WO2018169202A1 - Optical waveguide sensor and concentration measuring system using same - Google Patents

Optical waveguide sensor and concentration measuring system using same Download PDF

Info

Publication number
WO2018169202A1
WO2018169202A1 PCT/KR2018/001160 KR2018001160W WO2018169202A1 WO 2018169202 A1 WO2018169202 A1 WO 2018169202A1 KR 2018001160 W KR2018001160 W KR 2018001160W WO 2018169202 A1 WO2018169202 A1 WO 2018169202A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical waveguide
concentration
measuring
intensity
Prior art date
Application number
PCT/KR2018/001160
Other languages
French (fr)
Korean (ko)
Inventor
주형규
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Publication of WO2018169202A1 publication Critical patent/WO2018169202A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/2222Neon, e.g. in helium-neon (He-Ne) systems

Definitions

  • the present invention relates to an optical waveguide sensor and a concentration measuring system using the same, and more particularly, to a sensor capable of detecting a concentration of a specific material using the optical waveguide and a concentration measuring system using the same.
  • a sensor using an optical waveguide uses various variables such as the intensity of light passing through the optical waveguide, the refractive index and the length of the optical waveguide, the mode, and the change in the polarization state.
  • Various information such as pressure can be measured.
  • Optical waveguide sensors have the advantage of being able to measure ultra-precise wideband, are not affected by electromagnetic waves, and are easy to measure remotely.
  • the measurement unit does not use electricity and has excellent corrosion resistance of the silica material, there is an advantage that there are almost no restrictions on the use environment.
  • a general chemical sensor or biosensor for concentration measurement includes an electrode in order to use the electrical properties of the measurement material.
  • an electrode since electricity must be transmitted from an electrode, and a conductor such as an electric wire is required to transmit the electrical signal measured by the measuring unit to an external measuring instrument, there is a problem in the use environment.
  • an embodiment of the present invention is capable of real-time diagnosis, simple and compact production, and at the same time an optical waveguide sensor having a high sensitivity and a concentration measuring system using the same. To provide.
  • the optical waveguide sensor may include an optical waveguide configured to acquire a first light from one side connected to a light source and to transmit a second light to the other side; An endothelial formed on the outside of the optical waveguide; And a measuring part formed by removing a part of the endothelium so that a part of the optical waveguide is exposed to the outside, wherein the optical waveguide is in contact with the measuring material to measure the concentration through the measuring part.
  • the optical waveguide may be provided such that the other side thereof is connected to an optical output meter for measuring the output of the second light.
  • the light source may be a helium-neon laser.
  • the concentration of the measurement material may be measured using the intensities of the first light and the second light represented by the following equation.
  • T is the light output ratio
  • P in is the intensity of the first light
  • P out is the intensity of the second light
  • T 0 is the light output ratio when the concentration is 0
  • loss (dB) is the amount of light loss due to the numerical aperture difference.
  • NA B numerical aperture of measurement part
  • NA C numerical aperture of optical waveguide sensor outside measurement part
  • n core refractive index of optical waveguide
  • n (liquid cladding) Refractive index of measuring material
  • L Length of measuring part
  • the measurement material is an aqueous solution of glycerol, and when the intensity of the first light is 3200mW, the concentration of the measurement material may be expressed by the following equation.
  • a concentration measuring system using an optical waveguide sensor is provided.
  • An optical waveguide sensor receiving the first light from the light source and converting the first light into a second light by using a measurement material;
  • a detection device receiving the second light from the optical waveguide sensor and detecting a concentration of the measurement material.
  • the light source may be a helium-neon laser.
  • the sensor may include an optical waveguide configured to receive a first light from one side connected to the light source and to transmit the second light to the detection device; An endothelial formed on the outside of the optical waveguide; And a measuring part formed to be in contact with the measurement material by removing a part of the endothelium so that a part of the optical waveguide is exposed to the outside.
  • the concentration of the measurement material may be measured using the intensities of the first light and the second light represented by the following equation.
  • T is the light output ratio
  • P in is the intensity of the first light
  • P out is the intensity of the second light
  • T 0 is the light output ratio when the concentration is 0
  • loss (dB) is the amount of light loss due to the numerical aperture difference.
  • NA B numerical aperture of measurement part
  • NA C numerical aperture of optical waveguide sensor outside measurement part
  • n core refractive index of optical waveguide
  • n (liquid cladding) Refractive index of measuring material
  • L Length of measuring part
  • the measurement material is an aqueous solution of glycerol, and when the intensity of the first light is 3200mW, the concentration of the measurement material may be expressed by the following equation.
  • optical waveguide sensor and the concentration measuring system using the same have the effect of measuring the concentration of the measurement material in real time.
  • optical waveguide sensor and the concentration measurement system using the same while being able to be manufactured in a small size has the effect of measuring the concentration of the measurement material with high sensitivity.
  • the optical waveguide sensor and the concentration measuring system using the same since the electrode is not used to measure the concentration of the measurement material has the effect that can be applied to various environments by lowering the constraints of the use environment have.
  • the optical waveguide sensor and the concentration measurement system using the same by using a change in the aberration inside the optical waveguide due to the contact of the measurement material has the effect of reducing the constraint of the use environment.
  • FIG. 1 is a view showing an optical waveguide sensor according to an embodiment of the present invention.
  • FIG. 2 is a view showing a measuring unit of the optical waveguide sensor according to an embodiment of the present invention.
  • FIG 3 is a view showing a concentration measurement system using an optical waveguide sensor according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating an optical waveguide sensor according to an exemplary embodiment of the present invention.
  • FIG. 5 is a graph showing a simulation result for comparing the light output ratio according to the measuring unit length of the optical waveguide sensor according to an embodiment of the present invention.
  • FIG. 6 is a graph showing a simulation result of measuring light output when the length of the measuring unit of the optical waveguide sensor according to an embodiment of the present invention is 5cm.
  • FIG. 7 is a graph comparing a simulation result and a theory of an optical waveguide sensor according to an exemplary embodiment of the present invention.
  • Figure 1 is a view showing an optical waveguide sensor according to an embodiment of the present invention
  • Figure 2 is a view showing a measuring unit of the optical waveguide sensor according to an embodiment of the present invention.
  • an optical waveguide sensor 100 includes an optical waveguide 110, an endothelial 120, and an outer skin 130.
  • the optical waveguide sensor 100 includes an endothelial 120 on the outside of the optical waveguide 110, and an outer skin 130 for protecting the optical waveguide 110 and the endothelial 120. It may be further provided with.
  • the optical waveguide 110 may be formed of, for example, silica, and the endothelial 120 may be formed of a polymer type, and the refractive index of the optical waveguide 110 may be greater than that of the endothelial 120. have.
  • the measuring unit 150 is formed.
  • the measuring unit 150 contacts the sample and measures the concentration of the substance to be measured included in the sample.
  • the measurement unit 150 is formed by exposing a part of the optical fiber 110 by removing a part of the outer skin 130 and the endothelial 120 of the optical waveguide sensor 100.
  • the measurement unit 150 is a portion in which the optical waveguide 110 is exposed to the outside, and the optical waveguide 110 contacts the sample to induce the refraction of light by performing the role of the endothelial 120.
  • the measuring unit 150 may be preferably formed in a length of 5cm, the present invention is not limited to this and may be formed in a predetermined length.
  • FIG. 1 and FIG. 2 show that there is a part of the endothelial 120 without the outer skin 130 at both ends of the measuring unit 150 of the optical waveguide sensor 100 according to the present invention, It is shown to explain easily the connection relationship between the envelope, the endothelial and the optical waveguide of the waveguide sensor, a preferred example of the present invention is that the endothelial is exposed to the outside alone.
  • Figure 3 shows a concentration measuring system using an optical waveguide sensor according to an embodiment of the present invention.
  • the concentration measurement system 200 using the optical waveguide sensor includes a light source 210, a fiber coupler 230, an optical waveguide sensor 100, a collimator 250, and the like.
