WO2018171456A1 - 在多天线通信系统中发射分集的方法及装置 - Google Patents

在多天线通信系统中发射分集的方法及装置 Download PDF

Info

Publication number
WO2018171456A1
WO2018171456A1 PCT/CN2018/078717 CN2018078717W WO2018171456A1 WO 2018171456 A1 WO2018171456 A1 WO 2018171456A1 CN 2018078717 W CN2018078717 W CN 2018078717W WO 2018171456 A1 WO2018171456 A1 WO 2018171456A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitted
symbol
pilot
ofdm symbols
data
Prior art date
Application number
PCT/CN2018/078717
Other languages
English (en)
French (fr)
Inventor
赵锐
潘学明
苏昕
彭莹
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Publication of WO2018171456A1 publication Critical patent/WO2018171456A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present disclosure relates to the field of communications technologies, and more particularly to a method and apparatus for transmitting diversity in a multi-antenna communication system.
  • the terminal UE includes two channels when transmitting data, one control channel PSCCH for transmitting SA (Scheduling Assignment) information, and another data channel PSSCH for transmitting data information. (Data).
  • the receiving end firstly receives the SA information carried in the control channel, thereby receiving the data information according to the received control information.
  • the UE selects idle resources through a perceptual method in a system configuration or a pre-configured V2X resource pool; the other is a base station-assisted resource selection method when the vehicle is in network coverage.
  • the base station can schedule the V2V communication through the downlink control channel (PDCCH/EPDCCH).
  • the base station instructs the transmitting vehicle to transmit the resource locations of the SA and Data by transmitting a V2V grant (V2V grant message).
  • the subframe structure of the LTE Rel-14 V2X includes 14 OFDM (Orthogonal Frequency Division Multiplexing) symbols; wherein, 4 OFDM symbols are used to carry pilot symbols, that is, solutions.
  • the reference signal DMRS is invoked; 1 OFDM symbol user bearer guard interval (GP, Guard Period); and the first OFDM symbol can be used for automatic gain control AGC adjustment.
  • the DMRS generation for SA and Data of LTE Rel-14 V2X mainly includes the following methods:
  • the DMRS sequence used by the scheduling allocation information SA adopts a predefined initialization ID, and one of the predefined four cyclic shifts ⁇ 0, 3, 6, 9 ⁇ is randomly selected, and the receiving end needs to blindly detect the SA when accepting the SA.
  • the DMRS sequences on the OFDM symbols of different DMRSs are identical.
  • the DMRS initialization ID and the cyclic shift of the DMRS sequence used by the data information Data are both generated by the ID value obtained by the cyclic redundancy check CRC bits of the SA (N_ID), and the OFDM symbols of different DMRSs may be different.
  • N_ID mod 2 0, the DMRS sequence is the same.
  • N_ID mod 2 1, the DMRS sequence is different and is extended by [1, -1, 1, -1].
  • the receiving end can completely reconstruct the DMRS sequence of the entire data transmission according to the received SA information.
  • the existing LTE Rel-14 V2X system only supports single-antenna transmission in the direct communication between the terminal UEs.
  • the single-antenna transmission mode cannot be applied to multiple antennas. mode.
  • An object of the present disclosure is to provide a method and apparatus for transmitting diversity in a multi-antenna communication system, which solves the problem that the data transmission mode of a single antenna in the related art cannot be applied to a multi-antenna communication system.
  • an embodiment of the present disclosure provides a method for transmitting diversity in a multi-antenna communication system, where the multi-antenna communication system includes N antenna ports, and the method includes:
  • N is an integer greater than or equal to 2;
  • each of the antenna ports respectively transmits the to-be-transmitted pilot sequence on an RE of a pilot symbol mapped to a pilot sequence of the antenna port to be transmitted.
  • the step of mapping the to-be-transmitted pilot sequence of each antenna port to the resource unit RE included in the pilot symbol of the target subframe, respectively, includes:
  • the pilot sequence to be transmitted of each antenna port is alternately mapped to the RE of one pilot symbol of the target subframe by frequency division multiplexing.
  • the step of mapping the to-be-transmitted pilot sequence of each antenna port to the resource unit RE included in the pilot symbol of the target subframe, respectively, includes:
  • the step of determining a pilot sequence to be transmitted for each antenna port includes:
  • the method further includes:
  • the step of performing the space-time coding process on the data to be sent, and associating the processed data to be sent with the N antenna ports and transmitting through the N antenna ports includes:
  • Layering the data to be transmitted performing space-time coding operation on the multi-layer data by using the space-time block code STBC, and determining M groups of data to be transmitted; wherein each group of data to be transmitted includes Q data; M is greater than or equal to An integer of 2, the value of Q being equal to the value of N;
  • the method further includes: before the G data included in the to-be-transmitted data of the OFDM symbol is respectively transmitted from the N antenna ports, in the slot interval corresponding to the M OFDM symbols respectively, the method further includes: :
  • the step of transmitting the Q data included in the to-be-transmitted data of the OFDM symbol from the N antenna ports, respectively, in the slot interval corresponding to the M OFDM symbols including:
  • Two adjacent OFDM symbols are selected from other OFDM symbols except the pilot symbols in the target subframe.
  • the isolated OFDM symbol is a last OFDM symbol and a second last OFDM symbol in the target subframe; or the isolated OFDM symbol is the first OFDM symbol and the second OFDM in the target subframe.
  • the symbol; or, the isolated OFDM symbol is a last OFDM symbol, a second last OFDM symbol, a first OFDM symbol, and a second OFDM symbol in the target subframe.
  • the isolated OFDM symbol is a first OFDM symbol and a last OFDM symbol in a target subframe.
  • the isolated OFDM symbol is associated with any one of the two antenna ports by a configuration or a predetermined manner;
  • the isolated OFDM symbols are sequentially associated with two antenna ports in turn according to a preset rule.
  • the method further includes: before selecting M OFDM symbols from the orthogonal frequency division multiplexing OFDM symbols of the target subframe, the method further includes:
  • the step of selecting M OFDM symbols from the orthogonal frequency division multiplexing OFDM symbols of the target subframe includes:
  • the 2 sub OFDM symbols obtained by splitting one OFDM symbol are 2 OFDM symbols selected from OFDM symbols of the target subframe.
  • Embodiments of the present disclosure also provide an apparatus for transmitting diversity in a multi-antenna communication system, the multi-antenna communication system including N antenna ports, the apparatus comprising:
  • a sequence determining module configured to determine a pilot sequence to be transmitted for each antenna port
  • a first mapping module configured to map the to-be-transmitted pilot sequences of each antenna port to a resource unit RE included in a pilot symbol of a target subframe, so that the N antenna ports multiplex the a pilot symbol of the target subframe; N is an integer greater than or equal to 2;
  • a pilot transmitting module configured to transmit, on the target subframe, the pilot to be transmitted on an RE of a pilot symbol mapped to a pilot sequence of the antenna port to be transmitted, respectively sequence.
  • the first mapping module includes:
  • a first mapping submodule configured to alternately map the pilot sequence to be transmitted of each antenna port to the RE of one pilot symbol of the target subframe by means of frequency division multiplexing.
  • the first mapping module includes:
  • a second mapping submodule configured to map, by means of code division multiplexing, the pilot sequences to be transmitted of each antenna port to all REs of one pilot symbol of the target subframe that overlap in time Above; wherein the pilot sequences to be transmitted of different antenna ports are different.
  • the sequence determining module includes:
  • the sequence determining sub-module is configured to generate different pilot sequences to be transmitted for different antenna ports according to a preset pilot sequence and Q different cyclic shifts; wherein the value of P is equal to the value of N.
  • the device further comprises:
  • the diversity transmitting module is configured to perform space-time encoding processing or cyclic delay diversity processing on the data to be sent, and associate the processed data to be transmitted with the N antenna ports and transmit the data through the N antenna ports.
  • the diversity transmitting module includes:
  • a space-time coding sub-module configured to layer the data to be transmitted, perform space-time coding operation on the multi-layer data by using a space-time block code STBC, and determine M groups of data to be transmitted; wherein each group of data to be transmitted includes Q Data; M is an integer greater than or equal to 2, and the value of Q is equal to the value of N;
  • a symbol selection submodule configured to select M OFDM symbols from orthogonal frequency division multiplexing OFDM symbols of a target subframe, and map the M groups of to-be-transmitted data into the selected M OFDM symbols respectively;
  • a data sending submodule configured to separately transmit Q data included in a group of to-be-transmitted data mapped to the OFDM symbol from the N antenna ports in a slot interval corresponding to the M OFDM symbols respectively.
  • the device further comprises:
  • a transform module configured to perform discrete Fourier transform on each of the Q data included in each set of data to be transmitted
  • the data sending submodule includes:
  • a data transmitting unit configured to: in the slot interval corresponding to the M OFDM symbols, the Q data after the inverse discrete Fourier transform included in a group of to-be-transmitted data mapped to the OFDM symbol N antenna ports are respectively transmitted.
  • a first selecting unit configured to select two adjacent OFDM symbols from other OFDM symbols except the pilot symbol in the target subframe; where N is equal to 2 and M is equal to 2.
  • a second selecting unit configured to select two adjacent OFDM symbols from the target subframe except for the pilot symbol and other OFDM symbols
  • the isolated OFDM symbol is a last OFDM symbol and a second last OFDM symbol in the target subframe; or the isolated OFDM symbol is the first OFDM symbol and the second OFDM in the target subframe. a symbol; or, the isolated OFDM symbol is a last OFDM symbol, a second last OFDM symbol, a first OFDM symbol, and a second OFDM symbol in the target subframe; N is equal to 2, and M is equal to 2.
  • a third selecting unit configured to select two OFDM symbols on both sides of the pilot symbol from the target subframe except the pilot symbol and the other OFDM symbols except the isolated OFDM symbol;
  • the isolated OFDM symbol is the first OFDM symbol and the last OFDM symbol in the target subframe, N is equal to 2, and M is equal to 2.
  • the isolated OFDM symbol is associated with any one of the two antenna ports by a configuration or a predetermined manner;
  • the isolated OFDM symbols are sequentially associated with two antenna ports in turn according to a preset rule.
  • the device further comprises:
  • a splitting module configured to split, respectively, other OFDM symbols except the pilot symbols in the target subframe into 2 sub-OFDM symbols;
  • a fourth selecting unit configured to determine that the two sub OFDM symbols obtained by splitting one OFDM symbol are two OFDM symbols selected from OFDM symbols of the target subframe; wherein N is equal to 2, and M is equal to 2.
  • Embodiments of the present disclosure also provide an apparatus for transmitting diversity in a multi-antenna communication system, the multi-antenna communication system including N antenna ports, the apparatus including a memory and a processor, wherein the memory stores a program running on the processor, the processor executing the program, the following steps: determining a pilot sequence to be transmitted for each antenna port; and transmitting the pilot sequence to be transmitted for each antenna port Mapping to the resource unit RE included in the pilot symbol of the target subframe, respectively, such that the N antenna ports multiplex the pilot symbols of the target subframe; N is an integer greater than or equal to 2; And each of the antenna ports transmits the to-be-transmitted pilot sequence on an RE of a pilot symbol mapped to a pilot sequence of the antenna port to be transmitted.
  • the processor is specifically configured to: alternately map, by frequency division multiplexing, a pilot sequence to be transmitted of each antenna port to an RE of a pilot symbol of the target subframe. .
