WO2018168959A1 - Laser radar device - Google Patents

Laser radar device Download PDF

Info

Publication number
WO2018168959A1
WO2018168959A1 PCT/JP2018/010065 JP2018010065W WO2018168959A1 WO 2018168959 A1 WO2018168959 A1 WO 2018168959A1 JP 2018010065 W JP2018010065 W JP 2018010065W WO 2018168959 A1 WO2018168959 A1 WO 2018168959A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
lattice
emission
laser radar
photonic crystal
Prior art date
Application number
PCT/JP2018/010065
Other languages
French (fr)
Japanese (ja)
Inventor
琢也 久志本
任史 河田
渓 江本
野田 進
Original Assignee
スタンレー電気株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社, 国立大学法人京都大学 filed Critical スタンレー電気株式会社
Publication of WO2018168959A1 publication Critical patent/WO2018168959A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]

Definitions

  • the present invention relates to a laser radar device, and more particularly to a laser radar device provided with a photonic crystal.
  • the laser radar device 101 includes a signal transmission unit 102, a signal reception unit 103, and a signal processing unit 104.
  • the signal transmission unit 102 includes a scanner driving unit 105, a scanner 106, and a laser diode 107.
  • the laser diode 107 transmits infrared laser light based on the light emission command signal from the transmission pulse generation unit of the signal processing unit 104.
  • the laser light is scanned by the scanner 106 driven by the scanner driving unit 105.
  • the laser light is reflected by the object and becomes a reflected signal, which is received by the photodiode 108 in the signal receiving unit 103.
  • the direction is detected based on the direction in which the light is reflected, and the distance is detected from the time from when the laser diode is emitted until it is received by the photodiode (for example, Patent Document 1).
  • the mechanical drive that scans the laser light by changing the direction of the laser diode by the mechanical drive requires a drive mechanism and may cause a failure.
  • a photonic crystal laser 110 including an active layer 111, a first-period photonic crystal layer 121, and a second-period photonic crystal layer 122 includes a main beam and a main beam that travel in a direction perpendicular to the photonic crystal layer.
  • it is possible to emit a sub-beam that travels in an inclined direction for example, Patent Document 2). If scanning within the detection range is performed using two laser beams, the scanning speed can be increased.
  • holes 141 are formed on the lattice points of the first rhomboid lattice and the second rhomboid lattice, the diagonal lines of which are parallel to each other and the lengths of only the diagonal lines are different.
  • the photonic crystal surface-emitting laser 110 having the photonic crystal layer 114 formed with can emit tilted laser light in two symmetrical directions that form an angle ⁇ with respect to the exit surface normal.
  • the inclined beam has a different exit angle (up to 45 degrees). Is emitted (for example, Patent Document 3).
  • a two-dimensional photonic crystal layer stacked on the active layer that generates light is considered.
  • the two-dimensional photonic crystal layer forms a resonant state of light of wavelength ⁇ by forming a two-dimensional standing wave, and a different refractive index region is arranged at a lattice point that does not emit light to the outside.
  • Different refractive index regions are arranged at lattice points having a reciprocal lattice vector in which the sum of the photonic crystal structure PCA for forming the optical resonance state and the wave vector corresponding to the wavelength ⁇ in the reciprocal space is within a predetermined range.
  • a two-dimensional photonic crystal surface emitting laser that emits laser light in two symmetrical directions inclined from a direction perpendicular to the surface by including the photonic crystal structure PCB for light emission.
  • the photonic crystal structure PCA for forming an optical resonance state is a square lattice having an inter-lattice distance (lattice constant) a in the x direction and the y direction
  • the photonic crystal structure PCB for emitting light is an interstitial lattice in the y direction.
  • the distance is a, and two adjacent grid points in the x direction are located at r1 * a and r2 * a in the x direction with respect to the x direction position of the grid point in the row adjacent in the y direction. It is an oblique grid. (For example, patent document 4).
  • the photonic crystal structure for forming the optical resonance state is composed of either a square lattice, a rectangular lattice, or a triangular lattice
  • the photonic crystal structure for emitting light is an oblique lattice, a square lattice, a rectangular lattice, or a face-centered rectangular shape. It is disclosed that it is composed of either a lattice or a triangular lattice.
  • the term used here has the meaning prescribed
  • the traveling direction of the emitted laser light can be changed. It is taught that the emission direction of the tilted beam can be changed by defining a plurality of regions in the photonic crystal structure for light emission, changing the periodicity in each region, and switching the region for supplying current. ing.
  • JP 2004-28753 A Patent No. 3659239
  • JP 2009-76900 Patent No. 5070161
  • JP 2013-41948 Patent No. 5794687
  • JP 2013-211152 A Patent No. 6083703
  • a laser radar device mounted on a vehicle it is desired to perform scanning in a two-dimensional plane without performing mechanical driving to detect an object such as a preceding vehicle.
  • a surface-emitting laser device having a number of individual emission regions each having a unique emission direction characteristic, each of the individual emission regions having a laser structure including a photonic crystal structure, with respect to the normal of the emission surface
  • a laser device including a plurality of individual emission regions capable of emitting two laser beams in symmetrical directions and changing an angle with respect to a normal line of the emission surface;
  • a drive circuit capable of selectively driving individual emission regions of the laser device in a time series and scanning a monitor region in a two-dimensional plane;
  • a signal processing unit that detects reflected light from the monitor region and calculates the direction of the object and the distance to the object;
  • a laser radar device is provided.
  • the direction of the emitted laser light can be changed by changing the periodicity of the photonic crystal.
  • the individual emission areas selected in time series can perform pseudo-scanning.
  • FIG. 1A is a block diagram schematically showing the configuration of a laser radar device according to the prior art
  • FIG. 1B is a cross-sectional view schematically showing the configuration of an example of a photonic crystal laser according to the prior art
  • FIG. 2A is a perspective view schematically showing a configuration of a photonic crystal surface emitting laser device according to a prior application
  • FIG. 2B is a photonic crystal structure for forming an optical resonance state and light output by continuous research of the photonic crystal surface emitting laser device.
  • FIG. 3 is a plan view showing an example of a photonic crystal structure for use.
  • 3A is a block diagram schematically illustrating the configuration of the laser radar device according to the embodiment
  • FIG. 3B is a plan view schematically illustrating the distribution of a large number of individual emission regions included in the laser device according to the embodiment, and FIG. 3C is an individual emission.
  • FIG. 3D is a schematic diagram schematically showing the structure of lattice points of the photonic crystal layer constituting the laser device
  • FIG. 3E is a schematic diagram showing two laser beams emitted from the laser device.
  • 3F is an equation showing the relationship between the lattice constant a and coefficients r1 and r2 of the photonic crystal shown in FIG. 3C and the angles ⁇ and ⁇ of the laser beam shown in FIG. 3D, and FIG. FIGS.
  • 3H and 3I show one of two laser beams reflected by the object OB, and the reflected light is reflected by two photodiodes PD1.
  • PD2 is a top view showing how light is received.
  • FIG. 4C is the laser.
  • FIG. 4D is a schematic top view showing an arrangement example of individual emission regions on the apparatus, and FIG. 4D is a photonic crystal change (DA), an emission laser beam change (DB), and an arrangement example of individual emission regions (DC) when axial rotation is included.
  • DA photonic crystal change
  • DB emission laser beam change
  • DC arrangement example of individual emission regions
  • FIG. 5A is a schematic top view showing a configuration in which the detection area is divided into a front area and a side area
  • FIG. 5B is a timing chart showing a scanning process for continuously scanning the side area and the front area.
  • Laser radar devices are known as devices that meet such demands.
  • the laser light is scanned in a predetermined area.
  • the light emitted from the photonic crystal laser device travels in a direction based on the periodic structure of the photonic crystal layer.