  • Meter 270 is included.
  • the light source 210 generates a first light therein and transmits the first light to the fiber coupler 230. At this time, the output of the first light generated by the light source 210 is adjustable according to the user's setting, it is preferable that the visible light. This is because the amount of light in the visible light region is hardly absorbed by the aqueous solution. Therefore, the light source 210 may be a device for generating and emitting visible light such as a laser diode and an LED, and in any one embodiment of the present invention, the light source 210 may be a helium-neon laser (He-Ne laser).
  • He-Ne laser helium-neon laser
  • Fiber coupler 230 is used when there is more than one input or output in an optical waveguide system.
  • the fiber coupler 230 receives the first light generated by the light source 210 and transmits the same amount of light separately to the optical waveguide sensor 100 and another optical waveguide (not shown), thereby intensifying the two lights. It may be provided to compare the differences directly.
  • the fiber coupler 230 may be omitted according to the user's setting.
  • the optical waveguide sensor 100 receives the first light from the fiber coupler 230 or the light source 210 and converts the first light into the second light using a sample contacting the measuring unit 150.
  • the optical waveguide sensor 100 receives the first light through one end and contacts the sample through the measuring unit 150. Accordingly, the first light passing through the optical waveguide sensor 100 decreases in transmission efficiency due to the difference in refractive index between the endothelium 120 and the sample, and changes to a second light whose intensity is changed to the outside through the other end. Delivered.
  • the collimator 250 converts the advancing direction of the second light into a constant direction.
  • the second light passes through the optical waveguide sensor 100 using reflection at the interface between the optical waveguide 110 and the endothelial 120 or the sample. Therefore, the second light transmitted to the other end of the optical waveguide sensor 100 has various propagation directions, so that the collimator 250 receives the second light and converts the second light to travel in a predetermined direction to prevent the loss. It is provided.
  • the measuring device 270 receives the second light and measures its intensity.
  • the measuring device 270 receives the second light converted to proceed in a predetermined direction through the collimator 250 and measures the intensity of the obtained second light.
  • the measuring device 270 may compare the intensity of the first light and the second light using the intensity of the first light set and output from the light source 210, and the comparison result may be expressed as Equation 1 below. have.
  • T is the ratio of transmitted light output
  • P in is intensity of first light
  • P out is intensity of second light
  • the intensity of the second light varies depending on the concentration of the substance contained in the sample. This is because the refractive index of the sample also changes when the concentration of the substance contained in the sample changes.
  • Figure 4 is a schematic diagram showing an optical waveguide sensor according to an embodiment of the present invention.
  • an optical waveguide sensor according to an exemplary embodiment may be divided into an A zone through which the first light flows, a B zone through which the measurement unit exists, and a C zone through which the second light flows.
  • the numerical aperture in each zone may be represented by Equation 2 below, and the numerical aperture NA is a numerical value representing the light condensing ability.
  • NA numerical aperture
  • n 1 refractive index of optical fiber
  • n 2 refractive index of endothelial
  • Equation 2 the A and C regions of FIG. 4 have the same numerical aperture, and the B region, which is the measuring unit, has an n 2 value different from the n 2 values of the A and C regions because the endothelial is replaced by a sample. To have.
  • the refractive index of the endothelial is 0.2 to 1% lower than the refractive index of the optical waveguide so that the total reflection of the light passing through the optical waveguide, the refractive index of the optical waveguide is formed to be about 1.46 to 1.47.
  • the endothelium is formed to have a refractive index of 1.44 to 1.46.
  • 2 n A value of the zone and the C zone is formed to be larger than the refractive index of the zone B n 2 value of the air.
  • the overall intensity does not decrease in the process of transmitting the first light to the measuring unit 150, but the numerical aperture change in the measuring unit 150 is changed. Due to the second light is formed and is transmitted to the C zone, the loss of some light occurs, this light loss can be determined by the numerical aperture ratio represented by the following equation (3).
  • NA B numerical aperture in zone B
  • NA C numerical aperture in zone C
  • n 2 is formed larger than air, so that light loss may be reduced in the process of transmitting light from the B zone to the C zone.
  • the amount of light loss due to the difference in numerical aperture can also be expressed by the following equation (4).
  • P in is the intensity of the first light and P out is the intensity of the second light.
  • the transmitted light output ratio T may be modified to the following equation (5), where the transmitted light output ratio T may have a correction factor according to the concentration.
  • the optical waveguide sensor 100 summarizing the above-described Equations 1 to 5, the optical waveguide sensor 100 according to an embodiment of the present invention, the aberration difference due to the liquid endothelial replaced by the sample in the zone B, through which the optical waveguide The light loss is generated in the light passing through the sensor 100, and thus the aberration-changing optical waveguide may be configured to measure the concentration of the liquid substance to be detected by measuring the changed light intensity.
  • FIG. 5 is a diagram illustrating a simulation result for comparing the light output ratio according to the length of the measuring unit of the optical waveguide sensor according to an embodiment of the present invention.
  • the simulation according to an embodiment of the present invention was performed by dividing the measurement unit into the length of (A) 5cm and (B) 1cm, and the aqueous solution of glycerol in which the refractive index information for each concentration is well known as a test sample.
  • the size of the first light generated in the light source was kept constant at 3200 mW. In this case, the results for each experiment are shown in Table 1 below.
  • FIGS. 5A and 5B Graphs for the data shown in Table 1 are shown in FIGS. 5A and 5B, respectively.
  • the result of measuring the intensity of light passing through the measuring unit that is, the intensity of the second light is the case where the length of the measuring unit 150 is 5cm (A), the length of the measuring unit 150 is 1cm ( It was measured larger than B).
  • the intensity of the second light increased until the glycerol concentration reached 0.3%, and it was confirmed that the intensity of the second light decreased while exceeding 0.3%.
  • FIG. 6 shows a simulation result graph of measuring light output when the length of the measuring unit of the optical waveguide sensor according to the exemplary embodiment of the present invention is 5 cm.
  • the measurement unit 150 of the optical waveguide sensor according to an embodiment of the present invention is 5cm
  • the repeated measurement result of measuring the intensity of the second light according to the glycerol concentration by fixing the intensity of the first light to 3200mW is shown in Table 2 below. It is displayed.
  • the sample when the glycerol concentration is 0.1% or less, the sample is brought into contact with the measuring unit 150 and the first light is emitted to measure the intensity of the second light, and the intensity of the glycerol contained in the sample is compared by comparing the intensities of the two lights. Can be inverted, and the result of the inversion is shown in Table 3 below.
  • T (2 light / 1 light) density(%)
  • T (2 light / 1 light) density(%) 0.7448 0 0.9194 0.05 0.7683 0.001 0.9221 0.1 0.7783 0.002 0.9133 0.3 0.7991 0.003 0.8910 0.5 0.8039 0.004 0.8684 0.7 0.8093 0.005 0.8543 0.9 0.8088 0.006 0.8403
  • Figure 7 is a graph comparing the experimental results of Table 3 and the T value of the equation (5).
  • the T value of Equation 5 is represented by a solid line when the size of the first light is 3200 mW, and the experimental results of Table 3 are represented by dots.
  • the two results show similar shapes and values up to a maximum concentration of 2%, but the ratio of the first light and the second light expressed in the light transmittance (T) has two concentrations.
  • the concentration of glycerol is 0.1%. It is desirable to limit the glycerol concentration to 0.1% in order to increase the accuracy of the sensor since the light transmittance continues to increase until it reaches.
  • the first light is measured.
  • the ratio of the second light and the glycerol concentration of the sample can be measured using the following equation (6).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An optical waveguide sensor and a concentration measuring system using the same are provided. An optical waveguide sensor according to an embodiment of the present invention comprises: an optical waveguide for obtaining first light from one side thereof connected to a light source and transmitting second light to the other side thereof; an inner sheath formed outside the optical waveguide; and a measurement unit formed by partially removing the inner sheath to expose a part of the optical waveguide to the outside, wherein the optical waveguide comes into contact with a material, the concentration of which is to be measured, through the measurement unit.