  • the processor is specifically configured to: separately map, by using code division multiplexing, the pilot sequence to be transmitted of each antenna port to one pilot of the target subframe that overlaps in time All REs of the symbol; wherein the pilot sequences to be transmitted of different antenna ports are different.
  • the processor is specifically configured to generate different pilot sequences to be transmitted for different antenna ports according to a preset pilot sequence and Q different cyclic shifts; wherein, the value of P is equal to N value.
  • the processor is specifically configured to: perform space-time coding processing or cyclic delay diversity processing on the data to be sent, and associate the processed data to be sent with the N antenna ports and pass the N The antenna port transmits.
  • the processor is specifically configured to: layer the data to be sent, perform space-time coding operation on the multi-layer data by using a space-time block code STBC, and determine M groups of data to be transmitted;
  • the transmission data includes Q data; M is an integer greater than or equal to 2, and the value of Q is equal to the value of N;
  • M OFDM symbols are selected from orthogonal frequency division multiplexing OFDM symbols of the target subframe, and the M group is to be
  • the transmission data is respectively mapped into the selected M OFDM symbols; in the slot interval corresponding to the M OFDM symbols respectively, Q data included in a group of to-be-transmitted data mapped to the OFDM symbol is from the N antenna ports are respectively transmitted.
  • the processor is specifically configured to: perform inverse discrete Fourier transform on each of the Q data included in each set of data to be transmitted; and map to the slot interval corresponding to the M OFDM symbols respectively
  • the Q data after the discrete Fourier inverse transform included in a set of to-be-transmitted data of the OFDM symbol is separately transmitted from the N antenna ports.
  • the processor is specifically configured to: select two adjacent OFDM symbols from other OFDM symbols except the pilot symbols in the target subframe; where N is equal to 2, and M is equal to 2.
  • the processor is specifically configured to: select two adjacent OFDM symbols from the target subframe except for the pilot symbol and the isolated OFDM symbol; wherein the isolated OFDM symbol a first OFDM symbol and a second to last OFDM symbol in the target subframe; or the isolated OFDM symbol is the first OFDM symbol and the second OFDM symbol in the target subframe; or, the isolated The OFDM symbol is the last OFDM symbol, the second last OFDM symbol, the first OFDM symbol, and the second OFDM symbol in the target subframe; N is equal to 2, and M is equal to 2.
  • the processor is specifically configured to: select two OFDM symbols on both sides of the pilot symbol from the target subframe except the pilot symbol and the OFDM symbol other than the isolated OFDM symbol; wherein the isolated OFDM The symbol is the first OFDM symbol in the target subframe and the first OFDM symbol in the last, N is equal to 2, and M is equal to 2.
  • the isolated OFDM symbol is associated with any one of the two antenna ports in a configured or pre-determined manner; or the isolated OFDM symbols are sequentially associated with the two antenna ports in turn according to a preset rule.
  • the processor is specifically configured to: split other OFDM symbols except the pilot symbols in the target subframe into 2 sub OFDM symbols respectively; determine 2 sub OFDM symbols obtained by splitting one OFDM symbol into 2 OFDM symbols selected from OFDM symbols of the target subframe; wherein N is equal to 2 and M is equal to 2.
  • the embodiment of the present disclosure further provides a computer readable storage medium having a program stored thereon, the program being executed by a processor to implement the steps in any of the above methods.
  • the above technical solutions of the present disclosure have at least the following beneficial effects:
  • the pilot sequence to be transmitted of each antenna port is respectively mapped to the resource unit RE included in the pilot symbol of the target subframe, thereby realizing
  • the multiplexing of pilot symbols of different antenna ports can also enable the transmission of pilot sequences on each antenna port to satisfy the characteristics of a single carrier, thereby achieving the purpose of multi-antenna port transmission.
  • FIG. 1 is a schematic structural diagram of a normal subframe in the related art
  • FIG. 2 is a flow chart showing the steps of a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing frequency division multiplexing pilot symbols in a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing code division multiplexed pilot symbols in a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing the use of cyclic delay diversity transmit diversity in a method of transmit diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram showing the use of space-time coded transmit diversity in a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of selecting an OFDM symbol pair in a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 8 is a second schematic diagram showing the selection of an OFDM symbol pair in a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 9 is a third schematic diagram of selecting an OFDM symbol pair in a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure.
  • FIG. 10 is a fourth schematic diagram of selecting an OFDM symbol pair in a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 11 is a fifth schematic diagram of selecting an OFDM symbol pair in a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of selecting an OFDM symbol pair after splitting an OFDM symbol in a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 13 is a second schematic diagram of selecting an OFDM symbol pair after splitting an OFDM symbol in a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of selecting an OFDM symbol pair in a short subframe in a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram of an apparatus for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 16 is a schematic diagram showing still another structure of an apparatus for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a method for transmitting diversity in a multi-antenna communication system, where the multi-antenna communication system includes N antenna ports, and the method includes:
  • Step 21 Determine a pilot sequence to be transmitted for each antenna port
  • Step 22 The pilot sequence to be transmitted of each antenna port is respectively mapped to the resource unit RE included in the pilot symbol of the target subframe, so that the N antenna ports multiplex the pilot symbols of the target subframe.
  • Step 23 On the target subframe, each antenna port transmits a pilot sequence to be transmitted on an RE of a pilot symbol mapped to a pilot sequence of the antenna port to be transmitted.
  • the pilot sequences to be transmitted of different antenna ports may be the same or different. Specifically, different antenna ports multiplex pilot symbols of the same target subframe. For example, one pilot symbol includes 12 resource units RE.
  • the pilot sequence to be transmitted may be mapped to the RE of different frequency domains of one pilot symbol by frequency division multiplexing; or In step 22 of the embodiment of the present disclosure, the pilot sequence to be transmitted may be mapped to all REs of one pilot symbol by means of code division multiplexing.
  • step 22 in the embodiment of the present disclosure includes:
  • Step 221 The pilot sequence to be transmitted of each antenna port is alternately mapped to the RE of one pilot symbol of the target subframe by frequency division multiplexing.
  • the multi-antenna communication system includes two antenna ports, which are a first antenna port and a second antenna port, respectively; and two antenna ports alternately occupy one RE symbol.
  • the first pilot symbol of the target subframe takes the first pilot symbol of the target subframe as an example, the first pilot symbol in the target subframe includes 12 REs, as shown in FIG.
  • the first RE of the first pilot symbol, The third RE, the fifth RE, the seventh RE, the ninth RE, and the eleventh RE are occupied by the first antenna port (ie, the pilot sequence to be transmitted of the first antenna port is mapped to the first pilot)
  • the RE, the sixth RE, the eighth RE, the tenth RE, and the twelfth RE are occupied by the second antenna port (ie, the pilot sequence of the second antenna port to be transmitted is mapped to the first pilot symbol)
  • Two REs, a fourth RE, a sixth RE, an eighth RE, a tenth RE, and a twelfth RE Two REs, a fourth RE, a sixth RE, an eighth RE, a tenth RE, and a twelfth RE).
  • the pilot sequence to be transmitted is a ZC sequence.
  • the transmit power of each pilot symbol may be consistent by the transmit power of the pilot sequence to be transmitted of each antenna port; specifically, the pilot sequence to be transmitted of each antenna port is based on the existing transmit power.
  • the transmit power is increased by 3dB.
  • step 22 includes:
  • Step 222 Map the pilot sequences to be transmitted of each antenna port to all REs of one pilot symbol of the target subframe that overlap in time by code division multiplexing; wherein, different antenna ports The pilot sequence to be transmitted is different.
  • the multi-antenna communication system includes two antenna ports, which are a first antenna port and a second antenna port respectively; each antenna port occupies all REs of one pilot symbol, and each antenna port is to be transmitted.
  • the frequency sequence is different.
  • the pilot sequences to be transmitted are all ZC sequences.
  • step 21 includes:
  • the pilot sequences to be transmitted of different antenna ports are generated by the initialization ID of the same preset pilot sequence and different cyclic shifts, so that better correlation features can be obtained.
  • an embodiment of the present disclosure further provides a scheme for transmitting diversity of multiple antenna ports based on the foregoing multiple multiplexed pilots, where the method for multiplexing pilot symbols based on a frequency division multiplexing manner and based on code division
  • the manner of multiplexing the pilot symbols in the multiplexing manner is applicable to the scheme of the transmit diversity provided by the present application, and the transmit diversity method is subsequently described in a clear and concise manner, and the following specific embodiments adopt the frequency division multiplexing method.
  • An example is given by way of multiplexing the pilot symbols.
  • the method in the foregoing embodiment of the present disclosure further includes:
  • Step 24 Perform space-time coding processing or cyclic delay diversity processing on the data to be transmitted, and associate the processed data to be transmitted with the N antenna ports and transmit through the N antenna ports.
  • the method for performing cyclic delay diversity processing on the data to be transmitted is: the data to be transmitted is subjected to discrete Fourier transform DFT and cyclic delay diversity CDD processing, and a fixed delay is generated for each symbol of the data to be transmitted, and then Associate with different antenna ports and send.
  • step 24 includes:
  • Step 241 Layer the data to be transmitted, perform space-time coding operation on the multi-layer data by using the space-time block code STBC, and determine M groups of data to be transmitted; wherein each group of data to be transmitted includes Q data; M is greater than or equal to An integer of 2, the value of Q being equal to the value of N;
  • Step 242 Select M OFDM symbols from orthogonal frequency division multiplexing OFDM symbols of the target subframe, and map the M groups of to-be-transmitted data to the selected M OFDM symbols respectively.
  • Step 243 In the slot interval corresponding to the M OFDM symbols respectively, transmit Q data included in a group of to-be-transmitted data mapped to the OFDM symbol from the N antenna ports.
  • step 243 further includes:
  • step 243 includes:
  • the Q data after the inverse discrete Fourier transform included in a set of data to be transmitted that is mapped to the OFDM symbol is respectively transmitted from the N antenna ports in a slot interval corresponding to the M OFDM symbols.
  • the data is hierarchically processed, and then the multi-layer data is jointly subjected to space-time coding operation, and the M groups of to-be-transmitted data after the coding operation are respectively mapped into M OFDM symbols, and then different from The antenna port is associated for transmission.
  • the Step 242 includes:
  • Two adjacent OFDM symbols are selected from other OFDM symbols except the pilot symbols in the target subframe.
  • adjacent OFDM symbols in the target subframe are paired into 2 OFDM symbols respectively mapped with 2 sets of data to be transmitted.
  • step 242 includes:
  • the isolated OFDM symbol is a last OFDM symbol and a second last OFDM symbol in a target subframe; or, as shown in FIG. 9, the isolated OFDM symbol is a target subframe.
  • the first OFDM symbol and the second OFDM symbol; or, as shown in FIG. 10, the isolated OFDM symbol is the last OFDM symbol in the target subframe, the second to last OFDM symbol, the first OFDM symbol and second OFDM symbol.
  • the main reason that the isolated OFDM symbol is the last OFDM symbol and the second to last OFDM symbol in the target subframe is that the last OFDM symbol used as the guard interval GP is not transmitted by the transmitting end (equivalent to 0 power transmission). If the penultimate OFDM symbol is paired with the last GP OFDM symbol, the reliability of the penultimate OFDM symbol is affected, so the first OFDM symbol and the penultimate OFDM symbol are set to the isolated OFDM symbol.
