序列对应的可靠度序列中获取N个元素,所述N个元素在母码序列中对应的比特位置构成了编码序列,所述N seg=N/N sStep 302: Obtain N elements from the reliability sequence corresponding to the basic sequence by N seg times, where the N elements form a coding sequence in a corresponding bit position in the mother code sequence, and the N seg =N/N s .
步骤303,查找待构造的Polar码的阈值PW th Step 303, searching for a threshold value PW th of the Polar code to be constructed;
步骤304,第x次读取信息比特序号集合时(x的二进制表示为
Figure PCTCN2018080379-appb-000100
Figure PCTCN2018080379-appb-000101
计算
Figure PCTCN2018080379-appb-000102
从可靠度参考序列中读取。
Step 304, when the information bit number set is read x times (the binary representation of x is
Figure PCTCN2018080379-appb-000100
Figure PCTCN2018080379-appb-000101
Calculation
Figure PCTCN2018080379-appb-000102
Read from the reliability reference sequence.
然后,根据速率匹配条件和长度为N s的可靠度序列,对基本序列对应的可靠度序列的每个元素PW i和序号同时与阈值PW th,x-1进行比较。 Then, according to the rate matching condition and the reliability sequence of length N s , each element PW i and serial number of the reliability sequence corresponding to the basic sequence are simultaneously compared with the threshold PW th, x-1 .
具体的,在步骤305,判断基本序列对应的可靠度序列的PW i的值是否大于等于(或大于)该阈值PW th,x-1;需要说明的是,当第x+1读取时,根据速率匹配条件和长度为N s的可靠度序列,对基本序列对应的可靠度序列的每个元素PW i和序号同时与阈值PW th,x进行比较(如图6所示)。 Specifically, in step 305, it is determined whether the value of the PW i of the reliability sequence corresponding to the basic sequence is greater than or equal to (or greater than) the threshold PW th, x-1 ; it should be noted that when the x+1 is read, According to the rate matching condition and the reliability sequence of length N s , each element PW i and serial number of the reliability sequence corresponding to the basic sequence are simultaneously compared with the threshold PW th,x (as shown in FIG. 6 ).
在步骤306,判断该PW i的序号i对应的扩展序号i+(x-1)gN s是否满足速率匹配条件; In step 306, it is determined whether the extension sequence number i+(x-1)gN s corresponding to the sequence number i of the PW i satisfies the rate matching condition;
步骤307,将所有满足步骤305且不满足步骤306的元素的序号i+(x-1)gN s加入信息比特序号集合
Figure PCTCN2018080379-appb-000103
Step 307, adding all the numbers i+(x-1)gN s of the elements satisfying step 305 and not satisfying step 306 to the information bit number set
Figure PCTCN2018080379-appb-000103
循环步骤305~步骤307,直到读取的序号集合大小为K;Looping steps 305 to 307 until the size of the read sequence number is K;
此时的信息比特序号集合
Figure PCTCN2018080379-appb-000104
即最可靠序号集合,其补集
Figure PCTCN2018080379-appb-000105
(相对于集合{0,1,…,N-1})为冻结比特序号集合。
Information bit number set at this time
Figure PCTCN2018080379-appb-000104
That is, the most reliable sequence number set, its complement
Figure PCTCN2018080379-appb-000105
(relative to the set {0, 1, ..., N-1}) is a set of frozen bit numbers.
在另一种实现过程中,可以先读取冻结比特序号集合
Figure PCTCN2018080379-appb-000106
然后取补集得到信息比特序号集合
Figure PCTCN2018080379-appb-000107
In another implementation, the frozen bit number set can be read first.
Figure PCTCN2018080379-appb-000106
Then take the complement set to get the information bit number set
Figure PCTCN2018080379-appb-000107
实施例本实施例四提供的读取可靠度排序序列构造极化码的方法,无需对存储的短可靠性序列进行扩展,支持对短可靠性序列的分段并行读取(每一段可同时与阈值比较),因此,读取延迟较小,从而提高了构造极化码的效率。Embodiment The method for constructing a polarization code by reading the reliability sort sequence provided in the fourth embodiment does not need to extend the stored short reliability sequence, and supports segmented parallel reading of the short reliability sequence (each segment can be simultaneously Threshold comparison), therefore, the read latency is small, thereby increasing the efficiency of constructing the polarization code.
采用本申请实施例提供的构造极化码的方法,对最大母码长度为N max的最大母码长可靠度序列做一些变换,将最大母码长可靠度序列用可靠度序列和可靠度参考序列来表征。然后基于存储的可靠度序列和可靠度参考序列,构造极化码。其中,所述可靠度序列为最大母码长可靠度序列的子集,所述可靠度参考序列中的元素表示所述可靠度序列与所述最大母码长可靠度序列的偏移量,在存储的时候只存储所述可靠度序列和可靠度参考序列,由于可靠度序列的长度加上所述可靠度参考序列的长度,远远小于所述原可靠性序列的长度,因此能够节省存储开销,并且还能完成的表征最大母码长可靠度序列的特性。 By using the method for constructing a polarization code provided by the embodiment of the present application, the maximum mother code length reliability sequence with the maximum mother code length of N max is transformed, and the maximum mother code length reliability sequence is referenced by the reliability sequence and reliability. Sequence to characterize. The polarization code is then constructed based on the stored reliability sequence and the reliability reference sequence. The reliability sequence is a subset of a maximum mother code length reliability sequence, and an element in the reliability reference sequence represents an offset between the reliability sequence and the maximum mother code length reliability sequence. When storing, only the reliability sequence and the reliability reference sequence are stored, and since the length of the reliability sequence plus the length of the reliability reference sequence is much smaller than the length of the original reliability sequence, the storage overhead can be saved. And can also perform the characteristics of the maximum mother code length reliability sequence.
上述本申请提供的实施例中,分别从存储可靠度序列以及读取可靠度序列并获得信息比特序号集合的角度对本申请实施例提供的构造极化码的各方案进行了介绍。可以理解的是,上述方法可以在各个网元中实现。各个网元,例如终端、基站,控制节点等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。In the embodiment provided by the present application, each scheme for constructing a polarization code provided by the embodiment of the present application is introduced from the perspective of storing a reliability sequence and reading a reliability sequence and obtaining a set of information bit numbers. It can be understood that the above method can be implemented in each network element. In order to implement the above functions, each network element, such as a terminal, a base station, a control node, etc., includes a hardware structure and/or a software module corresponding to each function. Those skilled in the art will readily appreciate that the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
如图9所示,本申请提供的构造极化码的装置在具体实现中,包括:As shown in FIG. 9, the apparatus for constructing a polarization code provided by the present application includes:
存储器403,其存储基本序列对应的可靠度序列,所述基本序列对应的可靠度序列的长度小于等于母码序列对应的可靠度序列的长度;所述母码序列对应的可靠度序列的长度为
Figure PCTCN2018080379-appb-000108
所述基本序列对应的可靠度序列的长度为
Figure PCTCN2018080379-appb-000109
其中,0≤l s<l max;所述存储器403还用于存储可靠度参考序列,所述可靠度参考序列包括所述母码序列对应的可靠度序列中除所述基本序列对应的可靠度序列之外至少一个元素;所述可靠度参考序列的长度为l max-l s
The memory 403 stores a reliability sequence corresponding to the basic sequence, where the length of the reliability sequence corresponding to the basic sequence is less than or equal to the length of the reliability sequence corresponding to the mother code sequence; the length of the reliability sequence corresponding to the mother code sequence is
Figure PCTCN2018080379-appb-000108
The length of the reliability sequence corresponding to the basic sequence is
Figure PCTCN2018080379-appb-000109
Wherein, 0≤1 s <l max ; the memory 403 is further configured to store a reliability reference sequence, where the reliability reference sequence includes reliability corresponding to the basic sequence in the reliability sequence corresponding to the mother code sequence At least one element outside the sequence; the reliability reference sequence has a length of l max -l s .
所述基本序列对应的可靠度序列以及所述可靠度参考序列用于构造编码序列,例如极化码序列;a reliability sequence corresponding to the basic sequence and the reliability reference sequence are used to construct a coding sequence, such as a polarization code sequence;