Description

광 도파로 센서 및 이를 이용한 농도 측정 시스템Optical waveguide sensor and concentration measurement system using the same
본 발명은 광 도파로 센서 및 이를 이용한 농도 측정 시스템에 관한 것으로 특히, 광 도파로를 이용하여 특정 물질의 농도을 검출할 수 있는 센서 및 이를 이용한 농도 측정 시스템에 관한 것이다. The present invention relates to an optical waveguide sensor and a concentration measuring system using the same, and more particularly, to a sensor capable of detecting a concentration of a specific material using the optical waveguide and a concentration measuring system using the same.
일반적으로, 광 섬유로 대표되는 광 도파관을 이용한 센서는 광 도파관을 지나가는 빛의 세기, 광 도파관의 굴절률 및 길이, 모드, 및 편광 상태의 변화 등 다양한 변인을 이용하여 전압, 전류, 온도, 농도, 압력 등 다양한 정보를 측정할 수 있다. 광 도파관 센서는 초정밀광대역 측정이 가능하며, 전자파의 영향을 받지 않으며, 원격 측정이 용이하다는 장점이 있다. 또한, 측정부에서 전기를 사용하지 않으며 실리카 재질의 뛰어난 내부식성을 가지기 때문에 사용 환경에 대한 제약이 거의 존재하지 않다는 장점이 있다.In general, a sensor using an optical waveguide, represented by an optical fiber, uses various variables such as the intensity of light passing through the optical waveguide, the refractive index and the length of the optical waveguide, the mode, and the change in the polarization state. Various information such as pressure can be measured. Optical waveguide sensors have the advantage of being able to measure ultra-precise wideband, are not affected by electromagnetic waves, and are easy to measure remotely. In addition, since the measurement unit does not use electricity and has excellent corrosion resistance of the silica material, there is an advantage that there are almost no restrictions on the use environment.
한편, 일반적인 농도 측정용 화학 센서 또는 바이오 센서 등은, 측정 물질의 전기적 성질을 이용하기 위해 전극을 포함한다. 이 경우, 전극으로부터 전기를 전달받아야 하며, 측정부에서 측정된 전기신호를 외부의 측정기에 전달하기 위해 전선 등의 전도체가 요구되기 때문에 사용 환경에 대한 문제점이 존재한다.On the other hand, a general chemical sensor or biosensor for concentration measurement includes an electrode in order to use the electrical properties of the measurement material. In this case, since electricity must be transmitted from an electrode, and a conductor such as an electric wire is required to transmit the electrical signal measured by the measuring unit to an external measuring instrument, there is a problem in the use environment.
상기와 같은 종래 기술의 문제점을 해결하기 위해, 본 발명의 일 실시예는 실시간으로 현장 진단이 가능하며, 간편하고 소형으로 제작이 가능함과 동시에 높은 민감도를 가지는 광 도파로 센서 및 이를 이용한 농도 측정 시스템을 제공하고자 한다.In order to solve the problems of the prior art as described above, an embodiment of the present invention is capable of real-time diagnosis, simple and compact production, and at the same time an optical waveguide sensor having a high sensitivity and a concentration measuring system using the same. To provide.
위와 같은 과제를 해결하기 위한 본 발명의 일 측면에 따르면, 광 도파로 센서가 제공된다. 상기 광 도파로 센서는, 광원과 연결된 일 측으로부터 제 1광을 획득하여 타 측으로 제 2광을 전달하는 광 도파로; 상기 광 도파로의 외부에 형성되는 내피; 및 상기 광 도파로의 일부가 외부에 노출되도록 상기 내피의 일부가 제거되어 형성되는 측정부;를 포함하며, 상기 광 도파로는, 상기 측정부를 통해 농도를 측정하고자 하는 측정 물질과 접촉한다.According to an aspect of the present invention for solving the above problems, there is provided an optical waveguide sensor. The optical waveguide sensor may include an optical waveguide configured to acquire a first light from one side connected to a light source and to transmit a second light to the other side; An endothelial formed on the outside of the optical waveguide; And a measuring part formed by removing a part of the endothelium so that a part of the optical waveguide is exposed to the outside, wherein the optical waveguide is in contact with the measuring material to measure the concentration through the measuring part.
상기 광 도파로는, 타 측이 상기 제 2광의 출력을 측정하는 광 출력 측정기와 연결되도록 구비될 수 있다.The optical waveguide may be provided such that the other side thereof is connected to an optical output meter for measuring the output of the second light.
상기 광원은 헬륨-네온 레이저일 수 있다.The light source may be a helium-neon laser.
상기 측정 물질의 농도는, 하기 수학식으로 표현되는 상기 제 1광과 상기 제 2광의 세기를 이용하여 측정될 수 있다.The concentration of the measurement material may be measured using the intensities of the first light and the second light represented by the following equation.
Figure PCTKR2018001160-appb-I000001
Figure PCTKR2018001160-appb-I000001
Figure PCTKR2018001160-appb-I000002
Figure PCTKR2018001160-appb-I000002
(여기서, T : 광 출력 비율, Pin : 제 1광의 세기, Pout : 제 2광의 세기, T0 : 농도가 0인 경우 광 출력 비율, loss(dB) : 개구수 차이에 의한 광 손실량, NAB : 측정부의 개구수, NAC : 측정부 외의 광 도파로 센서의 개구수, ncore : 광 도파로의 굴절률,
Figure PCTKR2018001160-appb-I000003
: 내피의 굴절률, n(liquid cladding) : 측정 물질의 굴절률, L : 측정부의 길이, α : 측정 물질 농도 C에 따른 손실 함수(α=α01C+α2C2), C≤0.1%)
Where T is the light output ratio, P in is the intensity of the first light, P out is the intensity of the second light, and T 0 is the light output ratio when the concentration is 0, loss (dB) is the amount of light loss due to the numerical aperture difference. NA B : numerical aperture of measurement part, NA C : numerical aperture of optical waveguide sensor outside measurement part, n core : refractive index of optical waveguide,
Figure PCTKR2018001160-appb-I000003
: Refractive index of endothelial, n (liquid cladding) : Refractive index of measuring material, L: Length of measuring part, α: Loss function according to measuring material concentration C (α = α 0 + α 1 C + α 2 C 2 ), C≤ 0.1%)
상기 측정 물질은, 글리세롤 수용액이며, 상기 제 1광의 세기가 3200mW인 경우 상기 측정 물질의 농도가 하기 수학식으로 표현될 수 있다.The measurement material is an aqueous solution of glycerol, and when the intensity of the first light is 3200mW, the concentration of the measurement material may be expressed by the following equation.
Figure PCTKR2018001160-appb-I000004
Figure PCTKR2018001160-appb-I000004
(여기서, C : 시료 농도)Where C is the sample concentration
본 발명의 일 측면에 따르면, 광 도파로 센서를 이용한 농도 측정 시스템이 제공된다. 상기 광 도파로 센서를 이용한 농도 측정 시스템은, 일정 세기의 제 1광을 발생시키는 광원; 상기 광원으로부터 상기 제 1광을 전달 받고, 측정 물질을 이용하여 상기 제 1광을 제 2광으로 변환시키는 광 도파로 센서; 및 상기 광 도파로 센서로부터 상기 제 2광을 전달받아 상기 측정 물질의 농도를 검출하는 검출 장치;를 포함한다.According to an aspect of the present invention, a concentration measuring system using an optical waveguide sensor is provided. A density measuring system using the optical waveguide sensor, the light source for generating a first light of a certain intensity; An optical waveguide sensor receiving the first light from the light source and converting the first light into a second light by using a measurement material; And a detection device receiving the second light from the optical waveguide sensor and detecting a concentration of the measurement material.
상기 광원은, 헬륨-네온 레이저일 수 있다.The light source may be a helium-neon laser.
상기 센서는, 상기 광원과 연결된 일 측으로부터 제 1광을 전달 받고, 상기 제 2광을 상기 검출 장치로 전달하는 광 도파로; 상기 광 도파로의 외부에 형성되는 내피; 및 상기 광 도파로의 일부가 외부에 노출되도록 상기 내피의 일부가 제거되어 상기 측정 물질과 접하도록 형성되는 측정부;를 더 포함할 수 있다.The sensor may include an optical waveguide configured to receive a first light from one side connected to the light source and to transmit the second light to the detection device; An endothelial formed on the outside of the optical waveguide; And a measuring part formed to be in contact with the measurement material by removing a part of the endothelium so that a part of the optical waveguide is exposed to the outside.
상기 측정 물질의 농도는, 하기 수학식으로 표현되는 상기 제 1광과 상기 제 2광의 세기를 이용하여 측정될 수 있다.The concentration of the measurement material may be measured using the intensities of the first light and the second light represented by the following equation.
Figure PCTKR2018001160-appb-I000005
Figure PCTKR2018001160-appb-I000005
Figure PCTKR2018001160-appb-I000006
Figure PCTKR2018001160-appb-I000006
(여기서, T : 광 출력 비율, Pin : 제 1광의 세기, Pout : 제 2광의 세기, T0 : 농도가 0인 경우 광 출력 비율, loss(dB) : 개구수 차이에 의한 광 손실량, NAB : 측정부의 개구수, NAC : 측정부 외의 광 도파로 센서의 개구수, ncore : 광 도파로의 굴절률,
Figure PCTKR2018001160-appb-I000007
: 내피의 굴절률, n(liquid cladding) : 측정 물질의 굴절률, L : 측정부의 길이, α : 측정 물질 농도 C에 따른 손실 함수(α=α01C+α2C2), C≤0.1%)
Where T is the light output ratio, P in is the intensity of the first light, P out is the intensity of the second light, and T 0 is the light output ratio when the concentration is 0, loss (dB) is the amount of light loss due to the numerical aperture difference. NA B : numerical aperture of measurement part, NA C : numerical aperture of optical waveguide sensor outside measurement part, n core : refractive index of optical waveguide,
Figure PCTKR2018001160-appb-I000007
: Refractive index of endothelial, n (liquid cladding) : Refractive index of measuring material, L: Length of measuring part, α: Loss function according to measuring material concentration C (α = α 0 + α 1 C + α 2 C 2 ), C≤ 0.1%)