  • the predetermined area in the two-dimensional plane can be almost completely filled with a set of laser beams, it is considered that the predetermined area can be pseudo-scanned.
  • a laser device having a large number of individual emission areas capable of emitting a large number of laser beams having different traveling directions is formed using a photonic crystal structure, and a plurality of reflected lights from an object in a predetermined area are formed. It is considered to detect with the light receiving element.
  • FIG. 3A schematically shows a configuration of a laser radar device according to the embodiment.
  • the laser radar device 1 includes a laser device 2 having a large number of individual emission regions, a drive circuit 4 of the laser device 2, a scanning calculation unit 6 that generates a signal for controlling the drive circuit 4, and two photodiodes PD1, PD2, and so on.
  • a detection signal calculation unit 14 that performs calculation based on the detection signals from the photodiodes PD1 and PD2 and the timing of laser light emission supplied from the drive circuit, the distance to the object OB that caused the reflected light based on the result,
  • a distance direction calculation unit 16 that calculates the direction of the object is included.
  • Laser light emitted from the laser device 2 is reflected by the object OB and detected by the photodiodes PD1 and PD2.
  • FIG. 3B shows a top view of the semiconductor laser device 2 having a large number of individual emission regions IER in the light emitting surface.
  • a large number of individual emission regions IER are arranged along the vertical y-axis direction and the horizontal x-axis direction.
  • a wiring is formed.
  • the semiconductor when near-infrared light is used, a material containing GaAs such as GaAs, AlGaAs, InGaAs, or the like can be used.
  • FIG. 3C is a cross-sectional view schematically showing a structural example of the individual emission region IER.
  • An active layer 21 and a photonic crystal layer 23 are disposed between a first conductivity type (for example, p-type) layer 25 and a second conductivity type (for example, n-type) layer 27.
  • a second conductivity type side electrode 28 that is a common electrode is formed on the surface of the second conductivity type layer 27, and a first conductivity type side electrode 29 that supplies current to the individual emission region IER is formed on the surface of the first conductivity type layer 25. Is formed.
  • the active layer 21 is formed, for example, with a multiple quantum well structure in which InGaAs is a well layer and GaAs is a barrier layer.
  • the first and second conductivity type layers 25 and 27 can be made of, for example, AlGaAs. These materials can also be used for the photonic crystal layer.
  • the electrode can be formed using, for example, a metal such as Au or a transparent electrode such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the shape of the electrode is not limited to this shape. What is necessary is just to be able to selectively apply a voltage to each individual emission region, such as a simple cross wiring or a combination of a common wiring and an active wiring.
  • FIG. 3D shows a design example of a photonic crystal according to the teaching of Patent Document 4. It is assumed that a photonic crystal 23 is formed by forming an optical resonance state forming lattice using a square lattice, forming a light emitting lattice using an oblique lattice, and superimposing them.
  • FIG. 3E shows an inclination angle ⁇ with respect to the normal of the surface of the area of the two laser beams emitted from the individual emission areas IER of the laser apparatus 2 and an azimuth angle ⁇ with respect to the x axis in the area surface.
  • FIG. 3F shows (Expression 1) representing the relationship between the coefficients r1 and r2, the tilt angle ⁇ and the azimuth angle ⁇ , and (Expression 2) representing the relationship between the lattice constant a and the wavelength ⁇ (in vacuum).
  • the effective refractive index n eff is determined by the refractive index of the semiconductor active layer, the photonic crystal layer, or the like.
  • the inclination angle ⁇ of the emitted light from the light emitting surface normal and the azimuth angle ⁇ from the reference axis x in the light emitting surface are determined by the coefficients r1 and r2 in the light emitting grating.
  • the coefficients r1 and r2 are selected so that a desired tilt image ⁇ and azimuth angle ⁇ are obtained.
  • two laser beams are emitted in a symmetrical angular direction from the origin in the emission plane. When one beam scans the first quadrant, the other beam scans the third quadrant.
  • FIG. 3G is a schematic top view showing the relationship between the section FVD in the field of view FV and the individual irradiation area IER in the laser device 2 when the field of view FV is scanned using the fixed laser device 2.
  • a number of individual irradiation areas IER in the laser device 2 are set in correspondence with the section FVD defined in the field of view.
  • 3H and 3I are schematic top views showing how the laser beam LB emitted from the laser device 2 is reflected by the object OB and detected by the photodiodes PD1 and PD2.
  • two photodiodes for example, it is possible to determine which of two laser beams is reflected by the laser beam.
  • the traveling direction of the received light can be further confirmed. Based on the time difference from the light emission timing to the light reception timing, the distance from the laser radar device to the object can be obtained.
  • the field of view is divided into a number of sections (for example, matrix-shaped sections), and an individual irradiation area including a photonic crystal layer using a common axis orientation that can irradiate each section with laser light is formed.
  • sections for example, matrix-shaped sections
  • an individual irradiation area including a photonic crystal layer using a common axis orientation that can irradiate each section with laser light is formed.
  • the case where a laser device is used has been described.
  • the coefficients r1 and r2 will change variously.
  • FIG. 4C shows (0, 0), (10, 0), (20, 0), (30, 0) as the angle pair ( ⁇ , ⁇ ) in the four individual irradiation areas in the laser device 2 in order. Indicates the case of setting. If these individual irradiation areas are formed, the projection of the laser light onto the light emitting surface is parallel to the x-axis, and laser light with an inclination angle of 0 degrees, 10 degrees, 20 degrees, and 30 degrees can be emitted.
  • four electrodes are used as an example, but this is only an example, and it is desirable to increase the number of divided electrodes with respect to the angle in order to improve controllability.
  • FIG. 4D shows the case where the shaft is rotated.
  • (DA) indicates a case where 90 ° rotation is performed.
  • the x-axis direction before rotation corresponds to the y-axis direction after rotation, and the y-axis direction before rotation corresponds to the x-axis direction after rotation.
  • (DB) indicates the emitted light whose inclination angle changes along the y-axis direction by the rotated photonic crystal. Since the change in the x-axis direction is obtained from the individual emission region having the structure before the rotation, in combination, the inclination angles along the x-axis direction and the y-axis direction are obtained.
  • DC shows a case where an individual emission region that provides a change in inclination angle in the x-axis direction and a change in inclination angle in the y-axis direction is formed along the x-axis direction and the y-axis direction in the emission surface of the laser device 2.
  • DD indicates a case where rotation other than 90 ° rotation is also used.
  • two rotation axes are formed between the x-axis and the y-axis, the inter-axis angle in the vicinity of the x-axis is narrow, and the inter-axis angle increases as the y-axis is approached.
  • the required conditions are different between the front area and the side area. It is conceivable to provide three sets of laser devices for the front and for both sides, but if it can be performed with one set, it will be effective for cost reduction.
  • the front monitor object can be monitored with monitor light centered around 100 m, for example, and the side monitor object can be monitored with monitor light centered around 50 m, for example. Since the distance ahead is long, it is necessary to increase the intensity of the laser beam, and the time for the laser beam to reciprocate is long. On the other hand, since the distance is short at the side, the intensity of the emitted light can be reduced and the reflected light reaches The time until is short.
  • FIG. 5A is a schematic top view showing a state in which the monitor space of the laser radar device 1 is divided into a front region and a side region
  • FIG. 5B is a time-division method for dividing the side region monitor and the front region monitor.
  • the timing chart in the case of performing is shown.
  • the emission frequency is set relatively high and the emission intensity is set relatively low
  • the emission frequency is set relatively low and the emission intensity is set relatively high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