控制器/处理器402,用于利用所述存储器403存储的可靠度序列以及所述可靠度参考序列构造编码序列,例如极化码序列。The controller/processor 402 is configured to construct a coding sequence, such as a polarization code sequence, using the reliability sequence stored by the memory 403 and the reliability reference sequence.
在具体的实现中,所述基本序列对应的可靠度序列为
Figure PCTCN2018080379-appb-000110
其中,
Figure PCTCN2018080379-appb-000111
(i) dec@(B n-1B n-2...B 0) bin。所述可靠度参考序列为
Figure PCTCN2018080379-appb-000112
In a specific implementation, the reliability sequence corresponding to the basic sequence is
Figure PCTCN2018080379-appb-000110
among them,
Figure PCTCN2018080379-appb-000111
(i) dec @(B n-1 B n-2 ... B 0 ) bin . The reliability reference sequence is
Figure PCTCN2018080379-appb-000112
当l max∈[7,8,9,10,11,12]时,所述母码序列对应的可靠度序列的长度的取值范围为
Figure PCTCN2018080379-appb-000113
When l max ∈[7,8,9,10,11,12], the length of the reliability sequence corresponding to the mother code sequence ranges from
Figure PCTCN2018080379-appb-000113
所述l s∈[1,2,3,4,5,6],所述基本序列对应的可靠度序列的长度的取值范围为
Figure PCTCN2018080379-appb-000114
The l s ∈ [1, 2, 3, 4, 5, 6], the length of the reliability sequence corresponding to the basic sequence ranges from
Figure PCTCN2018080379-appb-000114
关于不同的长度
Figure PCTCN2018080379-appb-000115
的母码序列,其对应的可靠度序列以及可靠度参考序列的生成方式可以参见前面方法实施例一中的描述,在此不再赘述。
About different lengths
Figure PCTCN2018080379-appb-000115
For the mother code sequence, the corresponding reliability sequence and the generation method of the reliability reference sequence, refer to the description in the first embodiment of the method, and details are not described herein again.
另外,所述控制器/处理器402,还用于对所述基本序列对应的可靠度序列进行量化后得到所述可靠度量化序列,且用于对所述可靠度参考序列进行量化后得到所述可靠度量化参考序列;In addition, the controller/processor 402 is further configured to quantize the reliability sequence corresponding to the basic sequence to obtain the reliable quantized sequence, and used to quantize the reliability reference sequence to obtain a location. Resolving a reliable quantified reference sequence;
则所述存储器401还用于存储可靠度量化序列和可靠度量化参考序列。The memory 401 is then also used to store a reliable quantized sequence and a reliable quantized reference sequence.
上述控制器/处理器402的功能可以通过电路实现也可以通过通用硬件执行软件代码实现,当采用后者时,所述存储器403还用于存储可被控制器/处理器402执行的程序代码。当控制器/处理器402运行存储器403存储的程序代码时就执行前述功能。The functions of the controller/processor 402 described above may be implemented by circuitry or by general purpose hardware executing software code which, when employed, is also used to store program code that can be executed by the controller/processor 402. The foregoing functions are performed when the controller/processor 402 runs the program code stored in the memory 403.
一种实现方式中,控制器/处理器402用于在N≤N s时,从所述基本序列对应的可靠度序列中获取N个元素,所述N个元素的值大于所述N s个元素中N s-N个元素的值;所述N个元素在基本序列中对应的比特位置构成了编码序列; In an implementation manner, the controller/processor 402 is configured to acquire N elements from the reliability sequence corresponding to the basic sequence when N≤N s , where the value of the N elements is greater than the N s a value of N s -N elements in the element; the corresponding bit positions of the N elements in the basic sequence constitute a coding sequence;
所述控制器/处理器402还用于根据所述可靠度参考序列中的元素,对所述基本序列对应的可靠度序列进行扩展,组成长度为N的可靠度序列,所述长度为N的可靠度序列在母码序列中对应的比特位置构成了编码序列;其中,所述长度为N的可靠度序列是所述处理器用可靠度参考序列
Figure PCTCN2018080379-appb-000116
中的元素对长度为Ns的基本序列对应的可靠度序列
Figure PCTCN2018080379-appb-000117
进行扩展得到的。
The controller/processor 402 is further configured to expand a reliability sequence corresponding to the basic sequence according to an element in the reliability reference sequence to form a reliability sequence of length N, where the length is N. The reliability sequence forms a coding sequence in a corresponding bit position in the mother code sequence; wherein the reliability sequence of length N is the processor reliability reference sequence
Figure PCTCN2018080379-appb-000116
The reliability sequence corresponding to the element in length Ns
Figure PCTCN2018080379-appb-000117
Extend it.
此外,所述存储器403还用于记录可靠度排序序列Q;所述可靠度排序序列Q是所述控制器/处理器402按照可靠度大小,对所述长度为N的可靠度序列的元素进行顺序排序后得到的。所述控制器/处理器402还用于获得信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K;所述信息比特序号集合A中的元素为所述可靠度排序序列Q中,序号不满足速率匹配条件的元素。In addition, the memory 403 is further configured to record a reliability ranking sequence Q; the reliability ranking sequence Q is that the controller/processor 402 performs an element of the reliability sequence of length N according to a reliability level. Obtained after sorting in order. The controller/processor 402 is further configured to obtain a set of information bit numbers A; the number of elements in the set of information bit numbers A is equal to a threshold K; the elements in the set of information bit numbers A are sorted by the reliability In the sequence Q, the element whose sequence number does not satisfy the rate matching condition.
在另一种实现方式中,所述控制器/处理器402还用于获得信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K;所述信息比特序号集合A中的元素为所述长度为N的可靠度序列中,值大于等于极化码的阈值PW th,且序号不满足速率匹配条件的元素。 In another implementation manner, the controller/processor 402 is further configured to obtain a set of information bit numbers A; the number of elements in the set of information bit numbers A is equal to a threshold K; The element is the element of the reliability sequence of length N, the value is greater than or equal to the threshold PW th of the polarization code, and the sequence number does not satisfy the rate matching condition.
在另一种实现方式中,所述控制器/处理器402,还用于在N≤N s时,从所述基本序列对应的可靠度序列中获取N个元素,所述N个元素的值大于所述N s个元素中N s-N个元素的值;所述N个元素在基本序列中对应的比特位置构成了编码序列。 In another implementation, the controller/processor 402 is further configured to acquire N elements from the reliability sequence corresponding to the basic sequence when N≤N s , the values of the N elements is greater than the value s N s -N element in the elements N; N elements of the corresponding bit position in the base sequence constituting a coding sequence.
在N>N s时,所述控制器/处理器402还用于分N seg次从所述基本序列对应的可靠度序列中获取N个元素,所述N个元素在母码序列中对应的比特位置构成了编码序列,所述N seg=N/N sWhen N>N s , the controller/processor 402 is further configured to acquire N elements from the reliability sequence corresponding to the basic sequence by N seg times, where the N elements correspond to the mother code sequence. The bit position constitutes a coding sequence, said N seg = N / N s .
所述N个元素中有K个元素在母码序列中对应的比特位置用于传输信息比特;K of the N elements are used to transmit information bits in corresponding bit positions in the mother code sequence;
所述K个元素为所述长度为N的可靠度序列中,值大于等于极化码的阈值PW th,且序号不满足速率匹配条件的元素;所述处理器取所述传输信息比特的K个元素的补集,得到N-K个传输冻结比特的元素; The K elements are elements of the reliability sequence of length N, the value is greater than or equal to the threshold PW th of the polarization code, and the sequence number does not satisfy the element of the rate matching condition; the processor takes the K of the transmission information bit The complement of the elements, get NK elements that transmit frozen bits;
或者所述N个元素中除所述K个元素之外的N-K个元素在母码序列中对应的比特位置用于传输冻结比特,所述用于传输冻结比特的N-K个元素为所述长度为N的可靠度序列中,值小于编码序列的阈值PW th,或序号满足速率匹配的元素;所控制器/处理器402取所述N-K个传输冻结比特的元素的补集,得到传输信息比特的K个元素;所述传输信息比特的K个元素与N-K个传输冻结比特的元素构成编码码长的N个元素。 Or the NK elements except the K elements in the N elements are used to transmit frozen bits in a corresponding bit position in the mother code sequence, and the NK elements used to transmit the frozen bits are the length In the reliability sequence of N, the value is smaller than the threshold PW th of the coding sequence, or the sequence number satisfies the rate matching element; the controller/processor 402 takes the complement of the elements of the NK transmission freeze bits to obtain the transmission information bits. K elements; the K elements of the transmission information bits and the elements of the NK transmission freeze bits constitute N elements of the code length.