  • the main reason that the isolated OFDM symbol is the first OFDM symbol and the second OFDM symbol in the target subframe is that the first OFDM symbol used for automatic gain control AGC may not be correctly received, if the first one is used for The OFDM symbol of the AGC and the second OFDM symbol are paired with the last GP OFDM symbol, which affects the reliability of the second OFDM symbol, so the first OFDM symbol and the second OFDM symbol are set as isolated OFDM symbols.
  • step 242 includes:
  • the isolated OFDM symbol is the first OFDM symbol and the last OFDM symbol in the target subframe.
  • the main reason that the isolated OFDM symbol is the first OFDM symbol and the last OFDM symbol in the target subframe is that the last OFDM symbol used as the guard interval GP is not transmitted by the transmitting end (equivalent to 0 power transmission), and the first An OFDM symbol for automatic gain control AGC may not be received correctly; therefore the first OFDM symbol and the last OFDM symbol are set as isolated OFDM symbols.
  • the isolated OFDM symbol is associated with any one of the two antenna ports by a configuration or a predetermined manner;
  • the isolated OFDM symbols are sequentially associated with two antenna ports in turn according to a preset rule. For example, an even RE is associated with a first antenna port and an odd RE is associated with a second antenna port.
  • the selection manner of the two OFDM symbols is as follows. .
  • step 242 includes:
  • the 2 sub OFDM symbols obtained by splitting one OFDM symbol are 2 OFDM symbols selected from OFDM symbols of the target subframe.
  • the OFDM symbols except the pilot symbols in the target subframe are split, and the pilot symbols are not split, that is, the OFDM symbols occupied by the original data are split into two sub-OFDM symbols. Then, the two sub-OFDM symbols are the OFDM symbols selected in step 242.
  • the OFDM symbols except the pilot symbols in the target subframe are split, but also the pilot symbols are split, and the OFDM symbols occupied by the original data are split into two sub-OFDM symbols. Then, the two sub-OFDM symbols are the OFDM symbols selected in step 242; and after the pilot symbols are split, the pilot multiplexing manner of different antenna ports can be further multiplexed by time division multiplexing TDM.
  • the manner of selecting two OFDM symbols at this time is the same as the selection method for not performing symbol splitting, and the description thereof will not be repeated here.
  • the pairing relationship of the two OFDM symbols selected in step 242 may be modified in some cases. details as follows:
  • the scheme 1 is taken as an example, as shown in FIG. 14 .
  • the method of pairing the OFDM symbols in the above-mentioned FIG. 12 and FIG. 13 can be directly applied by means of symbol splitting.
  • the CDD sends diversity technology.
  • the scheme in the normal subframe can be directly extended to shorter subframes.
  • the pilot sequences to be transmitted of each antenna port are respectively mapped to the resource elements RE included in the pilot symbols of the target subframe, thereby implementing complex pilot symbols of different antenna ports. It can also make the transmission of the pilot sequence on each antenna port satisfy the characteristics of single carrier, thereby achieving the purpose of multi-antenna port transmission; and adopting STBC diversity coding mode for diversity transmission on multiple antenna ports to effectively Improve the reliability of the link, thus effectively increasing the range of communication between vehicles.
  • an embodiment of the present disclosure further provides an apparatus for transmitting diversity in a multi-antenna communication system, where the multi-antenna communication system includes N antenna ports, and the apparatus includes:
  • a sequence determining module 151 configured to determine a pilot sequence to be transmitted for each antenna port
  • the first mapping module 152 is configured to map the pilot sequences to be transmitted of each antenna port to the resource unit RE included in the pilot symbol of the target subframe, so that the N antenna ports multiplex the guide of the target subframe. Frequency symbol
  • the pilot sending module 153 is configured to, on the target subframe, each antenna port respectively transmit a pilot sequence to be transmitted on an RE of a pilot symbol mapped to a pilot sequence of the antenna port to be transmitted.
  • the first mapping module in the foregoing embodiment of the present disclosure includes:
  • a first mapping submodule configured to alternately map the pilot sequence to be transmitted of each antenna port to the RE of one pilot symbol of the target subframe by frequency division multiplexing.
  • the first mapping module in the foregoing embodiment of the present disclosure includes:
  • a second mapping submodule configured to map, by means of code division multiplexing, the pilot sequences to be transmitted of each antenna port to all REs of one pilot symbol of the target subframe that overlap in time;
  • the pilot sequences to be transmitted of different antenna ports are different.
  • sequence determining module in the foregoing embodiment of the present disclosure includes:
  • the sequence determining sub-module is configured to generate different pilot sequences to be transmitted for different antenna ports according to a preset pilot sequence and Q different cyclic shifts; wherein the value of P is equal to the value of N.
  • the device in the foregoing embodiment of the present disclosure further includes:
  • the diversity transmitting module is configured to perform space-time encoding processing or cyclic delay diversity processing on the data to be sent, and associate the processed data to be transmitted with the N antenna ports and transmit the data through the N antenna ports.
  • the diversity transmitting module in the foregoing embodiment of the present disclosure includes:
  • a space-time coding sub-module for layering the data to be transmitted, performing space-time coding operation on the multi-layer data by using the space-time block code STBC, and determining M groups of data to be transmitted; wherein each group of data to be transmitted includes Q data; M is an integer greater than or equal to 2, and the value of Q is equal to the value of N;
  • a symbol selection sub-module configured to select M OFDM symbols from orthogonal frequency division multiplexing OFDM symbols of the target subframe, and map the M groups of to-be-transmitted data into the selected M OFDM symbols respectively;
  • a data sending submodule configured to separately transmit Q data included in a group of to-be-transmitted data mapped to the OFDM symbol from the N antenna ports in a slot interval corresponding to the M OFDM symbols respectively.
  • the device in the foregoing embodiment of the present disclosure further includes:
  • a transform module configured to perform discrete Fourier transform on each of the Q data included in each set of data to be transmitted
  • the data sending submodule includes:
  • a data sending unit configured to: in the slot interval corresponding to the M OFDM symbols, the Q data after the inverse discrete Fourier transform included in a group of to-be-transmitted data mapped to the OFDM symbol
  • the antenna ports are transmitted separately.
  • the symbol selection submodule in the foregoing embodiment of the present disclosure includes:
  • a first selecting unit configured to select two adjacent OFDM symbols from other OFDM symbols except the pilot symbol in the target subframe; where N is equal to 2 and M is equal to 2.
  • the symbol selection submodule in the foregoing embodiment of the present disclosure includes:
  • a second selecting unit configured to select two adjacent OFDM symbols from the target subframe except the pilot symbol and other OFDM symbols except the isolated OFDM symbol;
  • the isolated OFDM symbol is a last OFDM symbol and a second last OFDM symbol in the target subframe; or the isolated OFDM symbol is the first OFDM symbol and the second OFDM in the target subframe. a symbol; or, the isolated OFDM symbol is a last OFDM symbol, a second last OFDM symbol, a first OFDM symbol, and a second OFDM symbol in the target subframe; N is equal to 2, and M is equal to 2.
  • the symbol selection submodule in the foregoing embodiment of the present disclosure includes:
  • a third selecting unit configured to select two OFDM symbols on both sides of the pilot symbol from the OFDM symbols except the pilot symbol and the isolated OFDM symbol in the target subframe;
  • the isolated OFDM symbol is the first OFDM symbol and the last OFDM symbol in the target subframe, N is equal to 2, and M is equal to 2.
  • the isolated OFDM symbol in the foregoing embodiment of the present disclosure is associated with any one of the two antenna ports by a configuration or a predetermined manner; or
  • the isolated OFDM symbols are sequentially associated with two antenna ports in turn according to a preset rule.
  • the device in the foregoing embodiment of the present disclosure further includes:
  • a splitting module configured to split, respectively, other OFDM symbols except the pilot symbols in the target subframe into 2 sub-OFDM symbols;
  • a fourth selecting unit configured to determine that the two sub-OFDM symbols obtained by splitting one OFDM symbol are two OFDM symbols selected from OFDM symbols of the target subframe; wherein N is equal to 2, and M is equal to 2.
  • the pilot sequences to be transmitted of each antenna port are respectively mapped to the resource elements RE included in the pilot symbols of the target subframe, thereby implementing complex pilot symbols of different antenna ports. It can also make the transmission of the pilot sequence on each antenna port satisfy the characteristics of single carrier, thereby achieving the purpose of multi-antenna port transmission; and adopting STBC diversity coding mode for diversity transmission on multiple antenna ports to effectively Improve the reliability of the link, thus effectively increasing the range of communication between vehicles.
  • the apparatus for transmitting diversity in a multi-antenna communication system is a device capable of performing the foregoing method for transmitting diversity in a multi-antenna communication system, and the foregoing method for transmitting diversity in a multi-antenna communication system All of the embodiments are applicable to the device and all achieve the same or similar benefits.
  • an embodiment of the present disclosure further provides an apparatus for transmitting diversity in a multi-antenna communication system, where the multi-antenna communication system includes N antenna ports, the apparatus includes: a processor 100; a memory 120 connected to the processor 100, and a transceiver 110 connected to the processor 100 through a bus interface; the memory is used to store programs and data used by the processor when performing operations; The machine 110 sends a control command or the like; when the processor calls and executes the program and data stored in the memory, the following functional modules are implemented:
  • a sequence determining module configured to determine a pilot sequence to be transmitted for each antenna port
  • a first mapping module configured to map a pilot sequence to be transmitted of each antenna port to a resource unit RE included in a pilot symbol of a target subframe, so that the N antenna ports multiplex pilots of the target subframe symbol;
  • a pilot sending module configured to transmit, on the target subframe, each antenna port to a pilot sequence to be transmitted on an RE of a pilot symbol mapped to a pilot sequence of the antenna port to be transmitted.
  • the first mapping module includes:
  • a first mapping submodule configured to alternately map the pilot sequence to be transmitted of each antenna port to the RE of one pilot symbol of the target subframe by frequency division multiplexing.
  • the first mapping module includes:
  • a second mapping submodule configured to map, by means of code division multiplexing, the pilot sequences to be transmitted of each antenna port to all REs of one pilot symbol of the target subframe that overlap in time;
  • the pilot sequences to be transmitted of different antenna ports are different.
  • sequence determining module includes:
  • the sequence determining sub-module is configured to generate different pilot sequences to be transmitted for different antenna ports according to a preset pilot sequence and Q different cyclic shifts; wherein the value of P is equal to the value of N.
  • the device further includes:
  • the diversity transmitting module is configured to perform space-time encoding processing or cyclic delay diversity processing on the data to be sent, and associate the processed data to be transmitted with the N antenna ports and transmit the data through the N antenna ports.
  • the diversity transmitting module includes:
  • a space-time coding sub-module for layering the data to be transmitted, performing space-time coding operation on the multi-layer data by using the space-time block code STBC, and determining M groups of data to be transmitted; wherein each group of data to be transmitted includes Q data; M is an integer greater than or equal to 2, and the value of Q is equal to the value of N;
  • a symbol selection sub-module configured to select M OFDM symbols from orthogonal frequency division multiplexing OFDM symbols of the target subframe, and map the M groups of to-be-transmitted data into the selected M OFDM symbols respectively;
  • a data sending submodule configured to separately transmit Q data included in a group of to-be-transmitted data mapped to the OFDM symbol from the N antenna ports in a slot interval corresponding to the M OFDM symbols respectively.