상기 측정 물질은, 글리세롤 수용액이며, 상기 제 1광의 세기가 3200mW인 경우 상기 측정 물질의 농도가 하기 수학식으로 표현될 수 있다.The measurement material is an aqueous solution of glycerol, and when the intensity of the first light is 3200mW, the concentration of the measurement material may be expressed by the following equation.
Figure PCTKR2018001160-appb-I000008
Figure PCTKR2018001160-appb-I000008
(여기서, C : 시료 농도)Where C is the sample concentration
본 발명의 일 실시예에 따른 광 도파로 센서 및 이를 이용한 농도 측정 시스템은, 실시간으로 측정 물질의 농도를 측정할 수 있는 효과가 있다.The optical waveguide sensor and the concentration measuring system using the same according to an embodiment of the present invention have the effect of measuring the concentration of the measurement material in real time.
또 본 발명의 일 실시예에 따른 광 도파로 센서 및 이를 이용한 농도 측정 시스템은, 소형으로 제작될 수 있으면서 높은 민감도로 측정 물질의 농도를 측정할 수 있는 효과가 있다.In addition, the optical waveguide sensor and the concentration measurement system using the same according to an embodiment of the present invention, while being able to be manufactured in a small size has the effect of measuring the concentration of the measurement material with high sensitivity.
또한, 본 발명의 일 실시예에 따른 광 도파로 센서 및 이를 이용한 농도 측정 시스템은, 측정 물질의 농도 측정을 위해 전극을 사용하지 않기 때문에 사용 환경의 제약이 낮아짐으로써 다양한 환경에 적용할 수 있는 효과가 있다.In addition, the optical waveguide sensor and the concentration measuring system using the same according to an embodiment of the present invention, since the electrode is not used to measure the concentration of the measurement material has the effect that can be applied to various environments by lowering the constraints of the use environment have.
또한, 본 발명의 일 실시예에 따른 광 도파로 센서 및 이를 이용한 농도 측정 시스템은, 측정 물질의 접촉으로 인한 광 도파로 내부의 수차의 변화를 이용함으로써 사용 환경의 제약이 감소하는 효과가 있다.In addition, the optical waveguide sensor and the concentration measurement system using the same according to an embodiment of the present invention, by using a change in the aberration inside the optical waveguide due to the contact of the measurement material has the effect of reducing the constraint of the use environment.
도 1은 본 발명의 실시예에 따른 광 도파로 센서를 나타낸 도이다.1 is a view showing an optical waveguide sensor according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 광 도파로 센서의 측정부를 나타낸 도이다.2 is a view showing a measuring unit of the optical waveguide sensor according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 광 도파로 센서를 이용한 농도 측정 시스템을 나타낸 도이다.3 is a view showing a concentration measurement system using an optical waveguide sensor according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 광 도파로 센서를 간단히 나타낸 도이다.4 is a schematic diagram illustrating an optical waveguide sensor according to an exemplary embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 광 도파로 센서의 측정부 길이에 따른 광 출력 비율을 비교하기 위한 모의 실험 결과를 나타낸 그래프이다.5 is a graph showing a simulation result for comparing the light output ratio according to the measuring unit length of the optical waveguide sensor according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 광 도파로 센서의 측정부 길이가 5cm인 경우 광 출력을 측정한 모의 실험 결과를 나타낸 그래프이다.6 is a graph showing a simulation result of measuring light output when the length of the measuring unit of the optical waveguide sensor according to an embodiment of the present invention is 5cm.
도 7은 본 발명의 일 실시예에 따른 광 도파로 센서의 모의 실험 결과와 이론을 비교한 그래프이다.7 is a graph comparing a simulation result and a theory of an optical waveguide sensor according to an exemplary embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
도 1은 본 발명의 일 실시예에 따른 광 도파로 센서를 나타낸 도이고, 도 2는 본 발명의 일 실시예에 따른 광 도파로 센서의 측정부를 나타낸 도이다.1 is a view showing an optical waveguide sensor according to an embodiment of the present invention, Figure 2 is a view showing a measuring unit of the optical waveguide sensor according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 광 도파로 센서(100)는, 광 도파로(110), 내피 (120) 및 외피(130)를 포함한다. 이때, 광 도파로 센서(100)는 광 도파로(110)의 외부에 내피(120)을 구비하고, 광 도파로(110) 및 내피(120)을 보호하기 위한 외피(130)를 내피(130)의 외부에 더 구비하여 형성될 수 있다. 이때, 광 도파로(110)는 일 예로 실리카 계열로 형성될 수 있고, 내피(120)은 폴리머 종류로 형성될 수 있으며, 광 도파로(110)의 굴절률은 내피(120)의 굴절률보다 크게 형성될 수 있다.Referring to FIG. 1, an optical waveguide sensor 100 according to an exemplary embodiment of the present invention includes an optical waveguide 110, an endothelial 120, and an outer skin 130. In this case, the optical waveguide sensor 100 includes an endothelial 120 on the outside of the optical waveguide 110, and an outer skin 130 for protecting the optical waveguide 110 and the endothelial 120. It may be further provided with. In this case, the optical waveguide 110 may be formed of, for example, silica, and the endothelial 120 may be formed of a polymer type, and the refractive index of the optical waveguide 110 may be greater than that of the endothelial 120. have.
한편, 도 2를 참조하면, 본 발명의 일 실시예에 따른 광 도파로 센서(100)에는, 측정부(150)가 형성된다. 측정부(150)는 시료와 접촉하여, 시료에 포함된 측정하고자 하는 물질의 농도를 측정한다. 이를 위해 측정부(150)는, 광 도파로 센서(100)의 외피(130) 및 내피(120)의 일부가 제거되어 광 섬유(110) 일부가 노출되어 형성된다. On the other hand, referring to Figure 2, the optical waveguide sensor 100 according to an embodiment of the present invention, the measuring unit 150 is formed. The measuring unit 150 contacts the sample and measures the concentration of the substance to be measured included in the sample. To this end, the measurement unit 150 is formed by exposing a part of the optical fiber 110 by removing a part of the outer skin 130 and the endothelial 120 of the optical waveguide sensor 100.
다시 말해, 측정부(150)는 광 도파로(110)가 외부로 노출된 부분이며, 광 도파로(110)가 시료와 접촉함으로써 시료가 내피(120)의 역할을 수행하여 빛의 굴절을 유도할 수 있다. 이때, 측정부(150)는 바람직하게는 5cm 길이로 형성될 수 있지만, 본 발명은 이에 한정되지 않으며 일정 길이로 형성될 수 있다.In other words, the measurement unit 150 is a portion in which the optical waveguide 110 is exposed to the outside, and the optical waveguide 110 contacts the sample to induce the refraction of light by performing the role of the endothelial 120. have. At this time, the measuring unit 150 may be preferably formed in a length of 5cm, the present invention is not limited to this and may be formed in a predetermined length.
또, 도 1 및 도 2에는 본 발명에 따른 광 도파로 센서(100)의 측정부(150) 양 단에 내피(120)가 외피(130) 없이 존재하는 부분이 일부 존재하는 것으로 나타나 있지만, 이는 광 도파로 센서의 외피, 내피 및 광 도파로의 연결 관계를 설명하기 용이하도록 나타낸 것이며, 본 발명의 바람직한 예는 내피가 단독으로 외부에 노출되는 부분이 존재하지 않는 것이다.In addition, although FIG. 1 and FIG. 2 show that there is a part of the endothelial 120 without the outer skin 130 at both ends of the measuring unit 150 of the optical waveguide sensor 100 according to the present invention, It is shown to explain easily the connection relationship between the envelope, the endothelial and the optical waveguide of the waveguide sensor, a preferred example of the present invention is that the endothelial is exposed to the outside alone.
한편, 도 3에는 본 발명의 일 실시예에 따른 광 도파로 센서를 이용한 농도 측정 시스템이 나타나있다.On the other hand, Figure 3 shows a concentration measuring system using an optical waveguide sensor according to an embodiment of the present invention.
도 3을 참조하면, 본 발명의 일 실시예에 따른 광 도파로 센서를 이용한 농도 측정 시스템(200)은, 광원(210), 파이버 커플러(230), 광 도파로 센서(100), 콜리메이터(250) 및 측정기(270)를 포함한다.Referring to FIG. 3, the concentration measurement system 200 using the optical waveguide sensor according to an embodiment of the present invention includes a light source 210, a fiber coupler 230, an optical waveguide sensor 100, a collimator 250, and the like. Meter 270 is included.
광원(210)은, 내부에서 제 1광을 생성하여 파이버 커플러(230)로 전달한다. 이때, 광원(210)에서 생성되는 제 1광의 출력은 사용자의 설정에 따라 조절 가능하며, 가시광선인 것인 것이 바람직하다. 이는, 가시광선 영역의 빛은 수용액에 의해 흡수되는 양이 거의 존재하지 않기 때문이다. 따라서 광원(210)은 레이저 다이오드, LED 등 가시광선을 생성하여 방출하는 장치일 수 있으며, 본 발명의 일 실시예 중 어느 하나에서는 일 예로 헬륨-네온 레이저(He-Ne laser)일 수 있다. The light source 210 generates a first light therein and transmits the first light to the fiber coupler 230. At this time, the output of the first light generated by the light source 210 is adjustable according to the user's setting, it is preferable that the visible light. This is because the amount of light in the visible light region is hardly absorbed by the aqueous solution. Therefore, the light source 210 may be a device for generating and emitting visible light such as a laser diode and an LED, and in any one embodiment of the present invention, the light source 210 may be a helium-neon laser (He-Ne laser).