[Problem] In a laser radar device mounted in a vehicle, to detect an object such as a preceding vehicle by performing scanning in a two-dimensional plane, without performing mechanical drive. [Solution] This laser radar device includes: a laser device which is a surface emitting laser device having multiple individual emission regions each with unique emission direction characteristics, wherein each of the individual emission regions has a laser structure including a photonic crystal structure, is capable of emitting two laser beams in symmetric directions relative to a normal to a light emitting surface, and the laser device includes a plurality of the individual emission regions of which an angle relative to the normal to the emission surface varies; a drive circuit which selectively drives the individual emission regions of the laser device in a time series manner and is capable of scanning a monitoring region in a two-dimensional plane; and a signal processing unit which detects reflected light from the monitoring region and calculates an azimuth of an object and the distance to the object.

Description

レーザーレーダー装置Laser radar device
 本発明は、レーザーレーダー装置に関し、特にフォトニック結晶を備えたレーザーレーダー装置に関する。 The present invention relates to a laser radar device, and more particularly to a laser radar device provided with a photonic crystal.
 図1Aを参照する。レーザーレーダー装置101は、信号送信部102と、信号受信部103と、信号処理部104とを備える。信号送信部102は、スキャナ駆動部105とスキャナ106と、レーザーダイオード107を備える。レーザーダイオード107は、信号処理部104の送信パルス発生部からの発光命令信号に基づいて、赤外線レーザー光を送出する。レーザー光は、スキャナ駆動部105に駆動されるスキャナ106によってスキャンされる。レーザー光が対象物で反射されて反射信号となり、信号受信部103内のフォトダイオード108で受信される。どの方向に向けて出した光に対する反射なのかということで方位を検出し、レーザーダイオードを発してからフォトダイオードで受信するまでの時間から距離を検出する(例えば特許文献1)。レーザーダイオードの向きを機械的駆動により変化させて、レーザー光の走査を行う機械的駆動は、駆動機構を必要とし、故障の原因ともなり得る。 Refer to FIG. 1A. The laser radar device 101 includes a signal transmission unit 102, a signal reception unit 103, and a signal processing unit 104. The signal transmission unit 102 includes a scanner driving unit 105, a scanner 106, and a laser diode 107. The laser diode 107 transmits infrared laser light based on the light emission command signal from the transmission pulse generation unit of the signal processing unit 104. The laser light is scanned by the scanner 106 driven by the scanner driving unit 105. The laser light is reflected by the object and becomes a reflected signal, which is received by the photodiode 108 in the signal receiving unit 103. The direction is detected based on the direction in which the light is reflected, and the distance is detected from the time from when the laser diode is emitted until it is received by the photodiode (for example, Patent Document 1). The mechanical drive that scans the laser light by changing the direction of the laser diode by the mechanical drive requires a drive mechanism and may cause a failure.
 図1Bを参照する。活性層111と第1周期のフォトニック結晶層121と第2周期のフォトニック結晶層122とを備えるフォトニック結晶レーザー110は、フォトニック結晶層に垂直な方向に進行する主ビームと主ビームに対して傾斜した方向に進行する副ビームとを発することができる(例えば特許文献2)。2本のレーザービームを用いて検知範囲内の走査を行えば、走査を高速化できよう。 Refer to FIG. 1B. A photonic crystal laser 110 including an active layer 111, a first-period photonic crystal layer 121, and a second-period photonic crystal layer 122 includes a main beam and a main beam that travel in a direction perpendicular to the photonic crystal layer. On the other hand, it is possible to emit a sub-beam that travels in an inclined direction (for example, Patent Document 2). If scanning within the detection range is performed using two laser beams, the scanning speed can be increased.
 図2Aを参照する。活性層115と、板状スラブ142中に、両対角線が互いに平行で、一方の対角線についてのみ長さが異なる第1の菱形状格子と第2の菱形状格子の各格子点上に空孔141が形成されたフォトニック結晶層114を備えたフォトニック結晶面発光レーザー110は、出射面法線に対して角度θをなす、対称な2方向に傾斜レーザー光を出射することができる。上記一方の対角線の長さが、該一方の対角線の延びる方向の位置により異なるようにし、電流注入の位置を該位置に沿って変更するようにすると、異なる出射角(最大45度)で傾斜ビームが出射するようになる(例えば特許文献3)。ここで、光を生じさせる活性層に積層される2次元フォトニック結晶層を検討する。 Refer to FIG. 2A. In the active layer 115 and the plate-shaped slab 142, holes 141 are formed on the lattice points of the first rhomboid lattice and the second rhomboid lattice, the diagonal lines of which are parallel to each other and the lengths of only the diagonal lines are different. The photonic crystal surface-emitting laser 110 having the photonic crystal layer 114 formed with can emit tilted laser light in two symmetrical directions that form an angle θ with respect to the exit surface normal. When the length of the one diagonal line is made different depending on the position in the direction in which the one diagonal line extends, and the position of current injection is changed along the position, the inclined beam has a different exit angle (up to 45 degrees). Is emitted (for example, Patent Document 3). Here, a two-dimensional photonic crystal layer stacked on the active layer that generates light is considered.
 図2Bを参照する。2次元フォトニック結晶層が、2次元定在波を形成することにより波長λの光の共振状態を形成し、かつ光を外部に出射させない周期性を持つ格子点に異屈折率領域が配置された光共振状態形成用フォトニック結晶構造PCAと、逆格子空間において波長λに対応する波数ベクトルとの和が所定範囲内の大きさになる逆格子ベクトルを有する格子点に異屈折率領域が配置された光出射用フォトニック結晶構造PCBとを備えることにより、面に垂直な方向から傾斜した対称的2方向にレーザー光を出射する2次元フォトニック結晶面発光レーザーも提案されている。図示の構成においては、光共振状態形成用フォトニック結晶構造PCAはx方向、y方向格子間距離(格子定数)aの正方格子であり、光出射用フォトニック結晶構造PCBはy方向の格子間距離はaであり、x方向の隣接する2格子点は、y方向に隣接する行の格子点のx方向位置に対してr1*a、及びr2*a、x方向に離れた位置にある、斜交格子である。(例えば特許文献4)。 Refer to FIG. 2B. The two-dimensional photonic crystal layer forms a resonant state of light of wavelength λ by forming a two-dimensional standing wave, and a different refractive index region is arranged at a lattice point that does not emit light to the outside. Different refractive index regions are arranged at lattice points having a reciprocal lattice vector in which the sum of the photonic crystal structure PCA for forming the optical resonance state and the wave vector corresponding to the wavelength λ in the reciprocal space is within a predetermined range. There has also been proposed a two-dimensional photonic crystal surface emitting laser that emits laser light in two symmetrical directions inclined from a direction perpendicular to the surface by including the photonic crystal structure PCB for light emission. In the configuration shown in the figure, the photonic crystal structure PCA for forming an optical resonance state is a square lattice having an inter-lattice distance (lattice constant) a in the x direction and the y direction, and the photonic crystal structure PCB for emitting light is an interstitial lattice in the y direction. The distance is a, and two adjacent grid points in the x direction are located at r1 * a and r2 * a in the x direction with respect to the x direction position of the grid point in the row adjacent in the y direction. It is an oblique grid. (For example, patent document 4).
 光共振状態形成用フォトニック結晶構造は、正方格子、長方格子、三角格子のいずれかで構成され、光出射用フォトニック結晶構造は斜交格子、正方格子、長方格子、面心長方格子、三角格子のいずれかで構成されると開示されている。尚、ここに用いられた用語は、特許文献4の明細書に規定された意味を持つ。 The photonic crystal structure for forming the optical resonance state is composed of either a square lattice, a rectangular lattice, or a triangular lattice, and the photonic crystal structure for emitting light is an oblique lattice, a square lattice, a rectangular lattice, or a face-centered rectangular shape. It is disclosed that it is composed of either a lattice or a triangular lattice. In addition, the term used here has the meaning prescribed | regulated by the specification of patent document 4. FIG.
 光出射用フォトニック結晶構造の周期性を変化させることにより、出射するレーザー光の進行方向を変化させることができる。光出射用フォトニック結晶構造に、複数の領域を画定し、それぞれの領域で周期性を変化させ、電流を供給する領域を切り替えることにより、傾斜ビームの出射方向を変化させることができると教示されている。 By changing the periodicity of the photonic crystal structure for emitting light, the traveling direction of the emitted laser light can be changed. It is taught that the emission direction of the tilted beam can be changed by defining a plurality of regions in the photonic crystal structure for light emission, changing the periodicity in each region, and switching the region for supplying current. ing.