所述控制器/处理器402在N seg次读取的第x次读取时,读取长度为N s的所述基本序列对应的可靠度序列的N s个元素,根据编码序列的阈值PW th计算阈值PW th,x-1,并且根据所述N s个元素的序号i,计算序号i+(x-1)gN s,取N s个元素中可靠度大于等于阈值PW th,x-1,且i+(x-1)gN s不满足速率匹配条件的元素,将该元素的序号i+(x-1)gN s加入传输信息比特的信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K; The controller/processor 402 reads N s elements of the reliability sequence corresponding to the basic sequence of length N s at the xth read of the N seg read, according to the threshold PW of the coding sequence th calculating the threshold value PW th, x-1, and according to the index i of the N s elements calculated number i + (x-1) gN s, take N s elements in reliability than or equal to the threshold value PW th, x-1 And i+(x-1)gN s does not satisfy the element of the rate matching condition, and the element number i+(x-1)gN s of the element is added to the information bit number set A of the transmission information bit; the information bit number set A is The number of elements is equal to the threshold K;
所述控制器/处理器402取所述信息比特序号集合A的补集,得到传输冻结息比特的N-K个元素;所述信息比特序号集合A中传输信息比特的K个元素与N-K个传输冻结比特的元素构成编码码长的N个元素;或者The controller/processor 402 takes the complement of the information bit number set A to obtain NK elements of the transmission freeze bit; the K element of the information bit set in the information bit number set A and the NK transmission freeze The elements of the bits constitute the N elements of the encoded code length; or
所述分N seg次从所述基本序列对应的可靠度序列中获取N个元素,包括: The sub-N seg times obtain N elements from the reliability sequence corresponding to the basic sequence, including:
所述控制器/处理器402在N seg次读取的第x次读取时,读取长度为N s的所述可靠度序列的N s个元素,并根据极化码的阈值PW th计算阈值PW th,x-1The controller/processor 402 reads N s elements of the reliability sequence of length N s at the xth read of the N seg read, and calculates according to the threshold PW th of the polarization code Threshold PW th, x-1 ;
所述控制器/处理器402根据所述N s个元素的序号i,计算序号i+(x-1)gN s,取N s个元素中可靠度小于阈值PW th,x-1或序号i+(x-1)gN s满足速率匹配条件的元素,将该元素的序号i+(x-1)gN s加入传输冻结息比特的冻结比特序号集合A cThe controller/processor 402 calculates the sequence number i+(x-1)gN s according to the sequence number i of the N s elements, and takes the reliability of the N s elements to be less than the threshold PW th, x-1 or the sequence number i+ ( X-1) gN s an element satisfying the rate matching condition, the element number i+(x-1)gN s of the element is added to the frozen bit number set A c of the transmission freeze bit;
所述控制器/处理器402取所述冻结比特序号集合A c的补集,得到传输信息比特的K个元素组成信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K; The controller/processor 402 takes the complement of the frozen bit number set A c , and obtains K elements of the transmission information bits to form an information bit number set A; the number of elements in the information bit number set A is equal to the threshold. K;
所述信息比特序号集合A中传输信息比特的K个元素与N-K个传输冻结比特的元素构成编码码长的N个元素。The K elements of the information bits and the elements of the N-K transmission freeze bits in the information bit number set A constitute N elements of the code length.
具体的处理步骤可以参见方法实施例二至实施例四,在此不再赘述。For specific processing steps, refer to method embodiment 2 to embodiment 4, and details are not described herein again.
进一步地,所述构造极化码的装置还可以包括编码器4051、调制器4052、解调器4054和解码器4053。编码器4051用于获取网络侧设备将要发给终端或者终端即将发给网络侧设备的数据/信令,并对该数据/信令进行编码。调制器4052对编码器4051编码后的数据/信令进行调制后传递给收发器401,由收发器401发送给终端或者其他网络侧设 备。Further, the apparatus for constructing a polarization code may further include an encoder 4051, a modulator 4052, a demodulator 4054, and a decoder 4053. The encoder 4051 is configured to acquire data/signaling that the network side device is to send to the terminal or the terminal is to be sent to the network side device, and encode the data/signaling. The modulator 4052 modulates the data/signal coded by the encoder 4051 and transmits it to the transceiver 401, which is transmitted by the transceiver 401 to the terminal or other network side device.
解调器4054用于获取终端或者其他网络侧设备发送的数据/信令,并进行解调。解码器4053用于对解调器4054解调后的数据/信令进行解码。The demodulator 4054 is configured to acquire data and signaling sent by the terminal or other network side device, and perform demodulation. The decoder 4053 is configured to decode the demodulated data/signal of the demodulator 4054.
上述编码器4051、调制器4052、解调器4054和解码器4053可以由合成的调制解调处理器405来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。The encoder 4051, the modulator 4052, the demodulator 4054, and the decoder 4053 may be implemented by a synthesized modem processor 405. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
所述网络侧设备还可以包括通信接口404,用于支持该构造极化码的装置与其他网络实体之间进行通信。可以理解的是,图8仅仅示出了构造极化码的装置的简化设计。在实际应用中,上述收发器401可以包括发射器和接收器,该装置可以包含任意数量的收发器,处理器,控制器/处理器,存储器,和/或通信接口等。The network side device may further include a communication interface 404 for supporting communication between the device configuring the polarization code and other network entities. It will be appreciated that Figure 8 only shows a simplified design of the apparatus for constructing a polarization code. In a practical application, the transceiver 401 described above may include a transmitter and a receiver, and the device may include any number of transceivers, processors, controllers/processors, memories, and/or communication interfaces, and the like.
上述装置在具体实现中,可以是终端或者网络侧设备。网络侧设备又可以是基站或者控制节点。In a specific implementation, the foregoing device may be a terminal or a network side device. The network side device can in turn be a base station or a control node.
本申请上述基站,终端、或控制节点的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。The controller/processor of the above base station, terminal, or control node of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field programmable gate array ( FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure. The processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令(例如,程序代码)的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端中。当然,处理器和存储介质也可以作为分立组件存在于终端中。The steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions (eg, program code). The software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art. In the medium. An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium. Of course, the storage medium can also be an integral part of the processor. The processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the terminal. Of course, the processor and the storage medium can also exist as discrete components in the terminal.
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。Those skilled in the art will appreciate that in one or more examples described above, the functions described herein can be implemented in hardware, software, firmware, or any combination thereof. When implemented in software, the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium. Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another. A storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。The specific embodiments of the present invention have been described in detail with reference to the specific embodiments of the present application. It is to be understood that the foregoing description is only The scope of protection, any modifications, equivalent substitutions, improvements, etc. made on the basis of the technical solutions of the present application are included in the scope of protection of the present application.