파이버 커플러(230)는, 광 도파로 시스템에서 하나 이상의 입력 또는 출력이 존재하는 경우 사용된다. 파이버 커플러(230)는 일 예로, 광원(210)에서 생성된 제 1광을 받아 광 도파로 센서(100)와 다른 광 도파로(도면 미도시)에 같은 양의 빛을 분리하여 전달함으로써 두 빛의 세기 차이를 직접적으로 비교하도록 구비될 수도 있다. 또 본 발명의 일 실시예에 따른 광 도파로 센서를 이용한 농도 측정 시스템(200)에서, 파이버 커플러(230)는 사용자의 설정에 따라 생략될 수도 있다. Fiber coupler 230 is used when there is more than one input or output in an optical waveguide system. For example, the fiber coupler 230 receives the first light generated by the light source 210 and transmits the same amount of light separately to the optical waveguide sensor 100 and another optical waveguide (not shown), thereby intensifying the two lights. It may be provided to compare the differences directly. In addition, in the concentration measurement system 200 using the optical waveguide sensor according to an embodiment of the present invention, the fiber coupler 230 may be omitted according to the user's setting.
광 도파로 센서(100)는, 파이버 커플러(230) 또는 광원(210)으로부터 제 1광을 전달받아 측정부(150)에 접촉한 시료를 이용하여 제 1광을 제 2광으로 변환시킨다. 광 도파로 센서(100)는 일 단을 통해 제 1광을 전달받으며, 측정부(150)를 통해 시료와 접촉한다. 따라서, 광 도파로 센서(100)를 통과하는 제 1광은 내피(120)와 시료의 굴절률의 차이로 인해 전달 효율이 감소하게 되며, 그 세기가 변화된 제 2광으로 변화하여 타 단을 통해 외부로 전달된다.The optical waveguide sensor 100 receives the first light from the fiber coupler 230 or the light source 210 and converts the first light into the second light using a sample contacting the measuring unit 150. The optical waveguide sensor 100 receives the first light through one end and contacts the sample through the measuring unit 150. Accordingly, the first light passing through the optical waveguide sensor 100 decreases in transmission efficiency due to the difference in refractive index between the endothelium 120 and the sample, and changes to a second light whose intensity is changed to the outside through the other end. Delivered.
콜리메이터(250)는, 제 2광의 진행 방향을 일정 방향으로 변환시킨다. 제 2광은 광 도파로(110)와 내피(120) 또는 시료의 경계면에서의 반사를 이용하여 광 도파로 센서(100) 내부를 통과한다. 따라서, 광 도파로 센서(100)의 타 단으로 전달된 제 2광은 다양한 진행 방향을 가지며, 이로 인한 손실을 방지하기 위해 콜리메이터(250)는 제 2광을 전달 받아 일정 방향으로 진행하도록 변환시키도록 구비된다.The collimator 250 converts the advancing direction of the second light into a constant direction. The second light passes through the optical waveguide sensor 100 using reflection at the interface between the optical waveguide 110 and the endothelial 120 or the sample. Therefore, the second light transmitted to the other end of the optical waveguide sensor 100 has various propagation directions, so that the collimator 250 receives the second light and converts the second light to travel in a predetermined direction to prevent the loss. It is provided.
측정기(270)는, 제 2광을 전달 받아 그 세기를 측정한다. 측정기(270)는 콜리메이터(250)를 통해 일정 방향으로 진행되도록 변환된 제 2광을 전달 받고, 획득한 제 2광의 세기를 측정한다. 또, 측정기(270)는 광원(210)에서 설정되어 출력된 제 1광의 세기를 이용하여 제 1광과 제 2광의 세기를 비교할 수도 있으며, 비교 결과는 일 예로 하기 수학식 1과 같이 표현될 수 있다.The measuring device 270 receives the second light and measures its intensity. The measuring device 270 receives the second light converted to proceed in a predetermined direction through the collimator 250 and measures the intensity of the obtained second light. In addition, the measuring device 270 may compare the intensity of the first light and the second light using the intensity of the first light set and output from the light source 210, and the comparison result may be expressed as Equation 1 below. have.
Figure PCTKR2018001160-appb-M000001
Figure PCTKR2018001160-appb-M000001
(여기서, T : 투과된 광 출력 비율, Pin : 제 1광의 세기, Pout : 제 2광의 세기)Where T is the ratio of transmitted light output, P in is intensity of first light, and P out is intensity of second light.
이때, 제 2광의 세기는 시료에 포함된 물질의 농도에 따라 변화한다. 이는 시료에 포함된 물질의 농도가 변화하면, 시료의 굴절률 역시 변화하기 때문이다.In this case, the intensity of the second light varies depending on the concentration of the substance contained in the sample. This is because the refractive index of the sample also changes when the concentration of the substance contained in the sample changes.
한편, 도 4는 본 발명의 일 실시예에 따른 광 도파로 센서를 간단히 나타낸 도이다. 도 4를 참조하면, 본 발명의 일 실시예에 따른 광 도파로 센서는 제 1 광이 흐르는 A 구역, 측정부가 존재하는 B 구역 및 제 2광이 흐르는 C 구역으로 구분될 수 있다. 이때, 각각의 구역에서의 개구수(Numerical aperture)는 하기 수학식 2로 표현될 수 있으며, 개구수(NA)는 빛의 집광 능력을 나타내는 수치이다.On the other hand, Figure 4 is a schematic diagram showing an optical waveguide sensor according to an embodiment of the present invention. Referring to FIG. 4, an optical waveguide sensor according to an exemplary embodiment may be divided into an A zone through which the first light flows, a B zone through which the measurement unit exists, and a C zone through which the second light flows. In this case, the numerical aperture in each zone may be represented by Equation 2 below, and the numerical aperture NA is a numerical value representing the light condensing ability.
Figure PCTKR2018001160-appb-M000002
Figure PCTKR2018001160-appb-M000002
(여기서, NA : 개구수, n1 : 광 섬유의 굴절률, n2 : 내피의 굴절률)Where NA = numerical aperture, n 1 : refractive index of optical fiber, n 2 : refractive index of endothelial)
상기 수학식 2를 이용하면, 도 4의 A 구역과 C 구역은 동일한 개구수를 가지며, 측정부인 B 구역은 내피가 시료로 대체되었기 때문에 A 구역 및 C 구역의 n2값과 다른 n2값을 가지게 된다.Using Equation 2, the A and C regions of FIG. 4 have the same numerical aperture, and the B region, which is the measuring unit, has an n 2 value different from the n 2 values of the A and C regions because the endothelial is replaced by a sample. To have.
한편, 일반적인 광 도파로의 경우 내피의 굴절률은 광 도파로의 굴절률보다 0.2 내지 1%정도 낮게 제조되어 광 도파로 내부를 통과하는 빛의 전반사를 유도할 수 있도록, 광 도파로의 굴절률은 1.46 내지 1.47 정도로 형성되며, 내피는 1.44 내지 1.46의 굴절률을 가지도록 형성된다.On the other hand, in the general optical waveguide, the refractive index of the endothelial is 0.2 to 1% lower than the refractive index of the optical waveguide so that the total reflection of the light passing through the optical waveguide, the refractive index of the optical waveguide is formed to be about 1.46 to 1.47. The endothelium is formed to have a refractive index of 1.44 to 1.46.
따라서, A 구역 및 C 구역의 n2값은 B 구역의 n2값인 공기의 굴절률보다 크게 형성된다. 본 발명의 일 실시예에 따른 광 도파로 센서(100)는 이러한 특징으로 인하여 제 1광이 측정부(150)에 전달되는 과정에서 전체 세기가 감소하지 않지만, 측정부(150)에서의 개구수 변화로 인해 제 2광이 형성되어 C 구역으로 전달되는 과정에서는 일부 광의 손실이 발생하게 되며, 이러한 광 손실은 하기 수학식 3으로 표현되는 개구수 비에 의해 결정될 수 있다.Therefore, 2 n A value of the zone and the C zone is formed to be larger than the refractive index of the zone B n 2 value of the air. In the optical waveguide sensor 100 according to the exemplary embodiment of the present invention, the overall intensity does not decrease in the process of transmitting the first light to the measuring unit 150, but the numerical aperture change in the measuring unit 150 is changed. Due to the second light is formed and is transmitted to the C zone, the loss of some light occurs, this light loss can be determined by the numerical aperture ratio represented by the following equation (3).
Figure PCTKR2018001160-appb-M000003
Figure PCTKR2018001160-appb-M000003
(여기서, NAB : B 구역의 개구수, NAC : C 구역의 개구수)(Where NA B : numerical aperture in zone B, NA C : numerical aperture in zone C)
이때, B 구역에 일정 농도를 가지는 시료가 접착되는 경우, n2의 값이 공기보다 크게 형성되어 B 구역에서 C 구역으로 빛이 전달되는 과정에서 광 손실이 감소할 수 있다.At this time, when a sample having a certain concentration is bonded to the B zone, the value of n 2 is formed larger than air, so that light loss may be reduced in the process of transmitting light from the B zone to the C zone.
한편, 개구수의 차이에 의한 광 손실량은 하기 수학식 4로도 표현될 수 있다.On the other hand, the amount of light loss due to the difference in numerical aperture can also be expressed by the following equation (4).
Figure PCTKR2018001160-appb-M000004
Figure PCTKR2018001160-appb-M000004
(여기서, Pin : 제 1광의 세기, Pout : 제 2광의 세기)Where P in is the intensity of the first light and P out is the intensity of the second light.
따라서, 수학식 1 내지 4의 식을 종합하면, 투과된 광 출력 비율 T는 하기 수학식 5로 변형될 수 있으며, 이때 투과된 광 출력 비율 T는 농도에 따른 보정 요인을 가질 수 있다.Therefore, summarizing the equations (1) to (4), the transmitted light output ratio T may be modified to the following equation (5), where the transmitted light output ratio T may have a correction factor according to the concentration.
Figure PCTKR2018001160-appb-M000005
Figure PCTKR2018001160-appb-M000005
Figure PCTKR2018001160-appb-I000009
Figure PCTKR2018001160-appb-I000009
(여기서, T0 : 농도가 0인 경우 광 출력 비율, L : 측정부의 길이, α : 시료 농도 C에 따른 손실 함수(α=α01C+α2C2))(T 0 : light output ratio when concentration is 0, L: length of measurement part, α: loss function according to sample concentration C (α = α 0 + α 1 C + α 2 C 2 ))
즉, 상술한 수학식 1 내지 5를 요약하면, 본 발명의 일 실시예에 따른 광 도파로 센서(100)는, B 구역에서 시료로 대체된 액체 내피로 인한 수차 차이가 발생하고, 이를 통해 광 도파로 센서(100)를 통과하는 빛에서 광 손실이 발생함으로써 변화된 광 세기를 측정하여 검출하고자 하는 액체 물질의 농도를 측정할 수 있는 수차 변경 광 도파로의 구성을 가진다.That is, summarizing the above-described Equations 1 to 5, the optical waveguide sensor 100 according to an embodiment of the present invention, the aberration difference due to the liquid endothelial replaced by the sample in the zone B, through which the optical waveguide The light loss is generated in the light passing through the sensor 100, and thus the aberration-changing optical waveguide may be configured to measure the concentration of the liquid substance to be detected by measuring the changed light intensity.