特開2004-28753号(特許第3659239号)公報JP 2004-28753 A (Patent No. 3659239) 特開2009-76900号(特許第5070161号)公報JP 2009-76900 (Patent No. 5070161) 特開2013-41948号(特許第5794687号)公報JP 2013-41948 (Patent No. 5794687) 特開2013-211542号(特許第6083703号)公報JP 2013-211152 A (Patent No. 6083703)
 例えば、車両搭載のレーザーレーダー装置においては、機械的駆動を行うことなく、2次元平面内の走査を行い、前走車等の対象物の検出を行うことが望まれる。 For example, in a laser radar device mounted on a vehicle, it is desired to perform scanning in a two-dimensional plane without performing mechanical driving to detect an object such as a preceding vehicle.
 本発明の実施例によれば、
 それぞれ固有の出射方向特性を有する多数の個別出射領域を有する面発光レーザー装置であって、個別出射領域の各々は、フォトニック結晶構造を含むレーザー構造を有して、発光面の法線に対して対称な方向に2本のレーザー光線を出射可能であり、出射面の法線に対する角度が変化する複数の個別出射領域を含むレーザー装置と、
 前記レーザー装置の個別出射領域を、時間系列的に、選択駆動し、2次元平面内のモニター領域を走査できる駆動回路と、
 モニター領域からの反射光を検出して、対象物の方位と対象物までの距離を算出する信号処理部と、
を含むレーザーレーダー装置
が提供される。
According to an embodiment of the present invention,
A surface-emitting laser device having a number of individual emission regions each having a unique emission direction characteristic, each of the individual emission regions having a laser structure including a photonic crystal structure, with respect to the normal of the emission surface A laser device including a plurality of individual emission regions capable of emitting two laser beams in symmetrical directions and changing an angle with respect to a normal line of the emission surface;
A drive circuit capable of selectively driving individual emission regions of the laser device in a time series and scanning a monitor region in a two-dimensional plane;
A signal processing unit that detects reflected light from the monitor region and calculates the direction of the object and the distance to the object;
A laser radar device is provided.
 フォトニック結晶の周期性を変化させると出射レーザー光の方向を変化させることができる。時系列的に選択される個別出射領域が擬似走査を行うことができる。 The direction of the emitted laser light can be changed by changing the periodicity of the photonic crystal. The individual emission areas selected in time series can perform pseudo-scanning.
 図1Aは従来技術によるレーザーレーダー装置の構成を概略的に示すブロック図、図1Bは従来技術によるフォトニック結晶レーザーの例の構成を概略的に示す断面図である。
 図2Aは先行出願によるフォトニック結晶面発光レーザー装置の構成を概略的に示す斜視図、図2Bは該フォトニック結晶面発光レーザー装置の継続研究による光共振状態形成用フォトニック結晶構造と光出力用フォトニック結晶構造の例を示す平面図である。
 図3Aは実施例によるレーザーレーダー装置の構成を概略的に示すブロック図、図3Bは実施例におけるレーザー装置に含まれる多数の個別出射領域の分布を概略的に示す平面図、図3Cは個別出射領域の構成を概略的に示す断面図、図3Dはレーザー装置を構成するフォトニック結晶層の格子点の構成を概略的に示す模式図、図3Eはレーザー装置から発する2つのレーザービームを概略的に示す斜視図、図3Fは図3Cに示すフォトニック結晶の格子定数a、係数r1、r2と、図3Dに示すレーザービームの角度θ、φとの関係を示す式、図3Gはレーザー装置内の個別照射領域と視野内の区画の関係を示す概略上面図、図3H,3Iは2本のレーザービームの内の1本が対象物OBで反射され、反射光が2つのフォトダイオードPD1,PD2で受光される様子を示す上面図である。
 図4Aはφ=0である場合の、傾斜角θと係数r1、r2の関係を表す数式、図4Bは傾斜角θを変化させる時の係数r1=r2の変化を示すグラフ、図4Cはレーザー装置上の個別出射領域の配列例を示す概略上面図、図4Dは軸回転を含む場合のフォトニック結晶の変化(DA)、出射レーザー光の変化(DB)、個別出射領域の配列例(DC)、複数の回転角を含む場合の出射レーザー光の分布(DD)を示す概略上面図である。
 図5Aは、検出領域を前方領域と側方領域とに分けた構成を示す概略上面図、図5Bは側方領域と前方領域とを連続的に走査する走査工程を示すタイミングチャートである。
FIG. 1A is a block diagram schematically showing the configuration of a laser radar device according to the prior art, and FIG. 1B is a cross-sectional view schematically showing the configuration of an example of a photonic crystal laser according to the prior art.
FIG. 2A is a perspective view schematically showing a configuration of a photonic crystal surface emitting laser device according to a prior application, and FIG. 2B is a photonic crystal structure for forming an optical resonance state and light output by continuous research of the photonic crystal surface emitting laser device. FIG. 3 is a plan view showing an example of a photonic crystal structure for use.
3A is a block diagram schematically illustrating the configuration of the laser radar device according to the embodiment, FIG. 3B is a plan view schematically illustrating the distribution of a large number of individual emission regions included in the laser device according to the embodiment, and FIG. 3C is an individual emission. FIG. 3D is a schematic diagram schematically showing the structure of lattice points of the photonic crystal layer constituting the laser device, and FIG. 3E is a schematic diagram showing two laser beams emitted from the laser device. 3F is an equation showing the relationship between the lattice constant a and coefficients r1 and r2 of the photonic crystal shown in FIG. 3C and the angles θ and φ of the laser beam shown in FIG. 3D, and FIG. FIGS. 3H and 3I show one of two laser beams reflected by the object OB, and the reflected light is reflected by two photodiodes PD1. , PD2 is a top view showing how light is received.
4A is a mathematical expression showing the relationship between the tilt angle θ and the coefficients r1 and r2 when φ = 0, FIG. 4B is a graph showing the change of the coefficient r1 = r2 when the tilt angle θ is changed, and FIG. 4C is the laser. FIG. 4D is a schematic top view showing an arrangement example of individual emission regions on the apparatus, and FIG. 4D is a photonic crystal change (DA), an emission laser beam change (DB), and an arrangement example of individual emission regions (DC) when axial rotation is included. ), A schematic top view showing the distribution (DD) of the emitted laser light when including a plurality of rotation angles.
FIG. 5A is a schematic top view showing a configuration in which the detection area is divided into a front area and a side area, and FIG. 5B is a timing chart showing a scanning process for continuously scanning the side area and the front area.
  1  レーザーレーダー装置、  2  レーザー装置、  4  駆動回路、
  6  走査演算部、  14  検出信号演算部、  16  距離演算部、
 21  活性層、  23  フォトニック結晶層、  25  第1導電型領域、
 27  第2導電型領域、  28、29  電極、
 OB  (検出)物体、  PD  フォトダイオード、 LB  レーザー光、
IER  個別出射領域、  a  格子定数、  r1、r2  係数、
  θ  傾斜角、  φ  方位角、  x、y  直交座標の軸、
 FV  視野、  FVD  視野内区画。
1 Laser radar device, 2 Laser device, 4 Drive circuit,
6 scanning calculation unit, 14 detection signal calculation unit, 16 distance calculation unit,
21 active layer, 23 photonic crystal layer, 25 first conductivity type region,
27 second conductivity type region, 28, 29 electrodes,
OB (detection) object, PD photodiode, LB laser beam,
IER individual emission area, a lattice constant, r1, r2 coefficient,
θ tilt angle, φ azimuth, x, y Cartesian coordinate axes,
FV field of view, FVD field of view.
 安全走行のためには、道路上を走行する車両は、前方を走行する前走車、歩道等を歩行する歩行者等に注意する必要がある。不注意による衝突などを回避するため、検出機器を用いて道路上の物体を検出し、必要な場合は対策をとることが望まれる。このような要求に応える機器として、レーザーレーダー装置が知られている。レーザー光を用いて道路上の前方領域、側方領域の物体を検出するために、レーザー光を所定領域内で走査する。機械的振動、温度変化等を避けがたい車両内では、機械的駆動部を用いないことが望まれる。 For safe driving, vehicles traveling on the road need to pay attention to the preceding vehicle traveling ahead, pedestrians walking on the sidewalk, etc. In order to avoid inadvertent collisions and the like, it is desirable to detect objects on the road using a detection device and take measures when necessary. Laser radar devices are known as devices that meet such demands. In order to detect objects in the front area and the side area on the road using the laser light, the laser light is scanned in a predetermined area. In a vehicle where it is difficult to avoid mechanical vibration, temperature change, etc., it is desirable not to use a mechanical drive unit.
 フォトニック結晶レーザー装置の出射光は、フォトニック結晶層の周期構造に基づく方向に進行する。フォトニック結晶層に多数の領域を画定し、各領域の周期構造を変化させると、進行方向が変化するレーザー光を出射することが可能となる。2次元平面内の所定領域をレーザー光の集合でほぼ埋め尽くすことができれば、該所定領域を擬似走査することが可能と考えられる。このような進行方向の異なる多数のレーザー光を発することが可能な、多数の個別出射領域を備えたレーザー装置をフォトニック結晶構造を用いて形成し、所定領域内の物体からの反射光を複数の受光素子で検出することを検討する。 The light emitted from the photonic crystal laser device travels in a direction based on the periodic structure of the photonic crystal layer. When a large number of regions are defined in the photonic crystal layer and the periodic structure of each region is changed, it becomes possible to emit laser light whose traveling direction changes. If the predetermined area in the two-dimensional plane can be almost completely filled with a set of laser beams, it is considered that the predetermined area can be pseudo-scanned. A laser device having a large number of individual emission areas capable of emitting a large number of laser beams having different traveling directions is formed using a photonic crystal structure, and a plurality of reflected lights from an object in a predetermined area are formed. It is considered to detect with the light receiving element.