  • the device further includes:
  • a transform module configured to perform discrete Fourier transform on each of the Q data included in each set of data to be transmitted
  • the data sending submodule includes:
  • a data sending unit configured to: in the slot interval corresponding to the M OFDM symbols, the Q data after the inverse discrete Fourier transform included in a group of to-be-transmitted data mapped to the OFDM symbol
  • the antenna ports are transmitted separately.
  • the symbol selection submodule includes:
  • a first selecting unit configured to select two adjacent OFDM symbols from other OFDM symbols except the pilot symbol in the target subframe; where N is equal to 2 and M is equal to 2.
  • the symbol selection submodule includes:
  • a second selecting unit configured to select two adjacent OFDM symbols from the target subframe except the pilot symbol and other OFDM symbols except the isolated OFDM symbol;
  • the isolated OFDM symbol is a last OFDM symbol and a second last OFDM symbol in the target subframe; or the isolated OFDM symbol is the first OFDM symbol and the second OFDM in the target subframe. a symbol; or, the isolated OFDM symbol is a last OFDM symbol, a second last OFDM symbol, a first OFDM symbol, and a second OFDM symbol in the target subframe; N is equal to 2, and M is equal to 2.
  • the symbol selection submodule includes:
  • a third selecting unit configured to select two OFDM symbols on both sides of the pilot symbol from the OFDM symbols except the pilot symbol and the isolated OFDM symbol in the target subframe;
  • the isolated OFDM symbol is the first OFDM symbol and the last OFDM symbol in the target subframe, N is equal to 2, and M is equal to 2.
  • the isolated OFDM symbol is associated with any one of the two antenna ports by a configuration or a predetermined manner;
  • the isolated OFDM symbols are sequentially associated with two antenna ports in turn according to a preset rule.
  • the device further includes:
  • a splitting module configured to split, respectively, other OFDM symbols except the pilot symbols in the target subframe into 2 sub-OFDM symbols;
  • a fourth selecting unit configured to determine that the two sub OFDM symbols obtained by splitting one OFDM symbol are two OFDM symbols selected from OFDM symbols of the target subframe; wherein N is equal to 2 and M is equal to 2.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 100 and various circuits of memory represented by memory 120.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 110 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 100 is responsible for managing the bus architecture and general processing, and the memory 120 can store data used by the processor 100 in performing operations.
  • the processor 100 is responsible for managing the bus architecture and general processing, and the memory 120 can store data used by the processor 100 in performing operations.
  • the apparatus for transmitting diversity divides an OFDM symbol in a transmission subframe into a plurality of precoding subblocks, and performs a precoding operation on each precoding subblock, thereby making one
  • the data to be transmitted is subjected to multiple precoding processing, thereby improving the gain of antenna transmit diversity and precoding; and further increasing the diversity gain by splitting the OFDM symbol into multiple OFDM symbols to increase the number of precoding subblocks, Reduce the overhead of AGC and GP.
  • the apparatus for transmitting diversity in the multi-antenna communication system provided by the above-described embodiments of the present disclosure is a device capable of implementing the above-described method for transmitting diversity in a multi-antenna communication system, and the above-described transmission diversity in the multi-antenna communication system All of the embodiments of the method are applicable to the device and all achieve the same or similar benefits.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program (instruction), the program (instruction) being executed by the processor to implement the following steps:
  • each antenna port transmits a pilot sequence to be transmitted on the RE of the pilot symbol mapped to the pilot sequence of the antenna port to be transmitted, respectively.
  • program can also implement the following steps when executed by the processor:
  • the pilot sequence to be transmitted of each antenna port is alternately mapped to the RE of one pilot symbol of the target subframe by frequency division multiplexing.
  • program can also implement the following steps when executed by the processor:
  • program can also implement the following steps when executed by the processor:
  • program can also implement the following steps when executed by the processor:
  • program can also implement the following steps when executed by the processor:
  • Layering the data to be transmitted performing space-time coding operation on the multi-layer data by using the space-time block code STBC, and determining M groups of data to be transmitted; wherein each group of data to be transmitted includes Q data; M is an integer greater than or equal to 2 , the value of Q is equal to the value of N;
  • program can also implement the following steps when executed by the processor:
  • the Q data after the inverse discrete Fourier transform included in a set of data to be transmitted that is mapped to the OFDM symbol is respectively transmitted from the N antenna ports in a slot interval corresponding to the M OFDM symbols.
  • program can also implement the following steps when executed by the processor:
  • Two adjacent OFDM symbols are selected from other OFDM symbols except the pilot symbols in the target subframe.
  • program can also implement the following steps when executed by the processor:
  • the isolated OFDM symbol is a last OFDM symbol and a second last OFDM symbol in the target subframe; or the isolated OFDM symbol is the first OFDM symbol and the second OFDM in the target subframe.
  • the symbol; or, the isolated OFDM symbol is a last OFDM symbol, a second last OFDM symbol, a first OFDM symbol, and a second OFDM symbol in the target subframe.
  • program can also implement the following steps when executed by the processor:
  • the isolated OFDM symbol is a first OFDM symbol and a last OFDM symbol in a target subframe.
  • program can also implement the following steps when executed by the processor:
  • the 2 sub OFDM symbols obtained by splitting one OFDM symbol are 2 OFDM symbols selected from OFDM symbols of the target subframe.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种在多天线通信系统中发射分集的方法及装置,该方法包括:确定每个天线端口的待传输导频序列;将每个天线端口的待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,使得所述N个天线端口复用目标子帧的导频符号;在所述目标子帧上,每个天线端口分别在与该天线端口的待传输导频序列相映射的导频符号的RE上发射待传输导频序列。

Description

在多天线通信系统中发射分集的方法及装置
相关申请的交叉引用
本申请主张于2017年3月24日提交中国专利局、申请号为:201710184726.9的优先权,其全部内容据此通过引用并入本申请。
技术领域
本公开涉及通信技术领域,特别是指一种在多天线通信系统中发射分集的方法及装置。
背景技术
在LTE Rel-14 V2X技术中,终端UE在传输数据的时候包含两种信道,一个控制信道PSCCH,用于传输调度分配(SA,Scheduling Assignment)信息;另一个数据信道PSSCH,用于传输数据信息(Data)。接收端首先通过检测控制信道中携带的SA信息,从而根据接收到的控制信息进行数据信息的接收。
在LTE Rel-14 V2X技术中,存在两种资源选择的模式:
一种是终端UE自发的选择资源的方式,UE通过在系统配置或者预配置的V2X资源池中通过感知的方法选择空闲的资源;另一种是基站辅助的资源选择方法,当车辆在网络覆盖内的情况,基站可以通过下行控制信道(PDCCH/EPDCCH)对V2V通信进行调度,在这种情况下,基站通过发送V2V grant(V2V授权消息)指示发送车辆发送SA和Data的资源位置。
在LTE Rel-14 V2X的子帧结构如图1所示,包括14个OFDM(正交频分复用,Orthogonal Frequency Division Multiplexing)符号;其中,4个OFDM符号用于承载导频符号,即解调用参考信号DMRS;1个OFDM符号用户承载保护间隔(GP,Guard Period);且第一个OFDM符号可以用于自动增益控制AGC的调整。
对于LTE Rel-14 V2X的SA和Data的DMRS生成主要包含如下的方式:
调度分配信息SA采用的DMRS序列采用预先定义的初始化ID,以及预 定义的4个循环移位{0,3,6,9}中随机选择一个,接收端在接受SA的时候,需要盲检测SA使用的DMRS的循环移位。不同的DMRS的OFDM符号上的DMRS序列是相同的。
数据信息Data采用的DMRS序列的DMRS初始化ID和循环移位都是通过SA的循环冗余校验CRC比特获得的ID值产生的(N_ID),不同的DMRS的OFDM符号上的可以是不同的,当N_ID mod 2=0的时候,DMRS序列是相同的,当N_ID mod 2=1的时候,DMRS序列是不同的,通过[1,-1,1,-1]进行扩展。接收端根据接收到的SA信息可以完全重构整个data传输的DMRS序列。
但是,现有的LTE Rel-14 V2X系统在终端UE之间直接通信的链路中目前仅支持单天线传输的方式,随着多天线技术的发展,单天线的传输方式已无法适用于多天线模式。
发明内容
本公开的目的在于提供一种在多天线通信系统中发射分集的方法及装置中,解决了相关技术中单天线的数据传输方式无法适用于多天线通信系统的问题。
为了达到上述目的,本公开实施例提供一种在多天线通信系统中发射分集的方法,所述多天线通信系统包括N个天线端口,所述方法包括:
确定每个天线端口的待传输导频序列;
将所述每个天线端口的所述待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,使得所述N个天线端口复用所述目标子帧的导频符号;N为大于或者等于2的整数;
在所述目标子帧上,所述每个天线端口分别在与所述天线端口的待传输导频序列相映射的导频符号的RE上发射所述待传输导频序列。
其中,所述将所述每个天线端口的所述待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上的步骤,包括:
通过频分多路复用的方式将所述每个天线端口的待传输导频序列交替映射到所述目标子帧的一个导频符号的RE上。
其中,所述将所述每个天线端口的所述待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上的步骤,包括:
通过码分多路复用的方式将所述每个天线端口的待传输导频序列分别映射到时间上重叠的所述目标子帧的一个导频符号的所有RE上;其中,不同天线端口的待传输导频序列不同。
其中,所述确定每个天线端口的待传输导频序列的步骤,包括:
根据一预设导频序列和P个不同的循环移位,为不同的天线端口生成不同的待传输导频序列;其中,P的值等于N的值。
其中,所述方法还包括:
对待发送数据进行空时编码处理或循环延时分集处理,将处理后的所述待发送数据与所述N个天线端口关联并通过所述N个天线端口进行发射。
其中,所述对待发送数据进行空时编码处理,将处理后的所述待发送数据与所述N个天线端口关联并通过所述N个天线端口进行发射的步骤,包括:
对所述待发送数据进行分层,利用空时分组码STBC对多层数据进行空时编码操作,确定M组待发射数据;其中,每组待发射数据包括Q个数据;M为大于或者等于2的整数,Q的值等于N的值;
从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号,将所述M组待发射数据分别映射到选择的所述M个OFDM符号中;
在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从所述N个天线端口分别发射。
其中,在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从所述N个天线端口分别发射之前,所述方法还包括:
对每组待发射数据包括的Q个数据分别进行离散傅里叶逆变换;
所述在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从所述N个天线端口分别发射的步骤,包括:
在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的经过离散傅里叶逆变换之后的Q个数据从所述N 个天线端口分别发射。
其中,当N等于2,M等于2时,
所述从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号的步骤,包括:
从所述目标子帧中除导频符号之外的其他OFDM符号中选择相邻的2个OFDM符号。
其中,当N等于2,M等于2时,
所述从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号的步骤,包括:
从所述目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择相邻的2个OFDM符号;
其中,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号和倒数第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号、倒数第二个OFDM符号、第一个OFDM符号以及第二个OFDM符号。
其中,当N等于2,M等于2时,
所述从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号的步骤,包括:
从所述目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择导频符号两侧的2个OFDM符号;
其中,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和倒数第一个OFDM符号。
其中,所述孤立OFDM符号通过配置或预先预定的方式与2个天线端口中的任意一个天线端口关联;或者,
所述孤立OFDM符号按照预设规则轮流与2个天线端口依次关联。
其中,从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号之前,所述方法还包括:
将所述目标子帧中除导频符号之外的其他OFDM符号分别分裂为2个子 OFDM符号;
当N等于2,M等于2时,所述从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号的步骤,包括:
确定由一个OFDM符号分裂得到的2个子OFDM符号为从所述目标子帧的OFDM符号中选择的2个OFDM符号。
本公开实施例还提供一种在多天线通信系统中发射分集的装置,所述多天线通信系统包括N个天线端口,所述装置包括:
序列确定模块,用于确定每个天线端口的待传输导频序列;
第一映射模块,用于将所述每个天线端口的所述待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,使得所述N个天线端口复用所述目标子帧的导频符号;N为大于或者等于2的整数;
导频发送模块,用于在所述目标子帧上,所述每个天线端口分别在与所述天线端口的待传输导频序列相映射的导频符号的RE上发射所述待传输导频序列。
其中,所述第一映射模块包括:
第一映射子模块,用于通过频分多路复用的方式将所述每个天线端口的待传输导频序列交替映射到所述目标子帧的一个导频符号的RE上。
其中,所述第一映射模块包括:
第二映射子模块,用于通过码分多路复用的方式将所述每个天线端口的待传输导频序列分别映射到时间上重叠的所述目标子帧的一个导频符号的所有RE上;其中,不同天线端口的待传输导频序列不同。
其中,所述序列确定模块包括:
序列确定子模块,用于根据一预设导频序列和Q个不同的循环移位,为不同的天线端口生成不同的待传输导频序列;其中,P的值等于N的值。
其中,所述装置还包括:
分集发射模块,用于对待发送数据进行空时编码处理或循环延时分集处理,将处理后的所述待发送数据与所述N个天线端口关联并通过所述N个天线端口进行发射。
其中,所述分集发射模块包括:
空时编码子模块,用于对所述待发送数据进行分层,利用空时分组码STBC对多层数据进行空时编码操作,确定M组待发射数据;其中,每组待发射数据包括Q个数据;M为大于或者等于2的整数,Q的值等于N的值;
符号选择子模块,用于从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号,将所述M组待发射数据分别映射到选择的所述M个OFDM符号中;
数据发送子模块,用于在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从所述N个天线端口分别发射。
其中,所述装置还包括:
变换模块,用于对每组待发射数据包括的Q个数据分别进行离散傅里叶逆变换;
所述数据发送子模块包括:
数据发送单元,用于在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的经过离散傅里叶逆变换之后的Q个数据从所述N个天线端口分别发射。
其中,所述符号选择子模块包括:
第一选择单元,用于从所述目标子帧中除导频符号之外的其他OFDM符号中选择相邻的2个OFDM符号;其中,N等于2,M等于2。
其中,所述符号选择子模块包括:
第二选择单元,用于从所述目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择相邻的2个OFDM符号;
其中,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号和倒数第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号、倒数第二个OFDM符号、第一个OFDM符号以及第二个OFDM符号;N等于2,M等于2。
其中,所述符号选择子模块包括:
第三选择单元,用于从目标子帧中除导频符号和孤立OFDM符号之外的 其他OFDM符号中选择导频符号两侧的2个OFDM符号;
其中,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和倒数第一个OFDM符号,N等于2,M等于2。
其中,所述孤立OFDM符号通过配置或预先预定的方式与2个天线端口中的任意一个天线端口关联;或者,
所述孤立OFDM符号按照预设规则轮流与2个天线端口依次关联。
其中,所述装置还包括:
分裂模块,用于将所述目标子帧中除导频符号之外的其他OFDM符号分别分裂为2个子OFDM符号;
所述符号选择子模块包括:
第四选择单元,用于确定由一个OFDM符号分裂得到的2个子OFDM符号为从所述目标子帧的OFDM符号中选择的2个OFDM符号;其中,N等于2,M等于2。
本公开实施例还提供了一种在多天线通信系统中发射分集的装置,所述多天线通信系统包括N个天线端口,所述装置包括存储器及处理器,其中,所述存储器上存储有可在所述处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:确定每个天线端口的待传输导频序列;将所述每个天线端口的所述待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,使得所述N个天线端口复用所述目标子帧的导频符号;N为大于或者等于2的整数;在所述目标子帧上,所述每个天线端口分别在与所述天线端口的待传输导频序列相映射的导频符号的RE上发射所述待传输导频序列。
可选地,所述处理器具体用于:通过频分多路复用的方式将所述每个天线端口的待传输导频序列交替映射到所述目标子帧的一个导频符号的RE上。
可选地,所述处理器具体用于:通过码分多路复用的方式将所述每个天线端口的待传输导频序列分别映射到时间上重叠的所述目标子帧的一个导频符号的所有RE上;其中,不同天线端口的待传输导频序列不同。
可选地,所述处理器具体用于:根据一预设导频序列和Q个不同的循环移位,为不同的天线端口生成不同的待传输导频序列;其中,P的值等于N的值。
可选地,所述处理器具体用于:对待发送数据进行空时编码处理或循环延时分集处理,将处理后的所述待发送数据与所述N个天线端口关联并通过所述N个天线端口进行发射。
可选地,所述处理器具体用于:对所述待发送数据进行分层,利用空时分组码STBC对多层数据进行空时编码操作,确定M组待发射数据;其中,每组待发射数据包括Q个数据;M为大于或者等于2的整数,Q的值等于N的值;从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号,将所述M组待发射数据分别映射到选择的所述M个OFDM符号中;在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从所述N个天线端口分别发射。
可选地,所述处理器具体用于:对每组待发射数据包括的Q个数据分别进行离散傅里叶逆变换;在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的经过离散傅里叶逆变换之后的Q个数据从所述N个天线端口分别发射。
可选地,所述处理器具体用于:从所述目标子帧中除导频符号之外的其他OFDM符号中选择相邻的2个OFDM符号;其中,N等于2,M等于2。
可选地,所述处理器具体用于:从所述目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择相邻的2个OFDM符号;其中,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号和倒数第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号、倒数第二个OFDM符号、第一个OFDM符号以及第二个OFDM符号;N等于2,M等于2。
可选地,所述处理器具体用于:从目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择导频符号两侧的2个OFDM符号;其中,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和倒数第一个OFDM符号,N等于2,M等于2。
可选地,所述孤立OFDM符号通过配置或预先预定的方式与2个天线端口中的任意一个天线端口关联;或者所述孤立OFDM符号按照预设规则轮流 与2个天线端口依次关联。
可选地,所述处理器具体用于:将所述目标子帧中除导频符号之外的其他OFDM符号分别分裂为2个子OFDM符号;确定由一个OFDM符号分裂得到的2个子OFDM符号为从所述目标子帧的OFDM符号中选择的2个OFDM符号;其中,N等于2,M等于2。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现上述任一种方法中的步骤。本公开的上述技术方案至少具有如下有益效果:
本公开实施例的在多天线通信系统中发射分集的方法及装置中,通过将每个天线端口的待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,从而实现不同天线端口的导频符号的复用,同时还能够使得每个天线端口上的导频序列的传输满足单载波的特性,从而达到多天线端口传输的目的。
附图说明
图1表示相关技术中普通子帧的结构示意图;
图2表示本公开实施例提供的在多天线通信系统中发射分集的方法的步骤流程图;
图3表示本公开实施例提供的在多天线通信系统中发射分集的方法中频分复用导频符号的原理图;
图4表示本公开实施例提供的在多天线通信系统中发射分集的方法中码分复用导频符号的原理图;
图5表示本公开实施例提供的在多天线通信系统中发射分集的方法中采用循环延迟分集发射分集的原理图;
图6表示本公开实施例提供的在多天线通信系统中发射分集的方法中采用空时编码发射分集的原理图;
图7表示本公开实施例提供的在多天线通信系统中发射分集的方法中选择OFDM符号对的示意图之一;
图8表示本公开实施例提供的在多天线通信系统中发射分集的方法中选 择OFDM符号对的示意图之二;
图9表示本公开实施例提供的在多天线通信系统中发射分集的方法中选择OFDM符号对的示意图之三;
图10表示本公开实施例提供的在多天线通信系统中发射分集的方法中选择OFDM符号对的示意图之四;
图11表示本公开实施例提供的在多天线通信系统中发射分集的方法中选择OFDM符号对的示意图之五;