한편, 본 발명의 일 실시예에 따른 상기 수학식 5를 증명하기 위한 모의 실험 결과가 도 5에 도시되고 있다. 도 5는 본 발명의 일 실시예에 따른 광 도파로 센서의 측정부 길이에 따른 광 출력 비율을 비교하기 위한 모의 실험 결과를 나타낸 도이다. 본 발명의 일 실시예에 따른 모의 실험은 측정부의 길이가 (A) 5cm인 경우와 (B) 1cm인 경우로 나누어 수행되었으며, 실험용 시료로 일반적으로 잘 알려진 농도별 굴절률 정보가 존재하는 글리세롤 수용액이 사용되었고, 광원에서 생성되는 제 1광의 크기는 3200mW로 일정하게 유지하였다. 이때 각각의 실험에 대한 결과는 하기 표 1과 같다.Meanwhile, simulation results for proving Equation 5 according to an embodiment of the present invention are shown in FIG. 5. 5 is a diagram illustrating a simulation result for comparing the light output ratio according to the length of the measuring unit of the optical waveguide sensor according to an embodiment of the present invention. The simulation according to an embodiment of the present invention was performed by dividing the measurement unit into the length of (A) 5cm and (B) 1cm, and the aqueous solution of glycerol in which the refractive index information for each concentration is well known as a test sample. The size of the first light generated in the light source was kept constant at 3200 mW. In this case, the results for each experiment are shown in Table 1 below.
농도(%)density(%) 출력 세기(mW)Power intensity (mW) 농도(%)density(%) 출력 세기(mW)Power intensity (mW)
(A)(A) (B)(B) (A)(A) (B)(B)
00 2924.892924.89 2480.002480.00 0.10.1 3097.363097.36 2560.002560.00
0.0010.001 2935.722935.72 2516.672516.67 0.30.3 3098.643098.64 2566.672566.67
0.0030.003 2939.282939.28 2500.002500.00 0.50.5 3092.703092.70 2550.002550.00
0.0050.005 2949.162949.16 2510.002510.00 1One 3053.293053.29 2550.002550.00
0.0070.007 2950.452950.45 2506.672506.67 33 3060.673060.67 2546.672546.67
0.0090.009 2966.712966.71 2516.672516.67 55 3043.903043.90 2536.672536.67
0.010.01 2985.762985.76 2506.672506.67 77 3029.813029.81 2523.332523.33
0.020.02 2999.242999.24 2506.672506.67 1010 3022.343022.34 2513.332513.33
0.030.03 3012.243012.24 2506.672506.67 1515 3008.053008.05 2506.672506.67
0.040.04 3007.423007.42 2536.672536.67 2020 3011.623011.62 2493.332493.33
0.050.05 3014.283014.28 2526.672526.67 2525 3007.773007.77 2483.332483.33
3030 2990.522990.52 2483.332483.33
상기 표 1에 표시된 데이터에 대한 그래프가 각각 도 5의 (A) 및 (B)에 도시되고 있다. 표 1 및 그래프를 살펴보면, 측정부를 통과한 빛의 세기 측정 결과, 즉 제 2광의 세기는 측정부(150)의 길이가 5cm인 경우(A), 측정부(150)의 길이가 1cm인 경우(B)보다 크게 측정되었다. 또, 두 실험 모두 글리세롤 농도가 0.3%에 도달할 때까지 제 2광의 세기가 증가하고, 0.3%를 초과하면서 제 2광의 세기가 감소하는 것을 확인할 수 있었다.Graphs for the data shown in Table 1 are shown in FIGS. 5A and 5B, respectively. Looking at Table 1 and the graph, the result of measuring the intensity of light passing through the measuring unit, that is, the intensity of the second light is the case where the length of the measuring unit 150 is 5cm (A), the length of the measuring unit 150 is 1cm ( It was measured larger than B). In addition, in both experiments, the intensity of the second light increased until the glycerol concentration reached 0.3%, and it was confirmed that the intensity of the second light decreased while exceeding 0.3%.
한편, 도 6에는 본 발명의 일 실시예에 따른 광 도파로 센서의 측정부 길이가 5cm인 경우 광 출력을 측정한 모의 실험 결과 그래프가 도시되고 있다. 본 발명의 일 실시예에 따른 광 도파로 센서의 측정부(150)가 5cm인 경우에 제 1광의 세기를 3200mW로 고정하여 글리세롤 농도에 따른 제 2광의 세기를 측정한 반복 측정 결과가 하기 표 2에 표시되고 있다.6 shows a simulation result graph of measuring light output when the length of the measuring unit of the optical waveguide sensor according to the exemplary embodiment of the present invention is 5 cm. When the measurement unit 150 of the optical waveguide sensor according to an embodiment of the present invention is 5cm, the repeated measurement result of measuring the intensity of the second light according to the glycerol concentration by fixing the intensity of the first light to 3200mW is shown in Table 2 below. It is displayed.
농도(%)density(%) 출력 세기(mW)Power intensity (mW) 농도(%)density(%) 출력 세기(mW)Power intensity (mW)
00 2383.392383.39 0.050.05 2942.192942.19
0.0010.001 2458.502458.50 0.10.1 2950.812950.81
0.0020.002 2490.652490.65 0.30.3 2922.442922.44
0.0030.003 2557.252557.25 0.50.5 2851.172851.17
0.0040.004 2572.342572.34 0.70.7 2778.972778.97
0.0050.005 2589.912589.91 0.90.9 2733.672733.67
0.0060.006 2587.912587.91 1One 2688.982688.98
0.0070.007 2600.342600.34 33 2656.392656.39
0.0080.008 2625.682625.68 55 2610.472610.47
0.0090.009 2650.722650.72 1010 2590.572590.57
0.010.01 2749.882749.88 1515 2582.672582.67
0.020.02 2771.712771.71 2020 2581.902581.90
0.030.03 2820.032820.03 2525 2590.572590.57
0.040.04 2845.362845.36 3333 2562.892562.89
상기 표 2 및 도 6의 그래프를 참조하면, 본 발명의 일 실시예에 따른 모의 실험 결과는, 글리세롤 수용액의 농도가 0.1%이하인 경우, 농도가 높아질수록 제 2광의 출력 세기가 증가하는 것으로 나타났으며, 0.1%를 초과하는 경우 점점 감소하며 5% 이상인 경우 출력 감소량이 현저하게 줄어드는 것으로 나타났다.Referring to the graphs of Table 2 and Figure 6, the simulation results according to an embodiment of the present invention, when the concentration of the aqueous solution of glycerol is less than 0.1%, the higher the concentration was shown that the output intensity of the second light increases When it exceeds 0.1%, it decreases gradually, and when it exceeds 5%, the output decreases significantly.
따라서, 본 발명에서는 글리세롤 농도가 0.1% 이하인 경우, 시료를 측정부(150)에 접촉시키고 제 1광을 방출하여 제 2광의 세기를 측정하고, 두 광의 세기를 비교하여 시료에 포함된 글리세롤의 농도를 역산할 수 있고, 이러한 역산 결과가 하기 표 3에 나타나고 있다.Therefore, in the present invention, when the glycerol concentration is 0.1% or less, the sample is brought into contact with the measuring unit 150 and the first light is emitted to measure the intensity of the second light, and the intensity of the glycerol contained in the sample is compared by comparing the intensities of the two lights. Can be inverted, and the result of the inversion is shown in Table 3 below.
T=(2광/1광)T = (2 light / 1 light) 농도(%)density(%) T=(2광/1광)T = (2 light / 1 light) 농도(%)density(%)
0.74480.7448 00 0.91940.9194 0.050.05
0.76830.7683 0.0010.001 0.92210.9221 0.10.1
0.77830.7783 0.0020.002 0.91330.9133 0.30.3
0.79910.7991 0.0030.003 0.89100.8910 0.50.5
0.80390.8039 0.0040.004 0.86840.8684 0.70.7
0.80930.8093 0.0050.005 0.85430.8543 0.90.9
0.80880.8088 0.0060.006 0.84030.8403 1One
0.81260.8126 0.0070.007 0.83010.8301 33
0.82050.8205 0.0080.008 0.81580.8158 55
0.82840.8284 0.0090.009 0.80960.8096 1010
0.85930.8593 0.010.01 0.80710.8071 1515
0.86620.8662 0.020.02 0.80680.8068 2020
0.88130.8813 0.030.03 0.80960.8096 2525
0.88920.8892 0.040.04 0.80090.8009 3030
한편, 도 7에는 표 3의 실험 결과와 수학식 5의 T 값을 비교한 그래프가 도시되고 있다. 도 7을 살펴보면, 상기 수학식 5의 T 값은, 제 1광의 크기가 3200mW인 경우, 실선으로 표현되며, 상기 표 3의 실험 결과는 점으로 표현되고 있다.On the other hand, Figure 7 is a graph comparing the experimental results of Table 3 and the T value of the equation (5). Referring to FIG. 7, the T value of Equation 5 is represented by a solid line when the size of the first light is 3200 mW, and the experimental results of Table 3 are represented by dots.
두 결과는 최대 2% 농도까지는 서로 유사한 형태 및 값을 나타내지만, 광 투과도(T)로 표현되는 제 1광과 제 2광의 비율이 두 가지 농도를 가지며, 그래프를 참조하면 글리세롤의 농도가 0.1%에 도달할 때 까지는 광 투과도가 지속적으로 증가하기 때문에 센서의 정확성을 증가시키기 위해서는 글리세롤 농도를 0.1%로 제한하는 것이 바람직하다.The two results show similar shapes and values up to a maximum concentration of 2%, but the ratio of the first light and the second light expressed in the light transmittance (T) has two concentrations. Referring to the graph, the concentration of glycerol is 0.1%. It is desirable to limit the glycerol concentration to 0.1% in order to increase the accuracy of the sensor since the light transmittance continues to increase until it reaches.
따라서, 본 발명의 일 실시예에 따른 광 도파로 센서 및 이를 이용한 농도 측정 시스템에 있어서, 글리세롤 농도를 0.1%이하로 제한하고, 제 1광의 세기를 3200mW로 일정하게 유지하는 경우, 측정되는 제 1광과 제2광의 비율을 이용하여 시료의 글리세롤 농도를 하기 수학식 6을 이용하여 측정할 수 있다.Therefore, in the optical waveguide sensor and the concentration measurement system using the same according to an embodiment of the present invention, when the glycerol concentration is limited to 0.1% or less and the intensity of the first light is kept constant at 3200 mW, the first light is measured. Using the ratio of the second light and the glycerol concentration of the sample can be measured using the following equation (6).
수학식 6Equation 6
Figure PCTKR2018001160-appb-I000010
Figure PCTKR2018001160-appb-I000010
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention, within the scope of the same idea, the addition of components Other embodiments may be easily proposed by changing, deleting, adding, and the like, but this will also fall within the spirit of the present invention.