 図3Aは、実施例によるレーザーレーダー装置の構成を概略的に示す。レーザーレーダー装置1は、多数の個別出射領域を備えたレーザー装置2、このレーザー装置2の駆動回路4、駆動回路4を制御する信号を発生する走査演算部6、2つのフォトダイオードPD1,PD2,これらのフォトダイオードPD1,PD2からの検出信号及び駆動回路から供給されるレーザー光出射のタイミングに基づく演算を行う検出信号演算部14、その結果に基づいて反射光を生じた物体OBまでの距離、物体の方向を演算する距離方向演算部16を含む。レーザー装置2から発したレーザー光が物体OBで反射し、フォトダイオードPD1,PD2で検出される。 FIG. 3A schematically shows a configuration of a laser radar device according to the embodiment. The laser radar device 1 includes a laser device 2 having a large number of individual emission regions, a drive circuit 4 of the laser device 2, a scanning calculation unit 6 that generates a signal for controlling the drive circuit 4, and two photodiodes PD1, PD2, and so on. A detection signal calculation unit 14 that performs calculation based on the detection signals from the photodiodes PD1 and PD2 and the timing of laser light emission supplied from the drive circuit, the distance to the object OB that caused the reflected light based on the result, A distance direction calculation unit 16 that calculates the direction of the object is included. Laser light emitted from the laser device 2 is reflected by the object OB and detected by the photodiodes PD1 and PD2.
 図3Bは、発光面内に多数の個別出射領域IERを備えた半導体レーザー装置2の上面図を示す。図中垂直方向のy軸方向、水平方向のx軸方向に沿って、多数の個別出射領域IERが配列されている。各個別出射領域IERに電圧を供給するためには配線を形成する。半導体としては、近赤外の光を用いる場合、例えばGaAs,AlGaAs,InGaAs等GaAsを含む材質を用いることができる。 FIG. 3B shows a top view of the semiconductor laser device 2 having a large number of individual emission regions IER in the light emitting surface. In the figure, a large number of individual emission regions IER are arranged along the vertical y-axis direction and the horizontal x-axis direction. In order to supply a voltage to each individual emission region IER, a wiring is formed. As the semiconductor, when near-infrared light is used, a material containing GaAs such as GaAs, AlGaAs, InGaAs, or the like can be used.
 図3Cは、個別出射領域IERの構造例を概略的に示す断面図である。第1導電型(例えばp型)層25、第2導電型(例えばn型)層27の間に活性層21、フォトニック結晶層23が配置されている。第2導電型層27の表面に共通電極である第2導電型側電極28が形成され、第1導電型層25の表面に個別出射領域IERに電流を供給する第1導電型側電極29が形成されている。活性層21は、例えばInGaAsをウェル層、GaAsをバリア層とする多重量子井戸構造で形成する。第1、第2導電型層25,27は、たとえば、AlGaAsで構成できる。フォトニック結晶層にもこれらの材料を用いることができる。電極は、例えばAu等の金属、インジウム錫酸化物(ITO)等の透明電極を用いて形成することができる。尚、電極の形状は、この形状に制限されない。単純クロス配線、共通配線とアクティブ配線の組み合わせ等、各個別出射領域に選択的に電圧を印加できるものであればよい。 FIG. 3C is a cross-sectional view schematically showing a structural example of the individual emission region IER. An active layer 21 and a photonic crystal layer 23 are disposed between a first conductivity type (for example, p-type) layer 25 and a second conductivity type (for example, n-type) layer 27. A second conductivity type side electrode 28 that is a common electrode is formed on the surface of the second conductivity type layer 27, and a first conductivity type side electrode 29 that supplies current to the individual emission region IER is formed on the surface of the first conductivity type layer 25. Is formed. The active layer 21 is formed, for example, with a multiple quantum well structure in which InGaAs is a well layer and GaAs is a barrier layer. The first and second conductivity type layers 25 and 27 can be made of, for example, AlGaAs. These materials can also be used for the photonic crystal layer. The electrode can be formed using, for example, a metal such as Au or a transparent electrode such as indium tin oxide (ITO). The shape of the electrode is not limited to this shape. What is necessary is just to be able to selectively apply a voltage to each individual emission region, such as a simple cross wiring or a combination of a common wiring and an active wiring.
 図3Dは、特許文献4の教示に従ったフォトニック結晶の設計例を示す。正方格子を用いて光共振状態形成用格子を形成し、斜交格子を用いて光出射用格子を形成し、両者を重ねあわせて、フォトニック結晶23を形成する場合を想定している。 FIG. 3D shows a design example of a photonic crystal according to the teaching of Patent Document 4. It is assumed that a photonic crystal 23 is formed by forming an optical resonance state forming lattice using a square lattice, forming a light emitting lattice using an oblique lattice, and superimposing them.
 図3Eはレーザー装置2の個別出射領域IERから発する2本のレーザー光の領域表面の法線に対する傾斜角θ、領域表面内のx軸に対する方位角φを示す。 FIG. 3E shows an inclination angle θ with respect to the normal of the surface of the area of the two laser beams emitted from the individual emission areas IER of the laser apparatus 2 and an azimuth angle φ with respect to the x axis in the area surface.
 図3Fは、係数r1、r2と、傾斜角θ、方位角φとの関係を表す(式1)と、格子定数aと(真空中の)波長λの関係を表す(式2)を示す。半導体活性層、フォトニック結晶層等の屈折率により有効屈折率neffが定まる。 FIG. 3F shows (Expression 1) representing the relationship between the coefficients r1 and r2, the tilt angle θ and the azimuth angle φ, and (Expression 2) representing the relationship between the lattice constant a and the wavelength λ (in vacuum). The effective refractive index n eff is determined by the refractive index of the semiconductor active layer, the photonic crystal layer, or the like.
 光出射用格子における係数r1、r2によって、出射光の発光面法線からの傾斜角θ、発光面内の基準軸xからの方位角φが定まる。言い換えると、所望の傾斜画θ、方位角φが得られるように係数r1、r2を選定する。図3Eに示すように、出射平面内の原点から2本のレーザービームが対称的角度方向で出射される。一方のビームで第1象限を走査すると他方のビームは第3象限を走査する。視野内の所定領域を走査する場合、所定領域の中心を原点とし、一方のビームで例えば第1象限、第2象限を走査すれば、他方のビームが第3象限、第4象限を走査する。走査される領域として求められる傾斜角θ、方位角φを定め、これらを実現する係数r1、r2を求める。 The inclination angle θ of the emitted light from the light emitting surface normal and the azimuth angle φ from the reference axis x in the light emitting surface are determined by the coefficients r1 and r2 in the light emitting grating. In other words, the coefficients r1 and r2 are selected so that a desired tilt image θ and azimuth angle φ are obtained. As shown in FIG. 3E, two laser beams are emitted in a symmetrical angular direction from the origin in the emission plane. When one beam scans the first quadrant, the other beam scans the third quadrant. When scanning a predetermined area in the field of view, if the center of the predetermined area is the origin and one beam scans, for example, the first and second quadrants, the other beam scans the third and fourth quadrants. An inclination angle θ and an azimuth angle φ required as a scanned region are determined, and coefficients r1 and r2 for realizing these are obtained.
 図3Gは、固定されるレーザー装置2を用いて視野FVを走査する場合の、視野FV内の区画FVDとレーザー装置2内の個別照射領域IERとの関係を示す概略上面図である。レーザー装置2内の多数の個別照射領域IERは視野内に定められる区画FVDと対応して設定される。 FIG. 3G is a schematic top view showing the relationship between the section FVD in the field of view FV and the individual irradiation area IER in the laser device 2 when the field of view FV is scanned using the fixed laser device 2. A number of individual irradiation areas IER in the laser device 2 are set in correspondence with the section FVD defined in the field of view.
 図3H、3Iは、レーザー装置2から発したレーザー光LBが対象物OBで反射され、フォトダイオードPD1,PD2で検出される様子を示す概略上面図である。2つのフォトダイオードを用いることにより、例えば2本のレーザー光のどちらのレーザー光の反射光であるかを定めることができる。2つのフォトダイオードの受光面を互いに傾けることにより、受光した光の進行方向をさらに確認することもできる。発光タイミングから受光タイミングまでの時間差に基づき、レーザーレーダー装置から対象物までの距離を求めることができる。 3H and 3I are schematic top views showing how the laser beam LB emitted from the laser device 2 is reflected by the object OB and detected by the photodiodes PD1 and PD2. By using two photodiodes, for example, it is possible to determine which of two laser beams is reflected by the laser beam. By tilting the light receiving surfaces of the two photodiodes, the traveling direction of the received light can be further confirmed. Based on the time difference from the light emission timing to the light reception timing, the distance from the laser radar device to the object can be obtained.