图12表示本公开实施例提供的在多天线通信系统中发射分集的方法中对OFDM符号进行分裂之后选择OFDM符号对的示意图之一;
图13表示本公开实施例提供的在多天线通信系统中发射分集的方法中对OFDM符号进行分裂之后选择OFDM符号对的示意图之二;
图14表示本公开实施例提供的在多天线通信系统中发射分集的方法中短子帧中选择OFDM符号对的示意图;
图15表示本公开实施例提供的在多天线通信系统中发射分集的装置的结构示意图;
图16表示本公开实施例提供的在多天线通信系统中发射分集的装置的又一结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图2所示,本公开实施例提供一种在多天线通信系统中发射分集的方法,所述多天线通信系统包括N个天线端口,所述方法包括:
步骤21,确定每个天线端口的待传输导频序列;
步骤22,将每个天线端口的待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,使得所述N个天线端口复用目标子帧的导频符号;
步骤23,在所述目标子帧上,每个天线端口分别在与该天线端口的待传输导频序列相映射的导频符号的RE上发射待传输导频序列。
本公开的上述实施例中,不同天线端口的待传输导频序列可以相同也可以不同。具体的,不同的天线端口复用同一目标子帧的导频符号。例如,一个导频符号包括12个资源单元RE,本公开实施例的步骤22中可通过频分复用的方式将待传输导频序列映射到一个导频符号的不同频域的RE;或者,本公开实施例的步骤22中可通过码分复用的方式将待传输导频序列映射到一个导频符号的所有RE上。
进一步的,本公开实施例中步骤22包括:
步骤221,通过频分多路复用的方式将每个天线端口的待传输导频序列交替映射到目标子帧的一个导频符号的RE上。
如图3所示,设多天线通信系统包括2个天线端口,分别为第一天线端口和第二天线端口;2个天线端口交替占用一个导频符号的RE。例如以目标子帧的第一个导频符号为例,目标子帧中的第一个导频符号包括12个RE,则如图3所示,第一个导频符号的第一个RE、第三个RE、第五个RE、第七个RE、第九个RE以及第十一个RE被第一天线端口占用(即第一天线端口的待传输导频序列映射到第一个导频符号的第一个RE、第三个RE、第五个RE、第七个RE、第九个RE以及第十一个RE);而第一个导频符号的第二个RE、第四个RE、第六个RE、第八个RE、第十个RE以及第十二个RE被第二天线端口占用(即第二天线端口的待传输导频序列映射到第一个导频符号的第二个RE、第四个RE、第六个RE、第八个RE、第十个RE以及第十二个RE)。
具体的,待传输导频序列为ZC序列。进一步的,可以通过每个天线端口的待传输导频序列的发射功率来使得各个符号上的发送功率一致;具体的,在现有发射功率的基础上讲每个天线端口的待传输导频序列的发射功率提高3dB。
或者,步骤22包括:
步骤222,通过码分多路复用的方式将每个天线端口的待传输导频序列分别映射到时间上重叠的所述目标子帧的一个导频符号的所有RE上;其中,不同天线端口的待传输导频序列不同。
如图4所示,设多天线通信系统包括2个天线端口,分别为第一天线端 口和第二天线端口;每个天线端口占用一个导频符号的所有RE,每个天线端口的待传输导频序列是不同的。具体的,待传输导频序列均为ZC序列。相应的,步骤21包括:
根据一预设导频序列和Q个不同的循环移位,为不同的天线端口生成不同的待传输导频序列;其中,P的值等于N的值。
不同天线端口的待传输导频序列通过同一预设导频序列的初始化ID和不同的循环位移生成,从而可以获得更好的相关特征。
进一步的,本公开实施例还提供一种基于上述多个复用导频的多个天线端口发射分集的方案,上述基于频分多路复用方式来复用导频符号的方式以及基于码分多路复用方式来复用导频符号的方式均适用于本申请提供的发射分集的方案,后续为了清楚简洁的描述发射分集方法,后续具体实施例中均按照采用频分多路复用方式来复用导频符号的方式来给出示例。
具体的,本公开的上述实施例中所述方法还包括:
步骤24,对待发送数据进行空时编码处理或循环延时分集处理,将处理后的所述待发送数据与所述N个天线端口关联并通过所述N个天线端口进行发射。
如图5所示,对待发送数据进行循环延时分集处理的方法为:待发送数据经过离散傅里叶变换DFT以及循环延迟分集CDD处理,对待发送数据的每个符号产生一个固定时延,然后与不同的天线端口关联并进行发送。
进一步的,基于STBC发射分集时,步骤24包括:
步骤241,对待发送数据进行分层,利用空时分组码STBC对多层数据进行空时编码操作,确定M组待发射数据;其中,每组待发射数据包括Q个数据;M为大于或者等于2的整数,Q的值等于N的值;
步骤242,从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号,将所述M组待发射数据分别映射到选择的M个OFDM符号中;
步骤243,在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从N个天线端口分别发射。
具体的,步骤243之前所述方法还包括:
对每组待发射数据包括的Q个数据分别进行离散傅里叶逆变换;
相应的,步骤243包括:
在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的经过离散傅里叶逆变换之后的Q个数据从N个天线端口分别发射。
如图6所示,先将数据进行分层处理,再对多层数据联合进行空时编码操作,并将编码操作之后的M组待发射数据分别映射到M个OFDM符号中,然后与不同的天线端口关联进行发送。
具体的,在目前多天线系统的终端之间直接通信链路的子载波带宽为15KHz情况下,若多天线通信系统包括2个天线端口,且STBC编码能够得到2组待发送数据时,所述步骤242包括:
从目标子帧中除导频符号之外的其他OFDM符号中选择相邻的2个OFDM符号。
如图7所示,目标子帧中相邻的OFDM符号配对为与2组待发射数据分别映射的2个OFDM符号。
或者,步骤242包括:
从目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择相邻的2个OFDM符号;
其中,如图8所示,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号和倒数第二个OFDM符号;或者,如图9所示,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和第二个OFDM符号;或者,如图10所示,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号、倒数第二个OFDM符号、第一个OFDM符号以及第二个OFDM符号。
其中,孤立OFDM符号为目标子帧中的倒数第一个OFDM符号和倒数第二个OFDM符号的主要原因是最后一个用做保护间隔GP的OFDM符号由于发送端不发送(相当于0功率发送),如果倒数第二个OFDM符号与最后一个GP OFDM符号配对,会影响倒数第二个OFDM符号的可靠性,所以将倒数第一个OFDM符号和倒数第二个OFDM符号设定为孤立OFDM符号。
其中,孤立OFDM符号为目标子帧中的第一个OFDM符号和第二个OFDM符号的主要原因是第一个用于自动增益控制AGC的OFDM符号有可 能无法正确接收,如果第一个用于AGC的OFDM符号与第二个OFDM符号与最后一个GP OFDM符号配对,会影响第二个OFDM符号的可靠性,所以将第一个OFDM符号以及第二个OFDM符号设定为孤立OFDM符号。
或者,步骤242包括:
从目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择导频符号两侧的2个OFDM符号;
其中,如图11所示,孤立OFDM符号为目标子帧中的第一个OFDM符号和倒数第一个OFDM符号。
孤立OFDM符号为目标子帧中的第一个OFDM符号和倒数第一个OFDM符号的主要原因是最后一个用做保护间隔GP的OFDM符号由于发送端不发送(相当于0功率发送),而第一个用于自动增益控制AGC的OFDM符号有可能无法正确接收;故第一个OFDM符号和倒数第一个OFDM符号被设定为孤立OFDM符号。
进一步的,对于孤立OFDM符号的处理方式如下:
所述孤立OFDM符号通过配置或预先预定的方式与2个天线端口中的任意一个天线端口关联;或者,
所述孤立OFDM符号按照预设规则轮流与2个天线端口依次关联。例如偶数RE与第一天线端口关联,而奇数RE与第二天线端口关联。
进一步的,如果将原始的OFDM(例如15KHz子载波带宽)符号分裂为两个子OFDM符号(例如30KHz子载波带宽),例如考虑引入子载波带宽为30KHz的情况下,2个OFDM符号的选择方式如下。
首先将所述目标子帧中除导频符号之外的其他OFDM符号分别分裂为2个子OFDM符号;
则步骤242包括:
确定由一个OFDM符号分裂得到的2个子OFDM符号为从目标子帧的OFDM符号中选择的2个OFDM符号。
如图12所示,仅将所述目标子帧中除导频符号之外的其他OFDM符号进行分裂,导频符号不分裂的情况,即原有的数据占用的OFDM符号分裂成两个子OFDM符号,则这两个子OFDM符号为步骤242选择的OFDM符号。
如图13所示,不仅将所述目标子帧中除导频符号之外的其他OFDM符号进行分裂,导频符号也进行分裂,则原有的数据占用的OFDM符号分裂成两个子OFDM符号,则这两个子OFDM符号为步骤242选择的OFDM符号;而导频符号分裂之后,其不同天线端口的导频复用方式可以进一步通过时分多路复用TDM的方式复用。
而若仅对导频符号进行分裂,而对数据占用的OFDM符号不进行分裂,则此时选择2个OFDM符号的方式与不进行符号分裂的选择方式一致,在此不进行重复描述。
而在短子帧情况下,例如slot-level TTI或者几个OFDM符号构成一个短子帧的情况下,步骤242选择的2个OFDM符号的配对关系在某些情况下会进行修改。具体如下:
在15KHz子载波带宽情况下,主要影响的配对的OFDM符号的位置,和孤立OFDM符号的个数。以方案1为例进行描述,如图14所示。在潜在的存在30KHz情况下,如果短子帧的划分是以原始OFDM符号为粒度进行划分的,那么通过符号分裂的方式,上述图12和图13中的OFDM符号配对的方法可以直接应用。在短子帧中,CDD发送分集的技术,在两个DMRS端口的基础上,普通子帧中的方案可以直接扩展到更短的子帧中。
综上,本公开的上述实施例中通过将每个天线端口的待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,从而实现不同天线端口的导频符号的复用,同时还能够使得每个天线端口上的导频序列的传输满足单载波的特性,从而达到多天线端口传输的目的;并在多个天线端口上采用STBC分集编码方式进行分集发送,以有效的提高链路的可靠性,从而有效的增加车辆之间通信的范围。
如图15所示,本公开实施例还提供一种在多天线通信系统中发射分集的装置,所述多天线通信系统包括N个天线端口,所述装置包括:
序列确定模块151,用于确定每个天线端口的待传输导频序列;
第一映射模块152,用于将每个天线端口的待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,使得所述N个天线端口复用目标子帧的导频符号;
导频发送模块153,用于在所述目标子帧上,每个天线端口分别在与该天线端口的待传输导频序列相映射的导频符号的RE上发射待传输导频序列。
具体的,本公开的上述实施例中所述第一映射模块包括:
第一映射子模块,用于通过频分多路复用的方式将每个天线端口的待传输导频序列交替映射到目标子帧的一个导频符号的RE上。
具体的,本公开的上述实施例中所述第一映射模块包括:
第二映射子模块,用于通过码分多路复用的方式将每个天线端口的待传输导频序列分别映射到时间上重叠的所述目标子帧的一个导频符号的所有RE上;其中,不同天线端口的待传输导频序列不同。
具体的,本公开的上述实施例中所述序列确定模块包括:
序列确定子模块,用于根据一预设导频序列和Q个不同的循环移位,为不同的天线端口生成不同的待传输导频序列;其中,P的值等于N的值。
具体的,本公开的上述实施例中所述装置还包括:
分集发射模块,用于对待发送数据进行空时编码处理或循环延时分集处理,将处理后的所述待发送数据与所述N个天线端口关联并通过所述N个天线端口进行发射。
具体的,本公开的上述实施例中所述分集发射模块包括:
空时编码子模块,用于对待发送数据进行分层,利用空时分组码STBC对多层数据进行空时编码操作,确定M组待发射数据;其中,每组待发射数据包括Q个数据;M为大于或者等于2的整数,Q的值等于N的值;
符号选择子模块,用于从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号,将所述M组待发射数据分别映射到选择的M个OFDM符号中;
数据发送子模块,用于在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从N个天线端口分别发射。
具体的,本公开的上述实施例中所述装置还包括:
变换模块,用于对每组待发射数据包括的Q个数据分别进行离散傅里叶逆变换;
所述数据发送子模块包括:
数据发送单元,用于在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的经过离散傅里叶逆变换之后的Q个数据从N个天线端口分别发射。
具体的,本公开的上述实施例中所述符号选择子模块包括:
第一选择单元,用于从目标子帧中除导频符号之外的其他OFDM符号中选择相邻的2个OFDM符号;其中,N等于2,M等于2。
具体的,本公开的上述实施例中所述符号选择子模块包括:
第二选择单元,用于从目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择相邻的2个OFDM符号;
其中,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号和倒数第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号、倒数第二个OFDM符号、第一个OFDM符号以及第二个OFDM符号;N等于2,M等于2。
具体的,本公开的上述实施例中所述符号选择子模块包括:
第三选择单元,用于从目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择导频符号两侧的2个OFDM符号;
其中,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和倒数第一个OFDM符号,N等于2,M等于2。
具体的,本公开的上述实施例中所述孤立OFDM符号通过配置或预先预定的方式与2个天线端口中的任意一个天线端口关联;或者,
所述孤立OFDM符号按照预设规则轮流与2个天线端口依次关联。
具体的,本公开的上述实施例中所述装置还包括:
分裂模块,用于将所述目标子帧中除导频符号之外的其他OFDM符号分别分裂为2个子OFDM符号;
所述符号选择子模块包括:
第四选择单元,用于确定由一个OFDM符号分裂得到的2个子OFDM符号为从目标子帧的OFDM符号中选择的2个OFDM符号;其中,N等于2, M等于2。
综上,本公开的上述实施例中通过将每个天线端口的待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,从而实现不同天线端口的导频符号的复用,同时还能够使得每个天线端口上的导频序列的传输满足单载波的特性,从而达到多天线端口传输的目的;并在多个天线端口上采用STBC分集编码方式进行分集发送,以有效的提高链路的可靠性,从而有效的增加车辆之间通信的范围。
需要说明的是,本公开实施例提供的在多天线通信系统中发射分集的装置是能够执行上述在多天线通信系统中发射分集的方法的装置,则上述在多天线通信系统中发射分集的方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
如图16所示,本公开实施例还提供一种在多天线通信系统中发射分集的装置,所述多天线通信系统包括N个天线端口,该装置包括:处理器100;通过总线接口与所述处理器100相连接的存储器120,以及通过总线接口与处理器100相连接的收发机110;所述存储器用于存储所述处理器在执行操作时所使用的程序和数据;通过所述收发机110发送控制命令等;当处理器调用并执行所述存储器中所存储的程序和数据时,实现如下的功能模块:
序列确定模块,用于确定每个天线端口的待传输导频序列;
第一映射模块,用于将每个天线端口的待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,使得所述N个天线端口复用目标子帧的导频符号;
导频发送模块,用于在所述目标子帧上,每个天线端口分别在与该天线端口的待传输导频序列相映射的导频符号的RE上发射待传输导频序列。