Claims (10)

  1. 광원과 연결된 일 측으로부터 제 1광을 획득하여 타 측으로 제 2광을 전달하는 광 도파로;An optical waveguide for obtaining a first light from one side connected to the light source and transferring a second light to the other side;
    상기 광 도파로의 외부에 형성되는 내피; 및An endothelial formed on the outside of the optical waveguide; And
    상기 광 도파로의 일부가 외부에 노출되도록 상기 내피의 일부가 제거되어 형성되는 측정부;를 포함하며,And a measuring unit formed by removing a portion of the endothelium so that a portion of the optical waveguide is exposed to the outside.
    상기 광 도파로는, 상기 측정부를 통해 농도를 측정하고자 하는 측정 물질과 접촉하는 광 도파로 센서.The optical waveguide, the optical waveguide sensor in contact with the measurement material to measure the concentration through the measuring unit.
  2. 제 1항에 있어서,The method of claim 1,
    상기 광 도파로는, 타 측이 상기 제 2광의 출력을 측정하는 광 출력 측정기와 연결되도록 구비되는 광 도파로 센서.The optical waveguide, the optical waveguide sensor is provided so that the other side is connected to the optical output meter for measuring the output of the second light.
  3. 제 2항에 있어서,The method of claim 2,
    상기 광원은 헬륨-네온 레이저인 광 도파로 센서.The light source is an optical waveguide sensor is a helium-neon laser.
  4. 제 1항에 있어서,The method of claim 1,
    상기 측정 물질의 농도는, 하기 수학식으로 표현되는 상기 제 1광과 상기 제 2광의 세기를 이용하여 측정되는 광 도파로 센서.The concentration of the measurement material is an optical waveguide sensor measured using the intensity of the first light and the second light represented by the following equation.
    Figure PCTKR2018001160-appb-I000011
    Figure PCTKR2018001160-appb-I000011
    Figure PCTKR2018001160-appb-I000012
    Figure PCTKR2018001160-appb-I000012
    (여기서, T : 광 출력 비율, Pin : 제 1광의 세기, Pout : 제 2광의 세기, T0 : 농도가 0인 경우 광 출력 비율, loss(dB) : 개구수 차이에 의한 광 손실량, NAB : 측정부의 개구수, NAC : 측정부 외의 광 도파로 센서의 개구수, ncore : 광 도파로의 굴절률,
    Figure PCTKR2018001160-appb-I000013
    : 내피의 굴절률, n(liquid cladding) : 측정 물질의 굴절률, L : 측정부의 길이, α : 측정 물질 농도 C에 따른 손실 함수(α=α01C+α2C2), C≤0.1%)
    Where T is the light output ratio, P in is the intensity of the first light, P out is the intensity of the second light, and T 0 is the light output ratio when the concentration is 0, loss (dB) is the amount of light loss due to the numerical aperture difference. NA B : numerical aperture of measurement part, NA C : numerical aperture of optical waveguide sensor outside measurement part, n core : refractive index of optical waveguide,
    Figure PCTKR2018001160-appb-I000013
    : Refractive index of endothelial, n (liquid cladding) : Refractive index of measuring material, L: Length of measuring part, α: Loss function according to measuring material concentration C (α = α 0 + α 1 C + α 2 C 2 ), C≤ 0.1%)
  5. 제 4항에 있어서, The method of claim 4, wherein
    상기 측정 물질은, 글리세롤 수용액이며, 상기 제 1광의 세기가 3200mW인 경우 상기 측정 물질의 농도가 하기 수학식으로 표현되는 광 도파로 센서.The measuring substance is an aqueous solution of glycerol, and when the intensity of the first light is 3200mW, the concentration of the measuring substance is expressed by the following equation.
    Figure PCTKR2018001160-appb-I000014
    Figure PCTKR2018001160-appb-I000014
    (여기서, C : 시료 농도)Where C is the sample concentration
  6. 일정 세기의 제 1광을 발생시키는 광원;A light source generating a first light of a constant intensity;
    상기 광원으로부터 상기 제 1광을 전달 받고, 측정 물질을 이용하여 상기 제 1광을 제 2광으로 변환시키는 광 도파로 센서; 및An optical waveguide sensor receiving the first light from the light source and converting the first light into a second light by using a measurement material; And
    상기 광 도파로 센서로부터 상기 제 2광을 전달받아 상기 측정 물질의 농도를 검출하는 검출 장치;를 포함하는 광 도파로 센서를 이용한 농도 측정 시스템.And a detection device receiving the second light from the optical waveguide sensor and detecting a concentration of the measurement material.
  7. 제 6항에 있어서,The method of claim 6,
    상기 광원은, 헬륨-네온 레이저인 광 도파로 센서를 이용한 농도 측정 시스템.The light source is a concentration measurement system using an optical waveguide sensor that is a helium-neon laser.
  8. 제 6항에 있어서,The method of claim 6,
    상기 광 도파로 센서는,The optical waveguide sensor,
    상기 광원과 연결된 일 측으로부터 제 1광을 전달 받고, 상기 제 2광을 상기 검출 장치로 전달하는 광 도파로;An optical waveguide receiving a first light from one side connected to the light source and transmitting the second light to the detection device;
    상기 광 도파로의 외부에 형성되는 내피; 및An endothelial formed on the outside of the optical waveguide; And
    상기 광 도파로의 일부가 외부에 노출되도록 상기 내피의 일부가 제거되어 상기 측정 물질과 접하도록 형성되는 측정부;를 더 포함하는 광 도파로 센서를 이용한 농도 측정 시스템.And a measuring unit which is formed to be in contact with the measurement material by removing a portion of the endothelium so that a portion of the optical waveguide is exposed to the outside.
  9. 제 6항에 있어서,The method of claim 6,
    상기 측정 물질의 농도는, 하기 수학식으로 표현되는 상기 제 1광과 상기 제 2광의 세기를 이용하여 측정되는 광 도파로 센서를 이용한 농도 측정 시스템.The concentration of the measurement material, the density measurement system using an optical waveguide sensor is measured using the intensity of the first light and the second light represented by the following equation.
    Figure PCTKR2018001160-appb-I000015
    Figure PCTKR2018001160-appb-I000015
    Figure PCTKR2018001160-appb-I000016
    Figure PCTKR2018001160-appb-I000016
    (여기서, T : 광 출력 비율, Pin : 제 1광의 세기, Pout : 제 2광의 세기, T0 : 농도가 0인 경우 광 출력 비율, loss(dB) : 개구수 차이에 의한 광 손실량, NAB : 측정부의 개구수, NAC : 측정부 외의 광 도파로 센서의 개구수, ncore : 광 도파로의 굴절률,
    Figure PCTKR2018001160-appb-I000017
    : 내피의 굴절률, n(liquid cladding) : 측정 물질의 굴절률, L : 측정부의 길이, α : 측정 물질 농도 C에 따른 손실 함수(α=α01C+α2C2), C≤0.1%)
    Where T is the light output ratio, P in is the intensity of the first light, P out is the intensity of the second light, and T 0 is the light output ratio when the concentration is 0, loss (dB) is the amount of light loss due to the numerical aperture difference. NA B : numerical aperture of measurement part, NA C : numerical aperture of optical waveguide sensor outside measurement part, n core : refractive index of optical waveguide,
    Figure PCTKR2018001160-appb-I000017
    : Refractive index of endothelial, n (liquid cladding) : Refractive index of measuring material, L: Length of measuring part, α: Loss function according to measuring material concentration C (α = α 0 + α 1 C + α 2 C 2 ), C≤ 0.1%)
  10. 제 9항에 있어서, The method of claim 9,
    상기 측정 물질은, 글리세롤 수용액이며, 상기 제 1광의 세기가 3200mW인 경우 상기 측정 물질의 농도가 하기 수학식으로 표현되는 광 도파로 센서를 이용한 농도 측정 시스템.The measurement material is an aqueous solution of glycerol, the concentration measurement system using an optical waveguide sensor in which the concentration of the measurement material is expressed by the following equation when the intensity of the first light is 3200mW.
    Figure PCTKR2018001160-appb-I000018
    Figure PCTKR2018001160-appb-I000018
    (여기서, C : 시료 농도)Where C is the sample concentration
PCT/KR2018/001160 2017-03-17 2018-01-26 Optical waveguide sensor and concentration measuring system using same WO2018169202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0033577 2017-03-17
KR1020170033577A KR101894183B1 (en) 2017-03-17 2017-03-17 The optical waveguide sensor and the concentration measurement system with it