 上述の例においては、視野を多数の区画(例えば行列状の区画)に分割し、それぞれの区画にレーザー光を照射できる共通軸方位を用いたフォトニック結晶層を備えた個別照射領域を形成したレーザー装置を用いる場合を説明した。この場合、係数r1、r2は夫々種々に変化するであろう。 In the above-described example, the field of view is divided into a number of sections (for example, matrix-shaped sections), and an individual irradiation area including a photonic crystal layer using a common axis orientation that can irradiate each section with laser light is formed. The case where a laser device is used has been described. In this case, the coefficients r1 and r2 will change variously.
 一軸方向の走査を検討する。x軸と平行な一軸方向の走査の場合、方位角φ=0となる。傾斜角θを0度、10度、20度、30度に変化させるとする。方位角φ=0の場合、sinθ*sinφ=0であり、図3Fの(式1)からr1=r2となる。 検 討 Consider uniaxial scanning. In the case of scanning in a uniaxial direction parallel to the x-axis, the azimuth angle φ = 0. Assume that the inclination angle θ is changed to 0 degree, 10 degrees, 20 degrees, and 30 degrees. When the azimuth angle φ = 0, sin θ * sin φ = 0, and r1 = r2 from (Equation 1) in FIG. 3F.
 図4Aは、このφ=0場合を示す。r1、r2は最下段に示す式によってあらわされる。 FIG. 4A shows the case where φ = 0. r1 and r2 are expressed by the equations shown at the bottom.
 図4Bは、傾斜角θを変化させる時の係数r1、r2の変化を示す。フォトニック結晶において、傾斜角θを0度から30度まで変化させるには、r1=r2を1から約1.2程度まで増加させればよいことが判る。尚、傾斜角は最大45度と教示されている。 FIG. 4B shows changes in the coefficients r1 and r2 when the inclination angle θ is changed. It can be seen that in order to change the tilt angle θ from 0 degree to 30 degrees in the photonic crystal, it is only necessary to increase r1 = r2 from 1 to about 1.2. Note that the maximum tilt angle is 45 degrees.
 図4Cは、レーザー装置2内の4つの個別照射領域に、角度対(θ、φ)として、(0,0)、(10,0)、(20,0)、(30,0)を順次設定する場合を示す。これらの個別照射領域を形成すれば、レーザー光の発光面に対する射影がx軸に平行であり、傾斜角が0度、10度、20度、30度のレーザー光を出射することができる。ここでは、一例として4電極としたが、これは一例であり、より制御性を高めるためには角度に対し分割電極数を増やすことが望ましい。 FIG. 4C shows (0, 0), (10, 0), (20, 0), (30, 0) as the angle pair (θ, φ) in the four individual irradiation areas in the laser device 2 in order. Indicates the case of setting. If these individual irradiation areas are formed, the projection of the laser light onto the light emitting surface is parallel to the x-axis, and laser light with an inclination angle of 0 degrees, 10 degrees, 20 degrees, and 30 degrees can be emitted. Here, four electrodes are used as an example, but this is only an example, and it is desirable to increase the number of divided electrodes with respect to the angle in order to improve controllability.
 以上の設定では、レーザー光の発光面に対する射影がx軸と平行であるレーザー光しか得られない。x軸、y軸を含む2次元平面の所定領域を走査することはできないことになる。ところで、この結論はx軸、y軸が1種類のみであることを前提としている。軸を回転することも可能であり、原点の周囲でx軸を回転させれば、平面をカバーすることができる。 With the above settings, only laser light whose projection onto the light emitting surface of the laser light is parallel to the x-axis can be obtained. A predetermined area on the two-dimensional plane including the x-axis and the y-axis cannot be scanned. By the way, this conclusion is based on the premise that there is only one type of x-axis and y-axis. It is also possible to rotate the axis, and the plane can be covered by rotating the x axis around the origin.
 図4Dは軸回転を行う場合を示す。(DA)は90度回転を行う場合を示す。回転前のx軸方向が、回転後のy軸方向に相当し、回転前のy軸方向が回転後のx軸方向に相当する。 FIG. 4D shows the case where the shaft is rotated. (DA) indicates a case where 90 ° rotation is performed. The x-axis direction before rotation corresponds to the y-axis direction after rotation, and the y-axis direction before rotation corresponds to the x-axis direction after rotation.
 (DB)は、回転後のフォトニック結晶によって傾斜角がy軸方向に沿って変化する出射光を示す。回転前の構造を有する個別出射領域からx軸方向の変化が得られるので、併せれば、x軸方向とy軸方向に沿う傾斜角が得られる。 (DB) indicates the emitted light whose inclination angle changes along the y-axis direction by the rotated photonic crystal. Since the change in the x-axis direction is obtained from the individual emission region having the structure before the rotation, in combination, the inclination angles along the x-axis direction and the y-axis direction are obtained.
 (DC)は、レーザー装置2の出射面内x軸方向、y軸方向に沿って、x軸方向の傾斜角変化、y軸方向の傾斜角変化を提供する個別出射領域を形成した場合を示している。 (DC) shows a case where an individual emission region that provides a change in inclination angle in the x-axis direction and a change in inclination angle in the y-axis direction is formed along the x-axis direction and the y-axis direction in the emission surface of the laser device 2. ing.
 (DD)は、90度回転以外の回転も用いる場合を示す。図示された構成では、x軸、y軸の間に2つの回転軸を形成し、かつx軸近傍の軸間角度は狭く、y軸に近づくと軸間角度が大きくなっている。対象物の検出は路面付近ほど精度高くする要求を考慮している。尚、係数対(r1、r2)を任意に選択する個別照射領域と、r1=r2を前提とする個別照射領域を混在させることもできる。 (DD) indicates a case where rotation other than 90 ° rotation is also used. In the illustrated configuration, two rotation axes are formed between the x-axis and the y-axis, the inter-axis angle in the vicinity of the x-axis is narrow, and the inter-axis angle increases as the y-axis is approached. The detection of the object considers the demand for higher accuracy near the road surface. It should be noted that an individual irradiation region in which the coefficient pair (r1, r2) is arbitrarily selected and an individual irradiation region on the premise that r1 = r2 can be mixed.
 車両用の対象物検出を前方領域と側方領域とに対して行う場合、要求される条件は前方領域と側方領域とでは異なる。レーザー装置を前方用と両側方用とに3セット備えることも考えられるが、1セットで行えればコスト抑制に有効であろう。前方のモニター対象物は例えば100m程度を中心としたモニター光でモニターし、側方のモニター対象物は例えば50m程度を中心としたモニター光でモニターできる。前方は距離が長いのでレーザー光の強度も高くする必要があり、レーザー光が往復する時間も長い、これに対し、側方は距離が短いので出射光の強度も低くでき、反射光が到達するまでの時間も短い。 When performing vehicle object detection on the front area and the side area, the required conditions are different between the front area and the side area. It is conceivable to provide three sets of laser devices for the front and for both sides, but if it can be performed with one set, it will be effective for cost reduction. The front monitor object can be monitored with monitor light centered around 100 m, for example, and the side monitor object can be monitored with monitor light centered around 50 m, for example. Since the distance ahead is long, it is necessary to increase the intensity of the laser beam, and the time for the laser beam to reciprocate is long. On the other hand, since the distance is short at the side, the intensity of the emitted light can be reduced and the reflected light reaches The time until is short.
 図5Aは、レーザーレーダー装置1のモニター空間を前方領域と両側方領域に分けた状態を示す概略的上面図であり、図5Bは、時間分割して側方領域のモニターと前方領域のモニターを行う場合のタイミングチャートを示す。側方領域のモニターにおいては、発光周波数が相対的に高く、発光強度は相対的に低く設定され、前方モニターにおいては発光周波数を相対的に低く、発光強度を相対的に高く設定されている。 FIG. 5A is a schematic top view showing a state in which the monitor space of the laser radar device 1 is divided into a front region and a side region, and FIG. 5B is a time-division method for dividing the side region monitor and the front region monitor. The timing chart in the case of performing is shown. In the side area monitor, the emission frequency is set relatively high and the emission intensity is set relatively low, and in the front monitor, the emission frequency is set relatively low and the emission intensity is set relatively high.
 以上、実施例に沿って説明したが、必要に応じて、特開2013-41948号(特許第5794687号)公報、特開2013-211542号(特許第6083703号)公報の実施例の欄に記載された事項を取込むこともできる(can be
incorporated herein by reference)。上述の記載中の材料数値などは例示であり、制限的なものではない。実施例に沿って説明したが、公知の均等物などを用いることも可能である。その他、種々の変更、改良、組み合わせ等が可能であることは当業者に自明であろう。
As described above, the description has been given according to the embodiment. However, if necessary, the description is given in the column of the embodiment of Japanese Patent Laid-Open No. 2013-41948 (Patent No. 5794687) and Japanese Patent Laid-Open No. 2013-21542 (Patent No. 6083703). Can be taken in (can be
incorporated herein by reference). The material numerical values and the like in the above description are examples and are not limiting. Although described along the embodiment, a known equivalent or the like can be used. It will be apparent to those skilled in the art that other various modifications, improvements, combinations, and the like are possible.