Claims (35)

  1. 一种构造编码序列的方法,其特征在于,所述方法由终端或者网络设备执行,所述方法包括:A method for constructing a coded sequence, the method being performed by a terminal or a network device, the method comprising:
    存储基本序列对应的可靠度序列,所述基本序列对应的可靠度序列的长度小于等于母码序列对应的可靠度序列的长度;And storing a reliability sequence corresponding to the basic sequence, where the length of the reliability sequence corresponding to the basic sequence is less than or equal to the length of the reliability sequence corresponding to the mother code sequence;
    存储可靠度参考序列,所述可靠度参考序列包括所述母码序列对应的可靠度序列中除所述基本序列对应的可靠度序列之外至少一个元素;Storing a reliability reference sequence, where the reliability reference sequence includes at least one element other than the reliability sequence corresponding to the basic sequence in the reliability sequence corresponding to the mother code sequence;
    利用所述基本序列对应的可靠度序列以及所述可靠度参考序列中的元素构造编码序列。The coding sequence is constructed using the reliability sequence corresponding to the basic sequence and the elements in the reliability reference sequence.
  2. 如权利要求1所述的构造编码序列的方法,其特征在于,所述母码序列对应的可靠度序列的长度为
    Figure PCTCN2018080379-appb-100001
    所述基本序列对应的可靠度序列的长度为
    Figure PCTCN2018080379-appb-100002
    其中,0≤l s<l max
    The method of constructing a coded sequence according to claim 1, wherein the length of the reliability sequence corresponding to the mother code sequence is
    Figure PCTCN2018080379-appb-100001
    The length of the reliability sequence corresponding to the basic sequence is
    Figure PCTCN2018080379-appb-100002
    Where 0 ≤ l s < l max .
  3. 如权利要求2所述的构造编码序列的方法,其特征在于,所述基本序列对应的可靠度序列中的第i个元素为:
    Figure PCTCN2018080379-appb-100003
    其中,
    Figure PCTCN2018080379-appb-100004
    (i) dec@(B n-1B n-2...B 0) bin,(i) dec表示为i为十进制数,(B n-1B n-2...B 0) bin表示二进制数,β为指数的基数。
    The method of constructing a coded sequence according to claim 2, wherein the i-th element in the reliability sequence corresponding to the basic sequence is:
    Figure PCTCN2018080379-appb-100003
    among them,
    Figure PCTCN2018080379-appb-100004
    (i) dec @(B n-1 B n-2 ... B 0 ) bin , (i) dec denotes that i is a decimal number, (B n-1 B n-2 ... B 0 ) bin represents Binary number, β is the cardinality of the index.
  4. 如权利要求3所述的构造编码序列的方法,其特征在于,所述可靠度参考序列的长度为l max-l s,所述可靠度参考序列为
    Figure PCTCN2018080379-appb-100005
    β为指数的基数。
    The method of constructing a coded sequence according to claim 3, wherein the reliability reference sequence has a length of l max -l s , and the reliability reference sequence is
    Figure PCTCN2018080379-appb-100005
    β is the base of the index.
  5. 如权利要求2所述的构造编码序列的方法,其特征在于,所述l max∈[8,9,10,11,12],所述母码序列对应的可靠度序列的长度为
    Figure PCTCN2018080379-appb-100006
    所述l s∈[0,1,2,3,4,5,6,7,8,9,10,11],所述基本序列对应的可靠度序列的长度为
    Figure PCTCN2018080379-appb-100007
    The method of constructing a coded sequence according to claim 2, wherein said l max ∈[8,9,10,11,12], the length of the reliability sequence corresponding to said mother code sequence is
    Figure PCTCN2018080379-appb-100006
    The l s ∈[0,1,2,3,4,5,6,7,8,9,10,11], the length of the reliability sequence corresponding to the basic sequence is
    Figure PCTCN2018080379-appb-100007
  6. 如权利要求2所述的一种构造编码序列的方法,其特征在于,利用所述基本序列对应的可靠度序列以及所述可靠度参考序列构造长度为N、编码长度为M、信息长度为K info的编码序列,包括: The method for constructing a coded sequence according to claim 2, wherein the reliability sequence corresponding to the basic sequence and the reliability reference sequence are constructed to have a length of N, a code length of M, and an information length of K. The coding sequence of info , including:
    在N≤N s时,从所述基本序列对应的可靠度序列中获取N个元素,所述N个元素的值大于所述N s个元素中N s-N个元素的值;所述N个元素在基本序列中对应的比特位置构成了编码序列; When N≤N s, the reliability of obtaining the N elements from the base sequence corresponding to a sequence, the value larger than the value of N elements -N N s N s elements the elements; and the N The corresponding bit positions of the elements in the basic sequence constitute a coding sequence;
    在N>N s时,根据所述可靠度参考序列中的元素,对所述基本序列对应的可靠度序列进行扩展,组成长度为N的可靠度序列,所述长度为N的可靠度序列在母码序列中对应的比特位置构成了编码序列。 When N>N s , the reliability sequence corresponding to the basic sequence is extended according to the elements in the reliability reference sequence to form a reliability sequence of length N, and the reliability sequence of length N is The corresponding bit positions in the mother code sequence constitute the coding sequence.
  7. 如权利要求6所述的构造编码序列的方法,其特征在于,所述长度为N的可靠度序列是用可靠度参考序列
    Figure PCTCN2018080379-appb-100008
    中的元素对长度为N s的基本序列对应的可靠度序列中的元素
    Figure PCTCN2018080379-appb-100009
    进行扩展得到 的,β为指数的基数。
    The method of constructing a coded sequence according to claim 6, wherein said reliability sequence of length N is a reliability reference sequence
    Figure PCTCN2018080379-appb-100008
    The element in the pair of elements in the reliability sequence corresponding to the base sequence of length N s
    Figure PCTCN2018080379-appb-100009
    As a result of the expansion, β is the base of the index.
  8. 如权利要求7所述的构造编码序列的方法,其特征在于,所述方法还包括:The method of constructing a coded sequence according to claim 7, wherein the method further comprises:
    记录可靠度排序序列Q;所述可靠度排序序列Q是按照可靠度大小,对所述长度为N的可靠度序列中的元素进行顺序排序后得到的。The reliability ranking sequence Q is recorded; the reliability ranking sequence Q is obtained by sequentially sorting the elements in the reliability sequence of length N according to the reliability level.
  9. 如权利要求8所述的构造编码序列的方法,其特征在于,所述方法还包括:The method of constructing a coded sequence according to claim 8, wherein the method further comprises:
    获得信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K;所述信息比特序号集合A中的元素为所述可靠度排序序列Q中,序号不满足速率匹配条件的最可靠的K个元素。Obtaining an information bit number set A; the number of elements in the information bit number set A is equal to a threshold K; the elements in the information bit number set A are in the reliability sorting sequence Q, and the sequence number does not satisfy the rate matching condition The most reliable K elements.
  10. 如权利要求8所述的构造编码序列的方法,其特征在于,所述方法还包括:The method of constructing a coded sequence according to claim 8, wherein the method further comprises:
    获得信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K;Obtaining an information bit number set A; the number of elements in the information bit number set A is equal to a threshold K;
    所述信息比特序号集合A为冻结比特序号集合A c的补集,所述冻结比特序号集合A c中的元素为所述可靠度排序序列Q中,序号满足速率匹配条件或可靠度最低的(N-K)个元素。 The number of information bits for freezing set complement A C A set number of bits, number of bits set to the freezing elements are sorted sequence C A Q for the reliability, the minimum number satisfying conditions or rate matching reliability ( NK) elements.
  11. 如权利要求7所述的构造编码序列的方法,其特征在于,所述方法还包括:The method of constructing a coded sequence according to claim 7, wherein the method further comprises:
    获得信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K;Obtaining an information bit number set A; the number of elements in the information bit number set A is equal to a threshold K;
    所述信息比特序号集合A中的元素为所述长度为N的可靠度序列中,值大于等于极化码的阈值PW th,且序号不满足速率匹配条件的元素。 The element in the information bit number set A is an element in the reliability sequence of length N, the value is greater than or equal to the threshold PW th of the polarization code, and the sequence number does not satisfy the rate matching condition.