具体的,所述第一映射模块包括:
第一映射子模块,用于通过频分多路复用的方式将每个天线端口的待传输导频序列交替映射到目标子帧的一个导频符号的RE上。
具体的,所述第一映射模块包括:
第二映射子模块,用于通过码分多路复用的方式将每个天线端口的待传输导频序列分别映射到时间上重叠的所述目标子帧的一个导频符号的所有 RE上;其中,不同天线端口的待传输导频序列不同。
具体的,所述序列确定模块包括:
序列确定子模块,用于根据一预设导频序列和Q个不同的循环移位,为不同的天线端口生成不同的待传输导频序列;其中,P的值等于N的值。
具体的,所述装置还包括:
分集发射模块,用于对待发送数据进行空时编码处理或循环延时分集处理,将处理后的所述待发送数据与所述N个天线端口关联并通过所述N个天线端口进行发射。
具体的,所述分集发射模块包括:
空时编码子模块,用于对待发送数据进行分层,利用空时分组码STBC对多层数据进行空时编码操作,确定M组待发射数据;其中,每组待发射数据包括Q个数据;M为大于或者等于2的整数,Q的值等于N的值;
符号选择子模块,用于从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号,将所述M组待发射数据分别映射到选择的M个OFDM符号中;
数据发送子模块,用于在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从N个天线端口分别发射。
具体的,所述装置还包括:
变换模块,用于对每组待发射数据包括的Q个数据分别进行离散傅里叶逆变换;
所述数据发送子模块包括:
数据发送单元,用于在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的经过离散傅里叶逆变换之后的Q个数据从N个天线端口分别发射。
具体的,所述符号选择子模块包括:
第一选择单元,用于从目标子帧中除导频符号之外的其他OFDM符号中选择相邻的2个OFDM符号;其中,N等于2,M等于2。
具体的,所述符号选择子模块包括:
第二选择单元,用于从目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择相邻的2个OFDM符号;
其中,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号和倒数第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号、倒数第二个OFDM符号、第一个OFDM符号以及第二个OFDM符号;N等于2,M等于2。
具体的,所述符号选择子模块包括:
第三选择单元,用于从目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择导频符号两侧的2个OFDM符号;
其中,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和倒数第一个OFDM符号,N等于2,M等于2。
具体的,所述孤立OFDM符号通过配置或预先预定的方式与2个天线端口中的任意一个天线端口关联;或者,
所述孤立OFDM符号按照预设规则轮流与2个天线端口依次关联。
具体的,所述装置还包括:
分裂模块,用于将所述目标子帧中除导频符号之外的其他OFDM符号分别分裂为2个子OFDM符号;
所述符号选择子模块包括:
第四选择单元,用于确定由一个OFDM符号分裂得到的2个子OFDM符号为从目标子帧的OFDM符号中选择的2个OFDM符号;其中,N等于2,M等于2。
其中,在图16中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器100代表的一个或多个处理器和存储器120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机110可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器100负责管理总线架构和通常的处理,存储器120可以存储处理器100 在执行操作时所使用的数据。
处理器100负责管理总线架构和通常的处理,存储器120可以存储处理器100在执行操作时所使用的数据。
综上,本公开的上述实施例提供的发射分集的装置通过将发送子帧中的OFDM符号划分为多个预编码子块,并分别对每个预编码子块进行预编码操作,从而使得一个待发送数据会经过多次预编码的处理,从而提高了天线发射分集和预编码的增益;并通过将OFDM符号分裂为多个OFDM符号来增加预编码子块的数量,从而进一步提升分集增益,降低了AGC和GP的开销。
需要说明的是,本公开的上述实施例提供的在多天线通信系统中发射分集的装置是能够实现上述在多天线通信系统中发射分集的方法的装置,在上述在多天线通信系统中发射分集的方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序(指令),该程序(指令)被处理器执行时实现以下步骤:
确定每个天线端口的待传输导频序列;
将每个天线端口的待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,使得所述N个天线端口复用目标子帧的导频符号;
在所述目标子帧上,每个天线端口分别在与该天线端口的待传输导频序列相映射的导频符号的RE上发射待传输导频序列。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
通过频分多路复用的方式将每个天线端口的待传输导频序列交替映射到目标子帧的一个导频符号的RE上。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
通过码分多路复用的方式将每个天线端口的待传输导频序列分别映射到时间上重叠的所述目标子帧的一个导频符号的所有RE上;其中,不同天线端口的待传输导频序列不同。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
根据一预设导频序列和Q个不同的循环移位,为不同的天线端口生成不同的待传输导频序列;其中,P的值等于N的值。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
对待发送数据进行空时编码处理或循环延时分集处理,将处理后的所述待发送数据与所述N个天线端口关联并通过所述N个天线端口进行发射。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
对待发送数据进行分层,利用空时分组码STBC对多层数据进行空时编码操作,确定M组待发射数据;其中,每组待发射数据包括Q个数据;M为大于或者等于2的整数,Q的值等于N的值;
从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号,将所述M组待发射数据分别映射到选择的M个OFDM符号中;
在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从N个天线端口分别发射。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
对每组待发射数据包括的Q个数据分别进行离散傅里叶逆变换;
在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的经过离散傅里叶逆变换之后的Q个数据从N个天线端口分别发射。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
从目标子帧中除导频符号之外的其他OFDM符号中选择相邻的2个OFDM符号。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
从目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择相邻的2个OFDM符号;
其中,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号和倒数第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号、倒数第二个OFDM符号、第一个OFDM符号以及第二个OFDM符号。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
从目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中 选择导频符号两侧的2个OFDM符号;
其中,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和倒数第一个OFDM符号。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
将所述目标子帧中除导频符号之外的其他OFDM符号分别分裂为2个子OFDM符号;
确定由一个OFDM符号分裂得到的2个子OFDM符号为从目标子帧的OFDM符号中选择的2个OFDM符号。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (37)

  1. 一种在多天线通信系统中发射分集的方法,所述多天线通信系统包括N个天线端口,所述方法包括:
    确定每个天线端口的待传输导频序列;
    将所述每个天线端口的所述待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,使得所述N个天线端口复用所述目标子帧的导频符号;N为大于或者等于2的整数;
    在所述目标子帧上,所述每个天线端口分别在与所述天线端口的待传输导频序列相映射的导频符号的RE上发射所述待传输导频序列。
  2. 根据权利要求1所述的方法,其中,所述将所述每个天线端口的所述待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上的步骤,包括:
    通过频分多路复用的方式将所述每个天线端口的待传输导频序列交替映射到所述目标子帧的一个导频符号的RE上。
  3. 根据权利要求1所述的方法,其中,所述将所述每个天线端口的所述待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上的步骤,包括:
    通过码分多路复用的方式将所述每个天线端口的待传输导频序列分别映射到时间上重叠的所述目标子帧的一个导频符号的所有RE上;其中,不同天线端口的待传输导频序列不同。
  4. 根据权利要求3所述的方法,其中,所述确定每个天线端口的待传输导频序列的步骤,包括:
    根据一预设导频序列和P个不同的循环移位,为不同的天线端口生成不同的待传输导频序列;其中,P的值等于N的值。
  5. 根据权利要求1-4任一项所述的方法,还包括:
    对待发送数据进行空时编码处理或循环延时分集处理,将处理后的所述待发送数据与所述N个天线端口关联并通过所述N个天线端口进行发射。
  6. 根据权利要求5所述的方法,其中,所述对待发送数据进行空时编码处理,将处理后的所述待发送数据与所述N个天线端口关联并通过所述N个 天线端口进行发射的步骤,包括:
    对所述待发送数据进行分层,利用空时分组码STBC对多层数据进行空时编码操作,确定M组待发射数据;其中,每组待发射数据包括Q个数据;M为大于或者等于2的整数,Q的值等于N的值;
    从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号,将所述M组待发射数据分别映射到选择的所述M个OFDM符号中;
    在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从所述N个天线端口分别发射。
  7. 根据权利要求6所述的方法,其中,在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从所述N个天线端口分别发射之前,所述方法还包括:
    对每组待发射数据包括的Q个数据分别进行离散傅里叶逆变换;
    所述在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从所述N个天线端口分别发射的步骤,包括:
    在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的经过离散傅里叶逆变换之后的Q个数据从所述N个天线端口分别发射。
  8. 根据权利要求6所述的方法,其中,当N等于2,M等于2时,
    所述从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号的步骤,包括:
    从所述目标子帧中除导频符号之外的其他OFDM符号中选择相邻的2个OFDM符号。
  9. 根据权利要求6所述的方法,其中,当N等于2,M等于2时,
    所述从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号的步骤,包括:
    从所述目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择相邻的2个OFDM符号;
    其中,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号和 倒数第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号、倒数第二个OFDM符号、第一个OFDM符号以及第二个OFDM符号。
  10. 根据权利要求6所述的方法,其中,当N等于2,M等于2时,
    所述从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号的步骤,包括:
    从所述目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择导频符号两侧的2个OFDM符号;
    其中,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和倒数第一个OFDM符号。
  11. 根据权利要求9或10所述的方法,其中,所述孤立OFDM符号通过配置或预先预定的方式与2个天线端口中的任意一个天线端口关联;或者,
    所述孤立OFDM符号按照预设规则轮流与2个天线端口依次关联。
  12. 根据权利要求6所述的方法,其中,从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号之前,所述方法还包括:
    将所述目标子帧中除导频符号之外的其他OFDM符号分别分裂为2个子OFDM符号;
    当N等于2,M等于2时,所述从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号的步骤,包括:
    确定由一个OFDM符号分裂得到的2个子OFDM符号为从所述目标子帧的OFDM符号中选择的2个OFDM符号。
  13. 一种在多天线通信系统中发射分集的装置,所述多天线通信系统包括N个天线端口,所述装置包括:
    序列确定模块,用于确定每个天线端口的待传输导频序列;
    第一映射模块,用于将所述每个天线端口的所述待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,使得所述N个天线端口复用所述目标子帧的导频符号;N为大于或者等于2的整数;
    导频发送模块,用于在所述目标子帧上,所述每个天线端口分别在与所 述天线端口的待传输导频序列相映射的导频符号的RE上发射所述待传输导频序列。
  14. 根据权利要求13所述的装置,其中,所述第一映射模块包括:
    第一映射子模块,用于通过频分多路复用的方式将所述每个天线端口的待传输导频序列交替映射到所述目标子帧的一个导频符号的RE上。
  15. 根据权利要求13所述的装置,其中,所述第一映射模块包括:
    第二映射子模块,用于通过码分多路复用的方式将所述每个天线端口的待传输导频序列分别映射到时间上重叠的所述目标子帧的一个导频符号的所有RE上;其中,不同天线端口的待传输导频序列不同。
  16. 根据权利要求15所述的装置,其中,所述序列确定模块包括:
    序列确定子模块,用于根据一预设导频序列和Q个不同的循环移位,为不同的天线端口生成不同的待传输导频序列;其中,P的值等于N的值。
  17. 根据权利要求13-16任一项所述的装置,还包括:
    分集发射模块,用于对待发送数据进行空时编码处理或循环延时分集处理,将处理后的所述待发送数据与所述N个天线端口关联并通过所述N个天线端口进行发射。