Claims (17)

  1.  それぞれ固有の出射方向特性を有する多数の個別出射領域を有する面発光レーザー装置であって、個別出射領域の各々は、フォトニック結晶構造を含むレーザー構造を有して、発光面の法線に対して対称な方向に2本のレーザー光線を出射可能であり、出射面の法線に対する角度が変化する複数の個別出射領域を含むレーザー装置と、
     前記レーザー装置の個別出射領域を、時間系列的に、選択駆動し、2次元平面内のモニター領域を走査できる駆動回路と、
     モニター領域からの反射光を検出して、対象物の方位と対象物までの距離を算出する信号処理部と、
    を含むレーザーレーダー装置。
    A surface-emitting laser device having a number of individual emission regions each having a unique emission direction characteristic, each of the individual emission regions having a laser structure including a photonic crystal structure, with respect to the normal of the emission surface A laser device including a plurality of individual emission regions capable of emitting two laser beams in symmetrical directions and changing an angle with respect to a normal line of the emission surface;
    A drive circuit capable of selectively driving individual emission regions of the laser device in a time series and scanning a monitor region in a two-dimensional plane;
    A signal processing unit that detects reflected light from the monitor region and calculates the direction of the object and the distance to the object;
    Including laser radar equipment.
  2.  前記フォトニック結晶構造を含むレーザー構造は、活性層と平行なフォトニック結晶層を含む、請求項1に記載のレーザーレーダー装置。 The laser radar device according to claim 1, wherein the laser structure including the photonic crystal structure includes a photonic crystal layer parallel to the active layer.
  3.  前記フォトニック結晶構造を含むレーザー構造は、活性層の両側にフォトニック結晶層を有する、請求項2に記載のレーザーレーダー装置。 The laser radar device according to claim 2, wherein the laser structure including the photonic crystal structure has a photonic crystal layer on both sides of the active layer.
  4.  前記信号処理部が、異なる位置に配置された複数の受光素子を含み、反射光が2本の出射レーザー光のいずれが反射されたものであるかを判定できる、請求項1に記載のレーザーレーダー装置。 2. The laser radar according to claim 1, wherein the signal processing unit includes a plurality of light receiving elements arranged at different positions, and the reflected light can determine which of two outgoing laser lights is reflected. apparatus.
  5.  前記多数の個別出射領域が、2本の出射レーザー光線を含む出射面の発光面に対する射影の面内方向が同一方向である複数の個別出射領域を含む、請求項1に記載のレーザーレーダー装置。 2. The laser radar device according to claim 1, wherein the plurality of individual emission areas include a plurality of individual emission areas whose in-plane directions of projection with respect to a light emitting surface of an emission surface including two emission laser beams are the same direction.
  6.  前記多数の個別出射領域が、2本の出射レーザー光線を含む出射面の発光面に対する射影が出射面における面内方向を変化させる複数の個別出射領域をさらに含む請求項1に記載のレーザーレーダー装置。 2. The laser radar device according to claim 1, wherein the plurality of individual emission areas further include a plurality of individual emission areas in which a projection of an emission surface including two emission laser beams onto a light emitting surface changes an in-plane direction on the emission surface.
  7.  前記フォトニック結晶構造が、2次元定在波を形成することにより波長λの光の共振状態を形成し、かつ光を外部に出射させない周期性を持つ格子点に異屈折率領域が配置された光共振状態形成用フォトニック結晶構造と、逆格子空間において波長λに対応する波数ベクトルとの和が所定範囲内の大きさになる逆格子ベクトルを有する格子点に異屈折率領域が配置された光出射用フォトニック結晶構造とを備える請求項1に記載のレーザーレーダー装置。 The photonic crystal structure forms a resonant state of light having a wavelength λ by forming a two-dimensional standing wave, and a different refractive index region is arranged at a lattice point having a periodicity that does not emit light to the outside. A different refractive index region is arranged at a lattice point having a reciprocal lattice vector whose sum of a photonic crystal structure for forming an optical resonance state and a wave vector corresponding to the wavelength λ in a reciprocal space is within a predetermined range. The laser radar device according to claim 1, further comprising a photonic crystal structure for emitting light.
  8.  前記光共振状態形成用フォトニック結晶構造は、正方格子、長方格子、三角格子のいずれかで構成され、光出射用フォトニック結晶構造は斜交格子、正方格子、長方格子、面心長方格子、三角格子のいずれかで構成されている請求項7に記載のレーザーレーダー装置。 The photonic crystal structure for forming an optical resonance state is composed of any one of a square lattice, a rectangular lattice, and a triangular lattice, and the photonic crystal structure for emitting light is an oblique lattice, a square lattice, a rectangular lattice, and a face center length. The laser radar device according to claim 7, wherein the laser radar device is configured by one of a rectangular lattice and a triangular lattice.
  9.  前記光共振状態形成用フォトニック結晶構造は、正方格子で構成され、光出射用フォトニック結晶構造は斜交格子で構成されている請求項8に記載のレーザーレーダー装置。 The laser radar device according to claim 8, wherein the photonic crystal structure for forming an optical resonance state is formed of a square lattice, and the photonic crystal structure for light emission is formed of an oblique lattice.
  10.  前記正方格子がx軸、y軸に沿う隣接格子点間の格子定数aを有し、前記斜交格子がy軸方向に関して間隔aの格子点列を含み、x軸方向に関して隣接格子点列の格子点のk座標からr1a、r2a離れており、係数対(r1、r2)が異なる複数の個別出射領域を含む請求項9に記載のレーザーレーダー装置。 The square lattice has a lattice constant a between adjacent lattice points along the x-axis and the y-axis, the oblique lattice includes a lattice point sequence with an interval a in the y-axis direction, and the adjacent lattice point sequence in the x-axis direction. The laser radar device according to claim 9, comprising a plurality of individual emission regions that are separated from the k coordinate of the lattice point by r1a and r2a and have different coefficient pairs (r1, r2).
  11.  前記正方格子がx軸、y軸に沿う隣接格子点間の格子定数aを有し、前記斜交格子がy軸方向に関して間隔aの格子点列を含み、x軸方向に関して隣接格子点列の格子点のk座標から同一距離離れており、
     前記多数の個別出射領域が、出射レーザー光線を含む出射面の発光面に対する射影の面内方向が同一方向である複数の個別出射領域を含む複数の個別出射領域を含む請求項9に記載のレーザーレーダー装置。
    The square lattice has a lattice constant a between adjacent lattice points along the x-axis and the y-axis, the oblique lattice includes a lattice point sequence with an interval a in the y-axis direction, and the adjacent lattice point sequence in the x-axis direction. Is the same distance from the k coordinate of the grid point,
    10. The laser radar according to claim 9, wherein the plurality of individual emission areas include a plurality of individual emission areas including a plurality of individual emission areas in which the in-plane directions of projection of the emission surface including the emission laser beam with respect to the light emitting surface are the same direction. apparatus.
  12.  前記2次元平面内のモニター領域が複数の領域に区分され、前記駆動回路が区分に応じた異なる条件で前記多数の個別出射領域を駆動する請求項1に記載のレーザーレーダー装置。 The laser radar device according to claim 1, wherein the monitor area in the two-dimensional plane is divided into a plurality of areas, and the drive circuit drives the multiple individual emission areas under different conditions according to the division.
  13.  前記多数の個別出射領域が、GaAsを含み、近赤外の光を発射するものを含む、請求項1に記載のレーザーレーダー装置。 The laser radar device according to claim 1, wherein the multiple individual emission regions include GaAs and emit near-infrared light.
  14.  前記多数の個別出射領域が、多重量子井戸構造を有するものを含む、請求項1に記載のレーザーレーダー装置。 The laser radar device according to claim 1, wherein the multiple individual emission regions include those having a multiple quantum well structure.
  15.  前記多重量子井戸構造が、InGaAsウェル層とGaAsバリア層を含む、請求項12に記載のレーザーレーダー装置。 The laser radar device according to claim 12, wherein the multiple quantum well structure includes an InGaAs well layer and a GaAs barrier layer.
  16.  前記多数の個別出射領域が、前方領域に対する1つの領域と、前記前方領域の両側の側方領域に対する2つの領域を含む請求項1に記載のレーザーレーダー装置。 2. The laser radar device according to claim 1, wherein the multiple individual emission regions include one region for a front region and two regions for side regions on both sides of the front region.
  17.  前記多数の個別出射領域が、前方領域モニター期間と側方領域モニター期間を含むように時間分割され、前記前方領域モニター期間においては発光強度を相対的に高く、発光周波数を相対的に低く設定し、前記側方領域モニター期間においては発光強度を相対的に低く、発光周波数を相対的に高く設定している請求項1に記載のレーザーレーダー装置。 The multiple individual emission areas are time-divided to include a front area monitoring period and a side area monitoring period, and the emission intensity is set relatively high and the emission frequency is set relatively low in the front area monitoring period. The laser radar device according to claim 1, wherein the emission intensity is set to be relatively low and the emission frequency is set to be relatively high in the side region monitoring period.
PCT/JP2018/010065 2017-03-17 2018-03-14 Laser radar device WO2018168959A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017053286A JP6789541B2 (en) 2017-03-17 2017-03-17 Laser radar device
JP2017-053286 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168959A1 true WO2018168959A1 (en) 2018-09-20