  12. 如权利要求7所述的构造编码序列的方法,其特征在于,所述方法还包括:The method of constructing a coded sequence according to claim 7, wherein the method further comprises:
    获得信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K;Obtaining an information bit number set A; the number of elements in the information bit number set A is equal to a threshold K;
    所述信息比特序号集合A为冻结比特序号集合A c的补集,所述冻结比特序号集合A c中的元素为所述长度为N的可靠度序列中,值小于极化码的阈值PW th,或序号满足速率匹配的元素集合的补集。 A set number of bits of the information bit sequence number set for freezing complement of C A, the number of bits set freezing elements A to C in the reliability of the sequence length N, the polarization value is smaller than the code threshold value PW th , or a complement of a set of elements whose sequence number satisfies the rate match.
  13. 如权利要求2所述的构造编码序列的方法,其特征在于,所述利用所述基本以及所述可靠度参考序列构造编码序列,包括:The method of constructing a coded sequence according to claim 2, wherein said constructing a coded sequence using said base and said reliability reference sequence comprises:
    在N≤N s时,从所述基本序列对应的可靠度序列中获取N个元素,所述N个元素的值大于所述N s个元素中N s-N个元素的值;所述N个元素在基本序列中对应的比特位置构成了编码序列; When N≤N s, the reliability of obtaining the N elements from the base sequence corresponding to a sequence, the value larger than the value of N elements -N N s N s elements the elements; and the N The corresponding bit positions of the elements in the basic sequence constitute a coding sequence;
    在N>N s时,分N seg次从所述基本序列对应的可靠度序列中获取N个元素,所述N个元素在母码序列中对应的比特位置构成了编码序列,所述N seg=N/N sWhen N>N s , the N seg times are obtained from the reliability sequence corresponding to the basic sequence, and the N elements form a coding sequence in the corresponding bit position in the mother code sequence, the N seg =N/N s .
  14. 如权利要求13所述的构造编码序列的方法,所述N个元素中有K个元素在母码序列中对应的比特位置用于传输信息比特;The method for constructing a coded sequence according to claim 13, wherein K of the N elements are used for transmitting information bits in a corresponding bit position in the mother code sequence;
    所述K个元素为所述长度为N的可靠度序列中,值大于等于极化码的阈值PW th,且序号不满足速率匹配条件的元素; The K elements are elements of the reliability sequence of length N, the value is greater than or equal to the threshold PW th of the polarization code, and the sequence number does not satisfy the rate matching condition;
    取所述传输信息比特的K个元素的补集,得到N-K个传输冻结比特的元素;Taking the complement of the K elements of the transmission information bit to obtain N-K elements of the transmission freeze bit;
    所述传输信息比特的K个元素与N-K个传输冻结比特的元素构成编码码长的N个元素。The K elements of the transmission information bits and the elements of the N-K transmission freeze bits constitute N elements of the code length.
  15. 如权利要求13所述的构造编码序列的方法,其特征在于,所述N个元素中除所述K个元素之外的N-K个元素在母码序列中对应的比特位置用于传输冻结比特,所述用于传输冻结比特的N-K个元素为所述长度为N的可靠度序列中,值小于编码序列的阈值PW th,或序号满足速率匹配的元素; The method for constructing a coded sequence according to claim 13, wherein NK elements other than the K elements of the N elements are used to transmit freeze bits in a corresponding bit position in the mother code sequence. The NK elements used for transmitting the frozen bits are in the reliability sequence of length N, the value is smaller than the threshold PW th of the coding sequence, or the sequence number satisfies the rate matching element;
    取所述N-K个传输冻结比特的元素的补集,得到传输信息比特的K个元素;Taking the complement of the elements of the N-K transmission freeze bits to obtain K elements of the transmission information bits;
    所述传输信息比特的K个元素与N-K个传输冻结比特的元素构成编码码长的N个元素。The K elements of the transmission information bits and the elements of the N-K transmission freeze bits constitute N elements of the code length.
  16. 如权利要求13所述的构造编码序列的方法,其特征在于,所述分N seg次从所述基本序列对应的可靠度序列中获取N个元素,包括: The method for constructing a coded sequence according to claim 13, wherein the sub-N seg times acquires N elements from the reliability sequence corresponding to the basic sequence, including:
    在N seg次读取的第x次读取时,读取长度为N s的所述基本序列对应的可靠度序列的N s个元素,根据编码序列的阈值PW th计算阈值PW th,x-1,并且根据所述N s个元素的序号i,计算序号i+(x-1)gN s,取N s个元素中可靠度大于等于阈值PW th,x-1,且i+(x-1)gN s不满足速率匹配条件的元素,将该元素的序号i+(x-1)gN s加入传输信息比特的信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K; When the xth read of the N seg read is performed, the N s elements of the reliability sequence corresponding to the basic sequence of length N s are read, and the threshold PW th, x- is calculated according to the threshold PW th of the coding sequence. 1 and calculating the sequence number i+(x-1)gN s according to the sequence number i of the N s elements, and taking the reliability of the N s elements is greater than or equal to the threshold PW th,x-1 , and i+(x-1) gN s does not satisfy the element of the rate matching condition, the element number i+(x-1)gN s of the element is added to the information bit number set A of the transmission information bits; the number of elements in the information bit number set A is equal to the threshold K;
    取所述信息比特序号集合A的补集,得到传输冻结息比特的N-K个元素;Taking the complement of the information bit number set A, and obtaining N-K elements of the transmission freeze bit;
    所述信息比特序号集合A中传输信息比特的K个元素与N-K个传输冻结比特的元素构成编码码长的N个元素。The K elements of the information bits and the elements of the N-K transmission freeze bits in the information bit number set A constitute N elements of the code length.
  17. 如权利要求13所述的构造编码序列的方法,其特征在于,所述分N seg次从所述基本序列对应的可靠度序列中获取N个元素,包括: The method for constructing a coded sequence according to claim 13, wherein the sub-N seg times acquires N elements from the reliability sequence corresponding to the basic sequence, including:
    在N seg次读取的第x次读取时,读取长度为N s的所述可靠度序列的N s个元素,并根据极化码的阈值PW th计算阈值PW th,x-1At the xth read of the N seg read, the N s elements of the reliability sequence of length N s are read, and the threshold PW th, x-1 is calculated according to the threshold PW th of the polarization code;
    根据所述N s个元素的序号i,计算序号i+(x-1)gN s,取N s个元素中可靠度小于阈值PW th,x-1或序号i+(x-1)gN s满足速率匹配条件的元素,将该元素的序号i+(x-1)gN s加入传输冻结息比特的冻结比特序号集合A cCalculating the sequence number i+(x-1)gN s according to the sequence number i of the N s elements, and taking the reliability of the N s elements is less than the threshold PW th, x-1 or the sequence number i+(x-1)gN s satisfying the rate An element matching the condition, the element number i+(x-1)gN s of the element is added to the frozen bit number set A c of the transmission freeze bit;
    取所述冻结比特序号集合A c的补集,得到传输信息比特的K个元素组成信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K; Taking the complement of the frozen bit number set A c to obtain the K element of the transmission information bit to form the information bit number set A; the number of elements in the information bit number set A is equal to the threshold K;
    所述信息比特序号集合A中传输信息比特的K个元素与N-K个传输冻结比特的元素构成编码码长的N个元素。The K elements of the information bits and the elements of the N-K transmission freeze bits in the information bit number set A constitute N elements of the code length.
  18. 一种构造编码序列的装置,其特征在于,包括:An apparatus for constructing a coding sequence, comprising:
    存储器,用于存储基本序列对应的可靠度序列,所述基本序列对应的可靠度序列的长度小于等于母码序列对应的可靠度序列的长度;a memory, configured to store a reliability sequence corresponding to the basic sequence, where the length of the reliability sequence corresponding to the basic sequence is less than or equal to the length of the reliability sequence corresponding to the mother code sequence;