  18. 根据权利要求17所述的装置,其中,所述分集发射模块包括:
    空时编码子模块,用于对所述待发送数据进行分层,利用空时分组码STBC对多层数据进行空时编码操作,确定M组待发射数据;其中,每组待发射数据包括Q个数据;M为大于或者等于2的整数,Q的值等于N的值;
    符号选择子模块,用于从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号,将所述M组待发射数据分别映射到选择的所述M个OFDM符号中;
    数据发送子模块,用于在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从所述N个天线端口分别发射。
  19. 根据权利要求18所述的装置,还包括:
    变换模块,用于对每组待发射数据包括的Q个数据分别进行离散傅里叶逆变换;
    所述数据发送子模块包括:
    数据发送单元,用于在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的经过离散傅里叶逆变换之后的Q个数据从所述N个天线端口分别发射。
  20. 根据权利要求18所述的装置,其中,所述符号选择子模块包括:
    第一选择单元,用于从所述目标子帧中除导频符号之外的其他OFDM符号中选择相邻的2个OFDM符号;其中,N等于2,M等于2。
  21. 根据权利要求18所述的装置,其中,所述符号选择子模块包括:
    第二选择单元,用于从所述目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择相邻的2个OFDM符号;
    其中,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号和倒数第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号、倒数第二个OFDM符号、第一个OFDM符号以及第二个OFDM符号;N等于2,M等于2。
  22. 根据权利要求18所述的装置,其中,所述符号选择子模块包括:
    第三选择单元,用于从目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择导频符号两侧的2个OFDM符号;
    其中,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和倒数第一个OFDM符号,N等于2,M等于2。
  23. 根据权利要求21或22所述的装置,其中,所述孤立OFDM符号通过配置或预先预定的方式与2个天线端口中的任意一个天线端口关联;或者,
    所述孤立OFDM符号按照预设规则轮流与2个天线端口依次关联。
  24. 根据权利要求18所述的装置,还包括:
    分裂模块,用于将所述目标子帧中除导频符号之外的其他OFDM符号分别分裂为2个子OFDM符号;
    所述符号选择子模块包括:
    第四选择单元,用于确定由一个OFDM符号分裂得到的2个子OFDM符号为从所述目标子帧的OFDM符号中选择的2个OFDM符号;其中,N 等于2,M等于2。
  25. 一种在多天线通信系统中发射分集的装置,所述多天线通信系统包括N个天线端口,所述装置包括存储器及处理器,其中,所述存储器上存储有可在所述处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
    确定每个天线端口的待传输导频序列;
    将所述每个天线端口的所述待传输导频序列分别映射到目标子帧的导频符号包含的资源单元RE上,使得所述N个天线端口复用所述目标子帧的导频符号;N为大于或者等于2的整数;
    在所述目标子帧上,所述每个天线端口分别在与所述天线端口的待传输导频序列相映射的导频符号的RE上发射所述待传输导频序列。
  26. 根据权利要求25所述的装置,其中,所述处理器具体用于:
    通过频分多路复用的方式将所述每个天线端口的待传输导频序列交替映射到所述目标子帧的一个导频符号的RE上。
  27. 根据权利要求25所述的装置,其中,所述处理器具体用于:
    通过码分多路复用的方式将所述每个天线端口的待传输导频序列分别映射到时间上重叠的所述目标子帧的一个导频符号的所有RE上;其中,不同天线端口的待传输导频序列不同。
  28. 根据权利要求27所述的装置,其中,所述处理器具体用于:
    根据一预设导频序列和Q个不同的循环移位,为不同的天线端口生成不同的待传输导频序列;其中,P的值等于N的值。
  29. 根据权利要求25-28任一项所述的装置,其中,所述处理器具体用于:
    对待发送数据进行空时编码处理或循环延时分集处理,将处理后的所述待发送数据与所述N个天线端口关联并通过所述N个天线端口进行发射。
  30. 根据权利要求29所述的装置,其中,所述处理器具体用于:
    对所述待发送数据进行分层,利用空时分组码STBC对多层数据进行空时编码操作,确定M组待发射数据;其中,每组待发射数据包括Q个数据;M为大于或者等于2的整数,Q的值等于N的值;
    从目标子帧的正交频分复用OFDM符号中选择M个OFDM符号,将所述M组待发射数据分别映射到选择的所述M个OFDM符号中;
    在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的Q个数据从所述N个天线端口分别发射。
  31. 根据权利要求30所述的装置,其中,所述处理器具体用于:
    对每组待发射数据包括的Q个数据分别进行离散傅里叶逆变换;
    在所述M个OFDM符号分别对应的时隙间隔内,将映射到该OFDM符号的一组待发射数据包括的经过离散傅里叶逆变换之后的Q个数据从所述N个天线端口分别发射。
  32. 根据权利要求30所述的装置,其中,所述处理器具体用于:
    从所述目标子帧中除导频符号之外的其他OFDM符号中选择相邻的2个OFDM符号;其中,N等于2,M等于2。
  33. 根据权利要求30所述的装置,其中,所述处理器具体用于:
    从所述目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择相邻的2个OFDM符号;
    其中,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号和倒数第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和第二个OFDM符号;或者,所述孤立OFDM符号为目标子帧中的倒数第一个OFDM符号、倒数第二个OFDM符号、第一个OFDM符号以及第二个OFDM符号;N等于2,M等于2。
  34. 根据权利要求30所述的装置,其中,所述处理器具体用于:
    从目标子帧中除导频符号和孤立OFDM符号之外的其他OFDM符号中选择导频符号两侧的2个OFDM符号;
    其中,所述孤立OFDM符号为目标子帧中的第一个OFDM符号和倒数第一个OFDM符号,N等于2,M等于2。
  35. 根据权利要求33或34所述的装置,其中,
    所述孤立OFDM符号通过配置或预先预定的方式与2个天线端口中的任意一个天线端口关联;或者,
    所述孤立OFDM符号按照预设规则轮流与2个天线端口依次关联。
  36. 根据权利要求30所述的装置,其中,所述处理器具体用于:
    将所述目标子帧中除导频符号之外的其他OFDM符号分别分裂为2个子 OFDM符号;
    确定由一个OFDM符号分裂得到的2个子OFDM符号为从所述目标子帧的OFDM符号中选择的2个OFDM符号;其中,N等于2,M等于2。
  37. 一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1-12中任一项所述的方法中的步骤。
PCT/CN2018/078717 2017-03-24 2018-03-12 在多天线通信系统中发射分集的方法及装置 WO2018171456A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184726.9A CN108631991B (zh) 2017-03-24 2017-03-24 一种在多天线通信系统中发射分集的方法及装置
CN201710184726.9 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018171456A1 true WO2018171456A1 (zh) 2018-09-27

Family

ID=63585000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078717 WO2018171456A1 (zh) 2017-03-24 2018-03-12 在多天线通信系统中发射分集的方法及装置

Country Status (2)

Country Link
CN (1) CN108631991B (zh)
WO (1) WO2018171456A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022510552A (ja) * 2018-10-11 2022-01-27 日本電気株式会社 サイドリンク通信のための方法、端末デバイス及びコンピュータ読み取り可能な媒体
CN115002785B (zh) * 2021-03-02 2024-06-04 中国联合网络通信集团有限公司 天线端口数据的处理方法及通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827382A (zh) * 2010-09-29 2016-08-03 中兴通讯股份有限公司 参考信号映射方法及装置
CN106411486A (zh) * 2015-07-31 2017-02-15 电信科学技术研究院 一种上行解调导频的发送接收方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605022B (zh) * 2008-06-12 2013-03-20 三星电子株式会社 提高多天线系统中发射分集的编码方法
CN101610608B (zh) * 2009-07-14 2012-05-23 卢鑫 一种分集发送、接收方法及装置
CN102158319B (zh) * 2010-02-12 2015-12-16 中兴通讯股份有限公司 一种基于混合复用解调参考符号的预编码方法及装置
CN102075274B (zh) * 2011-01-31 2016-09-28 中兴通讯股份有限公司 一种测量参考信号的多天线参数的配置方法及装置
US10034257B2 (en) * 2014-02-25 2018-07-24 Lg Electronics Inc. Method and apparatus for generating device-to-device terminal signal in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827382A (zh) * 2010-09-29 2016-08-03 中兴通讯股份有限公司 参考信号映射方法及装置
CN106411486A (zh) * 2015-07-31 2017-02-15 电信科学技术研究院 一种上行解调导频的发送接收方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Transmission scheme and DMRS of NR PBCH", 3GPP TSG RAN WG1 MEETING #88, R1-1702062, 17 February 2017 (2017-02-17), XP051209223 *
LG ELECTRONICS: "DMRS Design Issues in NR", 3GPP TSG RAN WG1 MEETING #86BIS, R1-1609259, 14 October 2016 (2016-10-14), XP051149305 *

Also Published As

Publication number Publication date
CN108631991B (zh) 2020-09-01
CN108631991A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
US11038561B2 (en) Method and apparatus for transmitting data
US20220312401A1 (en) Methods and apparatus for sending and receiving second stage sci, storage medium, sending ue, and receiving ue
RU2608773C2 (ru) Способ и устройство для передачи информации управления в беспроводных системах связи
EP2536231B1 (en) Pre-coding method and apparatus based on mixed multiplexing demodulation reference signals
CN106455094B (zh) 探测参考信号的传输方法及网络侧设备、用户设备
CN114142980B (zh) 参考信号的传输方法及装置
US10313078B2 (en) Flexible transmission of messages in a wireless communication system with multiple transmit antennas
US9178595B2 (en) Method for indicating precoding matrix indicator in uplink MIMO system with based on SC-FDMA
WO2019029401A1 (zh) 参考信号信息的配置方法及装置
CN113196857B (zh) 在无线通信系统中操作终端和基站的方法以及支持其的装置
US10924935B2 (en) Method and device for determining multi-user transmission mode
CN106411486B (zh) 一种上行解调导频的发送接收方法及装置
US11405138B2 (en) Mixed space time and space frequency block coding
AU2011233860A1 (en) Method and apparatus for controlling retransmission on uplink in a wireless communication system supporting MIMO
US8503420B2 (en) Physical structure and design of sounding channel in OFDMA systems
KR102496114B1 (ko) 채널 상태 정보를 송신하는 방법 및 사용자 단말기
EA030779B1 (ru) Базовая станция, терминал, система связи, способ связи и интегральная схема
KR20100004845A (ko) 파일롯 서브캐리어 할당을 사용하는 복수개의 송신 안테나를 갖는 무선 통신 시스템
CN110140323B (zh) 用户设备、基站和方法
KR20140144208A (ko) 기지국 장치, 단말 장치, 통신 방법, 집적 회로 및 통신 시스템
US20220029748A1 (en) Method, apparatus for transmitting harqack information, electronic device and storage medium
WO2018171456A1 (zh) 在多天线通信系统中发射分集的方法及装置
WO2018228610A1 (zh) 信息发送、数据解调方法及装置、通信节点、网络侧设备
CN113746606B (zh) 一种通信方法及装置
KR20180122879A (ko) eV2X를 위한 복조 참조신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770781

Country of ref document: EP

Kind code of ref document: A1