Family

ID=63523118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010065 WO2018168959A1 (en) 2017-03-17 2018-03-14 Laser radar device

Country Status (2)

Country Link
JP (1) JP6789541B2 (en)
WO (1) WO2018168959A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006338A1 (en) * 2019-07-11 2021-01-14 ローム株式会社 Three-dimensional sensing system
CN112285736A (en) * 2020-10-22 2021-01-29 中国空间技术研究院 All-weather laser radar detection system and method based on photon intensity correlation
WO2022089464A1 (en) * 2020-10-30 2022-05-05 宁波飞芯电子科技有限公司 Detection method and detection system
DE102022101787A1 (en) 2022-01-26 2023-07-27 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung LASER DIODE DEVICE AND METHOD OF MAKING AT LEAST ONE PHOTONIC CRYSTAL STRUCTURE FOR A LASER DIODE DEVICE

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292261A (en) * 1995-04-25 1996-11-05 Nikon Corp Optical radar equipment
JPH09329416A (en) * 1996-06-07 1997-12-22 Minolta Co Ltd Mobile travelling vehicle
US20030107480A1 (en) * 2001-12-12 2003-06-12 Pohang University Of Science And Technology Foundation Sensor for preventing automobile crashes by using photonic quantum ring laser array
JP2009076900A (en) * 2007-08-31 2009-04-09 Japan Science & Technology Agency Photonic crystal laser
JP2010151958A (en) * 2008-12-24 2010-07-08 Toyota Central R&D Labs Inc Optical scanning apparatus and laser radar device
JP2013211542A (en) * 2012-02-28 2013-10-10 Kyoto Univ Two-dimensional photonic crystal surface emitting laser
JP2014197665A (en) * 2013-01-08 2014-10-16 ローム株式会社 Two-dimensional photonic crystal surface light-emitting laser
WO2016148075A1 (en) * 2015-03-13 2016-09-22 浜松ホトニクス株式会社 Semiconductor light emitting element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139594A (en) * 2005-11-18 2007-06-07 Omron Corp Object detection device
JP6417981B2 (en) * 2015-01-30 2018-11-07 株式会社デンソー Ranging device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292261A (en) * 1995-04-25 1996-11-05 Nikon Corp Optical radar equipment
JPH09329416A (en) * 1996-06-07 1997-12-22 Minolta Co Ltd Mobile travelling vehicle
US20030107480A1 (en) * 2001-12-12 2003-06-12 Pohang University Of Science And Technology Foundation Sensor for preventing automobile crashes by using photonic quantum ring laser array
JP2009076900A (en) * 2007-08-31 2009-04-09 Japan Science & Technology Agency Photonic crystal laser
JP2010151958A (en) * 2008-12-24 2010-07-08 Toyota Central R&D Labs Inc Optical scanning apparatus and laser radar device
JP2013211542A (en) * 2012-02-28 2013-10-10 Kyoto Univ Two-dimensional photonic crystal surface emitting laser
JP2014197665A (en) * 2013-01-08 2014-10-16 ローム株式会社 Two-dimensional photonic crystal surface light-emitting laser
WO2016148075A1 (en) * 2015-03-13 2016-09-22 浜松ホトニクス株式会社 Semiconductor light emitting element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006338A1 (en) * 2019-07-11 2021-01-14 ローム株式会社 Three-dimensional sensing system
CN112285736A (en) * 2020-10-22 2021-01-29 中国空间技术研究院 All-weather laser radar detection system and method based on photon intensity correlation
WO2022089464A1 (en) * 2020-10-30 2022-05-05 宁波飞芯电子科技有限公司 Detection method and detection system
DE102022101787A1 (en) 2022-01-26 2023-07-27 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung LASER DIODE DEVICE AND METHOD OF MAKING AT LEAST ONE PHOTONIC CRYSTAL STRUCTURE FOR A LASER DIODE DEVICE

Also Published As

Publication number Publication date
JP6789541B2 (en) 2020-11-25
JP2018155628A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2018168959A1 (en) Laser radar device
KR102536725B1 (en) Lidar device
US9627850B2 (en) Two-dimensional photonic crystal surface-emitting laser
JP6025014B2 (en) Distance measuring device
US9531160B2 (en) Two-dimensional photonic crystal surface-emitting laser
KR102501469B1 (en) System including beam steering device
JP2016146417A (en) Semiconductor light emission device, distance measurement device using the same and method for operating distance measurement device
JP6972083B2 (en) Optical device
JP7382725B2 (en) Beam scanning device and optical device including it
US11637409B2 (en) Semiconductor light-emitting module and control method therefor
US11646546B2 (en) Semiconductor light emitting array with phase modulation regions for generating beam projection patterns
JP2019075557A (en) Light source-integrated light sensing system and electronic device including the same
KR102585256B1 (en) Beam steering device and system including the same
WO2020003660A1 (en) Light-emitting element array and optical measurement system
KR102587957B1 (en) Laser beam phase modulation device, laser beam steering device and laser beam steering system including the same
US20220334450A1 (en) Free-space Beam Steering Systems, Devices, and Methods
TWM615662U (en) Photonic crystal surface emitting laser device
KR102607856B1 (en) 2D steering device
US20230204732A1 (en) Distance measuring device
TWM631350U (en) Surface-emitting laser
KR20220022946A (en) Spatial light modulator, beam steering apparatus and method manufacturing the same
US20220349998A1 (en) Optoelectronic device and lidar system
KR20210074987A (en) LiDAR DEVICE AND LiDAR SYSTEM INCLUDING THE SAME
KR20220038333A (en) Light emitting element and measuring device
US20220320827A1 (en) Photonic crystal surface emitting laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768223

Country of ref document: EP

Kind code of ref document: A1