    所述存储器还用于存储可靠度参考序列,所述可靠度参考序列包括所述母码序列对应的可靠度序列中除所述基本序列对应的可靠度序列之外至少一个元素;The memory is further configured to store a reliability reference sequence, where the reliability reference sequence includes at least one element other than the reliability sequence corresponding to the basic sequence in the reliability sequence corresponding to the mother code sequence;
    处理器,用于利用所述存储器存储的基本序列对应的可靠度序列以及所述可靠度参考序列构造编码序列。And a processor, configured to construct a coding sequence by using a reliability sequence corresponding to the basic sequence stored by the memory and the reliability reference sequence.
  19. 如权利要求18所述的构造编码序列的装置,其特征在于,所述母码序列对应的可靠度序列的长度为
    Figure PCTCN2018080379-appb-100010
    所述基本序列对应的可靠度序列的长度为
    Figure PCTCN2018080379-appb-100011
    其中,0≤l s<l max
    The apparatus for constructing a coded sequence according to claim 18, wherein the length of the reliability sequence corresponding to the mother code sequence is
    Figure PCTCN2018080379-appb-100010
    The length of the reliability sequence corresponding to the basic sequence is
    Figure PCTCN2018080379-appb-100011
    Where 0 ≤ l s < l max .
  20. 如权利要求19所述的构造编码序列的装置,其特征在于,所述基本序列对应的可靠度序列中第i个元素为:
    Figure PCTCN2018080379-appb-100012
    其中(i) dec表示为i为十进制数,(B n-1B n-2...B 0) bin表示二进制数,β为指数的基数。
    The apparatus for constructing a coded sequence according to claim 19, wherein the i-th element of the reliability sequence corresponding to the basic sequence is:
    Figure PCTCN2018080379-appb-100012
    Where (i) dec denotes that i is a decimal number, (B n-1 B n-2 ... B 0 ) bin denotes a binary number, and β denotes the base of the exponent.
  21. 如权利要求20所述的构造编码序列的装置,其特征在于,所述可靠度参考序列的长度为l max-l s,所述可靠度参考序列为
    Figure PCTCN2018080379-appb-100013
    β为指数的基数。
    The apparatus for constructing a coded sequence according to claim 20, wherein said reliability reference sequence has a length of l max -l s , and said reliability reference sequence is
    Figure PCTCN2018080379-appb-100013
    β is the base of the index.
  22. 如权利要求19所述的构造编码序列的装置,其特征在于,所述l max∈[8,9,10,11,12],所述母码序列对应的可靠度序列的长度为
    Figure PCTCN2018080379-appb-100014
    所述l s∈[0,1,2,3,4,5,6,7,8,9,10,1,1]所述可靠度序列的长度为
    Figure PCTCN2018080379-appb-100015
    The apparatus for constructing a coded sequence according to claim 19, wherein said l max ∈[8,9,10,11,12], the length of the reliability sequence corresponding to said mother code sequence is
    Figure PCTCN2018080379-appb-100014
    The length of the reliability sequence of the l s ∈[0,1,2,3,4,5,6,7,8,9,10,1,1] is
    Figure PCTCN2018080379-appb-100015
  23. 如权利要求19所述的构造编码序列的装置,其特征在于,所述处理器,还用于利用所述基本序列对应的可靠度序列以及所述可靠度参考序列构造母码长度为N、编码长度为M、信息长度为K inf o的编码序列,包括: The apparatus for constructing a coded sequence according to claim 19, wherein the processor is further configured to construct a mother code length of N by using a reliability sequence corresponding to the basic sequence and the reliability reference sequence. A coding sequence of length M and information length K inf o , including:
    在N≤N s时,从所述基本序列对应的可靠度序列中获取N个元素,所述N个元素的值大于所述N s个元素中N s-N个元素的值;所述N元素在基本序列中对应的比特位置构成了编码序列; When N≤N s, the reliability of obtaining the N elements from the base sequence corresponding to a sequence, the value larger than the value of N elements -N N s N s elements the elements; and the N The corresponding bit positions of the elements in the basic sequence constitute a coding sequence;
    在N>N s时,根据所述可靠度参考序列中的元素,对所述基本序列对应的可靠度序列进行扩展,组成长度为N的可靠度序列,所述长度为N的可靠度序列在母码序列中对应的比特位置构成了编码序列。 When N>N s , the reliability sequence corresponding to the basic sequence is extended according to the elements in the reliability reference sequence to form a reliability sequence of length N, and the reliability sequence of length N is The corresponding bit positions in the mother code sequence constitute the coding sequence.
  24. 如权利要求23所述的构造编码序列的装置,其特征在于,The apparatus for constructing a coded sequence according to claim 23, wherein
    长度为N的可靠度序列是用可靠度参考序列
    Figure PCTCN2018080379-appb-100016
    中的元素对长度为N s的基本序列对应的可靠度序列中的元素值
    Figure PCTCN2018080379-appb-100017
    进行扩展得到的,β为指数的基数。
    The reliability sequence with length N is the reliability reference sequence
    Figure PCTCN2018080379-appb-100016
    The element value in the reliability sequence corresponding to the element sequence of length N s
    Figure PCTCN2018080379-appb-100017
    As a result of the expansion, β is the base of the index.
  25. 如权利要求24所述的构造编码序列的装置,其特征在于,所述存储器还用于记录可靠度排序序列Q;所述可靠度排序序列Q是所述处理器按照可靠度大小,对所述长度为N的可靠度序列中的元素进行顺序排序后得到的。The apparatus for constructing a coded sequence according to claim 24, wherein said memory is further configured to record a reliability ranking sequence Q; said reliability ranking sequence Q is said processor according to a reliability level, said The elements in the reliability sequence of length N are sorted sequentially.
  26. 如权利要求25所述的构造编码序列的装置,其特征在于,所述处理器还用于获得信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K;所述信息比特序号集合A中的元素为所述可靠度排序序列Q中,序号不满足速率匹配条件的最可靠的K个元素。The apparatus for constructing a coded sequence according to claim 25, wherein said processor is further configured to obtain a set of information bit numbers A; said number of elements in said set of information bit numbers A is equal to a threshold K; said information The elements in the bit sequence set A are the most reliable K elements in the reliability ranking sequence Q that do not satisfy the rate matching condition.
  27. 如权利要求25所述的构造编码序列的装置,其特征在于,所述处理器还用于获得信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K;The apparatus for constructing a coded sequence according to claim 25, wherein the processor is further configured to obtain a set of information bit numbers A; the number of elements in the set of information bit numbers A is equal to a threshold K;
    所述信息比特序号集合A为冻结比特序号集合A c的补集,所述冻结比特序号集合A c中的元素为所述可靠度排序序列Q中,序号满足速率匹配条件或可靠度最低的 (N-K)个元素。 The number of information bits for freezing set complement A C A set number of bits, number of bits set to the freezing elements are sorted sequence C A Q for the reliability, the minimum number satisfying conditions or rate matching reliability ( NK) elements.
  28. 如权利要求25所述的构造编码序列的装置,其特征在于,所述处理器还用于获得信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K;The apparatus for constructing a coded sequence according to claim 25, wherein the processor is further configured to obtain a set of information bit numbers A; the number of elements in the set of information bit numbers A is equal to a threshold K;
    所述信息比特序号集合A中的元素为所述长度为N的可靠度序列中,值大于等于极化码的阈值PW th,且序号不满足速率匹配条件的元素。 The element in the information bit number set A is an element in the reliability sequence of length N, the value is greater than or equal to the threshold PW th of the polarization code, and the sequence number does not satisfy the rate matching condition.
  29. 如权利要求25所述的构造编码序列的装置,其特征在于,所述处理器还用于获得信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K;The apparatus for constructing a coded sequence according to claim 25, wherein the processor is further configured to obtain a set of information bit numbers A; the number of elements in the set of information bit numbers A is equal to a threshold K;