Publications (1)

Publication Number Publication Date
WO2018169202A1 true WO2018169202A1 (en) 2018-09-20

Family

ID=63407637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001160 WO2018169202A1 (en) 2017-03-17 2018-01-26 Optical waveguide sensor and concentration measuring system using same

Country Status (2)

Country Link
KR (1) KR101894183B1 (en)
WO (1) WO2018169202A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009732A (en) * 1989-04-19 2000-01-14 Ibiden Co Ltd Bioactive material measuring device
JP2007071544A (en) * 2005-09-02 2007-03-22 Toho Gas Co Ltd Optical fiber sensor and monitoring device using sensor
JP2008076195A (en) * 2006-09-20 2008-04-03 Univ Of Yamanashi Acetic acid concentration detecting sensor
KR20140060885A (en) * 2012-11-13 2014-05-21 한국광기술원 Optical sensor for monitering pollutional and water pollution measuring apparatus using the same
JP2015102459A (en) * 2013-11-26 2015-06-04 シチズンホールディングス株式会社 Sensor device and measurement method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104077A1 (en) 2005-03-29 2006-10-05 Cci Corporation Biosensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009732A (en) * 1989-04-19 2000-01-14 Ibiden Co Ltd Bioactive material measuring device
JP2007071544A (en) * 2005-09-02 2007-03-22 Toho Gas Co Ltd Optical fiber sensor and monitoring device using sensor
JP2008076195A (en) * 2006-09-20 2008-04-03 Univ Of Yamanashi Acetic acid concentration detecting sensor
KR20140060885A (en) * 2012-11-13 2014-05-21 한국광기술원 Optical sensor for monitering pollutional and water pollution measuring apparatus using the same
JP2015102459A (en) * 2013-11-26 2015-06-04 シチズンホールディングス株式会社 Sensor device and measurement method

Also Published As

Publication number Publication date
KR101894183B1 (en) 2018-08-31

Similar Documents

Publication Publication Date Title
US9110249B2 (en) In-line fiber optic monitors responsive to optical intensity
CN100432658C (en) A sensor based on asymmetric interference arm Mach-Zehnder interferometer
US20190310069A1 (en) Waveguide interferometer
DE69024368T2 (en) IMAGE TRANSFER BY MEANS OF AN OPTICAL FIBER CABLE
CN101625247B (en) Large-range high-speed fiber bragg grating sensor demodulation device and demodulation method based on DSP
JPS622138A (en) Method and device for measuring optical absorption of fluid medium
CN202648830U (en) A distributed fiber sensing device based on Brillouin scattering
WO2017129131A1 (en) Light path-coupling device and fluorescence temperature-sensing optical system
JP2019515346A (en) OPTICAL CONNECTOR WITH PHOTO DETECTOR, ADAPTER FOR OPTICAL CONNECTOR, AND SYSTEM
WO2012060563A2 (en) Optical fiber probe for measuring ph in nuclear reactor cooling system and ph measuring system using same
CN202126393U (en) Refractive index sensor based on pull cone and pouring type photonic crystal optical fiber
WO2018169202A1 (en) Optical waveguide sensor and concentration measuring system using same
CN205091262U (en) Glycerine concentration detection system that combines smart mobile phone and single mode - thin core - single mode fiber
US7929123B2 (en) Method and apparatus for measuring insertion loss in a fiber optic cable connection
CN205785514U (en) A kind of all-fiber power measuring system for high-capacity optical fiber laser
CN109269467A (en) A kind of fiber grating settlement monitoring device for bridge pre-pressing bracket settlement monitoring
CN116858503A (en) Narrow pulse optical power measurement system and method
Dybko et al. LabWindows: tool and environment for sensor design
CN209689741U (en) A kind of partition type optical fiber vibration measuring system
WO2019240326A1 (en) Optical waveguide sensor and system for detecting substance to be measured using same
Haroon et al. Temperature monitoring using polymer optical fiber with integration to the internet of things
CN105180815A (en) self-referencing intensity-based polymer optical fiber displacement sensor
CN210166304U (en) High temperature resistant refractometer
CN206038183U (en) Temperature becomes send device with temperature compensating
CN104297209A (en) Mach-Zehnder refractive index sensor based on peanut-taper-peanut structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768514

Country of ref document: EP

Kind code of ref document: A1