    所述信息比特序号集合A为冻结比特序号集合A c的补集,所述冻结比特序号集合A c中的元素为所述长度为N的可靠度序列中,值小于极化码的阈值PW th,或序号满足速率匹配条件的元素集合的补集。 A set number of bits of the information bit sequence number set for freezing complement of C A, the number of bits set freezing elements A to C in the reliability of the sequence length N, the polarization value is smaller than the code threshold value PW th , or a complement of a set of elements whose sequence number satisfies the rate matching condition.
  30. 如权利要求19所述的构造编码序列的装置,其特征在于,所述装置还包括:The apparatus for constructing a coded sequence according to claim 19, wherein the apparatus further comprises:
    处理器,从所述基本序列对应的可靠度序列中获取N个元素,,所述N个元素的值大于所述N s个元素中N s-N个元素的值;所述N个元素在基本序列中对应的比特位置构成了编码序列; A processor obtaining the reliability of the N elements from the base sequence of the sequence corresponding to the N elements ,, value is greater than the value N s N s -N elements elements; said N elements in The corresponding bit positions in the basic sequence constitute a coding sequence;
    在N>N s时,分N seg次从所述基本序列对应的可靠度序列中获取N个元素,所述N个元素在母码序列中对应的比特位置构成了编码序列,所述N seg=N/N sWhen N>N s , the N seg times are obtained from the reliability sequence corresponding to the basic sequence, and the N elements form a coding sequence in the corresponding bit position in the mother code sequence, the N seg =N/N s .
  31. 如权利要求30所述的构造编码码长的装置,其特征在于,所述处理器获取的所述N个元素中有K个元素在母码序列中对应的比特位置用于传输信息比特;The apparatus for constructing a code length according to claim 30, wherein K of the N elements acquired by the processor are used to transmit information bits in a corresponding bit position in the mother code sequence;
    所述K个元素为所述长度为N的可靠度序列中,值大于等于极化码的阈值PW th,且序号不满足速率匹配条件的元素; The K elements are elements of the reliability sequence of length N, the value is greater than or equal to the threshold PW th of the polarization code, and the sequence number does not satisfy the rate matching condition;
    所述处理器取所述传输信息比特的K个元素的补集,得到N-K个传输冻结比特的元素;The processor takes a complement of the K elements of the transmission information bit to obtain N-K elements of the frozen bit;
    所述传输信息比特的K个元素与N-K个传输冻结比特的元素构成编码码长的N个元素。The K elements of the transmission information bits and the elements of the N-K transmission freeze bits constitute N elements of the code length.
  32. 如权利要求30所述的构造编码序列的装置,其特征在于,所述处理器获取的所述N个元素中除所述K个元素之外的N-K个元素在母码序列中对应的比特位置用于传输冻结比特,所述用于传输冻结比特的N-K个元素为所述长度为N的可靠度序列中,值小于编码序列的阈值PW th,或序号满足速率匹配的元素; The apparatus for constructing a coded sequence according to claim 30, wherein the NK elements other than the K elements of the N elements acquired by the processor are in a corresponding bit position in the mother code sequence. For transmitting frozen bits, the NK elements for transmitting frozen bits are in the reliability sequence of length N, the value is smaller than the threshold PW th of the coding sequence, or the sequence number satisfies the rate matching element;
    所述处理器取所述N-K个传输冻结比特的元素的补集,得到传输信息比特的K个元素;The processor takes a complement of the elements of the N-K transmission freeze bits to obtain K elements of the transmission information bits;
    所述传输信息比特的K个元素与N-K个传输冻结比特的元素构成编码码长的N个元素。The K elements of the transmission information bits and the elements of the N-K transmission freeze bits constitute N elements of the code length.
  33. 如权利要求30所述的构造编码序列的装置,其特征在于,所述处理器分N seg次从所述基本序列对应的可靠度序列中获取N个元素;包括: The apparatus for constructing a coded sequence according to claim 30, wherein the processor acquires N elements from the reliability sequence corresponding to the basic sequence in N seg times;
    在N seg次读取信息特比序号集合的第x次读取时,读取长度为N s的所述基本序列对应的可靠度序列的N s个元素,根据编码序列的阈值PW th计算阈值PW th,x-1,并且根据所述N s个元素的序号i,计算序号i+(x-1)gN s,取N s个元素中可靠度大于等于阈值 PW th,x-1且i+(x-1)gN s不满足速率匹配条件的元素,将该元素的序号i+(x-1)gN s加入传输信息比特的信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K; When the Nth seg read information is more than the xth read of the sequence number set, the N s elements of the reliability sequence corresponding to the basic sequence of length N s are read, and the threshold is calculated according to the threshold PW th of the code sequence. PW th,x-1 , and according to the sequence number i of the N s elements, the number i+(x-1)gN s is calculated, and the reliability of the N s elements is greater than or equal to the threshold PW th, x-1 and i+( X-1) gN s an element that does not satisfy the rate matching condition, the element number i+(x-1)gN s of the element is added to the information bit number set A of the transmission information bits; the number of elements in the information bit number set A Equal to the threshold K;
    所述处理器取所述信息比特序号集合A的补集,得到传输冻结息比特的N-K个元素;The processor takes the complement of the information bit number set A, and obtains N-K elements of the transmission freeze bit;
    所述信息比特序号集合A中传输信息比特的K个元素与N-K个传输冻结比特的元素构成编码码长的N个元素。The K elements of the information bits and the elements of the N-K transmission freeze bits in the information bit number set A constitute N elements of the code length.
  34. 如权利要求30所述的构造编码序列的装置,其特征在于,所述处理器分N seg次从所述基本序列对应的可靠度序列中获取N个元素,包括: The apparatus for constructing a coded sequence according to claim 30, wherein the processor acquires N elements from the reliability sequence corresponding to the basic sequence in N seg times, including:
    在N seg次读取的第x次读取时,读取长度为N s的所述可靠度序列的N s个元素,并根据极化码的阈值PW th计算阈值PW th,x-1At the xth read of the N seg read, the N s elements of the reliability sequence of length N s are read, and the threshold PW th, x-1 is calculated according to the threshold PW th of the polarization code;
    根据所述N s个元素的序号i,计算序号i+(x-1)gN s,取N s个元素中可靠度小于阈值PW th,x-1或i+(x-1)gN s满足速率匹配条件的元素,将该元素的序号i+(x-1)gN s加入传输冻结息比特的冻结比特序号集合A cCalculating the sequence number i+(x-1)gN s according to the sequence number i of the N s elements, taking the reliability of the N s elements less than the threshold PW th, x-1 or i+(x-1)gN s satisfying the rate matching The element of the condition, the element number i+(x-1)gN s of the element is added to the frozen bit number set A c of the transmission freeze bit;
    所述处理器取所述冻结比特序号集合A c的补集,得到传输信息比特的信息比特序号集合A;所述信息比特序号集合A中的元素个数等于阈值K; The processor takes the complement of the frozen bit number set A c to obtain the information bit number set A of the transmission information bits; the number of elements in the information bit number set A is equal to the threshold K;
    所述信息比特序号集合A中传输信息比特的K个元素与N-K个传输冻结比特的元素构成编码码长的N个元素。The K elements of the information bits and the elements of the N-K transmission freeze bits in the information bit number set A constitute N elements of the code length.
  35. 如权利要求18至34中任一项所述的构造极化码的装置,其特征在于,所述装置为终端或网络侧设备。The apparatus for constructing a polarization code according to any one of claims 18 to 34, wherein the apparatus is a terminal or a network side device.
PCT/CN2018/080379 2017-03-24 2018-03-24 Method and device for constructing encoding sequence WO2018171777A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197026302A KR20190116394A (en) 2017-03-24 2018-03-24 Method and apparatus for constructing coding sequence
EP18771540.4A EP3573266B1 (en) 2017-03-24 2018-03-24 Method and device for constructing encoding sequence
US16/579,532 US11063700B2 (en) 2017-03-24 2019-09-23 Method and apparatus for constructing coding sequence

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184944.2 2017-03-24
CN201710184944.2A CN108631793B (en) 2017-03-24 2017-03-24 Method and device for constructing coding sequence

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/579,532 Continuation US11063700B2 (en) 2017-03-24 2019-09-23 Method and apparatus for constructing coding sequence

Publications (1)

Publication Number Publication Date
WO2018171777A1 true WO2018171777A1 (en) 2018-09-27

Family

ID=63584910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080379 WO2018171777A1 (en) 2017-03-24 2018-03-24 Method and device for constructing encoding sequence

Country Status (5)

Country Link
US (1) US11063700B2 (en)
EP (1) EP3573266B1 (en)
KR (1) KR20190116394A (en)
CN (1) CN108631793B (en)
WO (1) WO2018171777A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631793B (en) 2017-03-24 2022-04-22 华为技术有限公司 Method and device for constructing coding sequence
CN111434042A (en) * 2017-11-15 2020-07-17 Idac控股公司 UR LL C transmission using polar codes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281785A (en) * 2015-10-22 2016-01-27 东南大学 List successive cancellation decoding method and apparatus for polar codes
CN106506079A (en) * 2016-11-29 2017-03-15 东南大学 Polarization code Optimization Design in four color visible light communication systems

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170333A (en) * 2000-11-28 2002-06-14 Pioneer Electronic Corp Method and device for recording information, and method and device for reproducing information
EP1473838B1 (en) * 2003-04-02 2007-09-26 Alcatel Lucent Method for decoding variable length codes and corresponding receiver
FR2977100B1 (en) * 2011-06-21 2013-12-27 Centre Nat Etd Spatiales METHOD FOR ENCODING BURSTS INFORMATION DATA
CN103684477B (en) * 2012-09-24 2017-02-01 华为技术有限公司 Generation method and generation device for mixed polar code
CN104242957B (en) * 2013-06-09 2017-11-28 华为技术有限公司 Decoding process method and decoder
CN105874736B (en) * 2014-03-19 2020-02-14 华为技术有限公司 Polar code rate matching method and rate matching device
EP3113387B1 (en) * 2014-03-21 2019-05-22 Huawei Technologies Co., Ltd. Polar code rate-matching method and rate-matching device
US9742440B2 (en) * 2015-03-25 2017-08-22 Samsung Electronics Co., Ltd HARQ rate-compatible polar codes for wireless channels
US10461779B2 (en) * 2015-08-12 2019-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Rate-compatible polar codes
TWI629872B (en) * 2016-02-03 2018-07-11 旺宏電子股份有限公司 Method and device for adjusting the code length of extended polar codes
CN106059596B (en) * 2016-06-24 2019-05-14 中山大学 Using binary BCH code as the grouping markov supercomposed coding method and its interpretation method of composition code
CN108631793B (en) * 2017-03-24 2022-04-22 华为技术有限公司 Method and device for constructing coding sequence

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281785A (en) * 2015-10-22 2016-01-27 东南大学 List successive cancellation decoding method and apparatus for polar codes
CN106506079A (en) * 2016-11-29 2017-03-15 东南大学 Polarization code Optimization Design in four color visible light communication systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Design of Polar code for control channel", 3GPP TSG RAN WG1 NR MEETING #88 R1-1702498, 12 February 2017 (2017-02-12), XP051209652 *
LG ELECTRONICS: "Design of Polar code for control channel", 3GPP TSG RAN WG1 NR MEETING #88 R1-1703454, 12 February 2017 (2017-02-12), XP051210573, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs> *
See also references of EP3573266A4

Also Published As

Publication number Publication date
US20200092042A1 (en) 2020-03-19
CN108631793A (en) 2018-10-09
KR20190116394A (en) 2019-10-14
EP3573266B1 (en) 2021-06-02
EP3573266A4 (en) 2020-02-19
EP3573266A1 (en) 2019-11-27
US11063700B2 (en) 2021-07-13
CN108631793B (en) 2022-04-22

Similar Documents

Publication Publication Date Title
JP6813663B2 (en) Polar coding methods, devices, and devices
CN110855299B (en) Method and apparatus for encoding data using polar codes
CN108347302B (en) Coding and decoding method and terminal
WO2017101631A1 (en) Method and communication device for processing polar code
CN108809487B (en) Data transmission method, base station and terminal equipment
WO2019062145A1 (en) Polar encoding method and encoding apparatus, and decoding method and decoding apparatus
TWI794260B (en) Method, device and equipment for determining transmission block size
WO2019128707A1 (en) Rate matching and polar code encoding method and device
CN108282259B (en) Coding method and device
CN108540260B (en) Method and device for determining Polar code encoding and decoding and storage medium
WO2018171401A1 (en) Information processing method, apparatus and device
WO2018171788A1 (en) Encoding method and device
WO2018166455A1 (en) Encoding method, encoding device and communication device
WO2021254422A1 (en) Polar code encoding method and apparatus, and polar code decoding method and apparatus
WO2022161201A1 (en) Methods and apparatus for coding modulation and demodulation decoding
WO2018171777A1 (en) Method and device for constructing encoding sequence
WO2018201983A1 (en) Polar code channel encoding method, device and communications system
WO2018172973A1 (en) Puncturing of polar codes with complementary sequences
WO2018127069A1 (en) Coding method and device
WO2018171764A1 (en) Polar code sequence construction method and device
WO2016145616A1 (en) Method, device, and system for information transmission
WO2019029748A1 (en) Polar code encoding method and device
WO2018161946A1 (en) Data processing method and device
CN106797567B (en) Data transmission method and related equipment
CN111699643B (en) Polar code decoding method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018771540

Country of ref document: EP

Effective date: 20190821

ENP Entry into the national phase

Ref document number: 20197026302

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE